4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
41 #include <linux/kernel_stat.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/ksm.h>
49 #include <linux/rmap.h>
50 #include <linux/module.h>
51 #include <linux/delayacct.h>
52 #include <linux/init.h>
53 #include <linux/writeback.h>
54 #include <linux/memcontrol.h>
55 #include <linux/mmu_notifier.h>
56 #include <linux/kallsyms.h>
57 #include <linux/swapops.h>
58 #include <linux/elf.h>
59 #include <linux/gfp.h>
62 #include <asm/pgalloc.h>
63 #include <asm/uaccess.h>
65 #include <asm/tlbflush.h>
66 #include <asm/pgtable.h>
70 #ifndef CONFIG_NEED_MULTIPLE_NODES
71 /* use the per-pgdat data instead for discontigmem - mbligh */
72 unsigned long max_mapnr
;
75 EXPORT_SYMBOL(max_mapnr
);
76 EXPORT_SYMBOL(mem_map
);
79 unsigned long num_physpages
;
81 * A number of key systems in x86 including ioremap() rely on the assumption
82 * that high_memory defines the upper bound on direct map memory, then end
83 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
84 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
89 EXPORT_SYMBOL(num_physpages
);
90 EXPORT_SYMBOL(high_memory
);
93 * Randomize the address space (stacks, mmaps, brk, etc.).
95 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
96 * as ancient (libc5 based) binaries can segfault. )
98 int randomize_va_space __read_mostly
=
99 #ifdef CONFIG_COMPAT_BRK
105 static int __init
disable_randmaps(char *s
)
107 randomize_va_space
= 0;
110 __setup("norandmaps", disable_randmaps
);
112 unsigned long zero_pfn __read_mostly
;
113 unsigned long highest_memmap_pfn __read_mostly
;
116 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
118 static int __init
init_zero_pfn(void)
120 zero_pfn
= page_to_pfn(ZERO_PAGE(0));
123 core_initcall(init_zero_pfn
);
126 #if defined(SPLIT_RSS_COUNTING)
128 static void __sync_task_rss_stat(struct task_struct
*task
, struct mm_struct
*mm
)
132 for (i
= 0; i
< NR_MM_COUNTERS
; i
++) {
133 if (task
->rss_stat
.count
[i
]) {
134 add_mm_counter(mm
, i
, task
->rss_stat
.count
[i
]);
135 task
->rss_stat
.count
[i
] = 0;
138 task
->rss_stat
.events
= 0;
141 static void add_mm_counter_fast(struct mm_struct
*mm
, int member
, int val
)
143 struct task_struct
*task
= current
;
145 if (likely(task
->mm
== mm
))
146 task
->rss_stat
.count
[member
] += val
;
148 add_mm_counter(mm
, member
, val
);
150 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
151 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
153 /* sync counter once per 64 page faults */
154 #define TASK_RSS_EVENTS_THRESH (64)
155 static void check_sync_rss_stat(struct task_struct
*task
)
157 if (unlikely(task
!= current
))
159 if (unlikely(task
->rss_stat
.events
++ > TASK_RSS_EVENTS_THRESH
))
160 __sync_task_rss_stat(task
, task
->mm
);
163 unsigned long get_mm_counter(struct mm_struct
*mm
, int member
)
168 * Don't use task->mm here...for avoiding to use task_get_mm()..
169 * The caller must guarantee task->mm is not invalid.
171 val
= atomic_long_read(&mm
->rss_stat
.count
[member
]);
173 * counter is updated in asynchronous manner and may go to minus.
174 * But it's never be expected number for users.
178 return (unsigned long)val
;
181 void sync_mm_rss(struct task_struct
*task
, struct mm_struct
*mm
)
183 __sync_task_rss_stat(task
, mm
);
187 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
188 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
190 static void check_sync_rss_stat(struct task_struct
*task
)
197 * If a p?d_bad entry is found while walking page tables, report
198 * the error, before resetting entry to p?d_none. Usually (but
199 * very seldom) called out from the p?d_none_or_clear_bad macros.
202 void pgd_clear_bad(pgd_t
*pgd
)
208 void pud_clear_bad(pud_t
*pud
)
214 void pmd_clear_bad(pmd_t
*pmd
)
221 * Note: this doesn't free the actual pages themselves. That
222 * has been handled earlier when unmapping all the memory regions.
224 static void free_pte_range(struct mmu_gather
*tlb
, pmd_t
*pmd
,
227 pgtable_t token
= pmd_pgtable(*pmd
);
229 pte_free_tlb(tlb
, token
, addr
);
233 static inline void free_pmd_range(struct mmu_gather
*tlb
, pud_t
*pud
,
234 unsigned long addr
, unsigned long end
,
235 unsigned long floor
, unsigned long ceiling
)
242 pmd
= pmd_offset(pud
, addr
);
244 next
= pmd_addr_end(addr
, end
);
245 if (pmd_none_or_clear_bad(pmd
))
247 free_pte_range(tlb
, pmd
, addr
);
248 } while (pmd
++, addr
= next
, addr
!= end
);
258 if (end
- 1 > ceiling
- 1)
261 pmd
= pmd_offset(pud
, start
);
263 pmd_free_tlb(tlb
, pmd
, start
);
266 static inline void free_pud_range(struct mmu_gather
*tlb
, pgd_t
*pgd
,
267 unsigned long addr
, unsigned long end
,
268 unsigned long floor
, unsigned long ceiling
)
275 pud
= pud_offset(pgd
, addr
);
277 next
= pud_addr_end(addr
, end
);
278 if (pud_none_or_clear_bad(pud
))
280 free_pmd_range(tlb
, pud
, addr
, next
, floor
, ceiling
);
281 } while (pud
++, addr
= next
, addr
!= end
);
287 ceiling
&= PGDIR_MASK
;
291 if (end
- 1 > ceiling
- 1)
294 pud
= pud_offset(pgd
, start
);
296 pud_free_tlb(tlb
, pud
, start
);
300 * This function frees user-level page tables of a process.
302 * Must be called with pagetable lock held.
304 void free_pgd_range(struct mmu_gather
*tlb
,
305 unsigned long addr
, unsigned long end
,
306 unsigned long floor
, unsigned long ceiling
)
313 * The next few lines have given us lots of grief...
315 * Why are we testing PMD* at this top level? Because often
316 * there will be no work to do at all, and we'd prefer not to
317 * go all the way down to the bottom just to discover that.
319 * Why all these "- 1"s? Because 0 represents both the bottom
320 * of the address space and the top of it (using -1 for the
321 * top wouldn't help much: the masks would do the wrong thing).
322 * The rule is that addr 0 and floor 0 refer to the bottom of
323 * the address space, but end 0 and ceiling 0 refer to the top
324 * Comparisons need to use "end - 1" and "ceiling - 1" (though
325 * that end 0 case should be mythical).
327 * Wherever addr is brought up or ceiling brought down, we must
328 * be careful to reject "the opposite 0" before it confuses the
329 * subsequent tests. But what about where end is brought down
330 * by PMD_SIZE below? no, end can't go down to 0 there.
332 * Whereas we round start (addr) and ceiling down, by different
333 * masks at different levels, in order to test whether a table
334 * now has no other vmas using it, so can be freed, we don't
335 * bother to round floor or end up - the tests don't need that.
349 if (end
- 1 > ceiling
- 1)
355 pgd
= pgd_offset(tlb
->mm
, addr
);
357 next
= pgd_addr_end(addr
, end
);
358 if (pgd_none_or_clear_bad(pgd
))
360 free_pud_range(tlb
, pgd
, addr
, next
, floor
, ceiling
);
361 } while (pgd
++, addr
= next
, addr
!= end
);
364 void free_pgtables(struct mmu_gather
*tlb
, struct vm_area_struct
*vma
,
365 unsigned long floor
, unsigned long ceiling
)
368 struct vm_area_struct
*next
= vma
->vm_next
;
369 unsigned long addr
= vma
->vm_start
;
372 * Hide vma from rmap and truncate_pagecache before freeing
375 unlink_anon_vmas(vma
);
376 unlink_file_vma(vma
);
378 if (is_vm_hugetlb_page(vma
)) {
379 hugetlb_free_pgd_range(tlb
, addr
, vma
->vm_end
,
380 floor
, next
? next
->vm_start
: ceiling
);
383 * Optimization: gather nearby vmas into one call down
385 while (next
&& next
->vm_start
<= vma
->vm_end
+ PMD_SIZE
386 && !is_vm_hugetlb_page(next
)) {
389 unlink_anon_vmas(vma
);
390 unlink_file_vma(vma
);
392 free_pgd_range(tlb
, addr
, vma
->vm_end
,
393 floor
, next
? next
->vm_start
: ceiling
);
399 int __pte_alloc(struct mm_struct
*mm
, pmd_t
*pmd
, unsigned long address
)
401 pgtable_t
new = pte_alloc_one(mm
, address
);
406 * Ensure all pte setup (eg. pte page lock and page clearing) are
407 * visible before the pte is made visible to other CPUs by being
408 * put into page tables.
410 * The other side of the story is the pointer chasing in the page
411 * table walking code (when walking the page table without locking;
412 * ie. most of the time). Fortunately, these data accesses consist
413 * of a chain of data-dependent loads, meaning most CPUs (alpha
414 * being the notable exception) will already guarantee loads are
415 * seen in-order. See the alpha page table accessors for the
416 * smp_read_barrier_depends() barriers in page table walking code.
418 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
420 spin_lock(&mm
->page_table_lock
);
421 if (!pmd_present(*pmd
)) { /* Has another populated it ? */
423 pmd_populate(mm
, pmd
, new);
426 spin_unlock(&mm
->page_table_lock
);
432 int __pte_alloc_kernel(pmd_t
*pmd
, unsigned long address
)
434 pte_t
*new = pte_alloc_one_kernel(&init_mm
, address
);
438 smp_wmb(); /* See comment in __pte_alloc */
440 spin_lock(&init_mm
.page_table_lock
);
441 if (!pmd_present(*pmd
)) { /* Has another populated it ? */
442 pmd_populate_kernel(&init_mm
, pmd
, new);
445 spin_unlock(&init_mm
.page_table_lock
);
447 pte_free_kernel(&init_mm
, new);
451 static inline void init_rss_vec(int *rss
)
453 memset(rss
, 0, sizeof(int) * NR_MM_COUNTERS
);
456 static inline void add_mm_rss_vec(struct mm_struct
*mm
, int *rss
)
460 if (current
->mm
== mm
)
461 sync_mm_rss(current
, mm
);
462 for (i
= 0; i
< NR_MM_COUNTERS
; i
++)
464 add_mm_counter(mm
, i
, rss
[i
]);
468 * This function is called to print an error when a bad pte
469 * is found. For example, we might have a PFN-mapped pte in
470 * a region that doesn't allow it.
472 * The calling function must still handle the error.
474 static void print_bad_pte(struct vm_area_struct
*vma
, unsigned long addr
,
475 pte_t pte
, struct page
*page
)
477 pgd_t
*pgd
= pgd_offset(vma
->vm_mm
, addr
);
478 pud_t
*pud
= pud_offset(pgd
, addr
);
479 pmd_t
*pmd
= pmd_offset(pud
, addr
);
480 struct address_space
*mapping
;
482 static unsigned long resume
;
483 static unsigned long nr_shown
;
484 static unsigned long nr_unshown
;
487 * Allow a burst of 60 reports, then keep quiet for that minute;
488 * or allow a steady drip of one report per second.
490 if (nr_shown
== 60) {
491 if (time_before(jiffies
, resume
)) {
497 "BUG: Bad page map: %lu messages suppressed\n",
504 resume
= jiffies
+ 60 * HZ
;
506 mapping
= vma
->vm_file
? vma
->vm_file
->f_mapping
: NULL
;
507 index
= linear_page_index(vma
, addr
);
510 "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
512 (long long)pte_val(pte
), (long long)pmd_val(*pmd
));
516 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
517 (void *)addr
, vma
->vm_flags
, vma
->anon_vma
, mapping
, index
);
519 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
522 print_symbol(KERN_ALERT
"vma->vm_ops->fault: %s\n",
523 (unsigned long)vma
->vm_ops
->fault
);
524 if (vma
->vm_file
&& vma
->vm_file
->f_op
)
525 print_symbol(KERN_ALERT
"vma->vm_file->f_op->mmap: %s\n",
526 (unsigned long)vma
->vm_file
->f_op
->mmap
);
528 add_taint(TAINT_BAD_PAGE
);
531 static inline int is_cow_mapping(unsigned int flags
)
533 return (flags
& (VM_SHARED
| VM_MAYWRITE
)) == VM_MAYWRITE
;
537 static inline int is_zero_pfn(unsigned long pfn
)
539 return pfn
== zero_pfn
;
544 static inline unsigned long my_zero_pfn(unsigned long addr
)
551 * vm_normal_page -- This function gets the "struct page" associated with a pte.
553 * "Special" mappings do not wish to be associated with a "struct page" (either
554 * it doesn't exist, or it exists but they don't want to touch it). In this
555 * case, NULL is returned here. "Normal" mappings do have a struct page.
557 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
558 * pte bit, in which case this function is trivial. Secondly, an architecture
559 * may not have a spare pte bit, which requires a more complicated scheme,
562 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
563 * special mapping (even if there are underlying and valid "struct pages").
564 * COWed pages of a VM_PFNMAP are always normal.
566 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
567 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
568 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
569 * mapping will always honor the rule
571 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
573 * And for normal mappings this is false.
575 * This restricts such mappings to be a linear translation from virtual address
576 * to pfn. To get around this restriction, we allow arbitrary mappings so long
577 * as the vma is not a COW mapping; in that case, we know that all ptes are
578 * special (because none can have been COWed).
581 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
583 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
584 * page" backing, however the difference is that _all_ pages with a struct
585 * page (that is, those where pfn_valid is true) are refcounted and considered
586 * normal pages by the VM. The disadvantage is that pages are refcounted
587 * (which can be slower and simply not an option for some PFNMAP users). The
588 * advantage is that we don't have to follow the strict linearity rule of
589 * PFNMAP mappings in order to support COWable mappings.
592 #ifdef __HAVE_ARCH_PTE_SPECIAL
593 # define HAVE_PTE_SPECIAL 1
595 # define HAVE_PTE_SPECIAL 0
597 struct page
*vm_normal_page(struct vm_area_struct
*vma
, unsigned long addr
,
600 unsigned long pfn
= pte_pfn(pte
);
602 if (HAVE_PTE_SPECIAL
) {
603 if (likely(!pte_special(pte
)))
605 if (vma
->vm_flags
& (VM_PFNMAP
| VM_MIXEDMAP
))
607 if (!is_zero_pfn(pfn
))
608 print_bad_pte(vma
, addr
, pte
, NULL
);
612 /* !HAVE_PTE_SPECIAL case follows: */
614 if (unlikely(vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
))) {
615 if (vma
->vm_flags
& VM_MIXEDMAP
) {
621 off
= (addr
- vma
->vm_start
) >> PAGE_SHIFT
;
622 if (pfn
== vma
->vm_pgoff
+ off
)
624 if (!is_cow_mapping(vma
->vm_flags
))
629 if (is_zero_pfn(pfn
))
632 if (unlikely(pfn
> highest_memmap_pfn
)) {
633 print_bad_pte(vma
, addr
, pte
, NULL
);
638 * NOTE! We still have PageReserved() pages in the page tables.
639 * eg. VDSO mappings can cause them to exist.
642 return pfn_to_page(pfn
);
646 * copy one vm_area from one task to the other. Assumes the page tables
647 * already present in the new task to be cleared in the whole range
648 * covered by this vma.
651 static inline unsigned long
652 copy_one_pte(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
653 pte_t
*dst_pte
, pte_t
*src_pte
, struct vm_area_struct
*vma
,
654 unsigned long addr
, int *rss
)
656 unsigned long vm_flags
= vma
->vm_flags
;
657 pte_t pte
= *src_pte
;
660 /* pte contains position in swap or file, so copy. */
661 if (unlikely(!pte_present(pte
))) {
662 if (!pte_file(pte
)) {
663 swp_entry_t entry
= pte_to_swp_entry(pte
);
665 if (swap_duplicate(entry
) < 0)
668 /* make sure dst_mm is on swapoff's mmlist. */
669 if (unlikely(list_empty(&dst_mm
->mmlist
))) {
670 spin_lock(&mmlist_lock
);
671 if (list_empty(&dst_mm
->mmlist
))
672 list_add(&dst_mm
->mmlist
,
674 spin_unlock(&mmlist_lock
);
676 if (likely(!non_swap_entry(entry
)))
678 else if (is_write_migration_entry(entry
) &&
679 is_cow_mapping(vm_flags
)) {
681 * COW mappings require pages in both parent
682 * and child to be set to read.
684 make_migration_entry_read(&entry
);
685 pte
= swp_entry_to_pte(entry
);
686 set_pte_at(src_mm
, addr
, src_pte
, pte
);
693 * If it's a COW mapping, write protect it both
694 * in the parent and the child
696 if (is_cow_mapping(vm_flags
)) {
697 ptep_set_wrprotect(src_mm
, addr
, src_pte
);
698 pte
= pte_wrprotect(pte
);
702 * If it's a shared mapping, mark it clean in
705 if (vm_flags
& VM_SHARED
)
706 pte
= pte_mkclean(pte
);
707 pte
= pte_mkold(pte
);
709 page
= vm_normal_page(vma
, addr
, pte
);
720 set_pte_at(dst_mm
, addr
, dst_pte
, pte
);
724 static int copy_pte_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
725 pmd_t
*dst_pmd
, pmd_t
*src_pmd
, struct vm_area_struct
*vma
,
726 unsigned long addr
, unsigned long end
)
728 pte_t
*orig_src_pte
, *orig_dst_pte
;
729 pte_t
*src_pte
, *dst_pte
;
730 spinlock_t
*src_ptl
, *dst_ptl
;
732 int rss
[NR_MM_COUNTERS
];
733 swp_entry_t entry
= (swp_entry_t
){0};
738 dst_pte
= pte_alloc_map_lock(dst_mm
, dst_pmd
, addr
, &dst_ptl
);
741 src_pte
= pte_offset_map_nested(src_pmd
, addr
);
742 src_ptl
= pte_lockptr(src_mm
, src_pmd
);
743 spin_lock_nested(src_ptl
, SINGLE_DEPTH_NESTING
);
744 orig_src_pte
= src_pte
;
745 orig_dst_pte
= dst_pte
;
746 arch_enter_lazy_mmu_mode();
750 * We are holding two locks at this point - either of them
751 * could generate latencies in another task on another CPU.
753 if (progress
>= 32) {
755 if (need_resched() ||
756 spin_needbreak(src_ptl
) || spin_needbreak(dst_ptl
))
759 if (pte_none(*src_pte
)) {
763 entry
.val
= copy_one_pte(dst_mm
, src_mm
, dst_pte
, src_pte
,
768 } while (dst_pte
++, src_pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
770 arch_leave_lazy_mmu_mode();
771 spin_unlock(src_ptl
);
772 pte_unmap_nested(orig_src_pte
);
773 add_mm_rss_vec(dst_mm
, rss
);
774 pte_unmap_unlock(orig_dst_pte
, dst_ptl
);
778 if (add_swap_count_continuation(entry
, GFP_KERNEL
) < 0)
787 static inline int copy_pmd_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
788 pud_t
*dst_pud
, pud_t
*src_pud
, struct vm_area_struct
*vma
,
789 unsigned long addr
, unsigned long end
)
791 pmd_t
*src_pmd
, *dst_pmd
;
794 dst_pmd
= pmd_alloc(dst_mm
, dst_pud
, addr
);
797 src_pmd
= pmd_offset(src_pud
, addr
);
799 next
= pmd_addr_end(addr
, end
);
800 if (pmd_none_or_clear_bad(src_pmd
))
802 if (copy_pte_range(dst_mm
, src_mm
, dst_pmd
, src_pmd
,
805 } while (dst_pmd
++, src_pmd
++, addr
= next
, addr
!= end
);
809 static inline int copy_pud_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
810 pgd_t
*dst_pgd
, pgd_t
*src_pgd
, struct vm_area_struct
*vma
,
811 unsigned long addr
, unsigned long end
)
813 pud_t
*src_pud
, *dst_pud
;
816 dst_pud
= pud_alloc(dst_mm
, dst_pgd
, addr
);
819 src_pud
= pud_offset(src_pgd
, addr
);
821 next
= pud_addr_end(addr
, end
);
822 if (pud_none_or_clear_bad(src_pud
))
824 if (copy_pmd_range(dst_mm
, src_mm
, dst_pud
, src_pud
,
827 } while (dst_pud
++, src_pud
++, addr
= next
, addr
!= end
);
831 int copy_page_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
832 struct vm_area_struct
*vma
)
834 pgd_t
*src_pgd
, *dst_pgd
;
836 unsigned long addr
= vma
->vm_start
;
837 unsigned long end
= vma
->vm_end
;
841 * Don't copy ptes where a page fault will fill them correctly.
842 * Fork becomes much lighter when there are big shared or private
843 * readonly mappings. The tradeoff is that copy_page_range is more
844 * efficient than faulting.
846 if (!(vma
->vm_flags
& (VM_HUGETLB
|VM_NONLINEAR
|VM_PFNMAP
|VM_INSERTPAGE
))) {
851 if (is_vm_hugetlb_page(vma
))
852 return copy_hugetlb_page_range(dst_mm
, src_mm
, vma
);
854 if (unlikely(is_pfn_mapping(vma
))) {
856 * We do not free on error cases below as remove_vma
857 * gets called on error from higher level routine
859 ret
= track_pfn_vma_copy(vma
);
865 * We need to invalidate the secondary MMU mappings only when
866 * there could be a permission downgrade on the ptes of the
867 * parent mm. And a permission downgrade will only happen if
868 * is_cow_mapping() returns true.
870 if (is_cow_mapping(vma
->vm_flags
))
871 mmu_notifier_invalidate_range_start(src_mm
, addr
, end
);
874 dst_pgd
= pgd_offset(dst_mm
, addr
);
875 src_pgd
= pgd_offset(src_mm
, addr
);
877 next
= pgd_addr_end(addr
, end
);
878 if (pgd_none_or_clear_bad(src_pgd
))
880 if (unlikely(copy_pud_range(dst_mm
, src_mm
, dst_pgd
, src_pgd
,
885 } while (dst_pgd
++, src_pgd
++, addr
= next
, addr
!= end
);
887 if (is_cow_mapping(vma
->vm_flags
))
888 mmu_notifier_invalidate_range_end(src_mm
,
893 static unsigned long zap_pte_range(struct mmu_gather
*tlb
,
894 struct vm_area_struct
*vma
, pmd_t
*pmd
,
895 unsigned long addr
, unsigned long end
,
896 long *zap_work
, struct zap_details
*details
)
898 struct mm_struct
*mm
= tlb
->mm
;
901 int rss
[NR_MM_COUNTERS
];
905 pte
= pte_offset_map_lock(mm
, pmd
, addr
, &ptl
);
906 arch_enter_lazy_mmu_mode();
909 if (pte_none(ptent
)) {
914 (*zap_work
) -= PAGE_SIZE
;
916 if (pte_present(ptent
)) {
919 page
= vm_normal_page(vma
, addr
, ptent
);
920 if (unlikely(details
) && page
) {
922 * unmap_shared_mapping_pages() wants to
923 * invalidate cache without truncating:
924 * unmap shared but keep private pages.
926 if (details
->check_mapping
&&
927 details
->check_mapping
!= page
->mapping
)
930 * Each page->index must be checked when
931 * invalidating or truncating nonlinear.
933 if (details
->nonlinear_vma
&&
934 (page
->index
< details
->first_index
||
935 page
->index
> details
->last_index
))
938 ptent
= ptep_get_and_clear_full(mm
, addr
, pte
,
940 tlb_remove_tlb_entry(tlb
, pte
, addr
);
943 if (unlikely(details
) && details
->nonlinear_vma
944 && linear_page_index(details
->nonlinear_vma
,
945 addr
) != page
->index
)
946 set_pte_at(mm
, addr
, pte
,
947 pgoff_to_pte(page
->index
));
951 if (pte_dirty(ptent
))
952 set_page_dirty(page
);
953 if (pte_young(ptent
) &&
954 likely(!VM_SequentialReadHint(vma
)))
955 mark_page_accessed(page
);
958 page_remove_rmap(page
);
959 if (unlikely(page_mapcount(page
) < 0))
960 print_bad_pte(vma
, addr
, ptent
, page
);
961 tlb_remove_page(tlb
, page
);
965 * If details->check_mapping, we leave swap entries;
966 * if details->nonlinear_vma, we leave file entries.
968 if (unlikely(details
))
970 if (pte_file(ptent
)) {
971 if (unlikely(!(vma
->vm_flags
& VM_NONLINEAR
)))
972 print_bad_pte(vma
, addr
, ptent
, NULL
);
974 swp_entry_t entry
= pte_to_swp_entry(ptent
);
976 if (!non_swap_entry(entry
))
978 if (unlikely(!free_swap_and_cache(entry
)))
979 print_bad_pte(vma
, addr
, ptent
, NULL
);
981 pte_clear_not_present_full(mm
, addr
, pte
, tlb
->fullmm
);
982 } while (pte
++, addr
+= PAGE_SIZE
, (addr
!= end
&& *zap_work
> 0));
984 add_mm_rss_vec(mm
, rss
);
985 arch_leave_lazy_mmu_mode();
986 pte_unmap_unlock(pte
- 1, ptl
);
991 static inline unsigned long zap_pmd_range(struct mmu_gather
*tlb
,
992 struct vm_area_struct
*vma
, pud_t
*pud
,
993 unsigned long addr
, unsigned long end
,
994 long *zap_work
, struct zap_details
*details
)
999 pmd
= pmd_offset(pud
, addr
);
1001 next
= pmd_addr_end(addr
, end
);
1002 if (pmd_none_or_clear_bad(pmd
)) {
1006 next
= zap_pte_range(tlb
, vma
, pmd
, addr
, next
,
1008 } while (pmd
++, addr
= next
, (addr
!= end
&& *zap_work
> 0));
1013 static inline unsigned long zap_pud_range(struct mmu_gather
*tlb
,
1014 struct vm_area_struct
*vma
, pgd_t
*pgd
,
1015 unsigned long addr
, unsigned long end
,
1016 long *zap_work
, struct zap_details
*details
)
1021 pud
= pud_offset(pgd
, addr
);
1023 next
= pud_addr_end(addr
, end
);
1024 if (pud_none_or_clear_bad(pud
)) {
1028 next
= zap_pmd_range(tlb
, vma
, pud
, addr
, next
,
1030 } while (pud
++, addr
= next
, (addr
!= end
&& *zap_work
> 0));
1035 static unsigned long unmap_page_range(struct mmu_gather
*tlb
,
1036 struct vm_area_struct
*vma
,
1037 unsigned long addr
, unsigned long end
,
1038 long *zap_work
, struct zap_details
*details
)
1043 if (details
&& !details
->check_mapping
&& !details
->nonlinear_vma
)
1046 BUG_ON(addr
>= end
);
1047 mem_cgroup_uncharge_start();
1048 tlb_start_vma(tlb
, vma
);
1049 pgd
= pgd_offset(vma
->vm_mm
, addr
);
1051 next
= pgd_addr_end(addr
, end
);
1052 if (pgd_none_or_clear_bad(pgd
)) {
1056 next
= zap_pud_range(tlb
, vma
, pgd
, addr
, next
,
1058 } while (pgd
++, addr
= next
, (addr
!= end
&& *zap_work
> 0));
1059 tlb_end_vma(tlb
, vma
);
1060 mem_cgroup_uncharge_end();
1065 #ifdef CONFIG_PREEMPT
1066 # define ZAP_BLOCK_SIZE (8 * PAGE_SIZE)
1068 /* No preempt: go for improved straight-line efficiency */
1069 # define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE)
1073 * unmap_vmas - unmap a range of memory covered by a list of vma's
1074 * @tlbp: address of the caller's struct mmu_gather
1075 * @vma: the starting vma
1076 * @start_addr: virtual address at which to start unmapping
1077 * @end_addr: virtual address at which to end unmapping
1078 * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
1079 * @details: details of nonlinear truncation or shared cache invalidation
1081 * Returns the end address of the unmapping (restart addr if interrupted).
1083 * Unmap all pages in the vma list.
1085 * We aim to not hold locks for too long (for scheduling latency reasons).
1086 * So zap pages in ZAP_BLOCK_SIZE bytecounts. This means we need to
1087 * return the ending mmu_gather to the caller.
1089 * Only addresses between `start' and `end' will be unmapped.
1091 * The VMA list must be sorted in ascending virtual address order.
1093 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1094 * range after unmap_vmas() returns. So the only responsibility here is to
1095 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1096 * drops the lock and schedules.
1098 unsigned long unmap_vmas(struct mmu_gather
**tlbp
,
1099 struct vm_area_struct
*vma
, unsigned long start_addr
,
1100 unsigned long end_addr
, unsigned long *nr_accounted
,
1101 struct zap_details
*details
)
1103 long zap_work
= ZAP_BLOCK_SIZE
;
1104 unsigned long tlb_start
= 0; /* For tlb_finish_mmu */
1105 int tlb_start_valid
= 0;
1106 unsigned long start
= start_addr
;
1107 spinlock_t
*i_mmap_lock
= details
? details
->i_mmap_lock
: NULL
;
1108 int fullmm
= (*tlbp
)->fullmm
;
1109 struct mm_struct
*mm
= vma
->vm_mm
;
1111 mmu_notifier_invalidate_range_start(mm
, start_addr
, end_addr
);
1112 for ( ; vma
&& vma
->vm_start
< end_addr
; vma
= vma
->vm_next
) {
1115 start
= max(vma
->vm_start
, start_addr
);
1116 if (start
>= vma
->vm_end
)
1118 end
= min(vma
->vm_end
, end_addr
);
1119 if (end
<= vma
->vm_start
)
1122 if (vma
->vm_flags
& VM_ACCOUNT
)
1123 *nr_accounted
+= (end
- start
) >> PAGE_SHIFT
;
1125 if (unlikely(is_pfn_mapping(vma
)))
1126 untrack_pfn_vma(vma
, 0, 0);
1128 while (start
!= end
) {
1129 if (!tlb_start_valid
) {
1131 tlb_start_valid
= 1;
1134 if (unlikely(is_vm_hugetlb_page(vma
))) {
1136 * It is undesirable to test vma->vm_file as it
1137 * should be non-null for valid hugetlb area.
1138 * However, vm_file will be NULL in the error
1139 * cleanup path of do_mmap_pgoff. When
1140 * hugetlbfs ->mmap method fails,
1141 * do_mmap_pgoff() nullifies vma->vm_file
1142 * before calling this function to clean up.
1143 * Since no pte has actually been setup, it is
1144 * safe to do nothing in this case.
1147 unmap_hugepage_range(vma
, start
, end
, NULL
);
1148 zap_work
-= (end
- start
) /
1149 pages_per_huge_page(hstate_vma(vma
));
1154 start
= unmap_page_range(*tlbp
, vma
,
1155 start
, end
, &zap_work
, details
);
1158 BUG_ON(start
!= end
);
1162 tlb_finish_mmu(*tlbp
, tlb_start
, start
);
1164 if (need_resched() ||
1165 (i_mmap_lock
&& spin_needbreak(i_mmap_lock
))) {
1173 *tlbp
= tlb_gather_mmu(vma
->vm_mm
, fullmm
);
1174 tlb_start_valid
= 0;
1175 zap_work
= ZAP_BLOCK_SIZE
;
1179 mmu_notifier_invalidate_range_end(mm
, start_addr
, end_addr
);
1180 return start
; /* which is now the end (or restart) address */
1184 * zap_page_range - remove user pages in a given range
1185 * @vma: vm_area_struct holding the applicable pages
1186 * @address: starting address of pages to zap
1187 * @size: number of bytes to zap
1188 * @details: details of nonlinear truncation or shared cache invalidation
1190 unsigned long zap_page_range(struct vm_area_struct
*vma
, unsigned long address
,
1191 unsigned long size
, struct zap_details
*details
)
1193 struct mm_struct
*mm
= vma
->vm_mm
;
1194 struct mmu_gather
*tlb
;
1195 unsigned long end
= address
+ size
;
1196 unsigned long nr_accounted
= 0;
1199 tlb
= tlb_gather_mmu(mm
, 0);
1200 update_hiwater_rss(mm
);
1201 end
= unmap_vmas(&tlb
, vma
, address
, end
, &nr_accounted
, details
);
1203 tlb_finish_mmu(tlb
, address
, end
);
1208 * zap_vma_ptes - remove ptes mapping the vma
1209 * @vma: vm_area_struct holding ptes to be zapped
1210 * @address: starting address of pages to zap
1211 * @size: number of bytes to zap
1213 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1215 * The entire address range must be fully contained within the vma.
1217 * Returns 0 if successful.
1219 int zap_vma_ptes(struct vm_area_struct
*vma
, unsigned long address
,
1222 if (address
< vma
->vm_start
|| address
+ size
> vma
->vm_end
||
1223 !(vma
->vm_flags
& VM_PFNMAP
))
1225 zap_page_range(vma
, address
, size
, NULL
);
1228 EXPORT_SYMBOL_GPL(zap_vma_ptes
);
1231 * follow_page - look up a page descriptor from a user-virtual address
1232 * @vma: vm_area_struct mapping @address
1233 * @address: virtual address to look up
1234 * @flags: flags modifying lookup behaviour
1236 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
1238 * Returns the mapped (struct page *), %NULL if no mapping exists, or
1239 * an error pointer if there is a mapping to something not represented
1240 * by a page descriptor (see also vm_normal_page()).
1242 struct page
*follow_page(struct vm_area_struct
*vma
, unsigned long address
,
1251 struct mm_struct
*mm
= vma
->vm_mm
;
1253 page
= follow_huge_addr(mm
, address
, flags
& FOLL_WRITE
);
1254 if (!IS_ERR(page
)) {
1255 BUG_ON(flags
& FOLL_GET
);
1260 pgd
= pgd_offset(mm
, address
);
1261 if (pgd_none(*pgd
) || unlikely(pgd_bad(*pgd
)))
1264 pud
= pud_offset(pgd
, address
);
1267 if (pud_huge(*pud
)) {
1268 BUG_ON(flags
& FOLL_GET
);
1269 page
= follow_huge_pud(mm
, address
, pud
, flags
& FOLL_WRITE
);
1272 if (unlikely(pud_bad(*pud
)))
1275 pmd
= pmd_offset(pud
, address
);
1278 if (pmd_huge(*pmd
)) {
1279 BUG_ON(flags
& FOLL_GET
);
1280 page
= follow_huge_pmd(mm
, address
, pmd
, flags
& FOLL_WRITE
);
1283 if (unlikely(pmd_bad(*pmd
)))
1286 ptep
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
1289 if (!pte_present(pte
))
1291 if ((flags
& FOLL_WRITE
) && !pte_write(pte
))
1294 page
= vm_normal_page(vma
, address
, pte
);
1295 if (unlikely(!page
)) {
1296 if ((flags
& FOLL_DUMP
) ||
1297 !is_zero_pfn(pte_pfn(pte
)))
1299 page
= pte_page(pte
);
1302 if (flags
& FOLL_GET
)
1304 if (flags
& FOLL_TOUCH
) {
1305 if ((flags
& FOLL_WRITE
) &&
1306 !pte_dirty(pte
) && !PageDirty(page
))
1307 set_page_dirty(page
);
1309 * pte_mkyoung() would be more correct here, but atomic care
1310 * is needed to avoid losing the dirty bit: it is easier to use
1311 * mark_page_accessed().
1313 mark_page_accessed(page
);
1316 pte_unmap_unlock(ptep
, ptl
);
1321 pte_unmap_unlock(ptep
, ptl
);
1322 return ERR_PTR(-EFAULT
);
1325 pte_unmap_unlock(ptep
, ptl
);
1331 * When core dumping an enormous anonymous area that nobody
1332 * has touched so far, we don't want to allocate unnecessary pages or
1333 * page tables. Return error instead of NULL to skip handle_mm_fault,
1334 * then get_dump_page() will return NULL to leave a hole in the dump.
1335 * But we can only make this optimization where a hole would surely
1336 * be zero-filled if handle_mm_fault() actually did handle it.
1338 if ((flags
& FOLL_DUMP
) &&
1339 (!vma
->vm_ops
|| !vma
->vm_ops
->fault
))
1340 return ERR_PTR(-EFAULT
);
1344 int __get_user_pages(struct task_struct
*tsk
, struct mm_struct
*mm
,
1345 unsigned long start
, int nr_pages
, unsigned int gup_flags
,
1346 struct page
**pages
, struct vm_area_struct
**vmas
)
1349 unsigned long vm_flags
;
1354 VM_BUG_ON(!!pages
!= !!(gup_flags
& FOLL_GET
));
1357 * Require read or write permissions.
1358 * If FOLL_FORCE is set, we only require the "MAY" flags.
1360 vm_flags
= (gup_flags
& FOLL_WRITE
) ?
1361 (VM_WRITE
| VM_MAYWRITE
) : (VM_READ
| VM_MAYREAD
);
1362 vm_flags
&= (gup_flags
& FOLL_FORCE
) ?
1363 (VM_MAYREAD
| VM_MAYWRITE
) : (VM_READ
| VM_WRITE
);
1367 struct vm_area_struct
*vma
;
1369 vma
= find_extend_vma(mm
, start
);
1370 if (!vma
&& in_gate_area(tsk
, start
)) {
1371 unsigned long pg
= start
& PAGE_MASK
;
1372 struct vm_area_struct
*gate_vma
= get_gate_vma(tsk
);
1378 /* user gate pages are read-only */
1379 if (gup_flags
& FOLL_WRITE
)
1380 return i
? : -EFAULT
;
1382 pgd
= pgd_offset_k(pg
);
1384 pgd
= pgd_offset_gate(mm
, pg
);
1385 BUG_ON(pgd_none(*pgd
));
1386 pud
= pud_offset(pgd
, pg
);
1387 BUG_ON(pud_none(*pud
));
1388 pmd
= pmd_offset(pud
, pg
);
1390 return i
? : -EFAULT
;
1391 pte
= pte_offset_map(pmd
, pg
);
1392 if (pte_none(*pte
)) {
1394 return i
? : -EFAULT
;
1397 struct page
*page
= vm_normal_page(gate_vma
, start
, *pte
);
1412 (vma
->vm_flags
& (VM_IO
| VM_PFNMAP
)) ||
1413 !(vm_flags
& vma
->vm_flags
))
1414 return i
? : -EFAULT
;
1416 if (is_vm_hugetlb_page(vma
)) {
1417 i
= follow_hugetlb_page(mm
, vma
, pages
, vmas
,
1418 &start
, &nr_pages
, i
, gup_flags
);
1424 unsigned int foll_flags
= gup_flags
;
1427 * If we have a pending SIGKILL, don't keep faulting
1428 * pages and potentially allocating memory.
1430 if (unlikely(fatal_signal_pending(current
)))
1431 return i
? i
: -ERESTARTSYS
;
1434 while (!(page
= follow_page(vma
, start
, foll_flags
))) {
1437 ret
= handle_mm_fault(mm
, vma
, start
,
1438 (foll_flags
& FOLL_WRITE
) ?
1439 FAULT_FLAG_WRITE
: 0);
1441 if (ret
& VM_FAULT_ERROR
) {
1442 if (ret
& VM_FAULT_OOM
)
1443 return i
? i
: -ENOMEM
;
1445 (VM_FAULT_HWPOISON
|VM_FAULT_SIGBUS
))
1446 return i
? i
: -EFAULT
;
1449 if (ret
& VM_FAULT_MAJOR
)
1455 * The VM_FAULT_WRITE bit tells us that
1456 * do_wp_page has broken COW when necessary,
1457 * even if maybe_mkwrite decided not to set
1458 * pte_write. We can thus safely do subsequent
1459 * page lookups as if they were reads. But only
1460 * do so when looping for pte_write is futile:
1461 * in some cases userspace may also be wanting
1462 * to write to the gotten user page, which a
1463 * read fault here might prevent (a readonly
1464 * page might get reCOWed by userspace write).
1466 if ((ret
& VM_FAULT_WRITE
) &&
1467 !(vma
->vm_flags
& VM_WRITE
))
1468 foll_flags
&= ~FOLL_WRITE
;
1473 return i
? i
: PTR_ERR(page
);
1477 flush_anon_page(vma
, page
, start
);
1478 flush_dcache_page(page
);
1485 } while (nr_pages
&& start
< vma
->vm_end
);
1491 * get_user_pages() - pin user pages in memory
1492 * @tsk: task_struct of target task
1493 * @mm: mm_struct of target mm
1494 * @start: starting user address
1495 * @nr_pages: number of pages from start to pin
1496 * @write: whether pages will be written to by the caller
1497 * @force: whether to force write access even if user mapping is
1498 * readonly. This will result in the page being COWed even
1499 * in MAP_SHARED mappings. You do not want this.
1500 * @pages: array that receives pointers to the pages pinned.
1501 * Should be at least nr_pages long. Or NULL, if caller
1502 * only intends to ensure the pages are faulted in.
1503 * @vmas: array of pointers to vmas corresponding to each page.
1504 * Or NULL if the caller does not require them.
1506 * Returns number of pages pinned. This may be fewer than the number
1507 * requested. If nr_pages is 0 or negative, returns 0. If no pages
1508 * were pinned, returns -errno. Each page returned must be released
1509 * with a put_page() call when it is finished with. vmas will only
1510 * remain valid while mmap_sem is held.
1512 * Must be called with mmap_sem held for read or write.
1514 * get_user_pages walks a process's page tables and takes a reference to
1515 * each struct page that each user address corresponds to at a given
1516 * instant. That is, it takes the page that would be accessed if a user
1517 * thread accesses the given user virtual address at that instant.
1519 * This does not guarantee that the page exists in the user mappings when
1520 * get_user_pages returns, and there may even be a completely different
1521 * page there in some cases (eg. if mmapped pagecache has been invalidated
1522 * and subsequently re faulted). However it does guarantee that the page
1523 * won't be freed completely. And mostly callers simply care that the page
1524 * contains data that was valid *at some point in time*. Typically, an IO
1525 * or similar operation cannot guarantee anything stronger anyway because
1526 * locks can't be held over the syscall boundary.
1528 * If write=0, the page must not be written to. If the page is written to,
1529 * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
1530 * after the page is finished with, and before put_page is called.
1532 * get_user_pages is typically used for fewer-copy IO operations, to get a
1533 * handle on the memory by some means other than accesses via the user virtual
1534 * addresses. The pages may be submitted for DMA to devices or accessed via
1535 * their kernel linear mapping (via the kmap APIs). Care should be taken to
1536 * use the correct cache flushing APIs.
1538 * See also get_user_pages_fast, for performance critical applications.
1540 int get_user_pages(struct task_struct
*tsk
, struct mm_struct
*mm
,
1541 unsigned long start
, int nr_pages
, int write
, int force
,
1542 struct page
**pages
, struct vm_area_struct
**vmas
)
1544 int flags
= FOLL_TOUCH
;
1549 flags
|= FOLL_WRITE
;
1551 flags
|= FOLL_FORCE
;
1553 return __get_user_pages(tsk
, mm
, start
, nr_pages
, flags
, pages
, vmas
);
1555 EXPORT_SYMBOL(get_user_pages
);
1558 * get_dump_page() - pin user page in memory while writing it to core dump
1559 * @addr: user address
1561 * Returns struct page pointer of user page pinned for dump,
1562 * to be freed afterwards by page_cache_release() or put_page().
1564 * Returns NULL on any kind of failure - a hole must then be inserted into
1565 * the corefile, to preserve alignment with its headers; and also returns
1566 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1567 * allowing a hole to be left in the corefile to save diskspace.
1569 * Called without mmap_sem, but after all other threads have been killed.
1571 #ifdef CONFIG_ELF_CORE
1572 struct page
*get_dump_page(unsigned long addr
)
1574 struct vm_area_struct
*vma
;
1577 if (__get_user_pages(current
, current
->mm
, addr
, 1,
1578 FOLL_FORCE
| FOLL_DUMP
| FOLL_GET
, &page
, &vma
) < 1)
1580 flush_cache_page(vma
, addr
, page_to_pfn(page
));
1583 #endif /* CONFIG_ELF_CORE */
1585 pte_t
*get_locked_pte(struct mm_struct
*mm
, unsigned long addr
,
1588 pgd_t
* pgd
= pgd_offset(mm
, addr
);
1589 pud_t
* pud
= pud_alloc(mm
, pgd
, addr
);
1591 pmd_t
* pmd
= pmd_alloc(mm
, pud
, addr
);
1593 return pte_alloc_map_lock(mm
, pmd
, addr
, ptl
);
1599 * This is the old fallback for page remapping.
1601 * For historical reasons, it only allows reserved pages. Only
1602 * old drivers should use this, and they needed to mark their
1603 * pages reserved for the old functions anyway.
1605 static int insert_page(struct vm_area_struct
*vma
, unsigned long addr
,
1606 struct page
*page
, pgprot_t prot
)
1608 struct mm_struct
*mm
= vma
->vm_mm
;
1617 flush_dcache_page(page
);
1618 pte
= get_locked_pte(mm
, addr
, &ptl
);
1622 if (!pte_none(*pte
))
1625 /* Ok, finally just insert the thing.. */
1627 inc_mm_counter_fast(mm
, MM_FILEPAGES
);
1628 page_add_file_rmap(page
);
1629 set_pte_at(mm
, addr
, pte
, mk_pte(page
, prot
));
1632 pte_unmap_unlock(pte
, ptl
);
1635 pte_unmap_unlock(pte
, ptl
);
1641 * vm_insert_page - insert single page into user vma
1642 * @vma: user vma to map to
1643 * @addr: target user address of this page
1644 * @page: source kernel page
1646 * This allows drivers to insert individual pages they've allocated
1649 * The page has to be a nice clean _individual_ kernel allocation.
1650 * If you allocate a compound page, you need to have marked it as
1651 * such (__GFP_COMP), or manually just split the page up yourself
1652 * (see split_page()).
1654 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1655 * took an arbitrary page protection parameter. This doesn't allow
1656 * that. Your vma protection will have to be set up correctly, which
1657 * means that if you want a shared writable mapping, you'd better
1658 * ask for a shared writable mapping!
1660 * The page does not need to be reserved.
1662 int vm_insert_page(struct vm_area_struct
*vma
, unsigned long addr
,
1665 if (addr
< vma
->vm_start
|| addr
>= vma
->vm_end
)
1667 if (!page_count(page
))
1669 vma
->vm_flags
|= VM_INSERTPAGE
;
1670 return insert_page(vma
, addr
, page
, vma
->vm_page_prot
);
1672 EXPORT_SYMBOL(vm_insert_page
);
1674 static int insert_pfn(struct vm_area_struct
*vma
, unsigned long addr
,
1675 unsigned long pfn
, pgprot_t prot
)
1677 struct mm_struct
*mm
= vma
->vm_mm
;
1683 pte
= get_locked_pte(mm
, addr
, &ptl
);
1687 if (!pte_none(*pte
))
1690 /* Ok, finally just insert the thing.. */
1691 entry
= pte_mkspecial(pfn_pte(pfn
, prot
));
1692 set_pte_at(mm
, addr
, pte
, entry
);
1693 update_mmu_cache(vma
, addr
, pte
); /* XXX: why not for insert_page? */
1697 pte_unmap_unlock(pte
, ptl
);
1703 * vm_insert_pfn - insert single pfn into user vma
1704 * @vma: user vma to map to
1705 * @addr: target user address of this page
1706 * @pfn: source kernel pfn
1708 * Similar to vm_inert_page, this allows drivers to insert individual pages
1709 * they've allocated into a user vma. Same comments apply.
1711 * This function should only be called from a vm_ops->fault handler, and
1712 * in that case the handler should return NULL.
1714 * vma cannot be a COW mapping.
1716 * As this is called only for pages that do not currently exist, we
1717 * do not need to flush old virtual caches or the TLB.
1719 int vm_insert_pfn(struct vm_area_struct
*vma
, unsigned long addr
,
1723 pgprot_t pgprot
= vma
->vm_page_prot
;
1725 * Technically, architectures with pte_special can avoid all these
1726 * restrictions (same for remap_pfn_range). However we would like
1727 * consistency in testing and feature parity among all, so we should
1728 * try to keep these invariants in place for everybody.
1730 BUG_ON(!(vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
)));
1731 BUG_ON((vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
)) ==
1732 (VM_PFNMAP
|VM_MIXEDMAP
));
1733 BUG_ON((vma
->vm_flags
& VM_PFNMAP
) && is_cow_mapping(vma
->vm_flags
));
1734 BUG_ON((vma
->vm_flags
& VM_MIXEDMAP
) && pfn_valid(pfn
));
1736 if (addr
< vma
->vm_start
|| addr
>= vma
->vm_end
)
1738 if (track_pfn_vma_new(vma
, &pgprot
, pfn
, PAGE_SIZE
))
1741 ret
= insert_pfn(vma
, addr
, pfn
, pgprot
);
1744 untrack_pfn_vma(vma
, pfn
, PAGE_SIZE
);
1748 EXPORT_SYMBOL(vm_insert_pfn
);
1750 int vm_insert_mixed(struct vm_area_struct
*vma
, unsigned long addr
,
1753 BUG_ON(!(vma
->vm_flags
& VM_MIXEDMAP
));
1755 if (addr
< vma
->vm_start
|| addr
>= vma
->vm_end
)
1759 * If we don't have pte special, then we have to use the pfn_valid()
1760 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1761 * refcount the page if pfn_valid is true (hence insert_page rather
1762 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
1763 * without pte special, it would there be refcounted as a normal page.
1765 if (!HAVE_PTE_SPECIAL
&& pfn_valid(pfn
)) {
1768 page
= pfn_to_page(pfn
);
1769 return insert_page(vma
, addr
, page
, vma
->vm_page_prot
);
1771 return insert_pfn(vma
, addr
, pfn
, vma
->vm_page_prot
);
1773 EXPORT_SYMBOL(vm_insert_mixed
);
1776 * maps a range of physical memory into the requested pages. the old
1777 * mappings are removed. any references to nonexistent pages results
1778 * in null mappings (currently treated as "copy-on-access")
1780 static int remap_pte_range(struct mm_struct
*mm
, pmd_t
*pmd
,
1781 unsigned long addr
, unsigned long end
,
1782 unsigned long pfn
, pgprot_t prot
)
1787 pte
= pte_alloc_map_lock(mm
, pmd
, addr
, &ptl
);
1790 arch_enter_lazy_mmu_mode();
1792 BUG_ON(!pte_none(*pte
));
1793 set_pte_at(mm
, addr
, pte
, pte_mkspecial(pfn_pte(pfn
, prot
)));
1795 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
1796 arch_leave_lazy_mmu_mode();
1797 pte_unmap_unlock(pte
- 1, ptl
);
1801 static inline int remap_pmd_range(struct mm_struct
*mm
, pud_t
*pud
,
1802 unsigned long addr
, unsigned long end
,
1803 unsigned long pfn
, pgprot_t prot
)
1808 pfn
-= addr
>> PAGE_SHIFT
;
1809 pmd
= pmd_alloc(mm
, pud
, addr
);
1813 next
= pmd_addr_end(addr
, end
);
1814 if (remap_pte_range(mm
, pmd
, addr
, next
,
1815 pfn
+ (addr
>> PAGE_SHIFT
), prot
))
1817 } while (pmd
++, addr
= next
, addr
!= end
);
1821 static inline int remap_pud_range(struct mm_struct
*mm
, pgd_t
*pgd
,
1822 unsigned long addr
, unsigned long end
,
1823 unsigned long pfn
, pgprot_t prot
)
1828 pfn
-= addr
>> PAGE_SHIFT
;
1829 pud
= pud_alloc(mm
, pgd
, addr
);
1833 next
= pud_addr_end(addr
, end
);
1834 if (remap_pmd_range(mm
, pud
, addr
, next
,
1835 pfn
+ (addr
>> PAGE_SHIFT
), prot
))
1837 } while (pud
++, addr
= next
, addr
!= end
);
1842 * remap_pfn_range - remap kernel memory to userspace
1843 * @vma: user vma to map to
1844 * @addr: target user address to start at
1845 * @pfn: physical address of kernel memory
1846 * @size: size of map area
1847 * @prot: page protection flags for this mapping
1849 * Note: this is only safe if the mm semaphore is held when called.
1851 int remap_pfn_range(struct vm_area_struct
*vma
, unsigned long addr
,
1852 unsigned long pfn
, unsigned long size
, pgprot_t prot
)
1856 unsigned long end
= addr
+ PAGE_ALIGN(size
);
1857 struct mm_struct
*mm
= vma
->vm_mm
;
1861 * Physically remapped pages are special. Tell the
1862 * rest of the world about it:
1863 * VM_IO tells people not to look at these pages
1864 * (accesses can have side effects).
1865 * VM_RESERVED is specified all over the place, because
1866 * in 2.4 it kept swapout's vma scan off this vma; but
1867 * in 2.6 the LRU scan won't even find its pages, so this
1868 * flag means no more than count its pages in reserved_vm,
1869 * and omit it from core dump, even when VM_IO turned off.
1870 * VM_PFNMAP tells the core MM that the base pages are just
1871 * raw PFN mappings, and do not have a "struct page" associated
1874 * There's a horrible special case to handle copy-on-write
1875 * behaviour that some programs depend on. We mark the "original"
1876 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1878 if (addr
== vma
->vm_start
&& end
== vma
->vm_end
) {
1879 vma
->vm_pgoff
= pfn
;
1880 vma
->vm_flags
|= VM_PFN_AT_MMAP
;
1881 } else if (is_cow_mapping(vma
->vm_flags
))
1884 vma
->vm_flags
|= VM_IO
| VM_RESERVED
| VM_PFNMAP
;
1886 err
= track_pfn_vma_new(vma
, &prot
, pfn
, PAGE_ALIGN(size
));
1889 * To indicate that track_pfn related cleanup is not
1890 * needed from higher level routine calling unmap_vmas
1892 vma
->vm_flags
&= ~(VM_IO
| VM_RESERVED
| VM_PFNMAP
);
1893 vma
->vm_flags
&= ~VM_PFN_AT_MMAP
;
1897 BUG_ON(addr
>= end
);
1898 pfn
-= addr
>> PAGE_SHIFT
;
1899 pgd
= pgd_offset(mm
, addr
);
1900 flush_cache_range(vma
, addr
, end
);
1902 next
= pgd_addr_end(addr
, end
);
1903 err
= remap_pud_range(mm
, pgd
, addr
, next
,
1904 pfn
+ (addr
>> PAGE_SHIFT
), prot
);
1907 } while (pgd
++, addr
= next
, addr
!= end
);
1910 untrack_pfn_vma(vma
, pfn
, PAGE_ALIGN(size
));
1914 EXPORT_SYMBOL(remap_pfn_range
);
1916 static int apply_to_pte_range(struct mm_struct
*mm
, pmd_t
*pmd
,
1917 unsigned long addr
, unsigned long end
,
1918 pte_fn_t fn
, void *data
)
1923 spinlock_t
*uninitialized_var(ptl
);
1925 pte
= (mm
== &init_mm
) ?
1926 pte_alloc_kernel(pmd
, addr
) :
1927 pte_alloc_map_lock(mm
, pmd
, addr
, &ptl
);
1931 BUG_ON(pmd_huge(*pmd
));
1933 arch_enter_lazy_mmu_mode();
1935 token
= pmd_pgtable(*pmd
);
1938 err
= fn(pte
++, token
, addr
, data
);
1941 } while (addr
+= PAGE_SIZE
, addr
!= end
);
1943 arch_leave_lazy_mmu_mode();
1946 pte_unmap_unlock(pte
-1, ptl
);
1950 static int apply_to_pmd_range(struct mm_struct
*mm
, pud_t
*pud
,
1951 unsigned long addr
, unsigned long end
,
1952 pte_fn_t fn
, void *data
)
1958 BUG_ON(pud_huge(*pud
));
1960 pmd
= pmd_alloc(mm
, pud
, addr
);
1964 next
= pmd_addr_end(addr
, end
);
1965 err
= apply_to_pte_range(mm
, pmd
, addr
, next
, fn
, data
);
1968 } while (pmd
++, addr
= next
, addr
!= end
);
1972 static int apply_to_pud_range(struct mm_struct
*mm
, pgd_t
*pgd
,
1973 unsigned long addr
, unsigned long end
,
1974 pte_fn_t fn
, void *data
)
1980 pud
= pud_alloc(mm
, pgd
, addr
);
1984 next
= pud_addr_end(addr
, end
);
1985 err
= apply_to_pmd_range(mm
, pud
, addr
, next
, fn
, data
);
1988 } while (pud
++, addr
= next
, addr
!= end
);
1993 * Scan a region of virtual memory, filling in page tables as necessary
1994 * and calling a provided function on each leaf page table.
1996 int apply_to_page_range(struct mm_struct
*mm
, unsigned long addr
,
1997 unsigned long size
, pte_fn_t fn
, void *data
)
2001 unsigned long start
= addr
, end
= addr
+ size
;
2004 BUG_ON(addr
>= end
);
2005 mmu_notifier_invalidate_range_start(mm
, start
, end
);
2006 pgd
= pgd_offset(mm
, addr
);
2008 next
= pgd_addr_end(addr
, end
);
2009 err
= apply_to_pud_range(mm
, pgd
, addr
, next
, fn
, data
);
2012 } while (pgd
++, addr
= next
, addr
!= end
);
2013 mmu_notifier_invalidate_range_end(mm
, start
, end
);
2016 EXPORT_SYMBOL_GPL(apply_to_page_range
);
2019 * handle_pte_fault chooses page fault handler according to an entry
2020 * which was read non-atomically. Before making any commitment, on
2021 * those architectures or configurations (e.g. i386 with PAE) which
2022 * might give a mix of unmatched parts, do_swap_page and do_file_page
2023 * must check under lock before unmapping the pte and proceeding
2024 * (but do_wp_page is only called after already making such a check;
2025 * and do_anonymous_page and do_no_page can safely check later on).
2027 static inline int pte_unmap_same(struct mm_struct
*mm
, pmd_t
*pmd
,
2028 pte_t
*page_table
, pte_t orig_pte
)
2031 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2032 if (sizeof(pte_t
) > sizeof(unsigned long)) {
2033 spinlock_t
*ptl
= pte_lockptr(mm
, pmd
);
2035 same
= pte_same(*page_table
, orig_pte
);
2039 pte_unmap(page_table
);
2044 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
2045 * servicing faults for write access. In the normal case, do always want
2046 * pte_mkwrite. But get_user_pages can cause write faults for mappings
2047 * that do not have writing enabled, when used by access_process_vm.
2049 static inline pte_t
maybe_mkwrite(pte_t pte
, struct vm_area_struct
*vma
)
2051 if (likely(vma
->vm_flags
& VM_WRITE
))
2052 pte
= pte_mkwrite(pte
);
2056 static inline void cow_user_page(struct page
*dst
, struct page
*src
, unsigned long va
, struct vm_area_struct
*vma
)
2059 * If the source page was a PFN mapping, we don't have
2060 * a "struct page" for it. We do a best-effort copy by
2061 * just copying from the original user address. If that
2062 * fails, we just zero-fill it. Live with it.
2064 if (unlikely(!src
)) {
2065 void *kaddr
= kmap_atomic(dst
, KM_USER0
);
2066 void __user
*uaddr
= (void __user
*)(va
& PAGE_MASK
);
2069 * This really shouldn't fail, because the page is there
2070 * in the page tables. But it might just be unreadable,
2071 * in which case we just give up and fill the result with
2074 if (__copy_from_user_inatomic(kaddr
, uaddr
, PAGE_SIZE
))
2075 memset(kaddr
, 0, PAGE_SIZE
);
2076 kunmap_atomic(kaddr
, KM_USER0
);
2077 flush_dcache_page(dst
);
2079 copy_user_highpage(dst
, src
, va
, vma
);
2083 * This routine handles present pages, when users try to write
2084 * to a shared page. It is done by copying the page to a new address
2085 * and decrementing the shared-page counter for the old page.
2087 * Note that this routine assumes that the protection checks have been
2088 * done by the caller (the low-level page fault routine in most cases).
2089 * Thus we can safely just mark it writable once we've done any necessary
2092 * We also mark the page dirty at this point even though the page will
2093 * change only once the write actually happens. This avoids a few races,
2094 * and potentially makes it more efficient.
2096 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2097 * but allow concurrent faults), with pte both mapped and locked.
2098 * We return with mmap_sem still held, but pte unmapped and unlocked.
2100 static int do_wp_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2101 unsigned long address
, pte_t
*page_table
, pmd_t
*pmd
,
2102 spinlock_t
*ptl
, pte_t orig_pte
)
2104 struct page
*old_page
, *new_page
;
2106 int reuse
= 0, ret
= 0;
2107 int page_mkwrite
= 0;
2108 struct page
*dirty_page
= NULL
;
2110 old_page
= vm_normal_page(vma
, address
, orig_pte
);
2113 * VM_MIXEDMAP !pfn_valid() case
2115 * We should not cow pages in a shared writeable mapping.
2116 * Just mark the pages writable as we can't do any dirty
2117 * accounting on raw pfn maps.
2119 if ((vma
->vm_flags
& (VM_WRITE
|VM_SHARED
)) ==
2120 (VM_WRITE
|VM_SHARED
))
2126 * Take out anonymous pages first, anonymous shared vmas are
2127 * not dirty accountable.
2129 if (PageAnon(old_page
) && !PageKsm(old_page
)) {
2130 if (!trylock_page(old_page
)) {
2131 page_cache_get(old_page
);
2132 pte_unmap_unlock(page_table
, ptl
);
2133 lock_page(old_page
);
2134 page_table
= pte_offset_map_lock(mm
, pmd
, address
,
2136 if (!pte_same(*page_table
, orig_pte
)) {
2137 unlock_page(old_page
);
2138 page_cache_release(old_page
);
2141 page_cache_release(old_page
);
2143 reuse
= reuse_swap_page(old_page
);
2146 * The page is all ours. Move it to our anon_vma so
2147 * the rmap code will not search our parent or siblings.
2148 * Protected against the rmap code by the page lock.
2150 page_move_anon_rmap(old_page
, vma
, address
);
2151 unlock_page(old_page
);
2152 } else if (unlikely((vma
->vm_flags
& (VM_WRITE
|VM_SHARED
)) ==
2153 (VM_WRITE
|VM_SHARED
))) {
2155 * Only catch write-faults on shared writable pages,
2156 * read-only shared pages can get COWed by
2157 * get_user_pages(.write=1, .force=1).
2159 if (vma
->vm_ops
&& vma
->vm_ops
->page_mkwrite
) {
2160 struct vm_fault vmf
;
2163 vmf
.virtual_address
= (void __user
*)(address
&
2165 vmf
.pgoff
= old_page
->index
;
2166 vmf
.flags
= FAULT_FLAG_WRITE
|FAULT_FLAG_MKWRITE
;
2167 vmf
.page
= old_page
;
2170 * Notify the address space that the page is about to
2171 * become writable so that it can prohibit this or wait
2172 * for the page to get into an appropriate state.
2174 * We do this without the lock held, so that it can
2175 * sleep if it needs to.
2177 page_cache_get(old_page
);
2178 pte_unmap_unlock(page_table
, ptl
);
2180 tmp
= vma
->vm_ops
->page_mkwrite(vma
, &vmf
);
2182 (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
))) {
2184 goto unwritable_page
;
2186 if (unlikely(!(tmp
& VM_FAULT_LOCKED
))) {
2187 lock_page(old_page
);
2188 if (!old_page
->mapping
) {
2189 ret
= 0; /* retry the fault */
2190 unlock_page(old_page
);
2191 goto unwritable_page
;
2194 VM_BUG_ON(!PageLocked(old_page
));
2197 * Since we dropped the lock we need to revalidate
2198 * the PTE as someone else may have changed it. If
2199 * they did, we just return, as we can count on the
2200 * MMU to tell us if they didn't also make it writable.
2202 page_table
= pte_offset_map_lock(mm
, pmd
, address
,
2204 if (!pte_same(*page_table
, orig_pte
)) {
2205 unlock_page(old_page
);
2206 page_cache_release(old_page
);
2212 dirty_page
= old_page
;
2213 get_page(dirty_page
);
2219 flush_cache_page(vma
, address
, pte_pfn(orig_pte
));
2220 entry
= pte_mkyoung(orig_pte
);
2221 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
2222 if (ptep_set_access_flags(vma
, address
, page_table
, entry
,1))
2223 update_mmu_cache(vma
, address
, page_table
);
2224 ret
|= VM_FAULT_WRITE
;
2229 * Ok, we need to copy. Oh, well..
2231 page_cache_get(old_page
);
2233 pte_unmap_unlock(page_table
, ptl
);
2235 if (unlikely(anon_vma_prepare(vma
)))
2238 if (is_zero_pfn(pte_pfn(orig_pte
))) {
2239 new_page
= alloc_zeroed_user_highpage_movable(vma
, address
);
2243 new_page
= alloc_page_vma(GFP_HIGHUSER_MOVABLE
, vma
, address
);
2246 cow_user_page(new_page
, old_page
, address
, vma
);
2248 __SetPageUptodate(new_page
);
2251 * Don't let another task, with possibly unlocked vma,
2252 * keep the mlocked page.
2254 if ((vma
->vm_flags
& VM_LOCKED
) && old_page
) {
2255 lock_page(old_page
); /* for LRU manipulation */
2256 clear_page_mlock(old_page
);
2257 unlock_page(old_page
);
2260 if (mem_cgroup_newpage_charge(new_page
, mm
, GFP_KERNEL
))
2264 * Re-check the pte - we dropped the lock
2266 page_table
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
2267 if (likely(pte_same(*page_table
, orig_pte
))) {
2269 if (!PageAnon(old_page
)) {
2270 dec_mm_counter_fast(mm
, MM_FILEPAGES
);
2271 inc_mm_counter_fast(mm
, MM_ANONPAGES
);
2274 inc_mm_counter_fast(mm
, MM_ANONPAGES
);
2275 flush_cache_page(vma
, address
, pte_pfn(orig_pte
));
2276 entry
= mk_pte(new_page
, vma
->vm_page_prot
);
2277 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
2279 * Clear the pte entry and flush it first, before updating the
2280 * pte with the new entry. This will avoid a race condition
2281 * seen in the presence of one thread doing SMC and another
2284 ptep_clear_flush(vma
, address
, page_table
);
2285 page_add_new_anon_rmap(new_page
, vma
, address
);
2287 * We call the notify macro here because, when using secondary
2288 * mmu page tables (such as kvm shadow page tables), we want the
2289 * new page to be mapped directly into the secondary page table.
2291 set_pte_at_notify(mm
, address
, page_table
, entry
);
2292 update_mmu_cache(vma
, address
, page_table
);
2295 * Only after switching the pte to the new page may
2296 * we remove the mapcount here. Otherwise another
2297 * process may come and find the rmap count decremented
2298 * before the pte is switched to the new page, and
2299 * "reuse" the old page writing into it while our pte
2300 * here still points into it and can be read by other
2303 * The critical issue is to order this
2304 * page_remove_rmap with the ptp_clear_flush above.
2305 * Those stores are ordered by (if nothing else,)
2306 * the barrier present in the atomic_add_negative
2307 * in page_remove_rmap.
2309 * Then the TLB flush in ptep_clear_flush ensures that
2310 * no process can access the old page before the
2311 * decremented mapcount is visible. And the old page
2312 * cannot be reused until after the decremented
2313 * mapcount is visible. So transitively, TLBs to
2314 * old page will be flushed before it can be reused.
2316 page_remove_rmap(old_page
);
2319 /* Free the old page.. */
2320 new_page
= old_page
;
2321 ret
|= VM_FAULT_WRITE
;
2323 mem_cgroup_uncharge_page(new_page
);
2326 page_cache_release(new_page
);
2328 page_cache_release(old_page
);
2330 pte_unmap_unlock(page_table
, ptl
);
2333 * Yes, Virginia, this is actually required to prevent a race
2334 * with clear_page_dirty_for_io() from clearing the page dirty
2335 * bit after it clear all dirty ptes, but before a racing
2336 * do_wp_page installs a dirty pte.
2338 * do_no_page is protected similarly.
2340 if (!page_mkwrite
) {
2341 wait_on_page_locked(dirty_page
);
2342 set_page_dirty_balance(dirty_page
, page_mkwrite
);
2344 put_page(dirty_page
);
2346 struct address_space
*mapping
= dirty_page
->mapping
;
2348 set_page_dirty(dirty_page
);
2349 unlock_page(dirty_page
);
2350 page_cache_release(dirty_page
);
2353 * Some device drivers do not set page.mapping
2354 * but still dirty their pages
2356 balance_dirty_pages_ratelimited(mapping
);
2360 /* file_update_time outside page_lock */
2362 file_update_time(vma
->vm_file
);
2366 page_cache_release(new_page
);
2370 unlock_page(old_page
);
2371 page_cache_release(old_page
);
2373 page_cache_release(old_page
);
2375 return VM_FAULT_OOM
;
2378 page_cache_release(old_page
);
2383 * Helper functions for unmap_mapping_range().
2385 * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
2387 * We have to restart searching the prio_tree whenever we drop the lock,
2388 * since the iterator is only valid while the lock is held, and anyway
2389 * a later vma might be split and reinserted earlier while lock dropped.
2391 * The list of nonlinear vmas could be handled more efficiently, using
2392 * a placeholder, but handle it in the same way until a need is shown.
2393 * It is important to search the prio_tree before nonlinear list: a vma
2394 * may become nonlinear and be shifted from prio_tree to nonlinear list
2395 * while the lock is dropped; but never shifted from list to prio_tree.
2397 * In order to make forward progress despite restarting the search,
2398 * vm_truncate_count is used to mark a vma as now dealt with, so we can
2399 * quickly skip it next time around. Since the prio_tree search only
2400 * shows us those vmas affected by unmapping the range in question, we
2401 * can't efficiently keep all vmas in step with mapping->truncate_count:
2402 * so instead reset them all whenever it wraps back to 0 (then go to 1).
2403 * mapping->truncate_count and vma->vm_truncate_count are protected by
2406 * In order to make forward progress despite repeatedly restarting some
2407 * large vma, note the restart_addr from unmap_vmas when it breaks out:
2408 * and restart from that address when we reach that vma again. It might
2409 * have been split or merged, shrunk or extended, but never shifted: so
2410 * restart_addr remains valid so long as it remains in the vma's range.
2411 * unmap_mapping_range forces truncate_count to leap over page-aligned
2412 * values so we can save vma's restart_addr in its truncate_count field.
2414 #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
2416 static void reset_vma_truncate_counts(struct address_space
*mapping
)
2418 struct vm_area_struct
*vma
;
2419 struct prio_tree_iter iter
;
2421 vma_prio_tree_foreach(vma
, &iter
, &mapping
->i_mmap
, 0, ULONG_MAX
)
2422 vma
->vm_truncate_count
= 0;
2423 list_for_each_entry(vma
, &mapping
->i_mmap_nonlinear
, shared
.vm_set
.list
)
2424 vma
->vm_truncate_count
= 0;
2427 static int unmap_mapping_range_vma(struct vm_area_struct
*vma
,
2428 unsigned long start_addr
, unsigned long end_addr
,
2429 struct zap_details
*details
)
2431 unsigned long restart_addr
;
2435 * files that support invalidating or truncating portions of the
2436 * file from under mmaped areas must have their ->fault function
2437 * return a locked page (and set VM_FAULT_LOCKED in the return).
2438 * This provides synchronisation against concurrent unmapping here.
2442 restart_addr
= vma
->vm_truncate_count
;
2443 if (is_restart_addr(restart_addr
) && start_addr
< restart_addr
) {
2444 start_addr
= restart_addr
;
2445 if (start_addr
>= end_addr
) {
2446 /* Top of vma has been split off since last time */
2447 vma
->vm_truncate_count
= details
->truncate_count
;
2452 restart_addr
= zap_page_range(vma
, start_addr
,
2453 end_addr
- start_addr
, details
);
2454 need_break
= need_resched() || spin_needbreak(details
->i_mmap_lock
);
2456 if (restart_addr
>= end_addr
) {
2457 /* We have now completed this vma: mark it so */
2458 vma
->vm_truncate_count
= details
->truncate_count
;
2462 /* Note restart_addr in vma's truncate_count field */
2463 vma
->vm_truncate_count
= restart_addr
;
2468 spin_unlock(details
->i_mmap_lock
);
2470 spin_lock(details
->i_mmap_lock
);
2474 static inline void unmap_mapping_range_tree(struct prio_tree_root
*root
,
2475 struct zap_details
*details
)
2477 struct vm_area_struct
*vma
;
2478 struct prio_tree_iter iter
;
2479 pgoff_t vba
, vea
, zba
, zea
;
2482 vma_prio_tree_foreach(vma
, &iter
, root
,
2483 details
->first_index
, details
->last_index
) {
2484 /* Skip quickly over those we have already dealt with */
2485 if (vma
->vm_truncate_count
== details
->truncate_count
)
2488 vba
= vma
->vm_pgoff
;
2489 vea
= vba
+ ((vma
->vm_end
- vma
->vm_start
) >> PAGE_SHIFT
) - 1;
2490 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2491 zba
= details
->first_index
;
2494 zea
= details
->last_index
;
2498 if (unmap_mapping_range_vma(vma
,
2499 ((zba
- vba
) << PAGE_SHIFT
) + vma
->vm_start
,
2500 ((zea
- vba
+ 1) << PAGE_SHIFT
) + vma
->vm_start
,
2506 static inline void unmap_mapping_range_list(struct list_head
*head
,
2507 struct zap_details
*details
)
2509 struct vm_area_struct
*vma
;
2512 * In nonlinear VMAs there is no correspondence between virtual address
2513 * offset and file offset. So we must perform an exhaustive search
2514 * across *all* the pages in each nonlinear VMA, not just the pages
2515 * whose virtual address lies outside the file truncation point.
2518 list_for_each_entry(vma
, head
, shared
.vm_set
.list
) {
2519 /* Skip quickly over those we have already dealt with */
2520 if (vma
->vm_truncate_count
== details
->truncate_count
)
2522 details
->nonlinear_vma
= vma
;
2523 if (unmap_mapping_range_vma(vma
, vma
->vm_start
,
2524 vma
->vm_end
, details
) < 0)
2530 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
2531 * @mapping: the address space containing mmaps to be unmapped.
2532 * @holebegin: byte in first page to unmap, relative to the start of
2533 * the underlying file. This will be rounded down to a PAGE_SIZE
2534 * boundary. Note that this is different from truncate_pagecache(), which
2535 * must keep the partial page. In contrast, we must get rid of
2537 * @holelen: size of prospective hole in bytes. This will be rounded
2538 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2540 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2541 * but 0 when invalidating pagecache, don't throw away private data.
2543 void unmap_mapping_range(struct address_space
*mapping
,
2544 loff_t
const holebegin
, loff_t
const holelen
, int even_cows
)
2546 struct zap_details details
;
2547 pgoff_t hba
= holebegin
>> PAGE_SHIFT
;
2548 pgoff_t hlen
= (holelen
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
2550 /* Check for overflow. */
2551 if (sizeof(holelen
) > sizeof(hlen
)) {
2553 (holebegin
+ holelen
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
2554 if (holeend
& ~(long long)ULONG_MAX
)
2555 hlen
= ULONG_MAX
- hba
+ 1;
2558 details
.check_mapping
= even_cows
? NULL
: mapping
;
2559 details
.nonlinear_vma
= NULL
;
2560 details
.first_index
= hba
;
2561 details
.last_index
= hba
+ hlen
- 1;
2562 if (details
.last_index
< details
.first_index
)
2563 details
.last_index
= ULONG_MAX
;
2564 details
.i_mmap_lock
= &mapping
->i_mmap_lock
;
2566 spin_lock(&mapping
->i_mmap_lock
);
2568 /* Protect against endless unmapping loops */
2569 mapping
->truncate_count
++;
2570 if (unlikely(is_restart_addr(mapping
->truncate_count
))) {
2571 if (mapping
->truncate_count
== 0)
2572 reset_vma_truncate_counts(mapping
);
2573 mapping
->truncate_count
++;
2575 details
.truncate_count
= mapping
->truncate_count
;
2577 if (unlikely(!prio_tree_empty(&mapping
->i_mmap
)))
2578 unmap_mapping_range_tree(&mapping
->i_mmap
, &details
);
2579 if (unlikely(!list_empty(&mapping
->i_mmap_nonlinear
)))
2580 unmap_mapping_range_list(&mapping
->i_mmap_nonlinear
, &details
);
2581 spin_unlock(&mapping
->i_mmap_lock
);
2583 EXPORT_SYMBOL(unmap_mapping_range
);
2585 int vmtruncate_range(struct inode
*inode
, loff_t offset
, loff_t end
)
2587 struct address_space
*mapping
= inode
->i_mapping
;
2590 * If the underlying filesystem is not going to provide
2591 * a way to truncate a range of blocks (punch a hole) -
2592 * we should return failure right now.
2594 if (!inode
->i_op
->truncate_range
)
2597 mutex_lock(&inode
->i_mutex
);
2598 down_write(&inode
->i_alloc_sem
);
2599 unmap_mapping_range(mapping
, offset
, (end
- offset
), 1);
2600 truncate_inode_pages_range(mapping
, offset
, end
);
2601 unmap_mapping_range(mapping
, offset
, (end
- offset
), 1);
2602 inode
->i_op
->truncate_range(inode
, offset
, end
);
2603 up_write(&inode
->i_alloc_sem
);
2604 mutex_unlock(&inode
->i_mutex
);
2610 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2611 * but allow concurrent faults), and pte mapped but not yet locked.
2612 * We return with mmap_sem still held, but pte unmapped and unlocked.
2614 static int do_swap_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2615 unsigned long address
, pte_t
*page_table
, pmd_t
*pmd
,
2616 unsigned int flags
, pte_t orig_pte
)
2622 struct mem_cgroup
*ptr
= NULL
;
2625 if (!pte_unmap_same(mm
, pmd
, page_table
, orig_pte
))
2628 entry
= pte_to_swp_entry(orig_pte
);
2629 if (unlikely(non_swap_entry(entry
))) {
2630 if (is_migration_entry(entry
)) {
2631 migration_entry_wait(mm
, pmd
, address
);
2632 } else if (is_hwpoison_entry(entry
)) {
2633 ret
= VM_FAULT_HWPOISON
;
2635 print_bad_pte(vma
, address
, orig_pte
, NULL
);
2636 ret
= VM_FAULT_SIGBUS
;
2640 delayacct_set_flag(DELAYACCT_PF_SWAPIN
);
2641 page
= lookup_swap_cache(entry
);
2643 grab_swap_token(mm
); /* Contend for token _before_ read-in */
2644 page
= swapin_readahead(entry
,
2645 GFP_HIGHUSER_MOVABLE
, vma
, address
);
2648 * Back out if somebody else faulted in this pte
2649 * while we released the pte lock.
2651 page_table
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
2652 if (likely(pte_same(*page_table
, orig_pte
)))
2654 delayacct_clear_flag(DELAYACCT_PF_SWAPIN
);
2658 /* Had to read the page from swap area: Major fault */
2659 ret
= VM_FAULT_MAJOR
;
2660 count_vm_event(PGMAJFAULT
);
2661 } else if (PageHWPoison(page
)) {
2663 * hwpoisoned dirty swapcache pages are kept for killing
2664 * owner processes (which may be unknown at hwpoison time)
2666 ret
= VM_FAULT_HWPOISON
;
2667 delayacct_clear_flag(DELAYACCT_PF_SWAPIN
);
2672 delayacct_clear_flag(DELAYACCT_PF_SWAPIN
);
2674 page
= ksm_might_need_to_copy(page
, vma
, address
);
2680 if (mem_cgroup_try_charge_swapin(mm
, page
, GFP_KERNEL
, &ptr
)) {
2686 * Back out if somebody else already faulted in this pte.
2688 page_table
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
2689 if (unlikely(!pte_same(*page_table
, orig_pte
)))
2692 if (unlikely(!PageUptodate(page
))) {
2693 ret
= VM_FAULT_SIGBUS
;
2698 * The page isn't present yet, go ahead with the fault.
2700 * Be careful about the sequence of operations here.
2701 * To get its accounting right, reuse_swap_page() must be called
2702 * while the page is counted on swap but not yet in mapcount i.e.
2703 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2704 * must be called after the swap_free(), or it will never succeed.
2705 * Because delete_from_swap_page() may be called by reuse_swap_page(),
2706 * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
2707 * in page->private. In this case, a record in swap_cgroup is silently
2708 * discarded at swap_free().
2711 inc_mm_counter_fast(mm
, MM_ANONPAGES
);
2712 dec_mm_counter_fast(mm
, MM_SWAPENTS
);
2713 pte
= mk_pte(page
, vma
->vm_page_prot
);
2714 if ((flags
& FAULT_FLAG_WRITE
) && reuse_swap_page(page
)) {
2715 pte
= maybe_mkwrite(pte_mkdirty(pte
), vma
);
2716 flags
&= ~FAULT_FLAG_WRITE
;
2718 flush_icache_page(vma
, page
);
2719 set_pte_at(mm
, address
, page_table
, pte
);
2720 page_add_anon_rmap(page
, vma
, address
);
2721 /* It's better to call commit-charge after rmap is established */
2722 mem_cgroup_commit_charge_swapin(page
, ptr
);
2725 if (vm_swap_full() || (vma
->vm_flags
& VM_LOCKED
) || PageMlocked(page
))
2726 try_to_free_swap(page
);
2729 if (flags
& FAULT_FLAG_WRITE
) {
2730 ret
|= do_wp_page(mm
, vma
, address
, page_table
, pmd
, ptl
, pte
);
2731 if (ret
& VM_FAULT_ERROR
)
2732 ret
&= VM_FAULT_ERROR
;
2736 /* No need to invalidate - it was non-present before */
2737 update_mmu_cache(vma
, address
, page_table
);
2739 pte_unmap_unlock(page_table
, ptl
);
2743 mem_cgroup_cancel_charge_swapin(ptr
);
2744 pte_unmap_unlock(page_table
, ptl
);
2748 page_cache_release(page
);
2753 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2754 * but allow concurrent faults), and pte mapped but not yet locked.
2755 * We return with mmap_sem still held, but pte unmapped and unlocked.
2757 static int do_anonymous_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2758 unsigned long address
, pte_t
*page_table
, pmd_t
*pmd
,
2765 if (!(flags
& FAULT_FLAG_WRITE
)) {
2766 entry
= pte_mkspecial(pfn_pte(my_zero_pfn(address
),
2767 vma
->vm_page_prot
));
2768 ptl
= pte_lockptr(mm
, pmd
);
2770 if (!pte_none(*page_table
))
2775 /* Allocate our own private page. */
2776 pte_unmap(page_table
);
2778 if (unlikely(anon_vma_prepare(vma
)))
2780 page
= alloc_zeroed_user_highpage_movable(vma
, address
);
2783 __SetPageUptodate(page
);
2785 if (mem_cgroup_newpage_charge(page
, mm
, GFP_KERNEL
))
2788 entry
= mk_pte(page
, vma
->vm_page_prot
);
2789 if (vma
->vm_flags
& VM_WRITE
)
2790 entry
= pte_mkwrite(pte_mkdirty(entry
));
2792 page_table
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
2793 if (!pte_none(*page_table
))
2796 inc_mm_counter_fast(mm
, MM_ANONPAGES
);
2797 page_add_new_anon_rmap(page
, vma
, address
);
2799 set_pte_at(mm
, address
, page_table
, entry
);
2801 /* No need to invalidate - it was non-present before */
2802 update_mmu_cache(vma
, address
, page_table
);
2804 pte_unmap_unlock(page_table
, ptl
);
2807 mem_cgroup_uncharge_page(page
);
2808 page_cache_release(page
);
2811 page_cache_release(page
);
2813 return VM_FAULT_OOM
;
2817 * __do_fault() tries to create a new page mapping. It aggressively
2818 * tries to share with existing pages, but makes a separate copy if
2819 * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
2820 * the next page fault.
2822 * As this is called only for pages that do not currently exist, we
2823 * do not need to flush old virtual caches or the TLB.
2825 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2826 * but allow concurrent faults), and pte neither mapped nor locked.
2827 * We return with mmap_sem still held, but pte unmapped and unlocked.
2829 static int __do_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2830 unsigned long address
, pmd_t
*pmd
,
2831 pgoff_t pgoff
, unsigned int flags
, pte_t orig_pte
)
2839 struct page
*dirty_page
= NULL
;
2840 struct vm_fault vmf
;
2842 int page_mkwrite
= 0;
2844 vmf
.virtual_address
= (void __user
*)(address
& PAGE_MASK
);
2849 ret
= vma
->vm_ops
->fault(vma
, &vmf
);
2850 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
)))
2853 if (unlikely(PageHWPoison(vmf
.page
))) {
2854 if (ret
& VM_FAULT_LOCKED
)
2855 unlock_page(vmf
.page
);
2856 return VM_FAULT_HWPOISON
;
2860 * For consistency in subsequent calls, make the faulted page always
2863 if (unlikely(!(ret
& VM_FAULT_LOCKED
)))
2864 lock_page(vmf
.page
);
2866 VM_BUG_ON(!PageLocked(vmf
.page
));
2869 * Should we do an early C-O-W break?
2872 if (flags
& FAULT_FLAG_WRITE
) {
2873 if (!(vma
->vm_flags
& VM_SHARED
)) {
2875 if (unlikely(anon_vma_prepare(vma
))) {
2879 page
= alloc_page_vma(GFP_HIGHUSER_MOVABLE
,
2885 if (mem_cgroup_newpage_charge(page
, mm
, GFP_KERNEL
)) {
2887 page_cache_release(page
);
2892 * Don't let another task, with possibly unlocked vma,
2893 * keep the mlocked page.
2895 if (vma
->vm_flags
& VM_LOCKED
)
2896 clear_page_mlock(vmf
.page
);
2897 copy_user_highpage(page
, vmf
.page
, address
, vma
);
2898 __SetPageUptodate(page
);
2901 * If the page will be shareable, see if the backing
2902 * address space wants to know that the page is about
2903 * to become writable
2905 if (vma
->vm_ops
->page_mkwrite
) {
2909 vmf
.flags
= FAULT_FLAG_WRITE
|FAULT_FLAG_MKWRITE
;
2910 tmp
= vma
->vm_ops
->page_mkwrite(vma
, &vmf
);
2912 (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
))) {
2914 goto unwritable_page
;
2916 if (unlikely(!(tmp
& VM_FAULT_LOCKED
))) {
2918 if (!page
->mapping
) {
2919 ret
= 0; /* retry the fault */
2921 goto unwritable_page
;
2924 VM_BUG_ON(!PageLocked(page
));
2931 page_table
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
2934 * This silly early PAGE_DIRTY setting removes a race
2935 * due to the bad i386 page protection. But it's valid
2936 * for other architectures too.
2938 * Note that if FAULT_FLAG_WRITE is set, we either now have
2939 * an exclusive copy of the page, or this is a shared mapping,
2940 * so we can make it writable and dirty to avoid having to
2941 * handle that later.
2943 /* Only go through if we didn't race with anybody else... */
2944 if (likely(pte_same(*page_table
, orig_pte
))) {
2945 flush_icache_page(vma
, page
);
2946 entry
= mk_pte(page
, vma
->vm_page_prot
);
2947 if (flags
& FAULT_FLAG_WRITE
)
2948 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
2950 inc_mm_counter_fast(mm
, MM_ANONPAGES
);
2951 page_add_new_anon_rmap(page
, vma
, address
);
2953 inc_mm_counter_fast(mm
, MM_FILEPAGES
);
2954 page_add_file_rmap(page
);
2955 if (flags
& FAULT_FLAG_WRITE
) {
2957 get_page(dirty_page
);
2960 set_pte_at(mm
, address
, page_table
, entry
);
2962 /* no need to invalidate: a not-present page won't be cached */
2963 update_mmu_cache(vma
, address
, page_table
);
2966 mem_cgroup_uncharge_page(page
);
2968 page_cache_release(page
);
2970 anon
= 1; /* no anon but release faulted_page */
2973 pte_unmap_unlock(page_table
, ptl
);
2977 struct address_space
*mapping
= page
->mapping
;
2979 if (set_page_dirty(dirty_page
))
2981 unlock_page(dirty_page
);
2982 put_page(dirty_page
);
2983 if (page_mkwrite
&& mapping
) {
2985 * Some device drivers do not set page.mapping but still
2988 balance_dirty_pages_ratelimited(mapping
);
2991 /* file_update_time outside page_lock */
2993 file_update_time(vma
->vm_file
);
2995 unlock_page(vmf
.page
);
2997 page_cache_release(vmf
.page
);
3003 page_cache_release(page
);
3007 static int do_linear_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
3008 unsigned long address
, pte_t
*page_table
, pmd_t
*pmd
,
3009 unsigned int flags
, pte_t orig_pte
)
3011 pgoff_t pgoff
= (((address
& PAGE_MASK
)
3012 - vma
->vm_start
) >> PAGE_SHIFT
) + vma
->vm_pgoff
;
3014 pte_unmap(page_table
);
3015 return __do_fault(mm
, vma
, address
, pmd
, pgoff
, flags
, orig_pte
);
3019 * Fault of a previously existing named mapping. Repopulate the pte
3020 * from the encoded file_pte if possible. This enables swappable
3023 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3024 * but allow concurrent faults), and pte mapped but not yet locked.
3025 * We return with mmap_sem still held, but pte unmapped and unlocked.
3027 static int do_nonlinear_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
3028 unsigned long address
, pte_t
*page_table
, pmd_t
*pmd
,
3029 unsigned int flags
, pte_t orig_pte
)
3033 flags
|= FAULT_FLAG_NONLINEAR
;
3035 if (!pte_unmap_same(mm
, pmd
, page_table
, orig_pte
))
3038 if (unlikely(!(vma
->vm_flags
& VM_NONLINEAR
))) {
3040 * Page table corrupted: show pte and kill process.
3042 print_bad_pte(vma
, address
, orig_pte
, NULL
);
3043 return VM_FAULT_SIGBUS
;
3046 pgoff
= pte_to_pgoff(orig_pte
);
3047 return __do_fault(mm
, vma
, address
, pmd
, pgoff
, flags
, orig_pte
);
3051 * These routines also need to handle stuff like marking pages dirty
3052 * and/or accessed for architectures that don't do it in hardware (most
3053 * RISC architectures). The early dirtying is also good on the i386.
3055 * There is also a hook called "update_mmu_cache()" that architectures
3056 * with external mmu caches can use to update those (ie the Sparc or
3057 * PowerPC hashed page tables that act as extended TLBs).
3059 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3060 * but allow concurrent faults), and pte mapped but not yet locked.
3061 * We return with mmap_sem still held, but pte unmapped and unlocked.
3063 static inline int handle_pte_fault(struct mm_struct
*mm
,
3064 struct vm_area_struct
*vma
, unsigned long address
,
3065 pte_t
*pte
, pmd_t
*pmd
, unsigned int flags
)
3071 if (!pte_present(entry
)) {
3072 if (pte_none(entry
)) {
3074 if (likely(vma
->vm_ops
->fault
))
3075 return do_linear_fault(mm
, vma
, address
,
3076 pte
, pmd
, flags
, entry
);
3078 return do_anonymous_page(mm
, vma
, address
,
3081 if (pte_file(entry
))
3082 return do_nonlinear_fault(mm
, vma
, address
,
3083 pte
, pmd
, flags
, entry
);
3084 return do_swap_page(mm
, vma
, address
,
3085 pte
, pmd
, flags
, entry
);
3088 ptl
= pte_lockptr(mm
, pmd
);
3090 if (unlikely(!pte_same(*pte
, entry
)))
3092 if (flags
& FAULT_FLAG_WRITE
) {
3093 if (!pte_write(entry
))
3094 return do_wp_page(mm
, vma
, address
,
3095 pte
, pmd
, ptl
, entry
);
3096 entry
= pte_mkdirty(entry
);
3098 entry
= pte_mkyoung(entry
);
3099 if (ptep_set_access_flags(vma
, address
, pte
, entry
, flags
& FAULT_FLAG_WRITE
)) {
3100 update_mmu_cache(vma
, address
, pte
);
3103 * This is needed only for protection faults but the arch code
3104 * is not yet telling us if this is a protection fault or not.
3105 * This still avoids useless tlb flushes for .text page faults
3108 if (flags
& FAULT_FLAG_WRITE
)
3109 flush_tlb_page(vma
, address
);
3112 pte_unmap_unlock(pte
, ptl
);
3117 * By the time we get here, we already hold the mm semaphore
3119 int handle_mm_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
3120 unsigned long address
, unsigned int flags
)
3127 __set_current_state(TASK_RUNNING
);
3129 count_vm_event(PGFAULT
);
3131 /* do counter updates before entering really critical section. */
3132 check_sync_rss_stat(current
);
3134 if (unlikely(is_vm_hugetlb_page(vma
)))
3135 return hugetlb_fault(mm
, vma
, address
, flags
);
3137 pgd
= pgd_offset(mm
, address
);
3138 pud
= pud_alloc(mm
, pgd
, address
);
3140 return VM_FAULT_OOM
;
3141 pmd
= pmd_alloc(mm
, pud
, address
);
3143 return VM_FAULT_OOM
;
3144 pte
= pte_alloc_map(mm
, pmd
, address
);
3146 return VM_FAULT_OOM
;
3148 return handle_pte_fault(mm
, vma
, address
, pte
, pmd
, flags
);
3151 #ifndef __PAGETABLE_PUD_FOLDED
3153 * Allocate page upper directory.
3154 * We've already handled the fast-path in-line.
3156 int __pud_alloc(struct mm_struct
*mm
, pgd_t
*pgd
, unsigned long address
)
3158 pud_t
*new = pud_alloc_one(mm
, address
);
3162 smp_wmb(); /* See comment in __pte_alloc */
3164 spin_lock(&mm
->page_table_lock
);
3165 if (pgd_present(*pgd
)) /* Another has populated it */
3168 pgd_populate(mm
, pgd
, new);
3169 spin_unlock(&mm
->page_table_lock
);
3172 #endif /* __PAGETABLE_PUD_FOLDED */
3174 #ifndef __PAGETABLE_PMD_FOLDED
3176 * Allocate page middle directory.
3177 * We've already handled the fast-path in-line.
3179 int __pmd_alloc(struct mm_struct
*mm
, pud_t
*pud
, unsigned long address
)
3181 pmd_t
*new = pmd_alloc_one(mm
, address
);
3185 smp_wmb(); /* See comment in __pte_alloc */
3187 spin_lock(&mm
->page_table_lock
);
3188 #ifndef __ARCH_HAS_4LEVEL_HACK
3189 if (pud_present(*pud
)) /* Another has populated it */
3192 pud_populate(mm
, pud
, new);
3194 if (pgd_present(*pud
)) /* Another has populated it */
3197 pgd_populate(mm
, pud
, new);
3198 #endif /* __ARCH_HAS_4LEVEL_HACK */
3199 spin_unlock(&mm
->page_table_lock
);
3202 #endif /* __PAGETABLE_PMD_FOLDED */
3204 int make_pages_present(unsigned long addr
, unsigned long end
)
3206 int ret
, len
, write
;
3207 struct vm_area_struct
* vma
;
3209 vma
= find_vma(current
->mm
, addr
);
3212 write
= (vma
->vm_flags
& VM_WRITE
) != 0;
3213 BUG_ON(addr
>= end
);
3214 BUG_ON(end
> vma
->vm_end
);
3215 len
= DIV_ROUND_UP(end
, PAGE_SIZE
) - addr
/PAGE_SIZE
;
3216 ret
= get_user_pages(current
, current
->mm
, addr
,
3217 len
, write
, 0, NULL
, NULL
);
3220 return ret
== len
? 0 : -EFAULT
;
3223 #if !defined(__HAVE_ARCH_GATE_AREA)
3225 #if defined(AT_SYSINFO_EHDR)
3226 static struct vm_area_struct gate_vma
;
3228 static int __init
gate_vma_init(void)
3230 gate_vma
.vm_mm
= NULL
;
3231 gate_vma
.vm_start
= FIXADDR_USER_START
;
3232 gate_vma
.vm_end
= FIXADDR_USER_END
;
3233 gate_vma
.vm_flags
= VM_READ
| VM_MAYREAD
| VM_EXEC
| VM_MAYEXEC
;
3234 gate_vma
.vm_page_prot
= __P101
;
3236 * Make sure the vDSO gets into every core dump.
3237 * Dumping its contents makes post-mortem fully interpretable later
3238 * without matching up the same kernel and hardware config to see
3239 * what PC values meant.
3241 gate_vma
.vm_flags
|= VM_ALWAYSDUMP
;
3244 __initcall(gate_vma_init
);
3247 struct vm_area_struct
*get_gate_vma(struct task_struct
*tsk
)
3249 #ifdef AT_SYSINFO_EHDR
3256 int in_gate_area_no_task(unsigned long addr
)
3258 #ifdef AT_SYSINFO_EHDR
3259 if ((addr
>= FIXADDR_USER_START
) && (addr
< FIXADDR_USER_END
))
3265 #endif /* __HAVE_ARCH_GATE_AREA */
3267 static int follow_pte(struct mm_struct
*mm
, unsigned long address
,
3268 pte_t
**ptepp
, spinlock_t
**ptlp
)
3275 pgd
= pgd_offset(mm
, address
);
3276 if (pgd_none(*pgd
) || unlikely(pgd_bad(*pgd
)))
3279 pud
= pud_offset(pgd
, address
);
3280 if (pud_none(*pud
) || unlikely(pud_bad(*pud
)))
3283 pmd
= pmd_offset(pud
, address
);
3284 if (pmd_none(*pmd
) || unlikely(pmd_bad(*pmd
)))
3287 /* We cannot handle huge page PFN maps. Luckily they don't exist. */
3291 ptep
= pte_offset_map_lock(mm
, pmd
, address
, ptlp
);
3294 if (!pte_present(*ptep
))
3299 pte_unmap_unlock(ptep
, *ptlp
);
3305 * follow_pfn - look up PFN at a user virtual address
3306 * @vma: memory mapping
3307 * @address: user virtual address
3308 * @pfn: location to store found PFN
3310 * Only IO mappings and raw PFN mappings are allowed.
3312 * Returns zero and the pfn at @pfn on success, -ve otherwise.
3314 int follow_pfn(struct vm_area_struct
*vma
, unsigned long address
,
3321 if (!(vma
->vm_flags
& (VM_IO
| VM_PFNMAP
)))
3324 ret
= follow_pte(vma
->vm_mm
, address
, &ptep
, &ptl
);
3327 *pfn
= pte_pfn(*ptep
);
3328 pte_unmap_unlock(ptep
, ptl
);
3331 EXPORT_SYMBOL(follow_pfn
);
3333 #ifdef CONFIG_HAVE_IOREMAP_PROT
3334 int follow_phys(struct vm_area_struct
*vma
,
3335 unsigned long address
, unsigned int flags
,
3336 unsigned long *prot
, resource_size_t
*phys
)
3342 if (!(vma
->vm_flags
& (VM_IO
| VM_PFNMAP
)))
3345 if (follow_pte(vma
->vm_mm
, address
, &ptep
, &ptl
))
3349 if ((flags
& FOLL_WRITE
) && !pte_write(pte
))
3352 *prot
= pgprot_val(pte_pgprot(pte
));
3353 *phys
= (resource_size_t
)pte_pfn(pte
) << PAGE_SHIFT
;
3357 pte_unmap_unlock(ptep
, ptl
);
3362 int generic_access_phys(struct vm_area_struct
*vma
, unsigned long addr
,
3363 void *buf
, int len
, int write
)
3365 resource_size_t phys_addr
;
3366 unsigned long prot
= 0;
3367 void __iomem
*maddr
;
3368 int offset
= addr
& (PAGE_SIZE
-1);
3370 if (follow_phys(vma
, addr
, write
, &prot
, &phys_addr
))
3373 maddr
= ioremap_prot(phys_addr
, PAGE_SIZE
, prot
);
3375 memcpy_toio(maddr
+ offset
, buf
, len
);
3377 memcpy_fromio(buf
, maddr
+ offset
, len
);
3385 * Access another process' address space.
3386 * Source/target buffer must be kernel space,
3387 * Do not walk the page table directly, use get_user_pages
3389 int access_process_vm(struct task_struct
*tsk
, unsigned long addr
, void *buf
, int len
, int write
)
3391 struct mm_struct
*mm
;
3392 struct vm_area_struct
*vma
;
3393 void *old_buf
= buf
;
3395 mm
= get_task_mm(tsk
);
3399 down_read(&mm
->mmap_sem
);
3400 /* ignore errors, just check how much was successfully transferred */
3402 int bytes
, ret
, offset
;
3404 struct page
*page
= NULL
;
3406 ret
= get_user_pages(tsk
, mm
, addr
, 1,
3407 write
, 1, &page
, &vma
);
3410 * Check if this is a VM_IO | VM_PFNMAP VMA, which
3411 * we can access using slightly different code.
3413 #ifdef CONFIG_HAVE_IOREMAP_PROT
3414 vma
= find_vma(mm
, addr
);
3417 if (vma
->vm_ops
&& vma
->vm_ops
->access
)
3418 ret
= vma
->vm_ops
->access(vma
, addr
, buf
,
3426 offset
= addr
& (PAGE_SIZE
-1);
3427 if (bytes
> PAGE_SIZE
-offset
)
3428 bytes
= PAGE_SIZE
-offset
;
3432 copy_to_user_page(vma
, page
, addr
,
3433 maddr
+ offset
, buf
, bytes
);
3434 set_page_dirty_lock(page
);
3436 copy_from_user_page(vma
, page
, addr
,
3437 buf
, maddr
+ offset
, bytes
);
3440 page_cache_release(page
);
3446 up_read(&mm
->mmap_sem
);
3449 return buf
- old_buf
;
3453 * Print the name of a VMA.
3455 void print_vma_addr(char *prefix
, unsigned long ip
)
3457 struct mm_struct
*mm
= current
->mm
;
3458 struct vm_area_struct
*vma
;
3461 * Do not print if we are in atomic
3462 * contexts (in exception stacks, etc.):
3464 if (preempt_count())
3467 down_read(&mm
->mmap_sem
);
3468 vma
= find_vma(mm
, ip
);
3469 if (vma
&& vma
->vm_file
) {
3470 struct file
*f
= vma
->vm_file
;
3471 char *buf
= (char *)__get_free_page(GFP_KERNEL
);
3475 p
= d_path(&f
->f_path
, buf
, PAGE_SIZE
);
3478 s
= strrchr(p
, '/');
3481 printk("%s%s[%lx+%lx]", prefix
, p
,
3483 vma
->vm_end
- vma
->vm_start
);
3484 free_page((unsigned long)buf
);
3487 up_read(¤t
->mm
->mmap_sem
);
3490 #ifdef CONFIG_PROVE_LOCKING
3491 void might_fault(void)
3494 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
3495 * holding the mmap_sem, this is safe because kernel memory doesn't
3496 * get paged out, therefore we'll never actually fault, and the
3497 * below annotations will generate false positives.
3499 if (segment_eq(get_fs(), KERNEL_DS
))
3504 * it would be nicer only to annotate paths which are not under
3505 * pagefault_disable, however that requires a larger audit and
3506 * providing helpers like get_user_atomic.
3508 if (!in_atomic() && current
->mm
)
3509 might_lock_read(¤t
->mm
->mmap_sem
);
3511 EXPORT_SYMBOL(might_fault
);