perf_event: x86: Allocate the fake_cpuc
[linux-2.6/libata-dev.git] / arch / x86 / kernel / hpet.c
blobba6e658846035a75f17b16e5ee5cf1de82eb337f
1 #include <linux/clocksource.h>
2 #include <linux/clockchips.h>
3 #include <linux/interrupt.h>
4 #include <linux/sysdev.h>
5 #include <linux/delay.h>
6 #include <linux/errno.h>
7 #include <linux/hpet.h>
8 #include <linux/init.h>
9 #include <linux/cpu.h>
10 #include <linux/pm.h>
11 #include <linux/io.h>
13 #include <asm/fixmap.h>
14 #include <asm/i8253.h>
15 #include <asm/hpet.h>
17 #define HPET_MASK CLOCKSOURCE_MASK(32)
18 #define HPET_SHIFT 22
20 /* FSEC = 10^-15
21 NSEC = 10^-9 */
22 #define FSEC_PER_NSEC 1000000L
24 #define HPET_DEV_USED_BIT 2
25 #define HPET_DEV_USED (1 << HPET_DEV_USED_BIT)
26 #define HPET_DEV_VALID 0x8
27 #define HPET_DEV_FSB_CAP 0x1000
28 #define HPET_DEV_PERI_CAP 0x2000
30 #define EVT_TO_HPET_DEV(evt) container_of(evt, struct hpet_dev, evt)
33 * HPET address is set in acpi/boot.c, when an ACPI entry exists
35 unsigned long hpet_address;
36 u8 hpet_blockid; /* OS timer block num */
37 #ifdef CONFIG_PCI_MSI
38 static unsigned long hpet_num_timers;
39 #endif
40 static void __iomem *hpet_virt_address;
42 struct hpet_dev {
43 struct clock_event_device evt;
44 unsigned int num;
45 int cpu;
46 unsigned int irq;
47 unsigned int flags;
48 char name[10];
51 inline unsigned int hpet_readl(unsigned int a)
53 return readl(hpet_virt_address + a);
56 static inline void hpet_writel(unsigned int d, unsigned int a)
58 writel(d, hpet_virt_address + a);
61 #ifdef CONFIG_X86_64
62 #include <asm/pgtable.h>
63 #endif
65 static inline void hpet_set_mapping(void)
67 hpet_virt_address = ioremap_nocache(hpet_address, HPET_MMAP_SIZE);
68 #ifdef CONFIG_X86_64
69 __set_fixmap(VSYSCALL_HPET, hpet_address, PAGE_KERNEL_VSYSCALL_NOCACHE);
70 #endif
73 static inline void hpet_clear_mapping(void)
75 iounmap(hpet_virt_address);
76 hpet_virt_address = NULL;
80 * HPET command line enable / disable
82 static int boot_hpet_disable;
83 int hpet_force_user;
84 static int hpet_verbose;
86 static int __init hpet_setup(char *str)
88 if (str) {
89 if (!strncmp("disable", str, 7))
90 boot_hpet_disable = 1;
91 if (!strncmp("force", str, 5))
92 hpet_force_user = 1;
93 if (!strncmp("verbose", str, 7))
94 hpet_verbose = 1;
96 return 1;
98 __setup("hpet=", hpet_setup);
100 static int __init disable_hpet(char *str)
102 boot_hpet_disable = 1;
103 return 1;
105 __setup("nohpet", disable_hpet);
107 static inline int is_hpet_capable(void)
109 return !boot_hpet_disable && hpet_address;
113 * HPET timer interrupt enable / disable
115 static int hpet_legacy_int_enabled;
118 * is_hpet_enabled - check whether the hpet timer interrupt is enabled
120 int is_hpet_enabled(void)
122 return is_hpet_capable() && hpet_legacy_int_enabled;
124 EXPORT_SYMBOL_GPL(is_hpet_enabled);
126 static void _hpet_print_config(const char *function, int line)
128 u32 i, timers, l, h;
129 printk(KERN_INFO "hpet: %s(%d):\n", function, line);
130 l = hpet_readl(HPET_ID);
131 h = hpet_readl(HPET_PERIOD);
132 timers = ((l & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
133 printk(KERN_INFO "hpet: ID: 0x%x, PERIOD: 0x%x\n", l, h);
134 l = hpet_readl(HPET_CFG);
135 h = hpet_readl(HPET_STATUS);
136 printk(KERN_INFO "hpet: CFG: 0x%x, STATUS: 0x%x\n", l, h);
137 l = hpet_readl(HPET_COUNTER);
138 h = hpet_readl(HPET_COUNTER+4);
139 printk(KERN_INFO "hpet: COUNTER_l: 0x%x, COUNTER_h: 0x%x\n", l, h);
141 for (i = 0; i < timers; i++) {
142 l = hpet_readl(HPET_Tn_CFG(i));
143 h = hpet_readl(HPET_Tn_CFG(i)+4);
144 printk(KERN_INFO "hpet: T%d: CFG_l: 0x%x, CFG_h: 0x%x\n",
145 i, l, h);
146 l = hpet_readl(HPET_Tn_CMP(i));
147 h = hpet_readl(HPET_Tn_CMP(i)+4);
148 printk(KERN_INFO "hpet: T%d: CMP_l: 0x%x, CMP_h: 0x%x\n",
149 i, l, h);
150 l = hpet_readl(HPET_Tn_ROUTE(i));
151 h = hpet_readl(HPET_Tn_ROUTE(i)+4);
152 printk(KERN_INFO "hpet: T%d ROUTE_l: 0x%x, ROUTE_h: 0x%x\n",
153 i, l, h);
157 #define hpet_print_config() \
158 do { \
159 if (hpet_verbose) \
160 _hpet_print_config(__FUNCTION__, __LINE__); \
161 } while (0)
164 * When the hpet driver (/dev/hpet) is enabled, we need to reserve
165 * timer 0 and timer 1 in case of RTC emulation.
167 #ifdef CONFIG_HPET
169 static void hpet_reserve_msi_timers(struct hpet_data *hd);
171 static void hpet_reserve_platform_timers(unsigned int id)
173 struct hpet __iomem *hpet = hpet_virt_address;
174 struct hpet_timer __iomem *timer = &hpet->hpet_timers[2];
175 unsigned int nrtimers, i;
176 struct hpet_data hd;
178 nrtimers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
180 memset(&hd, 0, sizeof(hd));
181 hd.hd_phys_address = hpet_address;
182 hd.hd_address = hpet;
183 hd.hd_nirqs = nrtimers;
184 hpet_reserve_timer(&hd, 0);
186 #ifdef CONFIG_HPET_EMULATE_RTC
187 hpet_reserve_timer(&hd, 1);
188 #endif
191 * NOTE that hd_irq[] reflects IOAPIC input pins (LEGACY_8254
192 * is wrong for i8259!) not the output IRQ. Many BIOS writers
193 * don't bother configuring *any* comparator interrupts.
195 hd.hd_irq[0] = HPET_LEGACY_8254;
196 hd.hd_irq[1] = HPET_LEGACY_RTC;
198 for (i = 2; i < nrtimers; timer++, i++) {
199 hd.hd_irq[i] = (readl(&timer->hpet_config) &
200 Tn_INT_ROUTE_CNF_MASK) >> Tn_INT_ROUTE_CNF_SHIFT;
203 hpet_reserve_msi_timers(&hd);
205 hpet_alloc(&hd);
208 #else
209 static void hpet_reserve_platform_timers(unsigned int id) { }
210 #endif
213 * Common hpet info
215 static unsigned long hpet_period;
217 static void hpet_legacy_set_mode(enum clock_event_mode mode,
218 struct clock_event_device *evt);
219 static int hpet_legacy_next_event(unsigned long delta,
220 struct clock_event_device *evt);
223 * The hpet clock event device
225 static struct clock_event_device hpet_clockevent = {
226 .name = "hpet",
227 .features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
228 .set_mode = hpet_legacy_set_mode,
229 .set_next_event = hpet_legacy_next_event,
230 .shift = 32,
231 .irq = 0,
232 .rating = 50,
235 static void hpet_stop_counter(void)
237 unsigned long cfg = hpet_readl(HPET_CFG);
238 cfg &= ~HPET_CFG_ENABLE;
239 hpet_writel(cfg, HPET_CFG);
242 static void hpet_reset_counter(void)
244 hpet_writel(0, HPET_COUNTER);
245 hpet_writel(0, HPET_COUNTER + 4);
248 static void hpet_start_counter(void)
250 unsigned int cfg = hpet_readl(HPET_CFG);
251 cfg |= HPET_CFG_ENABLE;
252 hpet_writel(cfg, HPET_CFG);
255 static void hpet_restart_counter(void)
257 hpet_stop_counter();
258 hpet_reset_counter();
259 hpet_start_counter();
262 static void hpet_resume_device(void)
264 force_hpet_resume();
267 static void hpet_resume_counter(void)
269 hpet_resume_device();
270 hpet_restart_counter();
273 static void hpet_enable_legacy_int(void)
275 unsigned int cfg = hpet_readl(HPET_CFG);
277 cfg |= HPET_CFG_LEGACY;
278 hpet_writel(cfg, HPET_CFG);
279 hpet_legacy_int_enabled = 1;
282 static void hpet_legacy_clockevent_register(void)
284 /* Start HPET legacy interrupts */
285 hpet_enable_legacy_int();
288 * The mult factor is defined as (include/linux/clockchips.h)
289 * mult/2^shift = cyc/ns (in contrast to ns/cyc in clocksource.h)
290 * hpet_period is in units of femtoseconds (per cycle), so
291 * mult/2^shift = cyc/ns = 10^6/hpet_period
292 * mult = (10^6 * 2^shift)/hpet_period
293 * mult = (FSEC_PER_NSEC << hpet_clockevent.shift)/hpet_period
295 hpet_clockevent.mult = div_sc((unsigned long) FSEC_PER_NSEC,
296 hpet_period, hpet_clockevent.shift);
297 /* Calculate the min / max delta */
298 hpet_clockevent.max_delta_ns = clockevent_delta2ns(0x7FFFFFFF,
299 &hpet_clockevent);
300 /* 5 usec minimum reprogramming delta. */
301 hpet_clockevent.min_delta_ns = 5000;
304 * Start hpet with the boot cpu mask and make it
305 * global after the IO_APIC has been initialized.
307 hpet_clockevent.cpumask = cpumask_of(smp_processor_id());
308 clockevents_register_device(&hpet_clockevent);
309 global_clock_event = &hpet_clockevent;
310 printk(KERN_DEBUG "hpet clockevent registered\n");
313 static int hpet_setup_msi_irq(unsigned int irq);
315 static void hpet_set_mode(enum clock_event_mode mode,
316 struct clock_event_device *evt, int timer)
318 unsigned int cfg, cmp, now;
319 uint64_t delta;
321 switch (mode) {
322 case CLOCK_EVT_MODE_PERIODIC:
323 hpet_stop_counter();
324 delta = ((uint64_t)(NSEC_PER_SEC/HZ)) * evt->mult;
325 delta >>= evt->shift;
326 now = hpet_readl(HPET_COUNTER);
327 cmp = now + (unsigned int) delta;
328 cfg = hpet_readl(HPET_Tn_CFG(timer));
329 /* Make sure we use edge triggered interrupts */
330 cfg &= ~HPET_TN_LEVEL;
331 cfg |= HPET_TN_ENABLE | HPET_TN_PERIODIC |
332 HPET_TN_SETVAL | HPET_TN_32BIT;
333 hpet_writel(cfg, HPET_Tn_CFG(timer));
334 hpet_writel(cmp, HPET_Tn_CMP(timer));
335 udelay(1);
337 * HPET on AMD 81xx needs a second write (with HPET_TN_SETVAL
338 * cleared) to T0_CMP to set the period. The HPET_TN_SETVAL
339 * bit is automatically cleared after the first write.
340 * (See AMD-8111 HyperTransport I/O Hub Data Sheet,
341 * Publication # 24674)
343 hpet_writel((unsigned int) delta, HPET_Tn_CMP(timer));
344 hpet_start_counter();
345 hpet_print_config();
346 break;
348 case CLOCK_EVT_MODE_ONESHOT:
349 cfg = hpet_readl(HPET_Tn_CFG(timer));
350 cfg &= ~HPET_TN_PERIODIC;
351 cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
352 hpet_writel(cfg, HPET_Tn_CFG(timer));
353 break;
355 case CLOCK_EVT_MODE_UNUSED:
356 case CLOCK_EVT_MODE_SHUTDOWN:
357 cfg = hpet_readl(HPET_Tn_CFG(timer));
358 cfg &= ~HPET_TN_ENABLE;
359 hpet_writel(cfg, HPET_Tn_CFG(timer));
360 break;
362 case CLOCK_EVT_MODE_RESUME:
363 if (timer == 0) {
364 hpet_enable_legacy_int();
365 } else {
366 struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
367 hpet_setup_msi_irq(hdev->irq);
368 disable_irq(hdev->irq);
369 irq_set_affinity(hdev->irq, cpumask_of(hdev->cpu));
370 enable_irq(hdev->irq);
372 hpet_print_config();
373 break;
377 static int hpet_next_event(unsigned long delta,
378 struct clock_event_device *evt, int timer)
380 u32 cnt;
382 cnt = hpet_readl(HPET_COUNTER);
383 cnt += (u32) delta;
384 hpet_writel(cnt, HPET_Tn_CMP(timer));
387 * We need to read back the CMP register on certain HPET
388 * implementations (ATI chipsets) which seem to delay the
389 * transfer of the compare register into the internal compare
390 * logic. With small deltas this might actually be too late as
391 * the counter could already be higher than the compare value
392 * at that point and we would wait for the next hpet interrupt
393 * forever. We found out that reading the CMP register back
394 * forces the transfer so we can rely on the comparison with
395 * the counter register below. If the read back from the
396 * compare register does not match the value we programmed
397 * then we might have a real hardware problem. We can not do
398 * much about it here, but at least alert the user/admin with
399 * a prominent warning.
401 WARN_ONCE(hpet_readl(HPET_Tn_CMP(timer)) != cnt,
402 KERN_WARNING "hpet: compare register read back failed.\n");
404 return (s32)(hpet_readl(HPET_COUNTER) - cnt) >= 0 ? -ETIME : 0;
407 static void hpet_legacy_set_mode(enum clock_event_mode mode,
408 struct clock_event_device *evt)
410 hpet_set_mode(mode, evt, 0);
413 static int hpet_legacy_next_event(unsigned long delta,
414 struct clock_event_device *evt)
416 return hpet_next_event(delta, evt, 0);
420 * HPET MSI Support
422 #ifdef CONFIG_PCI_MSI
424 static DEFINE_PER_CPU(struct hpet_dev *, cpu_hpet_dev);
425 static struct hpet_dev *hpet_devs;
427 void hpet_msi_unmask(unsigned int irq)
429 struct hpet_dev *hdev = get_irq_data(irq);
430 unsigned int cfg;
432 /* unmask it */
433 cfg = hpet_readl(HPET_Tn_CFG(hdev->num));
434 cfg |= HPET_TN_FSB;
435 hpet_writel(cfg, HPET_Tn_CFG(hdev->num));
438 void hpet_msi_mask(unsigned int irq)
440 unsigned int cfg;
441 struct hpet_dev *hdev = get_irq_data(irq);
443 /* mask it */
444 cfg = hpet_readl(HPET_Tn_CFG(hdev->num));
445 cfg &= ~HPET_TN_FSB;
446 hpet_writel(cfg, HPET_Tn_CFG(hdev->num));
449 void hpet_msi_write(unsigned int irq, struct msi_msg *msg)
451 struct hpet_dev *hdev = get_irq_data(irq);
453 hpet_writel(msg->data, HPET_Tn_ROUTE(hdev->num));
454 hpet_writel(msg->address_lo, HPET_Tn_ROUTE(hdev->num) + 4);
457 void hpet_msi_read(unsigned int irq, struct msi_msg *msg)
459 struct hpet_dev *hdev = get_irq_data(irq);
461 msg->data = hpet_readl(HPET_Tn_ROUTE(hdev->num));
462 msg->address_lo = hpet_readl(HPET_Tn_ROUTE(hdev->num) + 4);
463 msg->address_hi = 0;
466 static void hpet_msi_set_mode(enum clock_event_mode mode,
467 struct clock_event_device *evt)
469 struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
470 hpet_set_mode(mode, evt, hdev->num);
473 static int hpet_msi_next_event(unsigned long delta,
474 struct clock_event_device *evt)
476 struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
477 return hpet_next_event(delta, evt, hdev->num);
480 static int hpet_setup_msi_irq(unsigned int irq)
482 if (arch_setup_hpet_msi(irq, hpet_blockid)) {
483 destroy_irq(irq);
484 return -EINVAL;
486 return 0;
489 static int hpet_assign_irq(struct hpet_dev *dev)
491 unsigned int irq;
493 irq = create_irq();
494 if (!irq)
495 return -EINVAL;
497 set_irq_data(irq, dev);
499 if (hpet_setup_msi_irq(irq))
500 return -EINVAL;
502 dev->irq = irq;
503 return 0;
506 static irqreturn_t hpet_interrupt_handler(int irq, void *data)
508 struct hpet_dev *dev = (struct hpet_dev *)data;
509 struct clock_event_device *hevt = &dev->evt;
511 if (!hevt->event_handler) {
512 printk(KERN_INFO "Spurious HPET timer interrupt on HPET timer %d\n",
513 dev->num);
514 return IRQ_HANDLED;
517 hevt->event_handler(hevt);
518 return IRQ_HANDLED;
521 static int hpet_setup_irq(struct hpet_dev *dev)
524 if (request_irq(dev->irq, hpet_interrupt_handler,
525 IRQF_TIMER | IRQF_DISABLED | IRQF_NOBALANCING,
526 dev->name, dev))
527 return -1;
529 disable_irq(dev->irq);
530 irq_set_affinity(dev->irq, cpumask_of(dev->cpu));
531 enable_irq(dev->irq);
533 printk(KERN_DEBUG "hpet: %s irq %d for MSI\n",
534 dev->name, dev->irq);
536 return 0;
539 /* This should be called in specific @cpu */
540 static void init_one_hpet_msi_clockevent(struct hpet_dev *hdev, int cpu)
542 struct clock_event_device *evt = &hdev->evt;
543 uint64_t hpet_freq;
545 WARN_ON(cpu != smp_processor_id());
546 if (!(hdev->flags & HPET_DEV_VALID))
547 return;
549 if (hpet_setup_msi_irq(hdev->irq))
550 return;
552 hdev->cpu = cpu;
553 per_cpu(cpu_hpet_dev, cpu) = hdev;
554 evt->name = hdev->name;
555 hpet_setup_irq(hdev);
556 evt->irq = hdev->irq;
558 evt->rating = 110;
559 evt->features = CLOCK_EVT_FEAT_ONESHOT;
560 if (hdev->flags & HPET_DEV_PERI_CAP)
561 evt->features |= CLOCK_EVT_FEAT_PERIODIC;
563 evt->set_mode = hpet_msi_set_mode;
564 evt->set_next_event = hpet_msi_next_event;
565 evt->shift = 32;
568 * The period is a femto seconds value. We need to calculate the
569 * scaled math multiplication factor for nanosecond to hpet tick
570 * conversion.
572 hpet_freq = 1000000000000000ULL;
573 do_div(hpet_freq, hpet_period);
574 evt->mult = div_sc((unsigned long) hpet_freq,
575 NSEC_PER_SEC, evt->shift);
576 /* Calculate the max delta */
577 evt->max_delta_ns = clockevent_delta2ns(0x7FFFFFFF, evt);
578 /* 5 usec minimum reprogramming delta. */
579 evt->min_delta_ns = 5000;
581 evt->cpumask = cpumask_of(hdev->cpu);
582 clockevents_register_device(evt);
585 #ifdef CONFIG_HPET
586 /* Reserve at least one timer for userspace (/dev/hpet) */
587 #define RESERVE_TIMERS 1
588 #else
589 #define RESERVE_TIMERS 0
590 #endif
592 static void hpet_msi_capability_lookup(unsigned int start_timer)
594 unsigned int id;
595 unsigned int num_timers;
596 unsigned int num_timers_used = 0;
597 int i;
599 if (boot_cpu_has(X86_FEATURE_ARAT))
600 return;
601 id = hpet_readl(HPET_ID);
603 num_timers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT);
604 num_timers++; /* Value read out starts from 0 */
605 hpet_print_config();
607 hpet_devs = kzalloc(sizeof(struct hpet_dev) * num_timers, GFP_KERNEL);
608 if (!hpet_devs)
609 return;
611 hpet_num_timers = num_timers;
613 for (i = start_timer; i < num_timers - RESERVE_TIMERS; i++) {
614 struct hpet_dev *hdev = &hpet_devs[num_timers_used];
615 unsigned int cfg = hpet_readl(HPET_Tn_CFG(i));
617 /* Only consider HPET timer with MSI support */
618 if (!(cfg & HPET_TN_FSB_CAP))
619 continue;
621 hdev->flags = 0;
622 if (cfg & HPET_TN_PERIODIC_CAP)
623 hdev->flags |= HPET_DEV_PERI_CAP;
624 hdev->num = i;
626 sprintf(hdev->name, "hpet%d", i);
627 if (hpet_assign_irq(hdev))
628 continue;
630 hdev->flags |= HPET_DEV_FSB_CAP;
631 hdev->flags |= HPET_DEV_VALID;
632 num_timers_used++;
633 if (num_timers_used == num_possible_cpus())
634 break;
637 printk(KERN_INFO "HPET: %d timers in total, %d timers will be used for per-cpu timer\n",
638 num_timers, num_timers_used);
641 #ifdef CONFIG_HPET
642 static void hpet_reserve_msi_timers(struct hpet_data *hd)
644 int i;
646 if (!hpet_devs)
647 return;
649 for (i = 0; i < hpet_num_timers; i++) {
650 struct hpet_dev *hdev = &hpet_devs[i];
652 if (!(hdev->flags & HPET_DEV_VALID))
653 continue;
655 hd->hd_irq[hdev->num] = hdev->irq;
656 hpet_reserve_timer(hd, hdev->num);
659 #endif
661 static struct hpet_dev *hpet_get_unused_timer(void)
663 int i;
665 if (!hpet_devs)
666 return NULL;
668 for (i = 0; i < hpet_num_timers; i++) {
669 struct hpet_dev *hdev = &hpet_devs[i];
671 if (!(hdev->flags & HPET_DEV_VALID))
672 continue;
673 if (test_and_set_bit(HPET_DEV_USED_BIT,
674 (unsigned long *)&hdev->flags))
675 continue;
676 return hdev;
678 return NULL;
681 struct hpet_work_struct {
682 struct delayed_work work;
683 struct completion complete;
686 static void hpet_work(struct work_struct *w)
688 struct hpet_dev *hdev;
689 int cpu = smp_processor_id();
690 struct hpet_work_struct *hpet_work;
692 hpet_work = container_of(w, struct hpet_work_struct, work.work);
694 hdev = hpet_get_unused_timer();
695 if (hdev)
696 init_one_hpet_msi_clockevent(hdev, cpu);
698 complete(&hpet_work->complete);
701 static int hpet_cpuhp_notify(struct notifier_block *n,
702 unsigned long action, void *hcpu)
704 unsigned long cpu = (unsigned long)hcpu;
705 struct hpet_work_struct work;
706 struct hpet_dev *hdev = per_cpu(cpu_hpet_dev, cpu);
708 switch (action & 0xf) {
709 case CPU_ONLINE:
710 INIT_DELAYED_WORK_ON_STACK(&work.work, hpet_work);
711 init_completion(&work.complete);
712 /* FIXME: add schedule_work_on() */
713 schedule_delayed_work_on(cpu, &work.work, 0);
714 wait_for_completion(&work.complete);
715 destroy_timer_on_stack(&work.work.timer);
716 break;
717 case CPU_DEAD:
718 if (hdev) {
719 free_irq(hdev->irq, hdev);
720 hdev->flags &= ~HPET_DEV_USED;
721 per_cpu(cpu_hpet_dev, cpu) = NULL;
723 break;
725 return NOTIFY_OK;
727 #else
729 static int hpet_setup_msi_irq(unsigned int irq)
731 return 0;
733 static void hpet_msi_capability_lookup(unsigned int start_timer)
735 return;
738 #ifdef CONFIG_HPET
739 static void hpet_reserve_msi_timers(struct hpet_data *hd)
741 return;
743 #endif
745 static int hpet_cpuhp_notify(struct notifier_block *n,
746 unsigned long action, void *hcpu)
748 return NOTIFY_OK;
751 #endif
754 * Clock source related code
756 static cycle_t read_hpet(struct clocksource *cs)
758 return (cycle_t)hpet_readl(HPET_COUNTER);
761 #ifdef CONFIG_X86_64
762 static cycle_t __vsyscall_fn vread_hpet(void)
764 return readl((const void __iomem *)fix_to_virt(VSYSCALL_HPET) + 0xf0);
766 #endif
768 static struct clocksource clocksource_hpet = {
769 .name = "hpet",
770 .rating = 250,
771 .read = read_hpet,
772 .mask = HPET_MASK,
773 .shift = HPET_SHIFT,
774 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
775 .resume = hpet_resume_counter,
776 #ifdef CONFIG_X86_64
777 .vread = vread_hpet,
778 #endif
781 static int hpet_clocksource_register(void)
783 u64 start, now;
784 cycle_t t1;
786 /* Start the counter */
787 hpet_restart_counter();
789 /* Verify whether hpet counter works */
790 t1 = hpet_readl(HPET_COUNTER);
791 rdtscll(start);
794 * We don't know the TSC frequency yet, but waiting for
795 * 200000 TSC cycles is safe:
796 * 4 GHz == 50us
797 * 1 GHz == 200us
799 do {
800 rep_nop();
801 rdtscll(now);
802 } while ((now - start) < 200000UL);
804 if (t1 == hpet_readl(HPET_COUNTER)) {
805 printk(KERN_WARNING
806 "HPET counter not counting. HPET disabled\n");
807 return -ENODEV;
811 * The definition of mult is (include/linux/clocksource.h)
812 * mult/2^shift = ns/cyc and hpet_period is in units of fsec/cyc
813 * so we first need to convert hpet_period to ns/cyc units:
814 * mult/2^shift = ns/cyc = hpet_period/10^6
815 * mult = (hpet_period * 2^shift)/10^6
816 * mult = (hpet_period << shift)/FSEC_PER_NSEC
818 clocksource_hpet.mult = div_sc(hpet_period, FSEC_PER_NSEC, HPET_SHIFT);
820 clocksource_register(&clocksource_hpet);
822 return 0;
826 * hpet_enable - Try to setup the HPET timer. Returns 1 on success.
828 int __init hpet_enable(void)
830 unsigned int id;
831 int i;
833 if (!is_hpet_capable())
834 return 0;
836 hpet_set_mapping();
839 * Read the period and check for a sane value:
841 hpet_period = hpet_readl(HPET_PERIOD);
844 * AMD SB700 based systems with spread spectrum enabled use a
845 * SMM based HPET emulation to provide proper frequency
846 * setting. The SMM code is initialized with the first HPET
847 * register access and takes some time to complete. During
848 * this time the config register reads 0xffffffff. We check
849 * for max. 1000 loops whether the config register reads a non
850 * 0xffffffff value to make sure that HPET is up and running
851 * before we go further. A counting loop is safe, as the HPET
852 * access takes thousands of CPU cycles. On non SB700 based
853 * machines this check is only done once and has no side
854 * effects.
856 for (i = 0; hpet_readl(HPET_CFG) == 0xFFFFFFFF; i++) {
857 if (i == 1000) {
858 printk(KERN_WARNING
859 "HPET config register value = 0xFFFFFFFF. "
860 "Disabling HPET\n");
861 goto out_nohpet;
865 if (hpet_period < HPET_MIN_PERIOD || hpet_period > HPET_MAX_PERIOD)
866 goto out_nohpet;
869 * Read the HPET ID register to retrieve the IRQ routing
870 * information and the number of channels
872 id = hpet_readl(HPET_ID);
873 hpet_print_config();
875 #ifdef CONFIG_HPET_EMULATE_RTC
877 * The legacy routing mode needs at least two channels, tick timer
878 * and the rtc emulation channel.
880 if (!(id & HPET_ID_NUMBER))
881 goto out_nohpet;
882 #endif
884 if (hpet_clocksource_register())
885 goto out_nohpet;
887 if (id & HPET_ID_LEGSUP) {
888 hpet_legacy_clockevent_register();
889 return 1;
891 return 0;
893 out_nohpet:
894 hpet_clear_mapping();
895 hpet_address = 0;
896 return 0;
900 * Needs to be late, as the reserve_timer code calls kalloc !
902 * Not a problem on i386 as hpet_enable is called from late_time_init,
903 * but on x86_64 it is necessary !
905 static __init int hpet_late_init(void)
907 int cpu;
909 if (boot_hpet_disable)
910 return -ENODEV;
912 if (!hpet_address) {
913 if (!force_hpet_address)
914 return -ENODEV;
916 hpet_address = force_hpet_address;
917 hpet_enable();
920 if (!hpet_virt_address)
921 return -ENODEV;
923 if (hpet_readl(HPET_ID) & HPET_ID_LEGSUP)
924 hpet_msi_capability_lookup(2);
925 else
926 hpet_msi_capability_lookup(0);
928 hpet_reserve_platform_timers(hpet_readl(HPET_ID));
929 hpet_print_config();
931 if (boot_cpu_has(X86_FEATURE_ARAT))
932 return 0;
934 for_each_online_cpu(cpu) {
935 hpet_cpuhp_notify(NULL, CPU_ONLINE, (void *)(long)cpu);
938 /* This notifier should be called after workqueue is ready */
939 hotcpu_notifier(hpet_cpuhp_notify, -20);
941 return 0;
943 fs_initcall(hpet_late_init);
945 void hpet_disable(void)
947 if (is_hpet_capable()) {
948 unsigned int cfg = hpet_readl(HPET_CFG);
950 if (hpet_legacy_int_enabled) {
951 cfg &= ~HPET_CFG_LEGACY;
952 hpet_legacy_int_enabled = 0;
954 cfg &= ~HPET_CFG_ENABLE;
955 hpet_writel(cfg, HPET_CFG);
959 #ifdef CONFIG_HPET_EMULATE_RTC
961 /* HPET in LegacyReplacement Mode eats up RTC interrupt line. When, HPET
962 * is enabled, we support RTC interrupt functionality in software.
963 * RTC has 3 kinds of interrupts:
964 * 1) Update Interrupt - generate an interrupt, every sec, when RTC clock
965 * is updated
966 * 2) Alarm Interrupt - generate an interrupt at a specific time of day
967 * 3) Periodic Interrupt - generate periodic interrupt, with frequencies
968 * 2Hz-8192Hz (2Hz-64Hz for non-root user) (all freqs in powers of 2)
969 * (1) and (2) above are implemented using polling at a frequency of
970 * 64 Hz. The exact frequency is a tradeoff between accuracy and interrupt
971 * overhead. (DEFAULT_RTC_INT_FREQ)
972 * For (3), we use interrupts at 64Hz or user specified periodic
973 * frequency, whichever is higher.
975 #include <linux/mc146818rtc.h>
976 #include <linux/rtc.h>
977 #include <asm/rtc.h>
979 #define DEFAULT_RTC_INT_FREQ 64
980 #define DEFAULT_RTC_SHIFT 6
981 #define RTC_NUM_INTS 1
983 static unsigned long hpet_rtc_flags;
984 static int hpet_prev_update_sec;
985 static struct rtc_time hpet_alarm_time;
986 static unsigned long hpet_pie_count;
987 static u32 hpet_t1_cmp;
988 static u32 hpet_default_delta;
989 static u32 hpet_pie_delta;
990 static unsigned long hpet_pie_limit;
992 static rtc_irq_handler irq_handler;
995 * Check that the hpet counter c1 is ahead of the c2
997 static inline int hpet_cnt_ahead(u32 c1, u32 c2)
999 return (s32)(c2 - c1) < 0;
1003 * Registers a IRQ handler.
1005 int hpet_register_irq_handler(rtc_irq_handler handler)
1007 if (!is_hpet_enabled())
1008 return -ENODEV;
1009 if (irq_handler)
1010 return -EBUSY;
1012 irq_handler = handler;
1014 return 0;
1016 EXPORT_SYMBOL_GPL(hpet_register_irq_handler);
1019 * Deregisters the IRQ handler registered with hpet_register_irq_handler()
1020 * and does cleanup.
1022 void hpet_unregister_irq_handler(rtc_irq_handler handler)
1024 if (!is_hpet_enabled())
1025 return;
1027 irq_handler = NULL;
1028 hpet_rtc_flags = 0;
1030 EXPORT_SYMBOL_GPL(hpet_unregister_irq_handler);
1033 * Timer 1 for RTC emulation. We use one shot mode, as periodic mode
1034 * is not supported by all HPET implementations for timer 1.
1036 * hpet_rtc_timer_init() is called when the rtc is initialized.
1038 int hpet_rtc_timer_init(void)
1040 unsigned int cfg, cnt, delta;
1041 unsigned long flags;
1043 if (!is_hpet_enabled())
1044 return 0;
1046 if (!hpet_default_delta) {
1047 uint64_t clc;
1049 clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
1050 clc >>= hpet_clockevent.shift + DEFAULT_RTC_SHIFT;
1051 hpet_default_delta = clc;
1054 if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
1055 delta = hpet_default_delta;
1056 else
1057 delta = hpet_pie_delta;
1059 local_irq_save(flags);
1061 cnt = delta + hpet_readl(HPET_COUNTER);
1062 hpet_writel(cnt, HPET_T1_CMP);
1063 hpet_t1_cmp = cnt;
1065 cfg = hpet_readl(HPET_T1_CFG);
1066 cfg &= ~HPET_TN_PERIODIC;
1067 cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
1068 hpet_writel(cfg, HPET_T1_CFG);
1070 local_irq_restore(flags);
1072 return 1;
1074 EXPORT_SYMBOL_GPL(hpet_rtc_timer_init);
1077 * The functions below are called from rtc driver.
1078 * Return 0 if HPET is not being used.
1079 * Otherwise do the necessary changes and return 1.
1081 int hpet_mask_rtc_irq_bit(unsigned long bit_mask)
1083 if (!is_hpet_enabled())
1084 return 0;
1086 hpet_rtc_flags &= ~bit_mask;
1087 return 1;
1089 EXPORT_SYMBOL_GPL(hpet_mask_rtc_irq_bit);
1091 int hpet_set_rtc_irq_bit(unsigned long bit_mask)
1093 unsigned long oldbits = hpet_rtc_flags;
1095 if (!is_hpet_enabled())
1096 return 0;
1098 hpet_rtc_flags |= bit_mask;
1100 if ((bit_mask & RTC_UIE) && !(oldbits & RTC_UIE))
1101 hpet_prev_update_sec = -1;
1103 if (!oldbits)
1104 hpet_rtc_timer_init();
1106 return 1;
1108 EXPORT_SYMBOL_GPL(hpet_set_rtc_irq_bit);
1110 int hpet_set_alarm_time(unsigned char hrs, unsigned char min,
1111 unsigned char sec)
1113 if (!is_hpet_enabled())
1114 return 0;
1116 hpet_alarm_time.tm_hour = hrs;
1117 hpet_alarm_time.tm_min = min;
1118 hpet_alarm_time.tm_sec = sec;
1120 return 1;
1122 EXPORT_SYMBOL_GPL(hpet_set_alarm_time);
1124 int hpet_set_periodic_freq(unsigned long freq)
1126 uint64_t clc;
1128 if (!is_hpet_enabled())
1129 return 0;
1131 if (freq <= DEFAULT_RTC_INT_FREQ)
1132 hpet_pie_limit = DEFAULT_RTC_INT_FREQ / freq;
1133 else {
1134 clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
1135 do_div(clc, freq);
1136 clc >>= hpet_clockevent.shift;
1137 hpet_pie_delta = clc;
1139 return 1;
1141 EXPORT_SYMBOL_GPL(hpet_set_periodic_freq);
1143 int hpet_rtc_dropped_irq(void)
1145 return is_hpet_enabled();
1147 EXPORT_SYMBOL_GPL(hpet_rtc_dropped_irq);
1149 static void hpet_rtc_timer_reinit(void)
1151 unsigned int cfg, delta;
1152 int lost_ints = -1;
1154 if (unlikely(!hpet_rtc_flags)) {
1155 cfg = hpet_readl(HPET_T1_CFG);
1156 cfg &= ~HPET_TN_ENABLE;
1157 hpet_writel(cfg, HPET_T1_CFG);
1158 return;
1161 if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
1162 delta = hpet_default_delta;
1163 else
1164 delta = hpet_pie_delta;
1167 * Increment the comparator value until we are ahead of the
1168 * current count.
1170 do {
1171 hpet_t1_cmp += delta;
1172 hpet_writel(hpet_t1_cmp, HPET_T1_CMP);
1173 lost_ints++;
1174 } while (!hpet_cnt_ahead(hpet_t1_cmp, hpet_readl(HPET_COUNTER)));
1176 if (lost_ints) {
1177 if (hpet_rtc_flags & RTC_PIE)
1178 hpet_pie_count += lost_ints;
1179 if (printk_ratelimit())
1180 printk(KERN_WARNING "hpet1: lost %d rtc interrupts\n",
1181 lost_ints);
1185 irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id)
1187 struct rtc_time curr_time;
1188 unsigned long rtc_int_flag = 0;
1190 hpet_rtc_timer_reinit();
1191 memset(&curr_time, 0, sizeof(struct rtc_time));
1193 if (hpet_rtc_flags & (RTC_UIE | RTC_AIE))
1194 get_rtc_time(&curr_time);
1196 if (hpet_rtc_flags & RTC_UIE &&
1197 curr_time.tm_sec != hpet_prev_update_sec) {
1198 if (hpet_prev_update_sec >= 0)
1199 rtc_int_flag = RTC_UF;
1200 hpet_prev_update_sec = curr_time.tm_sec;
1203 if (hpet_rtc_flags & RTC_PIE &&
1204 ++hpet_pie_count >= hpet_pie_limit) {
1205 rtc_int_flag |= RTC_PF;
1206 hpet_pie_count = 0;
1209 if (hpet_rtc_flags & RTC_AIE &&
1210 (curr_time.tm_sec == hpet_alarm_time.tm_sec) &&
1211 (curr_time.tm_min == hpet_alarm_time.tm_min) &&
1212 (curr_time.tm_hour == hpet_alarm_time.tm_hour))
1213 rtc_int_flag |= RTC_AF;
1215 if (rtc_int_flag) {
1216 rtc_int_flag |= (RTC_IRQF | (RTC_NUM_INTS << 8));
1217 if (irq_handler)
1218 irq_handler(rtc_int_flag, dev_id);
1220 return IRQ_HANDLED;
1222 EXPORT_SYMBOL_GPL(hpet_rtc_interrupt);
1223 #endif