net: allow to propagate errors through ->ndo_hard_start_xmit()
[linux-2.6/libata-dev.git] / net / core / dev.c
blob548340b572966f25ee465405018ccc65df78cae1
1 /*
2 * NET3 Protocol independent device support routines.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
75 #include <asm/uaccess.h>
76 #include <asm/system.h>
77 #include <linux/bitops.h>
78 #include <linux/capability.h>
79 #include <linux/cpu.h>
80 #include <linux/types.h>
81 #include <linux/kernel.h>
82 #include <linux/hash.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <linux/rtnetlink.h>
100 #include <linux/proc_fs.h>
101 #include <linux/seq_file.h>
102 #include <linux/stat.h>
103 #include <linux/if_bridge.h>
104 #include <linux/if_macvlan.h>
105 #include <net/dst.h>
106 #include <net/pkt_sched.h>
107 #include <net/checksum.h>
108 #include <linux/highmem.h>
109 #include <linux/init.h>
110 #include <linux/kmod.h>
111 #include <linux/module.h>
112 #include <linux/netpoll.h>
113 #include <linux/rcupdate.h>
114 #include <linux/delay.h>
115 #include <net/wext.h>
116 #include <net/iw_handler.h>
117 #include <asm/current.h>
118 #include <linux/audit.h>
119 #include <linux/dmaengine.h>
120 #include <linux/err.h>
121 #include <linux/ctype.h>
122 #include <linux/if_arp.h>
123 #include <linux/if_vlan.h>
124 #include <linux/ip.h>
125 #include <net/ip.h>
126 #include <linux/ipv6.h>
127 #include <linux/in.h>
128 #include <linux/jhash.h>
129 #include <linux/random.h>
130 #include <trace/events/napi.h>
132 #include "net-sysfs.h"
134 /* Instead of increasing this, you should create a hash table. */
135 #define MAX_GRO_SKBS 8
137 /* This should be increased if a protocol with a bigger head is added. */
138 #define GRO_MAX_HEAD (MAX_HEADER + 128)
141 * The list of packet types we will receive (as opposed to discard)
142 * and the routines to invoke.
144 * Why 16. Because with 16 the only overlap we get on a hash of the
145 * low nibble of the protocol value is RARP/SNAP/X.25.
147 * NOTE: That is no longer true with the addition of VLAN tags. Not
148 * sure which should go first, but I bet it won't make much
149 * difference if we are running VLANs. The good news is that
150 * this protocol won't be in the list unless compiled in, so
151 * the average user (w/out VLANs) will not be adversely affected.
152 * --BLG
154 * 0800 IP
155 * 8100 802.1Q VLAN
156 * 0001 802.3
157 * 0002 AX.25
158 * 0004 802.2
159 * 8035 RARP
160 * 0005 SNAP
161 * 0805 X.25
162 * 0806 ARP
163 * 8137 IPX
164 * 0009 Localtalk
165 * 86DD IPv6
168 #define PTYPE_HASH_SIZE (16)
169 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
171 static DEFINE_SPINLOCK(ptype_lock);
172 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
173 static struct list_head ptype_all __read_mostly; /* Taps */
176 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
177 * semaphore.
179 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
181 * Writers must hold the rtnl semaphore while they loop through the
182 * dev_base_head list, and hold dev_base_lock for writing when they do the
183 * actual updates. This allows pure readers to access the list even
184 * while a writer is preparing to update it.
186 * To put it another way, dev_base_lock is held for writing only to
187 * protect against pure readers; the rtnl semaphore provides the
188 * protection against other writers.
190 * See, for example usages, register_netdevice() and
191 * unregister_netdevice(), which must be called with the rtnl
192 * semaphore held.
194 DEFINE_RWLOCK(dev_base_lock);
195 EXPORT_SYMBOL(dev_base_lock);
197 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
199 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
200 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
203 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
205 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
208 /* Device list insertion */
209 static int list_netdevice(struct net_device *dev)
211 struct net *net = dev_net(dev);
213 ASSERT_RTNL();
215 write_lock_bh(&dev_base_lock);
216 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
217 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
218 hlist_add_head_rcu(&dev->index_hlist,
219 dev_index_hash(net, dev->ifindex));
220 write_unlock_bh(&dev_base_lock);
221 return 0;
224 /* Device list removal
225 * caller must respect a RCU grace period before freeing/reusing dev
227 static void unlist_netdevice(struct net_device *dev)
229 ASSERT_RTNL();
231 /* Unlink dev from the device chain */
232 write_lock_bh(&dev_base_lock);
233 list_del_rcu(&dev->dev_list);
234 hlist_del_rcu(&dev->name_hlist);
235 hlist_del_rcu(&dev->index_hlist);
236 write_unlock_bh(&dev_base_lock);
240 * Our notifier list
243 static RAW_NOTIFIER_HEAD(netdev_chain);
246 * Device drivers call our routines to queue packets here. We empty the
247 * queue in the local softnet handler.
250 DEFINE_PER_CPU(struct softnet_data, softnet_data);
251 EXPORT_PER_CPU_SYMBOL(softnet_data);
253 #ifdef CONFIG_LOCKDEP
255 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
256 * according to dev->type
258 static const unsigned short netdev_lock_type[] =
259 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
260 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
261 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
262 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
263 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
264 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
265 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
266 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
267 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
268 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
269 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
270 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
271 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211,
272 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET,
273 ARPHRD_PHONET_PIPE, ARPHRD_IEEE802154,
274 ARPHRD_VOID, ARPHRD_NONE};
276 static const char *const netdev_lock_name[] =
277 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
278 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
279 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
280 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
281 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
282 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
283 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
284 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
285 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
286 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
287 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
288 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
289 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211",
290 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET",
291 "_xmit_PHONET_PIPE", "_xmit_IEEE802154",
292 "_xmit_VOID", "_xmit_NONE"};
294 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
295 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
297 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
299 int i;
301 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
302 if (netdev_lock_type[i] == dev_type)
303 return i;
304 /* the last key is used by default */
305 return ARRAY_SIZE(netdev_lock_type) - 1;
308 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
309 unsigned short dev_type)
311 int i;
313 i = netdev_lock_pos(dev_type);
314 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
315 netdev_lock_name[i]);
318 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
320 int i;
322 i = netdev_lock_pos(dev->type);
323 lockdep_set_class_and_name(&dev->addr_list_lock,
324 &netdev_addr_lock_key[i],
325 netdev_lock_name[i]);
327 #else
328 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
329 unsigned short dev_type)
332 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
335 #endif
337 /*******************************************************************************
339 Protocol management and registration routines
341 *******************************************************************************/
344 * Add a protocol ID to the list. Now that the input handler is
345 * smarter we can dispense with all the messy stuff that used to be
346 * here.
348 * BEWARE!!! Protocol handlers, mangling input packets,
349 * MUST BE last in hash buckets and checking protocol handlers
350 * MUST start from promiscuous ptype_all chain in net_bh.
351 * It is true now, do not change it.
352 * Explanation follows: if protocol handler, mangling packet, will
353 * be the first on list, it is not able to sense, that packet
354 * is cloned and should be copied-on-write, so that it will
355 * change it and subsequent readers will get broken packet.
356 * --ANK (980803)
360 * dev_add_pack - add packet handler
361 * @pt: packet type declaration
363 * Add a protocol handler to the networking stack. The passed &packet_type
364 * is linked into kernel lists and may not be freed until it has been
365 * removed from the kernel lists.
367 * This call does not sleep therefore it can not
368 * guarantee all CPU's that are in middle of receiving packets
369 * will see the new packet type (until the next received packet).
372 void dev_add_pack(struct packet_type *pt)
374 int hash;
376 spin_lock_bh(&ptype_lock);
377 if (pt->type == htons(ETH_P_ALL))
378 list_add_rcu(&pt->list, &ptype_all);
379 else {
380 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
381 list_add_rcu(&pt->list, &ptype_base[hash]);
383 spin_unlock_bh(&ptype_lock);
385 EXPORT_SYMBOL(dev_add_pack);
388 * __dev_remove_pack - remove packet handler
389 * @pt: packet type declaration
391 * Remove a protocol handler that was previously added to the kernel
392 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
393 * from the kernel lists and can be freed or reused once this function
394 * returns.
396 * The packet type might still be in use by receivers
397 * and must not be freed until after all the CPU's have gone
398 * through a quiescent state.
400 void __dev_remove_pack(struct packet_type *pt)
402 struct list_head *head;
403 struct packet_type *pt1;
405 spin_lock_bh(&ptype_lock);
407 if (pt->type == htons(ETH_P_ALL))
408 head = &ptype_all;
409 else
410 head = &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
412 list_for_each_entry(pt1, head, list) {
413 if (pt == pt1) {
414 list_del_rcu(&pt->list);
415 goto out;
419 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt);
420 out:
421 spin_unlock_bh(&ptype_lock);
423 EXPORT_SYMBOL(__dev_remove_pack);
426 * dev_remove_pack - remove packet handler
427 * @pt: packet type declaration
429 * Remove a protocol handler that was previously added to the kernel
430 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
431 * from the kernel lists and can be freed or reused once this function
432 * returns.
434 * This call sleeps to guarantee that no CPU is looking at the packet
435 * type after return.
437 void dev_remove_pack(struct packet_type *pt)
439 __dev_remove_pack(pt);
441 synchronize_net();
443 EXPORT_SYMBOL(dev_remove_pack);
445 /******************************************************************************
447 Device Boot-time Settings Routines
449 *******************************************************************************/
451 /* Boot time configuration table */
452 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
455 * netdev_boot_setup_add - add new setup entry
456 * @name: name of the device
457 * @map: configured settings for the device
459 * Adds new setup entry to the dev_boot_setup list. The function
460 * returns 0 on error and 1 on success. This is a generic routine to
461 * all netdevices.
463 static int netdev_boot_setup_add(char *name, struct ifmap *map)
465 struct netdev_boot_setup *s;
466 int i;
468 s = dev_boot_setup;
469 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
470 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
471 memset(s[i].name, 0, sizeof(s[i].name));
472 strlcpy(s[i].name, name, IFNAMSIZ);
473 memcpy(&s[i].map, map, sizeof(s[i].map));
474 break;
478 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
482 * netdev_boot_setup_check - check boot time settings
483 * @dev: the netdevice
485 * Check boot time settings for the device.
486 * The found settings are set for the device to be used
487 * later in the device probing.
488 * Returns 0 if no settings found, 1 if they are.
490 int netdev_boot_setup_check(struct net_device *dev)
492 struct netdev_boot_setup *s = dev_boot_setup;
493 int i;
495 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
496 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
497 !strcmp(dev->name, s[i].name)) {
498 dev->irq = s[i].map.irq;
499 dev->base_addr = s[i].map.base_addr;
500 dev->mem_start = s[i].map.mem_start;
501 dev->mem_end = s[i].map.mem_end;
502 return 1;
505 return 0;
507 EXPORT_SYMBOL(netdev_boot_setup_check);
511 * netdev_boot_base - get address from boot time settings
512 * @prefix: prefix for network device
513 * @unit: id for network device
515 * Check boot time settings for the base address of device.
516 * The found settings are set for the device to be used
517 * later in the device probing.
518 * Returns 0 if no settings found.
520 unsigned long netdev_boot_base(const char *prefix, int unit)
522 const struct netdev_boot_setup *s = dev_boot_setup;
523 char name[IFNAMSIZ];
524 int i;
526 sprintf(name, "%s%d", prefix, unit);
529 * If device already registered then return base of 1
530 * to indicate not to probe for this interface
532 if (__dev_get_by_name(&init_net, name))
533 return 1;
535 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
536 if (!strcmp(name, s[i].name))
537 return s[i].map.base_addr;
538 return 0;
542 * Saves at boot time configured settings for any netdevice.
544 int __init netdev_boot_setup(char *str)
546 int ints[5];
547 struct ifmap map;
549 str = get_options(str, ARRAY_SIZE(ints), ints);
550 if (!str || !*str)
551 return 0;
553 /* Save settings */
554 memset(&map, 0, sizeof(map));
555 if (ints[0] > 0)
556 map.irq = ints[1];
557 if (ints[0] > 1)
558 map.base_addr = ints[2];
559 if (ints[0] > 2)
560 map.mem_start = ints[3];
561 if (ints[0] > 3)
562 map.mem_end = ints[4];
564 /* Add new entry to the list */
565 return netdev_boot_setup_add(str, &map);
568 __setup("netdev=", netdev_boot_setup);
570 /*******************************************************************************
572 Device Interface Subroutines
574 *******************************************************************************/
577 * __dev_get_by_name - find a device by its name
578 * @net: the applicable net namespace
579 * @name: name to find
581 * Find an interface by name. Must be called under RTNL semaphore
582 * or @dev_base_lock. If the name is found a pointer to the device
583 * is returned. If the name is not found then %NULL is returned. The
584 * reference counters are not incremented so the caller must be
585 * careful with locks.
588 struct net_device *__dev_get_by_name(struct net *net, const char *name)
590 struct hlist_node *p;
591 struct net_device *dev;
592 struct hlist_head *head = dev_name_hash(net, name);
594 hlist_for_each_entry(dev, p, head, name_hlist)
595 if (!strncmp(dev->name, name, IFNAMSIZ))
596 return dev;
598 return NULL;
600 EXPORT_SYMBOL(__dev_get_by_name);
603 * dev_get_by_name_rcu - find a device by its name
604 * @net: the applicable net namespace
605 * @name: name to find
607 * Find an interface by name.
608 * If the name is found a pointer to the device is returned.
609 * If the name is not found then %NULL is returned.
610 * The reference counters are not incremented so the caller must be
611 * careful with locks. The caller must hold RCU lock.
614 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
616 struct hlist_node *p;
617 struct net_device *dev;
618 struct hlist_head *head = dev_name_hash(net, name);
620 hlist_for_each_entry_rcu(dev, p, head, name_hlist)
621 if (!strncmp(dev->name, name, IFNAMSIZ))
622 return dev;
624 return NULL;
626 EXPORT_SYMBOL(dev_get_by_name_rcu);
629 * dev_get_by_name - find a device by its name
630 * @net: the applicable net namespace
631 * @name: name to find
633 * Find an interface by name. This can be called from any
634 * context and does its own locking. The returned handle has
635 * the usage count incremented and the caller must use dev_put() to
636 * release it when it is no longer needed. %NULL is returned if no
637 * matching device is found.
640 struct net_device *dev_get_by_name(struct net *net, const char *name)
642 struct net_device *dev;
644 rcu_read_lock();
645 dev = dev_get_by_name_rcu(net, name);
646 if (dev)
647 dev_hold(dev);
648 rcu_read_unlock();
649 return dev;
651 EXPORT_SYMBOL(dev_get_by_name);
654 * __dev_get_by_index - find a device by its ifindex
655 * @net: the applicable net namespace
656 * @ifindex: index of device
658 * Search for an interface by index. Returns %NULL if the device
659 * is not found or a pointer to the device. The device has not
660 * had its reference counter increased so the caller must be careful
661 * about locking. The caller must hold either the RTNL semaphore
662 * or @dev_base_lock.
665 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
667 struct hlist_node *p;
668 struct net_device *dev;
669 struct hlist_head *head = dev_index_hash(net, ifindex);
671 hlist_for_each_entry(dev, p, head, index_hlist)
672 if (dev->ifindex == ifindex)
673 return dev;
675 return NULL;
677 EXPORT_SYMBOL(__dev_get_by_index);
680 * dev_get_by_index_rcu - find a device by its ifindex
681 * @net: the applicable net namespace
682 * @ifindex: index of device
684 * Search for an interface by index. Returns %NULL if the device
685 * is not found or a pointer to the device. The device has not
686 * had its reference counter increased so the caller must be careful
687 * about locking. The caller must hold RCU lock.
690 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
692 struct hlist_node *p;
693 struct net_device *dev;
694 struct hlist_head *head = dev_index_hash(net, ifindex);
696 hlist_for_each_entry_rcu(dev, p, head, index_hlist)
697 if (dev->ifindex == ifindex)
698 return dev;
700 return NULL;
702 EXPORT_SYMBOL(dev_get_by_index_rcu);
706 * dev_get_by_index - find a device by its ifindex
707 * @net: the applicable net namespace
708 * @ifindex: index of device
710 * Search for an interface by index. Returns NULL if the device
711 * is not found or a pointer to the device. The device returned has
712 * had a reference added and the pointer is safe until the user calls
713 * dev_put to indicate they have finished with it.
716 struct net_device *dev_get_by_index(struct net *net, int ifindex)
718 struct net_device *dev;
720 rcu_read_lock();
721 dev = dev_get_by_index_rcu(net, ifindex);
722 if (dev)
723 dev_hold(dev);
724 rcu_read_unlock();
725 return dev;
727 EXPORT_SYMBOL(dev_get_by_index);
730 * dev_getbyhwaddr - find a device by its hardware address
731 * @net: the applicable net namespace
732 * @type: media type of device
733 * @ha: hardware address
735 * Search for an interface by MAC address. Returns NULL if the device
736 * is not found or a pointer to the device. The caller must hold the
737 * rtnl semaphore. The returned device has not had its ref count increased
738 * and the caller must therefore be careful about locking
740 * BUGS:
741 * If the API was consistent this would be __dev_get_by_hwaddr
744 struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type, char *ha)
746 struct net_device *dev;
748 ASSERT_RTNL();
750 for_each_netdev(net, dev)
751 if (dev->type == type &&
752 !memcmp(dev->dev_addr, ha, dev->addr_len))
753 return dev;
755 return NULL;
757 EXPORT_SYMBOL(dev_getbyhwaddr);
759 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
761 struct net_device *dev;
763 ASSERT_RTNL();
764 for_each_netdev(net, dev)
765 if (dev->type == type)
766 return dev;
768 return NULL;
770 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
772 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
774 struct net_device *dev;
776 rtnl_lock();
777 dev = __dev_getfirstbyhwtype(net, type);
778 if (dev)
779 dev_hold(dev);
780 rtnl_unlock();
781 return dev;
783 EXPORT_SYMBOL(dev_getfirstbyhwtype);
786 * dev_get_by_flags - find any device with given flags
787 * @net: the applicable net namespace
788 * @if_flags: IFF_* values
789 * @mask: bitmask of bits in if_flags to check
791 * Search for any interface with the given flags. Returns NULL if a device
792 * is not found or a pointer to the device. The device returned has
793 * had a reference added and the pointer is safe until the user calls
794 * dev_put to indicate they have finished with it.
797 struct net_device *dev_get_by_flags(struct net *net, unsigned short if_flags,
798 unsigned short mask)
800 struct net_device *dev, *ret;
802 ret = NULL;
803 rcu_read_lock();
804 for_each_netdev_rcu(net, dev) {
805 if (((dev->flags ^ if_flags) & mask) == 0) {
806 dev_hold(dev);
807 ret = dev;
808 break;
811 rcu_read_unlock();
812 return ret;
814 EXPORT_SYMBOL(dev_get_by_flags);
817 * dev_valid_name - check if name is okay for network device
818 * @name: name string
820 * Network device names need to be valid file names to
821 * to allow sysfs to work. We also disallow any kind of
822 * whitespace.
824 int dev_valid_name(const char *name)
826 if (*name == '\0')
827 return 0;
828 if (strlen(name) >= IFNAMSIZ)
829 return 0;
830 if (!strcmp(name, ".") || !strcmp(name, ".."))
831 return 0;
833 while (*name) {
834 if (*name == '/' || isspace(*name))
835 return 0;
836 name++;
838 return 1;
840 EXPORT_SYMBOL(dev_valid_name);
843 * __dev_alloc_name - allocate a name for a device
844 * @net: network namespace to allocate the device name in
845 * @name: name format string
846 * @buf: scratch buffer and result name string
848 * Passed a format string - eg "lt%d" it will try and find a suitable
849 * id. It scans list of devices to build up a free map, then chooses
850 * the first empty slot. The caller must hold the dev_base or rtnl lock
851 * while allocating the name and adding the device in order to avoid
852 * duplicates.
853 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
854 * Returns the number of the unit assigned or a negative errno code.
857 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
859 int i = 0;
860 const char *p;
861 const int max_netdevices = 8*PAGE_SIZE;
862 unsigned long *inuse;
863 struct net_device *d;
865 p = strnchr(name, IFNAMSIZ-1, '%');
866 if (p) {
868 * Verify the string as this thing may have come from
869 * the user. There must be either one "%d" and no other "%"
870 * characters.
872 if (p[1] != 'd' || strchr(p + 2, '%'))
873 return -EINVAL;
875 /* Use one page as a bit array of possible slots */
876 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
877 if (!inuse)
878 return -ENOMEM;
880 for_each_netdev(net, d) {
881 if (!sscanf(d->name, name, &i))
882 continue;
883 if (i < 0 || i >= max_netdevices)
884 continue;
886 /* avoid cases where sscanf is not exact inverse of printf */
887 snprintf(buf, IFNAMSIZ, name, i);
888 if (!strncmp(buf, d->name, IFNAMSIZ))
889 set_bit(i, inuse);
892 i = find_first_zero_bit(inuse, max_netdevices);
893 free_page((unsigned long) inuse);
896 snprintf(buf, IFNAMSIZ, name, i);
897 if (!__dev_get_by_name(net, buf))
898 return i;
900 /* It is possible to run out of possible slots
901 * when the name is long and there isn't enough space left
902 * for the digits, or if all bits are used.
904 return -ENFILE;
908 * dev_alloc_name - allocate a name for a device
909 * @dev: device
910 * @name: name format string
912 * Passed a format string - eg "lt%d" it will try and find a suitable
913 * id. It scans list of devices to build up a free map, then chooses
914 * the first empty slot. The caller must hold the dev_base or rtnl lock
915 * while allocating the name and adding the device in order to avoid
916 * duplicates.
917 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
918 * Returns the number of the unit assigned or a negative errno code.
921 int dev_alloc_name(struct net_device *dev, const char *name)
923 char buf[IFNAMSIZ];
924 struct net *net;
925 int ret;
927 BUG_ON(!dev_net(dev));
928 net = dev_net(dev);
929 ret = __dev_alloc_name(net, name, buf);
930 if (ret >= 0)
931 strlcpy(dev->name, buf, IFNAMSIZ);
932 return ret;
934 EXPORT_SYMBOL(dev_alloc_name);
938 * dev_change_name - change name of a device
939 * @dev: device
940 * @newname: name (or format string) must be at least IFNAMSIZ
942 * Change name of a device, can pass format strings "eth%d".
943 * for wildcarding.
945 int dev_change_name(struct net_device *dev, const char *newname)
947 char oldname[IFNAMSIZ];
948 int err = 0;
949 int ret;
950 struct net *net;
952 ASSERT_RTNL();
953 BUG_ON(!dev_net(dev));
955 net = dev_net(dev);
956 if (dev->flags & IFF_UP)
957 return -EBUSY;
959 if (!dev_valid_name(newname))
960 return -EINVAL;
962 if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
963 return 0;
965 memcpy(oldname, dev->name, IFNAMSIZ);
967 if (strchr(newname, '%')) {
968 err = dev_alloc_name(dev, newname);
969 if (err < 0)
970 return err;
971 } else if (__dev_get_by_name(net, newname))
972 return -EEXIST;
973 else
974 strlcpy(dev->name, newname, IFNAMSIZ);
976 rollback:
977 /* For now only devices in the initial network namespace
978 * are in sysfs.
980 if (net == &init_net) {
981 ret = device_rename(&dev->dev, dev->name);
982 if (ret) {
983 memcpy(dev->name, oldname, IFNAMSIZ);
984 return ret;
988 write_lock_bh(&dev_base_lock);
989 hlist_del(&dev->name_hlist);
990 write_unlock_bh(&dev_base_lock);
992 synchronize_rcu();
994 write_lock_bh(&dev_base_lock);
995 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
996 write_unlock_bh(&dev_base_lock);
998 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
999 ret = notifier_to_errno(ret);
1001 if (ret) {
1002 if (err) {
1003 printk(KERN_ERR
1004 "%s: name change rollback failed: %d.\n",
1005 dev->name, ret);
1006 } else {
1007 err = ret;
1008 memcpy(dev->name, oldname, IFNAMSIZ);
1009 goto rollback;
1013 return err;
1017 * dev_set_alias - change ifalias of a device
1018 * @dev: device
1019 * @alias: name up to IFALIASZ
1020 * @len: limit of bytes to copy from info
1022 * Set ifalias for a device,
1024 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1026 ASSERT_RTNL();
1028 if (len >= IFALIASZ)
1029 return -EINVAL;
1031 if (!len) {
1032 if (dev->ifalias) {
1033 kfree(dev->ifalias);
1034 dev->ifalias = NULL;
1036 return 0;
1039 dev->ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1040 if (!dev->ifalias)
1041 return -ENOMEM;
1043 strlcpy(dev->ifalias, alias, len+1);
1044 return len;
1049 * netdev_features_change - device changes features
1050 * @dev: device to cause notification
1052 * Called to indicate a device has changed features.
1054 void netdev_features_change(struct net_device *dev)
1056 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1058 EXPORT_SYMBOL(netdev_features_change);
1061 * netdev_state_change - device changes state
1062 * @dev: device to cause notification
1064 * Called to indicate a device has changed state. This function calls
1065 * the notifier chains for netdev_chain and sends a NEWLINK message
1066 * to the routing socket.
1068 void netdev_state_change(struct net_device *dev)
1070 if (dev->flags & IFF_UP) {
1071 call_netdevice_notifiers(NETDEV_CHANGE, dev);
1072 rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
1075 EXPORT_SYMBOL(netdev_state_change);
1077 void netdev_bonding_change(struct net_device *dev, unsigned long event)
1079 call_netdevice_notifiers(event, dev);
1081 EXPORT_SYMBOL(netdev_bonding_change);
1084 * dev_load - load a network module
1085 * @net: the applicable net namespace
1086 * @name: name of interface
1088 * If a network interface is not present and the process has suitable
1089 * privileges this function loads the module. If module loading is not
1090 * available in this kernel then it becomes a nop.
1093 void dev_load(struct net *net, const char *name)
1095 struct net_device *dev;
1097 rcu_read_lock();
1098 dev = dev_get_by_name_rcu(net, name);
1099 rcu_read_unlock();
1101 if (!dev && capable(CAP_NET_ADMIN))
1102 request_module("%s", name);
1104 EXPORT_SYMBOL(dev_load);
1107 * dev_open - prepare an interface for use.
1108 * @dev: device to open
1110 * Takes a device from down to up state. The device's private open
1111 * function is invoked and then the multicast lists are loaded. Finally
1112 * the device is moved into the up state and a %NETDEV_UP message is
1113 * sent to the netdev notifier chain.
1115 * Calling this function on an active interface is a nop. On a failure
1116 * a negative errno code is returned.
1118 int dev_open(struct net_device *dev)
1120 const struct net_device_ops *ops = dev->netdev_ops;
1121 int ret;
1123 ASSERT_RTNL();
1126 * Is it already up?
1129 if (dev->flags & IFF_UP)
1130 return 0;
1133 * Is it even present?
1135 if (!netif_device_present(dev))
1136 return -ENODEV;
1138 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1139 ret = notifier_to_errno(ret);
1140 if (ret)
1141 return ret;
1144 * Call device private open method
1146 set_bit(__LINK_STATE_START, &dev->state);
1148 if (ops->ndo_validate_addr)
1149 ret = ops->ndo_validate_addr(dev);
1151 if (!ret && ops->ndo_open)
1152 ret = ops->ndo_open(dev);
1155 * If it went open OK then:
1158 if (ret)
1159 clear_bit(__LINK_STATE_START, &dev->state);
1160 else {
1162 * Set the flags.
1164 dev->flags |= IFF_UP;
1167 * Enable NET_DMA
1169 net_dmaengine_get();
1172 * Initialize multicasting status
1174 dev_set_rx_mode(dev);
1177 * Wakeup transmit queue engine
1179 dev_activate(dev);
1182 * ... and announce new interface.
1184 call_netdevice_notifiers(NETDEV_UP, dev);
1187 return ret;
1189 EXPORT_SYMBOL(dev_open);
1192 * dev_close - shutdown an interface.
1193 * @dev: device to shutdown
1195 * This function moves an active device into down state. A
1196 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1197 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1198 * chain.
1200 int dev_close(struct net_device *dev)
1202 const struct net_device_ops *ops = dev->netdev_ops;
1203 ASSERT_RTNL();
1205 might_sleep();
1207 if (!(dev->flags & IFF_UP))
1208 return 0;
1211 * Tell people we are going down, so that they can
1212 * prepare to death, when device is still operating.
1214 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1216 clear_bit(__LINK_STATE_START, &dev->state);
1218 /* Synchronize to scheduled poll. We cannot touch poll list,
1219 * it can be even on different cpu. So just clear netif_running().
1221 * dev->stop() will invoke napi_disable() on all of it's
1222 * napi_struct instances on this device.
1224 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1226 dev_deactivate(dev);
1229 * Call the device specific close. This cannot fail.
1230 * Only if device is UP
1232 * We allow it to be called even after a DETACH hot-plug
1233 * event.
1235 if (ops->ndo_stop)
1236 ops->ndo_stop(dev);
1239 * Device is now down.
1242 dev->flags &= ~IFF_UP;
1245 * Tell people we are down
1247 call_netdevice_notifiers(NETDEV_DOWN, dev);
1250 * Shutdown NET_DMA
1252 net_dmaengine_put();
1254 return 0;
1256 EXPORT_SYMBOL(dev_close);
1260 * dev_disable_lro - disable Large Receive Offload on a device
1261 * @dev: device
1263 * Disable Large Receive Offload (LRO) on a net device. Must be
1264 * called under RTNL. This is needed if received packets may be
1265 * forwarded to another interface.
1267 void dev_disable_lro(struct net_device *dev)
1269 if (dev->ethtool_ops && dev->ethtool_ops->get_flags &&
1270 dev->ethtool_ops->set_flags) {
1271 u32 flags = dev->ethtool_ops->get_flags(dev);
1272 if (flags & ETH_FLAG_LRO) {
1273 flags &= ~ETH_FLAG_LRO;
1274 dev->ethtool_ops->set_flags(dev, flags);
1277 WARN_ON(dev->features & NETIF_F_LRO);
1279 EXPORT_SYMBOL(dev_disable_lro);
1282 static int dev_boot_phase = 1;
1285 * Device change register/unregister. These are not inline or static
1286 * as we export them to the world.
1290 * register_netdevice_notifier - register a network notifier block
1291 * @nb: notifier
1293 * Register a notifier to be called when network device events occur.
1294 * The notifier passed is linked into the kernel structures and must
1295 * not be reused until it has been unregistered. A negative errno code
1296 * is returned on a failure.
1298 * When registered all registration and up events are replayed
1299 * to the new notifier to allow device to have a race free
1300 * view of the network device list.
1303 int register_netdevice_notifier(struct notifier_block *nb)
1305 struct net_device *dev;
1306 struct net_device *last;
1307 struct net *net;
1308 int err;
1310 rtnl_lock();
1311 err = raw_notifier_chain_register(&netdev_chain, nb);
1312 if (err)
1313 goto unlock;
1314 if (dev_boot_phase)
1315 goto unlock;
1316 for_each_net(net) {
1317 for_each_netdev(net, dev) {
1318 err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1319 err = notifier_to_errno(err);
1320 if (err)
1321 goto rollback;
1323 if (!(dev->flags & IFF_UP))
1324 continue;
1326 nb->notifier_call(nb, NETDEV_UP, dev);
1330 unlock:
1331 rtnl_unlock();
1332 return err;
1334 rollback:
1335 last = dev;
1336 for_each_net(net) {
1337 for_each_netdev(net, dev) {
1338 if (dev == last)
1339 break;
1341 if (dev->flags & IFF_UP) {
1342 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1343 nb->notifier_call(nb, NETDEV_DOWN, dev);
1345 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1349 raw_notifier_chain_unregister(&netdev_chain, nb);
1350 goto unlock;
1352 EXPORT_SYMBOL(register_netdevice_notifier);
1355 * unregister_netdevice_notifier - unregister a network notifier block
1356 * @nb: notifier
1358 * Unregister a notifier previously registered by
1359 * register_netdevice_notifier(). The notifier is unlinked into the
1360 * kernel structures and may then be reused. A negative errno code
1361 * is returned on a failure.
1364 int unregister_netdevice_notifier(struct notifier_block *nb)
1366 int err;
1368 rtnl_lock();
1369 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1370 rtnl_unlock();
1371 return err;
1373 EXPORT_SYMBOL(unregister_netdevice_notifier);
1376 * call_netdevice_notifiers - call all network notifier blocks
1377 * @val: value passed unmodified to notifier function
1378 * @dev: net_device pointer passed unmodified to notifier function
1380 * Call all network notifier blocks. Parameters and return value
1381 * are as for raw_notifier_call_chain().
1384 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1386 return raw_notifier_call_chain(&netdev_chain, val, dev);
1389 /* When > 0 there are consumers of rx skb time stamps */
1390 static atomic_t netstamp_needed = ATOMIC_INIT(0);
1392 void net_enable_timestamp(void)
1394 atomic_inc(&netstamp_needed);
1396 EXPORT_SYMBOL(net_enable_timestamp);
1398 void net_disable_timestamp(void)
1400 atomic_dec(&netstamp_needed);
1402 EXPORT_SYMBOL(net_disable_timestamp);
1404 static inline void net_timestamp(struct sk_buff *skb)
1406 if (atomic_read(&netstamp_needed))
1407 __net_timestamp(skb);
1408 else
1409 skb->tstamp.tv64 = 0;
1413 * Support routine. Sends outgoing frames to any network
1414 * taps currently in use.
1417 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1419 struct packet_type *ptype;
1421 #ifdef CONFIG_NET_CLS_ACT
1422 if (!(skb->tstamp.tv64 && (G_TC_FROM(skb->tc_verd) & AT_INGRESS)))
1423 net_timestamp(skb);
1424 #else
1425 net_timestamp(skb);
1426 #endif
1428 rcu_read_lock();
1429 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1430 /* Never send packets back to the socket
1431 * they originated from - MvS (miquels@drinkel.ow.org)
1433 if ((ptype->dev == dev || !ptype->dev) &&
1434 (ptype->af_packet_priv == NULL ||
1435 (struct sock *)ptype->af_packet_priv != skb->sk)) {
1436 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1437 if (!skb2)
1438 break;
1440 /* skb->nh should be correctly
1441 set by sender, so that the second statement is
1442 just protection against buggy protocols.
1444 skb_reset_mac_header(skb2);
1446 if (skb_network_header(skb2) < skb2->data ||
1447 skb2->network_header > skb2->tail) {
1448 if (net_ratelimit())
1449 printk(KERN_CRIT "protocol %04x is "
1450 "buggy, dev %s\n",
1451 skb2->protocol, dev->name);
1452 skb_reset_network_header(skb2);
1455 skb2->transport_header = skb2->network_header;
1456 skb2->pkt_type = PACKET_OUTGOING;
1457 ptype->func(skb2, skb->dev, ptype, skb->dev);
1460 rcu_read_unlock();
1464 static inline void __netif_reschedule(struct Qdisc *q)
1466 struct softnet_data *sd;
1467 unsigned long flags;
1469 local_irq_save(flags);
1470 sd = &__get_cpu_var(softnet_data);
1471 q->next_sched = sd->output_queue;
1472 sd->output_queue = q;
1473 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1474 local_irq_restore(flags);
1477 void __netif_schedule(struct Qdisc *q)
1479 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
1480 __netif_reschedule(q);
1482 EXPORT_SYMBOL(__netif_schedule);
1484 void dev_kfree_skb_irq(struct sk_buff *skb)
1486 if (atomic_dec_and_test(&skb->users)) {
1487 struct softnet_data *sd;
1488 unsigned long flags;
1490 local_irq_save(flags);
1491 sd = &__get_cpu_var(softnet_data);
1492 skb->next = sd->completion_queue;
1493 sd->completion_queue = skb;
1494 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1495 local_irq_restore(flags);
1498 EXPORT_SYMBOL(dev_kfree_skb_irq);
1500 void dev_kfree_skb_any(struct sk_buff *skb)
1502 if (in_irq() || irqs_disabled())
1503 dev_kfree_skb_irq(skb);
1504 else
1505 dev_kfree_skb(skb);
1507 EXPORT_SYMBOL(dev_kfree_skb_any);
1511 * netif_device_detach - mark device as removed
1512 * @dev: network device
1514 * Mark device as removed from system and therefore no longer available.
1516 void netif_device_detach(struct net_device *dev)
1518 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1519 netif_running(dev)) {
1520 netif_tx_stop_all_queues(dev);
1523 EXPORT_SYMBOL(netif_device_detach);
1526 * netif_device_attach - mark device as attached
1527 * @dev: network device
1529 * Mark device as attached from system and restart if needed.
1531 void netif_device_attach(struct net_device *dev)
1533 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1534 netif_running(dev)) {
1535 netif_tx_wake_all_queues(dev);
1536 __netdev_watchdog_up(dev);
1539 EXPORT_SYMBOL(netif_device_attach);
1541 static bool can_checksum_protocol(unsigned long features, __be16 protocol)
1543 return ((features & NETIF_F_GEN_CSUM) ||
1544 ((features & NETIF_F_IP_CSUM) &&
1545 protocol == htons(ETH_P_IP)) ||
1546 ((features & NETIF_F_IPV6_CSUM) &&
1547 protocol == htons(ETH_P_IPV6)) ||
1548 ((features & NETIF_F_FCOE_CRC) &&
1549 protocol == htons(ETH_P_FCOE)));
1552 static bool dev_can_checksum(struct net_device *dev, struct sk_buff *skb)
1554 if (can_checksum_protocol(dev->features, skb->protocol))
1555 return true;
1557 if (skb->protocol == htons(ETH_P_8021Q)) {
1558 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
1559 if (can_checksum_protocol(dev->features & dev->vlan_features,
1560 veh->h_vlan_encapsulated_proto))
1561 return true;
1564 return false;
1568 * Invalidate hardware checksum when packet is to be mangled, and
1569 * complete checksum manually on outgoing path.
1571 int skb_checksum_help(struct sk_buff *skb)
1573 __wsum csum;
1574 int ret = 0, offset;
1576 if (skb->ip_summed == CHECKSUM_COMPLETE)
1577 goto out_set_summed;
1579 if (unlikely(skb_shinfo(skb)->gso_size)) {
1580 /* Let GSO fix up the checksum. */
1581 goto out_set_summed;
1584 offset = skb->csum_start - skb_headroom(skb);
1585 BUG_ON(offset >= skb_headlen(skb));
1586 csum = skb_checksum(skb, offset, skb->len - offset, 0);
1588 offset += skb->csum_offset;
1589 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1591 if (skb_cloned(skb) &&
1592 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1593 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1594 if (ret)
1595 goto out;
1598 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
1599 out_set_summed:
1600 skb->ip_summed = CHECKSUM_NONE;
1601 out:
1602 return ret;
1604 EXPORT_SYMBOL(skb_checksum_help);
1607 * skb_gso_segment - Perform segmentation on skb.
1608 * @skb: buffer to segment
1609 * @features: features for the output path (see dev->features)
1611 * This function segments the given skb and returns a list of segments.
1613 * It may return NULL if the skb requires no segmentation. This is
1614 * only possible when GSO is used for verifying header integrity.
1616 struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features)
1618 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1619 struct packet_type *ptype;
1620 __be16 type = skb->protocol;
1621 int err;
1623 skb_reset_mac_header(skb);
1624 skb->mac_len = skb->network_header - skb->mac_header;
1625 __skb_pull(skb, skb->mac_len);
1627 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1628 struct net_device *dev = skb->dev;
1629 struct ethtool_drvinfo info = {};
1631 if (dev && dev->ethtool_ops && dev->ethtool_ops->get_drvinfo)
1632 dev->ethtool_ops->get_drvinfo(dev, &info);
1634 WARN(1, "%s: caps=(0x%lx, 0x%lx) len=%d data_len=%d "
1635 "ip_summed=%d",
1636 info.driver, dev ? dev->features : 0L,
1637 skb->sk ? skb->sk->sk_route_caps : 0L,
1638 skb->len, skb->data_len, skb->ip_summed);
1640 if (skb_header_cloned(skb) &&
1641 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
1642 return ERR_PTR(err);
1645 rcu_read_lock();
1646 list_for_each_entry_rcu(ptype,
1647 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
1648 if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
1649 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1650 err = ptype->gso_send_check(skb);
1651 segs = ERR_PTR(err);
1652 if (err || skb_gso_ok(skb, features))
1653 break;
1654 __skb_push(skb, (skb->data -
1655 skb_network_header(skb)));
1657 segs = ptype->gso_segment(skb, features);
1658 break;
1661 rcu_read_unlock();
1663 __skb_push(skb, skb->data - skb_mac_header(skb));
1665 return segs;
1667 EXPORT_SYMBOL(skb_gso_segment);
1669 /* Take action when hardware reception checksum errors are detected. */
1670 #ifdef CONFIG_BUG
1671 void netdev_rx_csum_fault(struct net_device *dev)
1673 if (net_ratelimit()) {
1674 printk(KERN_ERR "%s: hw csum failure.\n",
1675 dev ? dev->name : "<unknown>");
1676 dump_stack();
1679 EXPORT_SYMBOL(netdev_rx_csum_fault);
1680 #endif
1682 /* Actually, we should eliminate this check as soon as we know, that:
1683 * 1. IOMMU is present and allows to map all the memory.
1684 * 2. No high memory really exists on this machine.
1687 static inline int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1689 #ifdef CONFIG_HIGHMEM
1690 int i;
1692 if (dev->features & NETIF_F_HIGHDMA)
1693 return 0;
1695 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1696 if (PageHighMem(skb_shinfo(skb)->frags[i].page))
1697 return 1;
1699 #endif
1700 return 0;
1703 struct dev_gso_cb {
1704 void (*destructor)(struct sk_buff *skb);
1707 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
1709 static void dev_gso_skb_destructor(struct sk_buff *skb)
1711 struct dev_gso_cb *cb;
1713 do {
1714 struct sk_buff *nskb = skb->next;
1716 skb->next = nskb->next;
1717 nskb->next = NULL;
1718 kfree_skb(nskb);
1719 } while (skb->next);
1721 cb = DEV_GSO_CB(skb);
1722 if (cb->destructor)
1723 cb->destructor(skb);
1727 * dev_gso_segment - Perform emulated hardware segmentation on skb.
1728 * @skb: buffer to segment
1730 * This function segments the given skb and stores the list of segments
1731 * in skb->next.
1733 static int dev_gso_segment(struct sk_buff *skb)
1735 struct net_device *dev = skb->dev;
1736 struct sk_buff *segs;
1737 int features = dev->features & ~(illegal_highdma(dev, skb) ?
1738 NETIF_F_SG : 0);
1740 segs = skb_gso_segment(skb, features);
1742 /* Verifying header integrity only. */
1743 if (!segs)
1744 return 0;
1746 if (IS_ERR(segs))
1747 return PTR_ERR(segs);
1749 skb->next = segs;
1750 DEV_GSO_CB(skb)->destructor = skb->destructor;
1751 skb->destructor = dev_gso_skb_destructor;
1753 return 0;
1756 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
1757 struct netdev_queue *txq)
1759 const struct net_device_ops *ops = dev->netdev_ops;
1760 int rc = NETDEV_TX_OK;
1762 if (likely(!skb->next)) {
1763 if (!list_empty(&ptype_all))
1764 dev_queue_xmit_nit(skb, dev);
1766 if (netif_needs_gso(dev, skb)) {
1767 if (unlikely(dev_gso_segment(skb)))
1768 goto out_kfree_skb;
1769 if (skb->next)
1770 goto gso;
1774 * If device doesnt need skb->dst, release it right now while
1775 * its hot in this cpu cache
1777 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
1778 skb_dst_drop(skb);
1780 rc = ops->ndo_start_xmit(skb, dev);
1781 if (rc == NETDEV_TX_OK)
1782 txq_trans_update(txq);
1784 * TODO: if skb_orphan() was called by
1785 * dev->hard_start_xmit() (for example, the unmodified
1786 * igb driver does that; bnx2 doesn't), then
1787 * skb_tx_software_timestamp() will be unable to send
1788 * back the time stamp.
1790 * How can this be prevented? Always create another
1791 * reference to the socket before calling
1792 * dev->hard_start_xmit()? Prevent that skb_orphan()
1793 * does anything in dev->hard_start_xmit() by clearing
1794 * the skb destructor before the call and restoring it
1795 * afterwards, then doing the skb_orphan() ourselves?
1797 return rc;
1800 gso:
1801 do {
1802 struct sk_buff *nskb = skb->next;
1804 skb->next = nskb->next;
1805 nskb->next = NULL;
1806 rc = ops->ndo_start_xmit(nskb, dev);
1807 if (unlikely(rc != NETDEV_TX_OK)) {
1808 if (rc & ~NETDEV_TX_MASK)
1809 goto out_kfree_gso_skb;
1810 nskb->next = skb->next;
1811 skb->next = nskb;
1812 return rc;
1814 txq_trans_update(txq);
1815 if (unlikely(netif_tx_queue_stopped(txq) && skb->next))
1816 return NETDEV_TX_BUSY;
1817 } while (skb->next);
1819 out_kfree_gso_skb:
1820 if (likely(skb->next == NULL))
1821 skb->destructor = DEV_GSO_CB(skb)->destructor;
1822 out_kfree_skb:
1823 kfree_skb(skb);
1824 return rc;
1827 static u32 skb_tx_hashrnd;
1829 u16 skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb)
1831 u32 hash;
1833 if (skb_rx_queue_recorded(skb)) {
1834 hash = skb_get_rx_queue(skb);
1835 while (unlikely(hash >= dev->real_num_tx_queues))
1836 hash -= dev->real_num_tx_queues;
1837 return hash;
1840 if (skb->sk && skb->sk->sk_hash)
1841 hash = skb->sk->sk_hash;
1842 else
1843 hash = skb->protocol;
1845 hash = jhash_1word(hash, skb_tx_hashrnd);
1847 return (u16) (((u64) hash * dev->real_num_tx_queues) >> 32);
1849 EXPORT_SYMBOL(skb_tx_hash);
1851 static struct netdev_queue *dev_pick_tx(struct net_device *dev,
1852 struct sk_buff *skb)
1854 u16 queue_index;
1855 struct sock *sk = skb->sk;
1857 if (sk_tx_queue_recorded(sk)) {
1858 queue_index = sk_tx_queue_get(sk);
1859 } else {
1860 const struct net_device_ops *ops = dev->netdev_ops;
1862 if (ops->ndo_select_queue) {
1863 queue_index = ops->ndo_select_queue(dev, skb);
1864 } else {
1865 queue_index = 0;
1866 if (dev->real_num_tx_queues > 1)
1867 queue_index = skb_tx_hash(dev, skb);
1869 if (sk && sk->sk_dst_cache)
1870 sk_tx_queue_set(sk, queue_index);
1874 skb_set_queue_mapping(skb, queue_index);
1875 return netdev_get_tx_queue(dev, queue_index);
1878 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
1879 struct net_device *dev,
1880 struct netdev_queue *txq)
1882 spinlock_t *root_lock = qdisc_lock(q);
1883 int rc;
1885 spin_lock(root_lock);
1886 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
1887 kfree_skb(skb);
1888 rc = NET_XMIT_DROP;
1889 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
1890 !test_and_set_bit(__QDISC_STATE_RUNNING, &q->state)) {
1892 * This is a work-conserving queue; there are no old skbs
1893 * waiting to be sent out; and the qdisc is not running -
1894 * xmit the skb directly.
1896 __qdisc_update_bstats(q, skb->len);
1897 if (sch_direct_xmit(skb, q, dev, txq, root_lock))
1898 __qdisc_run(q);
1899 else
1900 clear_bit(__QDISC_STATE_RUNNING, &q->state);
1902 rc = NET_XMIT_SUCCESS;
1903 } else {
1904 rc = qdisc_enqueue_root(skb, q);
1905 qdisc_run(q);
1907 spin_unlock(root_lock);
1909 return rc;
1912 static inline bool dev_xmit_complete(int rc)
1914 /* successful transmission */
1915 if (rc == NETDEV_TX_OK)
1916 return true;
1918 /* error while transmitting, driver consumed skb */
1919 if (rc < 0)
1920 return true;
1922 /* error while queueing to a different device, driver consumed skb */
1923 if (rc & NET_XMIT_MASK)
1924 return true;
1926 return false;
1930 * dev_queue_xmit - transmit a buffer
1931 * @skb: buffer to transmit
1933 * Queue a buffer for transmission to a network device. The caller must
1934 * have set the device and priority and built the buffer before calling
1935 * this function. The function can be called from an interrupt.
1937 * A negative errno code is returned on a failure. A success does not
1938 * guarantee the frame will be transmitted as it may be dropped due
1939 * to congestion or traffic shaping.
1941 * -----------------------------------------------------------------------------------
1942 * I notice this method can also return errors from the queue disciplines,
1943 * including NET_XMIT_DROP, which is a positive value. So, errors can also
1944 * be positive.
1946 * Regardless of the return value, the skb is consumed, so it is currently
1947 * difficult to retry a send to this method. (You can bump the ref count
1948 * before sending to hold a reference for retry if you are careful.)
1950 * When calling this method, interrupts MUST be enabled. This is because
1951 * the BH enable code must have IRQs enabled so that it will not deadlock.
1952 * --BLG
1954 int dev_queue_xmit(struct sk_buff *skb)
1956 struct net_device *dev = skb->dev;
1957 struct netdev_queue *txq;
1958 struct Qdisc *q;
1959 int rc = -ENOMEM;
1961 /* GSO will handle the following emulations directly. */
1962 if (netif_needs_gso(dev, skb))
1963 goto gso;
1965 if (skb_has_frags(skb) &&
1966 !(dev->features & NETIF_F_FRAGLIST) &&
1967 __skb_linearize(skb))
1968 goto out_kfree_skb;
1970 /* Fragmented skb is linearized if device does not support SG,
1971 * or if at least one of fragments is in highmem and device
1972 * does not support DMA from it.
1974 if (skb_shinfo(skb)->nr_frags &&
1975 (!(dev->features & NETIF_F_SG) || illegal_highdma(dev, skb)) &&
1976 __skb_linearize(skb))
1977 goto out_kfree_skb;
1979 /* If packet is not checksummed and device does not support
1980 * checksumming for this protocol, complete checksumming here.
1982 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1983 skb_set_transport_header(skb, skb->csum_start -
1984 skb_headroom(skb));
1985 if (!dev_can_checksum(dev, skb) && skb_checksum_help(skb))
1986 goto out_kfree_skb;
1989 gso:
1990 /* Disable soft irqs for various locks below. Also
1991 * stops preemption for RCU.
1993 rcu_read_lock_bh();
1995 txq = dev_pick_tx(dev, skb);
1996 q = rcu_dereference(txq->qdisc);
1998 #ifdef CONFIG_NET_CLS_ACT
1999 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2000 #endif
2001 if (q->enqueue) {
2002 rc = __dev_xmit_skb(skb, q, dev, txq);
2003 goto out;
2006 /* The device has no queue. Common case for software devices:
2007 loopback, all the sorts of tunnels...
2009 Really, it is unlikely that netif_tx_lock protection is necessary
2010 here. (f.e. loopback and IP tunnels are clean ignoring statistics
2011 counters.)
2012 However, it is possible, that they rely on protection
2013 made by us here.
2015 Check this and shot the lock. It is not prone from deadlocks.
2016 Either shot noqueue qdisc, it is even simpler 8)
2018 if (dev->flags & IFF_UP) {
2019 int cpu = smp_processor_id(); /* ok because BHs are off */
2021 if (txq->xmit_lock_owner != cpu) {
2023 HARD_TX_LOCK(dev, txq, cpu);
2025 if (!netif_tx_queue_stopped(txq)) {
2026 rc = dev_hard_start_xmit(skb, dev, txq);
2027 if (dev_xmit_complete(rc)) {
2028 HARD_TX_UNLOCK(dev, txq);
2029 goto out;
2032 HARD_TX_UNLOCK(dev, txq);
2033 if (net_ratelimit())
2034 printk(KERN_CRIT "Virtual device %s asks to "
2035 "queue packet!\n", dev->name);
2036 } else {
2037 /* Recursion is detected! It is possible,
2038 * unfortunately */
2039 if (net_ratelimit())
2040 printk(KERN_CRIT "Dead loop on virtual device "
2041 "%s, fix it urgently!\n", dev->name);
2045 rc = -ENETDOWN;
2046 rcu_read_unlock_bh();
2048 out_kfree_skb:
2049 kfree_skb(skb);
2050 return rc;
2051 out:
2052 rcu_read_unlock_bh();
2053 return rc;
2055 EXPORT_SYMBOL(dev_queue_xmit);
2058 /*=======================================================================
2059 Receiver routines
2060 =======================================================================*/
2062 int netdev_max_backlog __read_mostly = 1000;
2063 int netdev_budget __read_mostly = 300;
2064 int weight_p __read_mostly = 64; /* old backlog weight */
2066 DEFINE_PER_CPU(struct netif_rx_stats, netdev_rx_stat) = { 0, };
2070 * netif_rx - post buffer to the network code
2071 * @skb: buffer to post
2073 * This function receives a packet from a device driver and queues it for
2074 * the upper (protocol) levels to process. It always succeeds. The buffer
2075 * may be dropped during processing for congestion control or by the
2076 * protocol layers.
2078 * return values:
2079 * NET_RX_SUCCESS (no congestion)
2080 * NET_RX_DROP (packet was dropped)
2084 int netif_rx(struct sk_buff *skb)
2086 struct softnet_data *queue;
2087 unsigned long flags;
2089 /* if netpoll wants it, pretend we never saw it */
2090 if (netpoll_rx(skb))
2091 return NET_RX_DROP;
2093 if (!skb->tstamp.tv64)
2094 net_timestamp(skb);
2097 * The code is rearranged so that the path is the most
2098 * short when CPU is congested, but is still operating.
2100 local_irq_save(flags);
2101 queue = &__get_cpu_var(softnet_data);
2103 __get_cpu_var(netdev_rx_stat).total++;
2104 if (queue->input_pkt_queue.qlen <= netdev_max_backlog) {
2105 if (queue->input_pkt_queue.qlen) {
2106 enqueue:
2107 __skb_queue_tail(&queue->input_pkt_queue, skb);
2108 local_irq_restore(flags);
2109 return NET_RX_SUCCESS;
2112 napi_schedule(&queue->backlog);
2113 goto enqueue;
2116 __get_cpu_var(netdev_rx_stat).dropped++;
2117 local_irq_restore(flags);
2119 kfree_skb(skb);
2120 return NET_RX_DROP;
2122 EXPORT_SYMBOL(netif_rx);
2124 int netif_rx_ni(struct sk_buff *skb)
2126 int err;
2128 preempt_disable();
2129 err = netif_rx(skb);
2130 if (local_softirq_pending())
2131 do_softirq();
2132 preempt_enable();
2134 return err;
2136 EXPORT_SYMBOL(netif_rx_ni);
2138 static void net_tx_action(struct softirq_action *h)
2140 struct softnet_data *sd = &__get_cpu_var(softnet_data);
2142 if (sd->completion_queue) {
2143 struct sk_buff *clist;
2145 local_irq_disable();
2146 clist = sd->completion_queue;
2147 sd->completion_queue = NULL;
2148 local_irq_enable();
2150 while (clist) {
2151 struct sk_buff *skb = clist;
2152 clist = clist->next;
2154 WARN_ON(atomic_read(&skb->users));
2155 __kfree_skb(skb);
2159 if (sd->output_queue) {
2160 struct Qdisc *head;
2162 local_irq_disable();
2163 head = sd->output_queue;
2164 sd->output_queue = NULL;
2165 local_irq_enable();
2167 while (head) {
2168 struct Qdisc *q = head;
2169 spinlock_t *root_lock;
2171 head = head->next_sched;
2173 root_lock = qdisc_lock(q);
2174 if (spin_trylock(root_lock)) {
2175 smp_mb__before_clear_bit();
2176 clear_bit(__QDISC_STATE_SCHED,
2177 &q->state);
2178 qdisc_run(q);
2179 spin_unlock(root_lock);
2180 } else {
2181 if (!test_bit(__QDISC_STATE_DEACTIVATED,
2182 &q->state)) {
2183 __netif_reschedule(q);
2184 } else {
2185 smp_mb__before_clear_bit();
2186 clear_bit(__QDISC_STATE_SCHED,
2187 &q->state);
2194 static inline int deliver_skb(struct sk_buff *skb,
2195 struct packet_type *pt_prev,
2196 struct net_device *orig_dev)
2198 atomic_inc(&skb->users);
2199 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2202 #if defined(CONFIG_BRIDGE) || defined (CONFIG_BRIDGE_MODULE)
2204 #if defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE)
2205 /* This hook is defined here for ATM LANE */
2206 int (*br_fdb_test_addr_hook)(struct net_device *dev,
2207 unsigned char *addr) __read_mostly;
2208 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
2209 #endif
2212 * If bridge module is loaded call bridging hook.
2213 * returns NULL if packet was consumed.
2215 struct sk_buff *(*br_handle_frame_hook)(struct net_bridge_port *p,
2216 struct sk_buff *skb) __read_mostly;
2217 EXPORT_SYMBOL_GPL(br_handle_frame_hook);
2219 static inline struct sk_buff *handle_bridge(struct sk_buff *skb,
2220 struct packet_type **pt_prev, int *ret,
2221 struct net_device *orig_dev)
2223 struct net_bridge_port *port;
2225 if (skb->pkt_type == PACKET_LOOPBACK ||
2226 (port = rcu_dereference(skb->dev->br_port)) == NULL)
2227 return skb;
2229 if (*pt_prev) {
2230 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2231 *pt_prev = NULL;
2234 return br_handle_frame_hook(port, skb);
2236 #else
2237 #define handle_bridge(skb, pt_prev, ret, orig_dev) (skb)
2238 #endif
2240 #if defined(CONFIG_MACVLAN) || defined(CONFIG_MACVLAN_MODULE)
2241 struct sk_buff *(*macvlan_handle_frame_hook)(struct sk_buff *skb) __read_mostly;
2242 EXPORT_SYMBOL_GPL(macvlan_handle_frame_hook);
2244 static inline struct sk_buff *handle_macvlan(struct sk_buff *skb,
2245 struct packet_type **pt_prev,
2246 int *ret,
2247 struct net_device *orig_dev)
2249 if (skb->dev->macvlan_port == NULL)
2250 return skb;
2252 if (*pt_prev) {
2253 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2254 *pt_prev = NULL;
2256 return macvlan_handle_frame_hook(skb);
2258 #else
2259 #define handle_macvlan(skb, pt_prev, ret, orig_dev) (skb)
2260 #endif
2262 #ifdef CONFIG_NET_CLS_ACT
2263 /* TODO: Maybe we should just force sch_ingress to be compiled in
2264 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
2265 * a compare and 2 stores extra right now if we dont have it on
2266 * but have CONFIG_NET_CLS_ACT
2267 * NOTE: This doesnt stop any functionality; if you dont have
2268 * the ingress scheduler, you just cant add policies on ingress.
2271 static int ing_filter(struct sk_buff *skb)
2273 struct net_device *dev = skb->dev;
2274 u32 ttl = G_TC_RTTL(skb->tc_verd);
2275 struct netdev_queue *rxq;
2276 int result = TC_ACT_OK;
2277 struct Qdisc *q;
2279 if (MAX_RED_LOOP < ttl++) {
2280 printk(KERN_WARNING
2281 "Redir loop detected Dropping packet (%d->%d)\n",
2282 skb->iif, dev->ifindex);
2283 return TC_ACT_SHOT;
2286 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
2287 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
2289 rxq = &dev->rx_queue;
2291 q = rxq->qdisc;
2292 if (q != &noop_qdisc) {
2293 spin_lock(qdisc_lock(q));
2294 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
2295 result = qdisc_enqueue_root(skb, q);
2296 spin_unlock(qdisc_lock(q));
2299 return result;
2302 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
2303 struct packet_type **pt_prev,
2304 int *ret, struct net_device *orig_dev)
2306 if (skb->dev->rx_queue.qdisc == &noop_qdisc)
2307 goto out;
2309 if (*pt_prev) {
2310 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2311 *pt_prev = NULL;
2312 } else {
2313 /* Huh? Why does turning on AF_PACKET affect this? */
2314 skb->tc_verd = SET_TC_OK2MUNGE(skb->tc_verd);
2317 switch (ing_filter(skb)) {
2318 case TC_ACT_SHOT:
2319 case TC_ACT_STOLEN:
2320 kfree_skb(skb);
2321 return NULL;
2324 out:
2325 skb->tc_verd = 0;
2326 return skb;
2328 #endif
2331 * netif_nit_deliver - deliver received packets to network taps
2332 * @skb: buffer
2334 * This function is used to deliver incoming packets to network
2335 * taps. It should be used when the normal netif_receive_skb path
2336 * is bypassed, for example because of VLAN acceleration.
2338 void netif_nit_deliver(struct sk_buff *skb)
2340 struct packet_type *ptype;
2342 if (list_empty(&ptype_all))
2343 return;
2345 skb_reset_network_header(skb);
2346 skb_reset_transport_header(skb);
2347 skb->mac_len = skb->network_header - skb->mac_header;
2349 rcu_read_lock();
2350 list_for_each_entry_rcu(ptype, &ptype_all, list) {
2351 if (!ptype->dev || ptype->dev == skb->dev)
2352 deliver_skb(skb, ptype, skb->dev);
2354 rcu_read_unlock();
2358 * netif_receive_skb - process receive buffer from network
2359 * @skb: buffer to process
2361 * netif_receive_skb() is the main receive data processing function.
2362 * It always succeeds. The buffer may be dropped during processing
2363 * for congestion control or by the protocol layers.
2365 * This function may only be called from softirq context and interrupts
2366 * should be enabled.
2368 * Return values (usually ignored):
2369 * NET_RX_SUCCESS: no congestion
2370 * NET_RX_DROP: packet was dropped
2372 int netif_receive_skb(struct sk_buff *skb)
2374 struct packet_type *ptype, *pt_prev;
2375 struct net_device *orig_dev;
2376 struct net_device *null_or_orig;
2377 int ret = NET_RX_DROP;
2378 __be16 type;
2380 if (!skb->tstamp.tv64)
2381 net_timestamp(skb);
2383 if (vlan_tx_tag_present(skb) && vlan_hwaccel_do_receive(skb))
2384 return NET_RX_SUCCESS;
2386 /* if we've gotten here through NAPI, check netpoll */
2387 if (netpoll_receive_skb(skb))
2388 return NET_RX_DROP;
2390 if (!skb->iif)
2391 skb->iif = skb->dev->ifindex;
2393 null_or_orig = NULL;
2394 orig_dev = skb->dev;
2395 if (orig_dev->master) {
2396 if (skb_bond_should_drop(skb))
2397 null_or_orig = orig_dev; /* deliver only exact match */
2398 else
2399 skb->dev = orig_dev->master;
2402 __get_cpu_var(netdev_rx_stat).total++;
2404 skb_reset_network_header(skb);
2405 skb_reset_transport_header(skb);
2406 skb->mac_len = skb->network_header - skb->mac_header;
2408 pt_prev = NULL;
2410 rcu_read_lock();
2412 #ifdef CONFIG_NET_CLS_ACT
2413 if (skb->tc_verd & TC_NCLS) {
2414 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
2415 goto ncls;
2417 #endif
2419 list_for_each_entry_rcu(ptype, &ptype_all, list) {
2420 if (ptype->dev == null_or_orig || ptype->dev == skb->dev ||
2421 ptype->dev == orig_dev) {
2422 if (pt_prev)
2423 ret = deliver_skb(skb, pt_prev, orig_dev);
2424 pt_prev = ptype;
2428 #ifdef CONFIG_NET_CLS_ACT
2429 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
2430 if (!skb)
2431 goto out;
2432 ncls:
2433 #endif
2435 skb = handle_bridge(skb, &pt_prev, &ret, orig_dev);
2436 if (!skb)
2437 goto out;
2438 skb = handle_macvlan(skb, &pt_prev, &ret, orig_dev);
2439 if (!skb)
2440 goto out;
2442 type = skb->protocol;
2443 list_for_each_entry_rcu(ptype,
2444 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
2445 if (ptype->type == type &&
2446 (ptype->dev == null_or_orig || ptype->dev == skb->dev ||
2447 ptype->dev == orig_dev)) {
2448 if (pt_prev)
2449 ret = deliver_skb(skb, pt_prev, orig_dev);
2450 pt_prev = ptype;
2454 if (pt_prev) {
2455 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2456 } else {
2457 kfree_skb(skb);
2458 /* Jamal, now you will not able to escape explaining
2459 * me how you were going to use this. :-)
2461 ret = NET_RX_DROP;
2464 out:
2465 rcu_read_unlock();
2466 return ret;
2468 EXPORT_SYMBOL(netif_receive_skb);
2470 /* Network device is going away, flush any packets still pending */
2471 static void flush_backlog(void *arg)
2473 struct net_device *dev = arg;
2474 struct softnet_data *queue = &__get_cpu_var(softnet_data);
2475 struct sk_buff *skb, *tmp;
2477 skb_queue_walk_safe(&queue->input_pkt_queue, skb, tmp)
2478 if (skb->dev == dev) {
2479 __skb_unlink(skb, &queue->input_pkt_queue);
2480 kfree_skb(skb);
2484 static int napi_gro_complete(struct sk_buff *skb)
2486 struct packet_type *ptype;
2487 __be16 type = skb->protocol;
2488 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
2489 int err = -ENOENT;
2491 if (NAPI_GRO_CB(skb)->count == 1) {
2492 skb_shinfo(skb)->gso_size = 0;
2493 goto out;
2496 rcu_read_lock();
2497 list_for_each_entry_rcu(ptype, head, list) {
2498 if (ptype->type != type || ptype->dev || !ptype->gro_complete)
2499 continue;
2501 err = ptype->gro_complete(skb);
2502 break;
2504 rcu_read_unlock();
2506 if (err) {
2507 WARN_ON(&ptype->list == head);
2508 kfree_skb(skb);
2509 return NET_RX_SUCCESS;
2512 out:
2513 return netif_receive_skb(skb);
2516 void napi_gro_flush(struct napi_struct *napi)
2518 struct sk_buff *skb, *next;
2520 for (skb = napi->gro_list; skb; skb = next) {
2521 next = skb->next;
2522 skb->next = NULL;
2523 napi_gro_complete(skb);
2526 napi->gro_count = 0;
2527 napi->gro_list = NULL;
2529 EXPORT_SYMBOL(napi_gro_flush);
2531 enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
2533 struct sk_buff **pp = NULL;
2534 struct packet_type *ptype;
2535 __be16 type = skb->protocol;
2536 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
2537 int same_flow;
2538 int mac_len;
2539 enum gro_result ret;
2541 if (!(skb->dev->features & NETIF_F_GRO))
2542 goto normal;
2544 if (skb_is_gso(skb) || skb_has_frags(skb))
2545 goto normal;
2547 rcu_read_lock();
2548 list_for_each_entry_rcu(ptype, head, list) {
2549 if (ptype->type != type || ptype->dev || !ptype->gro_receive)
2550 continue;
2552 skb_set_network_header(skb, skb_gro_offset(skb));
2553 mac_len = skb->network_header - skb->mac_header;
2554 skb->mac_len = mac_len;
2555 NAPI_GRO_CB(skb)->same_flow = 0;
2556 NAPI_GRO_CB(skb)->flush = 0;
2557 NAPI_GRO_CB(skb)->free = 0;
2559 pp = ptype->gro_receive(&napi->gro_list, skb);
2560 break;
2562 rcu_read_unlock();
2564 if (&ptype->list == head)
2565 goto normal;
2567 same_flow = NAPI_GRO_CB(skb)->same_flow;
2568 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
2570 if (pp) {
2571 struct sk_buff *nskb = *pp;
2573 *pp = nskb->next;
2574 nskb->next = NULL;
2575 napi_gro_complete(nskb);
2576 napi->gro_count--;
2579 if (same_flow)
2580 goto ok;
2582 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS)
2583 goto normal;
2585 napi->gro_count++;
2586 NAPI_GRO_CB(skb)->count = 1;
2587 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
2588 skb->next = napi->gro_list;
2589 napi->gro_list = skb;
2590 ret = GRO_HELD;
2592 pull:
2593 if (skb_headlen(skb) < skb_gro_offset(skb)) {
2594 int grow = skb_gro_offset(skb) - skb_headlen(skb);
2596 BUG_ON(skb->end - skb->tail < grow);
2598 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
2600 skb->tail += grow;
2601 skb->data_len -= grow;
2603 skb_shinfo(skb)->frags[0].page_offset += grow;
2604 skb_shinfo(skb)->frags[0].size -= grow;
2606 if (unlikely(!skb_shinfo(skb)->frags[0].size)) {
2607 put_page(skb_shinfo(skb)->frags[0].page);
2608 memmove(skb_shinfo(skb)->frags,
2609 skb_shinfo(skb)->frags + 1,
2610 --skb_shinfo(skb)->nr_frags);
2615 return ret;
2617 normal:
2618 ret = GRO_NORMAL;
2619 goto pull;
2621 EXPORT_SYMBOL(dev_gro_receive);
2623 static gro_result_t
2624 __napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
2626 struct sk_buff *p;
2628 if (netpoll_rx_on(skb))
2629 return GRO_NORMAL;
2631 for (p = napi->gro_list; p; p = p->next) {
2632 NAPI_GRO_CB(p)->same_flow = (p->dev == skb->dev)
2633 && !compare_ether_header(skb_mac_header(p),
2634 skb_gro_mac_header(skb));
2635 NAPI_GRO_CB(p)->flush = 0;
2638 return dev_gro_receive(napi, skb);
2641 gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
2643 switch (ret) {
2644 case GRO_NORMAL:
2645 if (netif_receive_skb(skb))
2646 ret = GRO_DROP;
2647 break;
2649 case GRO_DROP:
2650 case GRO_MERGED_FREE:
2651 kfree_skb(skb);
2652 break;
2654 case GRO_HELD:
2655 case GRO_MERGED:
2656 break;
2659 return ret;
2661 EXPORT_SYMBOL(napi_skb_finish);
2663 void skb_gro_reset_offset(struct sk_buff *skb)
2665 NAPI_GRO_CB(skb)->data_offset = 0;
2666 NAPI_GRO_CB(skb)->frag0 = NULL;
2667 NAPI_GRO_CB(skb)->frag0_len = 0;
2669 if (skb->mac_header == skb->tail &&
2670 !PageHighMem(skb_shinfo(skb)->frags[0].page)) {
2671 NAPI_GRO_CB(skb)->frag0 =
2672 page_address(skb_shinfo(skb)->frags[0].page) +
2673 skb_shinfo(skb)->frags[0].page_offset;
2674 NAPI_GRO_CB(skb)->frag0_len = skb_shinfo(skb)->frags[0].size;
2677 EXPORT_SYMBOL(skb_gro_reset_offset);
2679 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
2681 skb_gro_reset_offset(skb);
2683 return napi_skb_finish(__napi_gro_receive(napi, skb), skb);
2685 EXPORT_SYMBOL(napi_gro_receive);
2687 void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
2689 __skb_pull(skb, skb_headlen(skb));
2690 skb_reserve(skb, NET_IP_ALIGN - skb_headroom(skb));
2692 napi->skb = skb;
2694 EXPORT_SYMBOL(napi_reuse_skb);
2696 struct sk_buff *napi_get_frags(struct napi_struct *napi)
2698 struct sk_buff *skb = napi->skb;
2700 if (!skb) {
2701 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
2702 if (skb)
2703 napi->skb = skb;
2705 return skb;
2707 EXPORT_SYMBOL(napi_get_frags);
2709 gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb,
2710 gro_result_t ret)
2712 switch (ret) {
2713 case GRO_NORMAL:
2714 case GRO_HELD:
2715 skb->protocol = eth_type_trans(skb, napi->dev);
2717 if (ret == GRO_HELD)
2718 skb_gro_pull(skb, -ETH_HLEN);
2719 else if (netif_receive_skb(skb))
2720 ret = GRO_DROP;
2721 break;
2723 case GRO_DROP:
2724 case GRO_MERGED_FREE:
2725 napi_reuse_skb(napi, skb);
2726 break;
2728 case GRO_MERGED:
2729 break;
2732 return ret;
2734 EXPORT_SYMBOL(napi_frags_finish);
2736 struct sk_buff *napi_frags_skb(struct napi_struct *napi)
2738 struct sk_buff *skb = napi->skb;
2739 struct ethhdr *eth;
2740 unsigned int hlen;
2741 unsigned int off;
2743 napi->skb = NULL;
2745 skb_reset_mac_header(skb);
2746 skb_gro_reset_offset(skb);
2748 off = skb_gro_offset(skb);
2749 hlen = off + sizeof(*eth);
2750 eth = skb_gro_header_fast(skb, off);
2751 if (skb_gro_header_hard(skb, hlen)) {
2752 eth = skb_gro_header_slow(skb, hlen, off);
2753 if (unlikely(!eth)) {
2754 napi_reuse_skb(napi, skb);
2755 skb = NULL;
2756 goto out;
2760 skb_gro_pull(skb, sizeof(*eth));
2763 * This works because the only protocols we care about don't require
2764 * special handling. We'll fix it up properly at the end.
2766 skb->protocol = eth->h_proto;
2768 out:
2769 return skb;
2771 EXPORT_SYMBOL(napi_frags_skb);
2773 gro_result_t napi_gro_frags(struct napi_struct *napi)
2775 struct sk_buff *skb = napi_frags_skb(napi);
2777 if (!skb)
2778 return GRO_DROP;
2780 return napi_frags_finish(napi, skb, __napi_gro_receive(napi, skb));
2782 EXPORT_SYMBOL(napi_gro_frags);
2784 static int process_backlog(struct napi_struct *napi, int quota)
2786 int work = 0;
2787 struct softnet_data *queue = &__get_cpu_var(softnet_data);
2788 unsigned long start_time = jiffies;
2790 napi->weight = weight_p;
2791 do {
2792 struct sk_buff *skb;
2794 local_irq_disable();
2795 skb = __skb_dequeue(&queue->input_pkt_queue);
2796 if (!skb) {
2797 __napi_complete(napi);
2798 local_irq_enable();
2799 break;
2801 local_irq_enable();
2803 netif_receive_skb(skb);
2804 } while (++work < quota && jiffies == start_time);
2806 return work;
2810 * __napi_schedule - schedule for receive
2811 * @n: entry to schedule
2813 * The entry's receive function will be scheduled to run
2815 void __napi_schedule(struct napi_struct *n)
2817 unsigned long flags;
2819 local_irq_save(flags);
2820 list_add_tail(&n->poll_list, &__get_cpu_var(softnet_data).poll_list);
2821 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2822 local_irq_restore(flags);
2824 EXPORT_SYMBOL(__napi_schedule);
2826 void __napi_complete(struct napi_struct *n)
2828 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
2829 BUG_ON(n->gro_list);
2831 list_del(&n->poll_list);
2832 smp_mb__before_clear_bit();
2833 clear_bit(NAPI_STATE_SCHED, &n->state);
2835 EXPORT_SYMBOL(__napi_complete);
2837 void napi_complete(struct napi_struct *n)
2839 unsigned long flags;
2842 * don't let napi dequeue from the cpu poll list
2843 * just in case its running on a different cpu
2845 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
2846 return;
2848 napi_gro_flush(n);
2849 local_irq_save(flags);
2850 __napi_complete(n);
2851 local_irq_restore(flags);
2853 EXPORT_SYMBOL(napi_complete);
2855 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2856 int (*poll)(struct napi_struct *, int), int weight)
2858 INIT_LIST_HEAD(&napi->poll_list);
2859 napi->gro_count = 0;
2860 napi->gro_list = NULL;
2861 napi->skb = NULL;
2862 napi->poll = poll;
2863 napi->weight = weight;
2864 list_add(&napi->dev_list, &dev->napi_list);
2865 napi->dev = dev;
2866 #ifdef CONFIG_NETPOLL
2867 spin_lock_init(&napi->poll_lock);
2868 napi->poll_owner = -1;
2869 #endif
2870 set_bit(NAPI_STATE_SCHED, &napi->state);
2872 EXPORT_SYMBOL(netif_napi_add);
2874 void netif_napi_del(struct napi_struct *napi)
2876 struct sk_buff *skb, *next;
2878 list_del_init(&napi->dev_list);
2879 napi_free_frags(napi);
2881 for (skb = napi->gro_list; skb; skb = next) {
2882 next = skb->next;
2883 skb->next = NULL;
2884 kfree_skb(skb);
2887 napi->gro_list = NULL;
2888 napi->gro_count = 0;
2890 EXPORT_SYMBOL(netif_napi_del);
2893 static void net_rx_action(struct softirq_action *h)
2895 struct list_head *list = &__get_cpu_var(softnet_data).poll_list;
2896 unsigned long time_limit = jiffies + 2;
2897 int budget = netdev_budget;
2898 void *have;
2900 local_irq_disable();
2902 while (!list_empty(list)) {
2903 struct napi_struct *n;
2904 int work, weight;
2906 /* If softirq window is exhuasted then punt.
2907 * Allow this to run for 2 jiffies since which will allow
2908 * an average latency of 1.5/HZ.
2910 if (unlikely(budget <= 0 || time_after(jiffies, time_limit)))
2911 goto softnet_break;
2913 local_irq_enable();
2915 /* Even though interrupts have been re-enabled, this
2916 * access is safe because interrupts can only add new
2917 * entries to the tail of this list, and only ->poll()
2918 * calls can remove this head entry from the list.
2920 n = list_entry(list->next, struct napi_struct, poll_list);
2922 have = netpoll_poll_lock(n);
2924 weight = n->weight;
2926 /* This NAPI_STATE_SCHED test is for avoiding a race
2927 * with netpoll's poll_napi(). Only the entity which
2928 * obtains the lock and sees NAPI_STATE_SCHED set will
2929 * actually make the ->poll() call. Therefore we avoid
2930 * accidently calling ->poll() when NAPI is not scheduled.
2932 work = 0;
2933 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
2934 work = n->poll(n, weight);
2935 trace_napi_poll(n);
2938 WARN_ON_ONCE(work > weight);
2940 budget -= work;
2942 local_irq_disable();
2944 /* Drivers must not modify the NAPI state if they
2945 * consume the entire weight. In such cases this code
2946 * still "owns" the NAPI instance and therefore can
2947 * move the instance around on the list at-will.
2949 if (unlikely(work == weight)) {
2950 if (unlikely(napi_disable_pending(n))) {
2951 local_irq_enable();
2952 napi_complete(n);
2953 local_irq_disable();
2954 } else
2955 list_move_tail(&n->poll_list, list);
2958 netpoll_poll_unlock(have);
2960 out:
2961 local_irq_enable();
2963 #ifdef CONFIG_NET_DMA
2965 * There may not be any more sk_buffs coming right now, so push
2966 * any pending DMA copies to hardware
2968 dma_issue_pending_all();
2969 #endif
2971 return;
2973 softnet_break:
2974 __get_cpu_var(netdev_rx_stat).time_squeeze++;
2975 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2976 goto out;
2979 static gifconf_func_t *gifconf_list[NPROTO];
2982 * register_gifconf - register a SIOCGIF handler
2983 * @family: Address family
2984 * @gifconf: Function handler
2986 * Register protocol dependent address dumping routines. The handler
2987 * that is passed must not be freed or reused until it has been replaced
2988 * by another handler.
2990 int register_gifconf(unsigned int family, gifconf_func_t *gifconf)
2992 if (family >= NPROTO)
2993 return -EINVAL;
2994 gifconf_list[family] = gifconf;
2995 return 0;
2997 EXPORT_SYMBOL(register_gifconf);
3001 * Map an interface index to its name (SIOCGIFNAME)
3005 * We need this ioctl for efficient implementation of the
3006 * if_indextoname() function required by the IPv6 API. Without
3007 * it, we would have to search all the interfaces to find a
3008 * match. --pb
3011 static int dev_ifname(struct net *net, struct ifreq __user *arg)
3013 struct net_device *dev;
3014 struct ifreq ifr;
3017 * Fetch the caller's info block.
3020 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
3021 return -EFAULT;
3023 rcu_read_lock();
3024 dev = dev_get_by_index_rcu(net, ifr.ifr_ifindex);
3025 if (!dev) {
3026 rcu_read_unlock();
3027 return -ENODEV;
3030 strcpy(ifr.ifr_name, dev->name);
3031 rcu_read_unlock();
3033 if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
3034 return -EFAULT;
3035 return 0;
3039 * Perform a SIOCGIFCONF call. This structure will change
3040 * size eventually, and there is nothing I can do about it.
3041 * Thus we will need a 'compatibility mode'.
3044 static int dev_ifconf(struct net *net, char __user *arg)
3046 struct ifconf ifc;
3047 struct net_device *dev;
3048 char __user *pos;
3049 int len;
3050 int total;
3051 int i;
3054 * Fetch the caller's info block.
3057 if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
3058 return -EFAULT;
3060 pos = ifc.ifc_buf;
3061 len = ifc.ifc_len;
3064 * Loop over the interfaces, and write an info block for each.
3067 total = 0;
3068 for_each_netdev(net, dev) {
3069 for (i = 0; i < NPROTO; i++) {
3070 if (gifconf_list[i]) {
3071 int done;
3072 if (!pos)
3073 done = gifconf_list[i](dev, NULL, 0);
3074 else
3075 done = gifconf_list[i](dev, pos + total,
3076 len - total);
3077 if (done < 0)
3078 return -EFAULT;
3079 total += done;
3085 * All done. Write the updated control block back to the caller.
3087 ifc.ifc_len = total;
3090 * Both BSD and Solaris return 0 here, so we do too.
3092 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
3095 #ifdef CONFIG_PROC_FS
3097 * This is invoked by the /proc filesystem handler to display a device
3098 * in detail.
3100 void *dev_seq_start(struct seq_file *seq, loff_t *pos)
3101 __acquires(RCU)
3103 struct net *net = seq_file_net(seq);
3104 loff_t off;
3105 struct net_device *dev;
3107 rcu_read_lock();
3108 if (!*pos)
3109 return SEQ_START_TOKEN;
3111 off = 1;
3112 for_each_netdev_rcu(net, dev)
3113 if (off++ == *pos)
3114 return dev;
3116 return NULL;
3119 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3121 struct net_device *dev = (v == SEQ_START_TOKEN) ?
3122 first_net_device(seq_file_net(seq)) :
3123 next_net_device((struct net_device *)v);
3125 ++*pos;
3126 return rcu_dereference(dev);
3129 void dev_seq_stop(struct seq_file *seq, void *v)
3130 __releases(RCU)
3132 rcu_read_unlock();
3135 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
3137 const struct net_device_stats *stats = dev_get_stats(dev);
3139 seq_printf(seq, "%6s:%8lu %7lu %4lu %4lu %4lu %5lu %10lu %9lu "
3140 "%8lu %7lu %4lu %4lu %4lu %5lu %7lu %10lu\n",
3141 dev->name, stats->rx_bytes, stats->rx_packets,
3142 stats->rx_errors,
3143 stats->rx_dropped + stats->rx_missed_errors,
3144 stats->rx_fifo_errors,
3145 stats->rx_length_errors + stats->rx_over_errors +
3146 stats->rx_crc_errors + stats->rx_frame_errors,
3147 stats->rx_compressed, stats->multicast,
3148 stats->tx_bytes, stats->tx_packets,
3149 stats->tx_errors, stats->tx_dropped,
3150 stats->tx_fifo_errors, stats->collisions,
3151 stats->tx_carrier_errors +
3152 stats->tx_aborted_errors +
3153 stats->tx_window_errors +
3154 stats->tx_heartbeat_errors,
3155 stats->tx_compressed);
3159 * Called from the PROCfs module. This now uses the new arbitrary sized
3160 * /proc/net interface to create /proc/net/dev
3162 static int dev_seq_show(struct seq_file *seq, void *v)
3164 if (v == SEQ_START_TOKEN)
3165 seq_puts(seq, "Inter-| Receive "
3166 " | Transmit\n"
3167 " face |bytes packets errs drop fifo frame "
3168 "compressed multicast|bytes packets errs "
3169 "drop fifo colls carrier compressed\n");
3170 else
3171 dev_seq_printf_stats(seq, v);
3172 return 0;
3175 static struct netif_rx_stats *softnet_get_online(loff_t *pos)
3177 struct netif_rx_stats *rc = NULL;
3179 while (*pos < nr_cpu_ids)
3180 if (cpu_online(*pos)) {
3181 rc = &per_cpu(netdev_rx_stat, *pos);
3182 break;
3183 } else
3184 ++*pos;
3185 return rc;
3188 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
3190 return softnet_get_online(pos);
3193 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3195 ++*pos;
3196 return softnet_get_online(pos);
3199 static void softnet_seq_stop(struct seq_file *seq, void *v)
3203 static int softnet_seq_show(struct seq_file *seq, void *v)
3205 struct netif_rx_stats *s = v;
3207 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
3208 s->total, s->dropped, s->time_squeeze, 0,
3209 0, 0, 0, 0, /* was fastroute */
3210 s->cpu_collision);
3211 return 0;
3214 static const struct seq_operations dev_seq_ops = {
3215 .start = dev_seq_start,
3216 .next = dev_seq_next,
3217 .stop = dev_seq_stop,
3218 .show = dev_seq_show,
3221 static int dev_seq_open(struct inode *inode, struct file *file)
3223 return seq_open_net(inode, file, &dev_seq_ops,
3224 sizeof(struct seq_net_private));
3227 static const struct file_operations dev_seq_fops = {
3228 .owner = THIS_MODULE,
3229 .open = dev_seq_open,
3230 .read = seq_read,
3231 .llseek = seq_lseek,
3232 .release = seq_release_net,
3235 static const struct seq_operations softnet_seq_ops = {
3236 .start = softnet_seq_start,
3237 .next = softnet_seq_next,
3238 .stop = softnet_seq_stop,
3239 .show = softnet_seq_show,
3242 static int softnet_seq_open(struct inode *inode, struct file *file)
3244 return seq_open(file, &softnet_seq_ops);
3247 static const struct file_operations softnet_seq_fops = {
3248 .owner = THIS_MODULE,
3249 .open = softnet_seq_open,
3250 .read = seq_read,
3251 .llseek = seq_lseek,
3252 .release = seq_release,
3255 static void *ptype_get_idx(loff_t pos)
3257 struct packet_type *pt = NULL;
3258 loff_t i = 0;
3259 int t;
3261 list_for_each_entry_rcu(pt, &ptype_all, list) {
3262 if (i == pos)
3263 return pt;
3264 ++i;
3267 for (t = 0; t < PTYPE_HASH_SIZE; t++) {
3268 list_for_each_entry_rcu(pt, &ptype_base[t], list) {
3269 if (i == pos)
3270 return pt;
3271 ++i;
3274 return NULL;
3277 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
3278 __acquires(RCU)
3280 rcu_read_lock();
3281 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
3284 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3286 struct packet_type *pt;
3287 struct list_head *nxt;
3288 int hash;
3290 ++*pos;
3291 if (v == SEQ_START_TOKEN)
3292 return ptype_get_idx(0);
3294 pt = v;
3295 nxt = pt->list.next;
3296 if (pt->type == htons(ETH_P_ALL)) {
3297 if (nxt != &ptype_all)
3298 goto found;
3299 hash = 0;
3300 nxt = ptype_base[0].next;
3301 } else
3302 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
3304 while (nxt == &ptype_base[hash]) {
3305 if (++hash >= PTYPE_HASH_SIZE)
3306 return NULL;
3307 nxt = ptype_base[hash].next;
3309 found:
3310 return list_entry(nxt, struct packet_type, list);
3313 static void ptype_seq_stop(struct seq_file *seq, void *v)
3314 __releases(RCU)
3316 rcu_read_unlock();
3319 static int ptype_seq_show(struct seq_file *seq, void *v)
3321 struct packet_type *pt = v;
3323 if (v == SEQ_START_TOKEN)
3324 seq_puts(seq, "Type Device Function\n");
3325 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) {
3326 if (pt->type == htons(ETH_P_ALL))
3327 seq_puts(seq, "ALL ");
3328 else
3329 seq_printf(seq, "%04x", ntohs(pt->type));
3331 seq_printf(seq, " %-8s %pF\n",
3332 pt->dev ? pt->dev->name : "", pt->func);
3335 return 0;
3338 static const struct seq_operations ptype_seq_ops = {
3339 .start = ptype_seq_start,
3340 .next = ptype_seq_next,
3341 .stop = ptype_seq_stop,
3342 .show = ptype_seq_show,
3345 static int ptype_seq_open(struct inode *inode, struct file *file)
3347 return seq_open_net(inode, file, &ptype_seq_ops,
3348 sizeof(struct seq_net_private));
3351 static const struct file_operations ptype_seq_fops = {
3352 .owner = THIS_MODULE,
3353 .open = ptype_seq_open,
3354 .read = seq_read,
3355 .llseek = seq_lseek,
3356 .release = seq_release_net,
3360 static int __net_init dev_proc_net_init(struct net *net)
3362 int rc = -ENOMEM;
3364 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
3365 goto out;
3366 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
3367 goto out_dev;
3368 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
3369 goto out_softnet;
3371 if (wext_proc_init(net))
3372 goto out_ptype;
3373 rc = 0;
3374 out:
3375 return rc;
3376 out_ptype:
3377 proc_net_remove(net, "ptype");
3378 out_softnet:
3379 proc_net_remove(net, "softnet_stat");
3380 out_dev:
3381 proc_net_remove(net, "dev");
3382 goto out;
3385 static void __net_exit dev_proc_net_exit(struct net *net)
3387 wext_proc_exit(net);
3389 proc_net_remove(net, "ptype");
3390 proc_net_remove(net, "softnet_stat");
3391 proc_net_remove(net, "dev");
3394 static struct pernet_operations __net_initdata dev_proc_ops = {
3395 .init = dev_proc_net_init,
3396 .exit = dev_proc_net_exit,
3399 static int __init dev_proc_init(void)
3401 return register_pernet_subsys(&dev_proc_ops);
3403 #else
3404 #define dev_proc_init() 0
3405 #endif /* CONFIG_PROC_FS */
3409 * netdev_set_master - set up master/slave pair
3410 * @slave: slave device
3411 * @master: new master device
3413 * Changes the master device of the slave. Pass %NULL to break the
3414 * bonding. The caller must hold the RTNL semaphore. On a failure
3415 * a negative errno code is returned. On success the reference counts
3416 * are adjusted, %RTM_NEWLINK is sent to the routing socket and the
3417 * function returns zero.
3419 int netdev_set_master(struct net_device *slave, struct net_device *master)
3421 struct net_device *old = slave->master;
3423 ASSERT_RTNL();
3425 if (master) {
3426 if (old)
3427 return -EBUSY;
3428 dev_hold(master);
3431 slave->master = master;
3433 synchronize_net();
3435 if (old)
3436 dev_put(old);
3438 if (master)
3439 slave->flags |= IFF_SLAVE;
3440 else
3441 slave->flags &= ~IFF_SLAVE;
3443 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
3444 return 0;
3446 EXPORT_SYMBOL(netdev_set_master);
3448 static void dev_change_rx_flags(struct net_device *dev, int flags)
3450 const struct net_device_ops *ops = dev->netdev_ops;
3452 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags)
3453 ops->ndo_change_rx_flags(dev, flags);
3456 static int __dev_set_promiscuity(struct net_device *dev, int inc)
3458 unsigned short old_flags = dev->flags;
3459 uid_t uid;
3460 gid_t gid;
3462 ASSERT_RTNL();
3464 dev->flags |= IFF_PROMISC;
3465 dev->promiscuity += inc;
3466 if (dev->promiscuity == 0) {
3468 * Avoid overflow.
3469 * If inc causes overflow, untouch promisc and return error.
3471 if (inc < 0)
3472 dev->flags &= ~IFF_PROMISC;
3473 else {
3474 dev->promiscuity -= inc;
3475 printk(KERN_WARNING "%s: promiscuity touches roof, "
3476 "set promiscuity failed, promiscuity feature "
3477 "of device might be broken.\n", dev->name);
3478 return -EOVERFLOW;
3481 if (dev->flags != old_flags) {
3482 printk(KERN_INFO "device %s %s promiscuous mode\n",
3483 dev->name, (dev->flags & IFF_PROMISC) ? "entered" :
3484 "left");
3485 if (audit_enabled) {
3486 current_uid_gid(&uid, &gid);
3487 audit_log(current->audit_context, GFP_ATOMIC,
3488 AUDIT_ANOM_PROMISCUOUS,
3489 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
3490 dev->name, (dev->flags & IFF_PROMISC),
3491 (old_flags & IFF_PROMISC),
3492 audit_get_loginuid(current),
3493 uid, gid,
3494 audit_get_sessionid(current));
3497 dev_change_rx_flags(dev, IFF_PROMISC);
3499 return 0;
3503 * dev_set_promiscuity - update promiscuity count on a device
3504 * @dev: device
3505 * @inc: modifier
3507 * Add or remove promiscuity from a device. While the count in the device
3508 * remains above zero the interface remains promiscuous. Once it hits zero
3509 * the device reverts back to normal filtering operation. A negative inc
3510 * value is used to drop promiscuity on the device.
3511 * Return 0 if successful or a negative errno code on error.
3513 int dev_set_promiscuity(struct net_device *dev, int inc)
3515 unsigned short old_flags = dev->flags;
3516 int err;
3518 err = __dev_set_promiscuity(dev, inc);
3519 if (err < 0)
3520 return err;
3521 if (dev->flags != old_flags)
3522 dev_set_rx_mode(dev);
3523 return err;
3525 EXPORT_SYMBOL(dev_set_promiscuity);
3528 * dev_set_allmulti - update allmulti count on a device
3529 * @dev: device
3530 * @inc: modifier
3532 * Add or remove reception of all multicast frames to a device. While the
3533 * count in the device remains above zero the interface remains listening
3534 * to all interfaces. Once it hits zero the device reverts back to normal
3535 * filtering operation. A negative @inc value is used to drop the counter
3536 * when releasing a resource needing all multicasts.
3537 * Return 0 if successful or a negative errno code on error.
3540 int dev_set_allmulti(struct net_device *dev, int inc)
3542 unsigned short old_flags = dev->flags;
3544 ASSERT_RTNL();
3546 dev->flags |= IFF_ALLMULTI;
3547 dev->allmulti += inc;
3548 if (dev->allmulti == 0) {
3550 * Avoid overflow.
3551 * If inc causes overflow, untouch allmulti and return error.
3553 if (inc < 0)
3554 dev->flags &= ~IFF_ALLMULTI;
3555 else {
3556 dev->allmulti -= inc;
3557 printk(KERN_WARNING "%s: allmulti touches roof, "
3558 "set allmulti failed, allmulti feature of "
3559 "device might be broken.\n", dev->name);
3560 return -EOVERFLOW;
3563 if (dev->flags ^ old_flags) {
3564 dev_change_rx_flags(dev, IFF_ALLMULTI);
3565 dev_set_rx_mode(dev);
3567 return 0;
3569 EXPORT_SYMBOL(dev_set_allmulti);
3572 * Upload unicast and multicast address lists to device and
3573 * configure RX filtering. When the device doesn't support unicast
3574 * filtering it is put in promiscuous mode while unicast addresses
3575 * are present.
3577 void __dev_set_rx_mode(struct net_device *dev)
3579 const struct net_device_ops *ops = dev->netdev_ops;
3581 /* dev_open will call this function so the list will stay sane. */
3582 if (!(dev->flags&IFF_UP))
3583 return;
3585 if (!netif_device_present(dev))
3586 return;
3588 if (ops->ndo_set_rx_mode)
3589 ops->ndo_set_rx_mode(dev);
3590 else {
3591 /* Unicast addresses changes may only happen under the rtnl,
3592 * therefore calling __dev_set_promiscuity here is safe.
3594 if (dev->uc.count > 0 && !dev->uc_promisc) {
3595 __dev_set_promiscuity(dev, 1);
3596 dev->uc_promisc = 1;
3597 } else if (dev->uc.count == 0 && dev->uc_promisc) {
3598 __dev_set_promiscuity(dev, -1);
3599 dev->uc_promisc = 0;
3602 if (ops->ndo_set_multicast_list)
3603 ops->ndo_set_multicast_list(dev);
3607 void dev_set_rx_mode(struct net_device *dev)
3609 netif_addr_lock_bh(dev);
3610 __dev_set_rx_mode(dev);
3611 netif_addr_unlock_bh(dev);
3614 /* hw addresses list handling functions */
3616 static int __hw_addr_add(struct netdev_hw_addr_list *list, unsigned char *addr,
3617 int addr_len, unsigned char addr_type)
3619 struct netdev_hw_addr *ha;
3620 int alloc_size;
3622 if (addr_len > MAX_ADDR_LEN)
3623 return -EINVAL;
3625 list_for_each_entry(ha, &list->list, list) {
3626 if (!memcmp(ha->addr, addr, addr_len) &&
3627 ha->type == addr_type) {
3628 ha->refcount++;
3629 return 0;
3634 alloc_size = sizeof(*ha);
3635 if (alloc_size < L1_CACHE_BYTES)
3636 alloc_size = L1_CACHE_BYTES;
3637 ha = kmalloc(alloc_size, GFP_ATOMIC);
3638 if (!ha)
3639 return -ENOMEM;
3640 memcpy(ha->addr, addr, addr_len);
3641 ha->type = addr_type;
3642 ha->refcount = 1;
3643 ha->synced = false;
3644 list_add_tail_rcu(&ha->list, &list->list);
3645 list->count++;
3646 return 0;
3649 static void ha_rcu_free(struct rcu_head *head)
3651 struct netdev_hw_addr *ha;
3653 ha = container_of(head, struct netdev_hw_addr, rcu_head);
3654 kfree(ha);
3657 static int __hw_addr_del(struct netdev_hw_addr_list *list, unsigned char *addr,
3658 int addr_len, unsigned char addr_type)
3660 struct netdev_hw_addr *ha;
3662 list_for_each_entry(ha, &list->list, list) {
3663 if (!memcmp(ha->addr, addr, addr_len) &&
3664 (ha->type == addr_type || !addr_type)) {
3665 if (--ha->refcount)
3666 return 0;
3667 list_del_rcu(&ha->list);
3668 call_rcu(&ha->rcu_head, ha_rcu_free);
3669 list->count--;
3670 return 0;
3673 return -ENOENT;
3676 static int __hw_addr_add_multiple(struct netdev_hw_addr_list *to_list,
3677 struct netdev_hw_addr_list *from_list,
3678 int addr_len,
3679 unsigned char addr_type)
3681 int err;
3682 struct netdev_hw_addr *ha, *ha2;
3683 unsigned char type;
3685 list_for_each_entry(ha, &from_list->list, list) {
3686 type = addr_type ? addr_type : ha->type;
3687 err = __hw_addr_add(to_list, ha->addr, addr_len, type);
3688 if (err)
3689 goto unroll;
3691 return 0;
3693 unroll:
3694 list_for_each_entry(ha2, &from_list->list, list) {
3695 if (ha2 == ha)
3696 break;
3697 type = addr_type ? addr_type : ha2->type;
3698 __hw_addr_del(to_list, ha2->addr, addr_len, type);
3700 return err;
3703 static void __hw_addr_del_multiple(struct netdev_hw_addr_list *to_list,
3704 struct netdev_hw_addr_list *from_list,
3705 int addr_len,
3706 unsigned char addr_type)
3708 struct netdev_hw_addr *ha;
3709 unsigned char type;
3711 list_for_each_entry(ha, &from_list->list, list) {
3712 type = addr_type ? addr_type : ha->type;
3713 __hw_addr_del(to_list, ha->addr, addr_len, addr_type);
3717 static int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
3718 struct netdev_hw_addr_list *from_list,
3719 int addr_len)
3721 int err = 0;
3722 struct netdev_hw_addr *ha, *tmp;
3724 list_for_each_entry_safe(ha, tmp, &from_list->list, list) {
3725 if (!ha->synced) {
3726 err = __hw_addr_add(to_list, ha->addr,
3727 addr_len, ha->type);
3728 if (err)
3729 break;
3730 ha->synced = true;
3731 ha->refcount++;
3732 } else if (ha->refcount == 1) {
3733 __hw_addr_del(to_list, ha->addr, addr_len, ha->type);
3734 __hw_addr_del(from_list, ha->addr, addr_len, ha->type);
3737 return err;
3740 static void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
3741 struct netdev_hw_addr_list *from_list,
3742 int addr_len)
3744 struct netdev_hw_addr *ha, *tmp;
3746 list_for_each_entry_safe(ha, tmp, &from_list->list, list) {
3747 if (ha->synced) {
3748 __hw_addr_del(to_list, ha->addr,
3749 addr_len, ha->type);
3750 ha->synced = false;
3751 __hw_addr_del(from_list, ha->addr,
3752 addr_len, ha->type);
3757 static void __hw_addr_flush(struct netdev_hw_addr_list *list)
3759 struct netdev_hw_addr *ha, *tmp;
3761 list_for_each_entry_safe(ha, tmp, &list->list, list) {
3762 list_del_rcu(&ha->list);
3763 call_rcu(&ha->rcu_head, ha_rcu_free);
3765 list->count = 0;
3768 static void __hw_addr_init(struct netdev_hw_addr_list *list)
3770 INIT_LIST_HEAD(&list->list);
3771 list->count = 0;
3774 /* Device addresses handling functions */
3776 static void dev_addr_flush(struct net_device *dev)
3778 /* rtnl_mutex must be held here */
3780 __hw_addr_flush(&dev->dev_addrs);
3781 dev->dev_addr = NULL;
3784 static int dev_addr_init(struct net_device *dev)
3786 unsigned char addr[MAX_ADDR_LEN];
3787 struct netdev_hw_addr *ha;
3788 int err;
3790 /* rtnl_mutex must be held here */
3792 __hw_addr_init(&dev->dev_addrs);
3793 memset(addr, 0, sizeof(addr));
3794 err = __hw_addr_add(&dev->dev_addrs, addr, sizeof(addr),
3795 NETDEV_HW_ADDR_T_LAN);
3796 if (!err) {
3798 * Get the first (previously created) address from the list
3799 * and set dev_addr pointer to this location.
3801 ha = list_first_entry(&dev->dev_addrs.list,
3802 struct netdev_hw_addr, list);
3803 dev->dev_addr = ha->addr;
3805 return err;
3809 * dev_addr_add - Add a device address
3810 * @dev: device
3811 * @addr: address to add
3812 * @addr_type: address type
3814 * Add a device address to the device or increase the reference count if
3815 * it already exists.
3817 * The caller must hold the rtnl_mutex.
3819 int dev_addr_add(struct net_device *dev, unsigned char *addr,
3820 unsigned char addr_type)
3822 int err;
3824 ASSERT_RTNL();
3826 err = __hw_addr_add(&dev->dev_addrs, addr, dev->addr_len, addr_type);
3827 if (!err)
3828 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
3829 return err;
3831 EXPORT_SYMBOL(dev_addr_add);
3834 * dev_addr_del - Release a device address.
3835 * @dev: device
3836 * @addr: address to delete
3837 * @addr_type: address type
3839 * Release reference to a device address and remove it from the device
3840 * if the reference count drops to zero.
3842 * The caller must hold the rtnl_mutex.
3844 int dev_addr_del(struct net_device *dev, unsigned char *addr,
3845 unsigned char addr_type)
3847 int err;
3848 struct netdev_hw_addr *ha;
3850 ASSERT_RTNL();
3853 * We can not remove the first address from the list because
3854 * dev->dev_addr points to that.
3856 ha = list_first_entry(&dev->dev_addrs.list,
3857 struct netdev_hw_addr, list);
3858 if (ha->addr == dev->dev_addr && ha->refcount == 1)
3859 return -ENOENT;
3861 err = __hw_addr_del(&dev->dev_addrs, addr, dev->addr_len,
3862 addr_type);
3863 if (!err)
3864 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
3865 return err;
3867 EXPORT_SYMBOL(dev_addr_del);
3870 * dev_addr_add_multiple - Add device addresses from another device
3871 * @to_dev: device to which addresses will be added
3872 * @from_dev: device from which addresses will be added
3873 * @addr_type: address type - 0 means type will be used from from_dev
3875 * Add device addresses of the one device to another.
3877 * The caller must hold the rtnl_mutex.
3879 int dev_addr_add_multiple(struct net_device *to_dev,
3880 struct net_device *from_dev,
3881 unsigned char addr_type)
3883 int err;
3885 ASSERT_RTNL();
3887 if (from_dev->addr_len != to_dev->addr_len)
3888 return -EINVAL;
3889 err = __hw_addr_add_multiple(&to_dev->dev_addrs, &from_dev->dev_addrs,
3890 to_dev->addr_len, addr_type);
3891 if (!err)
3892 call_netdevice_notifiers(NETDEV_CHANGEADDR, to_dev);
3893 return err;
3895 EXPORT_SYMBOL(dev_addr_add_multiple);
3898 * dev_addr_del_multiple - Delete device addresses by another device
3899 * @to_dev: device where the addresses will be deleted
3900 * @from_dev: device by which addresses the addresses will be deleted
3901 * @addr_type: address type - 0 means type will used from from_dev
3903 * Deletes addresses in to device by the list of addresses in from device.
3905 * The caller must hold the rtnl_mutex.
3907 int dev_addr_del_multiple(struct net_device *to_dev,
3908 struct net_device *from_dev,
3909 unsigned char addr_type)
3911 ASSERT_RTNL();
3913 if (from_dev->addr_len != to_dev->addr_len)
3914 return -EINVAL;
3915 __hw_addr_del_multiple(&to_dev->dev_addrs, &from_dev->dev_addrs,
3916 to_dev->addr_len, addr_type);
3917 call_netdevice_notifiers(NETDEV_CHANGEADDR, to_dev);
3918 return 0;
3920 EXPORT_SYMBOL(dev_addr_del_multiple);
3922 /* multicast addresses handling functions */
3924 int __dev_addr_delete(struct dev_addr_list **list, int *count,
3925 void *addr, int alen, int glbl)
3927 struct dev_addr_list *da;
3929 for (; (da = *list) != NULL; list = &da->next) {
3930 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 &&
3931 alen == da->da_addrlen) {
3932 if (glbl) {
3933 int old_glbl = da->da_gusers;
3934 da->da_gusers = 0;
3935 if (old_glbl == 0)
3936 break;
3938 if (--da->da_users)
3939 return 0;
3941 *list = da->next;
3942 kfree(da);
3943 (*count)--;
3944 return 0;
3947 return -ENOENT;
3950 int __dev_addr_add(struct dev_addr_list **list, int *count,
3951 void *addr, int alen, int glbl)
3953 struct dev_addr_list *da;
3955 for (da = *list; da != NULL; da = da->next) {
3956 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 &&
3957 da->da_addrlen == alen) {
3958 if (glbl) {
3959 int old_glbl = da->da_gusers;
3960 da->da_gusers = 1;
3961 if (old_glbl)
3962 return 0;
3964 da->da_users++;
3965 return 0;
3969 da = kzalloc(sizeof(*da), GFP_ATOMIC);
3970 if (da == NULL)
3971 return -ENOMEM;
3972 memcpy(da->da_addr, addr, alen);
3973 da->da_addrlen = alen;
3974 da->da_users = 1;
3975 da->da_gusers = glbl ? 1 : 0;
3976 da->next = *list;
3977 *list = da;
3978 (*count)++;
3979 return 0;
3983 * dev_unicast_delete - Release secondary unicast address.
3984 * @dev: device
3985 * @addr: address to delete
3987 * Release reference to a secondary unicast address and remove it
3988 * from the device if the reference count drops to zero.
3990 * The caller must hold the rtnl_mutex.
3992 int dev_unicast_delete(struct net_device *dev, void *addr)
3994 int err;
3996 ASSERT_RTNL();
3998 netif_addr_lock_bh(dev);
3999 err = __hw_addr_del(&dev->uc, addr, dev->addr_len,
4000 NETDEV_HW_ADDR_T_UNICAST);
4001 if (!err)
4002 __dev_set_rx_mode(dev);
4003 netif_addr_unlock_bh(dev);
4004 return err;
4006 EXPORT_SYMBOL(dev_unicast_delete);
4009 * dev_unicast_add - add a secondary unicast address
4010 * @dev: device
4011 * @addr: address to add
4013 * Add a secondary unicast address to the device or increase
4014 * the reference count if it already exists.
4016 * The caller must hold the rtnl_mutex.
4018 int dev_unicast_add(struct net_device *dev, void *addr)
4020 int err;
4022 ASSERT_RTNL();
4024 netif_addr_lock_bh(dev);
4025 err = __hw_addr_add(&dev->uc, addr, dev->addr_len,
4026 NETDEV_HW_ADDR_T_UNICAST);
4027 if (!err)
4028 __dev_set_rx_mode(dev);
4029 netif_addr_unlock_bh(dev);
4030 return err;
4032 EXPORT_SYMBOL(dev_unicast_add);
4034 int __dev_addr_sync(struct dev_addr_list **to, int *to_count,
4035 struct dev_addr_list **from, int *from_count)
4037 struct dev_addr_list *da, *next;
4038 int err = 0;
4040 da = *from;
4041 while (da != NULL) {
4042 next = da->next;
4043 if (!da->da_synced) {
4044 err = __dev_addr_add(to, to_count,
4045 da->da_addr, da->da_addrlen, 0);
4046 if (err < 0)
4047 break;
4048 da->da_synced = 1;
4049 da->da_users++;
4050 } else if (da->da_users == 1) {
4051 __dev_addr_delete(to, to_count,
4052 da->da_addr, da->da_addrlen, 0);
4053 __dev_addr_delete(from, from_count,
4054 da->da_addr, da->da_addrlen, 0);
4056 da = next;
4058 return err;
4060 EXPORT_SYMBOL_GPL(__dev_addr_sync);
4062 void __dev_addr_unsync(struct dev_addr_list **to, int *to_count,
4063 struct dev_addr_list **from, int *from_count)
4065 struct dev_addr_list *da, *next;
4067 da = *from;
4068 while (da != NULL) {
4069 next = da->next;
4070 if (da->da_synced) {
4071 __dev_addr_delete(to, to_count,
4072 da->da_addr, da->da_addrlen, 0);
4073 da->da_synced = 0;
4074 __dev_addr_delete(from, from_count,
4075 da->da_addr, da->da_addrlen, 0);
4077 da = next;
4080 EXPORT_SYMBOL_GPL(__dev_addr_unsync);
4083 * dev_unicast_sync - Synchronize device's unicast list to another device
4084 * @to: destination device
4085 * @from: source device
4087 * Add newly added addresses to the destination device and release
4088 * addresses that have no users left. The source device must be
4089 * locked by netif_tx_lock_bh.
4091 * This function is intended to be called from the dev->set_rx_mode
4092 * function of layered software devices.
4094 int dev_unicast_sync(struct net_device *to, struct net_device *from)
4096 int err = 0;
4098 if (to->addr_len != from->addr_len)
4099 return -EINVAL;
4101 netif_addr_lock_bh(to);
4102 err = __hw_addr_sync(&to->uc, &from->uc, to->addr_len);
4103 if (!err)
4104 __dev_set_rx_mode(to);
4105 netif_addr_unlock_bh(to);
4106 return err;
4108 EXPORT_SYMBOL(dev_unicast_sync);
4111 * dev_unicast_unsync - Remove synchronized addresses from the destination device
4112 * @to: destination device
4113 * @from: source device
4115 * Remove all addresses that were added to the destination device by
4116 * dev_unicast_sync(). This function is intended to be called from the
4117 * dev->stop function of layered software devices.
4119 void dev_unicast_unsync(struct net_device *to, struct net_device *from)
4121 if (to->addr_len != from->addr_len)
4122 return;
4124 netif_addr_lock_bh(from);
4125 netif_addr_lock(to);
4126 __hw_addr_unsync(&to->uc, &from->uc, to->addr_len);
4127 __dev_set_rx_mode(to);
4128 netif_addr_unlock(to);
4129 netif_addr_unlock_bh(from);
4131 EXPORT_SYMBOL(dev_unicast_unsync);
4133 static void dev_unicast_flush(struct net_device *dev)
4135 netif_addr_lock_bh(dev);
4136 __hw_addr_flush(&dev->uc);
4137 netif_addr_unlock_bh(dev);
4140 static void dev_unicast_init(struct net_device *dev)
4142 __hw_addr_init(&dev->uc);
4146 static void __dev_addr_discard(struct dev_addr_list **list)
4148 struct dev_addr_list *tmp;
4150 while (*list != NULL) {
4151 tmp = *list;
4152 *list = tmp->next;
4153 if (tmp->da_users > tmp->da_gusers)
4154 printk("__dev_addr_discard: address leakage! "
4155 "da_users=%d\n", tmp->da_users);
4156 kfree(tmp);
4160 static void dev_addr_discard(struct net_device *dev)
4162 netif_addr_lock_bh(dev);
4164 __dev_addr_discard(&dev->mc_list);
4165 dev->mc_count = 0;
4167 netif_addr_unlock_bh(dev);
4171 * dev_get_flags - get flags reported to userspace
4172 * @dev: device
4174 * Get the combination of flag bits exported through APIs to userspace.
4176 unsigned dev_get_flags(const struct net_device *dev)
4178 unsigned flags;
4180 flags = (dev->flags & ~(IFF_PROMISC |
4181 IFF_ALLMULTI |
4182 IFF_RUNNING |
4183 IFF_LOWER_UP |
4184 IFF_DORMANT)) |
4185 (dev->gflags & (IFF_PROMISC |
4186 IFF_ALLMULTI));
4188 if (netif_running(dev)) {
4189 if (netif_oper_up(dev))
4190 flags |= IFF_RUNNING;
4191 if (netif_carrier_ok(dev))
4192 flags |= IFF_LOWER_UP;
4193 if (netif_dormant(dev))
4194 flags |= IFF_DORMANT;
4197 return flags;
4199 EXPORT_SYMBOL(dev_get_flags);
4202 * dev_change_flags - change device settings
4203 * @dev: device
4204 * @flags: device state flags
4206 * Change settings on device based state flags. The flags are
4207 * in the userspace exported format.
4209 int dev_change_flags(struct net_device *dev, unsigned flags)
4211 int ret, changes;
4212 int old_flags = dev->flags;
4214 ASSERT_RTNL();
4217 * Set the flags on our device.
4220 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
4221 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
4222 IFF_AUTOMEDIA)) |
4223 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
4224 IFF_ALLMULTI));
4227 * Load in the correct multicast list now the flags have changed.
4230 if ((old_flags ^ flags) & IFF_MULTICAST)
4231 dev_change_rx_flags(dev, IFF_MULTICAST);
4233 dev_set_rx_mode(dev);
4236 * Have we downed the interface. We handle IFF_UP ourselves
4237 * according to user attempts to set it, rather than blindly
4238 * setting it.
4241 ret = 0;
4242 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
4243 ret = ((old_flags & IFF_UP) ? dev_close : dev_open)(dev);
4245 if (!ret)
4246 dev_set_rx_mode(dev);
4249 if (dev->flags & IFF_UP &&
4250 ((old_flags ^ dev->flags) & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI |
4251 IFF_VOLATILE)))
4252 call_netdevice_notifiers(NETDEV_CHANGE, dev);
4254 if ((flags ^ dev->gflags) & IFF_PROMISC) {
4255 int inc = (flags & IFF_PROMISC) ? 1 : -1;
4257 dev->gflags ^= IFF_PROMISC;
4258 dev_set_promiscuity(dev, inc);
4261 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
4262 is important. Some (broken) drivers set IFF_PROMISC, when
4263 IFF_ALLMULTI is requested not asking us and not reporting.
4265 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
4266 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
4268 dev->gflags ^= IFF_ALLMULTI;
4269 dev_set_allmulti(dev, inc);
4272 /* Exclude state transition flags, already notified */
4273 changes = (old_flags ^ dev->flags) & ~(IFF_UP | IFF_RUNNING);
4274 if (changes)
4275 rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
4277 return ret;
4279 EXPORT_SYMBOL(dev_change_flags);
4282 * dev_set_mtu - Change maximum transfer unit
4283 * @dev: device
4284 * @new_mtu: new transfer unit
4286 * Change the maximum transfer size of the network device.
4288 int dev_set_mtu(struct net_device *dev, int new_mtu)
4290 const struct net_device_ops *ops = dev->netdev_ops;
4291 int err;
4293 if (new_mtu == dev->mtu)
4294 return 0;
4296 /* MTU must be positive. */
4297 if (new_mtu < 0)
4298 return -EINVAL;
4300 if (!netif_device_present(dev))
4301 return -ENODEV;
4303 err = 0;
4304 if (ops->ndo_change_mtu)
4305 err = ops->ndo_change_mtu(dev, new_mtu);
4306 else
4307 dev->mtu = new_mtu;
4309 if (!err && dev->flags & IFF_UP)
4310 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
4311 return err;
4313 EXPORT_SYMBOL(dev_set_mtu);
4316 * dev_set_mac_address - Change Media Access Control Address
4317 * @dev: device
4318 * @sa: new address
4320 * Change the hardware (MAC) address of the device
4322 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
4324 const struct net_device_ops *ops = dev->netdev_ops;
4325 int err;
4327 if (!ops->ndo_set_mac_address)
4328 return -EOPNOTSUPP;
4329 if (sa->sa_family != dev->type)
4330 return -EINVAL;
4331 if (!netif_device_present(dev))
4332 return -ENODEV;
4333 err = ops->ndo_set_mac_address(dev, sa);
4334 if (!err)
4335 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4336 return err;
4338 EXPORT_SYMBOL(dev_set_mac_address);
4341 * Perform the SIOCxIFxxx calls, inside rcu_read_lock()
4343 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
4345 int err;
4346 struct net_device *dev = dev_get_by_name_rcu(net, ifr->ifr_name);
4348 if (!dev)
4349 return -ENODEV;
4351 switch (cmd) {
4352 case SIOCGIFFLAGS: /* Get interface flags */
4353 ifr->ifr_flags = (short) dev_get_flags(dev);
4354 return 0;
4356 case SIOCGIFMETRIC: /* Get the metric on the interface
4357 (currently unused) */
4358 ifr->ifr_metric = 0;
4359 return 0;
4361 case SIOCGIFMTU: /* Get the MTU of a device */
4362 ifr->ifr_mtu = dev->mtu;
4363 return 0;
4365 case SIOCGIFHWADDR:
4366 if (!dev->addr_len)
4367 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
4368 else
4369 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
4370 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4371 ifr->ifr_hwaddr.sa_family = dev->type;
4372 return 0;
4374 case SIOCGIFSLAVE:
4375 err = -EINVAL;
4376 break;
4378 case SIOCGIFMAP:
4379 ifr->ifr_map.mem_start = dev->mem_start;
4380 ifr->ifr_map.mem_end = dev->mem_end;
4381 ifr->ifr_map.base_addr = dev->base_addr;
4382 ifr->ifr_map.irq = dev->irq;
4383 ifr->ifr_map.dma = dev->dma;
4384 ifr->ifr_map.port = dev->if_port;
4385 return 0;
4387 case SIOCGIFINDEX:
4388 ifr->ifr_ifindex = dev->ifindex;
4389 return 0;
4391 case SIOCGIFTXQLEN:
4392 ifr->ifr_qlen = dev->tx_queue_len;
4393 return 0;
4395 default:
4396 /* dev_ioctl() should ensure this case
4397 * is never reached
4399 WARN_ON(1);
4400 err = -EINVAL;
4401 break;
4404 return err;
4408 * Perform the SIOCxIFxxx calls, inside rtnl_lock()
4410 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
4412 int err;
4413 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
4414 const struct net_device_ops *ops;
4416 if (!dev)
4417 return -ENODEV;
4419 ops = dev->netdev_ops;
4421 switch (cmd) {
4422 case SIOCSIFFLAGS: /* Set interface flags */
4423 return dev_change_flags(dev, ifr->ifr_flags);
4425 case SIOCSIFMETRIC: /* Set the metric on the interface
4426 (currently unused) */
4427 return -EOPNOTSUPP;
4429 case SIOCSIFMTU: /* Set the MTU of a device */
4430 return dev_set_mtu(dev, ifr->ifr_mtu);
4432 case SIOCSIFHWADDR:
4433 return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
4435 case SIOCSIFHWBROADCAST:
4436 if (ifr->ifr_hwaddr.sa_family != dev->type)
4437 return -EINVAL;
4438 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
4439 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4440 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4441 return 0;
4443 case SIOCSIFMAP:
4444 if (ops->ndo_set_config) {
4445 if (!netif_device_present(dev))
4446 return -ENODEV;
4447 return ops->ndo_set_config(dev, &ifr->ifr_map);
4449 return -EOPNOTSUPP;
4451 case SIOCADDMULTI:
4452 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
4453 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4454 return -EINVAL;
4455 if (!netif_device_present(dev))
4456 return -ENODEV;
4457 return dev_mc_add(dev, ifr->ifr_hwaddr.sa_data,
4458 dev->addr_len, 1);
4460 case SIOCDELMULTI:
4461 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
4462 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4463 return -EINVAL;
4464 if (!netif_device_present(dev))
4465 return -ENODEV;
4466 return dev_mc_delete(dev, ifr->ifr_hwaddr.sa_data,
4467 dev->addr_len, 1);
4469 case SIOCSIFTXQLEN:
4470 if (ifr->ifr_qlen < 0)
4471 return -EINVAL;
4472 dev->tx_queue_len = ifr->ifr_qlen;
4473 return 0;
4475 case SIOCSIFNAME:
4476 ifr->ifr_newname[IFNAMSIZ-1] = '\0';
4477 return dev_change_name(dev, ifr->ifr_newname);
4480 * Unknown or private ioctl
4482 default:
4483 if ((cmd >= SIOCDEVPRIVATE &&
4484 cmd <= SIOCDEVPRIVATE + 15) ||
4485 cmd == SIOCBONDENSLAVE ||
4486 cmd == SIOCBONDRELEASE ||
4487 cmd == SIOCBONDSETHWADDR ||
4488 cmd == SIOCBONDSLAVEINFOQUERY ||
4489 cmd == SIOCBONDINFOQUERY ||
4490 cmd == SIOCBONDCHANGEACTIVE ||
4491 cmd == SIOCGMIIPHY ||
4492 cmd == SIOCGMIIREG ||
4493 cmd == SIOCSMIIREG ||
4494 cmd == SIOCBRADDIF ||
4495 cmd == SIOCBRDELIF ||
4496 cmd == SIOCSHWTSTAMP ||
4497 cmd == SIOCWANDEV) {
4498 err = -EOPNOTSUPP;
4499 if (ops->ndo_do_ioctl) {
4500 if (netif_device_present(dev))
4501 err = ops->ndo_do_ioctl(dev, ifr, cmd);
4502 else
4503 err = -ENODEV;
4505 } else
4506 err = -EINVAL;
4509 return err;
4513 * This function handles all "interface"-type I/O control requests. The actual
4514 * 'doing' part of this is dev_ifsioc above.
4518 * dev_ioctl - network device ioctl
4519 * @net: the applicable net namespace
4520 * @cmd: command to issue
4521 * @arg: pointer to a struct ifreq in user space
4523 * Issue ioctl functions to devices. This is normally called by the
4524 * user space syscall interfaces but can sometimes be useful for
4525 * other purposes. The return value is the return from the syscall if
4526 * positive or a negative errno code on error.
4529 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
4531 struct ifreq ifr;
4532 int ret;
4533 char *colon;
4535 /* One special case: SIOCGIFCONF takes ifconf argument
4536 and requires shared lock, because it sleeps writing
4537 to user space.
4540 if (cmd == SIOCGIFCONF) {
4541 rtnl_lock();
4542 ret = dev_ifconf(net, (char __user *) arg);
4543 rtnl_unlock();
4544 return ret;
4546 if (cmd == SIOCGIFNAME)
4547 return dev_ifname(net, (struct ifreq __user *)arg);
4549 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
4550 return -EFAULT;
4552 ifr.ifr_name[IFNAMSIZ-1] = 0;
4554 colon = strchr(ifr.ifr_name, ':');
4555 if (colon)
4556 *colon = 0;
4559 * See which interface the caller is talking about.
4562 switch (cmd) {
4564 * These ioctl calls:
4565 * - can be done by all.
4566 * - atomic and do not require locking.
4567 * - return a value
4569 case SIOCGIFFLAGS:
4570 case SIOCGIFMETRIC:
4571 case SIOCGIFMTU:
4572 case SIOCGIFHWADDR:
4573 case SIOCGIFSLAVE:
4574 case SIOCGIFMAP:
4575 case SIOCGIFINDEX:
4576 case SIOCGIFTXQLEN:
4577 dev_load(net, ifr.ifr_name);
4578 rcu_read_lock();
4579 ret = dev_ifsioc_locked(net, &ifr, cmd);
4580 rcu_read_unlock();
4581 if (!ret) {
4582 if (colon)
4583 *colon = ':';
4584 if (copy_to_user(arg, &ifr,
4585 sizeof(struct ifreq)))
4586 ret = -EFAULT;
4588 return ret;
4590 case SIOCETHTOOL:
4591 dev_load(net, ifr.ifr_name);
4592 rtnl_lock();
4593 ret = dev_ethtool(net, &ifr);
4594 rtnl_unlock();
4595 if (!ret) {
4596 if (colon)
4597 *colon = ':';
4598 if (copy_to_user(arg, &ifr,
4599 sizeof(struct ifreq)))
4600 ret = -EFAULT;
4602 return ret;
4605 * These ioctl calls:
4606 * - require superuser power.
4607 * - require strict serialization.
4608 * - return a value
4610 case SIOCGMIIPHY:
4611 case SIOCGMIIREG:
4612 case SIOCSIFNAME:
4613 if (!capable(CAP_NET_ADMIN))
4614 return -EPERM;
4615 dev_load(net, ifr.ifr_name);
4616 rtnl_lock();
4617 ret = dev_ifsioc(net, &ifr, cmd);
4618 rtnl_unlock();
4619 if (!ret) {
4620 if (colon)
4621 *colon = ':';
4622 if (copy_to_user(arg, &ifr,
4623 sizeof(struct ifreq)))
4624 ret = -EFAULT;
4626 return ret;
4629 * These ioctl calls:
4630 * - require superuser power.
4631 * - require strict serialization.
4632 * - do not return a value
4634 case SIOCSIFFLAGS:
4635 case SIOCSIFMETRIC:
4636 case SIOCSIFMTU:
4637 case SIOCSIFMAP:
4638 case SIOCSIFHWADDR:
4639 case SIOCSIFSLAVE:
4640 case SIOCADDMULTI:
4641 case SIOCDELMULTI:
4642 case SIOCSIFHWBROADCAST:
4643 case SIOCSIFTXQLEN:
4644 case SIOCSMIIREG:
4645 case SIOCBONDENSLAVE:
4646 case SIOCBONDRELEASE:
4647 case SIOCBONDSETHWADDR:
4648 case SIOCBONDCHANGEACTIVE:
4649 case SIOCBRADDIF:
4650 case SIOCBRDELIF:
4651 case SIOCSHWTSTAMP:
4652 if (!capable(CAP_NET_ADMIN))
4653 return -EPERM;
4654 /* fall through */
4655 case SIOCBONDSLAVEINFOQUERY:
4656 case SIOCBONDINFOQUERY:
4657 dev_load(net, ifr.ifr_name);
4658 rtnl_lock();
4659 ret = dev_ifsioc(net, &ifr, cmd);
4660 rtnl_unlock();
4661 return ret;
4663 case SIOCGIFMEM:
4664 /* Get the per device memory space. We can add this but
4665 * currently do not support it */
4666 case SIOCSIFMEM:
4667 /* Set the per device memory buffer space.
4668 * Not applicable in our case */
4669 case SIOCSIFLINK:
4670 return -EINVAL;
4673 * Unknown or private ioctl.
4675 default:
4676 if (cmd == SIOCWANDEV ||
4677 (cmd >= SIOCDEVPRIVATE &&
4678 cmd <= SIOCDEVPRIVATE + 15)) {
4679 dev_load(net, ifr.ifr_name);
4680 rtnl_lock();
4681 ret = dev_ifsioc(net, &ifr, cmd);
4682 rtnl_unlock();
4683 if (!ret && copy_to_user(arg, &ifr,
4684 sizeof(struct ifreq)))
4685 ret = -EFAULT;
4686 return ret;
4688 /* Take care of Wireless Extensions */
4689 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
4690 return wext_handle_ioctl(net, &ifr, cmd, arg);
4691 return -EINVAL;
4697 * dev_new_index - allocate an ifindex
4698 * @net: the applicable net namespace
4700 * Returns a suitable unique value for a new device interface
4701 * number. The caller must hold the rtnl semaphore or the
4702 * dev_base_lock to be sure it remains unique.
4704 static int dev_new_index(struct net *net)
4706 static int ifindex;
4707 for (;;) {
4708 if (++ifindex <= 0)
4709 ifindex = 1;
4710 if (!__dev_get_by_index(net, ifindex))
4711 return ifindex;
4715 /* Delayed registration/unregisteration */
4716 static LIST_HEAD(net_todo_list);
4718 static void net_set_todo(struct net_device *dev)
4720 list_add_tail(&dev->todo_list, &net_todo_list);
4723 static void rollback_registered_many(struct list_head *head)
4725 struct net_device *dev;
4727 BUG_ON(dev_boot_phase);
4728 ASSERT_RTNL();
4730 list_for_each_entry(dev, head, unreg_list) {
4731 /* Some devices call without registering
4732 * for initialization unwind.
4734 if (dev->reg_state == NETREG_UNINITIALIZED) {
4735 pr_debug("unregister_netdevice: device %s/%p never "
4736 "was registered\n", dev->name, dev);
4738 WARN_ON(1);
4739 return;
4742 BUG_ON(dev->reg_state != NETREG_REGISTERED);
4744 /* If device is running, close it first. */
4745 dev_close(dev);
4747 /* And unlink it from device chain. */
4748 unlist_netdevice(dev);
4750 dev->reg_state = NETREG_UNREGISTERING;
4753 synchronize_net();
4755 list_for_each_entry(dev, head, unreg_list) {
4756 /* Shutdown queueing discipline. */
4757 dev_shutdown(dev);
4760 /* Notify protocols, that we are about to destroy
4761 this device. They should clean all the things.
4763 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4766 * Flush the unicast and multicast chains
4768 dev_unicast_flush(dev);
4769 dev_addr_discard(dev);
4771 if (dev->netdev_ops->ndo_uninit)
4772 dev->netdev_ops->ndo_uninit(dev);
4774 /* Notifier chain MUST detach us from master device. */
4775 WARN_ON(dev->master);
4777 /* Remove entries from kobject tree */
4778 netdev_unregister_kobject(dev);
4781 synchronize_net();
4783 list_for_each_entry(dev, head, unreg_list)
4784 dev_put(dev);
4787 static void rollback_registered(struct net_device *dev)
4789 LIST_HEAD(single);
4791 list_add(&dev->unreg_list, &single);
4792 rollback_registered_many(&single);
4795 static void __netdev_init_queue_locks_one(struct net_device *dev,
4796 struct netdev_queue *dev_queue,
4797 void *_unused)
4799 spin_lock_init(&dev_queue->_xmit_lock);
4800 netdev_set_xmit_lockdep_class(&dev_queue->_xmit_lock, dev->type);
4801 dev_queue->xmit_lock_owner = -1;
4804 static void netdev_init_queue_locks(struct net_device *dev)
4806 netdev_for_each_tx_queue(dev, __netdev_init_queue_locks_one, NULL);
4807 __netdev_init_queue_locks_one(dev, &dev->rx_queue, NULL);
4810 unsigned long netdev_fix_features(unsigned long features, const char *name)
4812 /* Fix illegal SG+CSUM combinations. */
4813 if ((features & NETIF_F_SG) &&
4814 !(features & NETIF_F_ALL_CSUM)) {
4815 if (name)
4816 printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no "
4817 "checksum feature.\n", name);
4818 features &= ~NETIF_F_SG;
4821 /* TSO requires that SG is present as well. */
4822 if ((features & NETIF_F_TSO) && !(features & NETIF_F_SG)) {
4823 if (name)
4824 printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no "
4825 "SG feature.\n", name);
4826 features &= ~NETIF_F_TSO;
4829 if (features & NETIF_F_UFO) {
4830 if (!(features & NETIF_F_GEN_CSUM)) {
4831 if (name)
4832 printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
4833 "since no NETIF_F_HW_CSUM feature.\n",
4834 name);
4835 features &= ~NETIF_F_UFO;
4838 if (!(features & NETIF_F_SG)) {
4839 if (name)
4840 printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
4841 "since no NETIF_F_SG feature.\n", name);
4842 features &= ~NETIF_F_UFO;
4846 return features;
4848 EXPORT_SYMBOL(netdev_fix_features);
4851 * register_netdevice - register a network device
4852 * @dev: device to register
4854 * Take a completed network device structure and add it to the kernel
4855 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
4856 * chain. 0 is returned on success. A negative errno code is returned
4857 * on a failure to set up the device, or if the name is a duplicate.
4859 * Callers must hold the rtnl semaphore. You may want
4860 * register_netdev() instead of this.
4862 * BUGS:
4863 * The locking appears insufficient to guarantee two parallel registers
4864 * will not get the same name.
4867 int register_netdevice(struct net_device *dev)
4869 struct hlist_head *head;
4870 struct hlist_node *p;
4871 int ret;
4872 struct net *net = dev_net(dev);
4874 BUG_ON(dev_boot_phase);
4875 ASSERT_RTNL();
4877 might_sleep();
4879 /* When net_device's are persistent, this will be fatal. */
4880 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
4881 BUG_ON(!net);
4883 spin_lock_init(&dev->addr_list_lock);
4884 netdev_set_addr_lockdep_class(dev);
4885 netdev_init_queue_locks(dev);
4887 dev->iflink = -1;
4889 /* Init, if this function is available */
4890 if (dev->netdev_ops->ndo_init) {
4891 ret = dev->netdev_ops->ndo_init(dev);
4892 if (ret) {
4893 if (ret > 0)
4894 ret = -EIO;
4895 goto out;
4899 if (!dev_valid_name(dev->name)) {
4900 ret = -EINVAL;
4901 goto err_uninit;
4904 dev->ifindex = dev_new_index(net);
4905 if (dev->iflink == -1)
4906 dev->iflink = dev->ifindex;
4908 /* Check for existence of name */
4909 head = dev_name_hash(net, dev->name);
4910 hlist_for_each(p, head) {
4911 struct net_device *d
4912 = hlist_entry(p, struct net_device, name_hlist);
4913 if (!strncmp(d->name, dev->name, IFNAMSIZ)) {
4914 ret = -EEXIST;
4915 goto err_uninit;
4919 /* Fix illegal checksum combinations */
4920 if ((dev->features & NETIF_F_HW_CSUM) &&
4921 (dev->features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
4922 printk(KERN_NOTICE "%s: mixed HW and IP checksum settings.\n",
4923 dev->name);
4924 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4927 if ((dev->features & NETIF_F_NO_CSUM) &&
4928 (dev->features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
4929 printk(KERN_NOTICE "%s: mixed no checksumming and other settings.\n",
4930 dev->name);
4931 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM);
4934 dev->features = netdev_fix_features(dev->features, dev->name);
4936 /* Enable software GSO if SG is supported. */
4937 if (dev->features & NETIF_F_SG)
4938 dev->features |= NETIF_F_GSO;
4940 netdev_initialize_kobject(dev);
4942 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
4943 ret = notifier_to_errno(ret);
4944 if (ret)
4945 goto err_uninit;
4947 ret = netdev_register_kobject(dev);
4948 if (ret)
4949 goto err_uninit;
4950 dev->reg_state = NETREG_REGISTERED;
4953 * Default initial state at registry is that the
4954 * device is present.
4957 set_bit(__LINK_STATE_PRESENT, &dev->state);
4959 dev_init_scheduler(dev);
4960 dev_hold(dev);
4961 list_netdevice(dev);
4963 /* Notify protocols, that a new device appeared. */
4964 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
4965 ret = notifier_to_errno(ret);
4966 if (ret) {
4967 rollback_registered(dev);
4968 dev->reg_state = NETREG_UNREGISTERED;
4971 out:
4972 return ret;
4974 err_uninit:
4975 if (dev->netdev_ops->ndo_uninit)
4976 dev->netdev_ops->ndo_uninit(dev);
4977 goto out;
4979 EXPORT_SYMBOL(register_netdevice);
4982 * init_dummy_netdev - init a dummy network device for NAPI
4983 * @dev: device to init
4985 * This takes a network device structure and initialize the minimum
4986 * amount of fields so it can be used to schedule NAPI polls without
4987 * registering a full blown interface. This is to be used by drivers
4988 * that need to tie several hardware interfaces to a single NAPI
4989 * poll scheduler due to HW limitations.
4991 int init_dummy_netdev(struct net_device *dev)
4993 /* Clear everything. Note we don't initialize spinlocks
4994 * are they aren't supposed to be taken by any of the
4995 * NAPI code and this dummy netdev is supposed to be
4996 * only ever used for NAPI polls
4998 memset(dev, 0, sizeof(struct net_device));
5000 /* make sure we BUG if trying to hit standard
5001 * register/unregister code path
5003 dev->reg_state = NETREG_DUMMY;
5005 /* initialize the ref count */
5006 atomic_set(&dev->refcnt, 1);
5008 /* NAPI wants this */
5009 INIT_LIST_HEAD(&dev->napi_list);
5011 /* a dummy interface is started by default */
5012 set_bit(__LINK_STATE_PRESENT, &dev->state);
5013 set_bit(__LINK_STATE_START, &dev->state);
5015 return 0;
5017 EXPORT_SYMBOL_GPL(init_dummy_netdev);
5021 * register_netdev - register a network device
5022 * @dev: device to register
5024 * Take a completed network device structure and add it to the kernel
5025 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5026 * chain. 0 is returned on success. A negative errno code is returned
5027 * on a failure to set up the device, or if the name is a duplicate.
5029 * This is a wrapper around register_netdevice that takes the rtnl semaphore
5030 * and expands the device name if you passed a format string to
5031 * alloc_netdev.
5033 int register_netdev(struct net_device *dev)
5035 int err;
5037 rtnl_lock();
5040 * If the name is a format string the caller wants us to do a
5041 * name allocation.
5043 if (strchr(dev->name, '%')) {
5044 err = dev_alloc_name(dev, dev->name);
5045 if (err < 0)
5046 goto out;
5049 err = register_netdevice(dev);
5050 out:
5051 rtnl_unlock();
5052 return err;
5054 EXPORT_SYMBOL(register_netdev);
5057 * netdev_wait_allrefs - wait until all references are gone.
5059 * This is called when unregistering network devices.
5061 * Any protocol or device that holds a reference should register
5062 * for netdevice notification, and cleanup and put back the
5063 * reference if they receive an UNREGISTER event.
5064 * We can get stuck here if buggy protocols don't correctly
5065 * call dev_put.
5067 static void netdev_wait_allrefs(struct net_device *dev)
5069 unsigned long rebroadcast_time, warning_time;
5071 rebroadcast_time = warning_time = jiffies;
5072 while (atomic_read(&dev->refcnt) != 0) {
5073 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
5074 rtnl_lock();
5076 /* Rebroadcast unregister notification */
5077 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5079 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
5080 &dev->state)) {
5081 /* We must not have linkwatch events
5082 * pending on unregister. If this
5083 * happens, we simply run the queue
5084 * unscheduled, resulting in a noop
5085 * for this device.
5087 linkwatch_run_queue();
5090 __rtnl_unlock();
5092 rebroadcast_time = jiffies;
5095 msleep(250);
5097 if (time_after(jiffies, warning_time + 10 * HZ)) {
5098 printk(KERN_EMERG "unregister_netdevice: "
5099 "waiting for %s to become free. Usage "
5100 "count = %d\n",
5101 dev->name, atomic_read(&dev->refcnt));
5102 warning_time = jiffies;
5107 /* The sequence is:
5109 * rtnl_lock();
5110 * ...
5111 * register_netdevice(x1);
5112 * register_netdevice(x2);
5113 * ...
5114 * unregister_netdevice(y1);
5115 * unregister_netdevice(y2);
5116 * ...
5117 * rtnl_unlock();
5118 * free_netdev(y1);
5119 * free_netdev(y2);
5121 * We are invoked by rtnl_unlock().
5122 * This allows us to deal with problems:
5123 * 1) We can delete sysfs objects which invoke hotplug
5124 * without deadlocking with linkwatch via keventd.
5125 * 2) Since we run with the RTNL semaphore not held, we can sleep
5126 * safely in order to wait for the netdev refcnt to drop to zero.
5128 * We must not return until all unregister events added during
5129 * the interval the lock was held have been completed.
5131 void netdev_run_todo(void)
5133 struct list_head list;
5135 /* Snapshot list, allow later requests */
5136 list_replace_init(&net_todo_list, &list);
5138 __rtnl_unlock();
5140 while (!list_empty(&list)) {
5141 struct net_device *dev
5142 = list_entry(list.next, struct net_device, todo_list);
5143 list_del(&dev->todo_list);
5145 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
5146 printk(KERN_ERR "network todo '%s' but state %d\n",
5147 dev->name, dev->reg_state);
5148 dump_stack();
5149 continue;
5152 dev->reg_state = NETREG_UNREGISTERED;
5154 on_each_cpu(flush_backlog, dev, 1);
5156 netdev_wait_allrefs(dev);
5158 /* paranoia */
5159 BUG_ON(atomic_read(&dev->refcnt));
5160 WARN_ON(dev->ip_ptr);
5161 WARN_ON(dev->ip6_ptr);
5162 WARN_ON(dev->dn_ptr);
5164 if (dev->destructor)
5165 dev->destructor(dev);
5167 /* Free network device */
5168 kobject_put(&dev->dev.kobj);
5173 * dev_get_stats - get network device statistics
5174 * @dev: device to get statistics from
5176 * Get network statistics from device. The device driver may provide
5177 * its own method by setting dev->netdev_ops->get_stats; otherwise
5178 * the internal statistics structure is used.
5180 const struct net_device_stats *dev_get_stats(struct net_device *dev)
5182 const struct net_device_ops *ops = dev->netdev_ops;
5184 if (ops->ndo_get_stats)
5185 return ops->ndo_get_stats(dev);
5186 else {
5187 unsigned long tx_bytes = 0, tx_packets = 0, tx_dropped = 0;
5188 struct net_device_stats *stats = &dev->stats;
5189 unsigned int i;
5190 struct netdev_queue *txq;
5192 for (i = 0; i < dev->num_tx_queues; i++) {
5193 txq = netdev_get_tx_queue(dev, i);
5194 tx_bytes += txq->tx_bytes;
5195 tx_packets += txq->tx_packets;
5196 tx_dropped += txq->tx_dropped;
5198 if (tx_bytes || tx_packets || tx_dropped) {
5199 stats->tx_bytes = tx_bytes;
5200 stats->tx_packets = tx_packets;
5201 stats->tx_dropped = tx_dropped;
5203 return stats;
5206 EXPORT_SYMBOL(dev_get_stats);
5208 static void netdev_init_one_queue(struct net_device *dev,
5209 struct netdev_queue *queue,
5210 void *_unused)
5212 queue->dev = dev;
5215 static void netdev_init_queues(struct net_device *dev)
5217 netdev_init_one_queue(dev, &dev->rx_queue, NULL);
5218 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
5219 spin_lock_init(&dev->tx_global_lock);
5223 * alloc_netdev_mq - allocate network device
5224 * @sizeof_priv: size of private data to allocate space for
5225 * @name: device name format string
5226 * @setup: callback to initialize device
5227 * @queue_count: the number of subqueues to allocate
5229 * Allocates a struct net_device with private data area for driver use
5230 * and performs basic initialization. Also allocates subquue structs
5231 * for each queue on the device at the end of the netdevice.
5233 struct net_device *alloc_netdev_mq(int sizeof_priv, const char *name,
5234 void (*setup)(struct net_device *), unsigned int queue_count)
5236 struct netdev_queue *tx;
5237 struct net_device *dev;
5238 size_t alloc_size;
5239 struct net_device *p;
5241 BUG_ON(strlen(name) >= sizeof(dev->name));
5243 alloc_size = sizeof(struct net_device);
5244 if (sizeof_priv) {
5245 /* ensure 32-byte alignment of private area */
5246 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
5247 alloc_size += sizeof_priv;
5249 /* ensure 32-byte alignment of whole construct */
5250 alloc_size += NETDEV_ALIGN - 1;
5252 p = kzalloc(alloc_size, GFP_KERNEL);
5253 if (!p) {
5254 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n");
5255 return NULL;
5258 tx = kcalloc(queue_count, sizeof(struct netdev_queue), GFP_KERNEL);
5259 if (!tx) {
5260 printk(KERN_ERR "alloc_netdev: Unable to allocate "
5261 "tx qdiscs.\n");
5262 goto free_p;
5265 dev = PTR_ALIGN(p, NETDEV_ALIGN);
5266 dev->padded = (char *)dev - (char *)p;
5268 if (dev_addr_init(dev))
5269 goto free_tx;
5271 dev_unicast_init(dev);
5273 dev_net_set(dev, &init_net);
5275 dev->_tx = tx;
5276 dev->num_tx_queues = queue_count;
5277 dev->real_num_tx_queues = queue_count;
5279 dev->gso_max_size = GSO_MAX_SIZE;
5281 netdev_init_queues(dev);
5283 INIT_LIST_HEAD(&dev->napi_list);
5284 INIT_LIST_HEAD(&dev->unreg_list);
5285 dev->priv_flags = IFF_XMIT_DST_RELEASE;
5286 setup(dev);
5287 strcpy(dev->name, name);
5288 return dev;
5290 free_tx:
5291 kfree(tx);
5293 free_p:
5294 kfree(p);
5295 return NULL;
5297 EXPORT_SYMBOL(alloc_netdev_mq);
5300 * free_netdev - free network device
5301 * @dev: device
5303 * This function does the last stage of destroying an allocated device
5304 * interface. The reference to the device object is released.
5305 * If this is the last reference then it will be freed.
5307 void free_netdev(struct net_device *dev)
5309 struct napi_struct *p, *n;
5311 release_net(dev_net(dev));
5313 kfree(dev->_tx);
5315 /* Flush device addresses */
5316 dev_addr_flush(dev);
5318 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
5319 netif_napi_del(p);
5321 /* Compatibility with error handling in drivers */
5322 if (dev->reg_state == NETREG_UNINITIALIZED) {
5323 kfree((char *)dev - dev->padded);
5324 return;
5327 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
5328 dev->reg_state = NETREG_RELEASED;
5330 /* will free via device release */
5331 put_device(&dev->dev);
5333 EXPORT_SYMBOL(free_netdev);
5336 * synchronize_net - Synchronize with packet receive processing
5338 * Wait for packets currently being received to be done.
5339 * Does not block later packets from starting.
5341 void synchronize_net(void)
5343 might_sleep();
5344 synchronize_rcu();
5346 EXPORT_SYMBOL(synchronize_net);
5349 * unregister_netdevice_queue - remove device from the kernel
5350 * @dev: device
5351 * @head: list
5353 * This function shuts down a device interface and removes it
5354 * from the kernel tables.
5355 * If head not NULL, device is queued to be unregistered later.
5357 * Callers must hold the rtnl semaphore. You may want
5358 * unregister_netdev() instead of this.
5361 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
5363 ASSERT_RTNL();
5365 if (head) {
5366 list_move_tail(&dev->unreg_list, head);
5367 } else {
5368 rollback_registered(dev);
5369 /* Finish processing unregister after unlock */
5370 net_set_todo(dev);
5373 EXPORT_SYMBOL(unregister_netdevice_queue);
5376 * unregister_netdevice_many - unregister many devices
5377 * @head: list of devices
5380 void unregister_netdevice_many(struct list_head *head)
5382 struct net_device *dev;
5384 if (!list_empty(head)) {
5385 rollback_registered_many(head);
5386 list_for_each_entry(dev, head, unreg_list)
5387 net_set_todo(dev);
5390 EXPORT_SYMBOL(unregister_netdevice_many);
5393 * unregister_netdev - remove device from the kernel
5394 * @dev: device
5396 * This function shuts down a device interface and removes it
5397 * from the kernel tables.
5399 * This is just a wrapper for unregister_netdevice that takes
5400 * the rtnl semaphore. In general you want to use this and not
5401 * unregister_netdevice.
5403 void unregister_netdev(struct net_device *dev)
5405 rtnl_lock();
5406 unregister_netdevice(dev);
5407 rtnl_unlock();
5409 EXPORT_SYMBOL(unregister_netdev);
5412 * dev_change_net_namespace - move device to different nethost namespace
5413 * @dev: device
5414 * @net: network namespace
5415 * @pat: If not NULL name pattern to try if the current device name
5416 * is already taken in the destination network namespace.
5418 * This function shuts down a device interface and moves it
5419 * to a new network namespace. On success 0 is returned, on
5420 * a failure a netagive errno code is returned.
5422 * Callers must hold the rtnl semaphore.
5425 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
5427 char buf[IFNAMSIZ];
5428 const char *destname;
5429 int err;
5431 ASSERT_RTNL();
5433 /* Don't allow namespace local devices to be moved. */
5434 err = -EINVAL;
5435 if (dev->features & NETIF_F_NETNS_LOCAL)
5436 goto out;
5438 #ifdef CONFIG_SYSFS
5439 /* Don't allow real devices to be moved when sysfs
5440 * is enabled.
5442 err = -EINVAL;
5443 if (dev->dev.parent)
5444 goto out;
5445 #endif
5447 /* Ensure the device has been registrered */
5448 err = -EINVAL;
5449 if (dev->reg_state != NETREG_REGISTERED)
5450 goto out;
5452 /* Get out if there is nothing todo */
5453 err = 0;
5454 if (net_eq(dev_net(dev), net))
5455 goto out;
5457 /* Pick the destination device name, and ensure
5458 * we can use it in the destination network namespace.
5460 err = -EEXIST;
5461 destname = dev->name;
5462 if (__dev_get_by_name(net, destname)) {
5463 /* We get here if we can't use the current device name */
5464 if (!pat)
5465 goto out;
5466 if (!dev_valid_name(pat))
5467 goto out;
5468 if (strchr(pat, '%')) {
5469 if (__dev_alloc_name(net, pat, buf) < 0)
5470 goto out;
5471 destname = buf;
5472 } else
5473 destname = pat;
5474 if (__dev_get_by_name(net, destname))
5475 goto out;
5479 * And now a mini version of register_netdevice unregister_netdevice.
5482 /* If device is running close it first. */
5483 dev_close(dev);
5485 /* And unlink it from device chain */
5486 err = -ENODEV;
5487 unlist_netdevice(dev);
5489 synchronize_net();
5491 /* Shutdown queueing discipline. */
5492 dev_shutdown(dev);
5494 /* Notify protocols, that we are about to destroy
5495 this device. They should clean all the things.
5497 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5500 * Flush the unicast and multicast chains
5502 dev_unicast_flush(dev);
5503 dev_addr_discard(dev);
5505 netdev_unregister_kobject(dev);
5507 /* Actually switch the network namespace */
5508 dev_net_set(dev, net);
5510 /* Assign the new device name */
5511 if (destname != dev->name)
5512 strcpy(dev->name, destname);
5514 /* If there is an ifindex conflict assign a new one */
5515 if (__dev_get_by_index(net, dev->ifindex)) {
5516 int iflink = (dev->iflink == dev->ifindex);
5517 dev->ifindex = dev_new_index(net);
5518 if (iflink)
5519 dev->iflink = dev->ifindex;
5522 /* Fixup kobjects */
5523 err = netdev_register_kobject(dev);
5524 WARN_ON(err);
5526 /* Add the device back in the hashes */
5527 list_netdevice(dev);
5529 /* Notify protocols, that a new device appeared. */
5530 call_netdevice_notifiers(NETDEV_REGISTER, dev);
5532 synchronize_net();
5533 err = 0;
5534 out:
5535 return err;
5537 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
5539 static int dev_cpu_callback(struct notifier_block *nfb,
5540 unsigned long action,
5541 void *ocpu)
5543 struct sk_buff **list_skb;
5544 struct Qdisc **list_net;
5545 struct sk_buff *skb;
5546 unsigned int cpu, oldcpu = (unsigned long)ocpu;
5547 struct softnet_data *sd, *oldsd;
5549 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
5550 return NOTIFY_OK;
5552 local_irq_disable();
5553 cpu = smp_processor_id();
5554 sd = &per_cpu(softnet_data, cpu);
5555 oldsd = &per_cpu(softnet_data, oldcpu);
5557 /* Find end of our completion_queue. */
5558 list_skb = &sd->completion_queue;
5559 while (*list_skb)
5560 list_skb = &(*list_skb)->next;
5561 /* Append completion queue from offline CPU. */
5562 *list_skb = oldsd->completion_queue;
5563 oldsd->completion_queue = NULL;
5565 /* Find end of our output_queue. */
5566 list_net = &sd->output_queue;
5567 while (*list_net)
5568 list_net = &(*list_net)->next_sched;
5569 /* Append output queue from offline CPU. */
5570 *list_net = oldsd->output_queue;
5571 oldsd->output_queue = NULL;
5573 raise_softirq_irqoff(NET_TX_SOFTIRQ);
5574 local_irq_enable();
5576 /* Process offline CPU's input_pkt_queue */
5577 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue)))
5578 netif_rx(skb);
5580 return NOTIFY_OK;
5585 * netdev_increment_features - increment feature set by one
5586 * @all: current feature set
5587 * @one: new feature set
5588 * @mask: mask feature set
5590 * Computes a new feature set after adding a device with feature set
5591 * @one to the master device with current feature set @all. Will not
5592 * enable anything that is off in @mask. Returns the new feature set.
5594 unsigned long netdev_increment_features(unsigned long all, unsigned long one,
5595 unsigned long mask)
5597 /* If device needs checksumming, downgrade to it. */
5598 if (all & NETIF_F_NO_CSUM && !(one & NETIF_F_NO_CSUM))
5599 all ^= NETIF_F_NO_CSUM | (one & NETIF_F_ALL_CSUM);
5600 else if (mask & NETIF_F_ALL_CSUM) {
5601 /* If one device supports v4/v6 checksumming, set for all. */
5602 if (one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM) &&
5603 !(all & NETIF_F_GEN_CSUM)) {
5604 all &= ~NETIF_F_ALL_CSUM;
5605 all |= one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
5608 /* If one device supports hw checksumming, set for all. */
5609 if (one & NETIF_F_GEN_CSUM && !(all & NETIF_F_GEN_CSUM)) {
5610 all &= ~NETIF_F_ALL_CSUM;
5611 all |= NETIF_F_HW_CSUM;
5615 one |= NETIF_F_ALL_CSUM;
5617 one |= all & NETIF_F_ONE_FOR_ALL;
5618 all &= one | NETIF_F_LLTX | NETIF_F_GSO | NETIF_F_UFO;
5619 all |= one & mask & NETIF_F_ONE_FOR_ALL;
5621 return all;
5623 EXPORT_SYMBOL(netdev_increment_features);
5625 static struct hlist_head *netdev_create_hash(void)
5627 int i;
5628 struct hlist_head *hash;
5630 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
5631 if (hash != NULL)
5632 for (i = 0; i < NETDEV_HASHENTRIES; i++)
5633 INIT_HLIST_HEAD(&hash[i]);
5635 return hash;
5638 /* Initialize per network namespace state */
5639 static int __net_init netdev_init(struct net *net)
5641 INIT_LIST_HEAD(&net->dev_base_head);
5643 net->dev_name_head = netdev_create_hash();
5644 if (net->dev_name_head == NULL)
5645 goto err_name;
5647 net->dev_index_head = netdev_create_hash();
5648 if (net->dev_index_head == NULL)
5649 goto err_idx;
5651 return 0;
5653 err_idx:
5654 kfree(net->dev_name_head);
5655 err_name:
5656 return -ENOMEM;
5660 * netdev_drivername - network driver for the device
5661 * @dev: network device
5662 * @buffer: buffer for resulting name
5663 * @len: size of buffer
5665 * Determine network driver for device.
5667 char *netdev_drivername(const struct net_device *dev, char *buffer, int len)
5669 const struct device_driver *driver;
5670 const struct device *parent;
5672 if (len <= 0 || !buffer)
5673 return buffer;
5674 buffer[0] = 0;
5676 parent = dev->dev.parent;
5678 if (!parent)
5679 return buffer;
5681 driver = parent->driver;
5682 if (driver && driver->name)
5683 strlcpy(buffer, driver->name, len);
5684 return buffer;
5687 static void __net_exit netdev_exit(struct net *net)
5689 kfree(net->dev_name_head);
5690 kfree(net->dev_index_head);
5693 static struct pernet_operations __net_initdata netdev_net_ops = {
5694 .init = netdev_init,
5695 .exit = netdev_exit,
5698 static void __net_exit default_device_exit(struct net *net)
5700 struct net_device *dev;
5702 * Push all migratable of the network devices back to the
5703 * initial network namespace
5705 rtnl_lock();
5706 restart:
5707 for_each_netdev(net, dev) {
5708 int err;
5709 char fb_name[IFNAMSIZ];
5711 /* Ignore unmoveable devices (i.e. loopback) */
5712 if (dev->features & NETIF_F_NETNS_LOCAL)
5713 continue;
5715 /* Delete virtual devices */
5716 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink) {
5717 dev->rtnl_link_ops->dellink(dev, NULL);
5718 goto restart;
5721 /* Push remaing network devices to init_net */
5722 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
5723 err = dev_change_net_namespace(dev, &init_net, fb_name);
5724 if (err) {
5725 printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n",
5726 __func__, dev->name, err);
5727 BUG();
5729 goto restart;
5731 rtnl_unlock();
5734 static struct pernet_operations __net_initdata default_device_ops = {
5735 .exit = default_device_exit,
5739 * Initialize the DEV module. At boot time this walks the device list and
5740 * unhooks any devices that fail to initialise (normally hardware not
5741 * present) and leaves us with a valid list of present and active devices.
5746 * This is called single threaded during boot, so no need
5747 * to take the rtnl semaphore.
5749 static int __init net_dev_init(void)
5751 int i, rc = -ENOMEM;
5753 BUG_ON(!dev_boot_phase);
5755 if (dev_proc_init())
5756 goto out;
5758 if (netdev_kobject_init())
5759 goto out;
5761 INIT_LIST_HEAD(&ptype_all);
5762 for (i = 0; i < PTYPE_HASH_SIZE; i++)
5763 INIT_LIST_HEAD(&ptype_base[i]);
5765 if (register_pernet_subsys(&netdev_net_ops))
5766 goto out;
5769 * Initialise the packet receive queues.
5772 for_each_possible_cpu(i) {
5773 struct softnet_data *queue;
5775 queue = &per_cpu(softnet_data, i);
5776 skb_queue_head_init(&queue->input_pkt_queue);
5777 queue->completion_queue = NULL;
5778 INIT_LIST_HEAD(&queue->poll_list);
5780 queue->backlog.poll = process_backlog;
5781 queue->backlog.weight = weight_p;
5782 queue->backlog.gro_list = NULL;
5783 queue->backlog.gro_count = 0;
5786 dev_boot_phase = 0;
5788 /* The loopback device is special if any other network devices
5789 * is present in a network namespace the loopback device must
5790 * be present. Since we now dynamically allocate and free the
5791 * loopback device ensure this invariant is maintained by
5792 * keeping the loopback device as the first device on the
5793 * list of network devices. Ensuring the loopback devices
5794 * is the first device that appears and the last network device
5795 * that disappears.
5797 if (register_pernet_device(&loopback_net_ops))
5798 goto out;
5800 if (register_pernet_device(&default_device_ops))
5801 goto out;
5803 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
5804 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
5806 hotcpu_notifier(dev_cpu_callback, 0);
5807 dst_init();
5808 dev_mcast_init();
5809 rc = 0;
5810 out:
5811 return rc;
5814 subsys_initcall(net_dev_init);
5816 static int __init initialize_hashrnd(void)
5818 get_random_bytes(&skb_tx_hashrnd, sizeof(skb_tx_hashrnd));
5819 return 0;
5822 late_initcall_sync(initialize_hashrnd);