h8300: use kbuild.h instead of defining macros in asm-offsets.c
[linux-2.6/libata-dev.git] / fs / exec.c
bloba13883903ee98587951681e143c36d9712460515
1 /*
2 * linux/fs/exec.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
7 /*
8 * #!-checking implemented by tytso.
9 */
11 * Demand-loading implemented 01.12.91 - no need to read anything but
12 * the header into memory. The inode of the executable is put into
13 * "current->executable", and page faults do the actual loading. Clean.
15 * Once more I can proudly say that linux stood up to being changed: it
16 * was less than 2 hours work to get demand-loading completely implemented.
18 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead,
19 * current->executable is only used by the procfs. This allows a dispatch
20 * table to check for several different types of binary formats. We keep
21 * trying until we recognize the file or we run out of supported binary
22 * formats.
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/mman.h>
28 #include <linux/a.out.h>
29 #include <linux/stat.h>
30 #include <linux/fcntl.h>
31 #include <linux/smp_lock.h>
32 #include <linux/string.h>
33 #include <linux/init.h>
34 #include <linux/pagemap.h>
35 #include <linux/highmem.h>
36 #include <linux/spinlock.h>
37 #include <linux/key.h>
38 #include <linux/personality.h>
39 #include <linux/binfmts.h>
40 #include <linux/swap.h>
41 #include <linux/utsname.h>
42 #include <linux/pid_namespace.h>
43 #include <linux/module.h>
44 #include <linux/namei.h>
45 #include <linux/proc_fs.h>
46 #include <linux/ptrace.h>
47 #include <linux/mount.h>
48 #include <linux/security.h>
49 #include <linux/syscalls.h>
50 #include <linux/rmap.h>
51 #include <linux/tsacct_kern.h>
52 #include <linux/cn_proc.h>
53 #include <linux/audit.h>
55 #include <asm/uaccess.h>
56 #include <asm/mmu_context.h>
57 #include <asm/tlb.h>
59 #ifdef CONFIG_KMOD
60 #include <linux/kmod.h>
61 #endif
63 int core_uses_pid;
64 char core_pattern[CORENAME_MAX_SIZE] = "core";
65 int suid_dumpable = 0;
67 /* The maximal length of core_pattern is also specified in sysctl.c */
69 static LIST_HEAD(formats);
70 static DEFINE_RWLOCK(binfmt_lock);
72 int register_binfmt(struct linux_binfmt * fmt)
74 if (!fmt)
75 return -EINVAL;
76 write_lock(&binfmt_lock);
77 list_add(&fmt->lh, &formats);
78 write_unlock(&binfmt_lock);
79 return 0;
82 EXPORT_SYMBOL(register_binfmt);
84 void unregister_binfmt(struct linux_binfmt * fmt)
86 write_lock(&binfmt_lock);
87 list_del(&fmt->lh);
88 write_unlock(&binfmt_lock);
91 EXPORT_SYMBOL(unregister_binfmt);
93 static inline void put_binfmt(struct linux_binfmt * fmt)
95 module_put(fmt->module);
99 * Note that a shared library must be both readable and executable due to
100 * security reasons.
102 * Also note that we take the address to load from from the file itself.
104 asmlinkage long sys_uselib(const char __user * library)
106 struct file * file;
107 struct nameidata nd;
108 int error;
110 error = __user_path_lookup_open(library, LOOKUP_FOLLOW, &nd, FMODE_READ|FMODE_EXEC);
111 if (error)
112 goto out;
114 error = -EINVAL;
115 if (!S_ISREG(nd.path.dentry->d_inode->i_mode))
116 goto exit;
118 error = vfs_permission(&nd, MAY_READ | MAY_EXEC);
119 if (error)
120 goto exit;
122 file = nameidata_to_filp(&nd, O_RDONLY|O_LARGEFILE);
123 error = PTR_ERR(file);
124 if (IS_ERR(file))
125 goto out;
127 error = -ENOEXEC;
128 if(file->f_op) {
129 struct linux_binfmt * fmt;
131 read_lock(&binfmt_lock);
132 list_for_each_entry(fmt, &formats, lh) {
133 if (!fmt->load_shlib)
134 continue;
135 if (!try_module_get(fmt->module))
136 continue;
137 read_unlock(&binfmt_lock);
138 error = fmt->load_shlib(file);
139 read_lock(&binfmt_lock);
140 put_binfmt(fmt);
141 if (error != -ENOEXEC)
142 break;
144 read_unlock(&binfmt_lock);
146 fput(file);
147 out:
148 return error;
149 exit:
150 release_open_intent(&nd);
151 path_put(&nd.path);
152 goto out;
155 #ifdef CONFIG_MMU
157 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
158 int write)
160 struct page *page;
161 int ret;
163 #ifdef CONFIG_STACK_GROWSUP
164 if (write) {
165 ret = expand_stack_downwards(bprm->vma, pos);
166 if (ret < 0)
167 return NULL;
169 #endif
170 ret = get_user_pages(current, bprm->mm, pos,
171 1, write, 1, &page, NULL);
172 if (ret <= 0)
173 return NULL;
175 if (write) {
176 unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
177 struct rlimit *rlim;
180 * We've historically supported up to 32 pages (ARG_MAX)
181 * of argument strings even with small stacks
183 if (size <= ARG_MAX)
184 return page;
187 * Limit to 1/4-th the stack size for the argv+env strings.
188 * This ensures that:
189 * - the remaining binfmt code will not run out of stack space,
190 * - the program will have a reasonable amount of stack left
191 * to work from.
193 rlim = current->signal->rlim;
194 if (size > rlim[RLIMIT_STACK].rlim_cur / 4) {
195 put_page(page);
196 return NULL;
200 return page;
203 static void put_arg_page(struct page *page)
205 put_page(page);
208 static void free_arg_page(struct linux_binprm *bprm, int i)
212 static void free_arg_pages(struct linux_binprm *bprm)
216 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
217 struct page *page)
219 flush_cache_page(bprm->vma, pos, page_to_pfn(page));
222 static int __bprm_mm_init(struct linux_binprm *bprm)
224 int err = -ENOMEM;
225 struct vm_area_struct *vma = NULL;
226 struct mm_struct *mm = bprm->mm;
228 bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
229 if (!vma)
230 goto err;
232 down_write(&mm->mmap_sem);
233 vma->vm_mm = mm;
236 * Place the stack at the largest stack address the architecture
237 * supports. Later, we'll move this to an appropriate place. We don't
238 * use STACK_TOP because that can depend on attributes which aren't
239 * configured yet.
241 vma->vm_end = STACK_TOP_MAX;
242 vma->vm_start = vma->vm_end - PAGE_SIZE;
244 vma->vm_flags = VM_STACK_FLAGS;
245 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
246 err = insert_vm_struct(mm, vma);
247 if (err) {
248 up_write(&mm->mmap_sem);
249 goto err;
252 mm->stack_vm = mm->total_vm = 1;
253 up_write(&mm->mmap_sem);
255 bprm->p = vma->vm_end - sizeof(void *);
257 return 0;
259 err:
260 if (vma) {
261 bprm->vma = NULL;
262 kmem_cache_free(vm_area_cachep, vma);
265 return err;
268 static bool valid_arg_len(struct linux_binprm *bprm, long len)
270 return len <= MAX_ARG_STRLEN;
273 #else
275 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
276 int write)
278 struct page *page;
280 page = bprm->page[pos / PAGE_SIZE];
281 if (!page && write) {
282 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
283 if (!page)
284 return NULL;
285 bprm->page[pos / PAGE_SIZE] = page;
288 return page;
291 static void put_arg_page(struct page *page)
295 static void free_arg_page(struct linux_binprm *bprm, int i)
297 if (bprm->page[i]) {
298 __free_page(bprm->page[i]);
299 bprm->page[i] = NULL;
303 static void free_arg_pages(struct linux_binprm *bprm)
305 int i;
307 for (i = 0; i < MAX_ARG_PAGES; i++)
308 free_arg_page(bprm, i);
311 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
312 struct page *page)
316 static int __bprm_mm_init(struct linux_binprm *bprm)
318 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
319 return 0;
322 static bool valid_arg_len(struct linux_binprm *bprm, long len)
324 return len <= bprm->p;
327 #endif /* CONFIG_MMU */
330 * Create a new mm_struct and populate it with a temporary stack
331 * vm_area_struct. We don't have enough context at this point to set the stack
332 * flags, permissions, and offset, so we use temporary values. We'll update
333 * them later in setup_arg_pages().
335 int bprm_mm_init(struct linux_binprm *bprm)
337 int err;
338 struct mm_struct *mm = NULL;
340 bprm->mm = mm = mm_alloc();
341 err = -ENOMEM;
342 if (!mm)
343 goto err;
345 err = init_new_context(current, mm);
346 if (err)
347 goto err;
349 err = __bprm_mm_init(bprm);
350 if (err)
351 goto err;
353 return 0;
355 err:
356 if (mm) {
357 bprm->mm = NULL;
358 mmdrop(mm);
361 return err;
365 * count() counts the number of strings in array ARGV.
367 static int count(char __user * __user * argv, int max)
369 int i = 0;
371 if (argv != NULL) {
372 for (;;) {
373 char __user * p;
375 if (get_user(p, argv))
376 return -EFAULT;
377 if (!p)
378 break;
379 argv++;
380 if(++i > max)
381 return -E2BIG;
382 cond_resched();
385 return i;
389 * 'copy_strings()' copies argument/environment strings from the old
390 * processes's memory to the new process's stack. The call to get_user_pages()
391 * ensures the destination page is created and not swapped out.
393 static int copy_strings(int argc, char __user * __user * argv,
394 struct linux_binprm *bprm)
396 struct page *kmapped_page = NULL;
397 char *kaddr = NULL;
398 unsigned long kpos = 0;
399 int ret;
401 while (argc-- > 0) {
402 char __user *str;
403 int len;
404 unsigned long pos;
406 if (get_user(str, argv+argc) ||
407 !(len = strnlen_user(str, MAX_ARG_STRLEN))) {
408 ret = -EFAULT;
409 goto out;
412 if (!valid_arg_len(bprm, len)) {
413 ret = -E2BIG;
414 goto out;
417 /* We're going to work our way backwords. */
418 pos = bprm->p;
419 str += len;
420 bprm->p -= len;
422 while (len > 0) {
423 int offset, bytes_to_copy;
425 offset = pos % PAGE_SIZE;
426 if (offset == 0)
427 offset = PAGE_SIZE;
429 bytes_to_copy = offset;
430 if (bytes_to_copy > len)
431 bytes_to_copy = len;
433 offset -= bytes_to_copy;
434 pos -= bytes_to_copy;
435 str -= bytes_to_copy;
436 len -= bytes_to_copy;
438 if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
439 struct page *page;
441 page = get_arg_page(bprm, pos, 1);
442 if (!page) {
443 ret = -E2BIG;
444 goto out;
447 if (kmapped_page) {
448 flush_kernel_dcache_page(kmapped_page);
449 kunmap(kmapped_page);
450 put_arg_page(kmapped_page);
452 kmapped_page = page;
453 kaddr = kmap(kmapped_page);
454 kpos = pos & PAGE_MASK;
455 flush_arg_page(bprm, kpos, kmapped_page);
457 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
458 ret = -EFAULT;
459 goto out;
463 ret = 0;
464 out:
465 if (kmapped_page) {
466 flush_kernel_dcache_page(kmapped_page);
467 kunmap(kmapped_page);
468 put_arg_page(kmapped_page);
470 return ret;
474 * Like copy_strings, but get argv and its values from kernel memory.
476 int copy_strings_kernel(int argc,char ** argv, struct linux_binprm *bprm)
478 int r;
479 mm_segment_t oldfs = get_fs();
480 set_fs(KERNEL_DS);
481 r = copy_strings(argc, (char __user * __user *)argv, bprm);
482 set_fs(oldfs);
483 return r;
485 EXPORT_SYMBOL(copy_strings_kernel);
487 #ifdef CONFIG_MMU
490 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once
491 * the binfmt code determines where the new stack should reside, we shift it to
492 * its final location. The process proceeds as follows:
494 * 1) Use shift to calculate the new vma endpoints.
495 * 2) Extend vma to cover both the old and new ranges. This ensures the
496 * arguments passed to subsequent functions are consistent.
497 * 3) Move vma's page tables to the new range.
498 * 4) Free up any cleared pgd range.
499 * 5) Shrink the vma to cover only the new range.
501 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
503 struct mm_struct *mm = vma->vm_mm;
504 unsigned long old_start = vma->vm_start;
505 unsigned long old_end = vma->vm_end;
506 unsigned long length = old_end - old_start;
507 unsigned long new_start = old_start - shift;
508 unsigned long new_end = old_end - shift;
509 struct mmu_gather *tlb;
511 BUG_ON(new_start > new_end);
514 * ensure there are no vmas between where we want to go
515 * and where we are
517 if (vma != find_vma(mm, new_start))
518 return -EFAULT;
521 * cover the whole range: [new_start, old_end)
523 vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL);
526 * move the page tables downwards, on failure we rely on
527 * process cleanup to remove whatever mess we made.
529 if (length != move_page_tables(vma, old_start,
530 vma, new_start, length))
531 return -ENOMEM;
533 lru_add_drain();
534 tlb = tlb_gather_mmu(mm, 0);
535 if (new_end > old_start) {
537 * when the old and new regions overlap clear from new_end.
539 free_pgd_range(&tlb, new_end, old_end, new_end,
540 vma->vm_next ? vma->vm_next->vm_start : 0);
541 } else {
543 * otherwise, clean from old_start; this is done to not touch
544 * the address space in [new_end, old_start) some architectures
545 * have constraints on va-space that make this illegal (IA64) -
546 * for the others its just a little faster.
548 free_pgd_range(&tlb, old_start, old_end, new_end,
549 vma->vm_next ? vma->vm_next->vm_start : 0);
551 tlb_finish_mmu(tlb, new_end, old_end);
554 * shrink the vma to just the new range.
556 vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
558 return 0;
561 #define EXTRA_STACK_VM_PAGES 20 /* random */
564 * Finalizes the stack vm_area_struct. The flags and permissions are updated,
565 * the stack is optionally relocated, and some extra space is added.
567 int setup_arg_pages(struct linux_binprm *bprm,
568 unsigned long stack_top,
569 int executable_stack)
571 unsigned long ret;
572 unsigned long stack_shift;
573 struct mm_struct *mm = current->mm;
574 struct vm_area_struct *vma = bprm->vma;
575 struct vm_area_struct *prev = NULL;
576 unsigned long vm_flags;
577 unsigned long stack_base;
579 #ifdef CONFIG_STACK_GROWSUP
580 /* Limit stack size to 1GB */
581 stack_base = current->signal->rlim[RLIMIT_STACK].rlim_max;
582 if (stack_base > (1 << 30))
583 stack_base = 1 << 30;
585 /* Make sure we didn't let the argument array grow too large. */
586 if (vma->vm_end - vma->vm_start > stack_base)
587 return -ENOMEM;
589 stack_base = PAGE_ALIGN(stack_top - stack_base);
591 stack_shift = vma->vm_start - stack_base;
592 mm->arg_start = bprm->p - stack_shift;
593 bprm->p = vma->vm_end - stack_shift;
594 #else
595 stack_top = arch_align_stack(stack_top);
596 stack_top = PAGE_ALIGN(stack_top);
597 stack_shift = vma->vm_end - stack_top;
599 bprm->p -= stack_shift;
600 mm->arg_start = bprm->p;
601 #endif
603 if (bprm->loader)
604 bprm->loader -= stack_shift;
605 bprm->exec -= stack_shift;
607 down_write(&mm->mmap_sem);
608 vm_flags = vma->vm_flags;
611 * Adjust stack execute permissions; explicitly enable for
612 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
613 * (arch default) otherwise.
615 if (unlikely(executable_stack == EXSTACK_ENABLE_X))
616 vm_flags |= VM_EXEC;
617 else if (executable_stack == EXSTACK_DISABLE_X)
618 vm_flags &= ~VM_EXEC;
619 vm_flags |= mm->def_flags;
621 ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
622 vm_flags);
623 if (ret)
624 goto out_unlock;
625 BUG_ON(prev != vma);
627 /* Move stack pages down in memory. */
628 if (stack_shift) {
629 ret = shift_arg_pages(vma, stack_shift);
630 if (ret) {
631 up_write(&mm->mmap_sem);
632 return ret;
636 #ifdef CONFIG_STACK_GROWSUP
637 stack_base = vma->vm_end + EXTRA_STACK_VM_PAGES * PAGE_SIZE;
638 #else
639 stack_base = vma->vm_start - EXTRA_STACK_VM_PAGES * PAGE_SIZE;
640 #endif
641 ret = expand_stack(vma, stack_base);
642 if (ret)
643 ret = -EFAULT;
645 out_unlock:
646 up_write(&mm->mmap_sem);
647 return 0;
649 EXPORT_SYMBOL(setup_arg_pages);
651 #endif /* CONFIG_MMU */
653 struct file *open_exec(const char *name)
655 struct nameidata nd;
656 int err;
657 struct file *file;
659 err = path_lookup_open(AT_FDCWD, name, LOOKUP_FOLLOW, &nd, FMODE_READ|FMODE_EXEC);
660 file = ERR_PTR(err);
662 if (!err) {
663 struct inode *inode = nd.path.dentry->d_inode;
664 file = ERR_PTR(-EACCES);
665 if (S_ISREG(inode->i_mode)) {
666 int err = vfs_permission(&nd, MAY_EXEC);
667 file = ERR_PTR(err);
668 if (!err) {
669 file = nameidata_to_filp(&nd,
670 O_RDONLY|O_LARGEFILE);
671 if (!IS_ERR(file)) {
672 err = deny_write_access(file);
673 if (err) {
674 fput(file);
675 file = ERR_PTR(err);
678 out:
679 return file;
682 release_open_intent(&nd);
683 path_put(&nd.path);
685 goto out;
688 EXPORT_SYMBOL(open_exec);
690 int kernel_read(struct file *file, unsigned long offset,
691 char *addr, unsigned long count)
693 mm_segment_t old_fs;
694 loff_t pos = offset;
695 int result;
697 old_fs = get_fs();
698 set_fs(get_ds());
699 /* The cast to a user pointer is valid due to the set_fs() */
700 result = vfs_read(file, (void __user *)addr, count, &pos);
701 set_fs(old_fs);
702 return result;
705 EXPORT_SYMBOL(kernel_read);
707 static int exec_mmap(struct mm_struct *mm)
709 struct task_struct *tsk;
710 struct mm_struct * old_mm, *active_mm;
712 /* Notify parent that we're no longer interested in the old VM */
713 tsk = current;
714 old_mm = current->mm;
715 mm_release(tsk, old_mm);
717 if (old_mm) {
719 * Make sure that if there is a core dump in progress
720 * for the old mm, we get out and die instead of going
721 * through with the exec. We must hold mmap_sem around
722 * checking core_waiters and changing tsk->mm. The
723 * core-inducing thread will increment core_waiters for
724 * each thread whose ->mm == old_mm.
726 down_read(&old_mm->mmap_sem);
727 if (unlikely(old_mm->core_waiters)) {
728 up_read(&old_mm->mmap_sem);
729 return -EINTR;
732 task_lock(tsk);
733 active_mm = tsk->active_mm;
734 tsk->mm = mm;
735 tsk->active_mm = mm;
736 activate_mm(active_mm, mm);
737 task_unlock(tsk);
738 mm_update_next_owner(mm);
739 arch_pick_mmap_layout(mm);
740 if (old_mm) {
741 up_read(&old_mm->mmap_sem);
742 BUG_ON(active_mm != old_mm);
743 mmput(old_mm);
744 return 0;
746 mmdrop(active_mm);
747 return 0;
751 * This function makes sure the current process has its own signal table,
752 * so that flush_signal_handlers can later reset the handlers without
753 * disturbing other processes. (Other processes might share the signal
754 * table via the CLONE_SIGHAND option to clone().)
756 static int de_thread(struct task_struct *tsk)
758 struct signal_struct *sig = tsk->signal;
759 struct sighand_struct *oldsighand = tsk->sighand;
760 spinlock_t *lock = &oldsighand->siglock;
761 struct task_struct *leader = NULL;
762 int count;
764 if (thread_group_empty(tsk))
765 goto no_thread_group;
768 * Kill all other threads in the thread group.
769 * We must hold tasklist_lock to call zap_other_threads.
771 read_lock(&tasklist_lock);
772 spin_lock_irq(lock);
773 if (signal_group_exit(sig)) {
775 * Another group action in progress, just
776 * return so that the signal is processed.
778 spin_unlock_irq(lock);
779 read_unlock(&tasklist_lock);
780 return -EAGAIN;
784 * child_reaper ignores SIGKILL, change it now.
785 * Reparenting needs write_lock on tasklist_lock,
786 * so it is safe to do it under read_lock.
788 if (unlikely(tsk->group_leader == task_child_reaper(tsk)))
789 task_active_pid_ns(tsk)->child_reaper = tsk;
791 sig->group_exit_task = tsk;
792 zap_other_threads(tsk);
793 read_unlock(&tasklist_lock);
795 /* Account for the thread group leader hanging around: */
796 count = thread_group_leader(tsk) ? 1 : 2;
797 sig->notify_count = count;
798 while (atomic_read(&sig->count) > count) {
799 __set_current_state(TASK_UNINTERRUPTIBLE);
800 spin_unlock_irq(lock);
801 schedule();
802 spin_lock_irq(lock);
804 spin_unlock_irq(lock);
807 * At this point all other threads have exited, all we have to
808 * do is to wait for the thread group leader to become inactive,
809 * and to assume its PID:
811 if (!thread_group_leader(tsk)) {
812 leader = tsk->group_leader;
814 sig->notify_count = -1;
815 for (;;) {
816 write_lock_irq(&tasklist_lock);
817 if (likely(leader->exit_state))
818 break;
819 __set_current_state(TASK_UNINTERRUPTIBLE);
820 write_unlock_irq(&tasklist_lock);
821 schedule();
825 * The only record we have of the real-time age of a
826 * process, regardless of execs it's done, is start_time.
827 * All the past CPU time is accumulated in signal_struct
828 * from sister threads now dead. But in this non-leader
829 * exec, nothing survives from the original leader thread,
830 * whose birth marks the true age of this process now.
831 * When we take on its identity by switching to its PID, we
832 * also take its birthdate (always earlier than our own).
834 tsk->start_time = leader->start_time;
836 BUG_ON(!same_thread_group(leader, tsk));
837 BUG_ON(has_group_leader_pid(tsk));
839 * An exec() starts a new thread group with the
840 * TGID of the previous thread group. Rehash the
841 * two threads with a switched PID, and release
842 * the former thread group leader:
845 /* Become a process group leader with the old leader's pid.
846 * The old leader becomes a thread of the this thread group.
847 * Note: The old leader also uses this pid until release_task
848 * is called. Odd but simple and correct.
850 detach_pid(tsk, PIDTYPE_PID);
851 tsk->pid = leader->pid;
852 attach_pid(tsk, PIDTYPE_PID, task_pid(leader));
853 transfer_pid(leader, tsk, PIDTYPE_PGID);
854 transfer_pid(leader, tsk, PIDTYPE_SID);
855 list_replace_rcu(&leader->tasks, &tsk->tasks);
857 tsk->group_leader = tsk;
858 leader->group_leader = tsk;
860 tsk->exit_signal = SIGCHLD;
862 BUG_ON(leader->exit_state != EXIT_ZOMBIE);
863 leader->exit_state = EXIT_DEAD;
865 write_unlock_irq(&tasklist_lock);
868 sig->group_exit_task = NULL;
869 sig->notify_count = 0;
871 no_thread_group:
872 exit_itimers(sig);
873 if (leader)
874 release_task(leader);
876 if (atomic_read(&oldsighand->count) != 1) {
877 struct sighand_struct *newsighand;
879 * This ->sighand is shared with the CLONE_SIGHAND
880 * but not CLONE_THREAD task, switch to the new one.
882 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
883 if (!newsighand)
884 return -ENOMEM;
886 atomic_set(&newsighand->count, 1);
887 memcpy(newsighand->action, oldsighand->action,
888 sizeof(newsighand->action));
890 write_lock_irq(&tasklist_lock);
891 spin_lock(&oldsighand->siglock);
892 rcu_assign_pointer(tsk->sighand, newsighand);
893 spin_unlock(&oldsighand->siglock);
894 write_unlock_irq(&tasklist_lock);
896 __cleanup_sighand(oldsighand);
899 BUG_ON(!thread_group_leader(tsk));
900 return 0;
904 * These functions flushes out all traces of the currently running executable
905 * so that a new one can be started
907 static void flush_old_files(struct files_struct * files)
909 long j = -1;
910 struct fdtable *fdt;
912 spin_lock(&files->file_lock);
913 for (;;) {
914 unsigned long set, i;
916 j++;
917 i = j * __NFDBITS;
918 fdt = files_fdtable(files);
919 if (i >= fdt->max_fds)
920 break;
921 set = fdt->close_on_exec->fds_bits[j];
922 if (!set)
923 continue;
924 fdt->close_on_exec->fds_bits[j] = 0;
925 spin_unlock(&files->file_lock);
926 for ( ; set ; i++,set >>= 1) {
927 if (set & 1) {
928 sys_close(i);
931 spin_lock(&files->file_lock);
934 spin_unlock(&files->file_lock);
937 char *get_task_comm(char *buf, struct task_struct *tsk)
939 /* buf must be at least sizeof(tsk->comm) in size */
940 task_lock(tsk);
941 strncpy(buf, tsk->comm, sizeof(tsk->comm));
942 task_unlock(tsk);
943 return buf;
946 void set_task_comm(struct task_struct *tsk, char *buf)
948 task_lock(tsk);
949 strlcpy(tsk->comm, buf, sizeof(tsk->comm));
950 task_unlock(tsk);
953 int flush_old_exec(struct linux_binprm * bprm)
955 char * name;
956 int i, ch, retval;
957 char tcomm[sizeof(current->comm)];
960 * Make sure we have a private signal table and that
961 * we are unassociated from the previous thread group.
963 retval = de_thread(current);
964 if (retval)
965 goto out;
967 set_mm_exe_file(bprm->mm, bprm->file);
970 * Release all of the old mmap stuff
972 retval = exec_mmap(bprm->mm);
973 if (retval)
974 goto out;
976 bprm->mm = NULL; /* We're using it now */
978 /* This is the point of no return */
979 current->sas_ss_sp = current->sas_ss_size = 0;
981 if (current->euid == current->uid && current->egid == current->gid)
982 set_dumpable(current->mm, 1);
983 else
984 set_dumpable(current->mm, suid_dumpable);
986 name = bprm->filename;
988 /* Copies the binary name from after last slash */
989 for (i=0; (ch = *(name++)) != '\0';) {
990 if (ch == '/')
991 i = 0; /* overwrite what we wrote */
992 else
993 if (i < (sizeof(tcomm) - 1))
994 tcomm[i++] = ch;
996 tcomm[i] = '\0';
997 set_task_comm(current, tcomm);
999 current->flags &= ~PF_RANDOMIZE;
1000 flush_thread();
1002 /* Set the new mm task size. We have to do that late because it may
1003 * depend on TIF_32BIT which is only updated in flush_thread() on
1004 * some architectures like powerpc
1006 current->mm->task_size = TASK_SIZE;
1008 if (bprm->e_uid != current->euid || bprm->e_gid != current->egid) {
1009 suid_keys(current);
1010 set_dumpable(current->mm, suid_dumpable);
1011 current->pdeath_signal = 0;
1012 } else if (file_permission(bprm->file, MAY_READ) ||
1013 (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP)) {
1014 suid_keys(current);
1015 set_dumpable(current->mm, suid_dumpable);
1018 /* An exec changes our domain. We are no longer part of the thread
1019 group */
1021 current->self_exec_id++;
1023 flush_signal_handlers(current, 0);
1024 flush_old_files(current->files);
1026 return 0;
1028 out:
1029 return retval;
1032 EXPORT_SYMBOL(flush_old_exec);
1035 * Fill the binprm structure from the inode.
1036 * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1038 int prepare_binprm(struct linux_binprm *bprm)
1040 int mode;
1041 struct inode * inode = bprm->file->f_path.dentry->d_inode;
1042 int retval;
1044 mode = inode->i_mode;
1045 if (bprm->file->f_op == NULL)
1046 return -EACCES;
1048 bprm->e_uid = current->euid;
1049 bprm->e_gid = current->egid;
1051 if(!(bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)) {
1052 /* Set-uid? */
1053 if (mode & S_ISUID) {
1054 current->personality &= ~PER_CLEAR_ON_SETID;
1055 bprm->e_uid = inode->i_uid;
1058 /* Set-gid? */
1060 * If setgid is set but no group execute bit then this
1061 * is a candidate for mandatory locking, not a setgid
1062 * executable.
1064 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1065 current->personality &= ~PER_CLEAR_ON_SETID;
1066 bprm->e_gid = inode->i_gid;
1070 /* fill in binprm security blob */
1071 retval = security_bprm_set(bprm);
1072 if (retval)
1073 return retval;
1075 memset(bprm->buf,0,BINPRM_BUF_SIZE);
1076 return kernel_read(bprm->file,0,bprm->buf,BINPRM_BUF_SIZE);
1079 EXPORT_SYMBOL(prepare_binprm);
1081 static int unsafe_exec(struct task_struct *p)
1083 int unsafe = 0;
1084 if (p->ptrace & PT_PTRACED) {
1085 if (p->ptrace & PT_PTRACE_CAP)
1086 unsafe |= LSM_UNSAFE_PTRACE_CAP;
1087 else
1088 unsafe |= LSM_UNSAFE_PTRACE;
1090 if (atomic_read(&p->fs->count) > 1 ||
1091 atomic_read(&p->files->count) > 1 ||
1092 atomic_read(&p->sighand->count) > 1)
1093 unsafe |= LSM_UNSAFE_SHARE;
1095 return unsafe;
1098 void compute_creds(struct linux_binprm *bprm)
1100 int unsafe;
1102 if (bprm->e_uid != current->uid) {
1103 suid_keys(current);
1104 current->pdeath_signal = 0;
1106 exec_keys(current);
1108 task_lock(current);
1109 unsafe = unsafe_exec(current);
1110 security_bprm_apply_creds(bprm, unsafe);
1111 task_unlock(current);
1112 security_bprm_post_apply_creds(bprm);
1114 EXPORT_SYMBOL(compute_creds);
1117 * Arguments are '\0' separated strings found at the location bprm->p
1118 * points to; chop off the first by relocating brpm->p to right after
1119 * the first '\0' encountered.
1121 int remove_arg_zero(struct linux_binprm *bprm)
1123 int ret = 0;
1124 unsigned long offset;
1125 char *kaddr;
1126 struct page *page;
1128 if (!bprm->argc)
1129 return 0;
1131 do {
1132 offset = bprm->p & ~PAGE_MASK;
1133 page = get_arg_page(bprm, bprm->p, 0);
1134 if (!page) {
1135 ret = -EFAULT;
1136 goto out;
1138 kaddr = kmap_atomic(page, KM_USER0);
1140 for (; offset < PAGE_SIZE && kaddr[offset];
1141 offset++, bprm->p++)
1144 kunmap_atomic(kaddr, KM_USER0);
1145 put_arg_page(page);
1147 if (offset == PAGE_SIZE)
1148 free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1);
1149 } while (offset == PAGE_SIZE);
1151 bprm->p++;
1152 bprm->argc--;
1153 ret = 0;
1155 out:
1156 return ret;
1158 EXPORT_SYMBOL(remove_arg_zero);
1161 * cycle the list of binary formats handler, until one recognizes the image
1163 int search_binary_handler(struct linux_binprm *bprm,struct pt_regs *regs)
1165 int try,retval;
1166 struct linux_binfmt *fmt;
1167 #if defined(__alpha__) && defined(CONFIG_ARCH_SUPPORTS_AOUT)
1168 /* handle /sbin/loader.. */
1170 struct exec * eh = (struct exec *) bprm->buf;
1172 if (!bprm->loader && eh->fh.f_magic == 0x183 &&
1173 (eh->fh.f_flags & 0x3000) == 0x3000)
1175 struct file * file;
1176 unsigned long loader;
1178 allow_write_access(bprm->file);
1179 fput(bprm->file);
1180 bprm->file = NULL;
1182 loader = bprm->vma->vm_end - sizeof(void *);
1184 file = open_exec("/sbin/loader");
1185 retval = PTR_ERR(file);
1186 if (IS_ERR(file))
1187 return retval;
1189 /* Remember if the application is TASO. */
1190 bprm->sh_bang = eh->ah.entry < 0x100000000UL;
1192 bprm->file = file;
1193 bprm->loader = loader;
1194 retval = prepare_binprm(bprm);
1195 if (retval<0)
1196 return retval;
1197 /* should call search_binary_handler recursively here,
1198 but it does not matter */
1201 #endif
1202 retval = security_bprm_check(bprm);
1203 if (retval)
1204 return retval;
1206 /* kernel module loader fixup */
1207 /* so we don't try to load run modprobe in kernel space. */
1208 set_fs(USER_DS);
1210 retval = audit_bprm(bprm);
1211 if (retval)
1212 return retval;
1214 retval = -ENOENT;
1215 for (try=0; try<2; try++) {
1216 read_lock(&binfmt_lock);
1217 list_for_each_entry(fmt, &formats, lh) {
1218 int (*fn)(struct linux_binprm *, struct pt_regs *) = fmt->load_binary;
1219 if (!fn)
1220 continue;
1221 if (!try_module_get(fmt->module))
1222 continue;
1223 read_unlock(&binfmt_lock);
1224 retval = fn(bprm, regs);
1225 if (retval >= 0) {
1226 put_binfmt(fmt);
1227 allow_write_access(bprm->file);
1228 if (bprm->file)
1229 fput(bprm->file);
1230 bprm->file = NULL;
1231 current->did_exec = 1;
1232 proc_exec_connector(current);
1233 return retval;
1235 read_lock(&binfmt_lock);
1236 put_binfmt(fmt);
1237 if (retval != -ENOEXEC || bprm->mm == NULL)
1238 break;
1239 if (!bprm->file) {
1240 read_unlock(&binfmt_lock);
1241 return retval;
1244 read_unlock(&binfmt_lock);
1245 if (retval != -ENOEXEC || bprm->mm == NULL) {
1246 break;
1247 #ifdef CONFIG_KMOD
1248 }else{
1249 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1250 if (printable(bprm->buf[0]) &&
1251 printable(bprm->buf[1]) &&
1252 printable(bprm->buf[2]) &&
1253 printable(bprm->buf[3]))
1254 break; /* -ENOEXEC */
1255 request_module("binfmt-%04x", *(unsigned short *)(&bprm->buf[2]));
1256 #endif
1259 return retval;
1262 EXPORT_SYMBOL(search_binary_handler);
1265 * sys_execve() executes a new program.
1267 int do_execve(char * filename,
1268 char __user *__user *argv,
1269 char __user *__user *envp,
1270 struct pt_regs * regs)
1272 struct linux_binprm *bprm;
1273 struct file *file;
1274 struct files_struct *displaced;
1275 int retval;
1277 retval = unshare_files(&displaced);
1278 if (retval)
1279 goto out_ret;
1281 retval = -ENOMEM;
1282 bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1283 if (!bprm)
1284 goto out_files;
1286 file = open_exec(filename);
1287 retval = PTR_ERR(file);
1288 if (IS_ERR(file))
1289 goto out_kfree;
1291 sched_exec();
1293 bprm->file = file;
1294 bprm->filename = filename;
1295 bprm->interp = filename;
1297 retval = bprm_mm_init(bprm);
1298 if (retval)
1299 goto out_file;
1301 bprm->argc = count(argv, MAX_ARG_STRINGS);
1302 if ((retval = bprm->argc) < 0)
1303 goto out_mm;
1305 bprm->envc = count(envp, MAX_ARG_STRINGS);
1306 if ((retval = bprm->envc) < 0)
1307 goto out_mm;
1309 retval = security_bprm_alloc(bprm);
1310 if (retval)
1311 goto out;
1313 retval = prepare_binprm(bprm);
1314 if (retval < 0)
1315 goto out;
1317 retval = copy_strings_kernel(1, &bprm->filename, bprm);
1318 if (retval < 0)
1319 goto out;
1321 bprm->exec = bprm->p;
1322 retval = copy_strings(bprm->envc, envp, bprm);
1323 if (retval < 0)
1324 goto out;
1326 retval = copy_strings(bprm->argc, argv, bprm);
1327 if (retval < 0)
1328 goto out;
1330 retval = search_binary_handler(bprm,regs);
1331 if (retval >= 0) {
1332 /* execve success */
1333 free_arg_pages(bprm);
1334 security_bprm_free(bprm);
1335 acct_update_integrals(current);
1336 kfree(bprm);
1337 if (displaced)
1338 put_files_struct(displaced);
1339 return retval;
1342 out:
1343 free_arg_pages(bprm);
1344 if (bprm->security)
1345 security_bprm_free(bprm);
1347 out_mm:
1348 if (bprm->mm)
1349 mmput (bprm->mm);
1351 out_file:
1352 if (bprm->file) {
1353 allow_write_access(bprm->file);
1354 fput(bprm->file);
1356 out_kfree:
1357 kfree(bprm);
1359 out_files:
1360 if (displaced)
1361 reset_files_struct(displaced);
1362 out_ret:
1363 return retval;
1366 int set_binfmt(struct linux_binfmt *new)
1368 struct linux_binfmt *old = current->binfmt;
1370 if (new) {
1371 if (!try_module_get(new->module))
1372 return -1;
1374 current->binfmt = new;
1375 if (old)
1376 module_put(old->module);
1377 return 0;
1380 EXPORT_SYMBOL(set_binfmt);
1382 /* format_corename will inspect the pattern parameter, and output a
1383 * name into corename, which must have space for at least
1384 * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
1386 static int format_corename(char *corename, const char *pattern, long signr)
1388 const char *pat_ptr = pattern;
1389 char *out_ptr = corename;
1390 char *const out_end = corename + CORENAME_MAX_SIZE;
1391 int rc;
1392 int pid_in_pattern = 0;
1393 int ispipe = 0;
1395 if (*pattern == '|')
1396 ispipe = 1;
1398 /* Repeat as long as we have more pattern to process and more output
1399 space */
1400 while (*pat_ptr) {
1401 if (*pat_ptr != '%') {
1402 if (out_ptr == out_end)
1403 goto out;
1404 *out_ptr++ = *pat_ptr++;
1405 } else {
1406 switch (*++pat_ptr) {
1407 case 0:
1408 goto out;
1409 /* Double percent, output one percent */
1410 case '%':
1411 if (out_ptr == out_end)
1412 goto out;
1413 *out_ptr++ = '%';
1414 break;
1415 /* pid */
1416 case 'p':
1417 pid_in_pattern = 1;
1418 rc = snprintf(out_ptr, out_end - out_ptr,
1419 "%d", task_tgid_vnr(current));
1420 if (rc > out_end - out_ptr)
1421 goto out;
1422 out_ptr += rc;
1423 break;
1424 /* uid */
1425 case 'u':
1426 rc = snprintf(out_ptr, out_end - out_ptr,
1427 "%d", current->uid);
1428 if (rc > out_end - out_ptr)
1429 goto out;
1430 out_ptr += rc;
1431 break;
1432 /* gid */
1433 case 'g':
1434 rc = snprintf(out_ptr, out_end - out_ptr,
1435 "%d", current->gid);
1436 if (rc > out_end - out_ptr)
1437 goto out;
1438 out_ptr += rc;
1439 break;
1440 /* signal that caused the coredump */
1441 case 's':
1442 rc = snprintf(out_ptr, out_end - out_ptr,
1443 "%ld", signr);
1444 if (rc > out_end - out_ptr)
1445 goto out;
1446 out_ptr += rc;
1447 break;
1448 /* UNIX time of coredump */
1449 case 't': {
1450 struct timeval tv;
1451 do_gettimeofday(&tv);
1452 rc = snprintf(out_ptr, out_end - out_ptr,
1453 "%lu", tv.tv_sec);
1454 if (rc > out_end - out_ptr)
1455 goto out;
1456 out_ptr += rc;
1457 break;
1459 /* hostname */
1460 case 'h':
1461 down_read(&uts_sem);
1462 rc = snprintf(out_ptr, out_end - out_ptr,
1463 "%s", utsname()->nodename);
1464 up_read(&uts_sem);
1465 if (rc > out_end - out_ptr)
1466 goto out;
1467 out_ptr += rc;
1468 break;
1469 /* executable */
1470 case 'e':
1471 rc = snprintf(out_ptr, out_end - out_ptr,
1472 "%s", current->comm);
1473 if (rc > out_end - out_ptr)
1474 goto out;
1475 out_ptr += rc;
1476 break;
1477 /* core limit size */
1478 case 'c':
1479 rc = snprintf(out_ptr, out_end - out_ptr,
1480 "%lu", current->signal->rlim[RLIMIT_CORE].rlim_cur);
1481 if (rc > out_end - out_ptr)
1482 goto out;
1483 out_ptr += rc;
1484 break;
1485 default:
1486 break;
1488 ++pat_ptr;
1491 /* Backward compatibility with core_uses_pid:
1493 * If core_pattern does not include a %p (as is the default)
1494 * and core_uses_pid is set, then .%pid will be appended to
1495 * the filename. Do not do this for piped commands. */
1496 if (!ispipe && !pid_in_pattern
1497 && (core_uses_pid || atomic_read(&current->mm->mm_users) != 1)) {
1498 rc = snprintf(out_ptr, out_end - out_ptr,
1499 ".%d", task_tgid_vnr(current));
1500 if (rc > out_end - out_ptr)
1501 goto out;
1502 out_ptr += rc;
1504 out:
1505 *out_ptr = 0;
1506 return ispipe;
1509 static void zap_process(struct task_struct *start)
1511 struct task_struct *t;
1513 start->signal->flags = SIGNAL_GROUP_EXIT;
1514 start->signal->group_stop_count = 0;
1516 t = start;
1517 do {
1518 if (t != current && t->mm) {
1519 t->mm->core_waiters++;
1520 sigaddset(&t->pending.signal, SIGKILL);
1521 signal_wake_up(t, 1);
1523 } while ((t = next_thread(t)) != start);
1526 static inline int zap_threads(struct task_struct *tsk, struct mm_struct *mm,
1527 int exit_code)
1529 struct task_struct *g, *p;
1530 unsigned long flags;
1531 int err = -EAGAIN;
1533 spin_lock_irq(&tsk->sighand->siglock);
1534 if (!signal_group_exit(tsk->signal)) {
1535 tsk->signal->group_exit_code = exit_code;
1536 zap_process(tsk);
1537 err = 0;
1539 spin_unlock_irq(&tsk->sighand->siglock);
1540 if (err)
1541 return err;
1543 if (atomic_read(&mm->mm_users) == mm->core_waiters + 1)
1544 goto done;
1546 rcu_read_lock();
1547 for_each_process(g) {
1548 if (g == tsk->group_leader)
1549 continue;
1551 p = g;
1552 do {
1553 if (p->mm) {
1554 if (p->mm == mm) {
1556 * p->sighand can't disappear, but
1557 * may be changed by de_thread()
1559 lock_task_sighand(p, &flags);
1560 zap_process(p);
1561 unlock_task_sighand(p, &flags);
1563 break;
1565 } while ((p = next_thread(p)) != g);
1567 rcu_read_unlock();
1568 done:
1569 return mm->core_waiters;
1572 static int coredump_wait(int exit_code)
1574 struct task_struct *tsk = current;
1575 struct mm_struct *mm = tsk->mm;
1576 struct completion startup_done;
1577 struct completion *vfork_done;
1578 int core_waiters;
1580 init_completion(&mm->core_done);
1581 init_completion(&startup_done);
1582 mm->core_startup_done = &startup_done;
1584 core_waiters = zap_threads(tsk, mm, exit_code);
1585 up_write(&mm->mmap_sem);
1587 if (unlikely(core_waiters < 0))
1588 goto fail;
1591 * Make sure nobody is waiting for us to release the VM,
1592 * otherwise we can deadlock when we wait on each other
1594 vfork_done = tsk->vfork_done;
1595 if (vfork_done) {
1596 tsk->vfork_done = NULL;
1597 complete(vfork_done);
1600 if (core_waiters)
1601 wait_for_completion(&startup_done);
1602 fail:
1603 BUG_ON(mm->core_waiters);
1604 return core_waiters;
1608 * set_dumpable converts traditional three-value dumpable to two flags and
1609 * stores them into mm->flags. It modifies lower two bits of mm->flags, but
1610 * these bits are not changed atomically. So get_dumpable can observe the
1611 * intermediate state. To avoid doing unexpected behavior, get get_dumpable
1612 * return either old dumpable or new one by paying attention to the order of
1613 * modifying the bits.
1615 * dumpable | mm->flags (binary)
1616 * old new | initial interim final
1617 * ---------+-----------------------
1618 * 0 1 | 00 01 01
1619 * 0 2 | 00 10(*) 11
1620 * 1 0 | 01 00 00
1621 * 1 2 | 01 11 11
1622 * 2 0 | 11 10(*) 00
1623 * 2 1 | 11 11 01
1625 * (*) get_dumpable regards interim value of 10 as 11.
1627 void set_dumpable(struct mm_struct *mm, int value)
1629 switch (value) {
1630 case 0:
1631 clear_bit(MMF_DUMPABLE, &mm->flags);
1632 smp_wmb();
1633 clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1634 break;
1635 case 1:
1636 set_bit(MMF_DUMPABLE, &mm->flags);
1637 smp_wmb();
1638 clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1639 break;
1640 case 2:
1641 set_bit(MMF_DUMP_SECURELY, &mm->flags);
1642 smp_wmb();
1643 set_bit(MMF_DUMPABLE, &mm->flags);
1644 break;
1648 int get_dumpable(struct mm_struct *mm)
1650 int ret;
1652 ret = mm->flags & 0x3;
1653 return (ret >= 2) ? 2 : ret;
1656 int do_coredump(long signr, int exit_code, struct pt_regs * regs)
1658 char corename[CORENAME_MAX_SIZE + 1];
1659 struct mm_struct *mm = current->mm;
1660 struct linux_binfmt * binfmt;
1661 struct inode * inode;
1662 struct file * file;
1663 int retval = 0;
1664 int fsuid = current->fsuid;
1665 int flag = 0;
1666 int ispipe = 0;
1667 unsigned long core_limit = current->signal->rlim[RLIMIT_CORE].rlim_cur;
1668 char **helper_argv = NULL;
1669 int helper_argc = 0;
1670 char *delimit;
1672 audit_core_dumps(signr);
1674 binfmt = current->binfmt;
1675 if (!binfmt || !binfmt->core_dump)
1676 goto fail;
1677 down_write(&mm->mmap_sem);
1679 * If another thread got here first, or we are not dumpable, bail out.
1681 if (mm->core_waiters || !get_dumpable(mm)) {
1682 up_write(&mm->mmap_sem);
1683 goto fail;
1687 * We cannot trust fsuid as being the "true" uid of the
1688 * process nor do we know its entire history. We only know it
1689 * was tainted so we dump it as root in mode 2.
1691 if (get_dumpable(mm) == 2) { /* Setuid core dump mode */
1692 flag = O_EXCL; /* Stop rewrite attacks */
1693 current->fsuid = 0; /* Dump root private */
1696 retval = coredump_wait(exit_code);
1697 if (retval < 0)
1698 goto fail;
1701 * Clear any false indication of pending signals that might
1702 * be seen by the filesystem code called to write the core file.
1704 clear_thread_flag(TIF_SIGPENDING);
1707 * lock_kernel() because format_corename() is controlled by sysctl, which
1708 * uses lock_kernel()
1710 lock_kernel();
1711 ispipe = format_corename(corename, core_pattern, signr);
1712 unlock_kernel();
1714 * Don't bother to check the RLIMIT_CORE value if core_pattern points
1715 * to a pipe. Since we're not writing directly to the filesystem
1716 * RLIMIT_CORE doesn't really apply, as no actual core file will be
1717 * created unless the pipe reader choses to write out the core file
1718 * at which point file size limits and permissions will be imposed
1719 * as it does with any other process
1721 if ((!ispipe) && (core_limit < binfmt->min_coredump))
1722 goto fail_unlock;
1724 if (ispipe) {
1725 helper_argv = argv_split(GFP_KERNEL, corename+1, &helper_argc);
1726 /* Terminate the string before the first option */
1727 delimit = strchr(corename, ' ');
1728 if (delimit)
1729 *delimit = '\0';
1730 delimit = strrchr(helper_argv[0], '/');
1731 if (delimit)
1732 delimit++;
1733 else
1734 delimit = helper_argv[0];
1735 if (!strcmp(delimit, current->comm)) {
1736 printk(KERN_NOTICE "Recursive core dump detected, "
1737 "aborting\n");
1738 goto fail_unlock;
1741 core_limit = RLIM_INFINITY;
1743 /* SIGPIPE can happen, but it's just never processed */
1744 if (call_usermodehelper_pipe(corename+1, helper_argv, NULL,
1745 &file)) {
1746 printk(KERN_INFO "Core dump to %s pipe failed\n",
1747 corename);
1748 goto fail_unlock;
1750 } else
1751 file = filp_open(corename,
1752 O_CREAT | 2 | O_NOFOLLOW | O_LARGEFILE | flag,
1753 0600);
1754 if (IS_ERR(file))
1755 goto fail_unlock;
1756 inode = file->f_path.dentry->d_inode;
1757 if (inode->i_nlink > 1)
1758 goto close_fail; /* multiple links - don't dump */
1759 if (!ispipe && d_unhashed(file->f_path.dentry))
1760 goto close_fail;
1762 /* AK: actually i see no reason to not allow this for named pipes etc.,
1763 but keep the previous behaviour for now. */
1764 if (!ispipe && !S_ISREG(inode->i_mode))
1765 goto close_fail;
1767 * Dont allow local users get cute and trick others to coredump
1768 * into their pre-created files:
1770 if (inode->i_uid != current->fsuid)
1771 goto close_fail;
1772 if (!file->f_op)
1773 goto close_fail;
1774 if (!file->f_op->write)
1775 goto close_fail;
1776 if (!ispipe && do_truncate(file->f_path.dentry, 0, 0, file) != 0)
1777 goto close_fail;
1779 retval = binfmt->core_dump(signr, regs, file, core_limit);
1781 if (retval)
1782 current->signal->group_exit_code |= 0x80;
1783 close_fail:
1784 filp_close(file, NULL);
1785 fail_unlock:
1786 if (helper_argv)
1787 argv_free(helper_argv);
1789 current->fsuid = fsuid;
1790 complete_all(&mm->core_done);
1791 fail:
1792 return retval;