Revert "x86: signal: change type of paramter for sys_rt_sigreturn()"
[linux-2.6/libata-dev.git] / drivers / net / e1000 / e1000_hw.c
blobe1a3fc1303ee9c52d7a3098f1b94e60b230ac210
1 /*******************************************************************************
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2006 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
29 /* e1000_hw.c
30 * Shared functions for accessing and configuring the MAC
34 #include "e1000_hw.h"
36 static s32 e1000_swfw_sync_acquire(struct e1000_hw *hw, u16 mask);
37 static void e1000_swfw_sync_release(struct e1000_hw *hw, u16 mask);
38 static s32 e1000_read_kmrn_reg(struct e1000_hw *hw, u32 reg_addr, u16 *data);
39 static s32 e1000_write_kmrn_reg(struct e1000_hw *hw, u32 reg_addr, u16 data);
40 static s32 e1000_get_software_semaphore(struct e1000_hw *hw);
41 static void e1000_release_software_semaphore(struct e1000_hw *hw);
43 static u8 e1000_arc_subsystem_valid(struct e1000_hw *hw);
44 static s32 e1000_check_downshift(struct e1000_hw *hw);
45 static s32 e1000_check_polarity(struct e1000_hw *hw,
46 e1000_rev_polarity *polarity);
47 static void e1000_clear_hw_cntrs(struct e1000_hw *hw);
48 static void e1000_clear_vfta(struct e1000_hw *hw);
49 static s32 e1000_commit_shadow_ram(struct e1000_hw *hw);
50 static s32 e1000_config_dsp_after_link_change(struct e1000_hw *hw,
51 bool link_up);
52 static s32 e1000_config_fc_after_link_up(struct e1000_hw *hw);
53 static s32 e1000_detect_gig_phy(struct e1000_hw *hw);
54 static s32 e1000_erase_ich8_4k_segment(struct e1000_hw *hw, u32 bank);
55 static s32 e1000_get_auto_rd_done(struct e1000_hw *hw);
56 static s32 e1000_get_cable_length(struct e1000_hw *hw, u16 *min_length,
57 u16 *max_length);
58 static s32 e1000_get_hw_eeprom_semaphore(struct e1000_hw *hw);
59 static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw);
60 static s32 e1000_get_software_flag(struct e1000_hw *hw);
61 static s32 e1000_ich8_cycle_init(struct e1000_hw *hw);
62 static s32 e1000_ich8_flash_cycle(struct e1000_hw *hw, u32 timeout);
63 static s32 e1000_id_led_init(struct e1000_hw *hw);
64 static s32 e1000_init_lcd_from_nvm_config_region(struct e1000_hw *hw,
65 u32 cnf_base_addr,
66 u32 cnf_size);
67 static s32 e1000_init_lcd_from_nvm(struct e1000_hw *hw);
68 static void e1000_init_rx_addrs(struct e1000_hw *hw);
69 static void e1000_initialize_hardware_bits(struct e1000_hw *hw);
70 static bool e1000_is_onboard_nvm_eeprom(struct e1000_hw *hw);
71 static s32 e1000_kumeran_lock_loss_workaround(struct e1000_hw *hw);
72 static s32 e1000_mng_enable_host_if(struct e1000_hw *hw);
73 static s32 e1000_mng_host_if_write(struct e1000_hw *hw, u8 *buffer, u16 length,
74 u16 offset, u8 *sum);
75 static s32 e1000_mng_write_cmd_header(struct e1000_hw* hw,
76 struct e1000_host_mng_command_header
77 *hdr);
78 static s32 e1000_mng_write_commit(struct e1000_hw *hw);
79 static s32 e1000_phy_ife_get_info(struct e1000_hw *hw,
80 struct e1000_phy_info *phy_info);
81 static s32 e1000_phy_igp_get_info(struct e1000_hw *hw,
82 struct e1000_phy_info *phy_info);
83 static s32 e1000_read_eeprom_eerd(struct e1000_hw *hw, u16 offset, u16 words,
84 u16 *data);
85 static s32 e1000_write_eeprom_eewr(struct e1000_hw *hw, u16 offset, u16 words,
86 u16 *data);
87 static s32 e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int eerd);
88 static s32 e1000_phy_m88_get_info(struct e1000_hw *hw,
89 struct e1000_phy_info *phy_info);
90 static void e1000_put_hw_eeprom_semaphore(struct e1000_hw *hw);
91 static s32 e1000_read_ich8_byte(struct e1000_hw *hw, u32 index, u8 *data);
92 static s32 e1000_verify_write_ich8_byte(struct e1000_hw *hw, u32 index,
93 u8 byte);
94 static s32 e1000_write_ich8_byte(struct e1000_hw *hw, u32 index, u8 byte);
95 static s32 e1000_read_ich8_word(struct e1000_hw *hw, u32 index, u16 *data);
96 static s32 e1000_read_ich8_data(struct e1000_hw *hw, u32 index, u32 size,
97 u16 *data);
98 static s32 e1000_write_ich8_data(struct e1000_hw *hw, u32 index, u32 size,
99 u16 data);
100 static s32 e1000_read_eeprom_ich8(struct e1000_hw *hw, u16 offset, u16 words,
101 u16 *data);
102 static s32 e1000_write_eeprom_ich8(struct e1000_hw *hw, u16 offset, u16 words,
103 u16 *data);
104 static void e1000_release_software_flag(struct e1000_hw *hw);
105 static s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active);
106 static s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active);
107 static s32 e1000_set_pci_ex_no_snoop(struct e1000_hw *hw, u32 no_snoop);
108 static void e1000_set_pci_express_master_disable(struct e1000_hw *hw);
109 static s32 e1000_wait_autoneg(struct e1000_hw *hw);
110 static void e1000_write_reg_io(struct e1000_hw *hw, u32 offset, u32 value);
111 static s32 e1000_set_phy_type(struct e1000_hw *hw);
112 static void e1000_phy_init_script(struct e1000_hw *hw);
113 static s32 e1000_setup_copper_link(struct e1000_hw *hw);
114 static s32 e1000_setup_fiber_serdes_link(struct e1000_hw *hw);
115 static s32 e1000_adjust_serdes_amplitude(struct e1000_hw *hw);
116 static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw);
117 static s32 e1000_config_mac_to_phy(struct e1000_hw *hw);
118 static void e1000_raise_mdi_clk(struct e1000_hw *hw, u32 *ctrl);
119 static void e1000_lower_mdi_clk(struct e1000_hw *hw, u32 *ctrl);
120 static void e1000_shift_out_mdi_bits(struct e1000_hw *hw, u32 data,
121 u16 count);
122 static u16 e1000_shift_in_mdi_bits(struct e1000_hw *hw);
123 static s32 e1000_phy_reset_dsp(struct e1000_hw *hw);
124 static s32 e1000_write_eeprom_spi(struct e1000_hw *hw, u16 offset,
125 u16 words, u16 *data);
126 static s32 e1000_write_eeprom_microwire(struct e1000_hw *hw, u16 offset,
127 u16 words, u16 *data);
128 static s32 e1000_spi_eeprom_ready(struct e1000_hw *hw);
129 static void e1000_raise_ee_clk(struct e1000_hw *hw, u32 *eecd);
130 static void e1000_lower_ee_clk(struct e1000_hw *hw, u32 *eecd);
131 static void e1000_shift_out_ee_bits(struct e1000_hw *hw, u16 data, u16 count);
132 static s32 e1000_write_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr,
133 u16 phy_data);
134 static s32 e1000_read_phy_reg_ex(struct e1000_hw *hw,u32 reg_addr,
135 u16 *phy_data);
136 static u16 e1000_shift_in_ee_bits(struct e1000_hw *hw, u16 count);
137 static s32 e1000_acquire_eeprom(struct e1000_hw *hw);
138 static void e1000_release_eeprom(struct e1000_hw *hw);
139 static void e1000_standby_eeprom(struct e1000_hw *hw);
140 static s32 e1000_set_vco_speed(struct e1000_hw *hw);
141 static s32 e1000_polarity_reversal_workaround(struct e1000_hw *hw);
142 static s32 e1000_set_phy_mode(struct e1000_hw *hw);
143 static s32 e1000_host_if_read_cookie(struct e1000_hw *hw, u8 *buffer);
144 static u8 e1000_calculate_mng_checksum(char *buffer, u32 length);
145 static s32 e1000_configure_kmrn_for_10_100(struct e1000_hw *hw, u16 duplex);
146 static s32 e1000_configure_kmrn_for_1000(struct e1000_hw *hw);
147 static s32 e1000_do_read_eeprom(struct e1000_hw *hw, u16 offset, u16 words, u16 *data);
148 static s32 e1000_do_write_eeprom(struct e1000_hw *hw, u16 offset, u16 words, u16 *data);
150 /* IGP cable length table */
151 static const
152 u16 e1000_igp_cable_length_table[IGP01E1000_AGC_LENGTH_TABLE_SIZE] =
153 { 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
154 5, 10, 10, 10, 10, 10, 10, 10, 20, 20, 20, 20, 20, 25, 25, 25,
155 25, 25, 25, 25, 30, 30, 30, 30, 40, 40, 40, 40, 40, 40, 40, 40,
156 40, 50, 50, 50, 50, 50, 50, 50, 60, 60, 60, 60, 60, 60, 60, 60,
157 60, 70, 70, 70, 70, 70, 70, 80, 80, 80, 80, 80, 80, 90, 90, 90,
158 90, 90, 90, 90, 90, 90, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100,
159 100, 100, 100, 100, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110,
160 110, 110, 110, 110, 110, 110, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120};
162 static const
163 u16 e1000_igp_2_cable_length_table[IGP02E1000_AGC_LENGTH_TABLE_SIZE] =
164 { 0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21,
165 0, 0, 0, 3, 6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41,
166 6, 10, 14, 18, 22, 26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61,
167 21, 26, 31, 35, 40, 44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82,
168 40, 45, 51, 56, 61, 66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104,
169 60, 66, 72, 77, 82, 87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121,
170 83, 89, 95, 100, 105, 109, 113, 116, 119, 122, 124,
171 104, 109, 114, 118, 121, 124};
173 static DEFINE_SPINLOCK(e1000_eeprom_lock);
175 /******************************************************************************
176 * Set the phy type member in the hw struct.
178 * hw - Struct containing variables accessed by shared code
179 *****************************************************************************/
180 static s32 e1000_set_phy_type(struct e1000_hw *hw)
182 DEBUGFUNC("e1000_set_phy_type");
184 if (hw->mac_type == e1000_undefined)
185 return -E1000_ERR_PHY_TYPE;
187 switch (hw->phy_id) {
188 case M88E1000_E_PHY_ID:
189 case M88E1000_I_PHY_ID:
190 case M88E1011_I_PHY_ID:
191 case M88E1111_I_PHY_ID:
192 hw->phy_type = e1000_phy_m88;
193 break;
194 case IGP01E1000_I_PHY_ID:
195 if (hw->mac_type == e1000_82541 ||
196 hw->mac_type == e1000_82541_rev_2 ||
197 hw->mac_type == e1000_82547 ||
198 hw->mac_type == e1000_82547_rev_2) {
199 hw->phy_type = e1000_phy_igp;
200 break;
202 case IGP03E1000_E_PHY_ID:
203 hw->phy_type = e1000_phy_igp_3;
204 break;
205 case IFE_E_PHY_ID:
206 case IFE_PLUS_E_PHY_ID:
207 case IFE_C_E_PHY_ID:
208 hw->phy_type = e1000_phy_ife;
209 break;
210 case GG82563_E_PHY_ID:
211 if (hw->mac_type == e1000_80003es2lan) {
212 hw->phy_type = e1000_phy_gg82563;
213 break;
215 /* Fall Through */
216 default:
217 /* Should never have loaded on this device */
218 hw->phy_type = e1000_phy_undefined;
219 return -E1000_ERR_PHY_TYPE;
222 return E1000_SUCCESS;
225 /******************************************************************************
226 * IGP phy init script - initializes the GbE PHY
228 * hw - Struct containing variables accessed by shared code
229 *****************************************************************************/
230 static void e1000_phy_init_script(struct e1000_hw *hw)
232 u32 ret_val;
233 u16 phy_saved_data;
235 DEBUGFUNC("e1000_phy_init_script");
237 if (hw->phy_init_script) {
238 msleep(20);
240 /* Save off the current value of register 0x2F5B to be restored at
241 * the end of this routine. */
242 ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
244 /* Disabled the PHY transmitter */
245 e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
247 msleep(20);
249 e1000_write_phy_reg(hw,0x0000,0x0140);
251 msleep(5);
253 switch (hw->mac_type) {
254 case e1000_82541:
255 case e1000_82547:
256 e1000_write_phy_reg(hw, 0x1F95, 0x0001);
258 e1000_write_phy_reg(hw, 0x1F71, 0xBD21);
260 e1000_write_phy_reg(hw, 0x1F79, 0x0018);
262 e1000_write_phy_reg(hw, 0x1F30, 0x1600);
264 e1000_write_phy_reg(hw, 0x1F31, 0x0014);
266 e1000_write_phy_reg(hw, 0x1F32, 0x161C);
268 e1000_write_phy_reg(hw, 0x1F94, 0x0003);
270 e1000_write_phy_reg(hw, 0x1F96, 0x003F);
272 e1000_write_phy_reg(hw, 0x2010, 0x0008);
273 break;
275 case e1000_82541_rev_2:
276 case e1000_82547_rev_2:
277 e1000_write_phy_reg(hw, 0x1F73, 0x0099);
278 break;
279 default:
280 break;
283 e1000_write_phy_reg(hw, 0x0000, 0x3300);
285 msleep(20);
287 /* Now enable the transmitter */
288 e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
290 if (hw->mac_type == e1000_82547) {
291 u16 fused, fine, coarse;
293 /* Move to analog registers page */
294 e1000_read_phy_reg(hw, IGP01E1000_ANALOG_SPARE_FUSE_STATUS, &fused);
296 if (!(fused & IGP01E1000_ANALOG_SPARE_FUSE_ENABLED)) {
297 e1000_read_phy_reg(hw, IGP01E1000_ANALOG_FUSE_STATUS, &fused);
299 fine = fused & IGP01E1000_ANALOG_FUSE_FINE_MASK;
300 coarse = fused & IGP01E1000_ANALOG_FUSE_COARSE_MASK;
302 if (coarse > IGP01E1000_ANALOG_FUSE_COARSE_THRESH) {
303 coarse -= IGP01E1000_ANALOG_FUSE_COARSE_10;
304 fine -= IGP01E1000_ANALOG_FUSE_FINE_1;
305 } else if (coarse == IGP01E1000_ANALOG_FUSE_COARSE_THRESH)
306 fine -= IGP01E1000_ANALOG_FUSE_FINE_10;
308 fused = (fused & IGP01E1000_ANALOG_FUSE_POLY_MASK) |
309 (fine & IGP01E1000_ANALOG_FUSE_FINE_MASK) |
310 (coarse & IGP01E1000_ANALOG_FUSE_COARSE_MASK);
312 e1000_write_phy_reg(hw, IGP01E1000_ANALOG_FUSE_CONTROL, fused);
313 e1000_write_phy_reg(hw, IGP01E1000_ANALOG_FUSE_BYPASS,
314 IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL);
320 /******************************************************************************
321 * Set the mac type member in the hw struct.
323 * hw - Struct containing variables accessed by shared code
324 *****************************************************************************/
325 s32 e1000_set_mac_type(struct e1000_hw *hw)
327 DEBUGFUNC("e1000_set_mac_type");
329 switch (hw->device_id) {
330 case E1000_DEV_ID_82542:
331 switch (hw->revision_id) {
332 case E1000_82542_2_0_REV_ID:
333 hw->mac_type = e1000_82542_rev2_0;
334 break;
335 case E1000_82542_2_1_REV_ID:
336 hw->mac_type = e1000_82542_rev2_1;
337 break;
338 default:
339 /* Invalid 82542 revision ID */
340 return -E1000_ERR_MAC_TYPE;
342 break;
343 case E1000_DEV_ID_82543GC_FIBER:
344 case E1000_DEV_ID_82543GC_COPPER:
345 hw->mac_type = e1000_82543;
346 break;
347 case E1000_DEV_ID_82544EI_COPPER:
348 case E1000_DEV_ID_82544EI_FIBER:
349 case E1000_DEV_ID_82544GC_COPPER:
350 case E1000_DEV_ID_82544GC_LOM:
351 hw->mac_type = e1000_82544;
352 break;
353 case E1000_DEV_ID_82540EM:
354 case E1000_DEV_ID_82540EM_LOM:
355 case E1000_DEV_ID_82540EP:
356 case E1000_DEV_ID_82540EP_LOM:
357 case E1000_DEV_ID_82540EP_LP:
358 hw->mac_type = e1000_82540;
359 break;
360 case E1000_DEV_ID_82545EM_COPPER:
361 case E1000_DEV_ID_82545EM_FIBER:
362 hw->mac_type = e1000_82545;
363 break;
364 case E1000_DEV_ID_82545GM_COPPER:
365 case E1000_DEV_ID_82545GM_FIBER:
366 case E1000_DEV_ID_82545GM_SERDES:
367 hw->mac_type = e1000_82545_rev_3;
368 break;
369 case E1000_DEV_ID_82546EB_COPPER:
370 case E1000_DEV_ID_82546EB_FIBER:
371 case E1000_DEV_ID_82546EB_QUAD_COPPER:
372 hw->mac_type = e1000_82546;
373 break;
374 case E1000_DEV_ID_82546GB_COPPER:
375 case E1000_DEV_ID_82546GB_FIBER:
376 case E1000_DEV_ID_82546GB_SERDES:
377 case E1000_DEV_ID_82546GB_PCIE:
378 case E1000_DEV_ID_82546GB_QUAD_COPPER:
379 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
380 hw->mac_type = e1000_82546_rev_3;
381 break;
382 case E1000_DEV_ID_82541EI:
383 case E1000_DEV_ID_82541EI_MOBILE:
384 case E1000_DEV_ID_82541ER_LOM:
385 hw->mac_type = e1000_82541;
386 break;
387 case E1000_DEV_ID_82541ER:
388 case E1000_DEV_ID_82541GI:
389 case E1000_DEV_ID_82541GI_LF:
390 case E1000_DEV_ID_82541GI_MOBILE:
391 hw->mac_type = e1000_82541_rev_2;
392 break;
393 case E1000_DEV_ID_82547EI:
394 case E1000_DEV_ID_82547EI_MOBILE:
395 hw->mac_type = e1000_82547;
396 break;
397 case E1000_DEV_ID_82547GI:
398 hw->mac_type = e1000_82547_rev_2;
399 break;
400 case E1000_DEV_ID_82571EB_COPPER:
401 case E1000_DEV_ID_82571EB_FIBER:
402 case E1000_DEV_ID_82571EB_SERDES:
403 case E1000_DEV_ID_82571EB_SERDES_DUAL:
404 case E1000_DEV_ID_82571EB_SERDES_QUAD:
405 case E1000_DEV_ID_82571EB_QUAD_COPPER:
406 case E1000_DEV_ID_82571PT_QUAD_COPPER:
407 case E1000_DEV_ID_82571EB_QUAD_FIBER:
408 case E1000_DEV_ID_82571EB_QUAD_COPPER_LOWPROFILE:
409 hw->mac_type = e1000_82571;
410 break;
411 case E1000_DEV_ID_82572EI_COPPER:
412 case E1000_DEV_ID_82572EI_FIBER:
413 case E1000_DEV_ID_82572EI_SERDES:
414 case E1000_DEV_ID_82572EI:
415 hw->mac_type = e1000_82572;
416 break;
417 case E1000_DEV_ID_82573E:
418 case E1000_DEV_ID_82573E_IAMT:
419 case E1000_DEV_ID_82573L:
420 hw->mac_type = e1000_82573;
421 break;
422 case E1000_DEV_ID_80003ES2LAN_COPPER_SPT:
423 case E1000_DEV_ID_80003ES2LAN_SERDES_SPT:
424 case E1000_DEV_ID_80003ES2LAN_COPPER_DPT:
425 case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
426 hw->mac_type = e1000_80003es2lan;
427 break;
428 case E1000_DEV_ID_ICH8_IGP_M_AMT:
429 case E1000_DEV_ID_ICH8_IGP_AMT:
430 case E1000_DEV_ID_ICH8_IGP_C:
431 case E1000_DEV_ID_ICH8_IFE:
432 case E1000_DEV_ID_ICH8_IFE_GT:
433 case E1000_DEV_ID_ICH8_IFE_G:
434 case E1000_DEV_ID_ICH8_IGP_M:
435 hw->mac_type = e1000_ich8lan;
436 break;
437 default:
438 /* Should never have loaded on this device */
439 return -E1000_ERR_MAC_TYPE;
442 switch (hw->mac_type) {
443 case e1000_ich8lan:
444 hw->swfwhw_semaphore_present = true;
445 hw->asf_firmware_present = true;
446 break;
447 case e1000_80003es2lan:
448 hw->swfw_sync_present = true;
449 /* fall through */
450 case e1000_82571:
451 case e1000_82572:
452 case e1000_82573:
453 hw->eeprom_semaphore_present = true;
454 /* fall through */
455 case e1000_82541:
456 case e1000_82547:
457 case e1000_82541_rev_2:
458 case e1000_82547_rev_2:
459 hw->asf_firmware_present = true;
460 break;
461 default:
462 break;
465 /* The 82543 chip does not count tx_carrier_errors properly in
466 * FD mode
468 if (hw->mac_type == e1000_82543)
469 hw->bad_tx_carr_stats_fd = true;
471 /* capable of receiving management packets to the host */
472 if (hw->mac_type >= e1000_82571)
473 hw->has_manc2h = true;
475 /* In rare occasions, ESB2 systems would end up started without
476 * the RX unit being turned on.
478 if (hw->mac_type == e1000_80003es2lan)
479 hw->rx_needs_kicking = true;
481 if (hw->mac_type > e1000_82544)
482 hw->has_smbus = true;
484 return E1000_SUCCESS;
487 /*****************************************************************************
488 * Set media type and TBI compatibility.
490 * hw - Struct containing variables accessed by shared code
491 * **************************************************************************/
492 void e1000_set_media_type(struct e1000_hw *hw)
494 u32 status;
496 DEBUGFUNC("e1000_set_media_type");
498 if (hw->mac_type != e1000_82543) {
499 /* tbi_compatibility is only valid on 82543 */
500 hw->tbi_compatibility_en = false;
503 switch (hw->device_id) {
504 case E1000_DEV_ID_82545GM_SERDES:
505 case E1000_DEV_ID_82546GB_SERDES:
506 case E1000_DEV_ID_82571EB_SERDES:
507 case E1000_DEV_ID_82571EB_SERDES_DUAL:
508 case E1000_DEV_ID_82571EB_SERDES_QUAD:
509 case E1000_DEV_ID_82572EI_SERDES:
510 case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
511 hw->media_type = e1000_media_type_internal_serdes;
512 break;
513 default:
514 switch (hw->mac_type) {
515 case e1000_82542_rev2_0:
516 case e1000_82542_rev2_1:
517 hw->media_type = e1000_media_type_fiber;
518 break;
519 case e1000_ich8lan:
520 case e1000_82573:
521 /* The STATUS_TBIMODE bit is reserved or reused for the this
522 * device.
524 hw->media_type = e1000_media_type_copper;
525 break;
526 default:
527 status = er32(STATUS);
528 if (status & E1000_STATUS_TBIMODE) {
529 hw->media_type = e1000_media_type_fiber;
530 /* tbi_compatibility not valid on fiber */
531 hw->tbi_compatibility_en = false;
532 } else {
533 hw->media_type = e1000_media_type_copper;
535 break;
540 /******************************************************************************
541 * Reset the transmit and receive units; mask and clear all interrupts.
543 * hw - Struct containing variables accessed by shared code
544 *****************************************************************************/
545 s32 e1000_reset_hw(struct e1000_hw *hw)
547 u32 ctrl;
548 u32 ctrl_ext;
549 u32 icr;
550 u32 manc;
551 u32 led_ctrl;
552 u32 timeout;
553 u32 extcnf_ctrl;
554 s32 ret_val;
556 DEBUGFUNC("e1000_reset_hw");
558 /* For 82542 (rev 2.0), disable MWI before issuing a device reset */
559 if (hw->mac_type == e1000_82542_rev2_0) {
560 DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
561 e1000_pci_clear_mwi(hw);
564 if (hw->bus_type == e1000_bus_type_pci_express) {
565 /* Prevent the PCI-E bus from sticking if there is no TLP connection
566 * on the last TLP read/write transaction when MAC is reset.
568 if (e1000_disable_pciex_master(hw) != E1000_SUCCESS) {
569 DEBUGOUT("PCI-E Master disable polling has failed.\n");
573 /* Clear interrupt mask to stop board from generating interrupts */
574 DEBUGOUT("Masking off all interrupts\n");
575 ew32(IMC, 0xffffffff);
577 /* Disable the Transmit and Receive units. Then delay to allow
578 * any pending transactions to complete before we hit the MAC with
579 * the global reset.
581 ew32(RCTL, 0);
582 ew32(TCTL, E1000_TCTL_PSP);
583 E1000_WRITE_FLUSH();
585 /* The tbi_compatibility_on Flag must be cleared when Rctl is cleared. */
586 hw->tbi_compatibility_on = false;
588 /* Delay to allow any outstanding PCI transactions to complete before
589 * resetting the device
591 msleep(10);
593 ctrl = er32(CTRL);
595 /* Must reset the PHY before resetting the MAC */
596 if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
597 ew32(CTRL, (ctrl | E1000_CTRL_PHY_RST));
598 msleep(5);
601 /* Must acquire the MDIO ownership before MAC reset.
602 * Ownership defaults to firmware after a reset. */
603 if (hw->mac_type == e1000_82573) {
604 timeout = 10;
606 extcnf_ctrl = er32(EXTCNF_CTRL);
607 extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
609 do {
610 ew32(EXTCNF_CTRL, extcnf_ctrl);
611 extcnf_ctrl = er32(EXTCNF_CTRL);
613 if (extcnf_ctrl & E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP)
614 break;
615 else
616 extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
618 msleep(2);
619 timeout--;
620 } while (timeout);
623 /* Workaround for ICH8 bit corruption issue in FIFO memory */
624 if (hw->mac_type == e1000_ich8lan) {
625 /* Set Tx and Rx buffer allocation to 8k apiece. */
626 ew32(PBA, E1000_PBA_8K);
627 /* Set Packet Buffer Size to 16k. */
628 ew32(PBS, E1000_PBS_16K);
631 /* Issue a global reset to the MAC. This will reset the chip's
632 * transmit, receive, DMA, and link units. It will not effect
633 * the current PCI configuration. The global reset bit is self-
634 * clearing, and should clear within a microsecond.
636 DEBUGOUT("Issuing a global reset to MAC\n");
638 switch (hw->mac_type) {
639 case e1000_82544:
640 case e1000_82540:
641 case e1000_82545:
642 case e1000_82546:
643 case e1000_82541:
644 case e1000_82541_rev_2:
645 /* These controllers can't ack the 64-bit write when issuing the
646 * reset, so use IO-mapping as a workaround to issue the reset */
647 E1000_WRITE_REG_IO(hw, CTRL, (ctrl | E1000_CTRL_RST));
648 break;
649 case e1000_82545_rev_3:
650 case e1000_82546_rev_3:
651 /* Reset is performed on a shadow of the control register */
652 ew32(CTRL_DUP, (ctrl | E1000_CTRL_RST));
653 break;
654 case e1000_ich8lan:
655 if (!hw->phy_reset_disable &&
656 e1000_check_phy_reset_block(hw) == E1000_SUCCESS) {
657 /* e1000_ich8lan PHY HW reset requires MAC CORE reset
658 * at the same time to make sure the interface between
659 * MAC and the external PHY is reset.
661 ctrl |= E1000_CTRL_PHY_RST;
664 e1000_get_software_flag(hw);
665 ew32(CTRL, (ctrl | E1000_CTRL_RST));
666 msleep(5);
667 break;
668 default:
669 ew32(CTRL, (ctrl | E1000_CTRL_RST));
670 break;
673 /* After MAC reset, force reload of EEPROM to restore power-on settings to
674 * device. Later controllers reload the EEPROM automatically, so just wait
675 * for reload to complete.
677 switch (hw->mac_type) {
678 case e1000_82542_rev2_0:
679 case e1000_82542_rev2_1:
680 case e1000_82543:
681 case e1000_82544:
682 /* Wait for reset to complete */
683 udelay(10);
684 ctrl_ext = er32(CTRL_EXT);
685 ctrl_ext |= E1000_CTRL_EXT_EE_RST;
686 ew32(CTRL_EXT, ctrl_ext);
687 E1000_WRITE_FLUSH();
688 /* Wait for EEPROM reload */
689 msleep(2);
690 break;
691 case e1000_82541:
692 case e1000_82541_rev_2:
693 case e1000_82547:
694 case e1000_82547_rev_2:
695 /* Wait for EEPROM reload */
696 msleep(20);
697 break;
698 case e1000_82573:
699 if (!e1000_is_onboard_nvm_eeprom(hw)) {
700 udelay(10);
701 ctrl_ext = er32(CTRL_EXT);
702 ctrl_ext |= E1000_CTRL_EXT_EE_RST;
703 ew32(CTRL_EXT, ctrl_ext);
704 E1000_WRITE_FLUSH();
706 /* fall through */
707 default:
708 /* Auto read done will delay 5ms or poll based on mac type */
709 ret_val = e1000_get_auto_rd_done(hw);
710 if (ret_val)
711 return ret_val;
712 break;
715 /* Disable HW ARPs on ASF enabled adapters */
716 if (hw->mac_type >= e1000_82540 && hw->mac_type <= e1000_82547_rev_2) {
717 manc = er32(MANC);
718 manc &= ~(E1000_MANC_ARP_EN);
719 ew32(MANC, manc);
722 if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
723 e1000_phy_init_script(hw);
725 /* Configure activity LED after PHY reset */
726 led_ctrl = er32(LEDCTL);
727 led_ctrl &= IGP_ACTIVITY_LED_MASK;
728 led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
729 ew32(LEDCTL, led_ctrl);
732 /* Clear interrupt mask to stop board from generating interrupts */
733 DEBUGOUT("Masking off all interrupts\n");
734 ew32(IMC, 0xffffffff);
736 /* Clear any pending interrupt events. */
737 icr = er32(ICR);
739 /* If MWI was previously enabled, reenable it. */
740 if (hw->mac_type == e1000_82542_rev2_0) {
741 if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
742 e1000_pci_set_mwi(hw);
745 if (hw->mac_type == e1000_ich8lan) {
746 u32 kab = er32(KABGTXD);
747 kab |= E1000_KABGTXD_BGSQLBIAS;
748 ew32(KABGTXD, kab);
751 return E1000_SUCCESS;
754 /******************************************************************************
756 * Initialize a number of hardware-dependent bits
758 * hw: Struct containing variables accessed by shared code
760 * This function contains hardware limitation workarounds for PCI-E adapters
762 *****************************************************************************/
763 static void e1000_initialize_hardware_bits(struct e1000_hw *hw)
765 if ((hw->mac_type >= e1000_82571) && (!hw->initialize_hw_bits_disable)) {
766 /* Settings common to all PCI-express silicon */
767 u32 reg_ctrl, reg_ctrl_ext;
768 u32 reg_tarc0, reg_tarc1;
769 u32 reg_tctl;
770 u32 reg_txdctl, reg_txdctl1;
772 /* link autonegotiation/sync workarounds */
773 reg_tarc0 = er32(TARC0);
774 reg_tarc0 &= ~((1 << 30)|(1 << 29)|(1 << 28)|(1 << 27));
776 /* Enable not-done TX descriptor counting */
777 reg_txdctl = er32(TXDCTL);
778 reg_txdctl |= E1000_TXDCTL_COUNT_DESC;
779 ew32(TXDCTL, reg_txdctl);
780 reg_txdctl1 = er32(TXDCTL1);
781 reg_txdctl1 |= E1000_TXDCTL_COUNT_DESC;
782 ew32(TXDCTL1, reg_txdctl1);
784 switch (hw->mac_type) {
785 case e1000_82571:
786 case e1000_82572:
787 /* Clear PHY TX compatible mode bits */
788 reg_tarc1 = er32(TARC1);
789 reg_tarc1 &= ~((1 << 30)|(1 << 29));
791 /* link autonegotiation/sync workarounds */
792 reg_tarc0 |= ((1 << 26)|(1 << 25)|(1 << 24)|(1 << 23));
794 /* TX ring control fixes */
795 reg_tarc1 |= ((1 << 26)|(1 << 25)|(1 << 24));
797 /* Multiple read bit is reversed polarity */
798 reg_tctl = er32(TCTL);
799 if (reg_tctl & E1000_TCTL_MULR)
800 reg_tarc1 &= ~(1 << 28);
801 else
802 reg_tarc1 |= (1 << 28);
804 ew32(TARC1, reg_tarc1);
805 break;
806 case e1000_82573:
807 reg_ctrl_ext = er32(CTRL_EXT);
808 reg_ctrl_ext &= ~(1 << 23);
809 reg_ctrl_ext |= (1 << 22);
811 /* TX byte count fix */
812 reg_ctrl = er32(CTRL);
813 reg_ctrl &= ~(1 << 29);
815 ew32(CTRL_EXT, reg_ctrl_ext);
816 ew32(CTRL, reg_ctrl);
817 break;
818 case e1000_80003es2lan:
819 /* improve small packet performace for fiber/serdes */
820 if ((hw->media_type == e1000_media_type_fiber) ||
821 (hw->media_type == e1000_media_type_internal_serdes)) {
822 reg_tarc0 &= ~(1 << 20);
825 /* Multiple read bit is reversed polarity */
826 reg_tctl = er32(TCTL);
827 reg_tarc1 = er32(TARC1);
828 if (reg_tctl & E1000_TCTL_MULR)
829 reg_tarc1 &= ~(1 << 28);
830 else
831 reg_tarc1 |= (1 << 28);
833 ew32(TARC1, reg_tarc1);
834 break;
835 case e1000_ich8lan:
836 /* Reduce concurrent DMA requests to 3 from 4 */
837 if ((hw->revision_id < 3) ||
838 ((hw->device_id != E1000_DEV_ID_ICH8_IGP_M_AMT) &&
839 (hw->device_id != E1000_DEV_ID_ICH8_IGP_M)))
840 reg_tarc0 |= ((1 << 29)|(1 << 28));
842 reg_ctrl_ext = er32(CTRL_EXT);
843 reg_ctrl_ext |= (1 << 22);
844 ew32(CTRL_EXT, reg_ctrl_ext);
846 /* workaround TX hang with TSO=on */
847 reg_tarc0 |= ((1 << 27)|(1 << 26)|(1 << 24)|(1 << 23));
849 /* Multiple read bit is reversed polarity */
850 reg_tctl = er32(TCTL);
851 reg_tarc1 = er32(TARC1);
852 if (reg_tctl & E1000_TCTL_MULR)
853 reg_tarc1 &= ~(1 << 28);
854 else
855 reg_tarc1 |= (1 << 28);
857 /* workaround TX hang with TSO=on */
858 reg_tarc1 |= ((1 << 30)|(1 << 26)|(1 << 24));
860 ew32(TARC1, reg_tarc1);
861 break;
862 default:
863 break;
866 ew32(TARC0, reg_tarc0);
870 /******************************************************************************
871 * Performs basic configuration of the adapter.
873 * hw - Struct containing variables accessed by shared code
875 * Assumes that the controller has previously been reset and is in a
876 * post-reset uninitialized state. Initializes the receive address registers,
877 * multicast table, and VLAN filter table. Calls routines to setup link
878 * configuration and flow control settings. Clears all on-chip counters. Leaves
879 * the transmit and receive units disabled and uninitialized.
880 *****************************************************************************/
881 s32 e1000_init_hw(struct e1000_hw *hw)
883 u32 ctrl;
884 u32 i;
885 s32 ret_val;
886 u32 mta_size;
887 u32 reg_data;
888 u32 ctrl_ext;
890 DEBUGFUNC("e1000_init_hw");
892 /* force full DMA clock frequency for 10/100 on ICH8 A0-B0 */
893 if ((hw->mac_type == e1000_ich8lan) &&
894 ((hw->revision_id < 3) ||
895 ((hw->device_id != E1000_DEV_ID_ICH8_IGP_M_AMT) &&
896 (hw->device_id != E1000_DEV_ID_ICH8_IGP_M)))) {
897 reg_data = er32(STATUS);
898 reg_data &= ~0x80000000;
899 ew32(STATUS, reg_data);
902 /* Initialize Identification LED */
903 ret_val = e1000_id_led_init(hw);
904 if (ret_val) {
905 DEBUGOUT("Error Initializing Identification LED\n");
906 return ret_val;
909 /* Set the media type and TBI compatibility */
910 e1000_set_media_type(hw);
912 /* Must be called after e1000_set_media_type because media_type is used */
913 e1000_initialize_hardware_bits(hw);
915 /* Disabling VLAN filtering. */
916 DEBUGOUT("Initializing the IEEE VLAN\n");
917 /* VET hardcoded to standard value and VFTA removed in ICH8 LAN */
918 if (hw->mac_type != e1000_ich8lan) {
919 if (hw->mac_type < e1000_82545_rev_3)
920 ew32(VET, 0);
921 e1000_clear_vfta(hw);
924 /* For 82542 (rev 2.0), disable MWI and put the receiver into reset */
925 if (hw->mac_type == e1000_82542_rev2_0) {
926 DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
927 e1000_pci_clear_mwi(hw);
928 ew32(RCTL, E1000_RCTL_RST);
929 E1000_WRITE_FLUSH();
930 msleep(5);
933 /* Setup the receive address. This involves initializing all of the Receive
934 * Address Registers (RARs 0 - 15).
936 e1000_init_rx_addrs(hw);
938 /* For 82542 (rev 2.0), take the receiver out of reset and enable MWI */
939 if (hw->mac_type == e1000_82542_rev2_0) {
940 ew32(RCTL, 0);
941 E1000_WRITE_FLUSH();
942 msleep(1);
943 if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
944 e1000_pci_set_mwi(hw);
947 /* Zero out the Multicast HASH table */
948 DEBUGOUT("Zeroing the MTA\n");
949 mta_size = E1000_MC_TBL_SIZE;
950 if (hw->mac_type == e1000_ich8lan)
951 mta_size = E1000_MC_TBL_SIZE_ICH8LAN;
952 for (i = 0; i < mta_size; i++) {
953 E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
954 /* use write flush to prevent Memory Write Block (MWB) from
955 * occuring when accessing our register space */
956 E1000_WRITE_FLUSH();
959 /* Set the PCI priority bit correctly in the CTRL register. This
960 * determines if the adapter gives priority to receives, or if it
961 * gives equal priority to transmits and receives. Valid only on
962 * 82542 and 82543 silicon.
964 if (hw->dma_fairness && hw->mac_type <= e1000_82543) {
965 ctrl = er32(CTRL);
966 ew32(CTRL, ctrl | E1000_CTRL_PRIOR);
969 switch (hw->mac_type) {
970 case e1000_82545_rev_3:
971 case e1000_82546_rev_3:
972 break;
973 default:
974 /* Workaround for PCI-X problem when BIOS sets MMRBC incorrectly. */
975 if (hw->bus_type == e1000_bus_type_pcix && e1000_pcix_get_mmrbc(hw) > 2048)
976 e1000_pcix_set_mmrbc(hw, 2048);
977 break;
980 /* More time needed for PHY to initialize */
981 if (hw->mac_type == e1000_ich8lan)
982 msleep(15);
984 /* Call a subroutine to configure the link and setup flow control. */
985 ret_val = e1000_setup_link(hw);
987 /* Set the transmit descriptor write-back policy */
988 if (hw->mac_type > e1000_82544) {
989 ctrl = er32(TXDCTL);
990 ctrl = (ctrl & ~E1000_TXDCTL_WTHRESH) | E1000_TXDCTL_FULL_TX_DESC_WB;
991 ew32(TXDCTL, ctrl);
994 if (hw->mac_type == e1000_82573) {
995 e1000_enable_tx_pkt_filtering(hw);
998 switch (hw->mac_type) {
999 default:
1000 break;
1001 case e1000_80003es2lan:
1002 /* Enable retransmit on late collisions */
1003 reg_data = er32(TCTL);
1004 reg_data |= E1000_TCTL_RTLC;
1005 ew32(TCTL, reg_data);
1007 /* Configure Gigabit Carry Extend Padding */
1008 reg_data = er32(TCTL_EXT);
1009 reg_data &= ~E1000_TCTL_EXT_GCEX_MASK;
1010 reg_data |= DEFAULT_80003ES2LAN_TCTL_EXT_GCEX;
1011 ew32(TCTL_EXT, reg_data);
1013 /* Configure Transmit Inter-Packet Gap */
1014 reg_data = er32(TIPG);
1015 reg_data &= ~E1000_TIPG_IPGT_MASK;
1016 reg_data |= DEFAULT_80003ES2LAN_TIPG_IPGT_1000;
1017 ew32(TIPG, reg_data);
1019 reg_data = E1000_READ_REG_ARRAY(hw, FFLT, 0x0001);
1020 reg_data &= ~0x00100000;
1021 E1000_WRITE_REG_ARRAY(hw, FFLT, 0x0001, reg_data);
1022 /* Fall through */
1023 case e1000_82571:
1024 case e1000_82572:
1025 case e1000_ich8lan:
1026 ctrl = er32(TXDCTL1);
1027 ctrl = (ctrl & ~E1000_TXDCTL_WTHRESH) | E1000_TXDCTL_FULL_TX_DESC_WB;
1028 ew32(TXDCTL1, ctrl);
1029 break;
1033 if (hw->mac_type == e1000_82573) {
1034 u32 gcr = er32(GCR);
1035 gcr |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX;
1036 ew32(GCR, gcr);
1039 /* Clear all of the statistics registers (clear on read). It is
1040 * important that we do this after we have tried to establish link
1041 * because the symbol error count will increment wildly if there
1042 * is no link.
1044 e1000_clear_hw_cntrs(hw);
1046 /* ICH8 No-snoop bits are opposite polarity.
1047 * Set to snoop by default after reset. */
1048 if (hw->mac_type == e1000_ich8lan)
1049 e1000_set_pci_ex_no_snoop(hw, PCI_EX_82566_SNOOP_ALL);
1051 if (hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER ||
1052 hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3) {
1053 ctrl_ext = er32(CTRL_EXT);
1054 /* Relaxed ordering must be disabled to avoid a parity
1055 * error crash in a PCI slot. */
1056 ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
1057 ew32(CTRL_EXT, ctrl_ext);
1060 return ret_val;
1063 /******************************************************************************
1064 * Adjust SERDES output amplitude based on EEPROM setting.
1066 * hw - Struct containing variables accessed by shared code.
1067 *****************************************************************************/
1068 static s32 e1000_adjust_serdes_amplitude(struct e1000_hw *hw)
1070 u16 eeprom_data;
1071 s32 ret_val;
1073 DEBUGFUNC("e1000_adjust_serdes_amplitude");
1075 if (hw->media_type != e1000_media_type_internal_serdes)
1076 return E1000_SUCCESS;
1078 switch (hw->mac_type) {
1079 case e1000_82545_rev_3:
1080 case e1000_82546_rev_3:
1081 break;
1082 default:
1083 return E1000_SUCCESS;
1086 ret_val = e1000_read_eeprom(hw, EEPROM_SERDES_AMPLITUDE, 1, &eeprom_data);
1087 if (ret_val) {
1088 return ret_val;
1091 if (eeprom_data != EEPROM_RESERVED_WORD) {
1092 /* Adjust SERDES output amplitude only. */
1093 eeprom_data &= EEPROM_SERDES_AMPLITUDE_MASK;
1094 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_EXT_CTRL, eeprom_data);
1095 if (ret_val)
1096 return ret_val;
1099 return E1000_SUCCESS;
1102 /******************************************************************************
1103 * Configures flow control and link settings.
1105 * hw - Struct containing variables accessed by shared code
1107 * Determines which flow control settings to use. Calls the apropriate media-
1108 * specific link configuration function. Configures the flow control settings.
1109 * Assuming the adapter has a valid link partner, a valid link should be
1110 * established. Assumes the hardware has previously been reset and the
1111 * transmitter and receiver are not enabled.
1112 *****************************************************************************/
1113 s32 e1000_setup_link(struct e1000_hw *hw)
1115 u32 ctrl_ext;
1116 s32 ret_val;
1117 u16 eeprom_data;
1119 DEBUGFUNC("e1000_setup_link");
1121 /* In the case of the phy reset being blocked, we already have a link.
1122 * We do not have to set it up again. */
1123 if (e1000_check_phy_reset_block(hw))
1124 return E1000_SUCCESS;
1126 /* Read and store word 0x0F of the EEPROM. This word contains bits
1127 * that determine the hardware's default PAUSE (flow control) mode,
1128 * a bit that determines whether the HW defaults to enabling or
1129 * disabling auto-negotiation, and the direction of the
1130 * SW defined pins. If there is no SW over-ride of the flow
1131 * control setting, then the variable hw->fc will
1132 * be initialized based on a value in the EEPROM.
1134 if (hw->fc == E1000_FC_DEFAULT) {
1135 switch (hw->mac_type) {
1136 case e1000_ich8lan:
1137 case e1000_82573:
1138 hw->fc = E1000_FC_FULL;
1139 break;
1140 default:
1141 ret_val = e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG,
1142 1, &eeprom_data);
1143 if (ret_val) {
1144 DEBUGOUT("EEPROM Read Error\n");
1145 return -E1000_ERR_EEPROM;
1147 if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == 0)
1148 hw->fc = E1000_FC_NONE;
1149 else if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) ==
1150 EEPROM_WORD0F_ASM_DIR)
1151 hw->fc = E1000_FC_TX_PAUSE;
1152 else
1153 hw->fc = E1000_FC_FULL;
1154 break;
1158 /* We want to save off the original Flow Control configuration just
1159 * in case we get disconnected and then reconnected into a different
1160 * hub or switch with different Flow Control capabilities.
1162 if (hw->mac_type == e1000_82542_rev2_0)
1163 hw->fc &= (~E1000_FC_TX_PAUSE);
1165 if ((hw->mac_type < e1000_82543) && (hw->report_tx_early == 1))
1166 hw->fc &= (~E1000_FC_RX_PAUSE);
1168 hw->original_fc = hw->fc;
1170 DEBUGOUT1("After fix-ups FlowControl is now = %x\n", hw->fc);
1172 /* Take the 4 bits from EEPROM word 0x0F that determine the initial
1173 * polarity value for the SW controlled pins, and setup the
1174 * Extended Device Control reg with that info.
1175 * This is needed because one of the SW controlled pins is used for
1176 * signal detection. So this should be done before e1000_setup_pcs_link()
1177 * or e1000_phy_setup() is called.
1179 if (hw->mac_type == e1000_82543) {
1180 ret_val = e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG,
1181 1, &eeprom_data);
1182 if (ret_val) {
1183 DEBUGOUT("EEPROM Read Error\n");
1184 return -E1000_ERR_EEPROM;
1186 ctrl_ext = ((eeprom_data & EEPROM_WORD0F_SWPDIO_EXT) <<
1187 SWDPIO__EXT_SHIFT);
1188 ew32(CTRL_EXT, ctrl_ext);
1191 /* Call the necessary subroutine to configure the link. */
1192 ret_val = (hw->media_type == e1000_media_type_copper) ?
1193 e1000_setup_copper_link(hw) :
1194 e1000_setup_fiber_serdes_link(hw);
1196 /* Initialize the flow control address, type, and PAUSE timer
1197 * registers to their default values. This is done even if flow
1198 * control is disabled, because it does not hurt anything to
1199 * initialize these registers.
1201 DEBUGOUT("Initializing the Flow Control address, type and timer regs\n");
1203 /* FCAL/H and FCT are hardcoded to standard values in e1000_ich8lan. */
1204 if (hw->mac_type != e1000_ich8lan) {
1205 ew32(FCT, FLOW_CONTROL_TYPE);
1206 ew32(FCAH, FLOW_CONTROL_ADDRESS_HIGH);
1207 ew32(FCAL, FLOW_CONTROL_ADDRESS_LOW);
1210 ew32(FCTTV, hw->fc_pause_time);
1212 /* Set the flow control receive threshold registers. Normally,
1213 * these registers will be set to a default threshold that may be
1214 * adjusted later by the driver's runtime code. However, if the
1215 * ability to transmit pause frames in not enabled, then these
1216 * registers will be set to 0.
1218 if (!(hw->fc & E1000_FC_TX_PAUSE)) {
1219 ew32(FCRTL, 0);
1220 ew32(FCRTH, 0);
1221 } else {
1222 /* We need to set up the Receive Threshold high and low water marks
1223 * as well as (optionally) enabling the transmission of XON frames.
1225 if (hw->fc_send_xon) {
1226 ew32(FCRTL, (hw->fc_low_water | E1000_FCRTL_XONE));
1227 ew32(FCRTH, hw->fc_high_water);
1228 } else {
1229 ew32(FCRTL, hw->fc_low_water);
1230 ew32(FCRTH, hw->fc_high_water);
1233 return ret_val;
1236 /******************************************************************************
1237 * Sets up link for a fiber based or serdes based adapter
1239 * hw - Struct containing variables accessed by shared code
1241 * Manipulates Physical Coding Sublayer functions in order to configure
1242 * link. Assumes the hardware has been previously reset and the transmitter
1243 * and receiver are not enabled.
1244 *****************************************************************************/
1245 static s32 e1000_setup_fiber_serdes_link(struct e1000_hw *hw)
1247 u32 ctrl;
1248 u32 status;
1249 u32 txcw = 0;
1250 u32 i;
1251 u32 signal = 0;
1252 s32 ret_val;
1254 DEBUGFUNC("e1000_setup_fiber_serdes_link");
1256 /* On 82571 and 82572 Fiber connections, SerDes loopback mode persists
1257 * until explicitly turned off or a power cycle is performed. A read to
1258 * the register does not indicate its status. Therefore, we ensure
1259 * loopback mode is disabled during initialization.
1261 if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572)
1262 ew32(SCTL, E1000_DISABLE_SERDES_LOOPBACK);
1264 /* On adapters with a MAC newer than 82544, SWDP 1 will be
1265 * set when the optics detect a signal. On older adapters, it will be
1266 * cleared when there is a signal. This applies to fiber media only.
1267 * If we're on serdes media, adjust the output amplitude to value
1268 * set in the EEPROM.
1270 ctrl = er32(CTRL);
1271 if (hw->media_type == e1000_media_type_fiber)
1272 signal = (hw->mac_type > e1000_82544) ? E1000_CTRL_SWDPIN1 : 0;
1274 ret_val = e1000_adjust_serdes_amplitude(hw);
1275 if (ret_val)
1276 return ret_val;
1278 /* Take the link out of reset */
1279 ctrl &= ~(E1000_CTRL_LRST);
1281 /* Adjust VCO speed to improve BER performance */
1282 ret_val = e1000_set_vco_speed(hw);
1283 if (ret_val)
1284 return ret_val;
1286 e1000_config_collision_dist(hw);
1288 /* Check for a software override of the flow control settings, and setup
1289 * the device accordingly. If auto-negotiation is enabled, then software
1290 * will have to set the "PAUSE" bits to the correct value in the Tranmsit
1291 * Config Word Register (TXCW) and re-start auto-negotiation. However, if
1292 * auto-negotiation is disabled, then software will have to manually
1293 * configure the two flow control enable bits in the CTRL register.
1295 * The possible values of the "fc" parameter are:
1296 * 0: Flow control is completely disabled
1297 * 1: Rx flow control is enabled (we can receive pause frames, but
1298 * not send pause frames).
1299 * 2: Tx flow control is enabled (we can send pause frames but we do
1300 * not support receiving pause frames).
1301 * 3: Both Rx and TX flow control (symmetric) are enabled.
1303 switch (hw->fc) {
1304 case E1000_FC_NONE:
1305 /* Flow control is completely disabled by a software over-ride. */
1306 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
1307 break;
1308 case E1000_FC_RX_PAUSE:
1309 /* RX Flow control is enabled and TX Flow control is disabled by a
1310 * software over-ride. Since there really isn't a way to advertise
1311 * that we are capable of RX Pause ONLY, we will advertise that we
1312 * support both symmetric and asymmetric RX PAUSE. Later, we will
1313 * disable the adapter's ability to send PAUSE frames.
1315 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
1316 break;
1317 case E1000_FC_TX_PAUSE:
1318 /* TX Flow control is enabled, and RX Flow control is disabled, by a
1319 * software over-ride.
1321 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
1322 break;
1323 case E1000_FC_FULL:
1324 /* Flow control (both RX and TX) is enabled by a software over-ride. */
1325 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
1326 break;
1327 default:
1328 DEBUGOUT("Flow control param set incorrectly\n");
1329 return -E1000_ERR_CONFIG;
1330 break;
1333 /* Since auto-negotiation is enabled, take the link out of reset (the link
1334 * will be in reset, because we previously reset the chip). This will
1335 * restart auto-negotiation. If auto-neogtiation is successful then the
1336 * link-up status bit will be set and the flow control enable bits (RFCE
1337 * and TFCE) will be set according to their negotiated value.
1339 DEBUGOUT("Auto-negotiation enabled\n");
1341 ew32(TXCW, txcw);
1342 ew32(CTRL, ctrl);
1343 E1000_WRITE_FLUSH();
1345 hw->txcw = txcw;
1346 msleep(1);
1348 /* If we have a signal (the cable is plugged in) then poll for a "Link-Up"
1349 * indication in the Device Status Register. Time-out if a link isn't
1350 * seen in 500 milliseconds seconds (Auto-negotiation should complete in
1351 * less than 500 milliseconds even if the other end is doing it in SW).
1352 * For internal serdes, we just assume a signal is present, then poll.
1354 if (hw->media_type == e1000_media_type_internal_serdes ||
1355 (er32(CTRL) & E1000_CTRL_SWDPIN1) == signal) {
1356 DEBUGOUT("Looking for Link\n");
1357 for (i = 0; i < (LINK_UP_TIMEOUT / 10); i++) {
1358 msleep(10);
1359 status = er32(STATUS);
1360 if (status & E1000_STATUS_LU) break;
1362 if (i == (LINK_UP_TIMEOUT / 10)) {
1363 DEBUGOUT("Never got a valid link from auto-neg!!!\n");
1364 hw->autoneg_failed = 1;
1365 /* AutoNeg failed to achieve a link, so we'll call
1366 * e1000_check_for_link. This routine will force the link up if
1367 * we detect a signal. This will allow us to communicate with
1368 * non-autonegotiating link partners.
1370 ret_val = e1000_check_for_link(hw);
1371 if (ret_val) {
1372 DEBUGOUT("Error while checking for link\n");
1373 return ret_val;
1375 hw->autoneg_failed = 0;
1376 } else {
1377 hw->autoneg_failed = 0;
1378 DEBUGOUT("Valid Link Found\n");
1380 } else {
1381 DEBUGOUT("No Signal Detected\n");
1383 return E1000_SUCCESS;
1386 /******************************************************************************
1387 * Make sure we have a valid PHY and change PHY mode before link setup.
1389 * hw - Struct containing variables accessed by shared code
1390 ******************************************************************************/
1391 static s32 e1000_copper_link_preconfig(struct e1000_hw *hw)
1393 u32 ctrl;
1394 s32 ret_val;
1395 u16 phy_data;
1397 DEBUGFUNC("e1000_copper_link_preconfig");
1399 ctrl = er32(CTRL);
1400 /* With 82543, we need to force speed and duplex on the MAC equal to what
1401 * the PHY speed and duplex configuration is. In addition, we need to
1402 * perform a hardware reset on the PHY to take it out of reset.
1404 if (hw->mac_type > e1000_82543) {
1405 ctrl |= E1000_CTRL_SLU;
1406 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1407 ew32(CTRL, ctrl);
1408 } else {
1409 ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX | E1000_CTRL_SLU);
1410 ew32(CTRL, ctrl);
1411 ret_val = e1000_phy_hw_reset(hw);
1412 if (ret_val)
1413 return ret_val;
1416 /* Make sure we have a valid PHY */
1417 ret_val = e1000_detect_gig_phy(hw);
1418 if (ret_val) {
1419 DEBUGOUT("Error, did not detect valid phy.\n");
1420 return ret_val;
1422 DEBUGOUT1("Phy ID = %x \n", hw->phy_id);
1424 /* Set PHY to class A mode (if necessary) */
1425 ret_val = e1000_set_phy_mode(hw);
1426 if (ret_val)
1427 return ret_val;
1429 if ((hw->mac_type == e1000_82545_rev_3) ||
1430 (hw->mac_type == e1000_82546_rev_3)) {
1431 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1432 phy_data |= 0x00000008;
1433 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1436 if (hw->mac_type <= e1000_82543 ||
1437 hw->mac_type == e1000_82541 || hw->mac_type == e1000_82547 ||
1438 hw->mac_type == e1000_82541_rev_2 || hw->mac_type == e1000_82547_rev_2)
1439 hw->phy_reset_disable = false;
1441 return E1000_SUCCESS;
1445 /********************************************************************
1446 * Copper link setup for e1000_phy_igp series.
1448 * hw - Struct containing variables accessed by shared code
1449 *********************************************************************/
1450 static s32 e1000_copper_link_igp_setup(struct e1000_hw *hw)
1452 u32 led_ctrl;
1453 s32 ret_val;
1454 u16 phy_data;
1456 DEBUGFUNC("e1000_copper_link_igp_setup");
1458 if (hw->phy_reset_disable)
1459 return E1000_SUCCESS;
1461 ret_val = e1000_phy_reset(hw);
1462 if (ret_val) {
1463 DEBUGOUT("Error Resetting the PHY\n");
1464 return ret_val;
1467 /* Wait 15ms for MAC to configure PHY from eeprom settings */
1468 msleep(15);
1469 if (hw->mac_type != e1000_ich8lan) {
1470 /* Configure activity LED after PHY reset */
1471 led_ctrl = er32(LEDCTL);
1472 led_ctrl &= IGP_ACTIVITY_LED_MASK;
1473 led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
1474 ew32(LEDCTL, led_ctrl);
1477 /* The NVM settings will configure LPLU in D3 for IGP2 and IGP3 PHYs */
1478 if (hw->phy_type == e1000_phy_igp) {
1479 /* disable lplu d3 during driver init */
1480 ret_val = e1000_set_d3_lplu_state(hw, false);
1481 if (ret_val) {
1482 DEBUGOUT("Error Disabling LPLU D3\n");
1483 return ret_val;
1487 /* disable lplu d0 during driver init */
1488 ret_val = e1000_set_d0_lplu_state(hw, false);
1489 if (ret_val) {
1490 DEBUGOUT("Error Disabling LPLU D0\n");
1491 return ret_val;
1493 /* Configure mdi-mdix settings */
1494 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
1495 if (ret_val)
1496 return ret_val;
1498 if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
1499 hw->dsp_config_state = e1000_dsp_config_disabled;
1500 /* Force MDI for earlier revs of the IGP PHY */
1501 phy_data &= ~(IGP01E1000_PSCR_AUTO_MDIX | IGP01E1000_PSCR_FORCE_MDI_MDIX);
1502 hw->mdix = 1;
1504 } else {
1505 hw->dsp_config_state = e1000_dsp_config_enabled;
1506 phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
1508 switch (hw->mdix) {
1509 case 1:
1510 phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
1511 break;
1512 case 2:
1513 phy_data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
1514 break;
1515 case 0:
1516 default:
1517 phy_data |= IGP01E1000_PSCR_AUTO_MDIX;
1518 break;
1521 ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
1522 if (ret_val)
1523 return ret_val;
1525 /* set auto-master slave resolution settings */
1526 if (hw->autoneg) {
1527 e1000_ms_type phy_ms_setting = hw->master_slave;
1529 if (hw->ffe_config_state == e1000_ffe_config_active)
1530 hw->ffe_config_state = e1000_ffe_config_enabled;
1532 if (hw->dsp_config_state == e1000_dsp_config_activated)
1533 hw->dsp_config_state = e1000_dsp_config_enabled;
1535 /* when autonegotiation advertisment is only 1000Mbps then we
1536 * should disable SmartSpeed and enable Auto MasterSlave
1537 * resolution as hardware default. */
1538 if (hw->autoneg_advertised == ADVERTISE_1000_FULL) {
1539 /* Disable SmartSpeed */
1540 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
1541 &phy_data);
1542 if (ret_val)
1543 return ret_val;
1544 phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1545 ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
1546 phy_data);
1547 if (ret_val)
1548 return ret_val;
1549 /* Set auto Master/Slave resolution process */
1550 ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data);
1551 if (ret_val)
1552 return ret_val;
1553 phy_data &= ~CR_1000T_MS_ENABLE;
1554 ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data);
1555 if (ret_val)
1556 return ret_val;
1559 ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data);
1560 if (ret_val)
1561 return ret_val;
1563 /* load defaults for future use */
1564 hw->original_master_slave = (phy_data & CR_1000T_MS_ENABLE) ?
1565 ((phy_data & CR_1000T_MS_VALUE) ?
1566 e1000_ms_force_master :
1567 e1000_ms_force_slave) :
1568 e1000_ms_auto;
1570 switch (phy_ms_setting) {
1571 case e1000_ms_force_master:
1572 phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
1573 break;
1574 case e1000_ms_force_slave:
1575 phy_data |= CR_1000T_MS_ENABLE;
1576 phy_data &= ~(CR_1000T_MS_VALUE);
1577 break;
1578 case e1000_ms_auto:
1579 phy_data &= ~CR_1000T_MS_ENABLE;
1580 default:
1581 break;
1583 ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data);
1584 if (ret_val)
1585 return ret_val;
1588 return E1000_SUCCESS;
1591 /********************************************************************
1592 * Copper link setup for e1000_phy_gg82563 series.
1594 * hw - Struct containing variables accessed by shared code
1595 *********************************************************************/
1596 static s32 e1000_copper_link_ggp_setup(struct e1000_hw *hw)
1598 s32 ret_val;
1599 u16 phy_data;
1600 u32 reg_data;
1602 DEBUGFUNC("e1000_copper_link_ggp_setup");
1604 if (!hw->phy_reset_disable) {
1606 /* Enable CRS on TX for half-duplex operation. */
1607 ret_val = e1000_read_phy_reg(hw, GG82563_PHY_MAC_SPEC_CTRL,
1608 &phy_data);
1609 if (ret_val)
1610 return ret_val;
1612 phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
1613 /* Use 25MHz for both link down and 1000BASE-T for Tx clock */
1614 phy_data |= GG82563_MSCR_TX_CLK_1000MBPS_25MHZ;
1616 ret_val = e1000_write_phy_reg(hw, GG82563_PHY_MAC_SPEC_CTRL,
1617 phy_data);
1618 if (ret_val)
1619 return ret_val;
1621 /* Options:
1622 * MDI/MDI-X = 0 (default)
1623 * 0 - Auto for all speeds
1624 * 1 - MDI mode
1625 * 2 - MDI-X mode
1626 * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
1628 ret_val = e1000_read_phy_reg(hw, GG82563_PHY_SPEC_CTRL, &phy_data);
1629 if (ret_val)
1630 return ret_val;
1632 phy_data &= ~GG82563_PSCR_CROSSOVER_MODE_MASK;
1634 switch (hw->mdix) {
1635 case 1:
1636 phy_data |= GG82563_PSCR_CROSSOVER_MODE_MDI;
1637 break;
1638 case 2:
1639 phy_data |= GG82563_PSCR_CROSSOVER_MODE_MDIX;
1640 break;
1641 case 0:
1642 default:
1643 phy_data |= GG82563_PSCR_CROSSOVER_MODE_AUTO;
1644 break;
1647 /* Options:
1648 * disable_polarity_correction = 0 (default)
1649 * Automatic Correction for Reversed Cable Polarity
1650 * 0 - Disabled
1651 * 1 - Enabled
1653 phy_data &= ~GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
1654 if (hw->disable_polarity_correction == 1)
1655 phy_data |= GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
1656 ret_val = e1000_write_phy_reg(hw, GG82563_PHY_SPEC_CTRL, phy_data);
1658 if (ret_val)
1659 return ret_val;
1661 /* SW Reset the PHY so all changes take effect */
1662 ret_val = e1000_phy_reset(hw);
1663 if (ret_val) {
1664 DEBUGOUT("Error Resetting the PHY\n");
1665 return ret_val;
1667 } /* phy_reset_disable */
1669 if (hw->mac_type == e1000_80003es2lan) {
1670 /* Bypass RX and TX FIFO's */
1671 ret_val = e1000_write_kmrn_reg(hw, E1000_KUMCTRLSTA_OFFSET_FIFO_CTRL,
1672 E1000_KUMCTRLSTA_FIFO_CTRL_RX_BYPASS |
1673 E1000_KUMCTRLSTA_FIFO_CTRL_TX_BYPASS);
1674 if (ret_val)
1675 return ret_val;
1677 ret_val = e1000_read_phy_reg(hw, GG82563_PHY_SPEC_CTRL_2, &phy_data);
1678 if (ret_val)
1679 return ret_val;
1681 phy_data &= ~GG82563_PSCR2_REVERSE_AUTO_NEG;
1682 ret_val = e1000_write_phy_reg(hw, GG82563_PHY_SPEC_CTRL_2, phy_data);
1684 if (ret_val)
1685 return ret_val;
1687 reg_data = er32(CTRL_EXT);
1688 reg_data &= ~(E1000_CTRL_EXT_LINK_MODE_MASK);
1689 ew32(CTRL_EXT, reg_data);
1691 ret_val = e1000_read_phy_reg(hw, GG82563_PHY_PWR_MGMT_CTRL,
1692 &phy_data);
1693 if (ret_val)
1694 return ret_val;
1696 /* Do not init these registers when the HW is in IAMT mode, since the
1697 * firmware will have already initialized them. We only initialize
1698 * them if the HW is not in IAMT mode.
1700 if (!e1000_check_mng_mode(hw)) {
1701 /* Enable Electrical Idle on the PHY */
1702 phy_data |= GG82563_PMCR_ENABLE_ELECTRICAL_IDLE;
1703 ret_val = e1000_write_phy_reg(hw, GG82563_PHY_PWR_MGMT_CTRL,
1704 phy_data);
1705 if (ret_val)
1706 return ret_val;
1708 ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL,
1709 &phy_data);
1710 if (ret_val)
1711 return ret_val;
1713 phy_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
1714 ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL,
1715 phy_data);
1717 if (ret_val)
1718 return ret_val;
1721 /* Workaround: Disable padding in Kumeran interface in the MAC
1722 * and in the PHY to avoid CRC errors.
1724 ret_val = e1000_read_phy_reg(hw, GG82563_PHY_INBAND_CTRL,
1725 &phy_data);
1726 if (ret_val)
1727 return ret_val;
1728 phy_data |= GG82563_ICR_DIS_PADDING;
1729 ret_val = e1000_write_phy_reg(hw, GG82563_PHY_INBAND_CTRL,
1730 phy_data);
1731 if (ret_val)
1732 return ret_val;
1735 return E1000_SUCCESS;
1738 /********************************************************************
1739 * Copper link setup for e1000_phy_m88 series.
1741 * hw - Struct containing variables accessed by shared code
1742 *********************************************************************/
1743 static s32 e1000_copper_link_mgp_setup(struct e1000_hw *hw)
1745 s32 ret_val;
1746 u16 phy_data;
1748 DEBUGFUNC("e1000_copper_link_mgp_setup");
1750 if (hw->phy_reset_disable)
1751 return E1000_SUCCESS;
1753 /* Enable CRS on TX. This must be set for half-duplex operation. */
1754 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1755 if (ret_val)
1756 return ret_val;
1758 phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1760 /* Options:
1761 * MDI/MDI-X = 0 (default)
1762 * 0 - Auto for all speeds
1763 * 1 - MDI mode
1764 * 2 - MDI-X mode
1765 * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
1767 phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
1769 switch (hw->mdix) {
1770 case 1:
1771 phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
1772 break;
1773 case 2:
1774 phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
1775 break;
1776 case 3:
1777 phy_data |= M88E1000_PSCR_AUTO_X_1000T;
1778 break;
1779 case 0:
1780 default:
1781 phy_data |= M88E1000_PSCR_AUTO_X_MODE;
1782 break;
1785 /* Options:
1786 * disable_polarity_correction = 0 (default)
1787 * Automatic Correction for Reversed Cable Polarity
1788 * 0 - Disabled
1789 * 1 - Enabled
1791 phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
1792 if (hw->disable_polarity_correction == 1)
1793 phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
1794 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1795 if (ret_val)
1796 return ret_val;
1798 if (hw->phy_revision < M88E1011_I_REV_4) {
1799 /* Force TX_CLK in the Extended PHY Specific Control Register
1800 * to 25MHz clock.
1802 ret_val = e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
1803 if (ret_val)
1804 return ret_val;
1806 phy_data |= M88E1000_EPSCR_TX_CLK_25;
1808 if ((hw->phy_revision == E1000_REVISION_2) &&
1809 (hw->phy_id == M88E1111_I_PHY_ID)) {
1810 /* Vidalia Phy, set the downshift counter to 5x */
1811 phy_data &= ~(M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK);
1812 phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
1813 ret_val = e1000_write_phy_reg(hw,
1814 M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
1815 if (ret_val)
1816 return ret_val;
1817 } else {
1818 /* Configure Master and Slave downshift values */
1819 phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
1820 M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
1821 phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
1822 M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
1823 ret_val = e1000_write_phy_reg(hw,
1824 M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
1825 if (ret_val)
1826 return ret_val;
1830 /* SW Reset the PHY so all changes take effect */
1831 ret_val = e1000_phy_reset(hw);
1832 if (ret_val) {
1833 DEBUGOUT("Error Resetting the PHY\n");
1834 return ret_val;
1837 return E1000_SUCCESS;
1840 /********************************************************************
1841 * Setup auto-negotiation and flow control advertisements,
1842 * and then perform auto-negotiation.
1844 * hw - Struct containing variables accessed by shared code
1845 *********************************************************************/
1846 static s32 e1000_copper_link_autoneg(struct e1000_hw *hw)
1848 s32 ret_val;
1849 u16 phy_data;
1851 DEBUGFUNC("e1000_copper_link_autoneg");
1853 /* Perform some bounds checking on the hw->autoneg_advertised
1854 * parameter. If this variable is zero, then set it to the default.
1856 hw->autoneg_advertised &= AUTONEG_ADVERTISE_SPEED_DEFAULT;
1858 /* If autoneg_advertised is zero, we assume it was not defaulted
1859 * by the calling code so we set to advertise full capability.
1861 if (hw->autoneg_advertised == 0)
1862 hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT;
1864 /* IFE phy only supports 10/100 */
1865 if (hw->phy_type == e1000_phy_ife)
1866 hw->autoneg_advertised &= AUTONEG_ADVERTISE_10_100_ALL;
1868 DEBUGOUT("Reconfiguring auto-neg advertisement params\n");
1869 ret_val = e1000_phy_setup_autoneg(hw);
1870 if (ret_val) {
1871 DEBUGOUT("Error Setting up Auto-Negotiation\n");
1872 return ret_val;
1874 DEBUGOUT("Restarting Auto-Neg\n");
1876 /* Restart auto-negotiation by setting the Auto Neg Enable bit and
1877 * the Auto Neg Restart bit in the PHY control register.
1879 ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
1880 if (ret_val)
1881 return ret_val;
1883 phy_data |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
1884 ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
1885 if (ret_val)
1886 return ret_val;
1888 /* Does the user want to wait for Auto-Neg to complete here, or
1889 * check at a later time (for example, callback routine).
1891 if (hw->wait_autoneg_complete) {
1892 ret_val = e1000_wait_autoneg(hw);
1893 if (ret_val) {
1894 DEBUGOUT("Error while waiting for autoneg to complete\n");
1895 return ret_val;
1899 hw->get_link_status = true;
1901 return E1000_SUCCESS;
1904 /******************************************************************************
1905 * Config the MAC and the PHY after link is up.
1906 * 1) Set up the MAC to the current PHY speed/duplex
1907 * if we are on 82543. If we
1908 * are on newer silicon, we only need to configure
1909 * collision distance in the Transmit Control Register.
1910 * 2) Set up flow control on the MAC to that established with
1911 * the link partner.
1912 * 3) Config DSP to improve Gigabit link quality for some PHY revisions.
1914 * hw - Struct containing variables accessed by shared code
1915 ******************************************************************************/
1916 static s32 e1000_copper_link_postconfig(struct e1000_hw *hw)
1918 s32 ret_val;
1919 DEBUGFUNC("e1000_copper_link_postconfig");
1921 if (hw->mac_type >= e1000_82544) {
1922 e1000_config_collision_dist(hw);
1923 } else {
1924 ret_val = e1000_config_mac_to_phy(hw);
1925 if (ret_val) {
1926 DEBUGOUT("Error configuring MAC to PHY settings\n");
1927 return ret_val;
1930 ret_val = e1000_config_fc_after_link_up(hw);
1931 if (ret_val) {
1932 DEBUGOUT("Error Configuring Flow Control\n");
1933 return ret_val;
1936 /* Config DSP to improve Giga link quality */
1937 if (hw->phy_type == e1000_phy_igp) {
1938 ret_val = e1000_config_dsp_after_link_change(hw, true);
1939 if (ret_val) {
1940 DEBUGOUT("Error Configuring DSP after link up\n");
1941 return ret_val;
1945 return E1000_SUCCESS;
1948 /******************************************************************************
1949 * Detects which PHY is present and setup the speed and duplex
1951 * hw - Struct containing variables accessed by shared code
1952 ******************************************************************************/
1953 static s32 e1000_setup_copper_link(struct e1000_hw *hw)
1955 s32 ret_val;
1956 u16 i;
1957 u16 phy_data;
1958 u16 reg_data;
1960 DEBUGFUNC("e1000_setup_copper_link");
1962 switch (hw->mac_type) {
1963 case e1000_80003es2lan:
1964 case e1000_ich8lan:
1965 /* Set the mac to wait the maximum time between each
1966 * iteration and increase the max iterations when
1967 * polling the phy; this fixes erroneous timeouts at 10Mbps. */
1968 ret_val = e1000_write_kmrn_reg(hw, GG82563_REG(0x34, 4), 0xFFFF);
1969 if (ret_val)
1970 return ret_val;
1971 ret_val = e1000_read_kmrn_reg(hw, GG82563_REG(0x34, 9), &reg_data);
1972 if (ret_val)
1973 return ret_val;
1974 reg_data |= 0x3F;
1975 ret_val = e1000_write_kmrn_reg(hw, GG82563_REG(0x34, 9), reg_data);
1976 if (ret_val)
1977 return ret_val;
1978 default:
1979 break;
1982 /* Check if it is a valid PHY and set PHY mode if necessary. */
1983 ret_val = e1000_copper_link_preconfig(hw);
1984 if (ret_val)
1985 return ret_val;
1987 switch (hw->mac_type) {
1988 case e1000_80003es2lan:
1989 /* Kumeran registers are written-only */
1990 reg_data = E1000_KUMCTRLSTA_INB_CTRL_LINK_STATUS_TX_TIMEOUT_DEFAULT;
1991 reg_data |= E1000_KUMCTRLSTA_INB_CTRL_DIS_PADDING;
1992 ret_val = e1000_write_kmrn_reg(hw, E1000_KUMCTRLSTA_OFFSET_INB_CTRL,
1993 reg_data);
1994 if (ret_val)
1995 return ret_val;
1996 break;
1997 default:
1998 break;
2001 if (hw->phy_type == e1000_phy_igp ||
2002 hw->phy_type == e1000_phy_igp_3 ||
2003 hw->phy_type == e1000_phy_igp_2) {
2004 ret_val = e1000_copper_link_igp_setup(hw);
2005 if (ret_val)
2006 return ret_val;
2007 } else if (hw->phy_type == e1000_phy_m88) {
2008 ret_val = e1000_copper_link_mgp_setup(hw);
2009 if (ret_val)
2010 return ret_val;
2011 } else if (hw->phy_type == e1000_phy_gg82563) {
2012 ret_val = e1000_copper_link_ggp_setup(hw);
2013 if (ret_val)
2014 return ret_val;
2017 if (hw->autoneg) {
2018 /* Setup autoneg and flow control advertisement
2019 * and perform autonegotiation */
2020 ret_val = e1000_copper_link_autoneg(hw);
2021 if (ret_val)
2022 return ret_val;
2023 } else {
2024 /* PHY will be set to 10H, 10F, 100H,or 100F
2025 * depending on value from forced_speed_duplex. */
2026 DEBUGOUT("Forcing speed and duplex\n");
2027 ret_val = e1000_phy_force_speed_duplex(hw);
2028 if (ret_val) {
2029 DEBUGOUT("Error Forcing Speed and Duplex\n");
2030 return ret_val;
2034 /* Check link status. Wait up to 100 microseconds for link to become
2035 * valid.
2037 for (i = 0; i < 10; i++) {
2038 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
2039 if (ret_val)
2040 return ret_val;
2041 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
2042 if (ret_val)
2043 return ret_val;
2045 if (phy_data & MII_SR_LINK_STATUS) {
2046 /* Config the MAC and PHY after link is up */
2047 ret_val = e1000_copper_link_postconfig(hw);
2048 if (ret_val)
2049 return ret_val;
2051 DEBUGOUT("Valid link established!!!\n");
2052 return E1000_SUCCESS;
2054 udelay(10);
2057 DEBUGOUT("Unable to establish link!!!\n");
2058 return E1000_SUCCESS;
2061 /******************************************************************************
2062 * Configure the MAC-to-PHY interface for 10/100Mbps
2064 * hw - Struct containing variables accessed by shared code
2065 ******************************************************************************/
2066 static s32 e1000_configure_kmrn_for_10_100(struct e1000_hw *hw, u16 duplex)
2068 s32 ret_val = E1000_SUCCESS;
2069 u32 tipg;
2070 u16 reg_data;
2072 DEBUGFUNC("e1000_configure_kmrn_for_10_100");
2074 reg_data = E1000_KUMCTRLSTA_HD_CTRL_10_100_DEFAULT;
2075 ret_val = e1000_write_kmrn_reg(hw, E1000_KUMCTRLSTA_OFFSET_HD_CTRL,
2076 reg_data);
2077 if (ret_val)
2078 return ret_val;
2080 /* Configure Transmit Inter-Packet Gap */
2081 tipg = er32(TIPG);
2082 tipg &= ~E1000_TIPG_IPGT_MASK;
2083 tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_10_100;
2084 ew32(TIPG, tipg);
2086 ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
2088 if (ret_val)
2089 return ret_val;
2091 if (duplex == HALF_DUPLEX)
2092 reg_data |= GG82563_KMCR_PASS_FALSE_CARRIER;
2093 else
2094 reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
2096 ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
2098 return ret_val;
2101 static s32 e1000_configure_kmrn_for_1000(struct e1000_hw *hw)
2103 s32 ret_val = E1000_SUCCESS;
2104 u16 reg_data;
2105 u32 tipg;
2107 DEBUGFUNC("e1000_configure_kmrn_for_1000");
2109 reg_data = E1000_KUMCTRLSTA_HD_CTRL_1000_DEFAULT;
2110 ret_val = e1000_write_kmrn_reg(hw, E1000_KUMCTRLSTA_OFFSET_HD_CTRL,
2111 reg_data);
2112 if (ret_val)
2113 return ret_val;
2115 /* Configure Transmit Inter-Packet Gap */
2116 tipg = er32(TIPG);
2117 tipg &= ~E1000_TIPG_IPGT_MASK;
2118 tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_1000;
2119 ew32(TIPG, tipg);
2121 ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
2123 if (ret_val)
2124 return ret_val;
2126 reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
2127 ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
2129 return ret_val;
2132 /******************************************************************************
2133 * Configures PHY autoneg and flow control advertisement settings
2135 * hw - Struct containing variables accessed by shared code
2136 ******************************************************************************/
2137 s32 e1000_phy_setup_autoneg(struct e1000_hw *hw)
2139 s32 ret_val;
2140 u16 mii_autoneg_adv_reg;
2141 u16 mii_1000t_ctrl_reg;
2143 DEBUGFUNC("e1000_phy_setup_autoneg");
2145 /* Read the MII Auto-Neg Advertisement Register (Address 4). */
2146 ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
2147 if (ret_val)
2148 return ret_val;
2150 if (hw->phy_type != e1000_phy_ife) {
2151 /* Read the MII 1000Base-T Control Register (Address 9). */
2152 ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg);
2153 if (ret_val)
2154 return ret_val;
2155 } else
2156 mii_1000t_ctrl_reg=0;
2158 /* Need to parse both autoneg_advertised and fc and set up
2159 * the appropriate PHY registers. First we will parse for
2160 * autoneg_advertised software override. Since we can advertise
2161 * a plethora of combinations, we need to check each bit
2162 * individually.
2165 /* First we clear all the 10/100 mb speed bits in the Auto-Neg
2166 * Advertisement Register (Address 4) and the 1000 mb speed bits in
2167 * the 1000Base-T Control Register (Address 9).
2169 mii_autoneg_adv_reg &= ~REG4_SPEED_MASK;
2170 mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK;
2172 DEBUGOUT1("autoneg_advertised %x\n", hw->autoneg_advertised);
2174 /* Do we want to advertise 10 Mb Half Duplex? */
2175 if (hw->autoneg_advertised & ADVERTISE_10_HALF) {
2176 DEBUGOUT("Advertise 10mb Half duplex\n");
2177 mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
2180 /* Do we want to advertise 10 Mb Full Duplex? */
2181 if (hw->autoneg_advertised & ADVERTISE_10_FULL) {
2182 DEBUGOUT("Advertise 10mb Full duplex\n");
2183 mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
2186 /* Do we want to advertise 100 Mb Half Duplex? */
2187 if (hw->autoneg_advertised & ADVERTISE_100_HALF) {
2188 DEBUGOUT("Advertise 100mb Half duplex\n");
2189 mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
2192 /* Do we want to advertise 100 Mb Full Duplex? */
2193 if (hw->autoneg_advertised & ADVERTISE_100_FULL) {
2194 DEBUGOUT("Advertise 100mb Full duplex\n");
2195 mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
2198 /* We do not allow the Phy to advertise 1000 Mb Half Duplex */
2199 if (hw->autoneg_advertised & ADVERTISE_1000_HALF) {
2200 DEBUGOUT("Advertise 1000mb Half duplex requested, request denied!\n");
2203 /* Do we want to advertise 1000 Mb Full Duplex? */
2204 if (hw->autoneg_advertised & ADVERTISE_1000_FULL) {
2205 DEBUGOUT("Advertise 1000mb Full duplex\n");
2206 mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
2207 if (hw->phy_type == e1000_phy_ife) {
2208 DEBUGOUT("e1000_phy_ife is a 10/100 PHY. Gigabit speed is not supported.\n");
2212 /* Check for a software override of the flow control settings, and
2213 * setup the PHY advertisement registers accordingly. If
2214 * auto-negotiation is enabled, then software will have to set the
2215 * "PAUSE" bits to the correct value in the Auto-Negotiation
2216 * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-negotiation.
2218 * The possible values of the "fc" parameter are:
2219 * 0: Flow control is completely disabled
2220 * 1: Rx flow control is enabled (we can receive pause frames
2221 * but not send pause frames).
2222 * 2: Tx flow control is enabled (we can send pause frames
2223 * but we do not support receiving pause frames).
2224 * 3: Both Rx and TX flow control (symmetric) are enabled.
2225 * other: No software override. The flow control configuration
2226 * in the EEPROM is used.
2228 switch (hw->fc) {
2229 case E1000_FC_NONE: /* 0 */
2230 /* Flow control (RX & TX) is completely disabled by a
2231 * software over-ride.
2233 mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
2234 break;
2235 case E1000_FC_RX_PAUSE: /* 1 */
2236 /* RX Flow control is enabled, and TX Flow control is
2237 * disabled, by a software over-ride.
2239 /* Since there really isn't a way to advertise that we are
2240 * capable of RX Pause ONLY, we will advertise that we
2241 * support both symmetric and asymmetric RX PAUSE. Later
2242 * (in e1000_config_fc_after_link_up) we will disable the
2243 *hw's ability to send PAUSE frames.
2245 mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
2246 break;
2247 case E1000_FC_TX_PAUSE: /* 2 */
2248 /* TX Flow control is enabled, and RX Flow control is
2249 * disabled, by a software over-ride.
2251 mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
2252 mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
2253 break;
2254 case E1000_FC_FULL: /* 3 */
2255 /* Flow control (both RX and TX) is enabled by a software
2256 * over-ride.
2258 mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
2259 break;
2260 default:
2261 DEBUGOUT("Flow control param set incorrectly\n");
2262 return -E1000_ERR_CONFIG;
2265 ret_val = e1000_write_phy_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
2266 if (ret_val)
2267 return ret_val;
2269 DEBUGOUT1("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
2271 if (hw->phy_type != e1000_phy_ife) {
2272 ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, mii_1000t_ctrl_reg);
2273 if (ret_val)
2274 return ret_val;
2277 return E1000_SUCCESS;
2280 /******************************************************************************
2281 * Force PHY speed and duplex settings to hw->forced_speed_duplex
2283 * hw - Struct containing variables accessed by shared code
2284 ******************************************************************************/
2285 static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw)
2287 u32 ctrl;
2288 s32 ret_val;
2289 u16 mii_ctrl_reg;
2290 u16 mii_status_reg;
2291 u16 phy_data;
2292 u16 i;
2294 DEBUGFUNC("e1000_phy_force_speed_duplex");
2296 /* Turn off Flow control if we are forcing speed and duplex. */
2297 hw->fc = E1000_FC_NONE;
2299 DEBUGOUT1("hw->fc = %d\n", hw->fc);
2301 /* Read the Device Control Register. */
2302 ctrl = er32(CTRL);
2304 /* Set the bits to Force Speed and Duplex in the Device Ctrl Reg. */
2305 ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
2306 ctrl &= ~(DEVICE_SPEED_MASK);
2308 /* Clear the Auto Speed Detect Enable bit. */
2309 ctrl &= ~E1000_CTRL_ASDE;
2311 /* Read the MII Control Register. */
2312 ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &mii_ctrl_reg);
2313 if (ret_val)
2314 return ret_val;
2316 /* We need to disable autoneg in order to force link and duplex. */
2318 mii_ctrl_reg &= ~MII_CR_AUTO_NEG_EN;
2320 /* Are we forcing Full or Half Duplex? */
2321 if (hw->forced_speed_duplex == e1000_100_full ||
2322 hw->forced_speed_duplex == e1000_10_full) {
2323 /* We want to force full duplex so we SET the full duplex bits in the
2324 * Device and MII Control Registers.
2326 ctrl |= E1000_CTRL_FD;
2327 mii_ctrl_reg |= MII_CR_FULL_DUPLEX;
2328 DEBUGOUT("Full Duplex\n");
2329 } else {
2330 /* We want to force half duplex so we CLEAR the full duplex bits in
2331 * the Device and MII Control Registers.
2333 ctrl &= ~E1000_CTRL_FD;
2334 mii_ctrl_reg &= ~MII_CR_FULL_DUPLEX;
2335 DEBUGOUT("Half Duplex\n");
2338 /* Are we forcing 100Mbps??? */
2339 if (hw->forced_speed_duplex == e1000_100_full ||
2340 hw->forced_speed_duplex == e1000_100_half) {
2341 /* Set the 100Mb bit and turn off the 1000Mb and 10Mb bits. */
2342 ctrl |= E1000_CTRL_SPD_100;
2343 mii_ctrl_reg |= MII_CR_SPEED_100;
2344 mii_ctrl_reg &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10);
2345 DEBUGOUT("Forcing 100mb ");
2346 } else {
2347 /* Set the 10Mb bit and turn off the 1000Mb and 100Mb bits. */
2348 ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
2349 mii_ctrl_reg |= MII_CR_SPEED_10;
2350 mii_ctrl_reg &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100);
2351 DEBUGOUT("Forcing 10mb ");
2354 e1000_config_collision_dist(hw);
2356 /* Write the configured values back to the Device Control Reg. */
2357 ew32(CTRL, ctrl);
2359 if ((hw->phy_type == e1000_phy_m88) ||
2360 (hw->phy_type == e1000_phy_gg82563)) {
2361 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
2362 if (ret_val)
2363 return ret_val;
2365 /* Clear Auto-Crossover to force MDI manually. M88E1000 requires MDI
2366 * forced whenever speed are duplex are forced.
2368 phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
2369 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
2370 if (ret_val)
2371 return ret_val;
2373 DEBUGOUT1("M88E1000 PSCR: %x \n", phy_data);
2375 /* Need to reset the PHY or these changes will be ignored */
2376 mii_ctrl_reg |= MII_CR_RESET;
2378 /* Disable MDI-X support for 10/100 */
2379 } else if (hw->phy_type == e1000_phy_ife) {
2380 ret_val = e1000_read_phy_reg(hw, IFE_PHY_MDIX_CONTROL, &phy_data);
2381 if (ret_val)
2382 return ret_val;
2384 phy_data &= ~IFE_PMC_AUTO_MDIX;
2385 phy_data &= ~IFE_PMC_FORCE_MDIX;
2387 ret_val = e1000_write_phy_reg(hw, IFE_PHY_MDIX_CONTROL, phy_data);
2388 if (ret_val)
2389 return ret_val;
2391 } else {
2392 /* Clear Auto-Crossover to force MDI manually. IGP requires MDI
2393 * forced whenever speed or duplex are forced.
2395 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
2396 if (ret_val)
2397 return ret_val;
2399 phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
2400 phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
2402 ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
2403 if (ret_val)
2404 return ret_val;
2407 /* Write back the modified PHY MII control register. */
2408 ret_val = e1000_write_phy_reg(hw, PHY_CTRL, mii_ctrl_reg);
2409 if (ret_val)
2410 return ret_val;
2412 udelay(1);
2414 /* The wait_autoneg_complete flag may be a little misleading here.
2415 * Since we are forcing speed and duplex, Auto-Neg is not enabled.
2416 * But we do want to delay for a period while forcing only so we
2417 * don't generate false No Link messages. So we will wait here
2418 * only if the user has set wait_autoneg_complete to 1, which is
2419 * the default.
2421 if (hw->wait_autoneg_complete) {
2422 /* We will wait for autoneg to complete. */
2423 DEBUGOUT("Waiting for forced speed/duplex link.\n");
2424 mii_status_reg = 0;
2426 /* We will wait for autoneg to complete or 4.5 seconds to expire. */
2427 for (i = PHY_FORCE_TIME; i > 0; i--) {
2428 /* Read the MII Status Register and wait for Auto-Neg Complete bit
2429 * to be set.
2431 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
2432 if (ret_val)
2433 return ret_val;
2435 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
2436 if (ret_val)
2437 return ret_val;
2439 if (mii_status_reg & MII_SR_LINK_STATUS) break;
2440 msleep(100);
2442 if ((i == 0) &&
2443 ((hw->phy_type == e1000_phy_m88) ||
2444 (hw->phy_type == e1000_phy_gg82563))) {
2445 /* We didn't get link. Reset the DSP and wait again for link. */
2446 ret_val = e1000_phy_reset_dsp(hw);
2447 if (ret_val) {
2448 DEBUGOUT("Error Resetting PHY DSP\n");
2449 return ret_val;
2452 /* This loop will early-out if the link condition has been met. */
2453 for (i = PHY_FORCE_TIME; i > 0; i--) {
2454 if (mii_status_reg & MII_SR_LINK_STATUS) break;
2455 msleep(100);
2456 /* Read the MII Status Register and wait for Auto-Neg Complete bit
2457 * to be set.
2459 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
2460 if (ret_val)
2461 return ret_val;
2463 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
2464 if (ret_val)
2465 return ret_val;
2469 if (hw->phy_type == e1000_phy_m88) {
2470 /* Because we reset the PHY above, we need to re-force TX_CLK in the
2471 * Extended PHY Specific Control Register to 25MHz clock. This value
2472 * defaults back to a 2.5MHz clock when the PHY is reset.
2474 ret_val = e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
2475 if (ret_val)
2476 return ret_val;
2478 phy_data |= M88E1000_EPSCR_TX_CLK_25;
2479 ret_val = e1000_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
2480 if (ret_val)
2481 return ret_val;
2483 /* In addition, because of the s/w reset above, we need to enable CRS on
2484 * TX. This must be set for both full and half duplex operation.
2486 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
2487 if (ret_val)
2488 return ret_val;
2490 phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
2491 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
2492 if (ret_val)
2493 return ret_val;
2495 if ((hw->mac_type == e1000_82544 || hw->mac_type == e1000_82543) &&
2496 (!hw->autoneg) && (hw->forced_speed_duplex == e1000_10_full ||
2497 hw->forced_speed_duplex == e1000_10_half)) {
2498 ret_val = e1000_polarity_reversal_workaround(hw);
2499 if (ret_val)
2500 return ret_val;
2502 } else if (hw->phy_type == e1000_phy_gg82563) {
2503 /* The TX_CLK of the Extended PHY Specific Control Register defaults
2504 * to 2.5MHz on a reset. We need to re-force it back to 25MHz, if
2505 * we're not in a forced 10/duplex configuration. */
2506 ret_val = e1000_read_phy_reg(hw, GG82563_PHY_MAC_SPEC_CTRL, &phy_data);
2507 if (ret_val)
2508 return ret_val;
2510 phy_data &= ~GG82563_MSCR_TX_CLK_MASK;
2511 if ((hw->forced_speed_duplex == e1000_10_full) ||
2512 (hw->forced_speed_duplex == e1000_10_half))
2513 phy_data |= GG82563_MSCR_TX_CLK_10MBPS_2_5MHZ;
2514 else
2515 phy_data |= GG82563_MSCR_TX_CLK_100MBPS_25MHZ;
2517 /* Also due to the reset, we need to enable CRS on Tx. */
2518 phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
2520 ret_val = e1000_write_phy_reg(hw, GG82563_PHY_MAC_SPEC_CTRL, phy_data);
2521 if (ret_val)
2522 return ret_val;
2524 return E1000_SUCCESS;
2527 /******************************************************************************
2528 * Sets the collision distance in the Transmit Control register
2530 * hw - Struct containing variables accessed by shared code
2532 * Link should have been established previously. Reads the speed and duplex
2533 * information from the Device Status register.
2534 ******************************************************************************/
2535 void e1000_config_collision_dist(struct e1000_hw *hw)
2537 u32 tctl, coll_dist;
2539 DEBUGFUNC("e1000_config_collision_dist");
2541 if (hw->mac_type < e1000_82543)
2542 coll_dist = E1000_COLLISION_DISTANCE_82542;
2543 else
2544 coll_dist = E1000_COLLISION_DISTANCE;
2546 tctl = er32(TCTL);
2548 tctl &= ~E1000_TCTL_COLD;
2549 tctl |= coll_dist << E1000_COLD_SHIFT;
2551 ew32(TCTL, tctl);
2552 E1000_WRITE_FLUSH();
2555 /******************************************************************************
2556 * Sets MAC speed and duplex settings to reflect the those in the PHY
2558 * hw - Struct containing variables accessed by shared code
2559 * mii_reg - data to write to the MII control register
2561 * The contents of the PHY register containing the needed information need to
2562 * be passed in.
2563 ******************************************************************************/
2564 static s32 e1000_config_mac_to_phy(struct e1000_hw *hw)
2566 u32 ctrl;
2567 s32 ret_val;
2568 u16 phy_data;
2570 DEBUGFUNC("e1000_config_mac_to_phy");
2572 /* 82544 or newer MAC, Auto Speed Detection takes care of
2573 * MAC speed/duplex configuration.*/
2574 if (hw->mac_type >= e1000_82544)
2575 return E1000_SUCCESS;
2577 /* Read the Device Control Register and set the bits to Force Speed
2578 * and Duplex.
2580 ctrl = er32(CTRL);
2581 ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
2582 ctrl &= ~(E1000_CTRL_SPD_SEL | E1000_CTRL_ILOS);
2584 /* Set up duplex in the Device Control and Transmit Control
2585 * registers depending on negotiated values.
2587 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
2588 if (ret_val)
2589 return ret_val;
2591 if (phy_data & M88E1000_PSSR_DPLX)
2592 ctrl |= E1000_CTRL_FD;
2593 else
2594 ctrl &= ~E1000_CTRL_FD;
2596 e1000_config_collision_dist(hw);
2598 /* Set up speed in the Device Control register depending on
2599 * negotiated values.
2601 if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS)
2602 ctrl |= E1000_CTRL_SPD_1000;
2603 else if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_100MBS)
2604 ctrl |= E1000_CTRL_SPD_100;
2606 /* Write the configured values back to the Device Control Reg. */
2607 ew32(CTRL, ctrl);
2608 return E1000_SUCCESS;
2611 /******************************************************************************
2612 * Forces the MAC's flow control settings.
2614 * hw - Struct containing variables accessed by shared code
2616 * Sets the TFCE and RFCE bits in the device control register to reflect
2617 * the adapter settings. TFCE and RFCE need to be explicitly set by
2618 * software when a Copper PHY is used because autonegotiation is managed
2619 * by the PHY rather than the MAC. Software must also configure these
2620 * bits when link is forced on a fiber connection.
2621 *****************************************************************************/
2622 s32 e1000_force_mac_fc(struct e1000_hw *hw)
2624 u32 ctrl;
2626 DEBUGFUNC("e1000_force_mac_fc");
2628 /* Get the current configuration of the Device Control Register */
2629 ctrl = er32(CTRL);
2631 /* Because we didn't get link via the internal auto-negotiation
2632 * mechanism (we either forced link or we got link via PHY
2633 * auto-neg), we have to manually enable/disable transmit an
2634 * receive flow control.
2636 * The "Case" statement below enables/disable flow control
2637 * according to the "hw->fc" parameter.
2639 * The possible values of the "fc" parameter are:
2640 * 0: Flow control is completely disabled
2641 * 1: Rx flow control is enabled (we can receive pause
2642 * frames but not send pause frames).
2643 * 2: Tx flow control is enabled (we can send pause frames
2644 * frames but we do not receive pause frames).
2645 * 3: Both Rx and TX flow control (symmetric) is enabled.
2646 * other: No other values should be possible at this point.
2649 switch (hw->fc) {
2650 case E1000_FC_NONE:
2651 ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
2652 break;
2653 case E1000_FC_RX_PAUSE:
2654 ctrl &= (~E1000_CTRL_TFCE);
2655 ctrl |= E1000_CTRL_RFCE;
2656 break;
2657 case E1000_FC_TX_PAUSE:
2658 ctrl &= (~E1000_CTRL_RFCE);
2659 ctrl |= E1000_CTRL_TFCE;
2660 break;
2661 case E1000_FC_FULL:
2662 ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
2663 break;
2664 default:
2665 DEBUGOUT("Flow control param set incorrectly\n");
2666 return -E1000_ERR_CONFIG;
2669 /* Disable TX Flow Control for 82542 (rev 2.0) */
2670 if (hw->mac_type == e1000_82542_rev2_0)
2671 ctrl &= (~E1000_CTRL_TFCE);
2673 ew32(CTRL, ctrl);
2674 return E1000_SUCCESS;
2677 /******************************************************************************
2678 * Configures flow control settings after link is established
2680 * hw - Struct containing variables accessed by shared code
2682 * Should be called immediately after a valid link has been established.
2683 * Forces MAC flow control settings if link was forced. When in MII/GMII mode
2684 * and autonegotiation is enabled, the MAC flow control settings will be set
2685 * based on the flow control negotiated by the PHY. In TBI mode, the TFCE
2686 * and RFCE bits will be automaticaly set to the negotiated flow control mode.
2687 *****************************************************************************/
2688 static s32 e1000_config_fc_after_link_up(struct e1000_hw *hw)
2690 s32 ret_val;
2691 u16 mii_status_reg;
2692 u16 mii_nway_adv_reg;
2693 u16 mii_nway_lp_ability_reg;
2694 u16 speed;
2695 u16 duplex;
2697 DEBUGFUNC("e1000_config_fc_after_link_up");
2699 /* Check for the case where we have fiber media and auto-neg failed
2700 * so we had to force link. In this case, we need to force the
2701 * configuration of the MAC to match the "fc" parameter.
2703 if (((hw->media_type == e1000_media_type_fiber) && (hw->autoneg_failed)) ||
2704 ((hw->media_type == e1000_media_type_internal_serdes) &&
2705 (hw->autoneg_failed)) ||
2706 ((hw->media_type == e1000_media_type_copper) && (!hw->autoneg))) {
2707 ret_val = e1000_force_mac_fc(hw);
2708 if (ret_val) {
2709 DEBUGOUT("Error forcing flow control settings\n");
2710 return ret_val;
2714 /* Check for the case where we have copper media and auto-neg is
2715 * enabled. In this case, we need to check and see if Auto-Neg
2716 * has completed, and if so, how the PHY and link partner has
2717 * flow control configured.
2719 if ((hw->media_type == e1000_media_type_copper) && hw->autoneg) {
2720 /* Read the MII Status Register and check to see if AutoNeg
2721 * has completed. We read this twice because this reg has
2722 * some "sticky" (latched) bits.
2724 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
2725 if (ret_val)
2726 return ret_val;
2727 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
2728 if (ret_val)
2729 return ret_val;
2731 if (mii_status_reg & MII_SR_AUTONEG_COMPLETE) {
2732 /* The AutoNeg process has completed, so we now need to
2733 * read both the Auto Negotiation Advertisement Register
2734 * (Address 4) and the Auto_Negotiation Base Page Ability
2735 * Register (Address 5) to determine how flow control was
2736 * negotiated.
2738 ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV,
2739 &mii_nway_adv_reg);
2740 if (ret_val)
2741 return ret_val;
2742 ret_val = e1000_read_phy_reg(hw, PHY_LP_ABILITY,
2743 &mii_nway_lp_ability_reg);
2744 if (ret_val)
2745 return ret_val;
2747 /* Two bits in the Auto Negotiation Advertisement Register
2748 * (Address 4) and two bits in the Auto Negotiation Base
2749 * Page Ability Register (Address 5) determine flow control
2750 * for both the PHY and the link partner. The following
2751 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
2752 * 1999, describes these PAUSE resolution bits and how flow
2753 * control is determined based upon these settings.
2754 * NOTE: DC = Don't Care
2756 * LOCAL DEVICE | LINK PARTNER
2757 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
2758 *-------|---------|-------|---------|--------------------
2759 * 0 | 0 | DC | DC | E1000_FC_NONE
2760 * 0 | 1 | 0 | DC | E1000_FC_NONE
2761 * 0 | 1 | 1 | 0 | E1000_FC_NONE
2762 * 0 | 1 | 1 | 1 | E1000_FC_TX_PAUSE
2763 * 1 | 0 | 0 | DC | E1000_FC_NONE
2764 * 1 | DC | 1 | DC | E1000_FC_FULL
2765 * 1 | 1 | 0 | 0 | E1000_FC_NONE
2766 * 1 | 1 | 0 | 1 | E1000_FC_RX_PAUSE
2769 /* Are both PAUSE bits set to 1? If so, this implies
2770 * Symmetric Flow Control is enabled at both ends. The
2771 * ASM_DIR bits are irrelevant per the spec.
2773 * For Symmetric Flow Control:
2775 * LOCAL DEVICE | LINK PARTNER
2776 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
2777 *-------|---------|-------|---------|--------------------
2778 * 1 | DC | 1 | DC | E1000_FC_FULL
2781 if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
2782 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
2783 /* Now we need to check if the user selected RX ONLY
2784 * of pause frames. In this case, we had to advertise
2785 * FULL flow control because we could not advertise RX
2786 * ONLY. Hence, we must now check to see if we need to
2787 * turn OFF the TRANSMISSION of PAUSE frames.
2789 if (hw->original_fc == E1000_FC_FULL) {
2790 hw->fc = E1000_FC_FULL;
2791 DEBUGOUT("Flow Control = FULL.\n");
2792 } else {
2793 hw->fc = E1000_FC_RX_PAUSE;
2794 DEBUGOUT("Flow Control = RX PAUSE frames only.\n");
2797 /* For receiving PAUSE frames ONLY.
2799 * LOCAL DEVICE | LINK PARTNER
2800 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
2801 *-------|---------|-------|---------|--------------------
2802 * 0 | 1 | 1 | 1 | E1000_FC_TX_PAUSE
2805 else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
2806 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
2807 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
2808 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
2809 hw->fc = E1000_FC_TX_PAUSE;
2810 DEBUGOUT("Flow Control = TX PAUSE frames only.\n");
2812 /* For transmitting PAUSE frames ONLY.
2814 * LOCAL DEVICE | LINK PARTNER
2815 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
2816 *-------|---------|-------|---------|--------------------
2817 * 1 | 1 | 0 | 1 | E1000_FC_RX_PAUSE
2820 else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
2821 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
2822 !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
2823 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
2824 hw->fc = E1000_FC_RX_PAUSE;
2825 DEBUGOUT("Flow Control = RX PAUSE frames only.\n");
2827 /* Per the IEEE spec, at this point flow control should be
2828 * disabled. However, we want to consider that we could
2829 * be connected to a legacy switch that doesn't advertise
2830 * desired flow control, but can be forced on the link
2831 * partner. So if we advertised no flow control, that is
2832 * what we will resolve to. If we advertised some kind of
2833 * receive capability (Rx Pause Only or Full Flow Control)
2834 * and the link partner advertised none, we will configure
2835 * ourselves to enable Rx Flow Control only. We can do
2836 * this safely for two reasons: If the link partner really
2837 * didn't want flow control enabled, and we enable Rx, no
2838 * harm done since we won't be receiving any PAUSE frames
2839 * anyway. If the intent on the link partner was to have
2840 * flow control enabled, then by us enabling RX only, we
2841 * can at least receive pause frames and process them.
2842 * This is a good idea because in most cases, since we are
2843 * predominantly a server NIC, more times than not we will
2844 * be asked to delay transmission of packets than asking
2845 * our link partner to pause transmission of frames.
2847 else if ((hw->original_fc == E1000_FC_NONE ||
2848 hw->original_fc == E1000_FC_TX_PAUSE) ||
2849 hw->fc_strict_ieee) {
2850 hw->fc = E1000_FC_NONE;
2851 DEBUGOUT("Flow Control = NONE.\n");
2852 } else {
2853 hw->fc = E1000_FC_RX_PAUSE;
2854 DEBUGOUT("Flow Control = RX PAUSE frames only.\n");
2857 /* Now we need to do one last check... If we auto-
2858 * negotiated to HALF DUPLEX, flow control should not be
2859 * enabled per IEEE 802.3 spec.
2861 ret_val = e1000_get_speed_and_duplex(hw, &speed, &duplex);
2862 if (ret_val) {
2863 DEBUGOUT("Error getting link speed and duplex\n");
2864 return ret_val;
2867 if (duplex == HALF_DUPLEX)
2868 hw->fc = E1000_FC_NONE;
2870 /* Now we call a subroutine to actually force the MAC
2871 * controller to use the correct flow control settings.
2873 ret_val = e1000_force_mac_fc(hw);
2874 if (ret_val) {
2875 DEBUGOUT("Error forcing flow control settings\n");
2876 return ret_val;
2878 } else {
2879 DEBUGOUT("Copper PHY and Auto Neg has not completed.\n");
2882 return E1000_SUCCESS;
2885 /******************************************************************************
2886 * Checks to see if the link status of the hardware has changed.
2888 * hw - Struct containing variables accessed by shared code
2890 * Called by any function that needs to check the link status of the adapter.
2891 *****************************************************************************/
2892 s32 e1000_check_for_link(struct e1000_hw *hw)
2894 u32 rxcw = 0;
2895 u32 ctrl;
2896 u32 status;
2897 u32 rctl;
2898 u32 icr;
2899 u32 signal = 0;
2900 s32 ret_val;
2901 u16 phy_data;
2903 DEBUGFUNC("e1000_check_for_link");
2905 ctrl = er32(CTRL);
2906 status = er32(STATUS);
2908 /* On adapters with a MAC newer than 82544, SW Defineable pin 1 will be
2909 * set when the optics detect a signal. On older adapters, it will be
2910 * cleared when there is a signal. This applies to fiber media only.
2912 if ((hw->media_type == e1000_media_type_fiber) ||
2913 (hw->media_type == e1000_media_type_internal_serdes)) {
2914 rxcw = er32(RXCW);
2916 if (hw->media_type == e1000_media_type_fiber) {
2917 signal = (hw->mac_type > e1000_82544) ? E1000_CTRL_SWDPIN1 : 0;
2918 if (status & E1000_STATUS_LU)
2919 hw->get_link_status = false;
2923 /* If we have a copper PHY then we only want to go out to the PHY
2924 * registers to see if Auto-Neg has completed and/or if our link
2925 * status has changed. The get_link_status flag will be set if we
2926 * receive a Link Status Change interrupt or we have Rx Sequence
2927 * Errors.
2929 if ((hw->media_type == e1000_media_type_copper) && hw->get_link_status) {
2930 /* First we want to see if the MII Status Register reports
2931 * link. If so, then we want to get the current speed/duplex
2932 * of the PHY.
2933 * Read the register twice since the link bit is sticky.
2935 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
2936 if (ret_val)
2937 return ret_val;
2938 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
2939 if (ret_val)
2940 return ret_val;
2942 if (phy_data & MII_SR_LINK_STATUS) {
2943 hw->get_link_status = false;
2944 /* Check if there was DownShift, must be checked immediately after
2945 * link-up */
2946 e1000_check_downshift(hw);
2948 /* If we are on 82544 or 82543 silicon and speed/duplex
2949 * are forced to 10H or 10F, then we will implement the polarity
2950 * reversal workaround. We disable interrupts first, and upon
2951 * returning, place the devices interrupt state to its previous
2952 * value except for the link status change interrupt which will
2953 * happen due to the execution of this workaround.
2956 if ((hw->mac_type == e1000_82544 || hw->mac_type == e1000_82543) &&
2957 (!hw->autoneg) &&
2958 (hw->forced_speed_duplex == e1000_10_full ||
2959 hw->forced_speed_duplex == e1000_10_half)) {
2960 ew32(IMC, 0xffffffff);
2961 ret_val = e1000_polarity_reversal_workaround(hw);
2962 icr = er32(ICR);
2963 ew32(ICS, (icr & ~E1000_ICS_LSC));
2964 ew32(IMS, IMS_ENABLE_MASK);
2967 } else {
2968 /* No link detected */
2969 e1000_config_dsp_after_link_change(hw, false);
2970 return 0;
2973 /* If we are forcing speed/duplex, then we simply return since
2974 * we have already determined whether we have link or not.
2976 if (!hw->autoneg) return -E1000_ERR_CONFIG;
2978 /* optimize the dsp settings for the igp phy */
2979 e1000_config_dsp_after_link_change(hw, true);
2981 /* We have a M88E1000 PHY and Auto-Neg is enabled. If we
2982 * have Si on board that is 82544 or newer, Auto
2983 * Speed Detection takes care of MAC speed/duplex
2984 * configuration. So we only need to configure Collision
2985 * Distance in the MAC. Otherwise, we need to force
2986 * speed/duplex on the MAC to the current PHY speed/duplex
2987 * settings.
2989 if (hw->mac_type >= e1000_82544)
2990 e1000_config_collision_dist(hw);
2991 else {
2992 ret_val = e1000_config_mac_to_phy(hw);
2993 if (ret_val) {
2994 DEBUGOUT("Error configuring MAC to PHY settings\n");
2995 return ret_val;
2999 /* Configure Flow Control now that Auto-Neg has completed. First, we
3000 * need to restore the desired flow control settings because we may
3001 * have had to re-autoneg with a different link partner.
3003 ret_val = e1000_config_fc_after_link_up(hw);
3004 if (ret_val) {
3005 DEBUGOUT("Error configuring flow control\n");
3006 return ret_val;
3009 /* At this point we know that we are on copper and we have
3010 * auto-negotiated link. These are conditions for checking the link
3011 * partner capability register. We use the link speed to determine if
3012 * TBI compatibility needs to be turned on or off. If the link is not
3013 * at gigabit speed, then TBI compatibility is not needed. If we are
3014 * at gigabit speed, we turn on TBI compatibility.
3016 if (hw->tbi_compatibility_en) {
3017 u16 speed, duplex;
3018 ret_val = e1000_get_speed_and_duplex(hw, &speed, &duplex);
3019 if (ret_val) {
3020 DEBUGOUT("Error getting link speed and duplex\n");
3021 return ret_val;
3023 if (speed != SPEED_1000) {
3024 /* If link speed is not set to gigabit speed, we do not need
3025 * to enable TBI compatibility.
3027 if (hw->tbi_compatibility_on) {
3028 /* If we previously were in the mode, turn it off. */
3029 rctl = er32(RCTL);
3030 rctl &= ~E1000_RCTL_SBP;
3031 ew32(RCTL, rctl);
3032 hw->tbi_compatibility_on = false;
3034 } else {
3035 /* If TBI compatibility is was previously off, turn it on. For
3036 * compatibility with a TBI link partner, we will store bad
3037 * packets. Some frames have an additional byte on the end and
3038 * will look like CRC errors to to the hardware.
3040 if (!hw->tbi_compatibility_on) {
3041 hw->tbi_compatibility_on = true;
3042 rctl = er32(RCTL);
3043 rctl |= E1000_RCTL_SBP;
3044 ew32(RCTL, rctl);
3049 /* If we don't have link (auto-negotiation failed or link partner cannot
3050 * auto-negotiate), the cable is plugged in (we have signal), and our
3051 * link partner is not trying to auto-negotiate with us (we are receiving
3052 * idles or data), we need to force link up. We also need to give
3053 * auto-negotiation time to complete, in case the cable was just plugged
3054 * in. The autoneg_failed flag does this.
3056 else if ((((hw->media_type == e1000_media_type_fiber) &&
3057 ((ctrl & E1000_CTRL_SWDPIN1) == signal)) ||
3058 (hw->media_type == e1000_media_type_internal_serdes)) &&
3059 (!(status & E1000_STATUS_LU)) &&
3060 (!(rxcw & E1000_RXCW_C))) {
3061 if (hw->autoneg_failed == 0) {
3062 hw->autoneg_failed = 1;
3063 return 0;
3065 DEBUGOUT("NOT RXing /C/, disable AutoNeg and force link.\n");
3067 /* Disable auto-negotiation in the TXCW register */
3068 ew32(TXCW, (hw->txcw & ~E1000_TXCW_ANE));
3070 /* Force link-up and also force full-duplex. */
3071 ctrl = er32(CTRL);
3072 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
3073 ew32(CTRL, ctrl);
3075 /* Configure Flow Control after forcing link up. */
3076 ret_val = e1000_config_fc_after_link_up(hw);
3077 if (ret_val) {
3078 DEBUGOUT("Error configuring flow control\n");
3079 return ret_val;
3082 /* If we are forcing link and we are receiving /C/ ordered sets, re-enable
3083 * auto-negotiation in the TXCW register and disable forced link in the
3084 * Device Control register in an attempt to auto-negotiate with our link
3085 * partner.
3087 else if (((hw->media_type == e1000_media_type_fiber) ||
3088 (hw->media_type == e1000_media_type_internal_serdes)) &&
3089 (ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
3090 DEBUGOUT("RXing /C/, enable AutoNeg and stop forcing link.\n");
3091 ew32(TXCW, hw->txcw);
3092 ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
3094 hw->serdes_link_down = false;
3096 /* If we force link for non-auto-negotiation switch, check link status
3097 * based on MAC synchronization for internal serdes media type.
3099 else if ((hw->media_type == e1000_media_type_internal_serdes) &&
3100 !(E1000_TXCW_ANE & er32(TXCW))) {
3101 /* SYNCH bit and IV bit are sticky. */
3102 udelay(10);
3103 if (E1000_RXCW_SYNCH & er32(RXCW)) {
3104 if (!(rxcw & E1000_RXCW_IV)) {
3105 hw->serdes_link_down = false;
3106 DEBUGOUT("SERDES: Link is up.\n");
3108 } else {
3109 hw->serdes_link_down = true;
3110 DEBUGOUT("SERDES: Link is down.\n");
3113 if ((hw->media_type == e1000_media_type_internal_serdes) &&
3114 (E1000_TXCW_ANE & er32(TXCW))) {
3115 hw->serdes_link_down = !(E1000_STATUS_LU & er32(STATUS));
3117 return E1000_SUCCESS;
3120 /******************************************************************************
3121 * Detects the current speed and duplex settings of the hardware.
3123 * hw - Struct containing variables accessed by shared code
3124 * speed - Speed of the connection
3125 * duplex - Duplex setting of the connection
3126 *****************************************************************************/
3127 s32 e1000_get_speed_and_duplex(struct e1000_hw *hw, u16 *speed, u16 *duplex)
3129 u32 status;
3130 s32 ret_val;
3131 u16 phy_data;
3133 DEBUGFUNC("e1000_get_speed_and_duplex");
3135 if (hw->mac_type >= e1000_82543) {
3136 status = er32(STATUS);
3137 if (status & E1000_STATUS_SPEED_1000) {
3138 *speed = SPEED_1000;
3139 DEBUGOUT("1000 Mbs, ");
3140 } else if (status & E1000_STATUS_SPEED_100) {
3141 *speed = SPEED_100;
3142 DEBUGOUT("100 Mbs, ");
3143 } else {
3144 *speed = SPEED_10;
3145 DEBUGOUT("10 Mbs, ");
3148 if (status & E1000_STATUS_FD) {
3149 *duplex = FULL_DUPLEX;
3150 DEBUGOUT("Full Duplex\n");
3151 } else {
3152 *duplex = HALF_DUPLEX;
3153 DEBUGOUT(" Half Duplex\n");
3155 } else {
3156 DEBUGOUT("1000 Mbs, Full Duplex\n");
3157 *speed = SPEED_1000;
3158 *duplex = FULL_DUPLEX;
3161 /* IGP01 PHY may advertise full duplex operation after speed downgrade even
3162 * if it is operating at half duplex. Here we set the duplex settings to
3163 * match the duplex in the link partner's capabilities.
3165 if (hw->phy_type == e1000_phy_igp && hw->speed_downgraded) {
3166 ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_EXP, &phy_data);
3167 if (ret_val)
3168 return ret_val;
3170 if (!(phy_data & NWAY_ER_LP_NWAY_CAPS))
3171 *duplex = HALF_DUPLEX;
3172 else {
3173 ret_val = e1000_read_phy_reg(hw, PHY_LP_ABILITY, &phy_data);
3174 if (ret_val)
3175 return ret_val;
3176 if ((*speed == SPEED_100 && !(phy_data & NWAY_LPAR_100TX_FD_CAPS)) ||
3177 (*speed == SPEED_10 && !(phy_data & NWAY_LPAR_10T_FD_CAPS)))
3178 *duplex = HALF_DUPLEX;
3182 if ((hw->mac_type == e1000_80003es2lan) &&
3183 (hw->media_type == e1000_media_type_copper)) {
3184 if (*speed == SPEED_1000)
3185 ret_val = e1000_configure_kmrn_for_1000(hw);
3186 else
3187 ret_val = e1000_configure_kmrn_for_10_100(hw, *duplex);
3188 if (ret_val)
3189 return ret_val;
3192 if ((hw->phy_type == e1000_phy_igp_3) && (*speed == SPEED_1000)) {
3193 ret_val = e1000_kumeran_lock_loss_workaround(hw);
3194 if (ret_val)
3195 return ret_val;
3198 return E1000_SUCCESS;
3201 /******************************************************************************
3202 * Blocks until autoneg completes or times out (~4.5 seconds)
3204 * hw - Struct containing variables accessed by shared code
3205 ******************************************************************************/
3206 static s32 e1000_wait_autoneg(struct e1000_hw *hw)
3208 s32 ret_val;
3209 u16 i;
3210 u16 phy_data;
3212 DEBUGFUNC("e1000_wait_autoneg");
3213 DEBUGOUT("Waiting for Auto-Neg to complete.\n");
3215 /* We will wait for autoneg to complete or 4.5 seconds to expire. */
3216 for (i = PHY_AUTO_NEG_TIME; i > 0; i--) {
3217 /* Read the MII Status Register and wait for Auto-Neg
3218 * Complete bit to be set.
3220 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
3221 if (ret_val)
3222 return ret_val;
3223 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
3224 if (ret_val)
3225 return ret_val;
3226 if (phy_data & MII_SR_AUTONEG_COMPLETE) {
3227 return E1000_SUCCESS;
3229 msleep(100);
3231 return E1000_SUCCESS;
3234 /******************************************************************************
3235 * Raises the Management Data Clock
3237 * hw - Struct containing variables accessed by shared code
3238 * ctrl - Device control register's current value
3239 ******************************************************************************/
3240 static void e1000_raise_mdi_clk(struct e1000_hw *hw, u32 *ctrl)
3242 /* Raise the clock input to the Management Data Clock (by setting the MDC
3243 * bit), and then delay 10 microseconds.
3245 ew32(CTRL, (*ctrl | E1000_CTRL_MDC));
3246 E1000_WRITE_FLUSH();
3247 udelay(10);
3250 /******************************************************************************
3251 * Lowers the Management Data Clock
3253 * hw - Struct containing variables accessed by shared code
3254 * ctrl - Device control register's current value
3255 ******************************************************************************/
3256 static void e1000_lower_mdi_clk(struct e1000_hw *hw, u32 *ctrl)
3258 /* Lower the clock input to the Management Data Clock (by clearing the MDC
3259 * bit), and then delay 10 microseconds.
3261 ew32(CTRL, (*ctrl & ~E1000_CTRL_MDC));
3262 E1000_WRITE_FLUSH();
3263 udelay(10);
3266 /******************************************************************************
3267 * Shifts data bits out to the PHY
3269 * hw - Struct containing variables accessed by shared code
3270 * data - Data to send out to the PHY
3271 * count - Number of bits to shift out
3273 * Bits are shifted out in MSB to LSB order.
3274 ******************************************************************************/
3275 static void e1000_shift_out_mdi_bits(struct e1000_hw *hw, u32 data, u16 count)
3277 u32 ctrl;
3278 u32 mask;
3280 /* We need to shift "count" number of bits out to the PHY. So, the value
3281 * in the "data" parameter will be shifted out to the PHY one bit at a
3282 * time. In order to do this, "data" must be broken down into bits.
3284 mask = 0x01;
3285 mask <<= (count - 1);
3287 ctrl = er32(CTRL);
3289 /* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */
3290 ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR);
3292 while (mask) {
3293 /* A "1" is shifted out to the PHY by setting the MDIO bit to "1" and
3294 * then raising and lowering the Management Data Clock. A "0" is
3295 * shifted out to the PHY by setting the MDIO bit to "0" and then
3296 * raising and lowering the clock.
3298 if (data & mask)
3299 ctrl |= E1000_CTRL_MDIO;
3300 else
3301 ctrl &= ~E1000_CTRL_MDIO;
3303 ew32(CTRL, ctrl);
3304 E1000_WRITE_FLUSH();
3306 udelay(10);
3308 e1000_raise_mdi_clk(hw, &ctrl);
3309 e1000_lower_mdi_clk(hw, &ctrl);
3311 mask = mask >> 1;
3315 /******************************************************************************
3316 * Shifts data bits in from the PHY
3318 * hw - Struct containing variables accessed by shared code
3320 * Bits are shifted in in MSB to LSB order.
3321 ******************************************************************************/
3322 static u16 e1000_shift_in_mdi_bits(struct e1000_hw *hw)
3324 u32 ctrl;
3325 u16 data = 0;
3326 u8 i;
3328 /* In order to read a register from the PHY, we need to shift in a total
3329 * of 18 bits from the PHY. The first two bit (turnaround) times are used
3330 * to avoid contention on the MDIO pin when a read operation is performed.
3331 * These two bits are ignored by us and thrown away. Bits are "shifted in"
3332 * by raising the input to the Management Data Clock (setting the MDC bit),
3333 * and then reading the value of the MDIO bit.
3335 ctrl = er32(CTRL);
3337 /* Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as input. */
3338 ctrl &= ~E1000_CTRL_MDIO_DIR;
3339 ctrl &= ~E1000_CTRL_MDIO;
3341 ew32(CTRL, ctrl);
3342 E1000_WRITE_FLUSH();
3344 /* Raise and Lower the clock before reading in the data. This accounts for
3345 * the turnaround bits. The first clock occurred when we clocked out the
3346 * last bit of the Register Address.
3348 e1000_raise_mdi_clk(hw, &ctrl);
3349 e1000_lower_mdi_clk(hw, &ctrl);
3351 for (data = 0, i = 0; i < 16; i++) {
3352 data = data << 1;
3353 e1000_raise_mdi_clk(hw, &ctrl);
3354 ctrl = er32(CTRL);
3355 /* Check to see if we shifted in a "1". */
3356 if (ctrl & E1000_CTRL_MDIO)
3357 data |= 1;
3358 e1000_lower_mdi_clk(hw, &ctrl);
3361 e1000_raise_mdi_clk(hw, &ctrl);
3362 e1000_lower_mdi_clk(hw, &ctrl);
3364 return data;
3367 static s32 e1000_swfw_sync_acquire(struct e1000_hw *hw, u16 mask)
3369 u32 swfw_sync = 0;
3370 u32 swmask = mask;
3371 u32 fwmask = mask << 16;
3372 s32 timeout = 200;
3374 DEBUGFUNC("e1000_swfw_sync_acquire");
3376 if (hw->swfwhw_semaphore_present)
3377 return e1000_get_software_flag(hw);
3379 if (!hw->swfw_sync_present)
3380 return e1000_get_hw_eeprom_semaphore(hw);
3382 while (timeout) {
3383 if (e1000_get_hw_eeprom_semaphore(hw))
3384 return -E1000_ERR_SWFW_SYNC;
3386 swfw_sync = er32(SW_FW_SYNC);
3387 if (!(swfw_sync & (fwmask | swmask))) {
3388 break;
3391 /* firmware currently using resource (fwmask) */
3392 /* or other software thread currently using resource (swmask) */
3393 e1000_put_hw_eeprom_semaphore(hw);
3394 mdelay(5);
3395 timeout--;
3398 if (!timeout) {
3399 DEBUGOUT("Driver can't access resource, SW_FW_SYNC timeout.\n");
3400 return -E1000_ERR_SWFW_SYNC;
3403 swfw_sync |= swmask;
3404 ew32(SW_FW_SYNC, swfw_sync);
3406 e1000_put_hw_eeprom_semaphore(hw);
3407 return E1000_SUCCESS;
3410 static void e1000_swfw_sync_release(struct e1000_hw *hw, u16 mask)
3412 u32 swfw_sync;
3413 u32 swmask = mask;
3415 DEBUGFUNC("e1000_swfw_sync_release");
3417 if (hw->swfwhw_semaphore_present) {
3418 e1000_release_software_flag(hw);
3419 return;
3422 if (!hw->swfw_sync_present) {
3423 e1000_put_hw_eeprom_semaphore(hw);
3424 return;
3427 /* if (e1000_get_hw_eeprom_semaphore(hw))
3428 * return -E1000_ERR_SWFW_SYNC; */
3429 while (e1000_get_hw_eeprom_semaphore(hw) != E1000_SUCCESS);
3430 /* empty */
3432 swfw_sync = er32(SW_FW_SYNC);
3433 swfw_sync &= ~swmask;
3434 ew32(SW_FW_SYNC, swfw_sync);
3436 e1000_put_hw_eeprom_semaphore(hw);
3439 /*****************************************************************************
3440 * Reads the value from a PHY register, if the value is on a specific non zero
3441 * page, sets the page first.
3442 * hw - Struct containing variables accessed by shared code
3443 * reg_addr - address of the PHY register to read
3444 ******************************************************************************/
3445 s32 e1000_read_phy_reg(struct e1000_hw *hw, u32 reg_addr, u16 *phy_data)
3447 u32 ret_val;
3448 u16 swfw;
3450 DEBUGFUNC("e1000_read_phy_reg");
3452 if ((hw->mac_type == e1000_80003es2lan) &&
3453 (er32(STATUS) & E1000_STATUS_FUNC_1)) {
3454 swfw = E1000_SWFW_PHY1_SM;
3455 } else {
3456 swfw = E1000_SWFW_PHY0_SM;
3458 if (e1000_swfw_sync_acquire(hw, swfw))
3459 return -E1000_ERR_SWFW_SYNC;
3461 if ((hw->phy_type == e1000_phy_igp ||
3462 hw->phy_type == e1000_phy_igp_3 ||
3463 hw->phy_type == e1000_phy_igp_2) &&
3464 (reg_addr > MAX_PHY_MULTI_PAGE_REG)) {
3465 ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT,
3466 (u16)reg_addr);
3467 if (ret_val) {
3468 e1000_swfw_sync_release(hw, swfw);
3469 return ret_val;
3471 } else if (hw->phy_type == e1000_phy_gg82563) {
3472 if (((reg_addr & MAX_PHY_REG_ADDRESS) > MAX_PHY_MULTI_PAGE_REG) ||
3473 (hw->mac_type == e1000_80003es2lan)) {
3474 /* Select Configuration Page */
3475 if ((reg_addr & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) {
3476 ret_val = e1000_write_phy_reg_ex(hw, GG82563_PHY_PAGE_SELECT,
3477 (u16)((u16)reg_addr >> GG82563_PAGE_SHIFT));
3478 } else {
3479 /* Use Alternative Page Select register to access
3480 * registers 30 and 31
3482 ret_val = e1000_write_phy_reg_ex(hw,
3483 GG82563_PHY_PAGE_SELECT_ALT,
3484 (u16)((u16)reg_addr >> GG82563_PAGE_SHIFT));
3487 if (ret_val) {
3488 e1000_swfw_sync_release(hw, swfw);
3489 return ret_val;
3494 ret_val = e1000_read_phy_reg_ex(hw, MAX_PHY_REG_ADDRESS & reg_addr,
3495 phy_data);
3497 e1000_swfw_sync_release(hw, swfw);
3498 return ret_val;
3501 static s32 e1000_read_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr,
3502 u16 *phy_data)
3504 u32 i;
3505 u32 mdic = 0;
3506 const u32 phy_addr = 1;
3508 DEBUGFUNC("e1000_read_phy_reg_ex");
3510 if (reg_addr > MAX_PHY_REG_ADDRESS) {
3511 DEBUGOUT1("PHY Address %d is out of range\n", reg_addr);
3512 return -E1000_ERR_PARAM;
3515 if (hw->mac_type > e1000_82543) {
3516 /* Set up Op-code, Phy Address, and register address in the MDI
3517 * Control register. The MAC will take care of interfacing with the
3518 * PHY to retrieve the desired data.
3520 mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) |
3521 (phy_addr << E1000_MDIC_PHY_SHIFT) |
3522 (E1000_MDIC_OP_READ));
3524 ew32(MDIC, mdic);
3526 /* Poll the ready bit to see if the MDI read completed */
3527 for (i = 0; i < 64; i++) {
3528 udelay(50);
3529 mdic = er32(MDIC);
3530 if (mdic & E1000_MDIC_READY) break;
3532 if (!(mdic & E1000_MDIC_READY)) {
3533 DEBUGOUT("MDI Read did not complete\n");
3534 return -E1000_ERR_PHY;
3536 if (mdic & E1000_MDIC_ERROR) {
3537 DEBUGOUT("MDI Error\n");
3538 return -E1000_ERR_PHY;
3540 *phy_data = (u16)mdic;
3541 } else {
3542 /* We must first send a preamble through the MDIO pin to signal the
3543 * beginning of an MII instruction. This is done by sending 32
3544 * consecutive "1" bits.
3546 e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
3548 /* Now combine the next few fields that are required for a read
3549 * operation. We use this method instead of calling the
3550 * e1000_shift_out_mdi_bits routine five different times. The format of
3551 * a MII read instruction consists of a shift out of 14 bits and is
3552 * defined as follows:
3553 * <Preamble><SOF><Op Code><Phy Addr><Reg Addr>
3554 * followed by a shift in of 18 bits. This first two bits shifted in
3555 * are TurnAround bits used to avoid contention on the MDIO pin when a
3556 * READ operation is performed. These two bits are thrown away
3557 * followed by a shift in of 16 bits which contains the desired data.
3559 mdic = ((reg_addr) | (phy_addr << 5) |
3560 (PHY_OP_READ << 10) | (PHY_SOF << 12));
3562 e1000_shift_out_mdi_bits(hw, mdic, 14);
3564 /* Now that we've shifted out the read command to the MII, we need to
3565 * "shift in" the 16-bit value (18 total bits) of the requested PHY
3566 * register address.
3568 *phy_data = e1000_shift_in_mdi_bits(hw);
3570 return E1000_SUCCESS;
3573 /******************************************************************************
3574 * Writes a value to a PHY register
3576 * hw - Struct containing variables accessed by shared code
3577 * reg_addr - address of the PHY register to write
3578 * data - data to write to the PHY
3579 ******************************************************************************/
3580 s32 e1000_write_phy_reg(struct e1000_hw *hw, u32 reg_addr, u16 phy_data)
3582 u32 ret_val;
3583 u16 swfw;
3585 DEBUGFUNC("e1000_write_phy_reg");
3587 if ((hw->mac_type == e1000_80003es2lan) &&
3588 (er32(STATUS) & E1000_STATUS_FUNC_1)) {
3589 swfw = E1000_SWFW_PHY1_SM;
3590 } else {
3591 swfw = E1000_SWFW_PHY0_SM;
3593 if (e1000_swfw_sync_acquire(hw, swfw))
3594 return -E1000_ERR_SWFW_SYNC;
3596 if ((hw->phy_type == e1000_phy_igp ||
3597 hw->phy_type == e1000_phy_igp_3 ||
3598 hw->phy_type == e1000_phy_igp_2) &&
3599 (reg_addr > MAX_PHY_MULTI_PAGE_REG)) {
3600 ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT,
3601 (u16)reg_addr);
3602 if (ret_val) {
3603 e1000_swfw_sync_release(hw, swfw);
3604 return ret_val;
3606 } else if (hw->phy_type == e1000_phy_gg82563) {
3607 if (((reg_addr & MAX_PHY_REG_ADDRESS) > MAX_PHY_MULTI_PAGE_REG) ||
3608 (hw->mac_type == e1000_80003es2lan)) {
3609 /* Select Configuration Page */
3610 if ((reg_addr & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) {
3611 ret_val = e1000_write_phy_reg_ex(hw, GG82563_PHY_PAGE_SELECT,
3612 (u16)((u16)reg_addr >> GG82563_PAGE_SHIFT));
3613 } else {
3614 /* Use Alternative Page Select register to access
3615 * registers 30 and 31
3617 ret_val = e1000_write_phy_reg_ex(hw,
3618 GG82563_PHY_PAGE_SELECT_ALT,
3619 (u16)((u16)reg_addr >> GG82563_PAGE_SHIFT));
3622 if (ret_val) {
3623 e1000_swfw_sync_release(hw, swfw);
3624 return ret_val;
3629 ret_val = e1000_write_phy_reg_ex(hw, MAX_PHY_REG_ADDRESS & reg_addr,
3630 phy_data);
3632 e1000_swfw_sync_release(hw, swfw);
3633 return ret_val;
3636 static s32 e1000_write_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr,
3637 u16 phy_data)
3639 u32 i;
3640 u32 mdic = 0;
3641 const u32 phy_addr = 1;
3643 DEBUGFUNC("e1000_write_phy_reg_ex");
3645 if (reg_addr > MAX_PHY_REG_ADDRESS) {
3646 DEBUGOUT1("PHY Address %d is out of range\n", reg_addr);
3647 return -E1000_ERR_PARAM;
3650 if (hw->mac_type > e1000_82543) {
3651 /* Set up Op-code, Phy Address, register address, and data intended
3652 * for the PHY register in the MDI Control register. The MAC will take
3653 * care of interfacing with the PHY to send the desired data.
3655 mdic = (((u32)phy_data) |
3656 (reg_addr << E1000_MDIC_REG_SHIFT) |
3657 (phy_addr << E1000_MDIC_PHY_SHIFT) |
3658 (E1000_MDIC_OP_WRITE));
3660 ew32(MDIC, mdic);
3662 /* Poll the ready bit to see if the MDI read completed */
3663 for (i = 0; i < 641; i++) {
3664 udelay(5);
3665 mdic = er32(MDIC);
3666 if (mdic & E1000_MDIC_READY) break;
3668 if (!(mdic & E1000_MDIC_READY)) {
3669 DEBUGOUT("MDI Write did not complete\n");
3670 return -E1000_ERR_PHY;
3672 } else {
3673 /* We'll need to use the SW defined pins to shift the write command
3674 * out to the PHY. We first send a preamble to the PHY to signal the
3675 * beginning of the MII instruction. This is done by sending 32
3676 * consecutive "1" bits.
3678 e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
3680 /* Now combine the remaining required fields that will indicate a
3681 * write operation. We use this method instead of calling the
3682 * e1000_shift_out_mdi_bits routine for each field in the command. The
3683 * format of a MII write instruction is as follows:
3684 * <Preamble><SOF><Op Code><Phy Addr><Reg Addr><Turnaround><Data>.
3686 mdic = ((PHY_TURNAROUND) | (reg_addr << 2) | (phy_addr << 7) |
3687 (PHY_OP_WRITE << 12) | (PHY_SOF << 14));
3688 mdic <<= 16;
3689 mdic |= (u32)phy_data;
3691 e1000_shift_out_mdi_bits(hw, mdic, 32);
3694 return E1000_SUCCESS;
3697 static s32 e1000_read_kmrn_reg(struct e1000_hw *hw, u32 reg_addr, u16 *data)
3699 u32 reg_val;
3700 u16 swfw;
3701 DEBUGFUNC("e1000_read_kmrn_reg");
3703 if ((hw->mac_type == e1000_80003es2lan) &&
3704 (er32(STATUS) & E1000_STATUS_FUNC_1)) {
3705 swfw = E1000_SWFW_PHY1_SM;
3706 } else {
3707 swfw = E1000_SWFW_PHY0_SM;
3709 if (e1000_swfw_sync_acquire(hw, swfw))
3710 return -E1000_ERR_SWFW_SYNC;
3712 /* Write register address */
3713 reg_val = ((reg_addr << E1000_KUMCTRLSTA_OFFSET_SHIFT) &
3714 E1000_KUMCTRLSTA_OFFSET) |
3715 E1000_KUMCTRLSTA_REN;
3716 ew32(KUMCTRLSTA, reg_val);
3717 udelay(2);
3719 /* Read the data returned */
3720 reg_val = er32(KUMCTRLSTA);
3721 *data = (u16)reg_val;
3723 e1000_swfw_sync_release(hw, swfw);
3724 return E1000_SUCCESS;
3727 static s32 e1000_write_kmrn_reg(struct e1000_hw *hw, u32 reg_addr, u16 data)
3729 u32 reg_val;
3730 u16 swfw;
3731 DEBUGFUNC("e1000_write_kmrn_reg");
3733 if ((hw->mac_type == e1000_80003es2lan) &&
3734 (er32(STATUS) & E1000_STATUS_FUNC_1)) {
3735 swfw = E1000_SWFW_PHY1_SM;
3736 } else {
3737 swfw = E1000_SWFW_PHY0_SM;
3739 if (e1000_swfw_sync_acquire(hw, swfw))
3740 return -E1000_ERR_SWFW_SYNC;
3742 reg_val = ((reg_addr << E1000_KUMCTRLSTA_OFFSET_SHIFT) &
3743 E1000_KUMCTRLSTA_OFFSET) | data;
3744 ew32(KUMCTRLSTA, reg_val);
3745 udelay(2);
3747 e1000_swfw_sync_release(hw, swfw);
3748 return E1000_SUCCESS;
3751 /******************************************************************************
3752 * Returns the PHY to the power-on reset state
3754 * hw - Struct containing variables accessed by shared code
3755 ******************************************************************************/
3756 s32 e1000_phy_hw_reset(struct e1000_hw *hw)
3758 u32 ctrl, ctrl_ext;
3759 u32 led_ctrl;
3760 s32 ret_val;
3761 u16 swfw;
3763 DEBUGFUNC("e1000_phy_hw_reset");
3765 /* In the case of the phy reset being blocked, it's not an error, we
3766 * simply return success without performing the reset. */
3767 ret_val = e1000_check_phy_reset_block(hw);
3768 if (ret_val)
3769 return E1000_SUCCESS;
3771 DEBUGOUT("Resetting Phy...\n");
3773 if (hw->mac_type > e1000_82543) {
3774 if ((hw->mac_type == e1000_80003es2lan) &&
3775 (er32(STATUS) & E1000_STATUS_FUNC_1)) {
3776 swfw = E1000_SWFW_PHY1_SM;
3777 } else {
3778 swfw = E1000_SWFW_PHY0_SM;
3780 if (e1000_swfw_sync_acquire(hw, swfw)) {
3781 DEBUGOUT("Unable to acquire swfw sync\n");
3782 return -E1000_ERR_SWFW_SYNC;
3784 /* Read the device control register and assert the E1000_CTRL_PHY_RST
3785 * bit. Then, take it out of reset.
3786 * For pre-e1000_82571 hardware, we delay for 10ms between the assert
3787 * and deassert. For e1000_82571 hardware and later, we instead delay
3788 * for 50us between and 10ms after the deassertion.
3790 ctrl = er32(CTRL);
3791 ew32(CTRL, ctrl | E1000_CTRL_PHY_RST);
3792 E1000_WRITE_FLUSH();
3794 if (hw->mac_type < e1000_82571)
3795 msleep(10);
3796 else
3797 udelay(100);
3799 ew32(CTRL, ctrl);
3800 E1000_WRITE_FLUSH();
3802 if (hw->mac_type >= e1000_82571)
3803 mdelay(10);
3805 e1000_swfw_sync_release(hw, swfw);
3806 } else {
3807 /* Read the Extended Device Control Register, assert the PHY_RESET_DIR
3808 * bit to put the PHY into reset. Then, take it out of reset.
3810 ctrl_ext = er32(CTRL_EXT);
3811 ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR;
3812 ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA;
3813 ew32(CTRL_EXT, ctrl_ext);
3814 E1000_WRITE_FLUSH();
3815 msleep(10);
3816 ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA;
3817 ew32(CTRL_EXT, ctrl_ext);
3818 E1000_WRITE_FLUSH();
3820 udelay(150);
3822 if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
3823 /* Configure activity LED after PHY reset */
3824 led_ctrl = er32(LEDCTL);
3825 led_ctrl &= IGP_ACTIVITY_LED_MASK;
3826 led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
3827 ew32(LEDCTL, led_ctrl);
3830 /* Wait for FW to finish PHY configuration. */
3831 ret_val = e1000_get_phy_cfg_done(hw);
3832 if (ret_val != E1000_SUCCESS)
3833 return ret_val;
3834 e1000_release_software_semaphore(hw);
3836 if ((hw->mac_type == e1000_ich8lan) && (hw->phy_type == e1000_phy_igp_3))
3837 ret_val = e1000_init_lcd_from_nvm(hw);
3839 return ret_val;
3842 /******************************************************************************
3843 * Resets the PHY
3845 * hw - Struct containing variables accessed by shared code
3847 * Sets bit 15 of the MII Control register
3848 ******************************************************************************/
3849 s32 e1000_phy_reset(struct e1000_hw *hw)
3851 s32 ret_val;
3852 u16 phy_data;
3854 DEBUGFUNC("e1000_phy_reset");
3856 /* In the case of the phy reset being blocked, it's not an error, we
3857 * simply return success without performing the reset. */
3858 ret_val = e1000_check_phy_reset_block(hw);
3859 if (ret_val)
3860 return E1000_SUCCESS;
3862 switch (hw->phy_type) {
3863 case e1000_phy_igp:
3864 case e1000_phy_igp_2:
3865 case e1000_phy_igp_3:
3866 case e1000_phy_ife:
3867 ret_val = e1000_phy_hw_reset(hw);
3868 if (ret_val)
3869 return ret_val;
3870 break;
3871 default:
3872 ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
3873 if (ret_val)
3874 return ret_val;
3876 phy_data |= MII_CR_RESET;
3877 ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
3878 if (ret_val)
3879 return ret_val;
3881 udelay(1);
3882 break;
3885 if (hw->phy_type == e1000_phy_igp || hw->phy_type == e1000_phy_igp_2)
3886 e1000_phy_init_script(hw);
3888 return E1000_SUCCESS;
3891 /******************************************************************************
3892 * Work-around for 82566 power-down: on D3 entry-
3893 * 1) disable gigabit link
3894 * 2) write VR power-down enable
3895 * 3) read it back
3896 * if successful continue, else issue LCD reset and repeat
3898 * hw - struct containing variables accessed by shared code
3899 ******************************************************************************/
3900 void e1000_phy_powerdown_workaround(struct e1000_hw *hw)
3902 s32 reg;
3903 u16 phy_data;
3904 s32 retry = 0;
3906 DEBUGFUNC("e1000_phy_powerdown_workaround");
3908 if (hw->phy_type != e1000_phy_igp_3)
3909 return;
3911 do {
3912 /* Disable link */
3913 reg = er32(PHY_CTRL);
3914 ew32(PHY_CTRL, reg | E1000_PHY_CTRL_GBE_DISABLE |
3915 E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
3917 /* Write VR power-down enable - bits 9:8 should be 10b */
3918 e1000_read_phy_reg(hw, IGP3_VR_CTRL, &phy_data);
3919 phy_data |= (1 << 9);
3920 phy_data &= ~(1 << 8);
3921 e1000_write_phy_reg(hw, IGP3_VR_CTRL, phy_data);
3923 /* Read it back and test */
3924 e1000_read_phy_reg(hw, IGP3_VR_CTRL, &phy_data);
3925 if (((phy_data & IGP3_VR_CTRL_MODE_MASK) == IGP3_VR_CTRL_MODE_SHUT) || retry)
3926 break;
3928 /* Issue PHY reset and repeat at most one more time */
3929 reg = er32(CTRL);
3930 ew32(CTRL, reg | E1000_CTRL_PHY_RST);
3931 retry++;
3932 } while (retry);
3934 return;
3938 /******************************************************************************
3939 * Work-around for 82566 Kumeran PCS lock loss:
3940 * On link status change (i.e. PCI reset, speed change) and link is up and
3941 * speed is gigabit-
3942 * 0) if workaround is optionally disabled do nothing
3943 * 1) wait 1ms for Kumeran link to come up
3944 * 2) check Kumeran Diagnostic register PCS lock loss bit
3945 * 3) if not set the link is locked (all is good), otherwise...
3946 * 4) reset the PHY
3947 * 5) repeat up to 10 times
3948 * Note: this is only called for IGP3 copper when speed is 1gb.
3950 * hw - struct containing variables accessed by shared code
3951 ******************************************************************************/
3952 static s32 e1000_kumeran_lock_loss_workaround(struct e1000_hw *hw)
3954 s32 ret_val;
3955 s32 reg;
3956 s32 cnt;
3957 u16 phy_data;
3959 if (hw->kmrn_lock_loss_workaround_disabled)
3960 return E1000_SUCCESS;
3962 /* Make sure link is up before proceeding. If not just return.
3963 * Attempting this while link is negotiating fouled up link
3964 * stability */
3965 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
3966 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
3968 if (phy_data & MII_SR_LINK_STATUS) {
3969 for (cnt = 0; cnt < 10; cnt++) {
3970 /* read once to clear */
3971 ret_val = e1000_read_phy_reg(hw, IGP3_KMRN_DIAG, &phy_data);
3972 if (ret_val)
3973 return ret_val;
3974 /* and again to get new status */
3975 ret_val = e1000_read_phy_reg(hw, IGP3_KMRN_DIAG, &phy_data);
3976 if (ret_val)
3977 return ret_val;
3979 /* check for PCS lock */
3980 if (!(phy_data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
3981 return E1000_SUCCESS;
3983 /* Issue PHY reset */
3984 e1000_phy_hw_reset(hw);
3985 mdelay(5);
3987 /* Disable GigE link negotiation */
3988 reg = er32(PHY_CTRL);
3989 ew32(PHY_CTRL, reg | E1000_PHY_CTRL_GBE_DISABLE |
3990 E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
3992 /* unable to acquire PCS lock */
3993 return E1000_ERR_PHY;
3996 return E1000_SUCCESS;
3999 /******************************************************************************
4000 * Probes the expected PHY address for known PHY IDs
4002 * hw - Struct containing variables accessed by shared code
4003 ******************************************************************************/
4004 static s32 e1000_detect_gig_phy(struct e1000_hw *hw)
4006 s32 phy_init_status, ret_val;
4007 u16 phy_id_high, phy_id_low;
4008 bool match = false;
4010 DEBUGFUNC("e1000_detect_gig_phy");
4012 if (hw->phy_id != 0)
4013 return E1000_SUCCESS;
4015 /* The 82571 firmware may still be configuring the PHY. In this
4016 * case, we cannot access the PHY until the configuration is done. So
4017 * we explicitly set the PHY values. */
4018 if (hw->mac_type == e1000_82571 ||
4019 hw->mac_type == e1000_82572) {
4020 hw->phy_id = IGP01E1000_I_PHY_ID;
4021 hw->phy_type = e1000_phy_igp_2;
4022 return E1000_SUCCESS;
4025 /* ESB-2 PHY reads require e1000_phy_gg82563 to be set because of a work-
4026 * around that forces PHY page 0 to be set or the reads fail. The rest of
4027 * the code in this routine uses e1000_read_phy_reg to read the PHY ID.
4028 * So for ESB-2 we need to have this set so our reads won't fail. If the
4029 * attached PHY is not a e1000_phy_gg82563, the routines below will figure
4030 * this out as well. */
4031 if (hw->mac_type == e1000_80003es2lan)
4032 hw->phy_type = e1000_phy_gg82563;
4034 /* Read the PHY ID Registers to identify which PHY is onboard. */
4035 ret_val = e1000_read_phy_reg(hw, PHY_ID1, &phy_id_high);
4036 if (ret_val)
4037 return ret_val;
4039 hw->phy_id = (u32)(phy_id_high << 16);
4040 udelay(20);
4041 ret_val = e1000_read_phy_reg(hw, PHY_ID2, &phy_id_low);
4042 if (ret_val)
4043 return ret_val;
4045 hw->phy_id |= (u32)(phy_id_low & PHY_REVISION_MASK);
4046 hw->phy_revision = (u32)phy_id_low & ~PHY_REVISION_MASK;
4048 switch (hw->mac_type) {
4049 case e1000_82543:
4050 if (hw->phy_id == M88E1000_E_PHY_ID) match = true;
4051 break;
4052 case e1000_82544:
4053 if (hw->phy_id == M88E1000_I_PHY_ID) match = true;
4054 break;
4055 case e1000_82540:
4056 case e1000_82545:
4057 case e1000_82545_rev_3:
4058 case e1000_82546:
4059 case e1000_82546_rev_3:
4060 if (hw->phy_id == M88E1011_I_PHY_ID) match = true;
4061 break;
4062 case e1000_82541:
4063 case e1000_82541_rev_2:
4064 case e1000_82547:
4065 case e1000_82547_rev_2:
4066 if (hw->phy_id == IGP01E1000_I_PHY_ID) match = true;
4067 break;
4068 case e1000_82573:
4069 if (hw->phy_id == M88E1111_I_PHY_ID) match = true;
4070 break;
4071 case e1000_80003es2lan:
4072 if (hw->phy_id == GG82563_E_PHY_ID) match = true;
4073 break;
4074 case e1000_ich8lan:
4075 if (hw->phy_id == IGP03E1000_E_PHY_ID) match = true;
4076 if (hw->phy_id == IFE_E_PHY_ID) match = true;
4077 if (hw->phy_id == IFE_PLUS_E_PHY_ID) match = true;
4078 if (hw->phy_id == IFE_C_E_PHY_ID) match = true;
4079 break;
4080 default:
4081 DEBUGOUT1("Invalid MAC type %d\n", hw->mac_type);
4082 return -E1000_ERR_CONFIG;
4084 phy_init_status = e1000_set_phy_type(hw);
4086 if ((match) && (phy_init_status == E1000_SUCCESS)) {
4087 DEBUGOUT1("PHY ID 0x%X detected\n", hw->phy_id);
4088 return E1000_SUCCESS;
4090 DEBUGOUT1("Invalid PHY ID 0x%X\n", hw->phy_id);
4091 return -E1000_ERR_PHY;
4094 /******************************************************************************
4095 * Resets the PHY's DSP
4097 * hw - Struct containing variables accessed by shared code
4098 ******************************************************************************/
4099 static s32 e1000_phy_reset_dsp(struct e1000_hw *hw)
4101 s32 ret_val;
4102 DEBUGFUNC("e1000_phy_reset_dsp");
4104 do {
4105 if (hw->phy_type != e1000_phy_gg82563) {
4106 ret_val = e1000_write_phy_reg(hw, 29, 0x001d);
4107 if (ret_val) break;
4109 ret_val = e1000_write_phy_reg(hw, 30, 0x00c1);
4110 if (ret_val) break;
4111 ret_val = e1000_write_phy_reg(hw, 30, 0x0000);
4112 if (ret_val) break;
4113 ret_val = E1000_SUCCESS;
4114 } while (0);
4116 return ret_val;
4119 /******************************************************************************
4120 * Get PHY information from various PHY registers for igp PHY only.
4122 * hw - Struct containing variables accessed by shared code
4123 * phy_info - PHY information structure
4124 ******************************************************************************/
4125 static s32 e1000_phy_igp_get_info(struct e1000_hw *hw,
4126 struct e1000_phy_info *phy_info)
4128 s32 ret_val;
4129 u16 phy_data, min_length, max_length, average;
4130 e1000_rev_polarity polarity;
4132 DEBUGFUNC("e1000_phy_igp_get_info");
4134 /* The downshift status is checked only once, after link is established,
4135 * and it stored in the hw->speed_downgraded parameter. */
4136 phy_info->downshift = (e1000_downshift)hw->speed_downgraded;
4138 /* IGP01E1000 does not need to support it. */
4139 phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_normal;
4141 /* IGP01E1000 always correct polarity reversal */
4142 phy_info->polarity_correction = e1000_polarity_reversal_enabled;
4144 /* Check polarity status */
4145 ret_val = e1000_check_polarity(hw, &polarity);
4146 if (ret_val)
4147 return ret_val;
4149 phy_info->cable_polarity = polarity;
4151 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS, &phy_data);
4152 if (ret_val)
4153 return ret_val;
4155 phy_info->mdix_mode = (e1000_auto_x_mode)((phy_data & IGP01E1000_PSSR_MDIX) >>
4156 IGP01E1000_PSSR_MDIX_SHIFT);
4158 if ((phy_data & IGP01E1000_PSSR_SPEED_MASK) ==
4159 IGP01E1000_PSSR_SPEED_1000MBPS) {
4160 /* Local/Remote Receiver Information are only valid at 1000 Mbps */
4161 ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
4162 if (ret_val)
4163 return ret_val;
4165 phy_info->local_rx = ((phy_data & SR_1000T_LOCAL_RX_STATUS) >>
4166 SR_1000T_LOCAL_RX_STATUS_SHIFT) ?
4167 e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
4168 phy_info->remote_rx = ((phy_data & SR_1000T_REMOTE_RX_STATUS) >>
4169 SR_1000T_REMOTE_RX_STATUS_SHIFT) ?
4170 e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
4172 /* Get cable length */
4173 ret_val = e1000_get_cable_length(hw, &min_length, &max_length);
4174 if (ret_val)
4175 return ret_val;
4177 /* Translate to old method */
4178 average = (max_length + min_length) / 2;
4180 if (average <= e1000_igp_cable_length_50)
4181 phy_info->cable_length = e1000_cable_length_50;
4182 else if (average <= e1000_igp_cable_length_80)
4183 phy_info->cable_length = e1000_cable_length_50_80;
4184 else if (average <= e1000_igp_cable_length_110)
4185 phy_info->cable_length = e1000_cable_length_80_110;
4186 else if (average <= e1000_igp_cable_length_140)
4187 phy_info->cable_length = e1000_cable_length_110_140;
4188 else
4189 phy_info->cable_length = e1000_cable_length_140;
4192 return E1000_SUCCESS;
4195 /******************************************************************************
4196 * Get PHY information from various PHY registers for ife PHY only.
4198 * hw - Struct containing variables accessed by shared code
4199 * phy_info - PHY information structure
4200 ******************************************************************************/
4201 static s32 e1000_phy_ife_get_info(struct e1000_hw *hw,
4202 struct e1000_phy_info *phy_info)
4204 s32 ret_val;
4205 u16 phy_data;
4206 e1000_rev_polarity polarity;
4208 DEBUGFUNC("e1000_phy_ife_get_info");
4210 phy_info->downshift = (e1000_downshift)hw->speed_downgraded;
4211 phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_normal;
4213 ret_val = e1000_read_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL, &phy_data);
4214 if (ret_val)
4215 return ret_val;
4216 phy_info->polarity_correction =
4217 ((phy_data & IFE_PSC_AUTO_POLARITY_DISABLE) >>
4218 IFE_PSC_AUTO_POLARITY_DISABLE_SHIFT) ?
4219 e1000_polarity_reversal_disabled : e1000_polarity_reversal_enabled;
4221 if (phy_info->polarity_correction == e1000_polarity_reversal_enabled) {
4222 ret_val = e1000_check_polarity(hw, &polarity);
4223 if (ret_val)
4224 return ret_val;
4225 } else {
4226 /* Polarity is forced. */
4227 polarity = ((phy_data & IFE_PSC_FORCE_POLARITY) >>
4228 IFE_PSC_FORCE_POLARITY_SHIFT) ?
4229 e1000_rev_polarity_reversed : e1000_rev_polarity_normal;
4231 phy_info->cable_polarity = polarity;
4233 ret_val = e1000_read_phy_reg(hw, IFE_PHY_MDIX_CONTROL, &phy_data);
4234 if (ret_val)
4235 return ret_val;
4237 phy_info->mdix_mode = (e1000_auto_x_mode)
4238 ((phy_data & (IFE_PMC_AUTO_MDIX | IFE_PMC_FORCE_MDIX)) >>
4239 IFE_PMC_MDIX_MODE_SHIFT);
4241 return E1000_SUCCESS;
4244 /******************************************************************************
4245 * Get PHY information from various PHY registers fot m88 PHY only.
4247 * hw - Struct containing variables accessed by shared code
4248 * phy_info - PHY information structure
4249 ******************************************************************************/
4250 static s32 e1000_phy_m88_get_info(struct e1000_hw *hw,
4251 struct e1000_phy_info *phy_info)
4253 s32 ret_val;
4254 u16 phy_data;
4255 e1000_rev_polarity polarity;
4257 DEBUGFUNC("e1000_phy_m88_get_info");
4259 /* The downshift status is checked only once, after link is established,
4260 * and it stored in the hw->speed_downgraded parameter. */
4261 phy_info->downshift = (e1000_downshift)hw->speed_downgraded;
4263 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
4264 if (ret_val)
4265 return ret_val;
4267 phy_info->extended_10bt_distance =
4268 ((phy_data & M88E1000_PSCR_10BT_EXT_DIST_ENABLE) >>
4269 M88E1000_PSCR_10BT_EXT_DIST_ENABLE_SHIFT) ?
4270 e1000_10bt_ext_dist_enable_lower : e1000_10bt_ext_dist_enable_normal;
4272 phy_info->polarity_correction =
4273 ((phy_data & M88E1000_PSCR_POLARITY_REVERSAL) >>
4274 M88E1000_PSCR_POLARITY_REVERSAL_SHIFT) ?
4275 e1000_polarity_reversal_disabled : e1000_polarity_reversal_enabled;
4277 /* Check polarity status */
4278 ret_val = e1000_check_polarity(hw, &polarity);
4279 if (ret_val)
4280 return ret_val;
4281 phy_info->cable_polarity = polarity;
4283 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
4284 if (ret_val)
4285 return ret_val;
4287 phy_info->mdix_mode = (e1000_auto_x_mode)((phy_data & M88E1000_PSSR_MDIX) >>
4288 M88E1000_PSSR_MDIX_SHIFT);
4290 if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) {
4291 /* Cable Length Estimation and Local/Remote Receiver Information
4292 * are only valid at 1000 Mbps.
4294 if (hw->phy_type != e1000_phy_gg82563) {
4295 phy_info->cable_length = (e1000_cable_length)((phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
4296 M88E1000_PSSR_CABLE_LENGTH_SHIFT);
4297 } else {
4298 ret_val = e1000_read_phy_reg(hw, GG82563_PHY_DSP_DISTANCE,
4299 &phy_data);
4300 if (ret_val)
4301 return ret_val;
4303 phy_info->cable_length = (e1000_cable_length)(phy_data & GG82563_DSPD_CABLE_LENGTH);
4306 ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
4307 if (ret_val)
4308 return ret_val;
4310 phy_info->local_rx = ((phy_data & SR_1000T_LOCAL_RX_STATUS) >>
4311 SR_1000T_LOCAL_RX_STATUS_SHIFT) ?
4312 e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
4313 phy_info->remote_rx = ((phy_data & SR_1000T_REMOTE_RX_STATUS) >>
4314 SR_1000T_REMOTE_RX_STATUS_SHIFT) ?
4315 e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
4319 return E1000_SUCCESS;
4322 /******************************************************************************
4323 * Get PHY information from various PHY registers
4325 * hw - Struct containing variables accessed by shared code
4326 * phy_info - PHY information structure
4327 ******************************************************************************/
4328 s32 e1000_phy_get_info(struct e1000_hw *hw, struct e1000_phy_info *phy_info)
4330 s32 ret_val;
4331 u16 phy_data;
4333 DEBUGFUNC("e1000_phy_get_info");
4335 phy_info->cable_length = e1000_cable_length_undefined;
4336 phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_undefined;
4337 phy_info->cable_polarity = e1000_rev_polarity_undefined;
4338 phy_info->downshift = e1000_downshift_undefined;
4339 phy_info->polarity_correction = e1000_polarity_reversal_undefined;
4340 phy_info->mdix_mode = e1000_auto_x_mode_undefined;
4341 phy_info->local_rx = e1000_1000t_rx_status_undefined;
4342 phy_info->remote_rx = e1000_1000t_rx_status_undefined;
4344 if (hw->media_type != e1000_media_type_copper) {
4345 DEBUGOUT("PHY info is only valid for copper media\n");
4346 return -E1000_ERR_CONFIG;
4349 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
4350 if (ret_val)
4351 return ret_val;
4353 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
4354 if (ret_val)
4355 return ret_val;
4357 if ((phy_data & MII_SR_LINK_STATUS) != MII_SR_LINK_STATUS) {
4358 DEBUGOUT("PHY info is only valid if link is up\n");
4359 return -E1000_ERR_CONFIG;
4362 if (hw->phy_type == e1000_phy_igp ||
4363 hw->phy_type == e1000_phy_igp_3 ||
4364 hw->phy_type == e1000_phy_igp_2)
4365 return e1000_phy_igp_get_info(hw, phy_info);
4366 else if (hw->phy_type == e1000_phy_ife)
4367 return e1000_phy_ife_get_info(hw, phy_info);
4368 else
4369 return e1000_phy_m88_get_info(hw, phy_info);
4372 s32 e1000_validate_mdi_setting(struct e1000_hw *hw)
4374 DEBUGFUNC("e1000_validate_mdi_settings");
4376 if (!hw->autoneg && (hw->mdix == 0 || hw->mdix == 3)) {
4377 DEBUGOUT("Invalid MDI setting detected\n");
4378 hw->mdix = 1;
4379 return -E1000_ERR_CONFIG;
4381 return E1000_SUCCESS;
4385 /******************************************************************************
4386 * Sets up eeprom variables in the hw struct. Must be called after mac_type
4387 * is configured. Additionally, if this is ICH8, the flash controller GbE
4388 * registers must be mapped, or this will crash.
4390 * hw - Struct containing variables accessed by shared code
4391 *****************************************************************************/
4392 s32 e1000_init_eeprom_params(struct e1000_hw *hw)
4394 struct e1000_eeprom_info *eeprom = &hw->eeprom;
4395 u32 eecd = er32(EECD);
4396 s32 ret_val = E1000_SUCCESS;
4397 u16 eeprom_size;
4399 DEBUGFUNC("e1000_init_eeprom_params");
4401 switch (hw->mac_type) {
4402 case e1000_82542_rev2_0:
4403 case e1000_82542_rev2_1:
4404 case e1000_82543:
4405 case e1000_82544:
4406 eeprom->type = e1000_eeprom_microwire;
4407 eeprom->word_size = 64;
4408 eeprom->opcode_bits = 3;
4409 eeprom->address_bits = 6;
4410 eeprom->delay_usec = 50;
4411 eeprom->use_eerd = false;
4412 eeprom->use_eewr = false;
4413 break;
4414 case e1000_82540:
4415 case e1000_82545:
4416 case e1000_82545_rev_3:
4417 case e1000_82546:
4418 case e1000_82546_rev_3:
4419 eeprom->type = e1000_eeprom_microwire;
4420 eeprom->opcode_bits = 3;
4421 eeprom->delay_usec = 50;
4422 if (eecd & E1000_EECD_SIZE) {
4423 eeprom->word_size = 256;
4424 eeprom->address_bits = 8;
4425 } else {
4426 eeprom->word_size = 64;
4427 eeprom->address_bits = 6;
4429 eeprom->use_eerd = false;
4430 eeprom->use_eewr = false;
4431 break;
4432 case e1000_82541:
4433 case e1000_82541_rev_2:
4434 case e1000_82547:
4435 case e1000_82547_rev_2:
4436 if (eecd & E1000_EECD_TYPE) {
4437 eeprom->type = e1000_eeprom_spi;
4438 eeprom->opcode_bits = 8;
4439 eeprom->delay_usec = 1;
4440 if (eecd & E1000_EECD_ADDR_BITS) {
4441 eeprom->page_size = 32;
4442 eeprom->address_bits = 16;
4443 } else {
4444 eeprom->page_size = 8;
4445 eeprom->address_bits = 8;
4447 } else {
4448 eeprom->type = e1000_eeprom_microwire;
4449 eeprom->opcode_bits = 3;
4450 eeprom->delay_usec = 50;
4451 if (eecd & E1000_EECD_ADDR_BITS) {
4452 eeprom->word_size = 256;
4453 eeprom->address_bits = 8;
4454 } else {
4455 eeprom->word_size = 64;
4456 eeprom->address_bits = 6;
4459 eeprom->use_eerd = false;
4460 eeprom->use_eewr = false;
4461 break;
4462 case e1000_82571:
4463 case e1000_82572:
4464 eeprom->type = e1000_eeprom_spi;
4465 eeprom->opcode_bits = 8;
4466 eeprom->delay_usec = 1;
4467 if (eecd & E1000_EECD_ADDR_BITS) {
4468 eeprom->page_size = 32;
4469 eeprom->address_bits = 16;
4470 } else {
4471 eeprom->page_size = 8;
4472 eeprom->address_bits = 8;
4474 eeprom->use_eerd = false;
4475 eeprom->use_eewr = false;
4476 break;
4477 case e1000_82573:
4478 eeprom->type = e1000_eeprom_spi;
4479 eeprom->opcode_bits = 8;
4480 eeprom->delay_usec = 1;
4481 if (eecd & E1000_EECD_ADDR_BITS) {
4482 eeprom->page_size = 32;
4483 eeprom->address_bits = 16;
4484 } else {
4485 eeprom->page_size = 8;
4486 eeprom->address_bits = 8;
4488 eeprom->use_eerd = true;
4489 eeprom->use_eewr = true;
4490 if (!e1000_is_onboard_nvm_eeprom(hw)) {
4491 eeprom->type = e1000_eeprom_flash;
4492 eeprom->word_size = 2048;
4494 /* Ensure that the Autonomous FLASH update bit is cleared due to
4495 * Flash update issue on parts which use a FLASH for NVM. */
4496 eecd &= ~E1000_EECD_AUPDEN;
4497 ew32(EECD, eecd);
4499 break;
4500 case e1000_80003es2lan:
4501 eeprom->type = e1000_eeprom_spi;
4502 eeprom->opcode_bits = 8;
4503 eeprom->delay_usec = 1;
4504 if (eecd & E1000_EECD_ADDR_BITS) {
4505 eeprom->page_size = 32;
4506 eeprom->address_bits = 16;
4507 } else {
4508 eeprom->page_size = 8;
4509 eeprom->address_bits = 8;
4511 eeprom->use_eerd = true;
4512 eeprom->use_eewr = false;
4513 break;
4514 case e1000_ich8lan:
4516 s32 i = 0;
4517 u32 flash_size = E1000_READ_ICH_FLASH_REG(hw, ICH_FLASH_GFPREG);
4519 eeprom->type = e1000_eeprom_ich8;
4520 eeprom->use_eerd = false;
4521 eeprom->use_eewr = false;
4522 eeprom->word_size = E1000_SHADOW_RAM_WORDS;
4524 /* Zero the shadow RAM structure. But don't load it from NVM
4525 * so as to save time for driver init */
4526 if (hw->eeprom_shadow_ram != NULL) {
4527 for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) {
4528 hw->eeprom_shadow_ram[i].modified = false;
4529 hw->eeprom_shadow_ram[i].eeprom_word = 0xFFFF;
4533 hw->flash_base_addr = (flash_size & ICH_GFPREG_BASE_MASK) *
4534 ICH_FLASH_SECTOR_SIZE;
4536 hw->flash_bank_size = ((flash_size >> 16) & ICH_GFPREG_BASE_MASK) + 1;
4537 hw->flash_bank_size -= (flash_size & ICH_GFPREG_BASE_MASK);
4539 hw->flash_bank_size *= ICH_FLASH_SECTOR_SIZE;
4541 hw->flash_bank_size /= 2 * sizeof(u16);
4543 break;
4545 default:
4546 break;
4549 if (eeprom->type == e1000_eeprom_spi) {
4550 /* eeprom_size will be an enum [0..8] that maps to eeprom sizes 128B to
4551 * 32KB (incremented by powers of 2).
4553 if (hw->mac_type <= e1000_82547_rev_2) {
4554 /* Set to default value for initial eeprom read. */
4555 eeprom->word_size = 64;
4556 ret_val = e1000_read_eeprom(hw, EEPROM_CFG, 1, &eeprom_size);
4557 if (ret_val)
4558 return ret_val;
4559 eeprom_size = (eeprom_size & EEPROM_SIZE_MASK) >> EEPROM_SIZE_SHIFT;
4560 /* 256B eeprom size was not supported in earlier hardware, so we
4561 * bump eeprom_size up one to ensure that "1" (which maps to 256B)
4562 * is never the result used in the shifting logic below. */
4563 if (eeprom_size)
4564 eeprom_size++;
4565 } else {
4566 eeprom_size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
4567 E1000_EECD_SIZE_EX_SHIFT);
4570 eeprom->word_size = 1 << (eeprom_size + EEPROM_WORD_SIZE_SHIFT);
4572 return ret_val;
4575 /******************************************************************************
4576 * Raises the EEPROM's clock input.
4578 * hw - Struct containing variables accessed by shared code
4579 * eecd - EECD's current value
4580 *****************************************************************************/
4581 static void e1000_raise_ee_clk(struct e1000_hw *hw, u32 *eecd)
4583 /* Raise the clock input to the EEPROM (by setting the SK bit), and then
4584 * wait <delay> microseconds.
4586 *eecd = *eecd | E1000_EECD_SK;
4587 ew32(EECD, *eecd);
4588 E1000_WRITE_FLUSH();
4589 udelay(hw->eeprom.delay_usec);
4592 /******************************************************************************
4593 * Lowers the EEPROM's clock input.
4595 * hw - Struct containing variables accessed by shared code
4596 * eecd - EECD's current value
4597 *****************************************************************************/
4598 static void e1000_lower_ee_clk(struct e1000_hw *hw, u32 *eecd)
4600 /* Lower the clock input to the EEPROM (by clearing the SK bit), and then
4601 * wait 50 microseconds.
4603 *eecd = *eecd & ~E1000_EECD_SK;
4604 ew32(EECD, *eecd);
4605 E1000_WRITE_FLUSH();
4606 udelay(hw->eeprom.delay_usec);
4609 /******************************************************************************
4610 * Shift data bits out to the EEPROM.
4612 * hw - Struct containing variables accessed by shared code
4613 * data - data to send to the EEPROM
4614 * count - number of bits to shift out
4615 *****************************************************************************/
4616 static void e1000_shift_out_ee_bits(struct e1000_hw *hw, u16 data, u16 count)
4618 struct e1000_eeprom_info *eeprom = &hw->eeprom;
4619 u32 eecd;
4620 u32 mask;
4622 /* We need to shift "count" bits out to the EEPROM. So, value in the
4623 * "data" parameter will be shifted out to the EEPROM one bit at a time.
4624 * In order to do this, "data" must be broken down into bits.
4626 mask = 0x01 << (count - 1);
4627 eecd = er32(EECD);
4628 if (eeprom->type == e1000_eeprom_microwire) {
4629 eecd &= ~E1000_EECD_DO;
4630 } else if (eeprom->type == e1000_eeprom_spi) {
4631 eecd |= E1000_EECD_DO;
4633 do {
4634 /* A "1" is shifted out to the EEPROM by setting bit "DI" to a "1",
4635 * and then raising and then lowering the clock (the SK bit controls
4636 * the clock input to the EEPROM). A "0" is shifted out to the EEPROM
4637 * by setting "DI" to "0" and then raising and then lowering the clock.
4639 eecd &= ~E1000_EECD_DI;
4641 if (data & mask)
4642 eecd |= E1000_EECD_DI;
4644 ew32(EECD, eecd);
4645 E1000_WRITE_FLUSH();
4647 udelay(eeprom->delay_usec);
4649 e1000_raise_ee_clk(hw, &eecd);
4650 e1000_lower_ee_clk(hw, &eecd);
4652 mask = mask >> 1;
4654 } while (mask);
4656 /* We leave the "DI" bit set to "0" when we leave this routine. */
4657 eecd &= ~E1000_EECD_DI;
4658 ew32(EECD, eecd);
4661 /******************************************************************************
4662 * Shift data bits in from the EEPROM
4664 * hw - Struct containing variables accessed by shared code
4665 *****************************************************************************/
4666 static u16 e1000_shift_in_ee_bits(struct e1000_hw *hw, u16 count)
4668 u32 eecd;
4669 u32 i;
4670 u16 data;
4672 /* In order to read a register from the EEPROM, we need to shift 'count'
4673 * bits in from the EEPROM. Bits are "shifted in" by raising the clock
4674 * input to the EEPROM (setting the SK bit), and then reading the value of
4675 * the "DO" bit. During this "shifting in" process the "DI" bit should
4676 * always be clear.
4679 eecd = er32(EECD);
4681 eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
4682 data = 0;
4684 for (i = 0; i < count; i++) {
4685 data = data << 1;
4686 e1000_raise_ee_clk(hw, &eecd);
4688 eecd = er32(EECD);
4690 eecd &= ~(E1000_EECD_DI);
4691 if (eecd & E1000_EECD_DO)
4692 data |= 1;
4694 e1000_lower_ee_clk(hw, &eecd);
4697 return data;
4700 /******************************************************************************
4701 * Prepares EEPROM for access
4703 * hw - Struct containing variables accessed by shared code
4705 * Lowers EEPROM clock. Clears input pin. Sets the chip select pin. This
4706 * function should be called before issuing a command to the EEPROM.
4707 *****************************************************************************/
4708 static s32 e1000_acquire_eeprom(struct e1000_hw *hw)
4710 struct e1000_eeprom_info *eeprom = &hw->eeprom;
4711 u32 eecd, i=0;
4713 DEBUGFUNC("e1000_acquire_eeprom");
4715 if (e1000_swfw_sync_acquire(hw, E1000_SWFW_EEP_SM))
4716 return -E1000_ERR_SWFW_SYNC;
4717 eecd = er32(EECD);
4719 if (hw->mac_type != e1000_82573) {
4720 /* Request EEPROM Access */
4721 if (hw->mac_type > e1000_82544) {
4722 eecd |= E1000_EECD_REQ;
4723 ew32(EECD, eecd);
4724 eecd = er32(EECD);
4725 while ((!(eecd & E1000_EECD_GNT)) &&
4726 (i < E1000_EEPROM_GRANT_ATTEMPTS)) {
4727 i++;
4728 udelay(5);
4729 eecd = er32(EECD);
4731 if (!(eecd & E1000_EECD_GNT)) {
4732 eecd &= ~E1000_EECD_REQ;
4733 ew32(EECD, eecd);
4734 DEBUGOUT("Could not acquire EEPROM grant\n");
4735 e1000_swfw_sync_release(hw, E1000_SWFW_EEP_SM);
4736 return -E1000_ERR_EEPROM;
4741 /* Setup EEPROM for Read/Write */
4743 if (eeprom->type == e1000_eeprom_microwire) {
4744 /* Clear SK and DI */
4745 eecd &= ~(E1000_EECD_DI | E1000_EECD_SK);
4746 ew32(EECD, eecd);
4748 /* Set CS */
4749 eecd |= E1000_EECD_CS;
4750 ew32(EECD, eecd);
4751 } else if (eeprom->type == e1000_eeprom_spi) {
4752 /* Clear SK and CS */
4753 eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
4754 ew32(EECD, eecd);
4755 udelay(1);
4758 return E1000_SUCCESS;
4761 /******************************************************************************
4762 * Returns EEPROM to a "standby" state
4764 * hw - Struct containing variables accessed by shared code
4765 *****************************************************************************/
4766 static void e1000_standby_eeprom(struct e1000_hw *hw)
4768 struct e1000_eeprom_info *eeprom = &hw->eeprom;
4769 u32 eecd;
4771 eecd = er32(EECD);
4773 if (eeprom->type == e1000_eeprom_microwire) {
4774 eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
4775 ew32(EECD, eecd);
4776 E1000_WRITE_FLUSH();
4777 udelay(eeprom->delay_usec);
4779 /* Clock high */
4780 eecd |= E1000_EECD_SK;
4781 ew32(EECD, eecd);
4782 E1000_WRITE_FLUSH();
4783 udelay(eeprom->delay_usec);
4785 /* Select EEPROM */
4786 eecd |= E1000_EECD_CS;
4787 ew32(EECD, eecd);
4788 E1000_WRITE_FLUSH();
4789 udelay(eeprom->delay_usec);
4791 /* Clock low */
4792 eecd &= ~E1000_EECD_SK;
4793 ew32(EECD, eecd);
4794 E1000_WRITE_FLUSH();
4795 udelay(eeprom->delay_usec);
4796 } else if (eeprom->type == e1000_eeprom_spi) {
4797 /* Toggle CS to flush commands */
4798 eecd |= E1000_EECD_CS;
4799 ew32(EECD, eecd);
4800 E1000_WRITE_FLUSH();
4801 udelay(eeprom->delay_usec);
4802 eecd &= ~E1000_EECD_CS;
4803 ew32(EECD, eecd);
4804 E1000_WRITE_FLUSH();
4805 udelay(eeprom->delay_usec);
4809 /******************************************************************************
4810 * Terminates a command by inverting the EEPROM's chip select pin
4812 * hw - Struct containing variables accessed by shared code
4813 *****************************************************************************/
4814 static void e1000_release_eeprom(struct e1000_hw *hw)
4816 u32 eecd;
4818 DEBUGFUNC("e1000_release_eeprom");
4820 eecd = er32(EECD);
4822 if (hw->eeprom.type == e1000_eeprom_spi) {
4823 eecd |= E1000_EECD_CS; /* Pull CS high */
4824 eecd &= ~E1000_EECD_SK; /* Lower SCK */
4826 ew32(EECD, eecd);
4828 udelay(hw->eeprom.delay_usec);
4829 } else if (hw->eeprom.type == e1000_eeprom_microwire) {
4830 /* cleanup eeprom */
4832 /* CS on Microwire is active-high */
4833 eecd &= ~(E1000_EECD_CS | E1000_EECD_DI);
4835 ew32(EECD, eecd);
4837 /* Rising edge of clock */
4838 eecd |= E1000_EECD_SK;
4839 ew32(EECD, eecd);
4840 E1000_WRITE_FLUSH();
4841 udelay(hw->eeprom.delay_usec);
4843 /* Falling edge of clock */
4844 eecd &= ~E1000_EECD_SK;
4845 ew32(EECD, eecd);
4846 E1000_WRITE_FLUSH();
4847 udelay(hw->eeprom.delay_usec);
4850 /* Stop requesting EEPROM access */
4851 if (hw->mac_type > e1000_82544) {
4852 eecd &= ~E1000_EECD_REQ;
4853 ew32(EECD, eecd);
4856 e1000_swfw_sync_release(hw, E1000_SWFW_EEP_SM);
4859 /******************************************************************************
4860 * Reads a 16 bit word from the EEPROM.
4862 * hw - Struct containing variables accessed by shared code
4863 *****************************************************************************/
4864 static s32 e1000_spi_eeprom_ready(struct e1000_hw *hw)
4866 u16 retry_count = 0;
4867 u8 spi_stat_reg;
4869 DEBUGFUNC("e1000_spi_eeprom_ready");
4871 /* Read "Status Register" repeatedly until the LSB is cleared. The
4872 * EEPROM will signal that the command has been completed by clearing
4873 * bit 0 of the internal status register. If it's not cleared within
4874 * 5 milliseconds, then error out.
4876 retry_count = 0;
4877 do {
4878 e1000_shift_out_ee_bits(hw, EEPROM_RDSR_OPCODE_SPI,
4879 hw->eeprom.opcode_bits);
4880 spi_stat_reg = (u8)e1000_shift_in_ee_bits(hw, 8);
4881 if (!(spi_stat_reg & EEPROM_STATUS_RDY_SPI))
4882 break;
4884 udelay(5);
4885 retry_count += 5;
4887 e1000_standby_eeprom(hw);
4888 } while (retry_count < EEPROM_MAX_RETRY_SPI);
4890 /* ATMEL SPI write time could vary from 0-20mSec on 3.3V devices (and
4891 * only 0-5mSec on 5V devices)
4893 if (retry_count >= EEPROM_MAX_RETRY_SPI) {
4894 DEBUGOUT("SPI EEPROM Status error\n");
4895 return -E1000_ERR_EEPROM;
4898 return E1000_SUCCESS;
4901 /******************************************************************************
4902 * Reads a 16 bit word from the EEPROM.
4904 * hw - Struct containing variables accessed by shared code
4905 * offset - offset of word in the EEPROM to read
4906 * data - word read from the EEPROM
4907 * words - number of words to read
4908 *****************************************************************************/
4909 s32 e1000_read_eeprom(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
4911 s32 ret;
4912 spin_lock(&e1000_eeprom_lock);
4913 ret = e1000_do_read_eeprom(hw, offset, words, data);
4914 spin_unlock(&e1000_eeprom_lock);
4915 return ret;
4918 static s32 e1000_do_read_eeprom(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
4920 struct e1000_eeprom_info *eeprom = &hw->eeprom;
4921 u32 i = 0;
4923 DEBUGFUNC("e1000_read_eeprom");
4925 /* If eeprom is not yet detected, do so now */
4926 if (eeprom->word_size == 0)
4927 e1000_init_eeprom_params(hw);
4929 /* A check for invalid values: offset too large, too many words, and not
4930 * enough words.
4932 if ((offset >= eeprom->word_size) || (words > eeprom->word_size - offset) ||
4933 (words == 0)) {
4934 DEBUGOUT2("\"words\" parameter out of bounds. Words = %d, size = %d\n", offset, eeprom->word_size);
4935 return -E1000_ERR_EEPROM;
4938 /* EEPROM's that don't use EERD to read require us to bit-bang the SPI
4939 * directly. In this case, we need to acquire the EEPROM so that
4940 * FW or other port software does not interrupt.
4942 if (e1000_is_onboard_nvm_eeprom(hw) && !hw->eeprom.use_eerd) {
4943 /* Prepare the EEPROM for bit-bang reading */
4944 if (e1000_acquire_eeprom(hw) != E1000_SUCCESS)
4945 return -E1000_ERR_EEPROM;
4948 /* Eerd register EEPROM access requires no eeprom aquire/release */
4949 if (eeprom->use_eerd)
4950 return e1000_read_eeprom_eerd(hw, offset, words, data);
4952 /* ICH EEPROM access is done via the ICH flash controller */
4953 if (eeprom->type == e1000_eeprom_ich8)
4954 return e1000_read_eeprom_ich8(hw, offset, words, data);
4956 /* Set up the SPI or Microwire EEPROM for bit-bang reading. We have
4957 * acquired the EEPROM at this point, so any returns should relase it */
4958 if (eeprom->type == e1000_eeprom_spi) {
4959 u16 word_in;
4960 u8 read_opcode = EEPROM_READ_OPCODE_SPI;
4962 if (e1000_spi_eeprom_ready(hw)) {
4963 e1000_release_eeprom(hw);
4964 return -E1000_ERR_EEPROM;
4967 e1000_standby_eeprom(hw);
4969 /* Some SPI eeproms use the 8th address bit embedded in the opcode */
4970 if ((eeprom->address_bits == 8) && (offset >= 128))
4971 read_opcode |= EEPROM_A8_OPCODE_SPI;
4973 /* Send the READ command (opcode + addr) */
4974 e1000_shift_out_ee_bits(hw, read_opcode, eeprom->opcode_bits);
4975 e1000_shift_out_ee_bits(hw, (u16)(offset*2), eeprom->address_bits);
4977 /* Read the data. The address of the eeprom internally increments with
4978 * each byte (spi) being read, saving on the overhead of eeprom setup
4979 * and tear-down. The address counter will roll over if reading beyond
4980 * the size of the eeprom, thus allowing the entire memory to be read
4981 * starting from any offset. */
4982 for (i = 0; i < words; i++) {
4983 word_in = e1000_shift_in_ee_bits(hw, 16);
4984 data[i] = (word_in >> 8) | (word_in << 8);
4986 } else if (eeprom->type == e1000_eeprom_microwire) {
4987 for (i = 0; i < words; i++) {
4988 /* Send the READ command (opcode + addr) */
4989 e1000_shift_out_ee_bits(hw, EEPROM_READ_OPCODE_MICROWIRE,
4990 eeprom->opcode_bits);
4991 e1000_shift_out_ee_bits(hw, (u16)(offset + i),
4992 eeprom->address_bits);
4994 /* Read the data. For microwire, each word requires the overhead
4995 * of eeprom setup and tear-down. */
4996 data[i] = e1000_shift_in_ee_bits(hw, 16);
4997 e1000_standby_eeprom(hw);
5001 /* End this read operation */
5002 e1000_release_eeprom(hw);
5004 return E1000_SUCCESS;
5007 /******************************************************************************
5008 * Reads a 16 bit word from the EEPROM using the EERD register.
5010 * hw - Struct containing variables accessed by shared code
5011 * offset - offset of word in the EEPROM to read
5012 * data - word read from the EEPROM
5013 * words - number of words to read
5014 *****************************************************************************/
5015 static s32 e1000_read_eeprom_eerd(struct e1000_hw *hw, u16 offset, u16 words,
5016 u16 *data)
5018 u32 i, eerd = 0;
5019 s32 error = 0;
5021 for (i = 0; i < words; i++) {
5022 eerd = ((offset+i) << E1000_EEPROM_RW_ADDR_SHIFT) +
5023 E1000_EEPROM_RW_REG_START;
5025 ew32(EERD, eerd);
5026 error = e1000_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_READ);
5028 if (error) {
5029 break;
5031 data[i] = (er32(EERD) >> E1000_EEPROM_RW_REG_DATA);
5035 return error;
5038 /******************************************************************************
5039 * Writes a 16 bit word from the EEPROM using the EEWR register.
5041 * hw - Struct containing variables accessed by shared code
5042 * offset - offset of word in the EEPROM to read
5043 * data - word read from the EEPROM
5044 * words - number of words to read
5045 *****************************************************************************/
5046 static s32 e1000_write_eeprom_eewr(struct e1000_hw *hw, u16 offset, u16 words,
5047 u16 *data)
5049 u32 register_value = 0;
5050 u32 i = 0;
5051 s32 error = 0;
5053 if (e1000_swfw_sync_acquire(hw, E1000_SWFW_EEP_SM))
5054 return -E1000_ERR_SWFW_SYNC;
5056 for (i = 0; i < words; i++) {
5057 register_value = (data[i] << E1000_EEPROM_RW_REG_DATA) |
5058 ((offset+i) << E1000_EEPROM_RW_ADDR_SHIFT) |
5059 E1000_EEPROM_RW_REG_START;
5061 error = e1000_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_WRITE);
5062 if (error) {
5063 break;
5066 ew32(EEWR, register_value);
5068 error = e1000_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_WRITE);
5070 if (error) {
5071 break;
5075 e1000_swfw_sync_release(hw, E1000_SWFW_EEP_SM);
5076 return error;
5079 /******************************************************************************
5080 * Polls the status bit (bit 1) of the EERD to determine when the read is done.
5082 * hw - Struct containing variables accessed by shared code
5083 *****************************************************************************/
5084 static s32 e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int eerd)
5086 u32 attempts = 100000;
5087 u32 i, reg = 0;
5088 s32 done = E1000_ERR_EEPROM;
5090 for (i = 0; i < attempts; i++) {
5091 if (eerd == E1000_EEPROM_POLL_READ)
5092 reg = er32(EERD);
5093 else
5094 reg = er32(EEWR);
5096 if (reg & E1000_EEPROM_RW_REG_DONE) {
5097 done = E1000_SUCCESS;
5098 break;
5100 udelay(5);
5103 return done;
5106 /***************************************************************************
5107 * Description: Determines if the onboard NVM is FLASH or EEPROM.
5109 * hw - Struct containing variables accessed by shared code
5110 ****************************************************************************/
5111 static bool e1000_is_onboard_nvm_eeprom(struct e1000_hw *hw)
5113 u32 eecd = 0;
5115 DEBUGFUNC("e1000_is_onboard_nvm_eeprom");
5117 if (hw->mac_type == e1000_ich8lan)
5118 return false;
5120 if (hw->mac_type == e1000_82573) {
5121 eecd = er32(EECD);
5123 /* Isolate bits 15 & 16 */
5124 eecd = ((eecd >> 15) & 0x03);
5126 /* If both bits are set, device is Flash type */
5127 if (eecd == 0x03) {
5128 return false;
5131 return true;
5134 /******************************************************************************
5135 * Verifies that the EEPROM has a valid checksum
5137 * hw - Struct containing variables accessed by shared code
5139 * Reads the first 64 16 bit words of the EEPROM and sums the values read.
5140 * If the the sum of the 64 16 bit words is 0xBABA, the EEPROM's checksum is
5141 * valid.
5142 *****************************************************************************/
5143 s32 e1000_validate_eeprom_checksum(struct e1000_hw *hw)
5145 u16 checksum = 0;
5146 u16 i, eeprom_data;
5148 DEBUGFUNC("e1000_validate_eeprom_checksum");
5150 if ((hw->mac_type == e1000_82573) && !e1000_is_onboard_nvm_eeprom(hw)) {
5151 /* Check bit 4 of word 10h. If it is 0, firmware is done updating
5152 * 10h-12h. Checksum may need to be fixed. */
5153 e1000_read_eeprom(hw, 0x10, 1, &eeprom_data);
5154 if ((eeprom_data & 0x10) == 0) {
5155 /* Read 0x23 and check bit 15. This bit is a 1 when the checksum
5156 * has already been fixed. If the checksum is still wrong and this
5157 * bit is a 1, we need to return bad checksum. Otherwise, we need
5158 * to set this bit to a 1 and update the checksum. */
5159 e1000_read_eeprom(hw, 0x23, 1, &eeprom_data);
5160 if ((eeprom_data & 0x8000) == 0) {
5161 eeprom_data |= 0x8000;
5162 e1000_write_eeprom(hw, 0x23, 1, &eeprom_data);
5163 e1000_update_eeprom_checksum(hw);
5168 if (hw->mac_type == e1000_ich8lan) {
5169 /* Drivers must allocate the shadow ram structure for the
5170 * EEPROM checksum to be updated. Otherwise, this bit as well
5171 * as the checksum must both be set correctly for this
5172 * validation to pass.
5174 e1000_read_eeprom(hw, 0x19, 1, &eeprom_data);
5175 if ((eeprom_data & 0x40) == 0) {
5176 eeprom_data |= 0x40;
5177 e1000_write_eeprom(hw, 0x19, 1, &eeprom_data);
5178 e1000_update_eeprom_checksum(hw);
5182 for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
5183 if (e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) {
5184 DEBUGOUT("EEPROM Read Error\n");
5185 return -E1000_ERR_EEPROM;
5187 checksum += eeprom_data;
5190 if (checksum == (u16)EEPROM_SUM)
5191 return E1000_SUCCESS;
5192 else {
5193 DEBUGOUT("EEPROM Checksum Invalid\n");
5194 return -E1000_ERR_EEPROM;
5198 /******************************************************************************
5199 * Calculates the EEPROM checksum and writes it to the EEPROM
5201 * hw - Struct containing variables accessed by shared code
5203 * Sums the first 63 16 bit words of the EEPROM. Subtracts the sum from 0xBABA.
5204 * Writes the difference to word offset 63 of the EEPROM.
5205 *****************************************************************************/
5206 s32 e1000_update_eeprom_checksum(struct e1000_hw *hw)
5208 u32 ctrl_ext;
5209 u16 checksum = 0;
5210 u16 i, eeprom_data;
5212 DEBUGFUNC("e1000_update_eeprom_checksum");
5214 for (i = 0; i < EEPROM_CHECKSUM_REG; i++) {
5215 if (e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) {
5216 DEBUGOUT("EEPROM Read Error\n");
5217 return -E1000_ERR_EEPROM;
5219 checksum += eeprom_data;
5221 checksum = (u16)EEPROM_SUM - checksum;
5222 if (e1000_write_eeprom(hw, EEPROM_CHECKSUM_REG, 1, &checksum) < 0) {
5223 DEBUGOUT("EEPROM Write Error\n");
5224 return -E1000_ERR_EEPROM;
5225 } else if (hw->eeprom.type == e1000_eeprom_flash) {
5226 e1000_commit_shadow_ram(hw);
5227 } else if (hw->eeprom.type == e1000_eeprom_ich8) {
5228 e1000_commit_shadow_ram(hw);
5229 /* Reload the EEPROM, or else modifications will not appear
5230 * until after next adapter reset. */
5231 ctrl_ext = er32(CTRL_EXT);
5232 ctrl_ext |= E1000_CTRL_EXT_EE_RST;
5233 ew32(CTRL_EXT, ctrl_ext);
5234 msleep(10);
5236 return E1000_SUCCESS;
5239 /******************************************************************************
5240 * Parent function for writing words to the different EEPROM types.
5242 * hw - Struct containing variables accessed by shared code
5243 * offset - offset within the EEPROM to be written to
5244 * words - number of words to write
5245 * data - 16 bit word to be written to the EEPROM
5247 * If e1000_update_eeprom_checksum is not called after this function, the
5248 * EEPROM will most likely contain an invalid checksum.
5249 *****************************************************************************/
5250 s32 e1000_write_eeprom(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
5252 s32 ret;
5253 spin_lock(&e1000_eeprom_lock);
5254 ret = e1000_do_write_eeprom(hw, offset, words, data);
5255 spin_unlock(&e1000_eeprom_lock);
5256 return ret;
5260 static s32 e1000_do_write_eeprom(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
5262 struct e1000_eeprom_info *eeprom = &hw->eeprom;
5263 s32 status = 0;
5265 DEBUGFUNC("e1000_write_eeprom");
5267 /* If eeprom is not yet detected, do so now */
5268 if (eeprom->word_size == 0)
5269 e1000_init_eeprom_params(hw);
5271 /* A check for invalid values: offset too large, too many words, and not
5272 * enough words.
5274 if ((offset >= eeprom->word_size) || (words > eeprom->word_size - offset) ||
5275 (words == 0)) {
5276 DEBUGOUT("\"words\" parameter out of bounds\n");
5277 return -E1000_ERR_EEPROM;
5280 /* 82573 writes only through eewr */
5281 if (eeprom->use_eewr)
5282 return e1000_write_eeprom_eewr(hw, offset, words, data);
5284 if (eeprom->type == e1000_eeprom_ich8)
5285 return e1000_write_eeprom_ich8(hw, offset, words, data);
5287 /* Prepare the EEPROM for writing */
5288 if (e1000_acquire_eeprom(hw) != E1000_SUCCESS)
5289 return -E1000_ERR_EEPROM;
5291 if (eeprom->type == e1000_eeprom_microwire) {
5292 status = e1000_write_eeprom_microwire(hw, offset, words, data);
5293 } else {
5294 status = e1000_write_eeprom_spi(hw, offset, words, data);
5295 msleep(10);
5298 /* Done with writing */
5299 e1000_release_eeprom(hw);
5301 return status;
5304 /******************************************************************************
5305 * Writes a 16 bit word to a given offset in an SPI EEPROM.
5307 * hw - Struct containing variables accessed by shared code
5308 * offset - offset within the EEPROM to be written to
5309 * words - number of words to write
5310 * data - pointer to array of 8 bit words to be written to the EEPROM
5312 *****************************************************************************/
5313 static s32 e1000_write_eeprom_spi(struct e1000_hw *hw, u16 offset, u16 words,
5314 u16 *data)
5316 struct e1000_eeprom_info *eeprom = &hw->eeprom;
5317 u16 widx = 0;
5319 DEBUGFUNC("e1000_write_eeprom_spi");
5321 while (widx < words) {
5322 u8 write_opcode = EEPROM_WRITE_OPCODE_SPI;
5324 if (e1000_spi_eeprom_ready(hw)) return -E1000_ERR_EEPROM;
5326 e1000_standby_eeprom(hw);
5328 /* Send the WRITE ENABLE command (8 bit opcode ) */
5329 e1000_shift_out_ee_bits(hw, EEPROM_WREN_OPCODE_SPI,
5330 eeprom->opcode_bits);
5332 e1000_standby_eeprom(hw);
5334 /* Some SPI eeproms use the 8th address bit embedded in the opcode */
5335 if ((eeprom->address_bits == 8) && (offset >= 128))
5336 write_opcode |= EEPROM_A8_OPCODE_SPI;
5338 /* Send the Write command (8-bit opcode + addr) */
5339 e1000_shift_out_ee_bits(hw, write_opcode, eeprom->opcode_bits);
5341 e1000_shift_out_ee_bits(hw, (u16)((offset + widx)*2),
5342 eeprom->address_bits);
5344 /* Send the data */
5346 /* Loop to allow for up to whole page write (32 bytes) of eeprom */
5347 while (widx < words) {
5348 u16 word_out = data[widx];
5349 word_out = (word_out >> 8) | (word_out << 8);
5350 e1000_shift_out_ee_bits(hw, word_out, 16);
5351 widx++;
5353 /* Some larger eeprom sizes are capable of a 32-byte PAGE WRITE
5354 * operation, while the smaller eeproms are capable of an 8-byte
5355 * PAGE WRITE operation. Break the inner loop to pass new address
5357 if ((((offset + widx)*2) % eeprom->page_size) == 0) {
5358 e1000_standby_eeprom(hw);
5359 break;
5364 return E1000_SUCCESS;
5367 /******************************************************************************
5368 * Writes a 16 bit word to a given offset in a Microwire EEPROM.
5370 * hw - Struct containing variables accessed by shared code
5371 * offset - offset within the EEPROM to be written to
5372 * words - number of words to write
5373 * data - pointer to array of 16 bit words to be written to the EEPROM
5375 *****************************************************************************/
5376 static s32 e1000_write_eeprom_microwire(struct e1000_hw *hw, u16 offset,
5377 u16 words, u16 *data)
5379 struct e1000_eeprom_info *eeprom = &hw->eeprom;
5380 u32 eecd;
5381 u16 words_written = 0;
5382 u16 i = 0;
5384 DEBUGFUNC("e1000_write_eeprom_microwire");
5386 /* Send the write enable command to the EEPROM (3-bit opcode plus
5387 * 6/8-bit dummy address beginning with 11). It's less work to include
5388 * the 11 of the dummy address as part of the opcode than it is to shift
5389 * it over the correct number of bits for the address. This puts the
5390 * EEPROM into write/erase mode.
5392 e1000_shift_out_ee_bits(hw, EEPROM_EWEN_OPCODE_MICROWIRE,
5393 (u16)(eeprom->opcode_bits + 2));
5395 e1000_shift_out_ee_bits(hw, 0, (u16)(eeprom->address_bits - 2));
5397 /* Prepare the EEPROM */
5398 e1000_standby_eeprom(hw);
5400 while (words_written < words) {
5401 /* Send the Write command (3-bit opcode + addr) */
5402 e1000_shift_out_ee_bits(hw, EEPROM_WRITE_OPCODE_MICROWIRE,
5403 eeprom->opcode_bits);
5405 e1000_shift_out_ee_bits(hw, (u16)(offset + words_written),
5406 eeprom->address_bits);
5408 /* Send the data */
5409 e1000_shift_out_ee_bits(hw, data[words_written], 16);
5411 /* Toggle the CS line. This in effect tells the EEPROM to execute
5412 * the previous command.
5414 e1000_standby_eeprom(hw);
5416 /* Read DO repeatedly until it is high (equal to '1'). The EEPROM will
5417 * signal that the command has been completed by raising the DO signal.
5418 * If DO does not go high in 10 milliseconds, then error out.
5420 for (i = 0; i < 200; i++) {
5421 eecd = er32(EECD);
5422 if (eecd & E1000_EECD_DO) break;
5423 udelay(50);
5425 if (i == 200) {
5426 DEBUGOUT("EEPROM Write did not complete\n");
5427 return -E1000_ERR_EEPROM;
5430 /* Recover from write */
5431 e1000_standby_eeprom(hw);
5433 words_written++;
5436 /* Send the write disable command to the EEPROM (3-bit opcode plus
5437 * 6/8-bit dummy address beginning with 10). It's less work to include
5438 * the 10 of the dummy address as part of the opcode than it is to shift
5439 * it over the correct number of bits for the address. This takes the
5440 * EEPROM out of write/erase mode.
5442 e1000_shift_out_ee_bits(hw, EEPROM_EWDS_OPCODE_MICROWIRE,
5443 (u16)(eeprom->opcode_bits + 2));
5445 e1000_shift_out_ee_bits(hw, 0, (u16)(eeprom->address_bits - 2));
5447 return E1000_SUCCESS;
5450 /******************************************************************************
5451 * Flushes the cached eeprom to NVM. This is done by saving the modified values
5452 * in the eeprom cache and the non modified values in the currently active bank
5453 * to the new bank.
5455 * hw - Struct containing variables accessed by shared code
5456 * offset - offset of word in the EEPROM to read
5457 * data - word read from the EEPROM
5458 * words - number of words to read
5459 *****************************************************************************/
5460 static s32 e1000_commit_shadow_ram(struct e1000_hw *hw)
5462 u32 attempts = 100000;
5463 u32 eecd = 0;
5464 u32 flop = 0;
5465 u32 i = 0;
5466 s32 error = E1000_SUCCESS;
5467 u32 old_bank_offset = 0;
5468 u32 new_bank_offset = 0;
5469 u8 low_byte = 0;
5470 u8 high_byte = 0;
5471 bool sector_write_failed = false;
5473 if (hw->mac_type == e1000_82573) {
5474 /* The flop register will be used to determine if flash type is STM */
5475 flop = er32(FLOP);
5476 for (i=0; i < attempts; i++) {
5477 eecd = er32(EECD);
5478 if ((eecd & E1000_EECD_FLUPD) == 0) {
5479 break;
5481 udelay(5);
5484 if (i == attempts) {
5485 return -E1000_ERR_EEPROM;
5488 /* If STM opcode located in bits 15:8 of flop, reset firmware */
5489 if ((flop & 0xFF00) == E1000_STM_OPCODE) {
5490 ew32(HICR, E1000_HICR_FW_RESET);
5493 /* Perform the flash update */
5494 ew32(EECD, eecd | E1000_EECD_FLUPD);
5496 for (i=0; i < attempts; i++) {
5497 eecd = er32(EECD);
5498 if ((eecd & E1000_EECD_FLUPD) == 0) {
5499 break;
5501 udelay(5);
5504 if (i == attempts) {
5505 return -E1000_ERR_EEPROM;
5509 if (hw->mac_type == e1000_ich8lan && hw->eeprom_shadow_ram != NULL) {
5510 /* We're writing to the opposite bank so if we're on bank 1,
5511 * write to bank 0 etc. We also need to erase the segment that
5512 * is going to be written */
5513 if (!(er32(EECD) & E1000_EECD_SEC1VAL)) {
5514 new_bank_offset = hw->flash_bank_size * 2;
5515 old_bank_offset = 0;
5516 e1000_erase_ich8_4k_segment(hw, 1);
5517 } else {
5518 old_bank_offset = hw->flash_bank_size * 2;
5519 new_bank_offset = 0;
5520 e1000_erase_ich8_4k_segment(hw, 0);
5523 sector_write_failed = false;
5524 /* Loop for every byte in the shadow RAM,
5525 * which is in units of words. */
5526 for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) {
5527 /* Determine whether to write the value stored
5528 * in the other NVM bank or a modified value stored
5529 * in the shadow RAM */
5530 if (hw->eeprom_shadow_ram[i].modified) {
5531 low_byte = (u8)hw->eeprom_shadow_ram[i].eeprom_word;
5532 udelay(100);
5533 error = e1000_verify_write_ich8_byte(hw,
5534 (i << 1) + new_bank_offset, low_byte);
5536 if (error != E1000_SUCCESS)
5537 sector_write_failed = true;
5538 else {
5539 high_byte =
5540 (u8)(hw->eeprom_shadow_ram[i].eeprom_word >> 8);
5541 udelay(100);
5543 } else {
5544 e1000_read_ich8_byte(hw, (i << 1) + old_bank_offset,
5545 &low_byte);
5546 udelay(100);
5547 error = e1000_verify_write_ich8_byte(hw,
5548 (i << 1) + new_bank_offset, low_byte);
5550 if (error != E1000_SUCCESS)
5551 sector_write_failed = true;
5552 else {
5553 e1000_read_ich8_byte(hw, (i << 1) + old_bank_offset + 1,
5554 &high_byte);
5555 udelay(100);
5559 /* If the write of the low byte was successful, go ahead and
5560 * write the high byte while checking to make sure that if it
5561 * is the signature byte, then it is handled properly */
5562 if (!sector_write_failed) {
5563 /* If the word is 0x13, then make sure the signature bits
5564 * (15:14) are 11b until the commit has completed.
5565 * This will allow us to write 10b which indicates the
5566 * signature is valid. We want to do this after the write
5567 * has completed so that we don't mark the segment valid
5568 * while the write is still in progress */
5569 if (i == E1000_ICH_NVM_SIG_WORD)
5570 high_byte = E1000_ICH_NVM_SIG_MASK | high_byte;
5572 error = e1000_verify_write_ich8_byte(hw,
5573 (i << 1) + new_bank_offset + 1, high_byte);
5574 if (error != E1000_SUCCESS)
5575 sector_write_failed = true;
5577 } else {
5578 /* If the write failed then break from the loop and
5579 * return an error */
5580 break;
5584 /* Don't bother writing the segment valid bits if sector
5585 * programming failed. */
5586 if (!sector_write_failed) {
5587 /* Finally validate the new segment by setting bit 15:14
5588 * to 10b in word 0x13 , this can be done without an
5589 * erase as well since these bits are 11 to start with
5590 * and we need to change bit 14 to 0b */
5591 e1000_read_ich8_byte(hw,
5592 E1000_ICH_NVM_SIG_WORD * 2 + 1 + new_bank_offset,
5593 &high_byte);
5594 high_byte &= 0xBF;
5595 error = e1000_verify_write_ich8_byte(hw,
5596 E1000_ICH_NVM_SIG_WORD * 2 + 1 + new_bank_offset, high_byte);
5597 /* And invalidate the previously valid segment by setting
5598 * its signature word (0x13) high_byte to 0b. This can be
5599 * done without an erase because flash erase sets all bits
5600 * to 1's. We can write 1's to 0's without an erase */
5601 if (error == E1000_SUCCESS) {
5602 error = e1000_verify_write_ich8_byte(hw,
5603 E1000_ICH_NVM_SIG_WORD * 2 + 1 + old_bank_offset, 0);
5606 /* Clear the now not used entry in the cache */
5607 for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) {
5608 hw->eeprom_shadow_ram[i].modified = false;
5609 hw->eeprom_shadow_ram[i].eeprom_word = 0xFFFF;
5614 return error;
5617 /******************************************************************************
5618 * Reads the adapter's MAC address from the EEPROM and inverts the LSB for the
5619 * second function of dual function devices
5621 * hw - Struct containing variables accessed by shared code
5622 *****************************************************************************/
5623 s32 e1000_read_mac_addr(struct e1000_hw *hw)
5625 u16 offset;
5626 u16 eeprom_data, i;
5628 DEBUGFUNC("e1000_read_mac_addr");
5630 for (i = 0; i < NODE_ADDRESS_SIZE; i += 2) {
5631 offset = i >> 1;
5632 if (e1000_read_eeprom(hw, offset, 1, &eeprom_data) < 0) {
5633 DEBUGOUT("EEPROM Read Error\n");
5634 return -E1000_ERR_EEPROM;
5636 hw->perm_mac_addr[i] = (u8)(eeprom_data & 0x00FF);
5637 hw->perm_mac_addr[i+1] = (u8)(eeprom_data >> 8);
5640 switch (hw->mac_type) {
5641 default:
5642 break;
5643 case e1000_82546:
5644 case e1000_82546_rev_3:
5645 case e1000_82571:
5646 case e1000_80003es2lan:
5647 if (er32(STATUS) & E1000_STATUS_FUNC_1)
5648 hw->perm_mac_addr[5] ^= 0x01;
5649 break;
5652 for (i = 0; i < NODE_ADDRESS_SIZE; i++)
5653 hw->mac_addr[i] = hw->perm_mac_addr[i];
5654 return E1000_SUCCESS;
5657 /******************************************************************************
5658 * Initializes receive address filters.
5660 * hw - Struct containing variables accessed by shared code
5662 * Places the MAC address in receive address register 0 and clears the rest
5663 * of the receive addresss registers. Clears the multicast table. Assumes
5664 * the receiver is in reset when the routine is called.
5665 *****************************************************************************/
5666 static void e1000_init_rx_addrs(struct e1000_hw *hw)
5668 u32 i;
5669 u32 rar_num;
5671 DEBUGFUNC("e1000_init_rx_addrs");
5673 /* Setup the receive address. */
5674 DEBUGOUT("Programming MAC Address into RAR[0]\n");
5676 e1000_rar_set(hw, hw->mac_addr, 0);
5678 rar_num = E1000_RAR_ENTRIES;
5680 /* Reserve a spot for the Locally Administered Address to work around
5681 * an 82571 issue in which a reset on one port will reload the MAC on
5682 * the other port. */
5683 if ((hw->mac_type == e1000_82571) && (hw->laa_is_present))
5684 rar_num -= 1;
5685 if (hw->mac_type == e1000_ich8lan)
5686 rar_num = E1000_RAR_ENTRIES_ICH8LAN;
5688 /* Zero out the other 15 receive addresses. */
5689 DEBUGOUT("Clearing RAR[1-15]\n");
5690 for (i = 1; i < rar_num; i++) {
5691 E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0);
5692 E1000_WRITE_FLUSH();
5693 E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0);
5694 E1000_WRITE_FLUSH();
5698 /******************************************************************************
5699 * Hashes an address to determine its location in the multicast table
5701 * hw - Struct containing variables accessed by shared code
5702 * mc_addr - the multicast address to hash
5703 *****************************************************************************/
5704 u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
5706 u32 hash_value = 0;
5708 /* The portion of the address that is used for the hash table is
5709 * determined by the mc_filter_type setting.
5711 switch (hw->mc_filter_type) {
5712 /* [0] [1] [2] [3] [4] [5]
5713 * 01 AA 00 12 34 56
5714 * LSB MSB
5716 case 0:
5717 if (hw->mac_type == e1000_ich8lan) {
5718 /* [47:38] i.e. 0x158 for above example address */
5719 hash_value = ((mc_addr[4] >> 6) | (((u16)mc_addr[5]) << 2));
5720 } else {
5721 /* [47:36] i.e. 0x563 for above example address */
5722 hash_value = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4));
5724 break;
5725 case 1:
5726 if (hw->mac_type == e1000_ich8lan) {
5727 /* [46:37] i.e. 0x2B1 for above example address */
5728 hash_value = ((mc_addr[4] >> 5) | (((u16)mc_addr[5]) << 3));
5729 } else {
5730 /* [46:35] i.e. 0xAC6 for above example address */
5731 hash_value = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5));
5733 break;
5734 case 2:
5735 if (hw->mac_type == e1000_ich8lan) {
5736 /*[45:36] i.e. 0x163 for above example address */
5737 hash_value = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4));
5738 } else {
5739 /* [45:34] i.e. 0x5D8 for above example address */
5740 hash_value = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6));
5742 break;
5743 case 3:
5744 if (hw->mac_type == e1000_ich8lan) {
5745 /* [43:34] i.e. 0x18D for above example address */
5746 hash_value = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6));
5747 } else {
5748 /* [43:32] i.e. 0x634 for above example address */
5749 hash_value = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8));
5751 break;
5754 hash_value &= 0xFFF;
5755 if (hw->mac_type == e1000_ich8lan)
5756 hash_value &= 0x3FF;
5758 return hash_value;
5761 /******************************************************************************
5762 * Sets the bit in the multicast table corresponding to the hash value.
5764 * hw - Struct containing variables accessed by shared code
5765 * hash_value - Multicast address hash value
5766 *****************************************************************************/
5767 void e1000_mta_set(struct e1000_hw *hw, u32 hash_value)
5769 u32 hash_bit, hash_reg;
5770 u32 mta;
5771 u32 temp;
5773 /* The MTA is a register array of 128 32-bit registers.
5774 * It is treated like an array of 4096 bits. We want to set
5775 * bit BitArray[hash_value]. So we figure out what register
5776 * the bit is in, read it, OR in the new bit, then write
5777 * back the new value. The register is determined by the
5778 * upper 7 bits of the hash value and the bit within that
5779 * register are determined by the lower 5 bits of the value.
5781 hash_reg = (hash_value >> 5) & 0x7F;
5782 if (hw->mac_type == e1000_ich8lan)
5783 hash_reg &= 0x1F;
5785 hash_bit = hash_value & 0x1F;
5787 mta = E1000_READ_REG_ARRAY(hw, MTA, hash_reg);
5789 mta |= (1 << hash_bit);
5791 /* If we are on an 82544 and we are trying to write an odd offset
5792 * in the MTA, save off the previous entry before writing and
5793 * restore the old value after writing.
5795 if ((hw->mac_type == e1000_82544) && ((hash_reg & 0x1) == 1)) {
5796 temp = E1000_READ_REG_ARRAY(hw, MTA, (hash_reg - 1));
5797 E1000_WRITE_REG_ARRAY(hw, MTA, hash_reg, mta);
5798 E1000_WRITE_FLUSH();
5799 E1000_WRITE_REG_ARRAY(hw, MTA, (hash_reg - 1), temp);
5800 E1000_WRITE_FLUSH();
5801 } else {
5802 E1000_WRITE_REG_ARRAY(hw, MTA, hash_reg, mta);
5803 E1000_WRITE_FLUSH();
5807 /******************************************************************************
5808 * Puts an ethernet address into a receive address register.
5810 * hw - Struct containing variables accessed by shared code
5811 * addr - Address to put into receive address register
5812 * index - Receive address register to write
5813 *****************************************************************************/
5814 void e1000_rar_set(struct e1000_hw *hw, u8 *addr, u32 index)
5816 u32 rar_low, rar_high;
5818 /* HW expects these in little endian so we reverse the byte order
5819 * from network order (big endian) to little endian
5821 rar_low = ((u32)addr[0] | ((u32)addr[1] << 8) |
5822 ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
5823 rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
5825 /* Disable Rx and flush all Rx frames before enabling RSS to avoid Rx
5826 * unit hang.
5828 * Description:
5829 * If there are any Rx frames queued up or otherwise present in the HW
5830 * before RSS is enabled, and then we enable RSS, the HW Rx unit will
5831 * hang. To work around this issue, we have to disable receives and
5832 * flush out all Rx frames before we enable RSS. To do so, we modify we
5833 * redirect all Rx traffic to manageability and then reset the HW.
5834 * This flushes away Rx frames, and (since the redirections to
5835 * manageability persists across resets) keeps new ones from coming in
5836 * while we work. Then, we clear the Address Valid AV bit for all MAC
5837 * addresses and undo the re-direction to manageability.
5838 * Now, frames are coming in again, but the MAC won't accept them, so
5839 * far so good. We now proceed to initialize RSS (if necessary) and
5840 * configure the Rx unit. Last, we re-enable the AV bits and continue
5841 * on our merry way.
5843 switch (hw->mac_type) {
5844 case e1000_82571:
5845 case e1000_82572:
5846 case e1000_80003es2lan:
5847 if (hw->leave_av_bit_off)
5848 break;
5849 default:
5850 /* Indicate to hardware the Address is Valid. */
5851 rar_high |= E1000_RAH_AV;
5852 break;
5855 E1000_WRITE_REG_ARRAY(hw, RA, (index << 1), rar_low);
5856 E1000_WRITE_FLUSH();
5857 E1000_WRITE_REG_ARRAY(hw, RA, ((index << 1) + 1), rar_high);
5858 E1000_WRITE_FLUSH();
5861 /******************************************************************************
5862 * Writes a value to the specified offset in the VLAN filter table.
5864 * hw - Struct containing variables accessed by shared code
5865 * offset - Offset in VLAN filer table to write
5866 * value - Value to write into VLAN filter table
5867 *****************************************************************************/
5868 void e1000_write_vfta(struct e1000_hw *hw, u32 offset, u32 value)
5870 u32 temp;
5872 if (hw->mac_type == e1000_ich8lan)
5873 return;
5875 if ((hw->mac_type == e1000_82544) && ((offset & 0x1) == 1)) {
5876 temp = E1000_READ_REG_ARRAY(hw, VFTA, (offset - 1));
5877 E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value);
5878 E1000_WRITE_FLUSH();
5879 E1000_WRITE_REG_ARRAY(hw, VFTA, (offset - 1), temp);
5880 E1000_WRITE_FLUSH();
5881 } else {
5882 E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value);
5883 E1000_WRITE_FLUSH();
5887 /******************************************************************************
5888 * Clears the VLAN filer table
5890 * hw - Struct containing variables accessed by shared code
5891 *****************************************************************************/
5892 static void e1000_clear_vfta(struct e1000_hw *hw)
5894 u32 offset;
5895 u32 vfta_value = 0;
5896 u32 vfta_offset = 0;
5897 u32 vfta_bit_in_reg = 0;
5899 if (hw->mac_type == e1000_ich8lan)
5900 return;
5902 if (hw->mac_type == e1000_82573) {
5903 if (hw->mng_cookie.vlan_id != 0) {
5904 /* The VFTA is a 4096b bit-field, each identifying a single VLAN
5905 * ID. The following operations determine which 32b entry
5906 * (i.e. offset) into the array we want to set the VLAN ID
5907 * (i.e. bit) of the manageability unit. */
5908 vfta_offset = (hw->mng_cookie.vlan_id >>
5909 E1000_VFTA_ENTRY_SHIFT) &
5910 E1000_VFTA_ENTRY_MASK;
5911 vfta_bit_in_reg = 1 << (hw->mng_cookie.vlan_id &
5912 E1000_VFTA_ENTRY_BIT_SHIFT_MASK);
5915 for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
5916 /* If the offset we want to clear is the same offset of the
5917 * manageability VLAN ID, then clear all bits except that of the
5918 * manageability unit */
5919 vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0;
5920 E1000_WRITE_REG_ARRAY(hw, VFTA, offset, vfta_value);
5921 E1000_WRITE_FLUSH();
5925 static s32 e1000_id_led_init(struct e1000_hw *hw)
5927 u32 ledctl;
5928 const u32 ledctl_mask = 0x000000FF;
5929 const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON;
5930 const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF;
5931 u16 eeprom_data, i, temp;
5932 const u16 led_mask = 0x0F;
5934 DEBUGFUNC("e1000_id_led_init");
5936 if (hw->mac_type < e1000_82540) {
5937 /* Nothing to do */
5938 return E1000_SUCCESS;
5941 ledctl = er32(LEDCTL);
5942 hw->ledctl_default = ledctl;
5943 hw->ledctl_mode1 = hw->ledctl_default;
5944 hw->ledctl_mode2 = hw->ledctl_default;
5946 if (e1000_read_eeprom(hw, EEPROM_ID_LED_SETTINGS, 1, &eeprom_data) < 0) {
5947 DEBUGOUT("EEPROM Read Error\n");
5948 return -E1000_ERR_EEPROM;
5951 if ((hw->mac_type == e1000_82573) &&
5952 (eeprom_data == ID_LED_RESERVED_82573))
5953 eeprom_data = ID_LED_DEFAULT_82573;
5954 else if ((eeprom_data == ID_LED_RESERVED_0000) ||
5955 (eeprom_data == ID_LED_RESERVED_FFFF)) {
5956 if (hw->mac_type == e1000_ich8lan)
5957 eeprom_data = ID_LED_DEFAULT_ICH8LAN;
5958 else
5959 eeprom_data = ID_LED_DEFAULT;
5962 for (i = 0; i < 4; i++) {
5963 temp = (eeprom_data >> (i << 2)) & led_mask;
5964 switch (temp) {
5965 case ID_LED_ON1_DEF2:
5966 case ID_LED_ON1_ON2:
5967 case ID_LED_ON1_OFF2:
5968 hw->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
5969 hw->ledctl_mode1 |= ledctl_on << (i << 3);
5970 break;
5971 case ID_LED_OFF1_DEF2:
5972 case ID_LED_OFF1_ON2:
5973 case ID_LED_OFF1_OFF2:
5974 hw->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
5975 hw->ledctl_mode1 |= ledctl_off << (i << 3);
5976 break;
5977 default:
5978 /* Do nothing */
5979 break;
5981 switch (temp) {
5982 case ID_LED_DEF1_ON2:
5983 case ID_LED_ON1_ON2:
5984 case ID_LED_OFF1_ON2:
5985 hw->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
5986 hw->ledctl_mode2 |= ledctl_on << (i << 3);
5987 break;
5988 case ID_LED_DEF1_OFF2:
5989 case ID_LED_ON1_OFF2:
5990 case ID_LED_OFF1_OFF2:
5991 hw->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
5992 hw->ledctl_mode2 |= ledctl_off << (i << 3);
5993 break;
5994 default:
5995 /* Do nothing */
5996 break;
5999 return E1000_SUCCESS;
6002 /******************************************************************************
6003 * Prepares SW controlable LED for use and saves the current state of the LED.
6005 * hw - Struct containing variables accessed by shared code
6006 *****************************************************************************/
6007 s32 e1000_setup_led(struct e1000_hw *hw)
6009 u32 ledctl;
6010 s32 ret_val = E1000_SUCCESS;
6012 DEBUGFUNC("e1000_setup_led");
6014 switch (hw->mac_type) {
6015 case e1000_82542_rev2_0:
6016 case e1000_82542_rev2_1:
6017 case e1000_82543:
6018 case e1000_82544:
6019 /* No setup necessary */
6020 break;
6021 case e1000_82541:
6022 case e1000_82547:
6023 case e1000_82541_rev_2:
6024 case e1000_82547_rev_2:
6025 /* Turn off PHY Smart Power Down (if enabled) */
6026 ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO,
6027 &hw->phy_spd_default);
6028 if (ret_val)
6029 return ret_val;
6030 ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
6031 (u16)(hw->phy_spd_default &
6032 ~IGP01E1000_GMII_SPD));
6033 if (ret_val)
6034 return ret_val;
6035 /* Fall Through */
6036 default:
6037 if (hw->media_type == e1000_media_type_fiber) {
6038 ledctl = er32(LEDCTL);
6039 /* Save current LEDCTL settings */
6040 hw->ledctl_default = ledctl;
6041 /* Turn off LED0 */
6042 ledctl &= ~(E1000_LEDCTL_LED0_IVRT |
6043 E1000_LEDCTL_LED0_BLINK |
6044 E1000_LEDCTL_LED0_MODE_MASK);
6045 ledctl |= (E1000_LEDCTL_MODE_LED_OFF <<
6046 E1000_LEDCTL_LED0_MODE_SHIFT);
6047 ew32(LEDCTL, ledctl);
6048 } else if (hw->media_type == e1000_media_type_copper)
6049 ew32(LEDCTL, hw->ledctl_mode1);
6050 break;
6053 return E1000_SUCCESS;
6057 /******************************************************************************
6058 * Used on 82571 and later Si that has LED blink bits.
6059 * Callers must use their own timer and should have already called
6060 * e1000_id_led_init()
6061 * Call e1000_cleanup led() to stop blinking
6063 * hw - Struct containing variables accessed by shared code
6064 *****************************************************************************/
6065 s32 e1000_blink_led_start(struct e1000_hw *hw)
6067 s16 i;
6068 u32 ledctl_blink = 0;
6070 DEBUGFUNC("e1000_id_led_blink_on");
6072 if (hw->mac_type < e1000_82571) {
6073 /* Nothing to do */
6074 return E1000_SUCCESS;
6076 if (hw->media_type == e1000_media_type_fiber) {
6077 /* always blink LED0 for PCI-E fiber */
6078 ledctl_blink = E1000_LEDCTL_LED0_BLINK |
6079 (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED0_MODE_SHIFT);
6080 } else {
6081 /* set the blink bit for each LED that's "on" (0x0E) in ledctl_mode2 */
6082 ledctl_blink = hw->ledctl_mode2;
6083 for (i=0; i < 4; i++)
6084 if (((hw->ledctl_mode2 >> (i * 8)) & 0xFF) ==
6085 E1000_LEDCTL_MODE_LED_ON)
6086 ledctl_blink |= (E1000_LEDCTL_LED0_BLINK << (i * 8));
6089 ew32(LEDCTL, ledctl_blink);
6091 return E1000_SUCCESS;
6094 /******************************************************************************
6095 * Restores the saved state of the SW controlable LED.
6097 * hw - Struct containing variables accessed by shared code
6098 *****************************************************************************/
6099 s32 e1000_cleanup_led(struct e1000_hw *hw)
6101 s32 ret_val = E1000_SUCCESS;
6103 DEBUGFUNC("e1000_cleanup_led");
6105 switch (hw->mac_type) {
6106 case e1000_82542_rev2_0:
6107 case e1000_82542_rev2_1:
6108 case e1000_82543:
6109 case e1000_82544:
6110 /* No cleanup necessary */
6111 break;
6112 case e1000_82541:
6113 case e1000_82547:
6114 case e1000_82541_rev_2:
6115 case e1000_82547_rev_2:
6116 /* Turn on PHY Smart Power Down (if previously enabled) */
6117 ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
6118 hw->phy_spd_default);
6119 if (ret_val)
6120 return ret_val;
6121 /* Fall Through */
6122 default:
6123 if (hw->phy_type == e1000_phy_ife) {
6124 e1000_write_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
6125 break;
6127 /* Restore LEDCTL settings */
6128 ew32(LEDCTL, hw->ledctl_default);
6129 break;
6132 return E1000_SUCCESS;
6135 /******************************************************************************
6136 * Turns on the software controllable LED
6138 * hw - Struct containing variables accessed by shared code
6139 *****************************************************************************/
6140 s32 e1000_led_on(struct e1000_hw *hw)
6142 u32 ctrl = er32(CTRL);
6144 DEBUGFUNC("e1000_led_on");
6146 switch (hw->mac_type) {
6147 case e1000_82542_rev2_0:
6148 case e1000_82542_rev2_1:
6149 case e1000_82543:
6150 /* Set SW Defineable Pin 0 to turn on the LED */
6151 ctrl |= E1000_CTRL_SWDPIN0;
6152 ctrl |= E1000_CTRL_SWDPIO0;
6153 break;
6154 case e1000_82544:
6155 if (hw->media_type == e1000_media_type_fiber) {
6156 /* Set SW Defineable Pin 0 to turn on the LED */
6157 ctrl |= E1000_CTRL_SWDPIN0;
6158 ctrl |= E1000_CTRL_SWDPIO0;
6159 } else {
6160 /* Clear SW Defineable Pin 0 to turn on the LED */
6161 ctrl &= ~E1000_CTRL_SWDPIN0;
6162 ctrl |= E1000_CTRL_SWDPIO0;
6164 break;
6165 default:
6166 if (hw->media_type == e1000_media_type_fiber) {
6167 /* Clear SW Defineable Pin 0 to turn on the LED */
6168 ctrl &= ~E1000_CTRL_SWDPIN0;
6169 ctrl |= E1000_CTRL_SWDPIO0;
6170 } else if (hw->phy_type == e1000_phy_ife) {
6171 e1000_write_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED,
6172 (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
6173 } else if (hw->media_type == e1000_media_type_copper) {
6174 ew32(LEDCTL, hw->ledctl_mode2);
6175 return E1000_SUCCESS;
6177 break;
6180 ew32(CTRL, ctrl);
6182 return E1000_SUCCESS;
6185 /******************************************************************************
6186 * Turns off the software controllable LED
6188 * hw - Struct containing variables accessed by shared code
6189 *****************************************************************************/
6190 s32 e1000_led_off(struct e1000_hw *hw)
6192 u32 ctrl = er32(CTRL);
6194 DEBUGFUNC("e1000_led_off");
6196 switch (hw->mac_type) {
6197 case e1000_82542_rev2_0:
6198 case e1000_82542_rev2_1:
6199 case e1000_82543:
6200 /* Clear SW Defineable Pin 0 to turn off the LED */
6201 ctrl &= ~E1000_CTRL_SWDPIN0;
6202 ctrl |= E1000_CTRL_SWDPIO0;
6203 break;
6204 case e1000_82544:
6205 if (hw->media_type == e1000_media_type_fiber) {
6206 /* Clear SW Defineable Pin 0 to turn off the LED */
6207 ctrl &= ~E1000_CTRL_SWDPIN0;
6208 ctrl |= E1000_CTRL_SWDPIO0;
6209 } else {
6210 /* Set SW Defineable Pin 0 to turn off the LED */
6211 ctrl |= E1000_CTRL_SWDPIN0;
6212 ctrl |= E1000_CTRL_SWDPIO0;
6214 break;
6215 default:
6216 if (hw->media_type == e1000_media_type_fiber) {
6217 /* Set SW Defineable Pin 0 to turn off the LED */
6218 ctrl |= E1000_CTRL_SWDPIN0;
6219 ctrl |= E1000_CTRL_SWDPIO0;
6220 } else if (hw->phy_type == e1000_phy_ife) {
6221 e1000_write_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED,
6222 (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_OFF));
6223 } else if (hw->media_type == e1000_media_type_copper) {
6224 ew32(LEDCTL, hw->ledctl_mode1);
6225 return E1000_SUCCESS;
6227 break;
6230 ew32(CTRL, ctrl);
6232 return E1000_SUCCESS;
6235 /******************************************************************************
6236 * Clears all hardware statistics counters.
6238 * hw - Struct containing variables accessed by shared code
6239 *****************************************************************************/
6240 static void e1000_clear_hw_cntrs(struct e1000_hw *hw)
6242 volatile u32 temp;
6244 temp = er32(CRCERRS);
6245 temp = er32(SYMERRS);
6246 temp = er32(MPC);
6247 temp = er32(SCC);
6248 temp = er32(ECOL);
6249 temp = er32(MCC);
6250 temp = er32(LATECOL);
6251 temp = er32(COLC);
6252 temp = er32(DC);
6253 temp = er32(SEC);
6254 temp = er32(RLEC);
6255 temp = er32(XONRXC);
6256 temp = er32(XONTXC);
6257 temp = er32(XOFFRXC);
6258 temp = er32(XOFFTXC);
6259 temp = er32(FCRUC);
6261 if (hw->mac_type != e1000_ich8lan) {
6262 temp = er32(PRC64);
6263 temp = er32(PRC127);
6264 temp = er32(PRC255);
6265 temp = er32(PRC511);
6266 temp = er32(PRC1023);
6267 temp = er32(PRC1522);
6270 temp = er32(GPRC);
6271 temp = er32(BPRC);
6272 temp = er32(MPRC);
6273 temp = er32(GPTC);
6274 temp = er32(GORCL);
6275 temp = er32(GORCH);
6276 temp = er32(GOTCL);
6277 temp = er32(GOTCH);
6278 temp = er32(RNBC);
6279 temp = er32(RUC);
6280 temp = er32(RFC);
6281 temp = er32(ROC);
6282 temp = er32(RJC);
6283 temp = er32(TORL);
6284 temp = er32(TORH);
6285 temp = er32(TOTL);
6286 temp = er32(TOTH);
6287 temp = er32(TPR);
6288 temp = er32(TPT);
6290 if (hw->mac_type != e1000_ich8lan) {
6291 temp = er32(PTC64);
6292 temp = er32(PTC127);
6293 temp = er32(PTC255);
6294 temp = er32(PTC511);
6295 temp = er32(PTC1023);
6296 temp = er32(PTC1522);
6299 temp = er32(MPTC);
6300 temp = er32(BPTC);
6302 if (hw->mac_type < e1000_82543) return;
6304 temp = er32(ALGNERRC);
6305 temp = er32(RXERRC);
6306 temp = er32(TNCRS);
6307 temp = er32(CEXTERR);
6308 temp = er32(TSCTC);
6309 temp = er32(TSCTFC);
6311 if (hw->mac_type <= e1000_82544) return;
6313 temp = er32(MGTPRC);
6314 temp = er32(MGTPDC);
6315 temp = er32(MGTPTC);
6317 if (hw->mac_type <= e1000_82547_rev_2) return;
6319 temp = er32(IAC);
6320 temp = er32(ICRXOC);
6322 if (hw->mac_type == e1000_ich8lan) return;
6324 temp = er32(ICRXPTC);
6325 temp = er32(ICRXATC);
6326 temp = er32(ICTXPTC);
6327 temp = er32(ICTXATC);
6328 temp = er32(ICTXQEC);
6329 temp = er32(ICTXQMTC);
6330 temp = er32(ICRXDMTC);
6333 /******************************************************************************
6334 * Resets Adaptive IFS to its default state.
6336 * hw - Struct containing variables accessed by shared code
6338 * Call this after e1000_init_hw. You may override the IFS defaults by setting
6339 * hw->ifs_params_forced to true. However, you must initialize hw->
6340 * current_ifs_val, ifs_min_val, ifs_max_val, ifs_step_size, and ifs_ratio
6341 * before calling this function.
6342 *****************************************************************************/
6343 void e1000_reset_adaptive(struct e1000_hw *hw)
6345 DEBUGFUNC("e1000_reset_adaptive");
6347 if (hw->adaptive_ifs) {
6348 if (!hw->ifs_params_forced) {
6349 hw->current_ifs_val = 0;
6350 hw->ifs_min_val = IFS_MIN;
6351 hw->ifs_max_val = IFS_MAX;
6352 hw->ifs_step_size = IFS_STEP;
6353 hw->ifs_ratio = IFS_RATIO;
6355 hw->in_ifs_mode = false;
6356 ew32(AIT, 0);
6357 } else {
6358 DEBUGOUT("Not in Adaptive IFS mode!\n");
6362 /******************************************************************************
6363 * Called during the callback/watchdog routine to update IFS value based on
6364 * the ratio of transmits to collisions.
6366 * hw - Struct containing variables accessed by shared code
6367 * tx_packets - Number of transmits since last callback
6368 * total_collisions - Number of collisions since last callback
6369 *****************************************************************************/
6370 void e1000_update_adaptive(struct e1000_hw *hw)
6372 DEBUGFUNC("e1000_update_adaptive");
6374 if (hw->adaptive_ifs) {
6375 if ((hw->collision_delta * hw->ifs_ratio) > hw->tx_packet_delta) {
6376 if (hw->tx_packet_delta > MIN_NUM_XMITS) {
6377 hw->in_ifs_mode = true;
6378 if (hw->current_ifs_val < hw->ifs_max_val) {
6379 if (hw->current_ifs_val == 0)
6380 hw->current_ifs_val = hw->ifs_min_val;
6381 else
6382 hw->current_ifs_val += hw->ifs_step_size;
6383 ew32(AIT, hw->current_ifs_val);
6386 } else {
6387 if (hw->in_ifs_mode && (hw->tx_packet_delta <= MIN_NUM_XMITS)) {
6388 hw->current_ifs_val = 0;
6389 hw->in_ifs_mode = false;
6390 ew32(AIT, 0);
6393 } else {
6394 DEBUGOUT("Not in Adaptive IFS mode!\n");
6398 /******************************************************************************
6399 * Adjusts the statistic counters when a frame is accepted by TBI_ACCEPT
6401 * hw - Struct containing variables accessed by shared code
6402 * frame_len - The length of the frame in question
6403 * mac_addr - The Ethernet destination address of the frame in question
6404 *****************************************************************************/
6405 void e1000_tbi_adjust_stats(struct e1000_hw *hw, struct e1000_hw_stats *stats,
6406 u32 frame_len, u8 *mac_addr)
6408 u64 carry_bit;
6410 /* First adjust the frame length. */
6411 frame_len--;
6412 /* We need to adjust the statistics counters, since the hardware
6413 * counters overcount this packet as a CRC error and undercount
6414 * the packet as a good packet
6416 /* This packet should not be counted as a CRC error. */
6417 stats->crcerrs--;
6418 /* This packet does count as a Good Packet Received. */
6419 stats->gprc++;
6421 /* Adjust the Good Octets received counters */
6422 carry_bit = 0x80000000 & stats->gorcl;
6423 stats->gorcl += frame_len;
6424 /* If the high bit of Gorcl (the low 32 bits of the Good Octets
6425 * Received Count) was one before the addition,
6426 * AND it is zero after, then we lost the carry out,
6427 * need to add one to Gorch (Good Octets Received Count High).
6428 * This could be simplified if all environments supported
6429 * 64-bit integers.
6431 if (carry_bit && ((stats->gorcl & 0x80000000) == 0))
6432 stats->gorch++;
6433 /* Is this a broadcast or multicast? Check broadcast first,
6434 * since the test for a multicast frame will test positive on
6435 * a broadcast frame.
6437 if ((mac_addr[0] == (u8)0xff) && (mac_addr[1] == (u8)0xff))
6438 /* Broadcast packet */
6439 stats->bprc++;
6440 else if (*mac_addr & 0x01)
6441 /* Multicast packet */
6442 stats->mprc++;
6444 if (frame_len == hw->max_frame_size) {
6445 /* In this case, the hardware has overcounted the number of
6446 * oversize frames.
6448 if (stats->roc > 0)
6449 stats->roc--;
6452 /* Adjust the bin counters when the extra byte put the frame in the
6453 * wrong bin. Remember that the frame_len was adjusted above.
6455 if (frame_len == 64) {
6456 stats->prc64++;
6457 stats->prc127--;
6458 } else if (frame_len == 127) {
6459 stats->prc127++;
6460 stats->prc255--;
6461 } else if (frame_len == 255) {
6462 stats->prc255++;
6463 stats->prc511--;
6464 } else if (frame_len == 511) {
6465 stats->prc511++;
6466 stats->prc1023--;
6467 } else if (frame_len == 1023) {
6468 stats->prc1023++;
6469 stats->prc1522--;
6470 } else if (frame_len == 1522) {
6471 stats->prc1522++;
6475 /******************************************************************************
6476 * Gets the current PCI bus type, speed, and width of the hardware
6478 * hw - Struct containing variables accessed by shared code
6479 *****************************************************************************/
6480 void e1000_get_bus_info(struct e1000_hw *hw)
6482 s32 ret_val;
6483 u16 pci_ex_link_status;
6484 u32 status;
6486 switch (hw->mac_type) {
6487 case e1000_82542_rev2_0:
6488 case e1000_82542_rev2_1:
6489 hw->bus_type = e1000_bus_type_pci;
6490 hw->bus_speed = e1000_bus_speed_unknown;
6491 hw->bus_width = e1000_bus_width_unknown;
6492 break;
6493 case e1000_82571:
6494 case e1000_82572:
6495 case e1000_82573:
6496 case e1000_80003es2lan:
6497 hw->bus_type = e1000_bus_type_pci_express;
6498 hw->bus_speed = e1000_bus_speed_2500;
6499 ret_val = e1000_read_pcie_cap_reg(hw,
6500 PCI_EX_LINK_STATUS,
6501 &pci_ex_link_status);
6502 if (ret_val)
6503 hw->bus_width = e1000_bus_width_unknown;
6504 else
6505 hw->bus_width = (pci_ex_link_status & PCI_EX_LINK_WIDTH_MASK) >>
6506 PCI_EX_LINK_WIDTH_SHIFT;
6507 break;
6508 case e1000_ich8lan:
6509 hw->bus_type = e1000_bus_type_pci_express;
6510 hw->bus_speed = e1000_bus_speed_2500;
6511 hw->bus_width = e1000_bus_width_pciex_1;
6512 break;
6513 default:
6514 status = er32(STATUS);
6515 hw->bus_type = (status & E1000_STATUS_PCIX_MODE) ?
6516 e1000_bus_type_pcix : e1000_bus_type_pci;
6518 if (hw->device_id == E1000_DEV_ID_82546EB_QUAD_COPPER) {
6519 hw->bus_speed = (hw->bus_type == e1000_bus_type_pci) ?
6520 e1000_bus_speed_66 : e1000_bus_speed_120;
6521 } else if (hw->bus_type == e1000_bus_type_pci) {
6522 hw->bus_speed = (status & E1000_STATUS_PCI66) ?
6523 e1000_bus_speed_66 : e1000_bus_speed_33;
6524 } else {
6525 switch (status & E1000_STATUS_PCIX_SPEED) {
6526 case E1000_STATUS_PCIX_SPEED_66:
6527 hw->bus_speed = e1000_bus_speed_66;
6528 break;
6529 case E1000_STATUS_PCIX_SPEED_100:
6530 hw->bus_speed = e1000_bus_speed_100;
6531 break;
6532 case E1000_STATUS_PCIX_SPEED_133:
6533 hw->bus_speed = e1000_bus_speed_133;
6534 break;
6535 default:
6536 hw->bus_speed = e1000_bus_speed_reserved;
6537 break;
6540 hw->bus_width = (status & E1000_STATUS_BUS64) ?
6541 e1000_bus_width_64 : e1000_bus_width_32;
6542 break;
6546 /******************************************************************************
6547 * Writes a value to one of the devices registers using port I/O (as opposed to
6548 * memory mapped I/O). Only 82544 and newer devices support port I/O.
6550 * hw - Struct containing variables accessed by shared code
6551 * offset - offset to write to
6552 * value - value to write
6553 *****************************************************************************/
6554 static void e1000_write_reg_io(struct e1000_hw *hw, u32 offset, u32 value)
6556 unsigned long io_addr = hw->io_base;
6557 unsigned long io_data = hw->io_base + 4;
6559 e1000_io_write(hw, io_addr, offset);
6560 e1000_io_write(hw, io_data, value);
6563 /******************************************************************************
6564 * Estimates the cable length.
6566 * hw - Struct containing variables accessed by shared code
6567 * min_length - The estimated minimum length
6568 * max_length - The estimated maximum length
6570 * returns: - E1000_ERR_XXX
6571 * E1000_SUCCESS
6573 * This function always returns a ranged length (minimum & maximum).
6574 * So for M88 phy's, this function interprets the one value returned from the
6575 * register to the minimum and maximum range.
6576 * For IGP phy's, the function calculates the range by the AGC registers.
6577 *****************************************************************************/
6578 static s32 e1000_get_cable_length(struct e1000_hw *hw, u16 *min_length,
6579 u16 *max_length)
6581 s32 ret_val;
6582 u16 agc_value = 0;
6583 u16 i, phy_data;
6584 u16 cable_length;
6586 DEBUGFUNC("e1000_get_cable_length");
6588 *min_length = *max_length = 0;
6590 /* Use old method for Phy older than IGP */
6591 if (hw->phy_type == e1000_phy_m88) {
6593 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
6594 &phy_data);
6595 if (ret_val)
6596 return ret_val;
6597 cable_length = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
6598 M88E1000_PSSR_CABLE_LENGTH_SHIFT;
6600 /* Convert the enum value to ranged values */
6601 switch (cable_length) {
6602 case e1000_cable_length_50:
6603 *min_length = 0;
6604 *max_length = e1000_igp_cable_length_50;
6605 break;
6606 case e1000_cable_length_50_80:
6607 *min_length = e1000_igp_cable_length_50;
6608 *max_length = e1000_igp_cable_length_80;
6609 break;
6610 case e1000_cable_length_80_110:
6611 *min_length = e1000_igp_cable_length_80;
6612 *max_length = e1000_igp_cable_length_110;
6613 break;
6614 case e1000_cable_length_110_140:
6615 *min_length = e1000_igp_cable_length_110;
6616 *max_length = e1000_igp_cable_length_140;
6617 break;
6618 case e1000_cable_length_140:
6619 *min_length = e1000_igp_cable_length_140;
6620 *max_length = e1000_igp_cable_length_170;
6621 break;
6622 default:
6623 return -E1000_ERR_PHY;
6624 break;
6626 } else if (hw->phy_type == e1000_phy_gg82563) {
6627 ret_val = e1000_read_phy_reg(hw, GG82563_PHY_DSP_DISTANCE,
6628 &phy_data);
6629 if (ret_val)
6630 return ret_val;
6631 cable_length = phy_data & GG82563_DSPD_CABLE_LENGTH;
6633 switch (cable_length) {
6634 case e1000_gg_cable_length_60:
6635 *min_length = 0;
6636 *max_length = e1000_igp_cable_length_60;
6637 break;
6638 case e1000_gg_cable_length_60_115:
6639 *min_length = e1000_igp_cable_length_60;
6640 *max_length = e1000_igp_cable_length_115;
6641 break;
6642 case e1000_gg_cable_length_115_150:
6643 *min_length = e1000_igp_cable_length_115;
6644 *max_length = e1000_igp_cable_length_150;
6645 break;
6646 case e1000_gg_cable_length_150:
6647 *min_length = e1000_igp_cable_length_150;
6648 *max_length = e1000_igp_cable_length_180;
6649 break;
6650 default:
6651 return -E1000_ERR_PHY;
6652 break;
6654 } else if (hw->phy_type == e1000_phy_igp) { /* For IGP PHY */
6655 u16 cur_agc_value;
6656 u16 min_agc_value = IGP01E1000_AGC_LENGTH_TABLE_SIZE;
6657 u16 agc_reg_array[IGP01E1000_PHY_CHANNEL_NUM] =
6658 {IGP01E1000_PHY_AGC_A,
6659 IGP01E1000_PHY_AGC_B,
6660 IGP01E1000_PHY_AGC_C,
6661 IGP01E1000_PHY_AGC_D};
6662 /* Read the AGC registers for all channels */
6663 for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
6665 ret_val = e1000_read_phy_reg(hw, agc_reg_array[i], &phy_data);
6666 if (ret_val)
6667 return ret_val;
6669 cur_agc_value = phy_data >> IGP01E1000_AGC_LENGTH_SHIFT;
6671 /* Value bound check. */
6672 if ((cur_agc_value >= IGP01E1000_AGC_LENGTH_TABLE_SIZE - 1) ||
6673 (cur_agc_value == 0))
6674 return -E1000_ERR_PHY;
6676 agc_value += cur_agc_value;
6678 /* Update minimal AGC value. */
6679 if (min_agc_value > cur_agc_value)
6680 min_agc_value = cur_agc_value;
6683 /* Remove the minimal AGC result for length < 50m */
6684 if (agc_value < IGP01E1000_PHY_CHANNEL_NUM * e1000_igp_cable_length_50) {
6685 agc_value -= min_agc_value;
6687 /* Get the average length of the remaining 3 channels */
6688 agc_value /= (IGP01E1000_PHY_CHANNEL_NUM - 1);
6689 } else {
6690 /* Get the average length of all the 4 channels. */
6691 agc_value /= IGP01E1000_PHY_CHANNEL_NUM;
6694 /* Set the range of the calculated length. */
6695 *min_length = ((e1000_igp_cable_length_table[agc_value] -
6696 IGP01E1000_AGC_RANGE) > 0) ?
6697 (e1000_igp_cable_length_table[agc_value] -
6698 IGP01E1000_AGC_RANGE) : 0;
6699 *max_length = e1000_igp_cable_length_table[agc_value] +
6700 IGP01E1000_AGC_RANGE;
6701 } else if (hw->phy_type == e1000_phy_igp_2 ||
6702 hw->phy_type == e1000_phy_igp_3) {
6703 u16 cur_agc_index, max_agc_index = 0;
6704 u16 min_agc_index = IGP02E1000_AGC_LENGTH_TABLE_SIZE - 1;
6705 u16 agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] =
6706 {IGP02E1000_PHY_AGC_A,
6707 IGP02E1000_PHY_AGC_B,
6708 IGP02E1000_PHY_AGC_C,
6709 IGP02E1000_PHY_AGC_D};
6710 /* Read the AGC registers for all channels */
6711 for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) {
6712 ret_val = e1000_read_phy_reg(hw, agc_reg_array[i], &phy_data);
6713 if (ret_val)
6714 return ret_val;
6716 /* Getting bits 15:9, which represent the combination of course and
6717 * fine gain values. The result is a number that can be put into
6718 * the lookup table to obtain the approximate cable length. */
6719 cur_agc_index = (phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) &
6720 IGP02E1000_AGC_LENGTH_MASK;
6722 /* Array index bound check. */
6723 if ((cur_agc_index >= IGP02E1000_AGC_LENGTH_TABLE_SIZE) ||
6724 (cur_agc_index == 0))
6725 return -E1000_ERR_PHY;
6727 /* Remove min & max AGC values from calculation. */
6728 if (e1000_igp_2_cable_length_table[min_agc_index] >
6729 e1000_igp_2_cable_length_table[cur_agc_index])
6730 min_agc_index = cur_agc_index;
6731 if (e1000_igp_2_cable_length_table[max_agc_index] <
6732 e1000_igp_2_cable_length_table[cur_agc_index])
6733 max_agc_index = cur_agc_index;
6735 agc_value += e1000_igp_2_cable_length_table[cur_agc_index];
6738 agc_value -= (e1000_igp_2_cable_length_table[min_agc_index] +
6739 e1000_igp_2_cable_length_table[max_agc_index]);
6740 agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2);
6742 /* Calculate cable length with the error range of +/- 10 meters. */
6743 *min_length = ((agc_value - IGP02E1000_AGC_RANGE) > 0) ?
6744 (agc_value - IGP02E1000_AGC_RANGE) : 0;
6745 *max_length = agc_value + IGP02E1000_AGC_RANGE;
6748 return E1000_SUCCESS;
6751 /******************************************************************************
6752 * Check the cable polarity
6754 * hw - Struct containing variables accessed by shared code
6755 * polarity - output parameter : 0 - Polarity is not reversed
6756 * 1 - Polarity is reversed.
6758 * returns: - E1000_ERR_XXX
6759 * E1000_SUCCESS
6761 * For phy's older than IGP, this function simply reads the polarity bit in the
6762 * Phy Status register. For IGP phy's, this bit is valid only if link speed is
6763 * 10 Mbps. If the link speed is 100 Mbps there is no polarity so this bit will
6764 * return 0. If the link speed is 1000 Mbps the polarity status is in the
6765 * IGP01E1000_PHY_PCS_INIT_REG.
6766 *****************************************************************************/
6767 static s32 e1000_check_polarity(struct e1000_hw *hw,
6768 e1000_rev_polarity *polarity)
6770 s32 ret_val;
6771 u16 phy_data;
6773 DEBUGFUNC("e1000_check_polarity");
6775 if ((hw->phy_type == e1000_phy_m88) ||
6776 (hw->phy_type == e1000_phy_gg82563)) {
6777 /* return the Polarity bit in the Status register. */
6778 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
6779 &phy_data);
6780 if (ret_val)
6781 return ret_val;
6782 *polarity = ((phy_data & M88E1000_PSSR_REV_POLARITY) >>
6783 M88E1000_PSSR_REV_POLARITY_SHIFT) ?
6784 e1000_rev_polarity_reversed : e1000_rev_polarity_normal;
6786 } else if (hw->phy_type == e1000_phy_igp ||
6787 hw->phy_type == e1000_phy_igp_3 ||
6788 hw->phy_type == e1000_phy_igp_2) {
6789 /* Read the Status register to check the speed */
6790 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS,
6791 &phy_data);
6792 if (ret_val)
6793 return ret_val;
6795 /* If speed is 1000 Mbps, must read the IGP01E1000_PHY_PCS_INIT_REG to
6796 * find the polarity status */
6797 if ((phy_data & IGP01E1000_PSSR_SPEED_MASK) ==
6798 IGP01E1000_PSSR_SPEED_1000MBPS) {
6800 /* Read the GIG initialization PCS register (0x00B4) */
6801 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG,
6802 &phy_data);
6803 if (ret_val)
6804 return ret_val;
6806 /* Check the polarity bits */
6807 *polarity = (phy_data & IGP01E1000_PHY_POLARITY_MASK) ?
6808 e1000_rev_polarity_reversed : e1000_rev_polarity_normal;
6809 } else {
6810 /* For 10 Mbps, read the polarity bit in the status register. (for
6811 * 100 Mbps this bit is always 0) */
6812 *polarity = (phy_data & IGP01E1000_PSSR_POLARITY_REVERSED) ?
6813 e1000_rev_polarity_reversed : e1000_rev_polarity_normal;
6815 } else if (hw->phy_type == e1000_phy_ife) {
6816 ret_val = e1000_read_phy_reg(hw, IFE_PHY_EXTENDED_STATUS_CONTROL,
6817 &phy_data);
6818 if (ret_val)
6819 return ret_val;
6820 *polarity = ((phy_data & IFE_PESC_POLARITY_REVERSED) >>
6821 IFE_PESC_POLARITY_REVERSED_SHIFT) ?
6822 e1000_rev_polarity_reversed : e1000_rev_polarity_normal;
6824 return E1000_SUCCESS;
6827 /******************************************************************************
6828 * Check if Downshift occured
6830 * hw - Struct containing variables accessed by shared code
6831 * downshift - output parameter : 0 - No Downshift ocured.
6832 * 1 - Downshift ocured.
6834 * returns: - E1000_ERR_XXX
6835 * E1000_SUCCESS
6837 * For phy's older than IGP, this function reads the Downshift bit in the Phy
6838 * Specific Status register. For IGP phy's, it reads the Downgrade bit in the
6839 * Link Health register. In IGP this bit is latched high, so the driver must
6840 * read it immediately after link is established.
6841 *****************************************************************************/
6842 static s32 e1000_check_downshift(struct e1000_hw *hw)
6844 s32 ret_val;
6845 u16 phy_data;
6847 DEBUGFUNC("e1000_check_downshift");
6849 if (hw->phy_type == e1000_phy_igp ||
6850 hw->phy_type == e1000_phy_igp_3 ||
6851 hw->phy_type == e1000_phy_igp_2) {
6852 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_LINK_HEALTH,
6853 &phy_data);
6854 if (ret_val)
6855 return ret_val;
6857 hw->speed_downgraded = (phy_data & IGP01E1000_PLHR_SS_DOWNGRADE) ? 1 : 0;
6858 } else if ((hw->phy_type == e1000_phy_m88) ||
6859 (hw->phy_type == e1000_phy_gg82563)) {
6860 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
6861 &phy_data);
6862 if (ret_val)
6863 return ret_val;
6865 hw->speed_downgraded = (phy_data & M88E1000_PSSR_DOWNSHIFT) >>
6866 M88E1000_PSSR_DOWNSHIFT_SHIFT;
6867 } else if (hw->phy_type == e1000_phy_ife) {
6868 /* e1000_phy_ife supports 10/100 speed only */
6869 hw->speed_downgraded = false;
6872 return E1000_SUCCESS;
6875 /*****************************************************************************
6877 * 82541_rev_2 & 82547_rev_2 have the capability to configure the DSP when a
6878 * gigabit link is achieved to improve link quality.
6880 * hw: Struct containing variables accessed by shared code
6882 * returns: - E1000_ERR_PHY if fail to read/write the PHY
6883 * E1000_SUCCESS at any other case.
6885 ****************************************************************************/
6887 static s32 e1000_config_dsp_after_link_change(struct e1000_hw *hw, bool link_up)
6889 s32 ret_val;
6890 u16 phy_data, phy_saved_data, speed, duplex, i;
6891 u16 dsp_reg_array[IGP01E1000_PHY_CHANNEL_NUM] =
6892 {IGP01E1000_PHY_AGC_PARAM_A,
6893 IGP01E1000_PHY_AGC_PARAM_B,
6894 IGP01E1000_PHY_AGC_PARAM_C,
6895 IGP01E1000_PHY_AGC_PARAM_D};
6896 u16 min_length, max_length;
6898 DEBUGFUNC("e1000_config_dsp_after_link_change");
6900 if (hw->phy_type != e1000_phy_igp)
6901 return E1000_SUCCESS;
6903 if (link_up) {
6904 ret_val = e1000_get_speed_and_duplex(hw, &speed, &duplex);
6905 if (ret_val) {
6906 DEBUGOUT("Error getting link speed and duplex\n");
6907 return ret_val;
6910 if (speed == SPEED_1000) {
6912 ret_val = e1000_get_cable_length(hw, &min_length, &max_length);
6913 if (ret_val)
6914 return ret_val;
6916 if ((hw->dsp_config_state == e1000_dsp_config_enabled) &&
6917 min_length >= e1000_igp_cable_length_50) {
6919 for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
6920 ret_val = e1000_read_phy_reg(hw, dsp_reg_array[i],
6921 &phy_data);
6922 if (ret_val)
6923 return ret_val;
6925 phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX;
6927 ret_val = e1000_write_phy_reg(hw, dsp_reg_array[i],
6928 phy_data);
6929 if (ret_val)
6930 return ret_val;
6932 hw->dsp_config_state = e1000_dsp_config_activated;
6935 if ((hw->ffe_config_state == e1000_ffe_config_enabled) &&
6936 (min_length < e1000_igp_cable_length_50)) {
6938 u16 ffe_idle_err_timeout = FFE_IDLE_ERR_COUNT_TIMEOUT_20;
6939 u32 idle_errs = 0;
6941 /* clear previous idle error counts */
6942 ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS,
6943 &phy_data);
6944 if (ret_val)
6945 return ret_val;
6947 for (i = 0; i < ffe_idle_err_timeout; i++) {
6948 udelay(1000);
6949 ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS,
6950 &phy_data);
6951 if (ret_val)
6952 return ret_val;
6954 idle_errs += (phy_data & SR_1000T_IDLE_ERROR_CNT);
6955 if (idle_errs > SR_1000T_PHY_EXCESSIVE_IDLE_ERR_COUNT) {
6956 hw->ffe_config_state = e1000_ffe_config_active;
6958 ret_val = e1000_write_phy_reg(hw,
6959 IGP01E1000_PHY_DSP_FFE,
6960 IGP01E1000_PHY_DSP_FFE_CM_CP);
6961 if (ret_val)
6962 return ret_val;
6963 break;
6966 if (idle_errs)
6967 ffe_idle_err_timeout = FFE_IDLE_ERR_COUNT_TIMEOUT_100;
6971 } else {
6972 if (hw->dsp_config_state == e1000_dsp_config_activated) {
6973 /* Save off the current value of register 0x2F5B to be restored at
6974 * the end of the routines. */
6975 ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
6977 if (ret_val)
6978 return ret_val;
6980 /* Disable the PHY transmitter */
6981 ret_val = e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
6983 if (ret_val)
6984 return ret_val;
6986 mdelay(20);
6988 ret_val = e1000_write_phy_reg(hw, 0x0000,
6989 IGP01E1000_IEEE_FORCE_GIGA);
6990 if (ret_val)
6991 return ret_val;
6992 for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
6993 ret_val = e1000_read_phy_reg(hw, dsp_reg_array[i], &phy_data);
6994 if (ret_val)
6995 return ret_val;
6997 phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX;
6998 phy_data |= IGP01E1000_PHY_EDAC_SIGN_EXT_9_BITS;
7000 ret_val = e1000_write_phy_reg(hw,dsp_reg_array[i], phy_data);
7001 if (ret_val)
7002 return ret_val;
7005 ret_val = e1000_write_phy_reg(hw, 0x0000,
7006 IGP01E1000_IEEE_RESTART_AUTONEG);
7007 if (ret_val)
7008 return ret_val;
7010 mdelay(20);
7012 /* Now enable the transmitter */
7013 ret_val = e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
7015 if (ret_val)
7016 return ret_val;
7018 hw->dsp_config_state = e1000_dsp_config_enabled;
7021 if (hw->ffe_config_state == e1000_ffe_config_active) {
7022 /* Save off the current value of register 0x2F5B to be restored at
7023 * the end of the routines. */
7024 ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
7026 if (ret_val)
7027 return ret_val;
7029 /* Disable the PHY transmitter */
7030 ret_val = e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
7032 if (ret_val)
7033 return ret_val;
7035 mdelay(20);
7037 ret_val = e1000_write_phy_reg(hw, 0x0000,
7038 IGP01E1000_IEEE_FORCE_GIGA);
7039 if (ret_val)
7040 return ret_val;
7041 ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_DSP_FFE,
7042 IGP01E1000_PHY_DSP_FFE_DEFAULT);
7043 if (ret_val)
7044 return ret_val;
7046 ret_val = e1000_write_phy_reg(hw, 0x0000,
7047 IGP01E1000_IEEE_RESTART_AUTONEG);
7048 if (ret_val)
7049 return ret_val;
7051 mdelay(20);
7053 /* Now enable the transmitter */
7054 ret_val = e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
7056 if (ret_val)
7057 return ret_val;
7059 hw->ffe_config_state = e1000_ffe_config_enabled;
7062 return E1000_SUCCESS;
7065 /*****************************************************************************
7066 * Set PHY to class A mode
7067 * Assumes the following operations will follow to enable the new class mode.
7068 * 1. Do a PHY soft reset
7069 * 2. Restart auto-negotiation or force link.
7071 * hw - Struct containing variables accessed by shared code
7072 ****************************************************************************/
7073 static s32 e1000_set_phy_mode(struct e1000_hw *hw)
7075 s32 ret_val;
7076 u16 eeprom_data;
7078 DEBUGFUNC("e1000_set_phy_mode");
7080 if ((hw->mac_type == e1000_82545_rev_3) &&
7081 (hw->media_type == e1000_media_type_copper)) {
7082 ret_val = e1000_read_eeprom(hw, EEPROM_PHY_CLASS_WORD, 1, &eeprom_data);
7083 if (ret_val) {
7084 return ret_val;
7087 if ((eeprom_data != EEPROM_RESERVED_WORD) &&
7088 (eeprom_data & EEPROM_PHY_CLASS_A)) {
7089 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x000B);
7090 if (ret_val)
7091 return ret_val;
7092 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0x8104);
7093 if (ret_val)
7094 return ret_val;
7096 hw->phy_reset_disable = false;
7100 return E1000_SUCCESS;
7103 /*****************************************************************************
7105 * This function sets the lplu state according to the active flag. When
7106 * activating lplu this function also disables smart speed and vise versa.
7107 * lplu will not be activated unless the device autonegotiation advertisment
7108 * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes.
7109 * hw: Struct containing variables accessed by shared code
7110 * active - true to enable lplu false to disable lplu.
7112 * returns: - E1000_ERR_PHY if fail to read/write the PHY
7113 * E1000_SUCCESS at any other case.
7115 ****************************************************************************/
7117 static s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active)
7119 u32 phy_ctrl = 0;
7120 s32 ret_val;
7121 u16 phy_data;
7122 DEBUGFUNC("e1000_set_d3_lplu_state");
7124 if (hw->phy_type != e1000_phy_igp && hw->phy_type != e1000_phy_igp_2
7125 && hw->phy_type != e1000_phy_igp_3)
7126 return E1000_SUCCESS;
7128 /* During driver activity LPLU should not be used or it will attain link
7129 * from the lowest speeds starting from 10Mbps. The capability is used for
7130 * Dx transitions and states */
7131 if (hw->mac_type == e1000_82541_rev_2 || hw->mac_type == e1000_82547_rev_2) {
7132 ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO, &phy_data);
7133 if (ret_val)
7134 return ret_val;
7135 } else if (hw->mac_type == e1000_ich8lan) {
7136 /* MAC writes into PHY register based on the state transition
7137 * and start auto-negotiation. SW driver can overwrite the settings
7138 * in CSR PHY power control E1000_PHY_CTRL register. */
7139 phy_ctrl = er32(PHY_CTRL);
7140 } else {
7141 ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
7142 if (ret_val)
7143 return ret_val;
7146 if (!active) {
7147 if (hw->mac_type == e1000_82541_rev_2 ||
7148 hw->mac_type == e1000_82547_rev_2) {
7149 phy_data &= ~IGP01E1000_GMII_FLEX_SPD;
7150 ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO, phy_data);
7151 if (ret_val)
7152 return ret_val;
7153 } else {
7154 if (hw->mac_type == e1000_ich8lan) {
7155 phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
7156 ew32(PHY_CTRL, phy_ctrl);
7157 } else {
7158 phy_data &= ~IGP02E1000_PM_D3_LPLU;
7159 ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
7160 phy_data);
7161 if (ret_val)
7162 return ret_val;
7166 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used during
7167 * Dx states where the power conservation is most important. During
7168 * driver activity we should enable SmartSpeed, so performance is
7169 * maintained. */
7170 if (hw->smart_speed == e1000_smart_speed_on) {
7171 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
7172 &phy_data);
7173 if (ret_val)
7174 return ret_val;
7176 phy_data |= IGP01E1000_PSCFR_SMART_SPEED;
7177 ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
7178 phy_data);
7179 if (ret_val)
7180 return ret_val;
7181 } else if (hw->smart_speed == e1000_smart_speed_off) {
7182 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
7183 &phy_data);
7184 if (ret_val)
7185 return ret_val;
7187 phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
7188 ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
7189 phy_data);
7190 if (ret_val)
7191 return ret_val;
7194 } else if ((hw->autoneg_advertised == AUTONEG_ADVERTISE_SPEED_DEFAULT) ||
7195 (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_ALL ) ||
7196 (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_100_ALL)) {
7198 if (hw->mac_type == e1000_82541_rev_2 ||
7199 hw->mac_type == e1000_82547_rev_2) {
7200 phy_data |= IGP01E1000_GMII_FLEX_SPD;
7201 ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO, phy_data);
7202 if (ret_val)
7203 return ret_val;
7204 } else {
7205 if (hw->mac_type == e1000_ich8lan) {
7206 phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
7207 ew32(PHY_CTRL, phy_ctrl);
7208 } else {
7209 phy_data |= IGP02E1000_PM_D3_LPLU;
7210 ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
7211 phy_data);
7212 if (ret_val)
7213 return ret_val;
7217 /* When LPLU is enabled we should disable SmartSpeed */
7218 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, &phy_data);
7219 if (ret_val)
7220 return ret_val;
7222 phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
7223 ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, phy_data);
7224 if (ret_val)
7225 return ret_val;
7228 return E1000_SUCCESS;
7231 /*****************************************************************************
7233 * This function sets the lplu d0 state according to the active flag. When
7234 * activating lplu this function also disables smart speed and vise versa.
7235 * lplu will not be activated unless the device autonegotiation advertisment
7236 * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes.
7237 * hw: Struct containing variables accessed by shared code
7238 * active - true to enable lplu false to disable lplu.
7240 * returns: - E1000_ERR_PHY if fail to read/write the PHY
7241 * E1000_SUCCESS at any other case.
7243 ****************************************************************************/
7245 static s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active)
7247 u32 phy_ctrl = 0;
7248 s32 ret_val;
7249 u16 phy_data;
7250 DEBUGFUNC("e1000_set_d0_lplu_state");
7252 if (hw->mac_type <= e1000_82547_rev_2)
7253 return E1000_SUCCESS;
7255 if (hw->mac_type == e1000_ich8lan) {
7256 phy_ctrl = er32(PHY_CTRL);
7257 } else {
7258 ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
7259 if (ret_val)
7260 return ret_val;
7263 if (!active) {
7264 if (hw->mac_type == e1000_ich8lan) {
7265 phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
7266 ew32(PHY_CTRL, phy_ctrl);
7267 } else {
7268 phy_data &= ~IGP02E1000_PM_D0_LPLU;
7269 ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
7270 if (ret_val)
7271 return ret_val;
7274 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used during
7275 * Dx states where the power conservation is most important. During
7276 * driver activity we should enable SmartSpeed, so performance is
7277 * maintained. */
7278 if (hw->smart_speed == e1000_smart_speed_on) {
7279 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
7280 &phy_data);
7281 if (ret_val)
7282 return ret_val;
7284 phy_data |= IGP01E1000_PSCFR_SMART_SPEED;
7285 ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
7286 phy_data);
7287 if (ret_val)
7288 return ret_val;
7289 } else if (hw->smart_speed == e1000_smart_speed_off) {
7290 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
7291 &phy_data);
7292 if (ret_val)
7293 return ret_val;
7295 phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
7296 ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
7297 phy_data);
7298 if (ret_val)
7299 return ret_val;
7303 } else {
7305 if (hw->mac_type == e1000_ich8lan) {
7306 phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
7307 ew32(PHY_CTRL, phy_ctrl);
7308 } else {
7309 phy_data |= IGP02E1000_PM_D0_LPLU;
7310 ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
7311 if (ret_val)
7312 return ret_val;
7315 /* When LPLU is enabled we should disable SmartSpeed */
7316 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, &phy_data);
7317 if (ret_val)
7318 return ret_val;
7320 phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
7321 ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, phy_data);
7322 if (ret_val)
7323 return ret_val;
7326 return E1000_SUCCESS;
7329 /******************************************************************************
7330 * Change VCO speed register to improve Bit Error Rate performance of SERDES.
7332 * hw - Struct containing variables accessed by shared code
7333 *****************************************************************************/
7334 static s32 e1000_set_vco_speed(struct e1000_hw *hw)
7336 s32 ret_val;
7337 u16 default_page = 0;
7338 u16 phy_data;
7340 DEBUGFUNC("e1000_set_vco_speed");
7342 switch (hw->mac_type) {
7343 case e1000_82545_rev_3:
7344 case e1000_82546_rev_3:
7345 break;
7346 default:
7347 return E1000_SUCCESS;
7350 /* Set PHY register 30, page 5, bit 8 to 0 */
7352 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, &default_page);
7353 if (ret_val)
7354 return ret_val;
7356 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0005);
7357 if (ret_val)
7358 return ret_val;
7360 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data);
7361 if (ret_val)
7362 return ret_val;
7364 phy_data &= ~M88E1000_PHY_VCO_REG_BIT8;
7365 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data);
7366 if (ret_val)
7367 return ret_val;
7369 /* Set PHY register 30, page 4, bit 11 to 1 */
7371 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0004);
7372 if (ret_val)
7373 return ret_val;
7375 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data);
7376 if (ret_val)
7377 return ret_val;
7379 phy_data |= M88E1000_PHY_VCO_REG_BIT11;
7380 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data);
7381 if (ret_val)
7382 return ret_val;
7384 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, default_page);
7385 if (ret_val)
7386 return ret_val;
7388 return E1000_SUCCESS;
7392 /*****************************************************************************
7393 * This function reads the cookie from ARC ram.
7395 * returns: - E1000_SUCCESS .
7396 ****************************************************************************/
7397 static s32 e1000_host_if_read_cookie(struct e1000_hw *hw, u8 *buffer)
7399 u8 i;
7400 u32 offset = E1000_MNG_DHCP_COOKIE_OFFSET;
7401 u8 length = E1000_MNG_DHCP_COOKIE_LENGTH;
7403 length = (length >> 2);
7404 offset = (offset >> 2);
7406 for (i = 0; i < length; i++) {
7407 *((u32 *)buffer + i) =
7408 E1000_READ_REG_ARRAY_DWORD(hw, HOST_IF, offset + i);
7410 return E1000_SUCCESS;
7414 /*****************************************************************************
7415 * This function checks whether the HOST IF is enabled for command operaton
7416 * and also checks whether the previous command is completed.
7417 * It busy waits in case of previous command is not completed.
7419 * returns: - E1000_ERR_HOST_INTERFACE_COMMAND in case if is not ready or
7420 * timeout
7421 * - E1000_SUCCESS for success.
7422 ****************************************************************************/
7423 static s32 e1000_mng_enable_host_if(struct e1000_hw *hw)
7425 u32 hicr;
7426 u8 i;
7428 /* Check that the host interface is enabled. */
7429 hicr = er32(HICR);
7430 if ((hicr & E1000_HICR_EN) == 0) {
7431 DEBUGOUT("E1000_HOST_EN bit disabled.\n");
7432 return -E1000_ERR_HOST_INTERFACE_COMMAND;
7434 /* check the previous command is completed */
7435 for (i = 0; i < E1000_MNG_DHCP_COMMAND_TIMEOUT; i++) {
7436 hicr = er32(HICR);
7437 if (!(hicr & E1000_HICR_C))
7438 break;
7439 mdelay(1);
7442 if (i == E1000_MNG_DHCP_COMMAND_TIMEOUT) {
7443 DEBUGOUT("Previous command timeout failed .\n");
7444 return -E1000_ERR_HOST_INTERFACE_COMMAND;
7446 return E1000_SUCCESS;
7449 /*****************************************************************************
7450 * This function writes the buffer content at the offset given on the host if.
7451 * It also does alignment considerations to do the writes in most efficient way.
7452 * Also fills up the sum of the buffer in *buffer parameter.
7454 * returns - E1000_SUCCESS for success.
7455 ****************************************************************************/
7456 static s32 e1000_mng_host_if_write(struct e1000_hw *hw, u8 *buffer, u16 length,
7457 u16 offset, u8 *sum)
7459 u8 *tmp;
7460 u8 *bufptr = buffer;
7461 u32 data = 0;
7462 u16 remaining, i, j, prev_bytes;
7464 /* sum = only sum of the data and it is not checksum */
7466 if (length == 0 || offset + length > E1000_HI_MAX_MNG_DATA_LENGTH) {
7467 return -E1000_ERR_PARAM;
7470 tmp = (u8 *)&data;
7471 prev_bytes = offset & 0x3;
7472 offset &= 0xFFFC;
7473 offset >>= 2;
7475 if (prev_bytes) {
7476 data = E1000_READ_REG_ARRAY_DWORD(hw, HOST_IF, offset);
7477 for (j = prev_bytes; j < sizeof(u32); j++) {
7478 *(tmp + j) = *bufptr++;
7479 *sum += *(tmp + j);
7481 E1000_WRITE_REG_ARRAY_DWORD(hw, HOST_IF, offset, data);
7482 length -= j - prev_bytes;
7483 offset++;
7486 remaining = length & 0x3;
7487 length -= remaining;
7489 /* Calculate length in DWORDs */
7490 length >>= 2;
7492 /* The device driver writes the relevant command block into the
7493 * ram area. */
7494 for (i = 0; i < length; i++) {
7495 for (j = 0; j < sizeof(u32); j++) {
7496 *(tmp + j) = *bufptr++;
7497 *sum += *(tmp + j);
7500 E1000_WRITE_REG_ARRAY_DWORD(hw, HOST_IF, offset + i, data);
7502 if (remaining) {
7503 for (j = 0; j < sizeof(u32); j++) {
7504 if (j < remaining)
7505 *(tmp + j) = *bufptr++;
7506 else
7507 *(tmp + j) = 0;
7509 *sum += *(tmp + j);
7511 E1000_WRITE_REG_ARRAY_DWORD(hw, HOST_IF, offset + i, data);
7514 return E1000_SUCCESS;
7518 /*****************************************************************************
7519 * This function writes the command header after does the checksum calculation.
7521 * returns - E1000_SUCCESS for success.
7522 ****************************************************************************/
7523 static s32 e1000_mng_write_cmd_header(struct e1000_hw *hw,
7524 struct e1000_host_mng_command_header *hdr)
7526 u16 i;
7527 u8 sum;
7528 u8 *buffer;
7530 /* Write the whole command header structure which includes sum of
7531 * the buffer */
7533 u16 length = sizeof(struct e1000_host_mng_command_header);
7535 sum = hdr->checksum;
7536 hdr->checksum = 0;
7538 buffer = (u8 *)hdr;
7539 i = length;
7540 while (i--)
7541 sum += buffer[i];
7543 hdr->checksum = 0 - sum;
7545 length >>= 2;
7546 /* The device driver writes the relevant command block into the ram area. */
7547 for (i = 0; i < length; i++) {
7548 E1000_WRITE_REG_ARRAY_DWORD(hw, HOST_IF, i, *((u32 *)hdr + i));
7549 E1000_WRITE_FLUSH();
7552 return E1000_SUCCESS;
7556 /*****************************************************************************
7557 * This function indicates to ARC that a new command is pending which completes
7558 * one write operation by the driver.
7560 * returns - E1000_SUCCESS for success.
7561 ****************************************************************************/
7562 static s32 e1000_mng_write_commit(struct e1000_hw *hw)
7564 u32 hicr;
7566 hicr = er32(HICR);
7567 /* Setting this bit tells the ARC that a new command is pending. */
7568 ew32(HICR, hicr | E1000_HICR_C);
7570 return E1000_SUCCESS;
7574 /*****************************************************************************
7575 * This function checks the mode of the firmware.
7577 * returns - true when the mode is IAMT or false.
7578 ****************************************************************************/
7579 bool e1000_check_mng_mode(struct e1000_hw *hw)
7581 u32 fwsm;
7583 fwsm = er32(FWSM);
7585 if (hw->mac_type == e1000_ich8lan) {
7586 if ((fwsm & E1000_FWSM_MODE_MASK) ==
7587 (E1000_MNG_ICH_IAMT_MODE << E1000_FWSM_MODE_SHIFT))
7588 return true;
7589 } else if ((fwsm & E1000_FWSM_MODE_MASK) ==
7590 (E1000_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT))
7591 return true;
7593 return false;
7597 /*****************************************************************************
7598 * This function writes the dhcp info .
7599 ****************************************************************************/
7600 s32 e1000_mng_write_dhcp_info(struct e1000_hw *hw, u8 *buffer, u16 length)
7602 s32 ret_val;
7603 struct e1000_host_mng_command_header hdr;
7605 hdr.command_id = E1000_MNG_DHCP_TX_PAYLOAD_CMD;
7606 hdr.command_length = length;
7607 hdr.reserved1 = 0;
7608 hdr.reserved2 = 0;
7609 hdr.checksum = 0;
7611 ret_val = e1000_mng_enable_host_if(hw);
7612 if (ret_val == E1000_SUCCESS) {
7613 ret_val = e1000_mng_host_if_write(hw, buffer, length, sizeof(hdr),
7614 &(hdr.checksum));
7615 if (ret_val == E1000_SUCCESS) {
7616 ret_val = e1000_mng_write_cmd_header(hw, &hdr);
7617 if (ret_val == E1000_SUCCESS)
7618 ret_val = e1000_mng_write_commit(hw);
7621 return ret_val;
7625 /*****************************************************************************
7626 * This function calculates the checksum.
7628 * returns - checksum of buffer contents.
7629 ****************************************************************************/
7630 static u8 e1000_calculate_mng_checksum(char *buffer, u32 length)
7632 u8 sum = 0;
7633 u32 i;
7635 if (!buffer)
7636 return 0;
7638 for (i=0; i < length; i++)
7639 sum += buffer[i];
7641 return (u8)(0 - sum);
7644 /*****************************************************************************
7645 * This function checks whether tx pkt filtering needs to be enabled or not.
7647 * returns - true for packet filtering or false.
7648 ****************************************************************************/
7649 bool e1000_enable_tx_pkt_filtering(struct e1000_hw *hw)
7651 /* called in init as well as watchdog timer functions */
7653 s32 ret_val, checksum;
7654 bool tx_filter = false;
7655 struct e1000_host_mng_dhcp_cookie *hdr = &(hw->mng_cookie);
7656 u8 *buffer = (u8 *) &(hw->mng_cookie);
7658 if (e1000_check_mng_mode(hw)) {
7659 ret_val = e1000_mng_enable_host_if(hw);
7660 if (ret_val == E1000_SUCCESS) {
7661 ret_val = e1000_host_if_read_cookie(hw, buffer);
7662 if (ret_val == E1000_SUCCESS) {
7663 checksum = hdr->checksum;
7664 hdr->checksum = 0;
7665 if ((hdr->signature == E1000_IAMT_SIGNATURE) &&
7666 checksum == e1000_calculate_mng_checksum((char *)buffer,
7667 E1000_MNG_DHCP_COOKIE_LENGTH)) {
7668 if (hdr->status &
7669 E1000_MNG_DHCP_COOKIE_STATUS_PARSING_SUPPORT)
7670 tx_filter = true;
7671 } else
7672 tx_filter = true;
7673 } else
7674 tx_filter = true;
7678 hw->tx_pkt_filtering = tx_filter;
7679 return tx_filter;
7682 /******************************************************************************
7683 * Verifies the hardware needs to allow ARPs to be processed by the host
7685 * hw - Struct containing variables accessed by shared code
7687 * returns: - true/false
7689 *****************************************************************************/
7690 u32 e1000_enable_mng_pass_thru(struct e1000_hw *hw)
7692 u32 manc;
7693 u32 fwsm, factps;
7695 if (hw->asf_firmware_present) {
7696 manc = er32(MANC);
7698 if (!(manc & E1000_MANC_RCV_TCO_EN) ||
7699 !(manc & E1000_MANC_EN_MAC_ADDR_FILTER))
7700 return false;
7701 if (e1000_arc_subsystem_valid(hw)) {
7702 fwsm = er32(FWSM);
7703 factps = er32(FACTPS);
7705 if ((((fwsm & E1000_FWSM_MODE_MASK) >> E1000_FWSM_MODE_SHIFT) ==
7706 e1000_mng_mode_pt) && !(factps & E1000_FACTPS_MNGCG))
7707 return true;
7708 } else
7709 if ((manc & E1000_MANC_SMBUS_EN) && !(manc & E1000_MANC_ASF_EN))
7710 return true;
7712 return false;
7715 static s32 e1000_polarity_reversal_workaround(struct e1000_hw *hw)
7717 s32 ret_val;
7718 u16 mii_status_reg;
7719 u16 i;
7721 /* Polarity reversal workaround for forced 10F/10H links. */
7723 /* Disable the transmitter on the PHY */
7725 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019);
7726 if (ret_val)
7727 return ret_val;
7728 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFFF);
7729 if (ret_val)
7730 return ret_val;
7732 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000);
7733 if (ret_val)
7734 return ret_val;
7736 /* This loop will early-out if the NO link condition has been met. */
7737 for (i = PHY_FORCE_TIME; i > 0; i--) {
7738 /* Read the MII Status Register and wait for Link Status bit
7739 * to be clear.
7742 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
7743 if (ret_val)
7744 return ret_val;
7746 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
7747 if (ret_val)
7748 return ret_val;
7750 if ((mii_status_reg & ~MII_SR_LINK_STATUS) == 0) break;
7751 mdelay(100);
7754 /* Recommended delay time after link has been lost */
7755 mdelay(1000);
7757 /* Now we will re-enable th transmitter on the PHY */
7759 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019);
7760 if (ret_val)
7761 return ret_val;
7762 mdelay(50);
7763 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFF0);
7764 if (ret_val)
7765 return ret_val;
7766 mdelay(50);
7767 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFF00);
7768 if (ret_val)
7769 return ret_val;
7770 mdelay(50);
7771 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0x0000);
7772 if (ret_val)
7773 return ret_val;
7775 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000);
7776 if (ret_val)
7777 return ret_val;
7779 /* This loop will early-out if the link condition has been met. */
7780 for (i = PHY_FORCE_TIME; i > 0; i--) {
7781 /* Read the MII Status Register and wait for Link Status bit
7782 * to be set.
7785 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
7786 if (ret_val)
7787 return ret_val;
7789 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
7790 if (ret_val)
7791 return ret_val;
7793 if (mii_status_reg & MII_SR_LINK_STATUS) break;
7794 mdelay(100);
7796 return E1000_SUCCESS;
7799 /***************************************************************************
7801 * Disables PCI-Express master access.
7803 * hw: Struct containing variables accessed by shared code
7805 * returns: - none.
7807 ***************************************************************************/
7808 static void e1000_set_pci_express_master_disable(struct e1000_hw *hw)
7810 u32 ctrl;
7812 DEBUGFUNC("e1000_set_pci_express_master_disable");
7814 if (hw->bus_type != e1000_bus_type_pci_express)
7815 return;
7817 ctrl = er32(CTRL);
7818 ctrl |= E1000_CTRL_GIO_MASTER_DISABLE;
7819 ew32(CTRL, ctrl);
7822 /*******************************************************************************
7824 * Disables PCI-Express master access and verifies there are no pending requests
7826 * hw: Struct containing variables accessed by shared code
7828 * returns: - E1000_ERR_MASTER_REQUESTS_PENDING if master disable bit hasn't
7829 * caused the master requests to be disabled.
7830 * E1000_SUCCESS master requests disabled.
7832 ******************************************************************************/
7833 s32 e1000_disable_pciex_master(struct e1000_hw *hw)
7835 s32 timeout = MASTER_DISABLE_TIMEOUT; /* 80ms */
7837 DEBUGFUNC("e1000_disable_pciex_master");
7839 if (hw->bus_type != e1000_bus_type_pci_express)
7840 return E1000_SUCCESS;
7842 e1000_set_pci_express_master_disable(hw);
7844 while (timeout) {
7845 if (!(er32(STATUS) & E1000_STATUS_GIO_MASTER_ENABLE))
7846 break;
7847 else
7848 udelay(100);
7849 timeout--;
7852 if (!timeout) {
7853 DEBUGOUT("Master requests are pending.\n");
7854 return -E1000_ERR_MASTER_REQUESTS_PENDING;
7857 return E1000_SUCCESS;
7860 /*******************************************************************************
7862 * Check for EEPROM Auto Read bit done.
7864 * hw: Struct containing variables accessed by shared code
7866 * returns: - E1000_ERR_RESET if fail to reset MAC
7867 * E1000_SUCCESS at any other case.
7869 ******************************************************************************/
7870 static s32 e1000_get_auto_rd_done(struct e1000_hw *hw)
7872 s32 timeout = AUTO_READ_DONE_TIMEOUT;
7874 DEBUGFUNC("e1000_get_auto_rd_done");
7876 switch (hw->mac_type) {
7877 default:
7878 msleep(5);
7879 break;
7880 case e1000_82571:
7881 case e1000_82572:
7882 case e1000_82573:
7883 case e1000_80003es2lan:
7884 case e1000_ich8lan:
7885 while (timeout) {
7886 if (er32(EECD) & E1000_EECD_AUTO_RD)
7887 break;
7888 else msleep(1);
7889 timeout--;
7892 if (!timeout) {
7893 DEBUGOUT("Auto read by HW from EEPROM has not completed.\n");
7894 return -E1000_ERR_RESET;
7896 break;
7899 /* PHY configuration from NVM just starts after EECD_AUTO_RD sets to high.
7900 * Need to wait for PHY configuration completion before accessing NVM
7901 * and PHY. */
7902 if (hw->mac_type == e1000_82573)
7903 msleep(25);
7905 return E1000_SUCCESS;
7908 /***************************************************************************
7909 * Checks if the PHY configuration is done
7911 * hw: Struct containing variables accessed by shared code
7913 * returns: - E1000_ERR_RESET if fail to reset MAC
7914 * E1000_SUCCESS at any other case.
7916 ***************************************************************************/
7917 static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw)
7919 s32 timeout = PHY_CFG_TIMEOUT;
7920 u32 cfg_mask = E1000_EEPROM_CFG_DONE;
7922 DEBUGFUNC("e1000_get_phy_cfg_done");
7924 switch (hw->mac_type) {
7925 default:
7926 mdelay(10);
7927 break;
7928 case e1000_80003es2lan:
7929 /* Separate *_CFG_DONE_* bit for each port */
7930 if (er32(STATUS) & E1000_STATUS_FUNC_1)
7931 cfg_mask = E1000_EEPROM_CFG_DONE_PORT_1;
7932 /* Fall Through */
7933 case e1000_82571:
7934 case e1000_82572:
7935 while (timeout) {
7936 if (er32(EEMNGCTL) & cfg_mask)
7937 break;
7938 else
7939 msleep(1);
7940 timeout--;
7942 if (!timeout) {
7943 DEBUGOUT("MNG configuration cycle has not completed.\n");
7944 return -E1000_ERR_RESET;
7946 break;
7949 return E1000_SUCCESS;
7952 /***************************************************************************
7954 * Using the combination of SMBI and SWESMBI semaphore bits when resetting
7955 * adapter or Eeprom access.
7957 * hw: Struct containing variables accessed by shared code
7959 * returns: - E1000_ERR_EEPROM if fail to access EEPROM.
7960 * E1000_SUCCESS at any other case.
7962 ***************************************************************************/
7963 static s32 e1000_get_hw_eeprom_semaphore(struct e1000_hw *hw)
7965 s32 timeout;
7966 u32 swsm;
7968 DEBUGFUNC("e1000_get_hw_eeprom_semaphore");
7970 if (!hw->eeprom_semaphore_present)
7971 return E1000_SUCCESS;
7973 if (hw->mac_type == e1000_80003es2lan) {
7974 /* Get the SW semaphore. */
7975 if (e1000_get_software_semaphore(hw) != E1000_SUCCESS)
7976 return -E1000_ERR_EEPROM;
7979 /* Get the FW semaphore. */
7980 timeout = hw->eeprom.word_size + 1;
7981 while (timeout) {
7982 swsm = er32(SWSM);
7983 swsm |= E1000_SWSM_SWESMBI;
7984 ew32(SWSM, swsm);
7985 /* if we managed to set the bit we got the semaphore. */
7986 swsm = er32(SWSM);
7987 if (swsm & E1000_SWSM_SWESMBI)
7988 break;
7990 udelay(50);
7991 timeout--;
7994 if (!timeout) {
7995 /* Release semaphores */
7996 e1000_put_hw_eeprom_semaphore(hw);
7997 DEBUGOUT("Driver can't access the Eeprom - SWESMBI bit is set.\n");
7998 return -E1000_ERR_EEPROM;
8001 return E1000_SUCCESS;
8004 /***************************************************************************
8005 * This function clears HW semaphore bits.
8007 * hw: Struct containing variables accessed by shared code
8009 * returns: - None.
8011 ***************************************************************************/
8012 static void e1000_put_hw_eeprom_semaphore(struct e1000_hw *hw)
8014 u32 swsm;
8016 DEBUGFUNC("e1000_put_hw_eeprom_semaphore");
8018 if (!hw->eeprom_semaphore_present)
8019 return;
8021 swsm = er32(SWSM);
8022 if (hw->mac_type == e1000_80003es2lan) {
8023 /* Release both semaphores. */
8024 swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
8025 } else
8026 swsm &= ~(E1000_SWSM_SWESMBI);
8027 ew32(SWSM, swsm);
8030 /***************************************************************************
8032 * Obtaining software semaphore bit (SMBI) before resetting PHY.
8034 * hw: Struct containing variables accessed by shared code
8036 * returns: - E1000_ERR_RESET if fail to obtain semaphore.
8037 * E1000_SUCCESS at any other case.
8039 ***************************************************************************/
8040 static s32 e1000_get_software_semaphore(struct e1000_hw *hw)
8042 s32 timeout = hw->eeprom.word_size + 1;
8043 u32 swsm;
8045 DEBUGFUNC("e1000_get_software_semaphore");
8047 if (hw->mac_type != e1000_80003es2lan) {
8048 return E1000_SUCCESS;
8051 while (timeout) {
8052 swsm = er32(SWSM);
8053 /* If SMBI bit cleared, it is now set and we hold the semaphore */
8054 if (!(swsm & E1000_SWSM_SMBI))
8055 break;
8056 mdelay(1);
8057 timeout--;
8060 if (!timeout) {
8061 DEBUGOUT("Driver can't access device - SMBI bit is set.\n");
8062 return -E1000_ERR_RESET;
8065 return E1000_SUCCESS;
8068 /***************************************************************************
8070 * Release semaphore bit (SMBI).
8072 * hw: Struct containing variables accessed by shared code
8074 ***************************************************************************/
8075 static void e1000_release_software_semaphore(struct e1000_hw *hw)
8077 u32 swsm;
8079 DEBUGFUNC("e1000_release_software_semaphore");
8081 if (hw->mac_type != e1000_80003es2lan) {
8082 return;
8085 swsm = er32(SWSM);
8086 /* Release the SW semaphores.*/
8087 swsm &= ~E1000_SWSM_SMBI;
8088 ew32(SWSM, swsm);
8091 /******************************************************************************
8092 * Checks if PHY reset is blocked due to SOL/IDER session, for example.
8093 * Returning E1000_BLK_PHY_RESET isn't necessarily an error. But it's up to
8094 * the caller to figure out how to deal with it.
8096 * hw - Struct containing variables accessed by shared code
8098 * returns: - E1000_BLK_PHY_RESET
8099 * E1000_SUCCESS
8101 *****************************************************************************/
8102 s32 e1000_check_phy_reset_block(struct e1000_hw *hw)
8104 u32 manc = 0;
8105 u32 fwsm = 0;
8107 if (hw->mac_type == e1000_ich8lan) {
8108 fwsm = er32(FWSM);
8109 return (fwsm & E1000_FWSM_RSPCIPHY) ? E1000_SUCCESS
8110 : E1000_BLK_PHY_RESET;
8113 if (hw->mac_type > e1000_82547_rev_2)
8114 manc = er32(MANC);
8115 return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ?
8116 E1000_BLK_PHY_RESET : E1000_SUCCESS;
8119 static u8 e1000_arc_subsystem_valid(struct e1000_hw *hw)
8121 u32 fwsm;
8123 /* On 8257x silicon, registers in the range of 0x8800 - 0x8FFC
8124 * may not be provided a DMA clock when no manageability features are
8125 * enabled. We do not want to perform any reads/writes to these registers
8126 * if this is the case. We read FWSM to determine the manageability mode.
8128 switch (hw->mac_type) {
8129 case e1000_82571:
8130 case e1000_82572:
8131 case e1000_82573:
8132 case e1000_80003es2lan:
8133 fwsm = er32(FWSM);
8134 if ((fwsm & E1000_FWSM_MODE_MASK) != 0)
8135 return true;
8136 break;
8137 case e1000_ich8lan:
8138 return true;
8139 default:
8140 break;
8142 return false;
8146 /******************************************************************************
8147 * Configure PCI-Ex no-snoop
8149 * hw - Struct containing variables accessed by shared code.
8150 * no_snoop - Bitmap of no-snoop events.
8152 * returns: E1000_SUCCESS
8154 *****************************************************************************/
8155 static s32 e1000_set_pci_ex_no_snoop(struct e1000_hw *hw, u32 no_snoop)
8157 u32 gcr_reg = 0;
8159 DEBUGFUNC("e1000_set_pci_ex_no_snoop");
8161 if (hw->bus_type == e1000_bus_type_unknown)
8162 e1000_get_bus_info(hw);
8164 if (hw->bus_type != e1000_bus_type_pci_express)
8165 return E1000_SUCCESS;
8167 if (no_snoop) {
8168 gcr_reg = er32(GCR);
8169 gcr_reg &= ~(PCI_EX_NO_SNOOP_ALL);
8170 gcr_reg |= no_snoop;
8171 ew32(GCR, gcr_reg);
8173 if (hw->mac_type == e1000_ich8lan) {
8174 u32 ctrl_ext;
8176 ew32(GCR, PCI_EX_82566_SNOOP_ALL);
8178 ctrl_ext = er32(CTRL_EXT);
8179 ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
8180 ew32(CTRL_EXT, ctrl_ext);
8183 return E1000_SUCCESS;
8186 /***************************************************************************
8188 * Get software semaphore FLAG bit (SWFLAG).
8189 * SWFLAG is used to synchronize the access to all shared resource between
8190 * SW, FW and HW.
8192 * hw: Struct containing variables accessed by shared code
8194 ***************************************************************************/
8195 static s32 e1000_get_software_flag(struct e1000_hw *hw)
8197 s32 timeout = PHY_CFG_TIMEOUT;
8198 u32 extcnf_ctrl;
8200 DEBUGFUNC("e1000_get_software_flag");
8202 if (hw->mac_type == e1000_ich8lan) {
8203 while (timeout) {
8204 extcnf_ctrl = er32(EXTCNF_CTRL);
8205 extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
8206 ew32(EXTCNF_CTRL, extcnf_ctrl);
8208 extcnf_ctrl = er32(EXTCNF_CTRL);
8209 if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
8210 break;
8211 mdelay(1);
8212 timeout--;
8215 if (!timeout) {
8216 DEBUGOUT("FW or HW locks the resource too long.\n");
8217 return -E1000_ERR_CONFIG;
8221 return E1000_SUCCESS;
8224 /***************************************************************************
8226 * Release software semaphore FLAG bit (SWFLAG).
8227 * SWFLAG is used to synchronize the access to all shared resource between
8228 * SW, FW and HW.
8230 * hw: Struct containing variables accessed by shared code
8232 ***************************************************************************/
8233 static void e1000_release_software_flag(struct e1000_hw *hw)
8235 u32 extcnf_ctrl;
8237 DEBUGFUNC("e1000_release_software_flag");
8239 if (hw->mac_type == e1000_ich8lan) {
8240 extcnf_ctrl= er32(EXTCNF_CTRL);
8241 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
8242 ew32(EXTCNF_CTRL, extcnf_ctrl);
8245 return;
8248 /******************************************************************************
8249 * Reads a 16 bit word or words from the EEPROM using the ICH8's flash access
8250 * register.
8252 * hw - Struct containing variables accessed by shared code
8253 * offset - offset of word in the EEPROM to read
8254 * data - word read from the EEPROM
8255 * words - number of words to read
8256 *****************************************************************************/
8257 static s32 e1000_read_eeprom_ich8(struct e1000_hw *hw, u16 offset, u16 words,
8258 u16 *data)
8260 s32 error = E1000_SUCCESS;
8261 u32 flash_bank = 0;
8262 u32 act_offset = 0;
8263 u32 bank_offset = 0;
8264 u16 word = 0;
8265 u16 i = 0;
8267 /* We need to know which is the valid flash bank. In the event
8268 * that we didn't allocate eeprom_shadow_ram, we may not be
8269 * managing flash_bank. So it cannot be trusted and needs
8270 * to be updated with each read.
8272 /* Value of bit 22 corresponds to the flash bank we're on. */
8273 flash_bank = (er32(EECD) & E1000_EECD_SEC1VAL) ? 1 : 0;
8275 /* Adjust offset appropriately if we're on bank 1 - adjust for word size */
8276 bank_offset = flash_bank * (hw->flash_bank_size * 2);
8278 error = e1000_get_software_flag(hw);
8279 if (error != E1000_SUCCESS)
8280 return error;
8282 for (i = 0; i < words; i++) {
8283 if (hw->eeprom_shadow_ram != NULL &&
8284 hw->eeprom_shadow_ram[offset+i].modified) {
8285 data[i] = hw->eeprom_shadow_ram[offset+i].eeprom_word;
8286 } else {
8287 /* The NVM part needs a byte offset, hence * 2 */
8288 act_offset = bank_offset + ((offset + i) * 2);
8289 error = e1000_read_ich8_word(hw, act_offset, &word);
8290 if (error != E1000_SUCCESS)
8291 break;
8292 data[i] = word;
8296 e1000_release_software_flag(hw);
8298 return error;
8301 /******************************************************************************
8302 * Writes a 16 bit word or words to the EEPROM using the ICH8's flash access
8303 * register. Actually, writes are written to the shadow ram cache in the hw
8304 * structure hw->e1000_shadow_ram. e1000_commit_shadow_ram flushes this to
8305 * the NVM, which occurs when the NVM checksum is updated.
8307 * hw - Struct containing variables accessed by shared code
8308 * offset - offset of word in the EEPROM to write
8309 * words - number of words to write
8310 * data - words to write to the EEPROM
8311 *****************************************************************************/
8312 static s32 e1000_write_eeprom_ich8(struct e1000_hw *hw, u16 offset, u16 words,
8313 u16 *data)
8315 u32 i = 0;
8316 s32 error = E1000_SUCCESS;
8318 error = e1000_get_software_flag(hw);
8319 if (error != E1000_SUCCESS)
8320 return error;
8322 /* A driver can write to the NVM only if it has eeprom_shadow_ram
8323 * allocated. Subsequent reads to the modified words are read from
8324 * this cached structure as well. Writes will only go into this
8325 * cached structure unless it's followed by a call to
8326 * e1000_update_eeprom_checksum() where it will commit the changes
8327 * and clear the "modified" field.
8329 if (hw->eeprom_shadow_ram != NULL) {
8330 for (i = 0; i < words; i++) {
8331 if ((offset + i) < E1000_SHADOW_RAM_WORDS) {
8332 hw->eeprom_shadow_ram[offset+i].modified = true;
8333 hw->eeprom_shadow_ram[offset+i].eeprom_word = data[i];
8334 } else {
8335 error = -E1000_ERR_EEPROM;
8336 break;
8339 } else {
8340 /* Drivers have the option to not allocate eeprom_shadow_ram as long
8341 * as they don't perform any NVM writes. An attempt in doing so
8342 * will result in this error.
8344 error = -E1000_ERR_EEPROM;
8347 e1000_release_software_flag(hw);
8349 return error;
8352 /******************************************************************************
8353 * This function does initial flash setup so that a new read/write/erase cycle
8354 * can be started.
8356 * hw - The pointer to the hw structure
8357 ****************************************************************************/
8358 static s32 e1000_ich8_cycle_init(struct e1000_hw *hw)
8360 union ich8_hws_flash_status hsfsts;
8361 s32 error = E1000_ERR_EEPROM;
8362 s32 i = 0;
8364 DEBUGFUNC("e1000_ich8_cycle_init");
8366 hsfsts.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
8368 /* May be check the Flash Des Valid bit in Hw status */
8369 if (hsfsts.hsf_status.fldesvalid == 0) {
8370 DEBUGOUT("Flash descriptor invalid. SW Sequencing must be used.");
8371 return error;
8374 /* Clear FCERR in Hw status by writing 1 */
8375 /* Clear DAEL in Hw status by writing a 1 */
8376 hsfsts.hsf_status.flcerr = 1;
8377 hsfsts.hsf_status.dael = 1;
8379 E1000_WRITE_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS, hsfsts.regval);
8381 /* Either we should have a hardware SPI cycle in progress bit to check
8382 * against, in order to start a new cycle or FDONE bit should be changed
8383 * in the hardware so that it is 1 after harware reset, which can then be
8384 * used as an indication whether a cycle is in progress or has been
8385 * completed .. we should also have some software semaphore mechanism to
8386 * guard FDONE or the cycle in progress bit so that two threads access to
8387 * those bits can be sequentiallized or a way so that 2 threads dont
8388 * start the cycle at the same time */
8390 if (hsfsts.hsf_status.flcinprog == 0) {
8391 /* There is no cycle running at present, so we can start a cycle */
8392 /* Begin by setting Flash Cycle Done. */
8393 hsfsts.hsf_status.flcdone = 1;
8394 E1000_WRITE_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS, hsfsts.regval);
8395 error = E1000_SUCCESS;
8396 } else {
8397 /* otherwise poll for sometime so the current cycle has a chance
8398 * to end before giving up. */
8399 for (i = 0; i < ICH_FLASH_COMMAND_TIMEOUT; i++) {
8400 hsfsts.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
8401 if (hsfsts.hsf_status.flcinprog == 0) {
8402 error = E1000_SUCCESS;
8403 break;
8405 udelay(1);
8407 if (error == E1000_SUCCESS) {
8408 /* Successful in waiting for previous cycle to timeout,
8409 * now set the Flash Cycle Done. */
8410 hsfsts.hsf_status.flcdone = 1;
8411 E1000_WRITE_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS, hsfsts.regval);
8412 } else {
8413 DEBUGOUT("Flash controller busy, cannot get access");
8416 return error;
8419 /******************************************************************************
8420 * This function starts a flash cycle and waits for its completion
8422 * hw - The pointer to the hw structure
8423 ****************************************************************************/
8424 static s32 e1000_ich8_flash_cycle(struct e1000_hw *hw, u32 timeout)
8426 union ich8_hws_flash_ctrl hsflctl;
8427 union ich8_hws_flash_status hsfsts;
8428 s32 error = E1000_ERR_EEPROM;
8429 u32 i = 0;
8431 /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
8432 hsflctl.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFCTL);
8433 hsflctl.hsf_ctrl.flcgo = 1;
8434 E1000_WRITE_ICH_FLASH_REG16(hw, ICH_FLASH_HSFCTL, hsflctl.regval);
8436 /* wait till FDONE bit is set to 1 */
8437 do {
8438 hsfsts.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
8439 if (hsfsts.hsf_status.flcdone == 1)
8440 break;
8441 udelay(1);
8442 i++;
8443 } while (i < timeout);
8444 if (hsfsts.hsf_status.flcdone == 1 && hsfsts.hsf_status.flcerr == 0) {
8445 error = E1000_SUCCESS;
8447 return error;
8450 /******************************************************************************
8451 * Reads a byte or word from the NVM using the ICH8 flash access registers.
8453 * hw - The pointer to the hw structure
8454 * index - The index of the byte or word to read.
8455 * size - Size of data to read, 1=byte 2=word
8456 * data - Pointer to the word to store the value read.
8457 *****************************************************************************/
8458 static s32 e1000_read_ich8_data(struct e1000_hw *hw, u32 index, u32 size,
8459 u16 *data)
8461 union ich8_hws_flash_status hsfsts;
8462 union ich8_hws_flash_ctrl hsflctl;
8463 u32 flash_linear_address;
8464 u32 flash_data = 0;
8465 s32 error = -E1000_ERR_EEPROM;
8466 s32 count = 0;
8468 DEBUGFUNC("e1000_read_ich8_data");
8470 if (size < 1 || size > 2 || data == NULL ||
8471 index > ICH_FLASH_LINEAR_ADDR_MASK)
8472 return error;
8474 flash_linear_address = (ICH_FLASH_LINEAR_ADDR_MASK & index) +
8475 hw->flash_base_addr;
8477 do {
8478 udelay(1);
8479 /* Steps */
8480 error = e1000_ich8_cycle_init(hw);
8481 if (error != E1000_SUCCESS)
8482 break;
8484 hsflctl.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFCTL);
8485 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
8486 hsflctl.hsf_ctrl.fldbcount = size - 1;
8487 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
8488 E1000_WRITE_ICH_FLASH_REG16(hw, ICH_FLASH_HSFCTL, hsflctl.regval);
8490 /* Write the last 24 bits of index into Flash Linear address field in
8491 * Flash Address */
8492 /* TODO: TBD maybe check the index against the size of flash */
8494 E1000_WRITE_ICH_FLASH_REG(hw, ICH_FLASH_FADDR, flash_linear_address);
8496 error = e1000_ich8_flash_cycle(hw, ICH_FLASH_COMMAND_TIMEOUT);
8498 /* Check if FCERR is set to 1, if set to 1, clear it and try the whole
8499 * sequence a few more times, else read in (shift in) the Flash Data0,
8500 * the order is least significant byte first msb to lsb */
8501 if (error == E1000_SUCCESS) {
8502 flash_data = E1000_READ_ICH_FLASH_REG(hw, ICH_FLASH_FDATA0);
8503 if (size == 1) {
8504 *data = (u8)(flash_data & 0x000000FF);
8505 } else if (size == 2) {
8506 *data = (u16)(flash_data & 0x0000FFFF);
8508 break;
8509 } else {
8510 /* If we've gotten here, then things are probably completely hosed,
8511 * but if the error condition is detected, it won't hurt to give
8512 * it another try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
8514 hsfsts.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
8515 if (hsfsts.hsf_status.flcerr == 1) {
8516 /* Repeat for some time before giving up. */
8517 continue;
8518 } else if (hsfsts.hsf_status.flcdone == 0) {
8519 DEBUGOUT("Timeout error - flash cycle did not complete.");
8520 break;
8523 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
8525 return error;
8528 /******************************************************************************
8529 * Writes One /two bytes to the NVM using the ICH8 flash access registers.
8531 * hw - The pointer to the hw structure
8532 * index - The index of the byte/word to read.
8533 * size - Size of data to read, 1=byte 2=word
8534 * data - The byte(s) to write to the NVM.
8535 *****************************************************************************/
8536 static s32 e1000_write_ich8_data(struct e1000_hw *hw, u32 index, u32 size,
8537 u16 data)
8539 union ich8_hws_flash_status hsfsts;
8540 union ich8_hws_flash_ctrl hsflctl;
8541 u32 flash_linear_address;
8542 u32 flash_data = 0;
8543 s32 error = -E1000_ERR_EEPROM;
8544 s32 count = 0;
8546 DEBUGFUNC("e1000_write_ich8_data");
8548 if (size < 1 || size > 2 || data > size * 0xff ||
8549 index > ICH_FLASH_LINEAR_ADDR_MASK)
8550 return error;
8552 flash_linear_address = (ICH_FLASH_LINEAR_ADDR_MASK & index) +
8553 hw->flash_base_addr;
8555 do {
8556 udelay(1);
8557 /* Steps */
8558 error = e1000_ich8_cycle_init(hw);
8559 if (error != E1000_SUCCESS)
8560 break;
8562 hsflctl.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFCTL);
8563 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
8564 hsflctl.hsf_ctrl.fldbcount = size -1;
8565 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
8566 E1000_WRITE_ICH_FLASH_REG16(hw, ICH_FLASH_HSFCTL, hsflctl.regval);
8568 /* Write the last 24 bits of index into Flash Linear address field in
8569 * Flash Address */
8570 E1000_WRITE_ICH_FLASH_REG(hw, ICH_FLASH_FADDR, flash_linear_address);
8572 if (size == 1)
8573 flash_data = (u32)data & 0x00FF;
8574 else
8575 flash_data = (u32)data;
8577 E1000_WRITE_ICH_FLASH_REG(hw, ICH_FLASH_FDATA0, flash_data);
8579 /* check if FCERR is set to 1 , if set to 1, clear it and try the whole
8580 * sequence a few more times else done */
8581 error = e1000_ich8_flash_cycle(hw, ICH_FLASH_COMMAND_TIMEOUT);
8582 if (error == E1000_SUCCESS) {
8583 break;
8584 } else {
8585 /* If we're here, then things are most likely completely hosed,
8586 * but if the error condition is detected, it won't hurt to give
8587 * it another try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
8589 hsfsts.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
8590 if (hsfsts.hsf_status.flcerr == 1) {
8591 /* Repeat for some time before giving up. */
8592 continue;
8593 } else if (hsfsts.hsf_status.flcdone == 0) {
8594 DEBUGOUT("Timeout error - flash cycle did not complete.");
8595 break;
8598 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
8600 return error;
8603 /******************************************************************************
8604 * Reads a single byte from the NVM using the ICH8 flash access registers.
8606 * hw - pointer to e1000_hw structure
8607 * index - The index of the byte to read.
8608 * data - Pointer to a byte to store the value read.
8609 *****************************************************************************/
8610 static s32 e1000_read_ich8_byte(struct e1000_hw *hw, u32 index, u8 *data)
8612 s32 status = E1000_SUCCESS;
8613 u16 word = 0;
8615 status = e1000_read_ich8_data(hw, index, 1, &word);
8616 if (status == E1000_SUCCESS) {
8617 *data = (u8)word;
8620 return status;
8623 /******************************************************************************
8624 * Writes a single byte to the NVM using the ICH8 flash access registers.
8625 * Performs verification by reading back the value and then going through
8626 * a retry algorithm before giving up.
8628 * hw - pointer to e1000_hw structure
8629 * index - The index of the byte to write.
8630 * byte - The byte to write to the NVM.
8631 *****************************************************************************/
8632 static s32 e1000_verify_write_ich8_byte(struct e1000_hw *hw, u32 index, u8 byte)
8634 s32 error = E1000_SUCCESS;
8635 s32 program_retries = 0;
8637 DEBUGOUT2("Byte := %2.2X Offset := %d\n", byte, index);
8639 error = e1000_write_ich8_byte(hw, index, byte);
8641 if (error != E1000_SUCCESS) {
8642 for (program_retries = 0; program_retries < 100; program_retries++) {
8643 DEBUGOUT2("Retrying \t Byte := %2.2X Offset := %d\n", byte, index);
8644 error = e1000_write_ich8_byte(hw, index, byte);
8645 udelay(100);
8646 if (error == E1000_SUCCESS)
8647 break;
8651 if (program_retries == 100)
8652 error = E1000_ERR_EEPROM;
8654 return error;
8657 /******************************************************************************
8658 * Writes a single byte to the NVM using the ICH8 flash access registers.
8660 * hw - pointer to e1000_hw structure
8661 * index - The index of the byte to read.
8662 * data - The byte to write to the NVM.
8663 *****************************************************************************/
8664 static s32 e1000_write_ich8_byte(struct e1000_hw *hw, u32 index, u8 data)
8666 s32 status = E1000_SUCCESS;
8667 u16 word = (u16)data;
8669 status = e1000_write_ich8_data(hw, index, 1, word);
8671 return status;
8674 /******************************************************************************
8675 * Reads a word from the NVM using the ICH8 flash access registers.
8677 * hw - pointer to e1000_hw structure
8678 * index - The starting byte index of the word to read.
8679 * data - Pointer to a word to store the value read.
8680 *****************************************************************************/
8681 static s32 e1000_read_ich8_word(struct e1000_hw *hw, u32 index, u16 *data)
8683 s32 status = E1000_SUCCESS;
8684 status = e1000_read_ich8_data(hw, index, 2, data);
8685 return status;
8688 /******************************************************************************
8689 * Erases the bank specified. Each bank may be a 4, 8 or 64k block. Banks are 0
8690 * based.
8692 * hw - pointer to e1000_hw structure
8693 * bank - 0 for first bank, 1 for second bank
8695 * Note that this function may actually erase as much as 8 or 64 KBytes. The
8696 * amount of NVM used in each bank is a *minimum* of 4 KBytes, but in fact the
8697 * bank size may be 4, 8 or 64 KBytes
8698 *****************************************************************************/
8699 static s32 e1000_erase_ich8_4k_segment(struct e1000_hw *hw, u32 bank)
8701 union ich8_hws_flash_status hsfsts;
8702 union ich8_hws_flash_ctrl hsflctl;
8703 u32 flash_linear_address;
8704 s32 count = 0;
8705 s32 error = E1000_ERR_EEPROM;
8706 s32 iteration;
8707 s32 sub_sector_size = 0;
8708 s32 bank_size;
8709 s32 j = 0;
8710 s32 error_flag = 0;
8712 hsfsts.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
8714 /* Determine HW Sector size: Read BERASE bits of Hw flash Status register */
8715 /* 00: The Hw sector is 256 bytes, hence we need to erase 16
8716 * consecutive sectors. The start index for the nth Hw sector can be
8717 * calculated as bank * 4096 + n * 256
8718 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
8719 * The start index for the nth Hw sector can be calculated
8720 * as bank * 4096
8721 * 10: The HW sector is 8K bytes
8722 * 11: The Hw sector size is 64K bytes */
8723 if (hsfsts.hsf_status.berasesz == 0x0) {
8724 /* Hw sector size 256 */
8725 sub_sector_size = ICH_FLASH_SEG_SIZE_256;
8726 bank_size = ICH_FLASH_SECTOR_SIZE;
8727 iteration = ICH_FLASH_SECTOR_SIZE / ICH_FLASH_SEG_SIZE_256;
8728 } else if (hsfsts.hsf_status.berasesz == 0x1) {
8729 bank_size = ICH_FLASH_SEG_SIZE_4K;
8730 iteration = 1;
8731 } else if (hsfsts.hsf_status.berasesz == 0x3) {
8732 bank_size = ICH_FLASH_SEG_SIZE_64K;
8733 iteration = 1;
8734 } else {
8735 return error;
8738 for (j = 0; j < iteration ; j++) {
8739 do {
8740 count++;
8741 /* Steps */
8742 error = e1000_ich8_cycle_init(hw);
8743 if (error != E1000_SUCCESS) {
8744 error_flag = 1;
8745 break;
8748 /* Write a value 11 (block Erase) in Flash Cycle field in Hw flash
8749 * Control */
8750 hsflctl.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFCTL);
8751 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
8752 E1000_WRITE_ICH_FLASH_REG16(hw, ICH_FLASH_HSFCTL, hsflctl.regval);
8754 /* Write the last 24 bits of an index within the block into Flash
8755 * Linear address field in Flash Address. This probably needs to
8756 * be calculated here based off the on-chip erase sector size and
8757 * the software bank size (4, 8 or 64 KBytes) */
8758 flash_linear_address = bank * bank_size + j * sub_sector_size;
8759 flash_linear_address += hw->flash_base_addr;
8760 flash_linear_address &= ICH_FLASH_LINEAR_ADDR_MASK;
8762 E1000_WRITE_ICH_FLASH_REG(hw, ICH_FLASH_FADDR, flash_linear_address);
8764 error = e1000_ich8_flash_cycle(hw, ICH_FLASH_ERASE_TIMEOUT);
8765 /* Check if FCERR is set to 1. If 1, clear it and try the whole
8766 * sequence a few more times else Done */
8767 if (error == E1000_SUCCESS) {
8768 break;
8769 } else {
8770 hsfsts.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
8771 if (hsfsts.hsf_status.flcerr == 1) {
8772 /* repeat for some time before giving up */
8773 continue;
8774 } else if (hsfsts.hsf_status.flcdone == 0) {
8775 error_flag = 1;
8776 break;
8779 } while ((count < ICH_FLASH_CYCLE_REPEAT_COUNT) && !error_flag);
8780 if (error_flag == 1)
8781 break;
8783 if (error_flag != 1)
8784 error = E1000_SUCCESS;
8785 return error;
8788 static s32 e1000_init_lcd_from_nvm_config_region(struct e1000_hw *hw,
8789 u32 cnf_base_addr,
8790 u32 cnf_size)
8792 u32 ret_val = E1000_SUCCESS;
8793 u16 word_addr, reg_data, reg_addr;
8794 u16 i;
8796 /* cnf_base_addr is in DWORD */
8797 word_addr = (u16)(cnf_base_addr << 1);
8799 /* cnf_size is returned in size of dwords */
8800 for (i = 0; i < cnf_size; i++) {
8801 ret_val = e1000_read_eeprom(hw, (word_addr + i*2), 1, &reg_data);
8802 if (ret_val)
8803 return ret_val;
8805 ret_val = e1000_read_eeprom(hw, (word_addr + i*2 + 1), 1, &reg_addr);
8806 if (ret_val)
8807 return ret_val;
8809 ret_val = e1000_get_software_flag(hw);
8810 if (ret_val != E1000_SUCCESS)
8811 return ret_val;
8813 ret_val = e1000_write_phy_reg_ex(hw, (u32)reg_addr, reg_data);
8815 e1000_release_software_flag(hw);
8818 return ret_val;
8822 /******************************************************************************
8823 * This function initializes the PHY from the NVM on ICH8 platforms. This
8824 * is needed due to an issue where the NVM configuration is not properly
8825 * autoloaded after power transitions. Therefore, after each PHY reset, we
8826 * will load the configuration data out of the NVM manually.
8828 * hw: Struct containing variables accessed by shared code
8829 *****************************************************************************/
8830 static s32 e1000_init_lcd_from_nvm(struct e1000_hw *hw)
8832 u32 reg_data, cnf_base_addr, cnf_size, ret_val, loop;
8834 if (hw->phy_type != e1000_phy_igp_3)
8835 return E1000_SUCCESS;
8837 /* Check if SW needs configure the PHY */
8838 reg_data = er32(FEXTNVM);
8839 if (!(reg_data & FEXTNVM_SW_CONFIG))
8840 return E1000_SUCCESS;
8842 /* Wait for basic configuration completes before proceeding*/
8843 loop = 0;
8844 do {
8845 reg_data = er32(STATUS) & E1000_STATUS_LAN_INIT_DONE;
8846 udelay(100);
8847 loop++;
8848 } while ((!reg_data) && (loop < 50));
8850 /* Clear the Init Done bit for the next init event */
8851 reg_data = er32(STATUS);
8852 reg_data &= ~E1000_STATUS_LAN_INIT_DONE;
8853 ew32(STATUS, reg_data);
8855 /* Make sure HW does not configure LCD from PHY extended configuration
8856 before SW configuration */
8857 reg_data = er32(EXTCNF_CTRL);
8858 if ((reg_data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE) == 0x0000) {
8859 reg_data = er32(EXTCNF_SIZE);
8860 cnf_size = reg_data & E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH;
8861 cnf_size >>= 16;
8862 if (cnf_size) {
8863 reg_data = er32(EXTCNF_CTRL);
8864 cnf_base_addr = reg_data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER;
8865 /* cnf_base_addr is in DWORD */
8866 cnf_base_addr >>= 16;
8868 /* Configure LCD from extended configuration region. */
8869 ret_val = e1000_init_lcd_from_nvm_config_region(hw, cnf_base_addr,
8870 cnf_size);
8871 if (ret_val)
8872 return ret_val;
8876 return E1000_SUCCESS;