[PATCH] Check ieee80211softmac_auth_resp kmalloc result
[linux-2.6/libata-dev.git] / net / core / neighbour.c
blobb4b478353b27e520db99a304f5e187e836bd223f
1 /*
2 * Generic address resolution entity
4 * Authors:
5 * Pedro Roque <roque@di.fc.ul.pt>
6 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
13 * Fixes:
14 * Vitaly E. Lavrov releasing NULL neighbor in neigh_add.
15 * Harald Welte Add neighbour cache statistics like rtstat
18 #include <linux/types.h>
19 #include <linux/kernel.h>
20 #include <linux/module.h>
21 #include <linux/socket.h>
22 #include <linux/sched.h>
23 #include <linux/netdevice.h>
24 #include <linux/proc_fs.h>
25 #ifdef CONFIG_SYSCTL
26 #include <linux/sysctl.h>
27 #endif
28 #include <linux/times.h>
29 #include <net/neighbour.h>
30 #include <net/dst.h>
31 #include <net/sock.h>
32 #include <net/netevent.h>
33 #include <net/netlink.h>
34 #include <linux/rtnetlink.h>
35 #include <linux/random.h>
36 #include <linux/string.h>
38 #define NEIGH_DEBUG 1
40 #define NEIGH_PRINTK(x...) printk(x)
41 #define NEIGH_NOPRINTK(x...) do { ; } while(0)
42 #define NEIGH_PRINTK0 NEIGH_PRINTK
43 #define NEIGH_PRINTK1 NEIGH_NOPRINTK
44 #define NEIGH_PRINTK2 NEIGH_NOPRINTK
46 #if NEIGH_DEBUG >= 1
47 #undef NEIGH_PRINTK1
48 #define NEIGH_PRINTK1 NEIGH_PRINTK
49 #endif
50 #if NEIGH_DEBUG >= 2
51 #undef NEIGH_PRINTK2
52 #define NEIGH_PRINTK2 NEIGH_PRINTK
53 #endif
55 #define PNEIGH_HASHMASK 0xF
57 static void neigh_timer_handler(unsigned long arg);
58 #ifdef CONFIG_ARPD
59 static void neigh_app_notify(struct neighbour *n);
60 #endif
61 static int pneigh_ifdown(struct neigh_table *tbl, struct net_device *dev);
62 void neigh_changeaddr(struct neigh_table *tbl, struct net_device *dev);
64 static struct neigh_table *neigh_tables;
65 #ifdef CONFIG_PROC_FS
66 static struct file_operations neigh_stat_seq_fops;
67 #endif
70 Neighbour hash table buckets are protected with rwlock tbl->lock.
72 - All the scans/updates to hash buckets MUST be made under this lock.
73 - NOTHING clever should be made under this lock: no callbacks
74 to protocol backends, no attempts to send something to network.
75 It will result in deadlocks, if backend/driver wants to use neighbour
76 cache.
77 - If the entry requires some non-trivial actions, increase
78 its reference count and release table lock.
80 Neighbour entries are protected:
81 - with reference count.
82 - with rwlock neigh->lock
84 Reference count prevents destruction.
86 neigh->lock mainly serializes ll address data and its validity state.
87 However, the same lock is used to protect another entry fields:
88 - timer
89 - resolution queue
91 Again, nothing clever shall be made under neigh->lock,
92 the most complicated procedure, which we allow is dev->hard_header.
93 It is supposed, that dev->hard_header is simplistic and does
94 not make callbacks to neighbour tables.
96 The last lock is neigh_tbl_lock. It is pure SMP lock, protecting
97 list of neighbour tables. This list is used only in process context,
100 static DEFINE_RWLOCK(neigh_tbl_lock);
102 static int neigh_blackhole(struct sk_buff *skb)
104 kfree_skb(skb);
105 return -ENETDOWN;
109 * It is random distribution in the interval (1/2)*base...(3/2)*base.
110 * It corresponds to default IPv6 settings and is not overridable,
111 * because it is really reasonable choice.
114 unsigned long neigh_rand_reach_time(unsigned long base)
116 return (base ? (net_random() % base) + (base >> 1) : 0);
120 static int neigh_forced_gc(struct neigh_table *tbl)
122 int shrunk = 0;
123 int i;
125 NEIGH_CACHE_STAT_INC(tbl, forced_gc_runs);
127 write_lock_bh(&tbl->lock);
128 for (i = 0; i <= tbl->hash_mask; i++) {
129 struct neighbour *n, **np;
131 np = &tbl->hash_buckets[i];
132 while ((n = *np) != NULL) {
133 /* Neighbour record may be discarded if:
134 * - nobody refers to it.
135 * - it is not permanent
137 write_lock(&n->lock);
138 if (atomic_read(&n->refcnt) == 1 &&
139 !(n->nud_state & NUD_PERMANENT)) {
140 *np = n->next;
141 n->dead = 1;
142 shrunk = 1;
143 write_unlock(&n->lock);
144 neigh_release(n);
145 continue;
147 write_unlock(&n->lock);
148 np = &n->next;
152 tbl->last_flush = jiffies;
154 write_unlock_bh(&tbl->lock);
156 return shrunk;
159 static int neigh_del_timer(struct neighbour *n)
161 if ((n->nud_state & NUD_IN_TIMER) &&
162 del_timer(&n->timer)) {
163 neigh_release(n);
164 return 1;
166 return 0;
169 static void pneigh_queue_purge(struct sk_buff_head *list)
171 struct sk_buff *skb;
173 while ((skb = skb_dequeue(list)) != NULL) {
174 dev_put(skb->dev);
175 kfree_skb(skb);
179 static void neigh_flush_dev(struct neigh_table *tbl, struct net_device *dev)
181 int i;
183 for (i = 0; i <= tbl->hash_mask; i++) {
184 struct neighbour *n, **np = &tbl->hash_buckets[i];
186 while ((n = *np) != NULL) {
187 if (dev && n->dev != dev) {
188 np = &n->next;
189 continue;
191 *np = n->next;
192 write_lock(&n->lock);
193 neigh_del_timer(n);
194 n->dead = 1;
196 if (atomic_read(&n->refcnt) != 1) {
197 /* The most unpleasant situation.
198 We must destroy neighbour entry,
199 but someone still uses it.
201 The destroy will be delayed until
202 the last user releases us, but
203 we must kill timers etc. and move
204 it to safe state.
206 skb_queue_purge(&n->arp_queue);
207 n->output = neigh_blackhole;
208 if (n->nud_state & NUD_VALID)
209 n->nud_state = NUD_NOARP;
210 else
211 n->nud_state = NUD_NONE;
212 NEIGH_PRINTK2("neigh %p is stray.\n", n);
214 write_unlock(&n->lock);
215 neigh_release(n);
220 void neigh_changeaddr(struct neigh_table *tbl, struct net_device *dev)
222 write_lock_bh(&tbl->lock);
223 neigh_flush_dev(tbl, dev);
224 write_unlock_bh(&tbl->lock);
227 int neigh_ifdown(struct neigh_table *tbl, struct net_device *dev)
229 write_lock_bh(&tbl->lock);
230 neigh_flush_dev(tbl, dev);
231 pneigh_ifdown(tbl, dev);
232 write_unlock_bh(&tbl->lock);
234 del_timer_sync(&tbl->proxy_timer);
235 pneigh_queue_purge(&tbl->proxy_queue);
236 return 0;
239 static struct neighbour *neigh_alloc(struct neigh_table *tbl)
241 struct neighbour *n = NULL;
242 unsigned long now = jiffies;
243 int entries;
245 entries = atomic_inc_return(&tbl->entries) - 1;
246 if (entries >= tbl->gc_thresh3 ||
247 (entries >= tbl->gc_thresh2 &&
248 time_after(now, tbl->last_flush + 5 * HZ))) {
249 if (!neigh_forced_gc(tbl) &&
250 entries >= tbl->gc_thresh3)
251 goto out_entries;
254 n = kmem_cache_alloc(tbl->kmem_cachep, SLAB_ATOMIC);
255 if (!n)
256 goto out_entries;
258 memset(n, 0, tbl->entry_size);
260 skb_queue_head_init(&n->arp_queue);
261 rwlock_init(&n->lock);
262 n->updated = n->used = now;
263 n->nud_state = NUD_NONE;
264 n->output = neigh_blackhole;
265 n->parms = neigh_parms_clone(&tbl->parms);
266 init_timer(&n->timer);
267 n->timer.function = neigh_timer_handler;
268 n->timer.data = (unsigned long)n;
270 NEIGH_CACHE_STAT_INC(tbl, allocs);
271 n->tbl = tbl;
272 atomic_set(&n->refcnt, 1);
273 n->dead = 1;
274 out:
275 return n;
277 out_entries:
278 atomic_dec(&tbl->entries);
279 goto out;
282 static struct neighbour **neigh_hash_alloc(unsigned int entries)
284 unsigned long size = entries * sizeof(struct neighbour *);
285 struct neighbour **ret;
287 if (size <= PAGE_SIZE) {
288 ret = kzalloc(size, GFP_ATOMIC);
289 } else {
290 ret = (struct neighbour **)
291 __get_free_pages(GFP_ATOMIC|__GFP_ZERO, get_order(size));
293 return ret;
296 static void neigh_hash_free(struct neighbour **hash, unsigned int entries)
298 unsigned long size = entries * sizeof(struct neighbour *);
300 if (size <= PAGE_SIZE)
301 kfree(hash);
302 else
303 free_pages((unsigned long)hash, get_order(size));
306 static void neigh_hash_grow(struct neigh_table *tbl, unsigned long new_entries)
308 struct neighbour **new_hash, **old_hash;
309 unsigned int i, new_hash_mask, old_entries;
311 NEIGH_CACHE_STAT_INC(tbl, hash_grows);
313 BUG_ON(new_entries & (new_entries - 1));
314 new_hash = neigh_hash_alloc(new_entries);
315 if (!new_hash)
316 return;
318 old_entries = tbl->hash_mask + 1;
319 new_hash_mask = new_entries - 1;
320 old_hash = tbl->hash_buckets;
322 get_random_bytes(&tbl->hash_rnd, sizeof(tbl->hash_rnd));
323 for (i = 0; i < old_entries; i++) {
324 struct neighbour *n, *next;
326 for (n = old_hash[i]; n; n = next) {
327 unsigned int hash_val = tbl->hash(n->primary_key, n->dev);
329 hash_val &= new_hash_mask;
330 next = n->next;
332 n->next = new_hash[hash_val];
333 new_hash[hash_val] = n;
336 tbl->hash_buckets = new_hash;
337 tbl->hash_mask = new_hash_mask;
339 neigh_hash_free(old_hash, old_entries);
342 struct neighbour *neigh_lookup(struct neigh_table *tbl, const void *pkey,
343 struct net_device *dev)
345 struct neighbour *n;
346 int key_len = tbl->key_len;
347 u32 hash_val = tbl->hash(pkey, dev);
349 NEIGH_CACHE_STAT_INC(tbl, lookups);
351 read_lock_bh(&tbl->lock);
352 for (n = tbl->hash_buckets[hash_val & tbl->hash_mask]; n; n = n->next) {
353 if (dev == n->dev && !memcmp(n->primary_key, pkey, key_len)) {
354 neigh_hold(n);
355 NEIGH_CACHE_STAT_INC(tbl, hits);
356 break;
359 read_unlock_bh(&tbl->lock);
360 return n;
363 struct neighbour *neigh_lookup_nodev(struct neigh_table *tbl, const void *pkey)
365 struct neighbour *n;
366 int key_len = tbl->key_len;
367 u32 hash_val = tbl->hash(pkey, NULL);
369 NEIGH_CACHE_STAT_INC(tbl, lookups);
371 read_lock_bh(&tbl->lock);
372 for (n = tbl->hash_buckets[hash_val & tbl->hash_mask]; n; n = n->next) {
373 if (!memcmp(n->primary_key, pkey, key_len)) {
374 neigh_hold(n);
375 NEIGH_CACHE_STAT_INC(tbl, hits);
376 break;
379 read_unlock_bh(&tbl->lock);
380 return n;
383 struct neighbour *neigh_create(struct neigh_table *tbl, const void *pkey,
384 struct net_device *dev)
386 u32 hash_val;
387 int key_len = tbl->key_len;
388 int error;
389 struct neighbour *n1, *rc, *n = neigh_alloc(tbl);
391 if (!n) {
392 rc = ERR_PTR(-ENOBUFS);
393 goto out;
396 memcpy(n->primary_key, pkey, key_len);
397 n->dev = dev;
398 dev_hold(dev);
400 /* Protocol specific setup. */
401 if (tbl->constructor && (error = tbl->constructor(n)) < 0) {
402 rc = ERR_PTR(error);
403 goto out_neigh_release;
406 /* Device specific setup. */
407 if (n->parms->neigh_setup &&
408 (error = n->parms->neigh_setup(n)) < 0) {
409 rc = ERR_PTR(error);
410 goto out_neigh_release;
413 n->confirmed = jiffies - (n->parms->base_reachable_time << 1);
415 write_lock_bh(&tbl->lock);
417 if (atomic_read(&tbl->entries) > (tbl->hash_mask + 1))
418 neigh_hash_grow(tbl, (tbl->hash_mask + 1) << 1);
420 hash_val = tbl->hash(pkey, dev) & tbl->hash_mask;
422 if (n->parms->dead) {
423 rc = ERR_PTR(-EINVAL);
424 goto out_tbl_unlock;
427 for (n1 = tbl->hash_buckets[hash_val]; n1; n1 = n1->next) {
428 if (dev == n1->dev && !memcmp(n1->primary_key, pkey, key_len)) {
429 neigh_hold(n1);
430 rc = n1;
431 goto out_tbl_unlock;
435 n->next = tbl->hash_buckets[hash_val];
436 tbl->hash_buckets[hash_val] = n;
437 n->dead = 0;
438 neigh_hold(n);
439 write_unlock_bh(&tbl->lock);
440 NEIGH_PRINTK2("neigh %p is created.\n", n);
441 rc = n;
442 out:
443 return rc;
444 out_tbl_unlock:
445 write_unlock_bh(&tbl->lock);
446 out_neigh_release:
447 neigh_release(n);
448 goto out;
451 struct pneigh_entry * pneigh_lookup(struct neigh_table *tbl, const void *pkey,
452 struct net_device *dev, int creat)
454 struct pneigh_entry *n;
455 int key_len = tbl->key_len;
456 u32 hash_val = *(u32 *)(pkey + key_len - 4);
458 hash_val ^= (hash_val >> 16);
459 hash_val ^= hash_val >> 8;
460 hash_val ^= hash_val >> 4;
461 hash_val &= PNEIGH_HASHMASK;
463 read_lock_bh(&tbl->lock);
465 for (n = tbl->phash_buckets[hash_val]; n; n = n->next) {
466 if (!memcmp(n->key, pkey, key_len) &&
467 (n->dev == dev || !n->dev)) {
468 read_unlock_bh(&tbl->lock);
469 goto out;
472 read_unlock_bh(&tbl->lock);
473 n = NULL;
474 if (!creat)
475 goto out;
477 n = kmalloc(sizeof(*n) + key_len, GFP_KERNEL);
478 if (!n)
479 goto out;
481 memcpy(n->key, pkey, key_len);
482 n->dev = dev;
483 if (dev)
484 dev_hold(dev);
486 if (tbl->pconstructor && tbl->pconstructor(n)) {
487 if (dev)
488 dev_put(dev);
489 kfree(n);
490 n = NULL;
491 goto out;
494 write_lock_bh(&tbl->lock);
495 n->next = tbl->phash_buckets[hash_val];
496 tbl->phash_buckets[hash_val] = n;
497 write_unlock_bh(&tbl->lock);
498 out:
499 return n;
503 int pneigh_delete(struct neigh_table *tbl, const void *pkey,
504 struct net_device *dev)
506 struct pneigh_entry *n, **np;
507 int key_len = tbl->key_len;
508 u32 hash_val = *(u32 *)(pkey + key_len - 4);
510 hash_val ^= (hash_val >> 16);
511 hash_val ^= hash_val >> 8;
512 hash_val ^= hash_val >> 4;
513 hash_val &= PNEIGH_HASHMASK;
515 write_lock_bh(&tbl->lock);
516 for (np = &tbl->phash_buckets[hash_val]; (n = *np) != NULL;
517 np = &n->next) {
518 if (!memcmp(n->key, pkey, key_len) && n->dev == dev) {
519 *np = n->next;
520 write_unlock_bh(&tbl->lock);
521 if (tbl->pdestructor)
522 tbl->pdestructor(n);
523 if (n->dev)
524 dev_put(n->dev);
525 kfree(n);
526 return 0;
529 write_unlock_bh(&tbl->lock);
530 return -ENOENT;
533 static int pneigh_ifdown(struct neigh_table *tbl, struct net_device *dev)
535 struct pneigh_entry *n, **np;
536 u32 h;
538 for (h = 0; h <= PNEIGH_HASHMASK; h++) {
539 np = &tbl->phash_buckets[h];
540 while ((n = *np) != NULL) {
541 if (!dev || n->dev == dev) {
542 *np = n->next;
543 if (tbl->pdestructor)
544 tbl->pdestructor(n);
545 if (n->dev)
546 dev_put(n->dev);
547 kfree(n);
548 continue;
550 np = &n->next;
553 return -ENOENT;
558 * neighbour must already be out of the table;
561 void neigh_destroy(struct neighbour *neigh)
563 struct hh_cache *hh;
565 NEIGH_CACHE_STAT_INC(neigh->tbl, destroys);
567 if (!neigh->dead) {
568 printk(KERN_WARNING
569 "Destroying alive neighbour %p\n", neigh);
570 dump_stack();
571 return;
574 if (neigh_del_timer(neigh))
575 printk(KERN_WARNING "Impossible event.\n");
577 while ((hh = neigh->hh) != NULL) {
578 neigh->hh = hh->hh_next;
579 hh->hh_next = NULL;
580 write_lock_bh(&hh->hh_lock);
581 hh->hh_output = neigh_blackhole;
582 write_unlock_bh(&hh->hh_lock);
583 if (atomic_dec_and_test(&hh->hh_refcnt))
584 kfree(hh);
587 if (neigh->parms->neigh_destructor)
588 (neigh->parms->neigh_destructor)(neigh);
590 skb_queue_purge(&neigh->arp_queue);
592 dev_put(neigh->dev);
593 neigh_parms_put(neigh->parms);
595 NEIGH_PRINTK2("neigh %p is destroyed.\n", neigh);
597 atomic_dec(&neigh->tbl->entries);
598 kmem_cache_free(neigh->tbl->kmem_cachep, neigh);
601 /* Neighbour state is suspicious;
602 disable fast path.
604 Called with write_locked neigh.
606 static void neigh_suspect(struct neighbour *neigh)
608 struct hh_cache *hh;
610 NEIGH_PRINTK2("neigh %p is suspected.\n", neigh);
612 neigh->output = neigh->ops->output;
614 for (hh = neigh->hh; hh; hh = hh->hh_next)
615 hh->hh_output = neigh->ops->output;
618 /* Neighbour state is OK;
619 enable fast path.
621 Called with write_locked neigh.
623 static void neigh_connect(struct neighbour *neigh)
625 struct hh_cache *hh;
627 NEIGH_PRINTK2("neigh %p is connected.\n", neigh);
629 neigh->output = neigh->ops->connected_output;
631 for (hh = neigh->hh; hh; hh = hh->hh_next)
632 hh->hh_output = neigh->ops->hh_output;
635 static void neigh_periodic_timer(unsigned long arg)
637 struct neigh_table *tbl = (struct neigh_table *)arg;
638 struct neighbour *n, **np;
639 unsigned long expire, now = jiffies;
641 NEIGH_CACHE_STAT_INC(tbl, periodic_gc_runs);
643 write_lock(&tbl->lock);
646 * periodically recompute ReachableTime from random function
649 if (time_after(now, tbl->last_rand + 300 * HZ)) {
650 struct neigh_parms *p;
651 tbl->last_rand = now;
652 for (p = &tbl->parms; p; p = p->next)
653 p->reachable_time =
654 neigh_rand_reach_time(p->base_reachable_time);
657 np = &tbl->hash_buckets[tbl->hash_chain_gc];
658 tbl->hash_chain_gc = ((tbl->hash_chain_gc + 1) & tbl->hash_mask);
660 while ((n = *np) != NULL) {
661 unsigned int state;
663 write_lock(&n->lock);
665 state = n->nud_state;
666 if (state & (NUD_PERMANENT | NUD_IN_TIMER)) {
667 write_unlock(&n->lock);
668 goto next_elt;
671 if (time_before(n->used, n->confirmed))
672 n->used = n->confirmed;
674 if (atomic_read(&n->refcnt) == 1 &&
675 (state == NUD_FAILED ||
676 time_after(now, n->used + n->parms->gc_staletime))) {
677 *np = n->next;
678 n->dead = 1;
679 write_unlock(&n->lock);
680 neigh_release(n);
681 continue;
683 write_unlock(&n->lock);
685 next_elt:
686 np = &n->next;
689 /* Cycle through all hash buckets every base_reachable_time/2 ticks.
690 * ARP entry timeouts range from 1/2 base_reachable_time to 3/2
691 * base_reachable_time.
693 expire = tbl->parms.base_reachable_time >> 1;
694 expire /= (tbl->hash_mask + 1);
695 if (!expire)
696 expire = 1;
698 mod_timer(&tbl->gc_timer, now + expire);
700 write_unlock(&tbl->lock);
703 static __inline__ int neigh_max_probes(struct neighbour *n)
705 struct neigh_parms *p = n->parms;
706 return (n->nud_state & NUD_PROBE ?
707 p->ucast_probes :
708 p->ucast_probes + p->app_probes + p->mcast_probes);
711 static inline void neigh_add_timer(struct neighbour *n, unsigned long when)
713 if (unlikely(mod_timer(&n->timer, when))) {
714 printk("NEIGH: BUG, double timer add, state is %x\n",
715 n->nud_state);
716 dump_stack();
720 /* Called when a timer expires for a neighbour entry. */
722 static void neigh_timer_handler(unsigned long arg)
724 unsigned long now, next;
725 struct neighbour *neigh = (struct neighbour *)arg;
726 unsigned state;
727 int notify = 0;
729 write_lock(&neigh->lock);
731 state = neigh->nud_state;
732 now = jiffies;
733 next = now + HZ;
735 if (!(state & NUD_IN_TIMER)) {
736 #ifndef CONFIG_SMP
737 printk(KERN_WARNING "neigh: timer & !nud_in_timer\n");
738 #endif
739 goto out;
742 if (state & NUD_REACHABLE) {
743 if (time_before_eq(now,
744 neigh->confirmed + neigh->parms->reachable_time)) {
745 NEIGH_PRINTK2("neigh %p is still alive.\n", neigh);
746 next = neigh->confirmed + neigh->parms->reachable_time;
747 } else if (time_before_eq(now,
748 neigh->used + neigh->parms->delay_probe_time)) {
749 NEIGH_PRINTK2("neigh %p is delayed.\n", neigh);
750 neigh->nud_state = NUD_DELAY;
751 neigh->updated = jiffies;
752 neigh_suspect(neigh);
753 next = now + neigh->parms->delay_probe_time;
754 } else {
755 NEIGH_PRINTK2("neigh %p is suspected.\n", neigh);
756 neigh->nud_state = NUD_STALE;
757 neigh->updated = jiffies;
758 neigh_suspect(neigh);
759 notify = 1;
761 } else if (state & NUD_DELAY) {
762 if (time_before_eq(now,
763 neigh->confirmed + neigh->parms->delay_probe_time)) {
764 NEIGH_PRINTK2("neigh %p is now reachable.\n", neigh);
765 neigh->nud_state = NUD_REACHABLE;
766 neigh->updated = jiffies;
767 neigh_connect(neigh);
768 notify = 1;
769 next = neigh->confirmed + neigh->parms->reachable_time;
770 } else {
771 NEIGH_PRINTK2("neigh %p is probed.\n", neigh);
772 neigh->nud_state = NUD_PROBE;
773 neigh->updated = jiffies;
774 atomic_set(&neigh->probes, 0);
775 next = now + neigh->parms->retrans_time;
777 } else {
778 /* NUD_PROBE|NUD_INCOMPLETE */
779 next = now + neigh->parms->retrans_time;
782 if ((neigh->nud_state & (NUD_INCOMPLETE | NUD_PROBE)) &&
783 atomic_read(&neigh->probes) >= neigh_max_probes(neigh)) {
784 struct sk_buff *skb;
786 neigh->nud_state = NUD_FAILED;
787 neigh->updated = jiffies;
788 notify = 1;
789 NEIGH_CACHE_STAT_INC(neigh->tbl, res_failed);
790 NEIGH_PRINTK2("neigh %p is failed.\n", neigh);
792 /* It is very thin place. report_unreachable is very complicated
793 routine. Particularly, it can hit the same neighbour entry!
795 So that, we try to be accurate and avoid dead loop. --ANK
797 while (neigh->nud_state == NUD_FAILED &&
798 (skb = __skb_dequeue(&neigh->arp_queue)) != NULL) {
799 write_unlock(&neigh->lock);
800 neigh->ops->error_report(neigh, skb);
801 write_lock(&neigh->lock);
803 skb_queue_purge(&neigh->arp_queue);
806 if (neigh->nud_state & NUD_IN_TIMER) {
807 if (time_before(next, jiffies + HZ/2))
808 next = jiffies + HZ/2;
809 if (!mod_timer(&neigh->timer, next))
810 neigh_hold(neigh);
812 if (neigh->nud_state & (NUD_INCOMPLETE | NUD_PROBE)) {
813 struct sk_buff *skb = skb_peek(&neigh->arp_queue);
814 /* keep skb alive even if arp_queue overflows */
815 if (skb)
816 skb_get(skb);
817 write_unlock(&neigh->lock);
818 neigh->ops->solicit(neigh, skb);
819 atomic_inc(&neigh->probes);
820 if (skb)
821 kfree_skb(skb);
822 } else {
823 out:
824 write_unlock(&neigh->lock);
826 if (notify)
827 call_netevent_notifiers(NETEVENT_NEIGH_UPDATE, neigh);
829 #ifdef CONFIG_ARPD
830 if (notify && neigh->parms->app_probes)
831 neigh_app_notify(neigh);
832 #endif
833 neigh_release(neigh);
836 int __neigh_event_send(struct neighbour *neigh, struct sk_buff *skb)
838 int rc;
839 unsigned long now;
841 write_lock_bh(&neigh->lock);
843 rc = 0;
844 if (neigh->nud_state & (NUD_CONNECTED | NUD_DELAY | NUD_PROBE))
845 goto out_unlock_bh;
847 now = jiffies;
849 if (!(neigh->nud_state & (NUD_STALE | NUD_INCOMPLETE))) {
850 if (neigh->parms->mcast_probes + neigh->parms->app_probes) {
851 atomic_set(&neigh->probes, neigh->parms->ucast_probes);
852 neigh->nud_state = NUD_INCOMPLETE;
853 neigh->updated = jiffies;
854 neigh_hold(neigh);
855 neigh_add_timer(neigh, now + 1);
856 } else {
857 neigh->nud_state = NUD_FAILED;
858 neigh->updated = jiffies;
859 write_unlock_bh(&neigh->lock);
861 if (skb)
862 kfree_skb(skb);
863 return 1;
865 } else if (neigh->nud_state & NUD_STALE) {
866 NEIGH_PRINTK2("neigh %p is delayed.\n", neigh);
867 neigh_hold(neigh);
868 neigh->nud_state = NUD_DELAY;
869 neigh->updated = jiffies;
870 neigh_add_timer(neigh,
871 jiffies + neigh->parms->delay_probe_time);
874 if (neigh->nud_state == NUD_INCOMPLETE) {
875 if (skb) {
876 if (skb_queue_len(&neigh->arp_queue) >=
877 neigh->parms->queue_len) {
878 struct sk_buff *buff;
879 buff = neigh->arp_queue.next;
880 __skb_unlink(buff, &neigh->arp_queue);
881 kfree_skb(buff);
883 __skb_queue_tail(&neigh->arp_queue, skb);
885 rc = 1;
887 out_unlock_bh:
888 write_unlock_bh(&neigh->lock);
889 return rc;
892 static void neigh_update_hhs(struct neighbour *neigh)
894 struct hh_cache *hh;
895 void (*update)(struct hh_cache*, struct net_device*, unsigned char *) =
896 neigh->dev->header_cache_update;
898 if (update) {
899 for (hh = neigh->hh; hh; hh = hh->hh_next) {
900 write_lock_bh(&hh->hh_lock);
901 update(hh, neigh->dev, neigh->ha);
902 write_unlock_bh(&hh->hh_lock);
909 /* Generic update routine.
910 -- lladdr is new lladdr or NULL, if it is not supplied.
911 -- new is new state.
912 -- flags
913 NEIGH_UPDATE_F_OVERRIDE allows to override existing lladdr,
914 if it is different.
915 NEIGH_UPDATE_F_WEAK_OVERRIDE will suspect existing "connected"
916 lladdr instead of overriding it
917 if it is different.
918 It also allows to retain current state
919 if lladdr is unchanged.
920 NEIGH_UPDATE_F_ADMIN means that the change is administrative.
922 NEIGH_UPDATE_F_OVERRIDE_ISROUTER allows to override existing
923 NTF_ROUTER flag.
924 NEIGH_UPDATE_F_ISROUTER indicates if the neighbour is known as
925 a router.
927 Caller MUST hold reference count on the entry.
930 int neigh_update(struct neighbour *neigh, const u8 *lladdr, u8 new,
931 u32 flags)
933 u8 old;
934 int err;
935 int notify = 0;
936 struct net_device *dev;
937 int update_isrouter = 0;
939 write_lock_bh(&neigh->lock);
941 dev = neigh->dev;
942 old = neigh->nud_state;
943 err = -EPERM;
945 if (!(flags & NEIGH_UPDATE_F_ADMIN) &&
946 (old & (NUD_NOARP | NUD_PERMANENT)))
947 goto out;
949 if (!(new & NUD_VALID)) {
950 neigh_del_timer(neigh);
951 if (old & NUD_CONNECTED)
952 neigh_suspect(neigh);
953 neigh->nud_state = new;
954 err = 0;
955 notify = old & NUD_VALID;
956 goto out;
959 /* Compare new lladdr with cached one */
960 if (!dev->addr_len) {
961 /* First case: device needs no address. */
962 lladdr = neigh->ha;
963 } else if (lladdr) {
964 /* The second case: if something is already cached
965 and a new address is proposed:
966 - compare new & old
967 - if they are different, check override flag
969 if ((old & NUD_VALID) &&
970 !memcmp(lladdr, neigh->ha, dev->addr_len))
971 lladdr = neigh->ha;
972 } else {
973 /* No address is supplied; if we know something,
974 use it, otherwise discard the request.
976 err = -EINVAL;
977 if (!(old & NUD_VALID))
978 goto out;
979 lladdr = neigh->ha;
982 if (new & NUD_CONNECTED)
983 neigh->confirmed = jiffies;
984 neigh->updated = jiffies;
986 /* If entry was valid and address is not changed,
987 do not change entry state, if new one is STALE.
989 err = 0;
990 update_isrouter = flags & NEIGH_UPDATE_F_OVERRIDE_ISROUTER;
991 if (old & NUD_VALID) {
992 if (lladdr != neigh->ha && !(flags & NEIGH_UPDATE_F_OVERRIDE)) {
993 update_isrouter = 0;
994 if ((flags & NEIGH_UPDATE_F_WEAK_OVERRIDE) &&
995 (old & NUD_CONNECTED)) {
996 lladdr = neigh->ha;
997 new = NUD_STALE;
998 } else
999 goto out;
1000 } else {
1001 if (lladdr == neigh->ha && new == NUD_STALE &&
1002 ((flags & NEIGH_UPDATE_F_WEAK_OVERRIDE) ||
1003 (old & NUD_CONNECTED))
1005 new = old;
1009 if (new != old) {
1010 neigh_del_timer(neigh);
1011 if (new & NUD_IN_TIMER) {
1012 neigh_hold(neigh);
1013 neigh_add_timer(neigh, (jiffies +
1014 ((new & NUD_REACHABLE) ?
1015 neigh->parms->reachable_time :
1016 0)));
1018 neigh->nud_state = new;
1021 if (lladdr != neigh->ha) {
1022 memcpy(&neigh->ha, lladdr, dev->addr_len);
1023 neigh_update_hhs(neigh);
1024 if (!(new & NUD_CONNECTED))
1025 neigh->confirmed = jiffies -
1026 (neigh->parms->base_reachable_time << 1);
1027 notify = 1;
1029 if (new == old)
1030 goto out;
1031 if (new & NUD_CONNECTED)
1032 neigh_connect(neigh);
1033 else
1034 neigh_suspect(neigh);
1035 if (!(old & NUD_VALID)) {
1036 struct sk_buff *skb;
1038 /* Again: avoid dead loop if something went wrong */
1040 while (neigh->nud_state & NUD_VALID &&
1041 (skb = __skb_dequeue(&neigh->arp_queue)) != NULL) {
1042 struct neighbour *n1 = neigh;
1043 write_unlock_bh(&neigh->lock);
1044 /* On shaper/eql skb->dst->neighbour != neigh :( */
1045 if (skb->dst && skb->dst->neighbour)
1046 n1 = skb->dst->neighbour;
1047 n1->output(skb);
1048 write_lock_bh(&neigh->lock);
1050 skb_queue_purge(&neigh->arp_queue);
1052 out:
1053 if (update_isrouter) {
1054 neigh->flags = (flags & NEIGH_UPDATE_F_ISROUTER) ?
1055 (neigh->flags | NTF_ROUTER) :
1056 (neigh->flags & ~NTF_ROUTER);
1058 write_unlock_bh(&neigh->lock);
1060 if (notify)
1061 call_netevent_notifiers(NETEVENT_NEIGH_UPDATE, neigh);
1062 #ifdef CONFIG_ARPD
1063 if (notify && neigh->parms->app_probes)
1064 neigh_app_notify(neigh);
1065 #endif
1066 return err;
1069 struct neighbour *neigh_event_ns(struct neigh_table *tbl,
1070 u8 *lladdr, void *saddr,
1071 struct net_device *dev)
1073 struct neighbour *neigh = __neigh_lookup(tbl, saddr, dev,
1074 lladdr || !dev->addr_len);
1075 if (neigh)
1076 neigh_update(neigh, lladdr, NUD_STALE,
1077 NEIGH_UPDATE_F_OVERRIDE);
1078 return neigh;
1081 static void neigh_hh_init(struct neighbour *n, struct dst_entry *dst,
1082 __be16 protocol)
1084 struct hh_cache *hh;
1085 struct net_device *dev = dst->dev;
1087 for (hh = n->hh; hh; hh = hh->hh_next)
1088 if (hh->hh_type == protocol)
1089 break;
1091 if (!hh && (hh = kzalloc(sizeof(*hh), GFP_ATOMIC)) != NULL) {
1092 rwlock_init(&hh->hh_lock);
1093 hh->hh_type = protocol;
1094 atomic_set(&hh->hh_refcnt, 0);
1095 hh->hh_next = NULL;
1096 if (dev->hard_header_cache(n, hh)) {
1097 kfree(hh);
1098 hh = NULL;
1099 } else {
1100 atomic_inc(&hh->hh_refcnt);
1101 hh->hh_next = n->hh;
1102 n->hh = hh;
1103 if (n->nud_state & NUD_CONNECTED)
1104 hh->hh_output = n->ops->hh_output;
1105 else
1106 hh->hh_output = n->ops->output;
1109 if (hh) {
1110 atomic_inc(&hh->hh_refcnt);
1111 dst->hh = hh;
1115 /* This function can be used in contexts, where only old dev_queue_xmit
1116 worked, f.e. if you want to override normal output path (eql, shaper),
1117 but resolution is not made yet.
1120 int neigh_compat_output(struct sk_buff *skb)
1122 struct net_device *dev = skb->dev;
1124 __skb_pull(skb, skb->nh.raw - skb->data);
1126 if (dev->hard_header &&
1127 dev->hard_header(skb, dev, ntohs(skb->protocol), NULL, NULL,
1128 skb->len) < 0 &&
1129 dev->rebuild_header(skb))
1130 return 0;
1132 return dev_queue_xmit(skb);
1135 /* Slow and careful. */
1137 int neigh_resolve_output(struct sk_buff *skb)
1139 struct dst_entry *dst = skb->dst;
1140 struct neighbour *neigh;
1141 int rc = 0;
1143 if (!dst || !(neigh = dst->neighbour))
1144 goto discard;
1146 __skb_pull(skb, skb->nh.raw - skb->data);
1148 if (!neigh_event_send(neigh, skb)) {
1149 int err;
1150 struct net_device *dev = neigh->dev;
1151 if (dev->hard_header_cache && !dst->hh) {
1152 write_lock_bh(&neigh->lock);
1153 if (!dst->hh)
1154 neigh_hh_init(neigh, dst, dst->ops->protocol);
1155 err = dev->hard_header(skb, dev, ntohs(skb->protocol),
1156 neigh->ha, NULL, skb->len);
1157 write_unlock_bh(&neigh->lock);
1158 } else {
1159 read_lock_bh(&neigh->lock);
1160 err = dev->hard_header(skb, dev, ntohs(skb->protocol),
1161 neigh->ha, NULL, skb->len);
1162 read_unlock_bh(&neigh->lock);
1164 if (err >= 0)
1165 rc = neigh->ops->queue_xmit(skb);
1166 else
1167 goto out_kfree_skb;
1169 out:
1170 return rc;
1171 discard:
1172 NEIGH_PRINTK1("neigh_resolve_output: dst=%p neigh=%p\n",
1173 dst, dst ? dst->neighbour : NULL);
1174 out_kfree_skb:
1175 rc = -EINVAL;
1176 kfree_skb(skb);
1177 goto out;
1180 /* As fast as possible without hh cache */
1182 int neigh_connected_output(struct sk_buff *skb)
1184 int err;
1185 struct dst_entry *dst = skb->dst;
1186 struct neighbour *neigh = dst->neighbour;
1187 struct net_device *dev = neigh->dev;
1189 __skb_pull(skb, skb->nh.raw - skb->data);
1191 read_lock_bh(&neigh->lock);
1192 err = dev->hard_header(skb, dev, ntohs(skb->protocol),
1193 neigh->ha, NULL, skb->len);
1194 read_unlock_bh(&neigh->lock);
1195 if (err >= 0)
1196 err = neigh->ops->queue_xmit(skb);
1197 else {
1198 err = -EINVAL;
1199 kfree_skb(skb);
1201 return err;
1204 static void neigh_proxy_process(unsigned long arg)
1206 struct neigh_table *tbl = (struct neigh_table *)arg;
1207 long sched_next = 0;
1208 unsigned long now = jiffies;
1209 struct sk_buff *skb;
1211 spin_lock(&tbl->proxy_queue.lock);
1213 skb = tbl->proxy_queue.next;
1215 while (skb != (struct sk_buff *)&tbl->proxy_queue) {
1216 struct sk_buff *back = skb;
1217 long tdif = NEIGH_CB(back)->sched_next - now;
1219 skb = skb->next;
1220 if (tdif <= 0) {
1221 struct net_device *dev = back->dev;
1222 __skb_unlink(back, &tbl->proxy_queue);
1223 if (tbl->proxy_redo && netif_running(dev))
1224 tbl->proxy_redo(back);
1225 else
1226 kfree_skb(back);
1228 dev_put(dev);
1229 } else if (!sched_next || tdif < sched_next)
1230 sched_next = tdif;
1232 del_timer(&tbl->proxy_timer);
1233 if (sched_next)
1234 mod_timer(&tbl->proxy_timer, jiffies + sched_next);
1235 spin_unlock(&tbl->proxy_queue.lock);
1238 void pneigh_enqueue(struct neigh_table *tbl, struct neigh_parms *p,
1239 struct sk_buff *skb)
1241 unsigned long now = jiffies;
1242 unsigned long sched_next = now + (net_random() % p->proxy_delay);
1244 if (tbl->proxy_queue.qlen > p->proxy_qlen) {
1245 kfree_skb(skb);
1246 return;
1249 NEIGH_CB(skb)->sched_next = sched_next;
1250 NEIGH_CB(skb)->flags |= LOCALLY_ENQUEUED;
1252 spin_lock(&tbl->proxy_queue.lock);
1253 if (del_timer(&tbl->proxy_timer)) {
1254 if (time_before(tbl->proxy_timer.expires, sched_next))
1255 sched_next = tbl->proxy_timer.expires;
1257 dst_release(skb->dst);
1258 skb->dst = NULL;
1259 dev_hold(skb->dev);
1260 __skb_queue_tail(&tbl->proxy_queue, skb);
1261 mod_timer(&tbl->proxy_timer, sched_next);
1262 spin_unlock(&tbl->proxy_queue.lock);
1266 struct neigh_parms *neigh_parms_alloc(struct net_device *dev,
1267 struct neigh_table *tbl)
1269 struct neigh_parms *p = kmalloc(sizeof(*p), GFP_KERNEL);
1271 if (p) {
1272 memcpy(p, &tbl->parms, sizeof(*p));
1273 p->tbl = tbl;
1274 atomic_set(&p->refcnt, 1);
1275 INIT_RCU_HEAD(&p->rcu_head);
1276 p->reachable_time =
1277 neigh_rand_reach_time(p->base_reachable_time);
1278 if (dev) {
1279 if (dev->neigh_setup && dev->neigh_setup(dev, p)) {
1280 kfree(p);
1281 return NULL;
1284 dev_hold(dev);
1285 p->dev = dev;
1287 p->sysctl_table = NULL;
1288 write_lock_bh(&tbl->lock);
1289 p->next = tbl->parms.next;
1290 tbl->parms.next = p;
1291 write_unlock_bh(&tbl->lock);
1293 return p;
1296 static void neigh_rcu_free_parms(struct rcu_head *head)
1298 struct neigh_parms *parms =
1299 container_of(head, struct neigh_parms, rcu_head);
1301 neigh_parms_put(parms);
1304 void neigh_parms_release(struct neigh_table *tbl, struct neigh_parms *parms)
1306 struct neigh_parms **p;
1308 if (!parms || parms == &tbl->parms)
1309 return;
1310 write_lock_bh(&tbl->lock);
1311 for (p = &tbl->parms.next; *p; p = &(*p)->next) {
1312 if (*p == parms) {
1313 *p = parms->next;
1314 parms->dead = 1;
1315 write_unlock_bh(&tbl->lock);
1316 if (parms->dev)
1317 dev_put(parms->dev);
1318 call_rcu(&parms->rcu_head, neigh_rcu_free_parms);
1319 return;
1322 write_unlock_bh(&tbl->lock);
1323 NEIGH_PRINTK1("neigh_parms_release: not found\n");
1326 void neigh_parms_destroy(struct neigh_parms *parms)
1328 kfree(parms);
1331 void neigh_table_init_no_netlink(struct neigh_table *tbl)
1333 unsigned long now = jiffies;
1334 unsigned long phsize;
1336 atomic_set(&tbl->parms.refcnt, 1);
1337 INIT_RCU_HEAD(&tbl->parms.rcu_head);
1338 tbl->parms.reachable_time =
1339 neigh_rand_reach_time(tbl->parms.base_reachable_time);
1341 if (!tbl->kmem_cachep)
1342 tbl->kmem_cachep =
1343 kmem_cache_create(tbl->id, tbl->entry_size, 0,
1344 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
1345 NULL, NULL);
1346 tbl->stats = alloc_percpu(struct neigh_statistics);
1347 if (!tbl->stats)
1348 panic("cannot create neighbour cache statistics");
1350 #ifdef CONFIG_PROC_FS
1351 tbl->pde = create_proc_entry(tbl->id, 0, proc_net_stat);
1352 if (!tbl->pde)
1353 panic("cannot create neighbour proc dir entry");
1354 tbl->pde->proc_fops = &neigh_stat_seq_fops;
1355 tbl->pde->data = tbl;
1356 #endif
1358 tbl->hash_mask = 1;
1359 tbl->hash_buckets = neigh_hash_alloc(tbl->hash_mask + 1);
1361 phsize = (PNEIGH_HASHMASK + 1) * sizeof(struct pneigh_entry *);
1362 tbl->phash_buckets = kzalloc(phsize, GFP_KERNEL);
1364 if (!tbl->hash_buckets || !tbl->phash_buckets)
1365 panic("cannot allocate neighbour cache hashes");
1367 get_random_bytes(&tbl->hash_rnd, sizeof(tbl->hash_rnd));
1369 rwlock_init(&tbl->lock);
1370 init_timer(&tbl->gc_timer);
1371 tbl->gc_timer.data = (unsigned long)tbl;
1372 tbl->gc_timer.function = neigh_periodic_timer;
1373 tbl->gc_timer.expires = now + 1;
1374 add_timer(&tbl->gc_timer);
1376 init_timer(&tbl->proxy_timer);
1377 tbl->proxy_timer.data = (unsigned long)tbl;
1378 tbl->proxy_timer.function = neigh_proxy_process;
1379 skb_queue_head_init(&tbl->proxy_queue);
1381 tbl->last_flush = now;
1382 tbl->last_rand = now + tbl->parms.reachable_time * 20;
1385 void neigh_table_init(struct neigh_table *tbl)
1387 struct neigh_table *tmp;
1389 neigh_table_init_no_netlink(tbl);
1390 write_lock(&neigh_tbl_lock);
1391 for (tmp = neigh_tables; tmp; tmp = tmp->next) {
1392 if (tmp->family == tbl->family)
1393 break;
1395 tbl->next = neigh_tables;
1396 neigh_tables = tbl;
1397 write_unlock(&neigh_tbl_lock);
1399 if (unlikely(tmp)) {
1400 printk(KERN_ERR "NEIGH: Registering multiple tables for "
1401 "family %d\n", tbl->family);
1402 dump_stack();
1406 int neigh_table_clear(struct neigh_table *tbl)
1408 struct neigh_table **tp;
1410 /* It is not clean... Fix it to unload IPv6 module safely */
1411 del_timer_sync(&tbl->gc_timer);
1412 del_timer_sync(&tbl->proxy_timer);
1413 pneigh_queue_purge(&tbl->proxy_queue);
1414 neigh_ifdown(tbl, NULL);
1415 if (atomic_read(&tbl->entries))
1416 printk(KERN_CRIT "neighbour leakage\n");
1417 write_lock(&neigh_tbl_lock);
1418 for (tp = &neigh_tables; *tp; tp = &(*tp)->next) {
1419 if (*tp == tbl) {
1420 *tp = tbl->next;
1421 break;
1424 write_unlock(&neigh_tbl_lock);
1426 neigh_hash_free(tbl->hash_buckets, tbl->hash_mask + 1);
1427 tbl->hash_buckets = NULL;
1429 kfree(tbl->phash_buckets);
1430 tbl->phash_buckets = NULL;
1432 free_percpu(tbl->stats);
1433 tbl->stats = NULL;
1435 return 0;
1438 int neigh_delete(struct sk_buff *skb, struct nlmsghdr *nlh, void *arg)
1440 struct ndmsg *ndm;
1441 struct nlattr *dst_attr;
1442 struct neigh_table *tbl;
1443 struct net_device *dev = NULL;
1444 int err = -EINVAL;
1446 if (nlmsg_len(nlh) < sizeof(*ndm))
1447 goto out;
1449 dst_attr = nlmsg_find_attr(nlh, sizeof(*ndm), NDA_DST);
1450 if (dst_attr == NULL)
1451 goto out;
1453 ndm = nlmsg_data(nlh);
1454 if (ndm->ndm_ifindex) {
1455 dev = dev_get_by_index(ndm->ndm_ifindex);
1456 if (dev == NULL) {
1457 err = -ENODEV;
1458 goto out;
1462 read_lock(&neigh_tbl_lock);
1463 for (tbl = neigh_tables; tbl; tbl = tbl->next) {
1464 struct neighbour *neigh;
1466 if (tbl->family != ndm->ndm_family)
1467 continue;
1468 read_unlock(&neigh_tbl_lock);
1470 if (nla_len(dst_attr) < tbl->key_len)
1471 goto out_dev_put;
1473 if (ndm->ndm_flags & NTF_PROXY) {
1474 err = pneigh_delete(tbl, nla_data(dst_attr), dev);
1475 goto out_dev_put;
1478 if (dev == NULL)
1479 goto out_dev_put;
1481 neigh = neigh_lookup(tbl, nla_data(dst_attr), dev);
1482 if (neigh == NULL) {
1483 err = -ENOENT;
1484 goto out_dev_put;
1487 err = neigh_update(neigh, NULL, NUD_FAILED,
1488 NEIGH_UPDATE_F_OVERRIDE |
1489 NEIGH_UPDATE_F_ADMIN);
1490 neigh_release(neigh);
1491 goto out_dev_put;
1493 read_unlock(&neigh_tbl_lock);
1494 err = -EAFNOSUPPORT;
1496 out_dev_put:
1497 if (dev)
1498 dev_put(dev);
1499 out:
1500 return err;
1503 int neigh_add(struct sk_buff *skb, struct nlmsghdr *nlh, void *arg)
1505 struct ndmsg *ndm;
1506 struct nlattr *tb[NDA_MAX+1];
1507 struct neigh_table *tbl;
1508 struct net_device *dev = NULL;
1509 int err;
1511 err = nlmsg_parse(nlh, sizeof(*ndm), tb, NDA_MAX, NULL);
1512 if (err < 0)
1513 goto out;
1515 err = -EINVAL;
1516 if (tb[NDA_DST] == NULL)
1517 goto out;
1519 ndm = nlmsg_data(nlh);
1520 if (ndm->ndm_ifindex) {
1521 dev = dev_get_by_index(ndm->ndm_ifindex);
1522 if (dev == NULL) {
1523 err = -ENODEV;
1524 goto out;
1527 if (tb[NDA_LLADDR] && nla_len(tb[NDA_LLADDR]) < dev->addr_len)
1528 goto out_dev_put;
1531 read_lock(&neigh_tbl_lock);
1532 for (tbl = neigh_tables; tbl; tbl = tbl->next) {
1533 int flags = NEIGH_UPDATE_F_ADMIN | NEIGH_UPDATE_F_OVERRIDE;
1534 struct neighbour *neigh;
1535 void *dst, *lladdr;
1537 if (tbl->family != ndm->ndm_family)
1538 continue;
1539 read_unlock(&neigh_tbl_lock);
1541 if (nla_len(tb[NDA_DST]) < tbl->key_len)
1542 goto out_dev_put;
1543 dst = nla_data(tb[NDA_DST]);
1544 lladdr = tb[NDA_LLADDR] ? nla_data(tb[NDA_LLADDR]) : NULL;
1546 if (ndm->ndm_flags & NTF_PROXY) {
1547 struct pneigh_entry *pn;
1549 err = -ENOBUFS;
1550 pn = pneigh_lookup(tbl, dst, dev, 1);
1551 if (pn) {
1552 pn->flags = ndm->ndm_flags;
1553 err = 0;
1555 goto out_dev_put;
1558 if (dev == NULL)
1559 goto out_dev_put;
1561 neigh = neigh_lookup(tbl, dst, dev);
1562 if (neigh == NULL) {
1563 if (!(nlh->nlmsg_flags & NLM_F_CREATE)) {
1564 err = -ENOENT;
1565 goto out_dev_put;
1568 neigh = __neigh_lookup_errno(tbl, dst, dev);
1569 if (IS_ERR(neigh)) {
1570 err = PTR_ERR(neigh);
1571 goto out_dev_put;
1573 } else {
1574 if (nlh->nlmsg_flags & NLM_F_EXCL) {
1575 err = -EEXIST;
1576 neigh_release(neigh);
1577 goto out_dev_put;
1580 if (!(nlh->nlmsg_flags & NLM_F_REPLACE))
1581 flags &= ~NEIGH_UPDATE_F_OVERRIDE;
1584 err = neigh_update(neigh, lladdr, ndm->ndm_state, flags);
1585 neigh_release(neigh);
1586 goto out_dev_put;
1589 read_unlock(&neigh_tbl_lock);
1590 err = -EAFNOSUPPORT;
1592 out_dev_put:
1593 if (dev)
1594 dev_put(dev);
1595 out:
1596 return err;
1599 static int neightbl_fill_parms(struct sk_buff *skb, struct neigh_parms *parms)
1601 struct nlattr *nest;
1603 nest = nla_nest_start(skb, NDTA_PARMS);
1604 if (nest == NULL)
1605 return -ENOBUFS;
1607 if (parms->dev)
1608 NLA_PUT_U32(skb, NDTPA_IFINDEX, parms->dev->ifindex);
1610 NLA_PUT_U32(skb, NDTPA_REFCNT, atomic_read(&parms->refcnt));
1611 NLA_PUT_U32(skb, NDTPA_QUEUE_LEN, parms->queue_len);
1612 NLA_PUT_U32(skb, NDTPA_PROXY_QLEN, parms->proxy_qlen);
1613 NLA_PUT_U32(skb, NDTPA_APP_PROBES, parms->app_probes);
1614 NLA_PUT_U32(skb, NDTPA_UCAST_PROBES, parms->ucast_probes);
1615 NLA_PUT_U32(skb, NDTPA_MCAST_PROBES, parms->mcast_probes);
1616 NLA_PUT_MSECS(skb, NDTPA_REACHABLE_TIME, parms->reachable_time);
1617 NLA_PUT_MSECS(skb, NDTPA_BASE_REACHABLE_TIME,
1618 parms->base_reachable_time);
1619 NLA_PUT_MSECS(skb, NDTPA_GC_STALETIME, parms->gc_staletime);
1620 NLA_PUT_MSECS(skb, NDTPA_DELAY_PROBE_TIME, parms->delay_probe_time);
1621 NLA_PUT_MSECS(skb, NDTPA_RETRANS_TIME, parms->retrans_time);
1622 NLA_PUT_MSECS(skb, NDTPA_ANYCAST_DELAY, parms->anycast_delay);
1623 NLA_PUT_MSECS(skb, NDTPA_PROXY_DELAY, parms->proxy_delay);
1624 NLA_PUT_MSECS(skb, NDTPA_LOCKTIME, parms->locktime);
1626 return nla_nest_end(skb, nest);
1628 nla_put_failure:
1629 return nla_nest_cancel(skb, nest);
1632 static int neightbl_fill_info(struct sk_buff *skb, struct neigh_table *tbl,
1633 u32 pid, u32 seq, int type, int flags)
1635 struct nlmsghdr *nlh;
1636 struct ndtmsg *ndtmsg;
1638 nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndtmsg), flags);
1639 if (nlh == NULL)
1640 return -ENOBUFS;
1642 ndtmsg = nlmsg_data(nlh);
1644 read_lock_bh(&tbl->lock);
1645 ndtmsg->ndtm_family = tbl->family;
1646 ndtmsg->ndtm_pad1 = 0;
1647 ndtmsg->ndtm_pad2 = 0;
1649 NLA_PUT_STRING(skb, NDTA_NAME, tbl->id);
1650 NLA_PUT_MSECS(skb, NDTA_GC_INTERVAL, tbl->gc_interval);
1651 NLA_PUT_U32(skb, NDTA_THRESH1, tbl->gc_thresh1);
1652 NLA_PUT_U32(skb, NDTA_THRESH2, tbl->gc_thresh2);
1653 NLA_PUT_U32(skb, NDTA_THRESH3, tbl->gc_thresh3);
1656 unsigned long now = jiffies;
1657 unsigned int flush_delta = now - tbl->last_flush;
1658 unsigned int rand_delta = now - tbl->last_rand;
1660 struct ndt_config ndc = {
1661 .ndtc_key_len = tbl->key_len,
1662 .ndtc_entry_size = tbl->entry_size,
1663 .ndtc_entries = atomic_read(&tbl->entries),
1664 .ndtc_last_flush = jiffies_to_msecs(flush_delta),
1665 .ndtc_last_rand = jiffies_to_msecs(rand_delta),
1666 .ndtc_hash_rnd = tbl->hash_rnd,
1667 .ndtc_hash_mask = tbl->hash_mask,
1668 .ndtc_hash_chain_gc = tbl->hash_chain_gc,
1669 .ndtc_proxy_qlen = tbl->proxy_queue.qlen,
1672 NLA_PUT(skb, NDTA_CONFIG, sizeof(ndc), &ndc);
1676 int cpu;
1677 struct ndt_stats ndst;
1679 memset(&ndst, 0, sizeof(ndst));
1681 for_each_possible_cpu(cpu) {
1682 struct neigh_statistics *st;
1684 st = per_cpu_ptr(tbl->stats, cpu);
1685 ndst.ndts_allocs += st->allocs;
1686 ndst.ndts_destroys += st->destroys;
1687 ndst.ndts_hash_grows += st->hash_grows;
1688 ndst.ndts_res_failed += st->res_failed;
1689 ndst.ndts_lookups += st->lookups;
1690 ndst.ndts_hits += st->hits;
1691 ndst.ndts_rcv_probes_mcast += st->rcv_probes_mcast;
1692 ndst.ndts_rcv_probes_ucast += st->rcv_probes_ucast;
1693 ndst.ndts_periodic_gc_runs += st->periodic_gc_runs;
1694 ndst.ndts_forced_gc_runs += st->forced_gc_runs;
1697 NLA_PUT(skb, NDTA_STATS, sizeof(ndst), &ndst);
1700 BUG_ON(tbl->parms.dev);
1701 if (neightbl_fill_parms(skb, &tbl->parms) < 0)
1702 goto nla_put_failure;
1704 read_unlock_bh(&tbl->lock);
1705 return nlmsg_end(skb, nlh);
1707 nla_put_failure:
1708 read_unlock_bh(&tbl->lock);
1709 return nlmsg_cancel(skb, nlh);
1712 static int neightbl_fill_param_info(struct sk_buff *skb,
1713 struct neigh_table *tbl,
1714 struct neigh_parms *parms,
1715 u32 pid, u32 seq, int type,
1716 unsigned int flags)
1718 struct ndtmsg *ndtmsg;
1719 struct nlmsghdr *nlh;
1721 nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndtmsg), flags);
1722 if (nlh == NULL)
1723 return -ENOBUFS;
1725 ndtmsg = nlmsg_data(nlh);
1727 read_lock_bh(&tbl->lock);
1728 ndtmsg->ndtm_family = tbl->family;
1729 ndtmsg->ndtm_pad1 = 0;
1730 ndtmsg->ndtm_pad2 = 0;
1732 if (nla_put_string(skb, NDTA_NAME, tbl->id) < 0 ||
1733 neightbl_fill_parms(skb, parms) < 0)
1734 goto errout;
1736 read_unlock_bh(&tbl->lock);
1737 return nlmsg_end(skb, nlh);
1738 errout:
1739 read_unlock_bh(&tbl->lock);
1740 return nlmsg_cancel(skb, nlh);
1743 static inline struct neigh_parms *lookup_neigh_params(struct neigh_table *tbl,
1744 int ifindex)
1746 struct neigh_parms *p;
1748 for (p = &tbl->parms; p; p = p->next)
1749 if ((p->dev && p->dev->ifindex == ifindex) ||
1750 (!p->dev && !ifindex))
1751 return p;
1753 return NULL;
1756 static struct nla_policy nl_neightbl_policy[NDTA_MAX+1] __read_mostly = {
1757 [NDTA_NAME] = { .type = NLA_STRING },
1758 [NDTA_THRESH1] = { .type = NLA_U32 },
1759 [NDTA_THRESH2] = { .type = NLA_U32 },
1760 [NDTA_THRESH3] = { .type = NLA_U32 },
1761 [NDTA_GC_INTERVAL] = { .type = NLA_U64 },
1762 [NDTA_PARMS] = { .type = NLA_NESTED },
1765 static struct nla_policy nl_ntbl_parm_policy[NDTPA_MAX+1] __read_mostly = {
1766 [NDTPA_IFINDEX] = { .type = NLA_U32 },
1767 [NDTPA_QUEUE_LEN] = { .type = NLA_U32 },
1768 [NDTPA_PROXY_QLEN] = { .type = NLA_U32 },
1769 [NDTPA_APP_PROBES] = { .type = NLA_U32 },
1770 [NDTPA_UCAST_PROBES] = { .type = NLA_U32 },
1771 [NDTPA_MCAST_PROBES] = { .type = NLA_U32 },
1772 [NDTPA_BASE_REACHABLE_TIME] = { .type = NLA_U64 },
1773 [NDTPA_GC_STALETIME] = { .type = NLA_U64 },
1774 [NDTPA_DELAY_PROBE_TIME] = { .type = NLA_U64 },
1775 [NDTPA_RETRANS_TIME] = { .type = NLA_U64 },
1776 [NDTPA_ANYCAST_DELAY] = { .type = NLA_U64 },
1777 [NDTPA_PROXY_DELAY] = { .type = NLA_U64 },
1778 [NDTPA_LOCKTIME] = { .type = NLA_U64 },
1781 int neightbl_set(struct sk_buff *skb, struct nlmsghdr *nlh, void *arg)
1783 struct neigh_table *tbl;
1784 struct ndtmsg *ndtmsg;
1785 struct nlattr *tb[NDTA_MAX+1];
1786 int err;
1788 err = nlmsg_parse(nlh, sizeof(*ndtmsg), tb, NDTA_MAX,
1789 nl_neightbl_policy);
1790 if (err < 0)
1791 goto errout;
1793 if (tb[NDTA_NAME] == NULL) {
1794 err = -EINVAL;
1795 goto errout;
1798 ndtmsg = nlmsg_data(nlh);
1799 read_lock(&neigh_tbl_lock);
1800 for (tbl = neigh_tables; tbl; tbl = tbl->next) {
1801 if (ndtmsg->ndtm_family && tbl->family != ndtmsg->ndtm_family)
1802 continue;
1804 if (nla_strcmp(tb[NDTA_NAME], tbl->id) == 0)
1805 break;
1808 if (tbl == NULL) {
1809 err = -ENOENT;
1810 goto errout_locked;
1814 * We acquire tbl->lock to be nice to the periodic timers and
1815 * make sure they always see a consistent set of values.
1817 write_lock_bh(&tbl->lock);
1819 if (tb[NDTA_PARMS]) {
1820 struct nlattr *tbp[NDTPA_MAX+1];
1821 struct neigh_parms *p;
1822 int i, ifindex = 0;
1824 err = nla_parse_nested(tbp, NDTPA_MAX, tb[NDTA_PARMS],
1825 nl_ntbl_parm_policy);
1826 if (err < 0)
1827 goto errout_tbl_lock;
1829 if (tbp[NDTPA_IFINDEX])
1830 ifindex = nla_get_u32(tbp[NDTPA_IFINDEX]);
1832 p = lookup_neigh_params(tbl, ifindex);
1833 if (p == NULL) {
1834 err = -ENOENT;
1835 goto errout_tbl_lock;
1838 for (i = 1; i <= NDTPA_MAX; i++) {
1839 if (tbp[i] == NULL)
1840 continue;
1842 switch (i) {
1843 case NDTPA_QUEUE_LEN:
1844 p->queue_len = nla_get_u32(tbp[i]);
1845 break;
1846 case NDTPA_PROXY_QLEN:
1847 p->proxy_qlen = nla_get_u32(tbp[i]);
1848 break;
1849 case NDTPA_APP_PROBES:
1850 p->app_probes = nla_get_u32(tbp[i]);
1851 break;
1852 case NDTPA_UCAST_PROBES:
1853 p->ucast_probes = nla_get_u32(tbp[i]);
1854 break;
1855 case NDTPA_MCAST_PROBES:
1856 p->mcast_probes = nla_get_u32(tbp[i]);
1857 break;
1858 case NDTPA_BASE_REACHABLE_TIME:
1859 p->base_reachable_time = nla_get_msecs(tbp[i]);
1860 break;
1861 case NDTPA_GC_STALETIME:
1862 p->gc_staletime = nla_get_msecs(tbp[i]);
1863 break;
1864 case NDTPA_DELAY_PROBE_TIME:
1865 p->delay_probe_time = nla_get_msecs(tbp[i]);
1866 break;
1867 case NDTPA_RETRANS_TIME:
1868 p->retrans_time = nla_get_msecs(tbp[i]);
1869 break;
1870 case NDTPA_ANYCAST_DELAY:
1871 p->anycast_delay = nla_get_msecs(tbp[i]);
1872 break;
1873 case NDTPA_PROXY_DELAY:
1874 p->proxy_delay = nla_get_msecs(tbp[i]);
1875 break;
1876 case NDTPA_LOCKTIME:
1877 p->locktime = nla_get_msecs(tbp[i]);
1878 break;
1883 if (tb[NDTA_THRESH1])
1884 tbl->gc_thresh1 = nla_get_u32(tb[NDTA_THRESH1]);
1886 if (tb[NDTA_THRESH2])
1887 tbl->gc_thresh2 = nla_get_u32(tb[NDTA_THRESH2]);
1889 if (tb[NDTA_THRESH3])
1890 tbl->gc_thresh3 = nla_get_u32(tb[NDTA_THRESH3]);
1892 if (tb[NDTA_GC_INTERVAL])
1893 tbl->gc_interval = nla_get_msecs(tb[NDTA_GC_INTERVAL]);
1895 err = 0;
1897 errout_tbl_lock:
1898 write_unlock_bh(&tbl->lock);
1899 errout_locked:
1900 read_unlock(&neigh_tbl_lock);
1901 errout:
1902 return err;
1905 int neightbl_dump_info(struct sk_buff *skb, struct netlink_callback *cb)
1907 int family, tidx, nidx = 0;
1908 int tbl_skip = cb->args[0];
1909 int neigh_skip = cb->args[1];
1910 struct neigh_table *tbl;
1912 family = ((struct rtgenmsg *) nlmsg_data(cb->nlh))->rtgen_family;
1914 read_lock(&neigh_tbl_lock);
1915 for (tbl = neigh_tables, tidx = 0; tbl; tbl = tbl->next, tidx++) {
1916 struct neigh_parms *p;
1918 if (tidx < tbl_skip || (family && tbl->family != family))
1919 continue;
1921 if (neightbl_fill_info(skb, tbl, NETLINK_CB(cb->skb).pid,
1922 cb->nlh->nlmsg_seq, RTM_NEWNEIGHTBL,
1923 NLM_F_MULTI) <= 0)
1924 break;
1926 for (nidx = 0, p = tbl->parms.next; p; p = p->next, nidx++) {
1927 if (nidx < neigh_skip)
1928 continue;
1930 if (neightbl_fill_param_info(skb, tbl, p,
1931 NETLINK_CB(cb->skb).pid,
1932 cb->nlh->nlmsg_seq,
1933 RTM_NEWNEIGHTBL,
1934 NLM_F_MULTI) <= 0)
1935 goto out;
1938 neigh_skip = 0;
1940 out:
1941 read_unlock(&neigh_tbl_lock);
1942 cb->args[0] = tidx;
1943 cb->args[1] = nidx;
1945 return skb->len;
1948 static int neigh_fill_info(struct sk_buff *skb, struct neighbour *neigh,
1949 u32 pid, u32 seq, int type, unsigned int flags)
1951 unsigned long now = jiffies;
1952 struct nda_cacheinfo ci;
1953 struct nlmsghdr *nlh;
1954 struct ndmsg *ndm;
1956 nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndm), flags);
1957 if (nlh == NULL)
1958 return -ENOBUFS;
1960 ndm = nlmsg_data(nlh);
1961 ndm->ndm_family = neigh->ops->family;
1962 ndm->ndm_pad1 = 0;
1963 ndm->ndm_pad2 = 0;
1964 ndm->ndm_flags = neigh->flags;
1965 ndm->ndm_type = neigh->type;
1966 ndm->ndm_ifindex = neigh->dev->ifindex;
1968 NLA_PUT(skb, NDA_DST, neigh->tbl->key_len, neigh->primary_key);
1970 read_lock_bh(&neigh->lock);
1971 ndm->ndm_state = neigh->nud_state;
1972 if ((neigh->nud_state & NUD_VALID) &&
1973 nla_put(skb, NDA_LLADDR, neigh->dev->addr_len, neigh->ha) < 0) {
1974 read_unlock_bh(&neigh->lock);
1975 goto nla_put_failure;
1978 ci.ndm_used = now - neigh->used;
1979 ci.ndm_confirmed = now - neigh->confirmed;
1980 ci.ndm_updated = now - neigh->updated;
1981 ci.ndm_refcnt = atomic_read(&neigh->refcnt) - 1;
1982 read_unlock_bh(&neigh->lock);
1984 NLA_PUT_U32(skb, NDA_PROBES, atomic_read(&neigh->probes));
1985 NLA_PUT(skb, NDA_CACHEINFO, sizeof(ci), &ci);
1987 return nlmsg_end(skb, nlh);
1989 nla_put_failure:
1990 return nlmsg_cancel(skb, nlh);
1994 static int neigh_dump_table(struct neigh_table *tbl, struct sk_buff *skb,
1995 struct netlink_callback *cb)
1997 struct neighbour *n;
1998 int rc, h, s_h = cb->args[1];
1999 int idx, s_idx = idx = cb->args[2];
2001 read_lock_bh(&tbl->lock);
2002 for (h = 0; h <= tbl->hash_mask; h++) {
2003 if (h < s_h)
2004 continue;
2005 if (h > s_h)
2006 s_idx = 0;
2007 for (n = tbl->hash_buckets[h], idx = 0; n; n = n->next, idx++) {
2008 if (idx < s_idx)
2009 continue;
2010 if (neigh_fill_info(skb, n, NETLINK_CB(cb->skb).pid,
2011 cb->nlh->nlmsg_seq,
2012 RTM_NEWNEIGH,
2013 NLM_F_MULTI) <= 0) {
2014 read_unlock_bh(&tbl->lock);
2015 rc = -1;
2016 goto out;
2020 read_unlock_bh(&tbl->lock);
2021 rc = skb->len;
2022 out:
2023 cb->args[1] = h;
2024 cb->args[2] = idx;
2025 return rc;
2028 int neigh_dump_info(struct sk_buff *skb, struct netlink_callback *cb)
2030 struct neigh_table *tbl;
2031 int t, family, s_t;
2033 read_lock(&neigh_tbl_lock);
2034 family = ((struct rtgenmsg *) nlmsg_data(cb->nlh))->rtgen_family;
2035 s_t = cb->args[0];
2037 for (tbl = neigh_tables, t = 0; tbl; tbl = tbl->next, t++) {
2038 if (t < s_t || (family && tbl->family != family))
2039 continue;
2040 if (t > s_t)
2041 memset(&cb->args[1], 0, sizeof(cb->args) -
2042 sizeof(cb->args[0]));
2043 if (neigh_dump_table(tbl, skb, cb) < 0)
2044 break;
2046 read_unlock(&neigh_tbl_lock);
2048 cb->args[0] = t;
2049 return skb->len;
2052 void neigh_for_each(struct neigh_table *tbl, void (*cb)(struct neighbour *, void *), void *cookie)
2054 int chain;
2056 read_lock_bh(&tbl->lock);
2057 for (chain = 0; chain <= tbl->hash_mask; chain++) {
2058 struct neighbour *n;
2060 for (n = tbl->hash_buckets[chain]; n; n = n->next)
2061 cb(n, cookie);
2063 read_unlock_bh(&tbl->lock);
2065 EXPORT_SYMBOL(neigh_for_each);
2067 /* The tbl->lock must be held as a writer and BH disabled. */
2068 void __neigh_for_each_release(struct neigh_table *tbl,
2069 int (*cb)(struct neighbour *))
2071 int chain;
2073 for (chain = 0; chain <= tbl->hash_mask; chain++) {
2074 struct neighbour *n, **np;
2076 np = &tbl->hash_buckets[chain];
2077 while ((n = *np) != NULL) {
2078 int release;
2080 write_lock(&n->lock);
2081 release = cb(n);
2082 if (release) {
2083 *np = n->next;
2084 n->dead = 1;
2085 } else
2086 np = &n->next;
2087 write_unlock(&n->lock);
2088 if (release)
2089 neigh_release(n);
2093 EXPORT_SYMBOL(__neigh_for_each_release);
2095 #ifdef CONFIG_PROC_FS
2097 static struct neighbour *neigh_get_first(struct seq_file *seq)
2099 struct neigh_seq_state *state = seq->private;
2100 struct neigh_table *tbl = state->tbl;
2101 struct neighbour *n = NULL;
2102 int bucket = state->bucket;
2104 state->flags &= ~NEIGH_SEQ_IS_PNEIGH;
2105 for (bucket = 0; bucket <= tbl->hash_mask; bucket++) {
2106 n = tbl->hash_buckets[bucket];
2108 while (n) {
2109 if (state->neigh_sub_iter) {
2110 loff_t fakep = 0;
2111 void *v;
2113 v = state->neigh_sub_iter(state, n, &fakep);
2114 if (!v)
2115 goto next;
2117 if (!(state->flags & NEIGH_SEQ_SKIP_NOARP))
2118 break;
2119 if (n->nud_state & ~NUD_NOARP)
2120 break;
2121 next:
2122 n = n->next;
2125 if (n)
2126 break;
2128 state->bucket = bucket;
2130 return n;
2133 static struct neighbour *neigh_get_next(struct seq_file *seq,
2134 struct neighbour *n,
2135 loff_t *pos)
2137 struct neigh_seq_state *state = seq->private;
2138 struct neigh_table *tbl = state->tbl;
2140 if (state->neigh_sub_iter) {
2141 void *v = state->neigh_sub_iter(state, n, pos);
2142 if (v)
2143 return n;
2145 n = n->next;
2147 while (1) {
2148 while (n) {
2149 if (state->neigh_sub_iter) {
2150 void *v = state->neigh_sub_iter(state, n, pos);
2151 if (v)
2152 return n;
2153 goto next;
2155 if (!(state->flags & NEIGH_SEQ_SKIP_NOARP))
2156 break;
2158 if (n->nud_state & ~NUD_NOARP)
2159 break;
2160 next:
2161 n = n->next;
2164 if (n)
2165 break;
2167 if (++state->bucket > tbl->hash_mask)
2168 break;
2170 n = tbl->hash_buckets[state->bucket];
2173 if (n && pos)
2174 --(*pos);
2175 return n;
2178 static struct neighbour *neigh_get_idx(struct seq_file *seq, loff_t *pos)
2180 struct neighbour *n = neigh_get_first(seq);
2182 if (n) {
2183 while (*pos) {
2184 n = neigh_get_next(seq, n, pos);
2185 if (!n)
2186 break;
2189 return *pos ? NULL : n;
2192 static struct pneigh_entry *pneigh_get_first(struct seq_file *seq)
2194 struct neigh_seq_state *state = seq->private;
2195 struct neigh_table *tbl = state->tbl;
2196 struct pneigh_entry *pn = NULL;
2197 int bucket = state->bucket;
2199 state->flags |= NEIGH_SEQ_IS_PNEIGH;
2200 for (bucket = 0; bucket <= PNEIGH_HASHMASK; bucket++) {
2201 pn = tbl->phash_buckets[bucket];
2202 if (pn)
2203 break;
2205 state->bucket = bucket;
2207 return pn;
2210 static struct pneigh_entry *pneigh_get_next(struct seq_file *seq,
2211 struct pneigh_entry *pn,
2212 loff_t *pos)
2214 struct neigh_seq_state *state = seq->private;
2215 struct neigh_table *tbl = state->tbl;
2217 pn = pn->next;
2218 while (!pn) {
2219 if (++state->bucket > PNEIGH_HASHMASK)
2220 break;
2221 pn = tbl->phash_buckets[state->bucket];
2222 if (pn)
2223 break;
2226 if (pn && pos)
2227 --(*pos);
2229 return pn;
2232 static struct pneigh_entry *pneigh_get_idx(struct seq_file *seq, loff_t *pos)
2234 struct pneigh_entry *pn = pneigh_get_first(seq);
2236 if (pn) {
2237 while (*pos) {
2238 pn = pneigh_get_next(seq, pn, pos);
2239 if (!pn)
2240 break;
2243 return *pos ? NULL : pn;
2246 static void *neigh_get_idx_any(struct seq_file *seq, loff_t *pos)
2248 struct neigh_seq_state *state = seq->private;
2249 void *rc;
2251 rc = neigh_get_idx(seq, pos);
2252 if (!rc && !(state->flags & NEIGH_SEQ_NEIGH_ONLY))
2253 rc = pneigh_get_idx(seq, pos);
2255 return rc;
2258 void *neigh_seq_start(struct seq_file *seq, loff_t *pos, struct neigh_table *tbl, unsigned int neigh_seq_flags)
2260 struct neigh_seq_state *state = seq->private;
2261 loff_t pos_minus_one;
2263 state->tbl = tbl;
2264 state->bucket = 0;
2265 state->flags = (neigh_seq_flags & ~NEIGH_SEQ_IS_PNEIGH);
2267 read_lock_bh(&tbl->lock);
2269 pos_minus_one = *pos - 1;
2270 return *pos ? neigh_get_idx_any(seq, &pos_minus_one) : SEQ_START_TOKEN;
2272 EXPORT_SYMBOL(neigh_seq_start);
2274 void *neigh_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2276 struct neigh_seq_state *state;
2277 void *rc;
2279 if (v == SEQ_START_TOKEN) {
2280 rc = neigh_get_idx(seq, pos);
2281 goto out;
2284 state = seq->private;
2285 if (!(state->flags & NEIGH_SEQ_IS_PNEIGH)) {
2286 rc = neigh_get_next(seq, v, NULL);
2287 if (rc)
2288 goto out;
2289 if (!(state->flags & NEIGH_SEQ_NEIGH_ONLY))
2290 rc = pneigh_get_first(seq);
2291 } else {
2292 BUG_ON(state->flags & NEIGH_SEQ_NEIGH_ONLY);
2293 rc = pneigh_get_next(seq, v, NULL);
2295 out:
2296 ++(*pos);
2297 return rc;
2299 EXPORT_SYMBOL(neigh_seq_next);
2301 void neigh_seq_stop(struct seq_file *seq, void *v)
2303 struct neigh_seq_state *state = seq->private;
2304 struct neigh_table *tbl = state->tbl;
2306 read_unlock_bh(&tbl->lock);
2308 EXPORT_SYMBOL(neigh_seq_stop);
2310 /* statistics via seq_file */
2312 static void *neigh_stat_seq_start(struct seq_file *seq, loff_t *pos)
2314 struct proc_dir_entry *pde = seq->private;
2315 struct neigh_table *tbl = pde->data;
2316 int cpu;
2318 if (*pos == 0)
2319 return SEQ_START_TOKEN;
2321 for (cpu = *pos-1; cpu < NR_CPUS; ++cpu) {
2322 if (!cpu_possible(cpu))
2323 continue;
2324 *pos = cpu+1;
2325 return per_cpu_ptr(tbl->stats, cpu);
2327 return NULL;
2330 static void *neigh_stat_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2332 struct proc_dir_entry *pde = seq->private;
2333 struct neigh_table *tbl = pde->data;
2334 int cpu;
2336 for (cpu = *pos; cpu < NR_CPUS; ++cpu) {
2337 if (!cpu_possible(cpu))
2338 continue;
2339 *pos = cpu+1;
2340 return per_cpu_ptr(tbl->stats, cpu);
2342 return NULL;
2345 static void neigh_stat_seq_stop(struct seq_file *seq, void *v)
2350 static int neigh_stat_seq_show(struct seq_file *seq, void *v)
2352 struct proc_dir_entry *pde = seq->private;
2353 struct neigh_table *tbl = pde->data;
2354 struct neigh_statistics *st = v;
2356 if (v == SEQ_START_TOKEN) {
2357 seq_printf(seq, "entries allocs destroys hash_grows lookups hits res_failed rcv_probes_mcast rcv_probes_ucast periodic_gc_runs forced_gc_runs\n");
2358 return 0;
2361 seq_printf(seq, "%08x %08lx %08lx %08lx %08lx %08lx %08lx "
2362 "%08lx %08lx %08lx %08lx\n",
2363 atomic_read(&tbl->entries),
2365 st->allocs,
2366 st->destroys,
2367 st->hash_grows,
2369 st->lookups,
2370 st->hits,
2372 st->res_failed,
2374 st->rcv_probes_mcast,
2375 st->rcv_probes_ucast,
2377 st->periodic_gc_runs,
2378 st->forced_gc_runs
2381 return 0;
2384 static struct seq_operations neigh_stat_seq_ops = {
2385 .start = neigh_stat_seq_start,
2386 .next = neigh_stat_seq_next,
2387 .stop = neigh_stat_seq_stop,
2388 .show = neigh_stat_seq_show,
2391 static int neigh_stat_seq_open(struct inode *inode, struct file *file)
2393 int ret = seq_open(file, &neigh_stat_seq_ops);
2395 if (!ret) {
2396 struct seq_file *sf = file->private_data;
2397 sf->private = PDE(inode);
2399 return ret;
2402 static struct file_operations neigh_stat_seq_fops = {
2403 .owner = THIS_MODULE,
2404 .open = neigh_stat_seq_open,
2405 .read = seq_read,
2406 .llseek = seq_lseek,
2407 .release = seq_release,
2410 #endif /* CONFIG_PROC_FS */
2412 #ifdef CONFIG_ARPD
2413 static void __neigh_notify(struct neighbour *n, int type, int flags)
2415 struct sk_buff *skb;
2416 int err = -ENOBUFS;
2418 skb = nlmsg_new(NLMSG_GOODSIZE, GFP_ATOMIC);
2419 if (skb == NULL)
2420 goto errout;
2422 err = neigh_fill_info(skb, n, 0, 0, type, flags);
2423 if (err < 0) {
2424 kfree_skb(skb);
2425 goto errout;
2428 err = rtnl_notify(skb, 0, RTNLGRP_NEIGH, NULL, GFP_ATOMIC);
2429 errout:
2430 if (err < 0)
2431 rtnl_set_sk_err(RTNLGRP_NEIGH, err);
2434 void neigh_app_ns(struct neighbour *n)
2436 __neigh_notify(n, RTM_GETNEIGH, NLM_F_REQUEST);
2439 static void neigh_app_notify(struct neighbour *n)
2441 __neigh_notify(n, RTM_NEWNEIGH, 0);
2444 #endif /* CONFIG_ARPD */
2446 #ifdef CONFIG_SYSCTL
2448 static struct neigh_sysctl_table {
2449 struct ctl_table_header *sysctl_header;
2450 ctl_table neigh_vars[__NET_NEIGH_MAX];
2451 ctl_table neigh_dev[2];
2452 ctl_table neigh_neigh_dir[2];
2453 ctl_table neigh_proto_dir[2];
2454 ctl_table neigh_root_dir[2];
2455 } neigh_sysctl_template __read_mostly = {
2456 .neigh_vars = {
2458 .ctl_name = NET_NEIGH_MCAST_SOLICIT,
2459 .procname = "mcast_solicit",
2460 .maxlen = sizeof(int),
2461 .mode = 0644,
2462 .proc_handler = &proc_dointvec,
2465 .ctl_name = NET_NEIGH_UCAST_SOLICIT,
2466 .procname = "ucast_solicit",
2467 .maxlen = sizeof(int),
2468 .mode = 0644,
2469 .proc_handler = &proc_dointvec,
2472 .ctl_name = NET_NEIGH_APP_SOLICIT,
2473 .procname = "app_solicit",
2474 .maxlen = sizeof(int),
2475 .mode = 0644,
2476 .proc_handler = &proc_dointvec,
2479 .ctl_name = NET_NEIGH_RETRANS_TIME,
2480 .procname = "retrans_time",
2481 .maxlen = sizeof(int),
2482 .mode = 0644,
2483 .proc_handler = &proc_dointvec_userhz_jiffies,
2486 .ctl_name = NET_NEIGH_REACHABLE_TIME,
2487 .procname = "base_reachable_time",
2488 .maxlen = sizeof(int),
2489 .mode = 0644,
2490 .proc_handler = &proc_dointvec_jiffies,
2491 .strategy = &sysctl_jiffies,
2494 .ctl_name = NET_NEIGH_DELAY_PROBE_TIME,
2495 .procname = "delay_first_probe_time",
2496 .maxlen = sizeof(int),
2497 .mode = 0644,
2498 .proc_handler = &proc_dointvec_jiffies,
2499 .strategy = &sysctl_jiffies,
2502 .ctl_name = NET_NEIGH_GC_STALE_TIME,
2503 .procname = "gc_stale_time",
2504 .maxlen = sizeof(int),
2505 .mode = 0644,
2506 .proc_handler = &proc_dointvec_jiffies,
2507 .strategy = &sysctl_jiffies,
2510 .ctl_name = NET_NEIGH_UNRES_QLEN,
2511 .procname = "unres_qlen",
2512 .maxlen = sizeof(int),
2513 .mode = 0644,
2514 .proc_handler = &proc_dointvec,
2517 .ctl_name = NET_NEIGH_PROXY_QLEN,
2518 .procname = "proxy_qlen",
2519 .maxlen = sizeof(int),
2520 .mode = 0644,
2521 .proc_handler = &proc_dointvec,
2524 .ctl_name = NET_NEIGH_ANYCAST_DELAY,
2525 .procname = "anycast_delay",
2526 .maxlen = sizeof(int),
2527 .mode = 0644,
2528 .proc_handler = &proc_dointvec_userhz_jiffies,
2531 .ctl_name = NET_NEIGH_PROXY_DELAY,
2532 .procname = "proxy_delay",
2533 .maxlen = sizeof(int),
2534 .mode = 0644,
2535 .proc_handler = &proc_dointvec_userhz_jiffies,
2538 .ctl_name = NET_NEIGH_LOCKTIME,
2539 .procname = "locktime",
2540 .maxlen = sizeof(int),
2541 .mode = 0644,
2542 .proc_handler = &proc_dointvec_userhz_jiffies,
2545 .ctl_name = NET_NEIGH_GC_INTERVAL,
2546 .procname = "gc_interval",
2547 .maxlen = sizeof(int),
2548 .mode = 0644,
2549 .proc_handler = &proc_dointvec_jiffies,
2550 .strategy = &sysctl_jiffies,
2553 .ctl_name = NET_NEIGH_GC_THRESH1,
2554 .procname = "gc_thresh1",
2555 .maxlen = sizeof(int),
2556 .mode = 0644,
2557 .proc_handler = &proc_dointvec,
2560 .ctl_name = NET_NEIGH_GC_THRESH2,
2561 .procname = "gc_thresh2",
2562 .maxlen = sizeof(int),
2563 .mode = 0644,
2564 .proc_handler = &proc_dointvec,
2567 .ctl_name = NET_NEIGH_GC_THRESH3,
2568 .procname = "gc_thresh3",
2569 .maxlen = sizeof(int),
2570 .mode = 0644,
2571 .proc_handler = &proc_dointvec,
2574 .ctl_name = NET_NEIGH_RETRANS_TIME_MS,
2575 .procname = "retrans_time_ms",
2576 .maxlen = sizeof(int),
2577 .mode = 0644,
2578 .proc_handler = &proc_dointvec_ms_jiffies,
2579 .strategy = &sysctl_ms_jiffies,
2582 .ctl_name = NET_NEIGH_REACHABLE_TIME_MS,
2583 .procname = "base_reachable_time_ms",
2584 .maxlen = sizeof(int),
2585 .mode = 0644,
2586 .proc_handler = &proc_dointvec_ms_jiffies,
2587 .strategy = &sysctl_ms_jiffies,
2590 .neigh_dev = {
2592 .ctl_name = NET_PROTO_CONF_DEFAULT,
2593 .procname = "default",
2594 .mode = 0555,
2597 .neigh_neigh_dir = {
2599 .procname = "neigh",
2600 .mode = 0555,
2603 .neigh_proto_dir = {
2605 .mode = 0555,
2608 .neigh_root_dir = {
2610 .ctl_name = CTL_NET,
2611 .procname = "net",
2612 .mode = 0555,
2617 int neigh_sysctl_register(struct net_device *dev, struct neigh_parms *p,
2618 int p_id, int pdev_id, char *p_name,
2619 proc_handler *handler, ctl_handler *strategy)
2621 struct neigh_sysctl_table *t = kmalloc(sizeof(*t), GFP_KERNEL);
2622 const char *dev_name_source = NULL;
2623 char *dev_name = NULL;
2624 int err = 0;
2626 if (!t)
2627 return -ENOBUFS;
2628 memcpy(t, &neigh_sysctl_template, sizeof(*t));
2629 t->neigh_vars[0].data = &p->mcast_probes;
2630 t->neigh_vars[1].data = &p->ucast_probes;
2631 t->neigh_vars[2].data = &p->app_probes;
2632 t->neigh_vars[3].data = &p->retrans_time;
2633 t->neigh_vars[4].data = &p->base_reachable_time;
2634 t->neigh_vars[5].data = &p->delay_probe_time;
2635 t->neigh_vars[6].data = &p->gc_staletime;
2636 t->neigh_vars[7].data = &p->queue_len;
2637 t->neigh_vars[8].data = &p->proxy_qlen;
2638 t->neigh_vars[9].data = &p->anycast_delay;
2639 t->neigh_vars[10].data = &p->proxy_delay;
2640 t->neigh_vars[11].data = &p->locktime;
2642 if (dev) {
2643 dev_name_source = dev->name;
2644 t->neigh_dev[0].ctl_name = dev->ifindex;
2645 t->neigh_vars[12].procname = NULL;
2646 t->neigh_vars[13].procname = NULL;
2647 t->neigh_vars[14].procname = NULL;
2648 t->neigh_vars[15].procname = NULL;
2649 } else {
2650 dev_name_source = t->neigh_dev[0].procname;
2651 t->neigh_vars[12].data = (int *)(p + 1);
2652 t->neigh_vars[13].data = (int *)(p + 1) + 1;
2653 t->neigh_vars[14].data = (int *)(p + 1) + 2;
2654 t->neigh_vars[15].data = (int *)(p + 1) + 3;
2657 t->neigh_vars[16].data = &p->retrans_time;
2658 t->neigh_vars[17].data = &p->base_reachable_time;
2660 if (handler || strategy) {
2661 /* RetransTime */
2662 t->neigh_vars[3].proc_handler = handler;
2663 t->neigh_vars[3].strategy = strategy;
2664 t->neigh_vars[3].extra1 = dev;
2665 /* ReachableTime */
2666 t->neigh_vars[4].proc_handler = handler;
2667 t->neigh_vars[4].strategy = strategy;
2668 t->neigh_vars[4].extra1 = dev;
2669 /* RetransTime (in milliseconds)*/
2670 t->neigh_vars[16].proc_handler = handler;
2671 t->neigh_vars[16].strategy = strategy;
2672 t->neigh_vars[16].extra1 = dev;
2673 /* ReachableTime (in milliseconds) */
2674 t->neigh_vars[17].proc_handler = handler;
2675 t->neigh_vars[17].strategy = strategy;
2676 t->neigh_vars[17].extra1 = dev;
2679 dev_name = kstrdup(dev_name_source, GFP_KERNEL);
2680 if (!dev_name) {
2681 err = -ENOBUFS;
2682 goto free;
2685 t->neigh_dev[0].procname = dev_name;
2687 t->neigh_neigh_dir[0].ctl_name = pdev_id;
2689 t->neigh_proto_dir[0].procname = p_name;
2690 t->neigh_proto_dir[0].ctl_name = p_id;
2692 t->neigh_dev[0].child = t->neigh_vars;
2693 t->neigh_neigh_dir[0].child = t->neigh_dev;
2694 t->neigh_proto_dir[0].child = t->neigh_neigh_dir;
2695 t->neigh_root_dir[0].child = t->neigh_proto_dir;
2697 t->sysctl_header = register_sysctl_table(t->neigh_root_dir, 0);
2698 if (!t->sysctl_header) {
2699 err = -ENOBUFS;
2700 goto free_procname;
2702 p->sysctl_table = t;
2703 return 0;
2705 /* error path */
2706 free_procname:
2707 kfree(dev_name);
2708 free:
2709 kfree(t);
2711 return err;
2714 void neigh_sysctl_unregister(struct neigh_parms *p)
2716 if (p->sysctl_table) {
2717 struct neigh_sysctl_table *t = p->sysctl_table;
2718 p->sysctl_table = NULL;
2719 unregister_sysctl_table(t->sysctl_header);
2720 kfree(t->neigh_dev[0].procname);
2721 kfree(t);
2725 #endif /* CONFIG_SYSCTL */
2727 EXPORT_SYMBOL(__neigh_event_send);
2728 EXPORT_SYMBOL(neigh_changeaddr);
2729 EXPORT_SYMBOL(neigh_compat_output);
2730 EXPORT_SYMBOL(neigh_connected_output);
2731 EXPORT_SYMBOL(neigh_create);
2732 EXPORT_SYMBOL(neigh_delete);
2733 EXPORT_SYMBOL(neigh_destroy);
2734 EXPORT_SYMBOL(neigh_dump_info);
2735 EXPORT_SYMBOL(neigh_event_ns);
2736 EXPORT_SYMBOL(neigh_ifdown);
2737 EXPORT_SYMBOL(neigh_lookup);
2738 EXPORT_SYMBOL(neigh_lookup_nodev);
2739 EXPORT_SYMBOL(neigh_parms_alloc);
2740 EXPORT_SYMBOL(neigh_parms_release);
2741 EXPORT_SYMBOL(neigh_rand_reach_time);
2742 EXPORT_SYMBOL(neigh_resolve_output);
2743 EXPORT_SYMBOL(neigh_table_clear);
2744 EXPORT_SYMBOL(neigh_table_init);
2745 EXPORT_SYMBOL(neigh_table_init_no_netlink);
2746 EXPORT_SYMBOL(neigh_update);
2747 EXPORT_SYMBOL(pneigh_enqueue);
2748 EXPORT_SYMBOL(pneigh_lookup);
2750 #ifdef CONFIG_ARPD
2751 EXPORT_SYMBOL(neigh_app_ns);
2752 #endif
2753 #ifdef CONFIG_SYSCTL
2754 EXPORT_SYMBOL(neigh_sysctl_register);
2755 EXPORT_SYMBOL(neigh_sysctl_unregister);
2756 #endif