2 * mm/rmap.c - physical to virtual reverse mappings
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17 * Contributions by Hugh Dickins 2003, 2004
21 * Lock ordering in mm:
23 * inode->i_mutex (while writing or truncating, not reading or faulting)
24 * inode->i_alloc_sem (vmtruncate_range)
26 * page->flags PG_locked (lock_page)
27 * mapping->i_mmap_lock
29 * mm->page_table_lock or pte_lock
30 * zone->lru_lock (in mark_page_accessed, isolate_lru_page)
31 * swap_lock (in swap_duplicate, swap_info_get)
32 * mmlist_lock (in mmput, drain_mmlist and others)
33 * mapping->private_lock (in __set_page_dirty_buffers)
34 * inode_lock (in set_page_dirty's __mark_inode_dirty)
35 * sb_lock (within inode_lock in fs/fs-writeback.c)
36 * mapping->tree_lock (widely used, in set_page_dirty,
37 * in arch-dependent flush_dcache_mmap_lock,
38 * within inode_lock in __sync_single_inode)
40 * (code doesn't rely on that order so it could be switched around)
42 * anon_vma->lock (memory_failure, collect_procs_anon)
47 #include <linux/pagemap.h>
48 #include <linux/swap.h>
49 #include <linux/swapops.h>
50 #include <linux/slab.h>
51 #include <linux/init.h>
52 #include <linux/ksm.h>
53 #include <linux/rmap.h>
54 #include <linux/rcupdate.h>
55 #include <linux/module.h>
56 #include <linux/memcontrol.h>
57 #include <linux/mmu_notifier.h>
58 #include <linux/migrate.h>
60 #include <asm/tlbflush.h>
64 static struct kmem_cache
*anon_vma_cachep
;
65 static struct kmem_cache
*anon_vma_chain_cachep
;
67 static inline struct anon_vma
*anon_vma_alloc(void)
69 return kmem_cache_alloc(anon_vma_cachep
, GFP_KERNEL
);
72 void anon_vma_free(struct anon_vma
*anon_vma
)
74 kmem_cache_free(anon_vma_cachep
, anon_vma
);
77 static inline struct anon_vma_chain
*anon_vma_chain_alloc(void)
79 return kmem_cache_alloc(anon_vma_chain_cachep
, GFP_KERNEL
);
82 void anon_vma_chain_free(struct anon_vma_chain
*anon_vma_chain
)
84 kmem_cache_free(anon_vma_chain_cachep
, anon_vma_chain
);
88 * anon_vma_prepare - attach an anon_vma to a memory region
89 * @vma: the memory region in question
91 * This makes sure the memory mapping described by 'vma' has
92 * an 'anon_vma' attached to it, so that we can associate the
93 * anonymous pages mapped into it with that anon_vma.
95 * The common case will be that we already have one, but if
96 * if not we either need to find an adjacent mapping that we
97 * can re-use the anon_vma from (very common when the only
98 * reason for splitting a vma has been mprotect()), or we
101 * Anon-vma allocations are very subtle, because we may have
102 * optimistically looked up an anon_vma in page_lock_anon_vma()
103 * and that may actually touch the spinlock even in the newly
104 * allocated vma (it depends on RCU to make sure that the
105 * anon_vma isn't actually destroyed).
107 * As a result, we need to do proper anon_vma locking even
108 * for the new allocation. At the same time, we do not want
109 * to do any locking for the common case of already having
112 * This must be called with the mmap_sem held for reading.
114 int anon_vma_prepare(struct vm_area_struct
*vma
)
116 struct anon_vma
*anon_vma
= vma
->anon_vma
;
117 struct anon_vma_chain
*avc
;
120 if (unlikely(!anon_vma
)) {
121 struct mm_struct
*mm
= vma
->vm_mm
;
122 struct anon_vma
*allocated
;
124 avc
= anon_vma_chain_alloc();
128 anon_vma
= find_mergeable_anon_vma(vma
);
131 anon_vma
= anon_vma_alloc();
132 if (unlikely(!anon_vma
))
133 goto out_enomem_free_avc
;
134 allocated
= anon_vma
;
137 spin_lock(&anon_vma
->lock
);
138 /* page_table_lock to protect against threads */
139 spin_lock(&mm
->page_table_lock
);
140 if (likely(!vma
->anon_vma
)) {
141 vma
->anon_vma
= anon_vma
;
142 avc
->anon_vma
= anon_vma
;
144 list_add(&avc
->same_vma
, &vma
->anon_vma_chain
);
145 list_add(&avc
->same_anon_vma
, &anon_vma
->head
);
149 spin_unlock(&mm
->page_table_lock
);
150 spin_unlock(&anon_vma
->lock
);
152 if (unlikely(allocated
))
153 anon_vma_free(allocated
);
155 anon_vma_chain_free(avc
);
160 anon_vma_chain_free(avc
);
165 static void anon_vma_chain_link(struct vm_area_struct
*vma
,
166 struct anon_vma_chain
*avc
,
167 struct anon_vma
*anon_vma
)
170 avc
->anon_vma
= anon_vma
;
171 list_add(&avc
->same_vma
, &vma
->anon_vma_chain
);
173 spin_lock(&anon_vma
->lock
);
174 list_add_tail(&avc
->same_anon_vma
, &anon_vma
->head
);
175 spin_unlock(&anon_vma
->lock
);
179 * Attach the anon_vmas from src to dst.
180 * Returns 0 on success, -ENOMEM on failure.
182 int anon_vma_clone(struct vm_area_struct
*dst
, struct vm_area_struct
*src
)
184 struct anon_vma_chain
*avc
, *pavc
;
186 list_for_each_entry_reverse(pavc
, &src
->anon_vma_chain
, same_vma
) {
187 avc
= anon_vma_chain_alloc();
190 anon_vma_chain_link(dst
, avc
, pavc
->anon_vma
);
195 unlink_anon_vmas(dst
);
200 * Attach vma to its own anon_vma, as well as to the anon_vmas that
201 * the corresponding VMA in the parent process is attached to.
202 * Returns 0 on success, non-zero on failure.
204 int anon_vma_fork(struct vm_area_struct
*vma
, struct vm_area_struct
*pvma
)
206 struct anon_vma_chain
*avc
;
207 struct anon_vma
*anon_vma
;
209 /* Don't bother if the parent process has no anon_vma here. */
214 * First, attach the new VMA to the parent VMA's anon_vmas,
215 * so rmap can find non-COWed pages in child processes.
217 if (anon_vma_clone(vma
, pvma
))
220 /* Then add our own anon_vma. */
221 anon_vma
= anon_vma_alloc();
224 avc
= anon_vma_chain_alloc();
226 goto out_error_free_anon_vma
;
227 anon_vma_chain_link(vma
, avc
, anon_vma
);
228 /* Mark this anon_vma as the one where our new (COWed) pages go. */
229 vma
->anon_vma
= anon_vma
;
233 out_error_free_anon_vma
:
234 anon_vma_free(anon_vma
);
236 unlink_anon_vmas(vma
);
240 static void anon_vma_unlink(struct anon_vma_chain
*anon_vma_chain
)
242 struct anon_vma
*anon_vma
= anon_vma_chain
->anon_vma
;
245 /* If anon_vma_fork fails, we can get an empty anon_vma_chain. */
249 spin_lock(&anon_vma
->lock
);
250 list_del(&anon_vma_chain
->same_anon_vma
);
252 /* We must garbage collect the anon_vma if it's empty */
253 empty
= list_empty(&anon_vma
->head
) && !anonvma_external_refcount(anon_vma
);
254 spin_unlock(&anon_vma
->lock
);
257 anon_vma_free(anon_vma
);
260 void unlink_anon_vmas(struct vm_area_struct
*vma
)
262 struct anon_vma_chain
*avc
, *next
;
264 /* Unlink each anon_vma chained to the VMA. */
265 list_for_each_entry_safe(avc
, next
, &vma
->anon_vma_chain
, same_vma
) {
266 anon_vma_unlink(avc
);
267 list_del(&avc
->same_vma
);
268 anon_vma_chain_free(avc
);
272 static void anon_vma_ctor(void *data
)
274 struct anon_vma
*anon_vma
= data
;
276 spin_lock_init(&anon_vma
->lock
);
277 anonvma_external_refcount_init(anon_vma
);
278 INIT_LIST_HEAD(&anon_vma
->head
);
281 void __init
anon_vma_init(void)
283 anon_vma_cachep
= kmem_cache_create("anon_vma", sizeof(struct anon_vma
),
284 0, SLAB_DESTROY_BY_RCU
|SLAB_PANIC
, anon_vma_ctor
);
285 anon_vma_chain_cachep
= KMEM_CACHE(anon_vma_chain
, SLAB_PANIC
);
289 * Getting a lock on a stable anon_vma from a page off the LRU is
290 * tricky: page_lock_anon_vma rely on RCU to guard against the races.
292 struct anon_vma
*page_lock_anon_vma(struct page
*page
)
294 struct anon_vma
*anon_vma
;
295 unsigned long anon_mapping
;
298 anon_mapping
= (unsigned long) ACCESS_ONCE(page
->mapping
);
299 if ((anon_mapping
& PAGE_MAPPING_FLAGS
) != PAGE_MAPPING_ANON
)
301 if (!page_mapped(page
))
304 anon_vma
= (struct anon_vma
*) (anon_mapping
- PAGE_MAPPING_ANON
);
305 spin_lock(&anon_vma
->lock
);
312 void page_unlock_anon_vma(struct anon_vma
*anon_vma
)
314 spin_unlock(&anon_vma
->lock
);
319 * At what user virtual address is page expected in @vma?
320 * Returns virtual address or -EFAULT if page's index/offset is not
321 * within the range mapped the @vma.
323 static inline unsigned long
324 vma_address(struct page
*page
, struct vm_area_struct
*vma
)
326 pgoff_t pgoff
= page
->index
<< (PAGE_CACHE_SHIFT
- PAGE_SHIFT
);
327 unsigned long address
;
329 address
= vma
->vm_start
+ ((pgoff
- vma
->vm_pgoff
) << PAGE_SHIFT
);
330 if (unlikely(address
< vma
->vm_start
|| address
>= vma
->vm_end
)) {
331 /* page should be within @vma mapping range */
338 * At what user virtual address is page expected in vma?
339 * Caller should check the page is actually part of the vma.
341 unsigned long page_address_in_vma(struct page
*page
, struct vm_area_struct
*vma
)
345 else if (page
->mapping
&& !(vma
->vm_flags
& VM_NONLINEAR
)) {
347 vma
->vm_file
->f_mapping
!= page
->mapping
)
351 return vma_address(page
, vma
);
355 * Check that @page is mapped at @address into @mm.
357 * If @sync is false, page_check_address may perform a racy check to avoid
358 * the page table lock when the pte is not present (helpful when reclaiming
359 * highly shared pages).
361 * On success returns with pte mapped and locked.
363 pte_t
*page_check_address(struct page
*page
, struct mm_struct
*mm
,
364 unsigned long address
, spinlock_t
**ptlp
, int sync
)
372 pgd
= pgd_offset(mm
, address
);
373 if (!pgd_present(*pgd
))
376 pud
= pud_offset(pgd
, address
);
377 if (!pud_present(*pud
))
380 pmd
= pmd_offset(pud
, address
);
381 if (!pmd_present(*pmd
))
384 pte
= pte_offset_map(pmd
, address
);
385 /* Make a quick check before getting the lock */
386 if (!sync
&& !pte_present(*pte
)) {
391 ptl
= pte_lockptr(mm
, pmd
);
393 if (pte_present(*pte
) && page_to_pfn(page
) == pte_pfn(*pte
)) {
397 pte_unmap_unlock(pte
, ptl
);
402 * page_mapped_in_vma - check whether a page is really mapped in a VMA
403 * @page: the page to test
404 * @vma: the VMA to test
406 * Returns 1 if the page is mapped into the page tables of the VMA, 0
407 * if the page is not mapped into the page tables of this VMA. Only
408 * valid for normal file or anonymous VMAs.
410 int page_mapped_in_vma(struct page
*page
, struct vm_area_struct
*vma
)
412 unsigned long address
;
416 address
= vma_address(page
, vma
);
417 if (address
== -EFAULT
) /* out of vma range */
419 pte
= page_check_address(page
, vma
->vm_mm
, address
, &ptl
, 1);
420 if (!pte
) /* the page is not in this mm */
422 pte_unmap_unlock(pte
, ptl
);
428 * Subfunctions of page_referenced: page_referenced_one called
429 * repeatedly from either page_referenced_anon or page_referenced_file.
431 int page_referenced_one(struct page
*page
, struct vm_area_struct
*vma
,
432 unsigned long address
, unsigned int *mapcount
,
433 unsigned long *vm_flags
)
435 struct mm_struct
*mm
= vma
->vm_mm
;
440 pte
= page_check_address(page
, mm
, address
, &ptl
, 0);
445 * Don't want to elevate referenced for mlocked page that gets this far,
446 * in order that it progresses to try_to_unmap and is moved to the
449 if (vma
->vm_flags
& VM_LOCKED
) {
450 *mapcount
= 1; /* break early from loop */
451 *vm_flags
|= VM_LOCKED
;
455 if (ptep_clear_flush_young_notify(vma
, address
, pte
)) {
457 * Don't treat a reference through a sequentially read
458 * mapping as such. If the page has been used in
459 * another mapping, we will catch it; if this other
460 * mapping is already gone, the unmap path will have
461 * set PG_referenced or activated the page.
463 if (likely(!VM_SequentialReadHint(vma
)))
467 /* Pretend the page is referenced if the task has the
468 swap token and is in the middle of a page fault. */
469 if (mm
!= current
->mm
&& has_swap_token(mm
) &&
470 rwsem_is_locked(&mm
->mmap_sem
))
475 pte_unmap_unlock(pte
, ptl
);
478 *vm_flags
|= vma
->vm_flags
;
483 static int page_referenced_anon(struct page
*page
,
484 struct mem_cgroup
*mem_cont
,
485 unsigned long *vm_flags
)
487 unsigned int mapcount
;
488 struct anon_vma
*anon_vma
;
489 struct anon_vma_chain
*avc
;
492 anon_vma
= page_lock_anon_vma(page
);
496 mapcount
= page_mapcount(page
);
497 list_for_each_entry(avc
, &anon_vma
->head
, same_anon_vma
) {
498 struct vm_area_struct
*vma
= avc
->vma
;
499 unsigned long address
= vma_address(page
, vma
);
500 if (address
== -EFAULT
)
503 * If we are reclaiming on behalf of a cgroup, skip
504 * counting on behalf of references from different
507 if (mem_cont
&& !mm_match_cgroup(vma
->vm_mm
, mem_cont
))
509 referenced
+= page_referenced_one(page
, vma
, address
,
510 &mapcount
, vm_flags
);
515 page_unlock_anon_vma(anon_vma
);
520 * page_referenced_file - referenced check for object-based rmap
521 * @page: the page we're checking references on.
522 * @mem_cont: target memory controller
523 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
525 * For an object-based mapped page, find all the places it is mapped and
526 * check/clear the referenced flag. This is done by following the page->mapping
527 * pointer, then walking the chain of vmas it holds. It returns the number
528 * of references it found.
530 * This function is only called from page_referenced for object-based pages.
532 static int page_referenced_file(struct page
*page
,
533 struct mem_cgroup
*mem_cont
,
534 unsigned long *vm_flags
)
536 unsigned int mapcount
;
537 struct address_space
*mapping
= page
->mapping
;
538 pgoff_t pgoff
= page
->index
<< (PAGE_CACHE_SHIFT
- PAGE_SHIFT
);
539 struct vm_area_struct
*vma
;
540 struct prio_tree_iter iter
;
544 * The caller's checks on page->mapping and !PageAnon have made
545 * sure that this is a file page: the check for page->mapping
546 * excludes the case just before it gets set on an anon page.
548 BUG_ON(PageAnon(page
));
551 * The page lock not only makes sure that page->mapping cannot
552 * suddenly be NULLified by truncation, it makes sure that the
553 * structure at mapping cannot be freed and reused yet,
554 * so we can safely take mapping->i_mmap_lock.
556 BUG_ON(!PageLocked(page
));
558 spin_lock(&mapping
->i_mmap_lock
);
561 * i_mmap_lock does not stabilize mapcount at all, but mapcount
562 * is more likely to be accurate if we note it after spinning.
564 mapcount
= page_mapcount(page
);
566 vma_prio_tree_foreach(vma
, &iter
, &mapping
->i_mmap
, pgoff
, pgoff
) {
567 unsigned long address
= vma_address(page
, vma
);
568 if (address
== -EFAULT
)
571 * If we are reclaiming on behalf of a cgroup, skip
572 * counting on behalf of references from different
575 if (mem_cont
&& !mm_match_cgroup(vma
->vm_mm
, mem_cont
))
577 referenced
+= page_referenced_one(page
, vma
, address
,
578 &mapcount
, vm_flags
);
583 spin_unlock(&mapping
->i_mmap_lock
);
588 * page_referenced - test if the page was referenced
589 * @page: the page to test
590 * @is_locked: caller holds lock on the page
591 * @mem_cont: target memory controller
592 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
594 * Quick test_and_clear_referenced for all mappings to a page,
595 * returns the number of ptes which referenced the page.
597 int page_referenced(struct page
*page
,
599 struct mem_cgroup
*mem_cont
,
600 unsigned long *vm_flags
)
606 if (page_mapped(page
) && page_rmapping(page
)) {
607 if (!is_locked
&& (!PageAnon(page
) || PageKsm(page
))) {
608 we_locked
= trylock_page(page
);
614 if (unlikely(PageKsm(page
)))
615 referenced
+= page_referenced_ksm(page
, mem_cont
,
617 else if (PageAnon(page
))
618 referenced
+= page_referenced_anon(page
, mem_cont
,
620 else if (page
->mapping
)
621 referenced
+= page_referenced_file(page
, mem_cont
,
627 if (page_test_and_clear_young(page
))
633 static int page_mkclean_one(struct page
*page
, struct vm_area_struct
*vma
,
634 unsigned long address
)
636 struct mm_struct
*mm
= vma
->vm_mm
;
641 pte
= page_check_address(page
, mm
, address
, &ptl
, 1);
645 if (pte_dirty(*pte
) || pte_write(*pte
)) {
648 flush_cache_page(vma
, address
, pte_pfn(*pte
));
649 entry
= ptep_clear_flush_notify(vma
, address
, pte
);
650 entry
= pte_wrprotect(entry
);
651 entry
= pte_mkclean(entry
);
652 set_pte_at(mm
, address
, pte
, entry
);
656 pte_unmap_unlock(pte
, ptl
);
661 static int page_mkclean_file(struct address_space
*mapping
, struct page
*page
)
663 pgoff_t pgoff
= page
->index
<< (PAGE_CACHE_SHIFT
- PAGE_SHIFT
);
664 struct vm_area_struct
*vma
;
665 struct prio_tree_iter iter
;
668 BUG_ON(PageAnon(page
));
670 spin_lock(&mapping
->i_mmap_lock
);
671 vma_prio_tree_foreach(vma
, &iter
, &mapping
->i_mmap
, pgoff
, pgoff
) {
672 if (vma
->vm_flags
& VM_SHARED
) {
673 unsigned long address
= vma_address(page
, vma
);
674 if (address
== -EFAULT
)
676 ret
+= page_mkclean_one(page
, vma
, address
);
679 spin_unlock(&mapping
->i_mmap_lock
);
683 int page_mkclean(struct page
*page
)
687 BUG_ON(!PageLocked(page
));
689 if (page_mapped(page
)) {
690 struct address_space
*mapping
= page_mapping(page
);
692 ret
= page_mkclean_file(mapping
, page
);
693 if (page_test_dirty(page
)) {
694 page_clear_dirty(page
);
702 EXPORT_SYMBOL_GPL(page_mkclean
);
705 * page_move_anon_rmap - move a page to our anon_vma
706 * @page: the page to move to our anon_vma
707 * @vma: the vma the page belongs to
708 * @address: the user virtual address mapped
710 * When a page belongs exclusively to one process after a COW event,
711 * that page can be moved into the anon_vma that belongs to just that
712 * process, so the rmap code will not search the parent or sibling
715 void page_move_anon_rmap(struct page
*page
,
716 struct vm_area_struct
*vma
, unsigned long address
)
718 struct anon_vma
*anon_vma
= vma
->anon_vma
;
720 VM_BUG_ON(!PageLocked(page
));
721 VM_BUG_ON(!anon_vma
);
722 VM_BUG_ON(page
->index
!= linear_page_index(vma
, address
));
724 anon_vma
= (void *) anon_vma
+ PAGE_MAPPING_ANON
;
725 page
->mapping
= (struct address_space
*) anon_vma
;
729 * __page_set_anon_rmap - setup new anonymous rmap
730 * @page: the page to add the mapping to
731 * @vma: the vm area in which the mapping is added
732 * @address: the user virtual address mapped
733 * @exclusive: the page is exclusively owned by the current process
735 static void __page_set_anon_rmap(struct page
*page
,
736 struct vm_area_struct
*vma
, unsigned long address
, int exclusive
)
738 struct anon_vma
*anon_vma
= vma
->anon_vma
;
743 * If the page isn't exclusively mapped into this vma,
744 * we must use the _oldest_ possible anon_vma for the
747 * So take the last AVC chain entry in the vma, which is
748 * the deepest ancestor, and use the anon_vma from that.
751 struct anon_vma_chain
*avc
;
752 avc
= list_entry(vma
->anon_vma_chain
.prev
, struct anon_vma_chain
, same_vma
);
753 anon_vma
= avc
->anon_vma
;
756 anon_vma
= (void *) anon_vma
+ PAGE_MAPPING_ANON
;
757 page
->mapping
= (struct address_space
*) anon_vma
;
758 page
->index
= linear_page_index(vma
, address
);
762 * __page_check_anon_rmap - sanity check anonymous rmap addition
763 * @page: the page to add the mapping to
764 * @vma: the vm area in which the mapping is added
765 * @address: the user virtual address mapped
767 static void __page_check_anon_rmap(struct page
*page
,
768 struct vm_area_struct
*vma
, unsigned long address
)
770 #ifdef CONFIG_DEBUG_VM
772 * The page's anon-rmap details (mapping and index) are guaranteed to
773 * be set up correctly at this point.
775 * We have exclusion against page_add_anon_rmap because the caller
776 * always holds the page locked, except if called from page_dup_rmap,
777 * in which case the page is already known to be setup.
779 * We have exclusion against page_add_new_anon_rmap because those pages
780 * are initially only visible via the pagetables, and the pte is locked
781 * over the call to page_add_new_anon_rmap.
783 BUG_ON(page
->index
!= linear_page_index(vma
, address
));
788 * page_add_anon_rmap - add pte mapping to an anonymous page
789 * @page: the page to add the mapping to
790 * @vma: the vm area in which the mapping is added
791 * @address: the user virtual address mapped
793 * The caller needs to hold the pte lock, and the page must be locked in
794 * the anon_vma case: to serialize mapping,index checking after setting,
795 * and to ensure that PageAnon is not being upgraded racily to PageKsm
796 * (but PageKsm is never downgraded to PageAnon).
798 void page_add_anon_rmap(struct page
*page
,
799 struct vm_area_struct
*vma
, unsigned long address
)
801 int first
= atomic_inc_and_test(&page
->_mapcount
);
803 __inc_zone_page_state(page
, NR_ANON_PAGES
);
804 if (unlikely(PageKsm(page
)))
807 VM_BUG_ON(!PageLocked(page
));
808 VM_BUG_ON(address
< vma
->vm_start
|| address
>= vma
->vm_end
);
810 __page_set_anon_rmap(page
, vma
, address
, 0);
812 __page_check_anon_rmap(page
, vma
, address
);
816 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
817 * @page: the page to add the mapping to
818 * @vma: the vm area in which the mapping is added
819 * @address: the user virtual address mapped
821 * Same as page_add_anon_rmap but must only be called on *new* pages.
822 * This means the inc-and-test can be bypassed.
823 * Page does not have to be locked.
825 void page_add_new_anon_rmap(struct page
*page
,
826 struct vm_area_struct
*vma
, unsigned long address
)
828 VM_BUG_ON(address
< vma
->vm_start
|| address
>= vma
->vm_end
);
829 SetPageSwapBacked(page
);
830 atomic_set(&page
->_mapcount
, 0); /* increment count (starts at -1) */
831 __inc_zone_page_state(page
, NR_ANON_PAGES
);
832 __page_set_anon_rmap(page
, vma
, address
, 1);
833 if (page_evictable(page
, vma
))
834 lru_cache_add_lru(page
, LRU_ACTIVE_ANON
);
836 add_page_to_unevictable_list(page
);
840 * page_add_file_rmap - add pte mapping to a file page
841 * @page: the page to add the mapping to
843 * The caller needs to hold the pte lock.
845 void page_add_file_rmap(struct page
*page
)
847 if (atomic_inc_and_test(&page
->_mapcount
)) {
848 __inc_zone_page_state(page
, NR_FILE_MAPPED
);
849 mem_cgroup_update_file_mapped(page
, 1);
854 * page_remove_rmap - take down pte mapping from a page
855 * @page: page to remove mapping from
857 * The caller needs to hold the pte lock.
859 void page_remove_rmap(struct page
*page
)
861 /* page still mapped by someone else? */
862 if (!atomic_add_negative(-1, &page
->_mapcount
))
866 * Now that the last pte has gone, s390 must transfer dirty
867 * flag from storage key to struct page. We can usually skip
868 * this if the page is anon, so about to be freed; but perhaps
869 * not if it's in swapcache - there might be another pte slot
870 * containing the swap entry, but page not yet written to swap.
872 if ((!PageAnon(page
) || PageSwapCache(page
)) && page_test_dirty(page
)) {
873 page_clear_dirty(page
);
874 set_page_dirty(page
);
876 if (PageAnon(page
)) {
877 mem_cgroup_uncharge_page(page
);
878 __dec_zone_page_state(page
, NR_ANON_PAGES
);
880 __dec_zone_page_state(page
, NR_FILE_MAPPED
);
881 mem_cgroup_update_file_mapped(page
, -1);
884 * It would be tidy to reset the PageAnon mapping here,
885 * but that might overwrite a racing page_add_anon_rmap
886 * which increments mapcount after us but sets mapping
887 * before us: so leave the reset to free_hot_cold_page,
888 * and remember that it's only reliable while mapped.
889 * Leaving it set also helps swapoff to reinstate ptes
890 * faster for those pages still in swapcache.
895 * Subfunctions of try_to_unmap: try_to_unmap_one called
896 * repeatedly from either try_to_unmap_anon or try_to_unmap_file.
898 int try_to_unmap_one(struct page
*page
, struct vm_area_struct
*vma
,
899 unsigned long address
, enum ttu_flags flags
)
901 struct mm_struct
*mm
= vma
->vm_mm
;
905 int ret
= SWAP_AGAIN
;
907 pte
= page_check_address(page
, mm
, address
, &ptl
, 0);
912 * If the page is mlock()d, we cannot swap it out.
913 * If it's recently referenced (perhaps page_referenced
914 * skipped over this mm) then we should reactivate it.
916 if (!(flags
& TTU_IGNORE_MLOCK
)) {
917 if (vma
->vm_flags
& VM_LOCKED
)
920 if (TTU_ACTION(flags
) == TTU_MUNLOCK
)
923 if (!(flags
& TTU_IGNORE_ACCESS
)) {
924 if (ptep_clear_flush_young_notify(vma
, address
, pte
)) {
930 /* Nuke the page table entry. */
931 flush_cache_page(vma
, address
, page_to_pfn(page
));
932 pteval
= ptep_clear_flush_notify(vma
, address
, pte
);
934 /* Move the dirty bit to the physical page now the pte is gone. */
935 if (pte_dirty(pteval
))
936 set_page_dirty(page
);
938 /* Update high watermark before we lower rss */
939 update_hiwater_rss(mm
);
941 if (PageHWPoison(page
) && !(flags
& TTU_IGNORE_HWPOISON
)) {
943 dec_mm_counter(mm
, MM_ANONPAGES
);
945 dec_mm_counter(mm
, MM_FILEPAGES
);
946 set_pte_at(mm
, address
, pte
,
947 swp_entry_to_pte(make_hwpoison_entry(page
)));
948 } else if (PageAnon(page
)) {
949 swp_entry_t entry
= { .val
= page_private(page
) };
951 if (PageSwapCache(page
)) {
953 * Store the swap location in the pte.
954 * See handle_pte_fault() ...
956 if (swap_duplicate(entry
) < 0) {
957 set_pte_at(mm
, address
, pte
, pteval
);
961 if (list_empty(&mm
->mmlist
)) {
962 spin_lock(&mmlist_lock
);
963 if (list_empty(&mm
->mmlist
))
964 list_add(&mm
->mmlist
, &init_mm
.mmlist
);
965 spin_unlock(&mmlist_lock
);
967 dec_mm_counter(mm
, MM_ANONPAGES
);
968 inc_mm_counter(mm
, MM_SWAPENTS
);
969 } else if (PAGE_MIGRATION
) {
971 * Store the pfn of the page in a special migration
972 * pte. do_swap_page() will wait until the migration
973 * pte is removed and then restart fault handling.
975 BUG_ON(TTU_ACTION(flags
) != TTU_MIGRATION
);
976 entry
= make_migration_entry(page
, pte_write(pteval
));
978 set_pte_at(mm
, address
, pte
, swp_entry_to_pte(entry
));
979 BUG_ON(pte_file(*pte
));
980 } else if (PAGE_MIGRATION
&& (TTU_ACTION(flags
) == TTU_MIGRATION
)) {
981 /* Establish migration entry for a file page */
983 entry
= make_migration_entry(page
, pte_write(pteval
));
984 set_pte_at(mm
, address
, pte
, swp_entry_to_pte(entry
));
986 dec_mm_counter(mm
, MM_FILEPAGES
);
988 page_remove_rmap(page
);
989 page_cache_release(page
);
992 pte_unmap_unlock(pte
, ptl
);
997 pte_unmap_unlock(pte
, ptl
);
1001 * We need mmap_sem locking, Otherwise VM_LOCKED check makes
1002 * unstable result and race. Plus, We can't wait here because
1003 * we now hold anon_vma->lock or mapping->i_mmap_lock.
1004 * if trylock failed, the page remain in evictable lru and later
1005 * vmscan could retry to move the page to unevictable lru if the
1006 * page is actually mlocked.
1008 if (down_read_trylock(&vma
->vm_mm
->mmap_sem
)) {
1009 if (vma
->vm_flags
& VM_LOCKED
) {
1010 mlock_vma_page(page
);
1013 up_read(&vma
->vm_mm
->mmap_sem
);
1019 * objrmap doesn't work for nonlinear VMAs because the assumption that
1020 * offset-into-file correlates with offset-into-virtual-addresses does not hold.
1021 * Consequently, given a particular page and its ->index, we cannot locate the
1022 * ptes which are mapping that page without an exhaustive linear search.
1024 * So what this code does is a mini "virtual scan" of each nonlinear VMA which
1025 * maps the file to which the target page belongs. The ->vm_private_data field
1026 * holds the current cursor into that scan. Successive searches will circulate
1027 * around the vma's virtual address space.
1029 * So as more replacement pressure is applied to the pages in a nonlinear VMA,
1030 * more scanning pressure is placed against them as well. Eventually pages
1031 * will become fully unmapped and are eligible for eviction.
1033 * For very sparsely populated VMAs this is a little inefficient - chances are
1034 * there there won't be many ptes located within the scan cluster. In this case
1035 * maybe we could scan further - to the end of the pte page, perhaps.
1037 * Mlocked pages: check VM_LOCKED under mmap_sem held for read, if we can
1038 * acquire it without blocking. If vma locked, mlock the pages in the cluster,
1039 * rather than unmapping them. If we encounter the "check_page" that vmscan is
1040 * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN.
1042 #define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE)
1043 #define CLUSTER_MASK (~(CLUSTER_SIZE - 1))
1045 static int try_to_unmap_cluster(unsigned long cursor
, unsigned int *mapcount
,
1046 struct vm_area_struct
*vma
, struct page
*check_page
)
1048 struct mm_struct
*mm
= vma
->vm_mm
;
1056 unsigned long address
;
1058 int ret
= SWAP_AGAIN
;
1061 address
= (vma
->vm_start
+ cursor
) & CLUSTER_MASK
;
1062 end
= address
+ CLUSTER_SIZE
;
1063 if (address
< vma
->vm_start
)
1064 address
= vma
->vm_start
;
1065 if (end
> vma
->vm_end
)
1068 pgd
= pgd_offset(mm
, address
);
1069 if (!pgd_present(*pgd
))
1072 pud
= pud_offset(pgd
, address
);
1073 if (!pud_present(*pud
))
1076 pmd
= pmd_offset(pud
, address
);
1077 if (!pmd_present(*pmd
))
1081 * If we can acquire the mmap_sem for read, and vma is VM_LOCKED,
1082 * keep the sem while scanning the cluster for mlocking pages.
1084 if (down_read_trylock(&vma
->vm_mm
->mmap_sem
)) {
1085 locked_vma
= (vma
->vm_flags
& VM_LOCKED
);
1087 up_read(&vma
->vm_mm
->mmap_sem
); /* don't need it */
1090 pte
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
1092 /* Update high watermark before we lower rss */
1093 update_hiwater_rss(mm
);
1095 for (; address
< end
; pte
++, address
+= PAGE_SIZE
) {
1096 if (!pte_present(*pte
))
1098 page
= vm_normal_page(vma
, address
, *pte
);
1099 BUG_ON(!page
|| PageAnon(page
));
1102 mlock_vma_page(page
); /* no-op if already mlocked */
1103 if (page
== check_page
)
1105 continue; /* don't unmap */
1108 if (ptep_clear_flush_young_notify(vma
, address
, pte
))
1111 /* Nuke the page table entry. */
1112 flush_cache_page(vma
, address
, pte_pfn(*pte
));
1113 pteval
= ptep_clear_flush_notify(vma
, address
, pte
);
1115 /* If nonlinear, store the file page offset in the pte. */
1116 if (page
->index
!= linear_page_index(vma
, address
))
1117 set_pte_at(mm
, address
, pte
, pgoff_to_pte(page
->index
));
1119 /* Move the dirty bit to the physical page now the pte is gone. */
1120 if (pte_dirty(pteval
))
1121 set_page_dirty(page
);
1123 page_remove_rmap(page
);
1124 page_cache_release(page
);
1125 dec_mm_counter(mm
, MM_FILEPAGES
);
1128 pte_unmap_unlock(pte
- 1, ptl
);
1130 up_read(&vma
->vm_mm
->mmap_sem
);
1134 static bool is_vma_temporary_stack(struct vm_area_struct
*vma
)
1136 int maybe_stack
= vma
->vm_flags
& (VM_GROWSDOWN
| VM_GROWSUP
);
1141 if ((vma
->vm_flags
& VM_STACK_INCOMPLETE_SETUP
) ==
1142 VM_STACK_INCOMPLETE_SETUP
)
1149 * try_to_unmap_anon - unmap or unlock anonymous page using the object-based
1151 * @page: the page to unmap/unlock
1152 * @flags: action and flags
1154 * Find all the mappings of a page using the mapping pointer and the vma chains
1155 * contained in the anon_vma struct it points to.
1157 * This function is only called from try_to_unmap/try_to_munlock for
1159 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1160 * where the page was found will be held for write. So, we won't recheck
1161 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1164 static int try_to_unmap_anon(struct page
*page
, enum ttu_flags flags
)
1166 struct anon_vma
*anon_vma
;
1167 struct anon_vma_chain
*avc
;
1168 int ret
= SWAP_AGAIN
;
1170 anon_vma
= page_lock_anon_vma(page
);
1174 list_for_each_entry(avc
, &anon_vma
->head
, same_anon_vma
) {
1175 struct vm_area_struct
*vma
= avc
->vma
;
1176 unsigned long address
;
1179 * During exec, a temporary VMA is setup and later moved.
1180 * The VMA is moved under the anon_vma lock but not the
1181 * page tables leading to a race where migration cannot
1182 * find the migration ptes. Rather than increasing the
1183 * locking requirements of exec(), migration skips
1184 * temporary VMAs until after exec() completes.
1186 if (PAGE_MIGRATION
&& (flags
& TTU_MIGRATION
) &&
1187 is_vma_temporary_stack(vma
))
1190 address
= vma_address(page
, vma
);
1191 if (address
== -EFAULT
)
1193 ret
= try_to_unmap_one(page
, vma
, address
, flags
);
1194 if (ret
!= SWAP_AGAIN
|| !page_mapped(page
))
1198 page_unlock_anon_vma(anon_vma
);
1203 * try_to_unmap_file - unmap/unlock file page using the object-based rmap method
1204 * @page: the page to unmap/unlock
1205 * @flags: action and flags
1207 * Find all the mappings of a page using the mapping pointer and the vma chains
1208 * contained in the address_space struct it points to.
1210 * This function is only called from try_to_unmap/try_to_munlock for
1211 * object-based pages.
1212 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1213 * where the page was found will be held for write. So, we won't recheck
1214 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1217 static int try_to_unmap_file(struct page
*page
, enum ttu_flags flags
)
1219 struct address_space
*mapping
= page
->mapping
;
1220 pgoff_t pgoff
= page
->index
<< (PAGE_CACHE_SHIFT
- PAGE_SHIFT
);
1221 struct vm_area_struct
*vma
;
1222 struct prio_tree_iter iter
;
1223 int ret
= SWAP_AGAIN
;
1224 unsigned long cursor
;
1225 unsigned long max_nl_cursor
= 0;
1226 unsigned long max_nl_size
= 0;
1227 unsigned int mapcount
;
1229 spin_lock(&mapping
->i_mmap_lock
);
1230 vma_prio_tree_foreach(vma
, &iter
, &mapping
->i_mmap
, pgoff
, pgoff
) {
1231 unsigned long address
= vma_address(page
, vma
);
1232 if (address
== -EFAULT
)
1234 ret
= try_to_unmap_one(page
, vma
, address
, flags
);
1235 if (ret
!= SWAP_AGAIN
|| !page_mapped(page
))
1239 if (list_empty(&mapping
->i_mmap_nonlinear
))
1243 * We don't bother to try to find the munlocked page in nonlinears.
1244 * It's costly. Instead, later, page reclaim logic may call
1245 * try_to_unmap(TTU_MUNLOCK) and recover PG_mlocked lazily.
1247 if (TTU_ACTION(flags
) == TTU_MUNLOCK
)
1250 list_for_each_entry(vma
, &mapping
->i_mmap_nonlinear
,
1251 shared
.vm_set
.list
) {
1252 cursor
= (unsigned long) vma
->vm_private_data
;
1253 if (cursor
> max_nl_cursor
)
1254 max_nl_cursor
= cursor
;
1255 cursor
= vma
->vm_end
- vma
->vm_start
;
1256 if (cursor
> max_nl_size
)
1257 max_nl_size
= cursor
;
1260 if (max_nl_size
== 0) { /* all nonlinears locked or reserved ? */
1266 * We don't try to search for this page in the nonlinear vmas,
1267 * and page_referenced wouldn't have found it anyway. Instead
1268 * just walk the nonlinear vmas trying to age and unmap some.
1269 * The mapcount of the page we came in with is irrelevant,
1270 * but even so use it as a guide to how hard we should try?
1272 mapcount
= page_mapcount(page
);
1275 cond_resched_lock(&mapping
->i_mmap_lock
);
1277 max_nl_size
= (max_nl_size
+ CLUSTER_SIZE
- 1) & CLUSTER_MASK
;
1278 if (max_nl_cursor
== 0)
1279 max_nl_cursor
= CLUSTER_SIZE
;
1282 list_for_each_entry(vma
, &mapping
->i_mmap_nonlinear
,
1283 shared
.vm_set
.list
) {
1284 cursor
= (unsigned long) vma
->vm_private_data
;
1285 while ( cursor
< max_nl_cursor
&&
1286 cursor
< vma
->vm_end
- vma
->vm_start
) {
1287 if (try_to_unmap_cluster(cursor
, &mapcount
,
1288 vma
, page
) == SWAP_MLOCK
)
1290 cursor
+= CLUSTER_SIZE
;
1291 vma
->vm_private_data
= (void *) cursor
;
1292 if ((int)mapcount
<= 0)
1295 vma
->vm_private_data
= (void *) max_nl_cursor
;
1297 cond_resched_lock(&mapping
->i_mmap_lock
);
1298 max_nl_cursor
+= CLUSTER_SIZE
;
1299 } while (max_nl_cursor
<= max_nl_size
);
1302 * Don't loop forever (perhaps all the remaining pages are
1303 * in locked vmas). Reset cursor on all unreserved nonlinear
1304 * vmas, now forgetting on which ones it had fallen behind.
1306 list_for_each_entry(vma
, &mapping
->i_mmap_nonlinear
, shared
.vm_set
.list
)
1307 vma
->vm_private_data
= NULL
;
1309 spin_unlock(&mapping
->i_mmap_lock
);
1314 * try_to_unmap - try to remove all page table mappings to a page
1315 * @page: the page to get unmapped
1316 * @flags: action and flags
1318 * Tries to remove all the page table entries which are mapping this
1319 * page, used in the pageout path. Caller must hold the page lock.
1320 * Return values are:
1322 * SWAP_SUCCESS - we succeeded in removing all mappings
1323 * SWAP_AGAIN - we missed a mapping, try again later
1324 * SWAP_FAIL - the page is unswappable
1325 * SWAP_MLOCK - page is mlocked.
1327 int try_to_unmap(struct page
*page
, enum ttu_flags flags
)
1331 BUG_ON(!PageLocked(page
));
1333 if (unlikely(PageKsm(page
)))
1334 ret
= try_to_unmap_ksm(page
, flags
);
1335 else if (PageAnon(page
))
1336 ret
= try_to_unmap_anon(page
, flags
);
1338 ret
= try_to_unmap_file(page
, flags
);
1339 if (ret
!= SWAP_MLOCK
&& !page_mapped(page
))
1345 * try_to_munlock - try to munlock a page
1346 * @page: the page to be munlocked
1348 * Called from munlock code. Checks all of the VMAs mapping the page
1349 * to make sure nobody else has this page mlocked. The page will be
1350 * returned with PG_mlocked cleared if no other vmas have it mlocked.
1352 * Return values are:
1354 * SWAP_AGAIN - no vma is holding page mlocked, or,
1355 * SWAP_AGAIN - page mapped in mlocked vma -- couldn't acquire mmap sem
1356 * SWAP_FAIL - page cannot be located at present
1357 * SWAP_MLOCK - page is now mlocked.
1359 int try_to_munlock(struct page
*page
)
1361 VM_BUG_ON(!PageLocked(page
) || PageLRU(page
));
1363 if (unlikely(PageKsm(page
)))
1364 return try_to_unmap_ksm(page
, TTU_MUNLOCK
);
1365 else if (PageAnon(page
))
1366 return try_to_unmap_anon(page
, TTU_MUNLOCK
);
1368 return try_to_unmap_file(page
, TTU_MUNLOCK
);
1371 #ifdef CONFIG_MIGRATION
1373 * rmap_walk() and its helpers rmap_walk_anon() and rmap_walk_file():
1374 * Called by migrate.c to remove migration ptes, but might be used more later.
1376 static int rmap_walk_anon(struct page
*page
, int (*rmap_one
)(struct page
*,
1377 struct vm_area_struct
*, unsigned long, void *), void *arg
)
1379 struct anon_vma
*anon_vma
;
1380 struct anon_vma_chain
*avc
;
1381 int ret
= SWAP_AGAIN
;
1384 * Note: remove_migration_ptes() cannot use page_lock_anon_vma()
1385 * because that depends on page_mapped(); but not all its usages
1386 * are holding mmap_sem. Users without mmap_sem are required to
1387 * take a reference count to prevent the anon_vma disappearing
1389 anon_vma
= page_anon_vma(page
);
1392 spin_lock(&anon_vma
->lock
);
1393 list_for_each_entry(avc
, &anon_vma
->head
, same_anon_vma
) {
1394 struct vm_area_struct
*vma
= avc
->vma
;
1395 unsigned long address
= vma_address(page
, vma
);
1396 if (address
== -EFAULT
)
1398 ret
= rmap_one(page
, vma
, address
, arg
);
1399 if (ret
!= SWAP_AGAIN
)
1402 spin_unlock(&anon_vma
->lock
);
1406 static int rmap_walk_file(struct page
*page
, int (*rmap_one
)(struct page
*,
1407 struct vm_area_struct
*, unsigned long, void *), void *arg
)
1409 struct address_space
*mapping
= page
->mapping
;
1410 pgoff_t pgoff
= page
->index
<< (PAGE_CACHE_SHIFT
- PAGE_SHIFT
);
1411 struct vm_area_struct
*vma
;
1412 struct prio_tree_iter iter
;
1413 int ret
= SWAP_AGAIN
;
1417 spin_lock(&mapping
->i_mmap_lock
);
1418 vma_prio_tree_foreach(vma
, &iter
, &mapping
->i_mmap
, pgoff
, pgoff
) {
1419 unsigned long address
= vma_address(page
, vma
);
1420 if (address
== -EFAULT
)
1422 ret
= rmap_one(page
, vma
, address
, arg
);
1423 if (ret
!= SWAP_AGAIN
)
1427 * No nonlinear handling: being always shared, nonlinear vmas
1428 * never contain migration ptes. Decide what to do about this
1429 * limitation to linear when we need rmap_walk() on nonlinear.
1431 spin_unlock(&mapping
->i_mmap_lock
);
1435 int rmap_walk(struct page
*page
, int (*rmap_one
)(struct page
*,
1436 struct vm_area_struct
*, unsigned long, void *), void *arg
)
1438 VM_BUG_ON(!PageLocked(page
));
1440 if (unlikely(PageKsm(page
)))
1441 return rmap_walk_ksm(page
, rmap_one
, arg
);
1442 else if (PageAnon(page
))
1443 return rmap_walk_anon(page
, rmap_one
, arg
);
1445 return rmap_walk_file(page
, rmap_one
, arg
);
1447 #endif /* CONFIG_MIGRATION */