slab allocators: Remove SLAB_CTOR_ATOMIC
[linux-2.6/libata-dev.git] / net / socket.c
blob759825b7ca263b4073d39338debc7a4a04a4a6a1
1 /*
2 * NET An implementation of the SOCKET network access protocol.
4 * Version: @(#)socket.c 1.1.93 18/02/95
6 * Authors: Orest Zborowski, <obz@Kodak.COM>
7 * Ross Biro
8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Fixes:
11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
12 * shutdown()
13 * Alan Cox : verify_area() fixes
14 * Alan Cox : Removed DDI
15 * Jonathan Kamens : SOCK_DGRAM reconnect bug
16 * Alan Cox : Moved a load of checks to the very
17 * top level.
18 * Alan Cox : Move address structures to/from user
19 * mode above the protocol layers.
20 * Rob Janssen : Allow 0 length sends.
21 * Alan Cox : Asynchronous I/O support (cribbed from the
22 * tty drivers).
23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
24 * Jeff Uphoff : Made max number of sockets command-line
25 * configurable.
26 * Matti Aarnio : Made the number of sockets dynamic,
27 * to be allocated when needed, and mr.
28 * Uphoff's max is used as max to be
29 * allowed to allocate.
30 * Linus : Argh. removed all the socket allocation
31 * altogether: it's in the inode now.
32 * Alan Cox : Made sock_alloc()/sock_release() public
33 * for NetROM and future kernel nfsd type
34 * stuff.
35 * Alan Cox : sendmsg/recvmsg basics.
36 * Tom Dyas : Export net symbols.
37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
38 * Alan Cox : Added thread locking to sys_* calls
39 * for sockets. May have errors at the
40 * moment.
41 * Kevin Buhr : Fixed the dumb errors in the above.
42 * Andi Kleen : Some small cleanups, optimizations,
43 * and fixed a copy_from_user() bug.
44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
45 * Tigran Aivazian : Made listen(2) backlog sanity checks
46 * protocol-independent
49 * This program is free software; you can redistribute it and/or
50 * modify it under the terms of the GNU General Public License
51 * as published by the Free Software Foundation; either version
52 * 2 of the License, or (at your option) any later version.
55 * This module is effectively the top level interface to the BSD socket
56 * paradigm.
58 * Based upon Swansea University Computer Society NET3.039
61 #include <linux/mm.h>
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/rcupdate.h>
67 #include <linux/netdevice.h>
68 #include <linux/proc_fs.h>
69 #include <linux/seq_file.h>
70 #include <linux/mutex.h>
71 #include <linux/wanrouter.h>
72 #include <linux/if_bridge.h>
73 #include <linux/if_frad.h>
74 #include <linux/if_vlan.h>
75 #include <linux/init.h>
76 #include <linux/poll.h>
77 #include <linux/cache.h>
78 #include <linux/module.h>
79 #include <linux/highmem.h>
80 #include <linux/mount.h>
81 #include <linux/security.h>
82 #include <linux/syscalls.h>
83 #include <linux/compat.h>
84 #include <linux/kmod.h>
85 #include <linux/audit.h>
86 #include <linux/wireless.h>
88 #include <asm/uaccess.h>
89 #include <asm/unistd.h>
91 #include <net/compat.h>
93 #include <net/sock.h>
94 #include <linux/netfilter.h>
96 static int sock_no_open(struct inode *irrelevant, struct file *dontcare);
97 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
98 unsigned long nr_segs, loff_t pos);
99 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
100 unsigned long nr_segs, loff_t pos);
101 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
103 static int sock_close(struct inode *inode, struct file *file);
104 static unsigned int sock_poll(struct file *file,
105 struct poll_table_struct *wait);
106 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
107 #ifdef CONFIG_COMPAT
108 static long compat_sock_ioctl(struct file *file,
109 unsigned int cmd, unsigned long arg);
110 #endif
111 static int sock_fasync(int fd, struct file *filp, int on);
112 static ssize_t sock_sendpage(struct file *file, struct page *page,
113 int offset, size_t size, loff_t *ppos, int more);
116 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
117 * in the operation structures but are done directly via the socketcall() multiplexor.
120 static const struct file_operations socket_file_ops = {
121 .owner = THIS_MODULE,
122 .llseek = no_llseek,
123 .aio_read = sock_aio_read,
124 .aio_write = sock_aio_write,
125 .poll = sock_poll,
126 .unlocked_ioctl = sock_ioctl,
127 #ifdef CONFIG_COMPAT
128 .compat_ioctl = compat_sock_ioctl,
129 #endif
130 .mmap = sock_mmap,
131 .open = sock_no_open, /* special open code to disallow open via /proc */
132 .release = sock_close,
133 .fasync = sock_fasync,
134 .sendpage = sock_sendpage,
135 .splice_write = generic_splice_sendpage,
139 * The protocol list. Each protocol is registered in here.
142 static DEFINE_SPINLOCK(net_family_lock);
143 static const struct net_proto_family *net_families[NPROTO] __read_mostly;
146 * Statistics counters of the socket lists
149 static DEFINE_PER_CPU(int, sockets_in_use) = 0;
152 * Support routines.
153 * Move socket addresses back and forth across the kernel/user
154 * divide and look after the messy bits.
157 #define MAX_SOCK_ADDR 128 /* 108 for Unix domain -
158 16 for IP, 16 for IPX,
159 24 for IPv6,
160 about 80 for AX.25
161 must be at least one bigger than
162 the AF_UNIX size (see net/unix/af_unix.c
163 :unix_mkname()).
167 * move_addr_to_kernel - copy a socket address into kernel space
168 * @uaddr: Address in user space
169 * @kaddr: Address in kernel space
170 * @ulen: Length in user space
172 * The address is copied into kernel space. If the provided address is
173 * too long an error code of -EINVAL is returned. If the copy gives
174 * invalid addresses -EFAULT is returned. On a success 0 is returned.
177 int move_addr_to_kernel(void __user *uaddr, int ulen, void *kaddr)
179 if (ulen < 0 || ulen > MAX_SOCK_ADDR)
180 return -EINVAL;
181 if (ulen == 0)
182 return 0;
183 if (copy_from_user(kaddr, uaddr, ulen))
184 return -EFAULT;
185 return audit_sockaddr(ulen, kaddr);
189 * move_addr_to_user - copy an address to user space
190 * @kaddr: kernel space address
191 * @klen: length of address in kernel
192 * @uaddr: user space address
193 * @ulen: pointer to user length field
195 * The value pointed to by ulen on entry is the buffer length available.
196 * This is overwritten with the buffer space used. -EINVAL is returned
197 * if an overlong buffer is specified or a negative buffer size. -EFAULT
198 * is returned if either the buffer or the length field are not
199 * accessible.
200 * After copying the data up to the limit the user specifies, the true
201 * length of the data is written over the length limit the user
202 * specified. Zero is returned for a success.
205 int move_addr_to_user(void *kaddr, int klen, void __user *uaddr,
206 int __user *ulen)
208 int err;
209 int len;
211 err = get_user(len, ulen);
212 if (err)
213 return err;
214 if (len > klen)
215 len = klen;
216 if (len < 0 || len > MAX_SOCK_ADDR)
217 return -EINVAL;
218 if (len) {
219 if (audit_sockaddr(klen, kaddr))
220 return -ENOMEM;
221 if (copy_to_user(uaddr, kaddr, len))
222 return -EFAULT;
225 * "fromlen shall refer to the value before truncation.."
226 * 1003.1g
228 return __put_user(klen, ulen);
231 #define SOCKFS_MAGIC 0x534F434B
233 static struct kmem_cache *sock_inode_cachep __read_mostly;
235 static struct inode *sock_alloc_inode(struct super_block *sb)
237 struct socket_alloc *ei;
239 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
240 if (!ei)
241 return NULL;
242 init_waitqueue_head(&ei->socket.wait);
244 ei->socket.fasync_list = NULL;
245 ei->socket.state = SS_UNCONNECTED;
246 ei->socket.flags = 0;
247 ei->socket.ops = NULL;
248 ei->socket.sk = NULL;
249 ei->socket.file = NULL;
251 return &ei->vfs_inode;
254 static void sock_destroy_inode(struct inode *inode)
256 kmem_cache_free(sock_inode_cachep,
257 container_of(inode, struct socket_alloc, vfs_inode));
260 static void init_once(void *foo, struct kmem_cache *cachep, unsigned long flags)
262 struct socket_alloc *ei = (struct socket_alloc *)foo;
264 if (flags & SLAB_CTOR_CONSTRUCTOR)
265 inode_init_once(&ei->vfs_inode);
268 static int init_inodecache(void)
270 sock_inode_cachep = kmem_cache_create("sock_inode_cache",
271 sizeof(struct socket_alloc),
273 (SLAB_HWCACHE_ALIGN |
274 SLAB_RECLAIM_ACCOUNT |
275 SLAB_MEM_SPREAD),
276 init_once,
277 NULL);
278 if (sock_inode_cachep == NULL)
279 return -ENOMEM;
280 return 0;
283 static struct super_operations sockfs_ops = {
284 .alloc_inode = sock_alloc_inode,
285 .destroy_inode =sock_destroy_inode,
286 .statfs = simple_statfs,
289 static int sockfs_get_sb(struct file_system_type *fs_type,
290 int flags, const char *dev_name, void *data,
291 struct vfsmount *mnt)
293 return get_sb_pseudo(fs_type, "socket:", &sockfs_ops, SOCKFS_MAGIC,
294 mnt);
297 static struct vfsmount *sock_mnt __read_mostly;
299 static struct file_system_type sock_fs_type = {
300 .name = "sockfs",
301 .get_sb = sockfs_get_sb,
302 .kill_sb = kill_anon_super,
305 static int sockfs_delete_dentry(struct dentry *dentry)
308 * At creation time, we pretended this dentry was hashed
309 * (by clearing DCACHE_UNHASHED bit in d_flags)
310 * At delete time, we restore the truth : not hashed.
311 * (so that dput() can proceed correctly)
313 dentry->d_flags |= DCACHE_UNHASHED;
314 return 0;
316 static struct dentry_operations sockfs_dentry_operations = {
317 .d_delete = sockfs_delete_dentry,
321 * Obtains the first available file descriptor and sets it up for use.
323 * These functions create file structures and maps them to fd space
324 * of the current process. On success it returns file descriptor
325 * and file struct implicitly stored in sock->file.
326 * Note that another thread may close file descriptor before we return
327 * from this function. We use the fact that now we do not refer
328 * to socket after mapping. If one day we will need it, this
329 * function will increment ref. count on file by 1.
331 * In any case returned fd MAY BE not valid!
332 * This race condition is unavoidable
333 * with shared fd spaces, we cannot solve it inside kernel,
334 * but we take care of internal coherence yet.
337 static int sock_alloc_fd(struct file **filep)
339 int fd;
341 fd = get_unused_fd();
342 if (likely(fd >= 0)) {
343 struct file *file = get_empty_filp();
345 *filep = file;
346 if (unlikely(!file)) {
347 put_unused_fd(fd);
348 return -ENFILE;
350 } else
351 *filep = NULL;
352 return fd;
355 static int sock_attach_fd(struct socket *sock, struct file *file)
357 struct qstr this;
358 char name[32];
360 this.len = sprintf(name, "[%lu]", SOCK_INODE(sock)->i_ino);
361 this.name = name;
362 this.hash = 0;
364 file->f_path.dentry = d_alloc(sock_mnt->mnt_sb->s_root, &this);
365 if (unlikely(!file->f_path.dentry))
366 return -ENOMEM;
368 file->f_path.dentry->d_op = &sockfs_dentry_operations;
370 * We dont want to push this dentry into global dentry hash table.
371 * We pretend dentry is already hashed, by unsetting DCACHE_UNHASHED
372 * This permits a working /proc/$pid/fd/XXX on sockets
374 file->f_path.dentry->d_flags &= ~DCACHE_UNHASHED;
375 d_instantiate(file->f_path.dentry, SOCK_INODE(sock));
376 file->f_path.mnt = mntget(sock_mnt);
377 file->f_mapping = file->f_path.dentry->d_inode->i_mapping;
379 sock->file = file;
380 file->f_op = SOCK_INODE(sock)->i_fop = &socket_file_ops;
381 file->f_mode = FMODE_READ | FMODE_WRITE;
382 file->f_flags = O_RDWR;
383 file->f_pos = 0;
384 file->private_data = sock;
386 return 0;
389 int sock_map_fd(struct socket *sock)
391 struct file *newfile;
392 int fd = sock_alloc_fd(&newfile);
394 if (likely(fd >= 0)) {
395 int err = sock_attach_fd(sock, newfile);
397 if (unlikely(err < 0)) {
398 put_filp(newfile);
399 put_unused_fd(fd);
400 return err;
402 fd_install(fd, newfile);
404 return fd;
407 static struct socket *sock_from_file(struct file *file, int *err)
409 if (file->f_op == &socket_file_ops)
410 return file->private_data; /* set in sock_map_fd */
412 *err = -ENOTSOCK;
413 return NULL;
417 * sockfd_lookup - Go from a file number to its socket slot
418 * @fd: file handle
419 * @err: pointer to an error code return
421 * The file handle passed in is locked and the socket it is bound
422 * too is returned. If an error occurs the err pointer is overwritten
423 * with a negative errno code and NULL is returned. The function checks
424 * for both invalid handles and passing a handle which is not a socket.
426 * On a success the socket object pointer is returned.
429 struct socket *sockfd_lookup(int fd, int *err)
431 struct file *file;
432 struct socket *sock;
434 file = fget(fd);
435 if (!file) {
436 *err = -EBADF;
437 return NULL;
440 sock = sock_from_file(file, err);
441 if (!sock)
442 fput(file);
443 return sock;
446 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
448 struct file *file;
449 struct socket *sock;
451 *err = -EBADF;
452 file = fget_light(fd, fput_needed);
453 if (file) {
454 sock = sock_from_file(file, err);
455 if (sock)
456 return sock;
457 fput_light(file, *fput_needed);
459 return NULL;
463 * sock_alloc - allocate a socket
465 * Allocate a new inode and socket object. The two are bound together
466 * and initialised. The socket is then returned. If we are out of inodes
467 * NULL is returned.
470 static struct socket *sock_alloc(void)
472 struct inode *inode;
473 struct socket *sock;
475 inode = new_inode(sock_mnt->mnt_sb);
476 if (!inode)
477 return NULL;
479 sock = SOCKET_I(inode);
481 inode->i_mode = S_IFSOCK | S_IRWXUGO;
482 inode->i_uid = current->fsuid;
483 inode->i_gid = current->fsgid;
485 get_cpu_var(sockets_in_use)++;
486 put_cpu_var(sockets_in_use);
487 return sock;
491 * In theory you can't get an open on this inode, but /proc provides
492 * a back door. Remember to keep it shut otherwise you'll let the
493 * creepy crawlies in.
496 static int sock_no_open(struct inode *irrelevant, struct file *dontcare)
498 return -ENXIO;
501 const struct file_operations bad_sock_fops = {
502 .owner = THIS_MODULE,
503 .open = sock_no_open,
507 * sock_release - close a socket
508 * @sock: socket to close
510 * The socket is released from the protocol stack if it has a release
511 * callback, and the inode is then released if the socket is bound to
512 * an inode not a file.
515 void sock_release(struct socket *sock)
517 if (sock->ops) {
518 struct module *owner = sock->ops->owner;
520 sock->ops->release(sock);
521 sock->ops = NULL;
522 module_put(owner);
525 if (sock->fasync_list)
526 printk(KERN_ERR "sock_release: fasync list not empty!\n");
528 get_cpu_var(sockets_in_use)--;
529 put_cpu_var(sockets_in_use);
530 if (!sock->file) {
531 iput(SOCK_INODE(sock));
532 return;
534 sock->file = NULL;
537 static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock,
538 struct msghdr *msg, size_t size)
540 struct sock_iocb *si = kiocb_to_siocb(iocb);
541 int err;
543 si->sock = sock;
544 si->scm = NULL;
545 si->msg = msg;
546 si->size = size;
548 err = security_socket_sendmsg(sock, msg, size);
549 if (err)
550 return err;
552 return sock->ops->sendmsg(iocb, sock, msg, size);
555 int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
557 struct kiocb iocb;
558 struct sock_iocb siocb;
559 int ret;
561 init_sync_kiocb(&iocb, NULL);
562 iocb.private = &siocb;
563 ret = __sock_sendmsg(&iocb, sock, msg, size);
564 if (-EIOCBQUEUED == ret)
565 ret = wait_on_sync_kiocb(&iocb);
566 return ret;
569 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
570 struct kvec *vec, size_t num, size_t size)
572 mm_segment_t oldfs = get_fs();
573 int result;
575 set_fs(KERNEL_DS);
577 * the following is safe, since for compiler definitions of kvec and
578 * iovec are identical, yielding the same in-core layout and alignment
580 msg->msg_iov = (struct iovec *)vec;
581 msg->msg_iovlen = num;
582 result = sock_sendmsg(sock, msg, size);
583 set_fs(oldfs);
584 return result;
588 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
590 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
591 struct sk_buff *skb)
593 ktime_t kt = skb->tstamp;
595 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
596 struct timeval tv;
597 /* Race occurred between timestamp enabling and packet
598 receiving. Fill in the current time for now. */
599 if (kt.tv64 == 0)
600 kt = ktime_get_real();
601 skb->tstamp = kt;
602 tv = ktime_to_timeval(kt);
603 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP, sizeof(tv), &tv);
604 } else {
605 struct timespec ts;
606 /* Race occurred between timestamp enabling and packet
607 receiving. Fill in the current time for now. */
608 if (kt.tv64 == 0)
609 kt = ktime_get_real();
610 skb->tstamp = kt;
611 ts = ktime_to_timespec(kt);
612 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS, sizeof(ts), &ts);
616 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
618 static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock,
619 struct msghdr *msg, size_t size, int flags)
621 int err;
622 struct sock_iocb *si = kiocb_to_siocb(iocb);
624 si->sock = sock;
625 si->scm = NULL;
626 si->msg = msg;
627 si->size = size;
628 si->flags = flags;
630 err = security_socket_recvmsg(sock, msg, size, flags);
631 if (err)
632 return err;
634 return sock->ops->recvmsg(iocb, sock, msg, size, flags);
637 int sock_recvmsg(struct socket *sock, struct msghdr *msg,
638 size_t size, int flags)
640 struct kiocb iocb;
641 struct sock_iocb siocb;
642 int ret;
644 init_sync_kiocb(&iocb, NULL);
645 iocb.private = &siocb;
646 ret = __sock_recvmsg(&iocb, sock, msg, size, flags);
647 if (-EIOCBQUEUED == ret)
648 ret = wait_on_sync_kiocb(&iocb);
649 return ret;
652 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
653 struct kvec *vec, size_t num, size_t size, int flags)
655 mm_segment_t oldfs = get_fs();
656 int result;
658 set_fs(KERNEL_DS);
660 * the following is safe, since for compiler definitions of kvec and
661 * iovec are identical, yielding the same in-core layout and alignment
663 msg->msg_iov = (struct iovec *)vec, msg->msg_iovlen = num;
664 result = sock_recvmsg(sock, msg, size, flags);
665 set_fs(oldfs);
666 return result;
669 static void sock_aio_dtor(struct kiocb *iocb)
671 kfree(iocb->private);
674 static ssize_t sock_sendpage(struct file *file, struct page *page,
675 int offset, size_t size, loff_t *ppos, int more)
677 struct socket *sock;
678 int flags;
680 sock = file->private_data;
682 flags = !(file->f_flags & O_NONBLOCK) ? 0 : MSG_DONTWAIT;
683 if (more)
684 flags |= MSG_MORE;
686 return sock->ops->sendpage(sock, page, offset, size, flags);
689 static struct sock_iocb *alloc_sock_iocb(struct kiocb *iocb,
690 struct sock_iocb *siocb)
692 if (!is_sync_kiocb(iocb)) {
693 siocb = kmalloc(sizeof(*siocb), GFP_KERNEL);
694 if (!siocb)
695 return NULL;
696 iocb->ki_dtor = sock_aio_dtor;
699 siocb->kiocb = iocb;
700 iocb->private = siocb;
701 return siocb;
704 static ssize_t do_sock_read(struct msghdr *msg, struct kiocb *iocb,
705 struct file *file, const struct iovec *iov,
706 unsigned long nr_segs)
708 struct socket *sock = file->private_data;
709 size_t size = 0;
710 int i;
712 for (i = 0; i < nr_segs; i++)
713 size += iov[i].iov_len;
715 msg->msg_name = NULL;
716 msg->msg_namelen = 0;
717 msg->msg_control = NULL;
718 msg->msg_controllen = 0;
719 msg->msg_iov = (struct iovec *)iov;
720 msg->msg_iovlen = nr_segs;
721 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
723 return __sock_recvmsg(iocb, sock, msg, size, msg->msg_flags);
726 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
727 unsigned long nr_segs, loff_t pos)
729 struct sock_iocb siocb, *x;
731 if (pos != 0)
732 return -ESPIPE;
734 if (iocb->ki_left == 0) /* Match SYS5 behaviour */
735 return 0;
738 x = alloc_sock_iocb(iocb, &siocb);
739 if (!x)
740 return -ENOMEM;
741 return do_sock_read(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
744 static ssize_t do_sock_write(struct msghdr *msg, struct kiocb *iocb,
745 struct file *file, const struct iovec *iov,
746 unsigned long nr_segs)
748 struct socket *sock = file->private_data;
749 size_t size = 0;
750 int i;
752 for (i = 0; i < nr_segs; i++)
753 size += iov[i].iov_len;
755 msg->msg_name = NULL;
756 msg->msg_namelen = 0;
757 msg->msg_control = NULL;
758 msg->msg_controllen = 0;
759 msg->msg_iov = (struct iovec *)iov;
760 msg->msg_iovlen = nr_segs;
761 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
762 if (sock->type == SOCK_SEQPACKET)
763 msg->msg_flags |= MSG_EOR;
765 return __sock_sendmsg(iocb, sock, msg, size);
768 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
769 unsigned long nr_segs, loff_t pos)
771 struct sock_iocb siocb, *x;
773 if (pos != 0)
774 return -ESPIPE;
776 if (iocb->ki_left == 0) /* Match SYS5 behaviour */
777 return 0;
779 x = alloc_sock_iocb(iocb, &siocb);
780 if (!x)
781 return -ENOMEM;
783 return do_sock_write(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
787 * Atomic setting of ioctl hooks to avoid race
788 * with module unload.
791 static DEFINE_MUTEX(br_ioctl_mutex);
792 static int (*br_ioctl_hook) (unsigned int cmd, void __user *arg) = NULL;
794 void brioctl_set(int (*hook) (unsigned int, void __user *))
796 mutex_lock(&br_ioctl_mutex);
797 br_ioctl_hook = hook;
798 mutex_unlock(&br_ioctl_mutex);
801 EXPORT_SYMBOL(brioctl_set);
803 static DEFINE_MUTEX(vlan_ioctl_mutex);
804 static int (*vlan_ioctl_hook) (void __user *arg);
806 void vlan_ioctl_set(int (*hook) (void __user *))
808 mutex_lock(&vlan_ioctl_mutex);
809 vlan_ioctl_hook = hook;
810 mutex_unlock(&vlan_ioctl_mutex);
813 EXPORT_SYMBOL(vlan_ioctl_set);
815 static DEFINE_MUTEX(dlci_ioctl_mutex);
816 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
818 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
820 mutex_lock(&dlci_ioctl_mutex);
821 dlci_ioctl_hook = hook;
822 mutex_unlock(&dlci_ioctl_mutex);
825 EXPORT_SYMBOL(dlci_ioctl_set);
828 * With an ioctl, arg may well be a user mode pointer, but we don't know
829 * what to do with it - that's up to the protocol still.
832 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
834 struct socket *sock;
835 void __user *argp = (void __user *)arg;
836 int pid, err;
838 sock = file->private_data;
839 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
840 err = dev_ioctl(cmd, argp);
841 } else
842 #ifdef CONFIG_WIRELESS_EXT
843 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
844 err = dev_ioctl(cmd, argp);
845 } else
846 #endif /* CONFIG_WIRELESS_EXT */
847 switch (cmd) {
848 case FIOSETOWN:
849 case SIOCSPGRP:
850 err = -EFAULT;
851 if (get_user(pid, (int __user *)argp))
852 break;
853 err = f_setown(sock->file, pid, 1);
854 break;
855 case FIOGETOWN:
856 case SIOCGPGRP:
857 err = put_user(f_getown(sock->file),
858 (int __user *)argp);
859 break;
860 case SIOCGIFBR:
861 case SIOCSIFBR:
862 case SIOCBRADDBR:
863 case SIOCBRDELBR:
864 err = -ENOPKG;
865 if (!br_ioctl_hook)
866 request_module("bridge");
868 mutex_lock(&br_ioctl_mutex);
869 if (br_ioctl_hook)
870 err = br_ioctl_hook(cmd, argp);
871 mutex_unlock(&br_ioctl_mutex);
872 break;
873 case SIOCGIFVLAN:
874 case SIOCSIFVLAN:
875 err = -ENOPKG;
876 if (!vlan_ioctl_hook)
877 request_module("8021q");
879 mutex_lock(&vlan_ioctl_mutex);
880 if (vlan_ioctl_hook)
881 err = vlan_ioctl_hook(argp);
882 mutex_unlock(&vlan_ioctl_mutex);
883 break;
884 case SIOCADDDLCI:
885 case SIOCDELDLCI:
886 err = -ENOPKG;
887 if (!dlci_ioctl_hook)
888 request_module("dlci");
890 if (dlci_ioctl_hook) {
891 mutex_lock(&dlci_ioctl_mutex);
892 err = dlci_ioctl_hook(cmd, argp);
893 mutex_unlock(&dlci_ioctl_mutex);
895 break;
896 default:
897 err = sock->ops->ioctl(sock, cmd, arg);
900 * If this ioctl is unknown try to hand it down
901 * to the NIC driver.
903 if (err == -ENOIOCTLCMD)
904 err = dev_ioctl(cmd, argp);
905 break;
907 return err;
910 int sock_create_lite(int family, int type, int protocol, struct socket **res)
912 int err;
913 struct socket *sock = NULL;
915 err = security_socket_create(family, type, protocol, 1);
916 if (err)
917 goto out;
919 sock = sock_alloc();
920 if (!sock) {
921 err = -ENOMEM;
922 goto out;
925 sock->type = type;
926 err = security_socket_post_create(sock, family, type, protocol, 1);
927 if (err)
928 goto out_release;
930 out:
931 *res = sock;
932 return err;
933 out_release:
934 sock_release(sock);
935 sock = NULL;
936 goto out;
939 /* No kernel lock held - perfect */
940 static unsigned int sock_poll(struct file *file, poll_table *wait)
942 struct socket *sock;
945 * We can't return errors to poll, so it's either yes or no.
947 sock = file->private_data;
948 return sock->ops->poll(file, sock, wait);
951 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
953 struct socket *sock = file->private_data;
955 return sock->ops->mmap(file, sock, vma);
958 static int sock_close(struct inode *inode, struct file *filp)
961 * It was possible the inode is NULL we were
962 * closing an unfinished socket.
965 if (!inode) {
966 printk(KERN_DEBUG "sock_close: NULL inode\n");
967 return 0;
969 sock_fasync(-1, filp, 0);
970 sock_release(SOCKET_I(inode));
971 return 0;
975 * Update the socket async list
977 * Fasync_list locking strategy.
979 * 1. fasync_list is modified only under process context socket lock
980 * i.e. under semaphore.
981 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
982 * or under socket lock.
983 * 3. fasync_list can be used from softirq context, so that
984 * modification under socket lock have to be enhanced with
985 * write_lock_bh(&sk->sk_callback_lock).
986 * --ANK (990710)
989 static int sock_fasync(int fd, struct file *filp, int on)
991 struct fasync_struct *fa, *fna = NULL, **prev;
992 struct socket *sock;
993 struct sock *sk;
995 if (on) {
996 fna = kmalloc(sizeof(struct fasync_struct), GFP_KERNEL);
997 if (fna == NULL)
998 return -ENOMEM;
1001 sock = filp->private_data;
1003 sk = sock->sk;
1004 if (sk == NULL) {
1005 kfree(fna);
1006 return -EINVAL;
1009 lock_sock(sk);
1011 prev = &(sock->fasync_list);
1013 for (fa = *prev; fa != NULL; prev = &fa->fa_next, fa = *prev)
1014 if (fa->fa_file == filp)
1015 break;
1017 if (on) {
1018 if (fa != NULL) {
1019 write_lock_bh(&sk->sk_callback_lock);
1020 fa->fa_fd = fd;
1021 write_unlock_bh(&sk->sk_callback_lock);
1023 kfree(fna);
1024 goto out;
1026 fna->fa_file = filp;
1027 fna->fa_fd = fd;
1028 fna->magic = FASYNC_MAGIC;
1029 fna->fa_next = sock->fasync_list;
1030 write_lock_bh(&sk->sk_callback_lock);
1031 sock->fasync_list = fna;
1032 write_unlock_bh(&sk->sk_callback_lock);
1033 } else {
1034 if (fa != NULL) {
1035 write_lock_bh(&sk->sk_callback_lock);
1036 *prev = fa->fa_next;
1037 write_unlock_bh(&sk->sk_callback_lock);
1038 kfree(fa);
1042 out:
1043 release_sock(sock->sk);
1044 return 0;
1047 /* This function may be called only under socket lock or callback_lock */
1049 int sock_wake_async(struct socket *sock, int how, int band)
1051 if (!sock || !sock->fasync_list)
1052 return -1;
1053 switch (how) {
1054 case 1:
1056 if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags))
1057 break;
1058 goto call_kill;
1059 case 2:
1060 if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags))
1061 break;
1062 /* fall through */
1063 case 0:
1064 call_kill:
1065 __kill_fasync(sock->fasync_list, SIGIO, band);
1066 break;
1067 case 3:
1068 __kill_fasync(sock->fasync_list, SIGURG, band);
1070 return 0;
1073 static int __sock_create(int family, int type, int protocol,
1074 struct socket **res, int kern)
1076 int err;
1077 struct socket *sock;
1078 const struct net_proto_family *pf;
1081 * Check protocol is in range
1083 if (family < 0 || family >= NPROTO)
1084 return -EAFNOSUPPORT;
1085 if (type < 0 || type >= SOCK_MAX)
1086 return -EINVAL;
1088 /* Compatibility.
1090 This uglymoron is moved from INET layer to here to avoid
1091 deadlock in module load.
1093 if (family == PF_INET && type == SOCK_PACKET) {
1094 static int warned;
1095 if (!warned) {
1096 warned = 1;
1097 printk(KERN_INFO "%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1098 current->comm);
1100 family = PF_PACKET;
1103 err = security_socket_create(family, type, protocol, kern);
1104 if (err)
1105 return err;
1108 * Allocate the socket and allow the family to set things up. if
1109 * the protocol is 0, the family is instructed to select an appropriate
1110 * default.
1112 sock = sock_alloc();
1113 if (!sock) {
1114 if (net_ratelimit())
1115 printk(KERN_WARNING "socket: no more sockets\n");
1116 return -ENFILE; /* Not exactly a match, but its the
1117 closest posix thing */
1120 sock->type = type;
1122 #if defined(CONFIG_KMOD)
1123 /* Attempt to load a protocol module if the find failed.
1125 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1126 * requested real, full-featured networking support upon configuration.
1127 * Otherwise module support will break!
1129 if (net_families[family] == NULL)
1130 request_module("net-pf-%d", family);
1131 #endif
1133 rcu_read_lock();
1134 pf = rcu_dereference(net_families[family]);
1135 err = -EAFNOSUPPORT;
1136 if (!pf)
1137 goto out_release;
1140 * We will call the ->create function, that possibly is in a loadable
1141 * module, so we have to bump that loadable module refcnt first.
1143 if (!try_module_get(pf->owner))
1144 goto out_release;
1146 /* Now protected by module ref count */
1147 rcu_read_unlock();
1149 err = pf->create(sock, protocol);
1150 if (err < 0)
1151 goto out_module_put;
1154 * Now to bump the refcnt of the [loadable] module that owns this
1155 * socket at sock_release time we decrement its refcnt.
1157 if (!try_module_get(sock->ops->owner))
1158 goto out_module_busy;
1161 * Now that we're done with the ->create function, the [loadable]
1162 * module can have its refcnt decremented
1164 module_put(pf->owner);
1165 err = security_socket_post_create(sock, family, type, protocol, kern);
1166 if (err)
1167 goto out_release;
1168 *res = sock;
1170 return 0;
1172 out_module_busy:
1173 err = -EAFNOSUPPORT;
1174 out_module_put:
1175 sock->ops = NULL;
1176 module_put(pf->owner);
1177 out_sock_release:
1178 sock_release(sock);
1179 return err;
1181 out_release:
1182 rcu_read_unlock();
1183 goto out_sock_release;
1186 int sock_create(int family, int type, int protocol, struct socket **res)
1188 return __sock_create(family, type, protocol, res, 0);
1191 int sock_create_kern(int family, int type, int protocol, struct socket **res)
1193 return __sock_create(family, type, protocol, res, 1);
1196 asmlinkage long sys_socket(int family, int type, int protocol)
1198 int retval;
1199 struct socket *sock;
1201 retval = sock_create(family, type, protocol, &sock);
1202 if (retval < 0)
1203 goto out;
1205 retval = sock_map_fd(sock);
1206 if (retval < 0)
1207 goto out_release;
1209 out:
1210 /* It may be already another descriptor 8) Not kernel problem. */
1211 return retval;
1213 out_release:
1214 sock_release(sock);
1215 return retval;
1219 * Create a pair of connected sockets.
1222 asmlinkage long sys_socketpair(int family, int type, int protocol,
1223 int __user *usockvec)
1225 struct socket *sock1, *sock2;
1226 int fd1, fd2, err;
1227 struct file *newfile1, *newfile2;
1230 * Obtain the first socket and check if the underlying protocol
1231 * supports the socketpair call.
1234 err = sock_create(family, type, protocol, &sock1);
1235 if (err < 0)
1236 goto out;
1238 err = sock_create(family, type, protocol, &sock2);
1239 if (err < 0)
1240 goto out_release_1;
1242 err = sock1->ops->socketpair(sock1, sock2);
1243 if (err < 0)
1244 goto out_release_both;
1246 fd1 = sock_alloc_fd(&newfile1);
1247 if (unlikely(fd1 < 0))
1248 goto out_release_both;
1250 fd2 = sock_alloc_fd(&newfile2);
1251 if (unlikely(fd2 < 0)) {
1252 put_filp(newfile1);
1253 put_unused_fd(fd1);
1254 goto out_release_both;
1257 err = sock_attach_fd(sock1, newfile1);
1258 if (unlikely(err < 0)) {
1259 goto out_fd2;
1262 err = sock_attach_fd(sock2, newfile2);
1263 if (unlikely(err < 0)) {
1264 fput(newfile1);
1265 goto out_fd1;
1268 err = audit_fd_pair(fd1, fd2);
1269 if (err < 0) {
1270 fput(newfile1);
1271 fput(newfile2);
1272 goto out_fd;
1275 fd_install(fd1, newfile1);
1276 fd_install(fd2, newfile2);
1277 /* fd1 and fd2 may be already another descriptors.
1278 * Not kernel problem.
1281 err = put_user(fd1, &usockvec[0]);
1282 if (!err)
1283 err = put_user(fd2, &usockvec[1]);
1284 if (!err)
1285 return 0;
1287 sys_close(fd2);
1288 sys_close(fd1);
1289 return err;
1291 out_release_both:
1292 sock_release(sock2);
1293 out_release_1:
1294 sock_release(sock1);
1295 out:
1296 return err;
1298 out_fd2:
1299 put_filp(newfile1);
1300 sock_release(sock1);
1301 out_fd1:
1302 put_filp(newfile2);
1303 sock_release(sock2);
1304 out_fd:
1305 put_unused_fd(fd1);
1306 put_unused_fd(fd2);
1307 goto out;
1311 * Bind a name to a socket. Nothing much to do here since it's
1312 * the protocol's responsibility to handle the local address.
1314 * We move the socket address to kernel space before we call
1315 * the protocol layer (having also checked the address is ok).
1318 asmlinkage long sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen)
1320 struct socket *sock;
1321 char address[MAX_SOCK_ADDR];
1322 int err, fput_needed;
1324 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1325 if (sock) {
1326 err = move_addr_to_kernel(umyaddr, addrlen, address);
1327 if (err >= 0) {
1328 err = security_socket_bind(sock,
1329 (struct sockaddr *)address,
1330 addrlen);
1331 if (!err)
1332 err = sock->ops->bind(sock,
1333 (struct sockaddr *)
1334 address, addrlen);
1336 fput_light(sock->file, fput_needed);
1338 return err;
1342 * Perform a listen. Basically, we allow the protocol to do anything
1343 * necessary for a listen, and if that works, we mark the socket as
1344 * ready for listening.
1347 int sysctl_somaxconn __read_mostly = SOMAXCONN;
1349 asmlinkage long sys_listen(int fd, int backlog)
1351 struct socket *sock;
1352 int err, fput_needed;
1354 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1355 if (sock) {
1356 if ((unsigned)backlog > sysctl_somaxconn)
1357 backlog = sysctl_somaxconn;
1359 err = security_socket_listen(sock, backlog);
1360 if (!err)
1361 err = sock->ops->listen(sock, backlog);
1363 fput_light(sock->file, fput_needed);
1365 return err;
1369 * For accept, we attempt to create a new socket, set up the link
1370 * with the client, wake up the client, then return the new
1371 * connected fd. We collect the address of the connector in kernel
1372 * space and move it to user at the very end. This is unclean because
1373 * we open the socket then return an error.
1375 * 1003.1g adds the ability to recvmsg() to query connection pending
1376 * status to recvmsg. We need to add that support in a way thats
1377 * clean when we restucture accept also.
1380 asmlinkage long sys_accept(int fd, struct sockaddr __user *upeer_sockaddr,
1381 int __user *upeer_addrlen)
1383 struct socket *sock, *newsock;
1384 struct file *newfile;
1385 int err, len, newfd, fput_needed;
1386 char address[MAX_SOCK_ADDR];
1388 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1389 if (!sock)
1390 goto out;
1392 err = -ENFILE;
1393 if (!(newsock = sock_alloc()))
1394 goto out_put;
1396 newsock->type = sock->type;
1397 newsock->ops = sock->ops;
1400 * We don't need try_module_get here, as the listening socket (sock)
1401 * has the protocol module (sock->ops->owner) held.
1403 __module_get(newsock->ops->owner);
1405 newfd = sock_alloc_fd(&newfile);
1406 if (unlikely(newfd < 0)) {
1407 err = newfd;
1408 sock_release(newsock);
1409 goto out_put;
1412 err = sock_attach_fd(newsock, newfile);
1413 if (err < 0)
1414 goto out_fd_simple;
1416 err = security_socket_accept(sock, newsock);
1417 if (err)
1418 goto out_fd;
1420 err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1421 if (err < 0)
1422 goto out_fd;
1424 if (upeer_sockaddr) {
1425 if (newsock->ops->getname(newsock, (struct sockaddr *)address,
1426 &len, 2) < 0) {
1427 err = -ECONNABORTED;
1428 goto out_fd;
1430 err = move_addr_to_user(address, len, upeer_sockaddr,
1431 upeer_addrlen);
1432 if (err < 0)
1433 goto out_fd;
1436 /* File flags are not inherited via accept() unlike another OSes. */
1438 fd_install(newfd, newfile);
1439 err = newfd;
1441 security_socket_post_accept(sock, newsock);
1443 out_put:
1444 fput_light(sock->file, fput_needed);
1445 out:
1446 return err;
1447 out_fd_simple:
1448 sock_release(newsock);
1449 put_filp(newfile);
1450 put_unused_fd(newfd);
1451 goto out_put;
1452 out_fd:
1453 fput(newfile);
1454 put_unused_fd(newfd);
1455 goto out_put;
1459 * Attempt to connect to a socket with the server address. The address
1460 * is in user space so we verify it is OK and move it to kernel space.
1462 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1463 * break bindings
1465 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1466 * other SEQPACKET protocols that take time to connect() as it doesn't
1467 * include the -EINPROGRESS status for such sockets.
1470 asmlinkage long sys_connect(int fd, struct sockaddr __user *uservaddr,
1471 int addrlen)
1473 struct socket *sock;
1474 char address[MAX_SOCK_ADDR];
1475 int err, fput_needed;
1477 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1478 if (!sock)
1479 goto out;
1480 err = move_addr_to_kernel(uservaddr, addrlen, address);
1481 if (err < 0)
1482 goto out_put;
1484 err =
1485 security_socket_connect(sock, (struct sockaddr *)address, addrlen);
1486 if (err)
1487 goto out_put;
1489 err = sock->ops->connect(sock, (struct sockaddr *)address, addrlen,
1490 sock->file->f_flags);
1491 out_put:
1492 fput_light(sock->file, fput_needed);
1493 out:
1494 return err;
1498 * Get the local address ('name') of a socket object. Move the obtained
1499 * name to user space.
1502 asmlinkage long sys_getsockname(int fd, struct sockaddr __user *usockaddr,
1503 int __user *usockaddr_len)
1505 struct socket *sock;
1506 char address[MAX_SOCK_ADDR];
1507 int len, err, fput_needed;
1509 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1510 if (!sock)
1511 goto out;
1513 err = security_socket_getsockname(sock);
1514 if (err)
1515 goto out_put;
1517 err = sock->ops->getname(sock, (struct sockaddr *)address, &len, 0);
1518 if (err)
1519 goto out_put;
1520 err = move_addr_to_user(address, len, usockaddr, usockaddr_len);
1522 out_put:
1523 fput_light(sock->file, fput_needed);
1524 out:
1525 return err;
1529 * Get the remote address ('name') of a socket object. Move the obtained
1530 * name to user space.
1533 asmlinkage long sys_getpeername(int fd, struct sockaddr __user *usockaddr,
1534 int __user *usockaddr_len)
1536 struct socket *sock;
1537 char address[MAX_SOCK_ADDR];
1538 int len, err, fput_needed;
1540 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1541 if (sock != NULL) {
1542 err = security_socket_getpeername(sock);
1543 if (err) {
1544 fput_light(sock->file, fput_needed);
1545 return err;
1548 err =
1549 sock->ops->getname(sock, (struct sockaddr *)address, &len,
1551 if (!err)
1552 err = move_addr_to_user(address, len, usockaddr,
1553 usockaddr_len);
1554 fput_light(sock->file, fput_needed);
1556 return err;
1560 * Send a datagram to a given address. We move the address into kernel
1561 * space and check the user space data area is readable before invoking
1562 * the protocol.
1565 asmlinkage long sys_sendto(int fd, void __user *buff, size_t len,
1566 unsigned flags, struct sockaddr __user *addr,
1567 int addr_len)
1569 struct socket *sock;
1570 char address[MAX_SOCK_ADDR];
1571 int err;
1572 struct msghdr msg;
1573 struct iovec iov;
1574 int fput_needed;
1575 struct file *sock_file;
1577 sock_file = fget_light(fd, &fput_needed);
1578 err = -EBADF;
1579 if (!sock_file)
1580 goto out;
1582 sock = sock_from_file(sock_file, &err);
1583 if (!sock)
1584 goto out_put;
1585 iov.iov_base = buff;
1586 iov.iov_len = len;
1587 msg.msg_name = NULL;
1588 msg.msg_iov = &iov;
1589 msg.msg_iovlen = 1;
1590 msg.msg_control = NULL;
1591 msg.msg_controllen = 0;
1592 msg.msg_namelen = 0;
1593 if (addr) {
1594 err = move_addr_to_kernel(addr, addr_len, address);
1595 if (err < 0)
1596 goto out_put;
1597 msg.msg_name = address;
1598 msg.msg_namelen = addr_len;
1600 if (sock->file->f_flags & O_NONBLOCK)
1601 flags |= MSG_DONTWAIT;
1602 msg.msg_flags = flags;
1603 err = sock_sendmsg(sock, &msg, len);
1605 out_put:
1606 fput_light(sock_file, fput_needed);
1607 out:
1608 return err;
1612 * Send a datagram down a socket.
1615 asmlinkage long sys_send(int fd, void __user *buff, size_t len, unsigned flags)
1617 return sys_sendto(fd, buff, len, flags, NULL, 0);
1621 * Receive a frame from the socket and optionally record the address of the
1622 * sender. We verify the buffers are writable and if needed move the
1623 * sender address from kernel to user space.
1626 asmlinkage long sys_recvfrom(int fd, void __user *ubuf, size_t size,
1627 unsigned flags, struct sockaddr __user *addr,
1628 int __user *addr_len)
1630 struct socket *sock;
1631 struct iovec iov;
1632 struct msghdr msg;
1633 char address[MAX_SOCK_ADDR];
1634 int err, err2;
1635 struct file *sock_file;
1636 int fput_needed;
1638 sock_file = fget_light(fd, &fput_needed);
1639 err = -EBADF;
1640 if (!sock_file)
1641 goto out;
1643 sock = sock_from_file(sock_file, &err);
1644 if (!sock)
1645 goto out_put;
1647 msg.msg_control = NULL;
1648 msg.msg_controllen = 0;
1649 msg.msg_iovlen = 1;
1650 msg.msg_iov = &iov;
1651 iov.iov_len = size;
1652 iov.iov_base = ubuf;
1653 msg.msg_name = address;
1654 msg.msg_namelen = MAX_SOCK_ADDR;
1655 if (sock->file->f_flags & O_NONBLOCK)
1656 flags |= MSG_DONTWAIT;
1657 err = sock_recvmsg(sock, &msg, size, flags);
1659 if (err >= 0 && addr != NULL) {
1660 err2 = move_addr_to_user(address, msg.msg_namelen, addr, addr_len);
1661 if (err2 < 0)
1662 err = err2;
1664 out_put:
1665 fput_light(sock_file, fput_needed);
1666 out:
1667 return err;
1671 * Receive a datagram from a socket.
1674 asmlinkage long sys_recv(int fd, void __user *ubuf, size_t size,
1675 unsigned flags)
1677 return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1681 * Set a socket option. Because we don't know the option lengths we have
1682 * to pass the user mode parameter for the protocols to sort out.
1685 asmlinkage long sys_setsockopt(int fd, int level, int optname,
1686 char __user *optval, int optlen)
1688 int err, fput_needed;
1689 struct socket *sock;
1691 if (optlen < 0)
1692 return -EINVAL;
1694 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1695 if (sock != NULL) {
1696 err = security_socket_setsockopt(sock, level, optname);
1697 if (err)
1698 goto out_put;
1700 if (level == SOL_SOCKET)
1701 err =
1702 sock_setsockopt(sock, level, optname, optval,
1703 optlen);
1704 else
1705 err =
1706 sock->ops->setsockopt(sock, level, optname, optval,
1707 optlen);
1708 out_put:
1709 fput_light(sock->file, fput_needed);
1711 return err;
1715 * Get a socket option. Because we don't know the option lengths we have
1716 * to pass a user mode parameter for the protocols to sort out.
1719 asmlinkage long sys_getsockopt(int fd, int level, int optname,
1720 char __user *optval, int __user *optlen)
1722 int err, fput_needed;
1723 struct socket *sock;
1725 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1726 if (sock != NULL) {
1727 err = security_socket_getsockopt(sock, level, optname);
1728 if (err)
1729 goto out_put;
1731 if (level == SOL_SOCKET)
1732 err =
1733 sock_getsockopt(sock, level, optname, optval,
1734 optlen);
1735 else
1736 err =
1737 sock->ops->getsockopt(sock, level, optname, optval,
1738 optlen);
1739 out_put:
1740 fput_light(sock->file, fput_needed);
1742 return err;
1746 * Shutdown a socket.
1749 asmlinkage long sys_shutdown(int fd, int how)
1751 int err, fput_needed;
1752 struct socket *sock;
1754 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1755 if (sock != NULL) {
1756 err = security_socket_shutdown(sock, how);
1757 if (!err)
1758 err = sock->ops->shutdown(sock, how);
1759 fput_light(sock->file, fput_needed);
1761 return err;
1764 /* A couple of helpful macros for getting the address of the 32/64 bit
1765 * fields which are the same type (int / unsigned) on our platforms.
1767 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1768 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
1769 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
1772 * BSD sendmsg interface
1775 asmlinkage long sys_sendmsg(int fd, struct msghdr __user *msg, unsigned flags)
1777 struct compat_msghdr __user *msg_compat =
1778 (struct compat_msghdr __user *)msg;
1779 struct socket *sock;
1780 char address[MAX_SOCK_ADDR];
1781 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1782 unsigned char ctl[sizeof(struct cmsghdr) + 20]
1783 __attribute__ ((aligned(sizeof(__kernel_size_t))));
1784 /* 20 is size of ipv6_pktinfo */
1785 unsigned char *ctl_buf = ctl;
1786 struct msghdr msg_sys;
1787 int err, ctl_len, iov_size, total_len;
1788 int fput_needed;
1790 err = -EFAULT;
1791 if (MSG_CMSG_COMPAT & flags) {
1792 if (get_compat_msghdr(&msg_sys, msg_compat))
1793 return -EFAULT;
1795 else if (copy_from_user(&msg_sys, msg, sizeof(struct msghdr)))
1796 return -EFAULT;
1798 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1799 if (!sock)
1800 goto out;
1802 /* do not move before msg_sys is valid */
1803 err = -EMSGSIZE;
1804 if (msg_sys.msg_iovlen > UIO_MAXIOV)
1805 goto out_put;
1807 /* Check whether to allocate the iovec area */
1808 err = -ENOMEM;
1809 iov_size = msg_sys.msg_iovlen * sizeof(struct iovec);
1810 if (msg_sys.msg_iovlen > UIO_FASTIOV) {
1811 iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL);
1812 if (!iov)
1813 goto out_put;
1816 /* This will also move the address data into kernel space */
1817 if (MSG_CMSG_COMPAT & flags) {
1818 err = verify_compat_iovec(&msg_sys, iov, address, VERIFY_READ);
1819 } else
1820 err = verify_iovec(&msg_sys, iov, address, VERIFY_READ);
1821 if (err < 0)
1822 goto out_freeiov;
1823 total_len = err;
1825 err = -ENOBUFS;
1827 if (msg_sys.msg_controllen > INT_MAX)
1828 goto out_freeiov;
1829 ctl_len = msg_sys.msg_controllen;
1830 if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
1831 err =
1832 cmsghdr_from_user_compat_to_kern(&msg_sys, sock->sk, ctl,
1833 sizeof(ctl));
1834 if (err)
1835 goto out_freeiov;
1836 ctl_buf = msg_sys.msg_control;
1837 ctl_len = msg_sys.msg_controllen;
1838 } else if (ctl_len) {
1839 if (ctl_len > sizeof(ctl)) {
1840 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
1841 if (ctl_buf == NULL)
1842 goto out_freeiov;
1844 err = -EFAULT;
1846 * Careful! Before this, msg_sys.msg_control contains a user pointer.
1847 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
1848 * checking falls down on this.
1850 if (copy_from_user(ctl_buf, (void __user *)msg_sys.msg_control,
1851 ctl_len))
1852 goto out_freectl;
1853 msg_sys.msg_control = ctl_buf;
1855 msg_sys.msg_flags = flags;
1857 if (sock->file->f_flags & O_NONBLOCK)
1858 msg_sys.msg_flags |= MSG_DONTWAIT;
1859 err = sock_sendmsg(sock, &msg_sys, total_len);
1861 out_freectl:
1862 if (ctl_buf != ctl)
1863 sock_kfree_s(sock->sk, ctl_buf, ctl_len);
1864 out_freeiov:
1865 if (iov != iovstack)
1866 sock_kfree_s(sock->sk, iov, iov_size);
1867 out_put:
1868 fput_light(sock->file, fput_needed);
1869 out:
1870 return err;
1874 * BSD recvmsg interface
1877 asmlinkage long sys_recvmsg(int fd, struct msghdr __user *msg,
1878 unsigned int flags)
1880 struct compat_msghdr __user *msg_compat =
1881 (struct compat_msghdr __user *)msg;
1882 struct socket *sock;
1883 struct iovec iovstack[UIO_FASTIOV];
1884 struct iovec *iov = iovstack;
1885 struct msghdr msg_sys;
1886 unsigned long cmsg_ptr;
1887 int err, iov_size, total_len, len;
1888 int fput_needed;
1890 /* kernel mode address */
1891 char addr[MAX_SOCK_ADDR];
1893 /* user mode address pointers */
1894 struct sockaddr __user *uaddr;
1895 int __user *uaddr_len;
1897 if (MSG_CMSG_COMPAT & flags) {
1898 if (get_compat_msghdr(&msg_sys, msg_compat))
1899 return -EFAULT;
1901 else if (copy_from_user(&msg_sys, msg, sizeof(struct msghdr)))
1902 return -EFAULT;
1904 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1905 if (!sock)
1906 goto out;
1908 err = -EMSGSIZE;
1909 if (msg_sys.msg_iovlen > UIO_MAXIOV)
1910 goto out_put;
1912 /* Check whether to allocate the iovec area */
1913 err = -ENOMEM;
1914 iov_size = msg_sys.msg_iovlen * sizeof(struct iovec);
1915 if (msg_sys.msg_iovlen > UIO_FASTIOV) {
1916 iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL);
1917 if (!iov)
1918 goto out_put;
1922 * Save the user-mode address (verify_iovec will change the
1923 * kernel msghdr to use the kernel address space)
1926 uaddr = (void __user *)msg_sys.msg_name;
1927 uaddr_len = COMPAT_NAMELEN(msg);
1928 if (MSG_CMSG_COMPAT & flags) {
1929 err = verify_compat_iovec(&msg_sys, iov, addr, VERIFY_WRITE);
1930 } else
1931 err = verify_iovec(&msg_sys, iov, addr, VERIFY_WRITE);
1932 if (err < 0)
1933 goto out_freeiov;
1934 total_len = err;
1936 cmsg_ptr = (unsigned long)msg_sys.msg_control;
1937 msg_sys.msg_flags = 0;
1938 if (MSG_CMSG_COMPAT & flags)
1939 msg_sys.msg_flags = MSG_CMSG_COMPAT;
1941 if (sock->file->f_flags & O_NONBLOCK)
1942 flags |= MSG_DONTWAIT;
1943 err = sock_recvmsg(sock, &msg_sys, total_len, flags);
1944 if (err < 0)
1945 goto out_freeiov;
1946 len = err;
1948 if (uaddr != NULL) {
1949 err = move_addr_to_user(addr, msg_sys.msg_namelen, uaddr,
1950 uaddr_len);
1951 if (err < 0)
1952 goto out_freeiov;
1954 err = __put_user((msg_sys.msg_flags & ~MSG_CMSG_COMPAT),
1955 COMPAT_FLAGS(msg));
1956 if (err)
1957 goto out_freeiov;
1958 if (MSG_CMSG_COMPAT & flags)
1959 err = __put_user((unsigned long)msg_sys.msg_control - cmsg_ptr,
1960 &msg_compat->msg_controllen);
1961 else
1962 err = __put_user((unsigned long)msg_sys.msg_control - cmsg_ptr,
1963 &msg->msg_controllen);
1964 if (err)
1965 goto out_freeiov;
1966 err = len;
1968 out_freeiov:
1969 if (iov != iovstack)
1970 sock_kfree_s(sock->sk, iov, iov_size);
1971 out_put:
1972 fput_light(sock->file, fput_needed);
1973 out:
1974 return err;
1977 #ifdef __ARCH_WANT_SYS_SOCKETCALL
1979 /* Argument list sizes for sys_socketcall */
1980 #define AL(x) ((x) * sizeof(unsigned long))
1981 static const unsigned char nargs[18]={
1982 AL(0),AL(3),AL(3),AL(3),AL(2),AL(3),
1983 AL(3),AL(3),AL(4),AL(4),AL(4),AL(6),
1984 AL(6),AL(2),AL(5),AL(5),AL(3),AL(3)
1987 #undef AL
1990 * System call vectors.
1992 * Argument checking cleaned up. Saved 20% in size.
1993 * This function doesn't need to set the kernel lock because
1994 * it is set by the callees.
1997 asmlinkage long sys_socketcall(int call, unsigned long __user *args)
1999 unsigned long a[6];
2000 unsigned long a0, a1;
2001 int err;
2003 if (call < 1 || call > SYS_RECVMSG)
2004 return -EINVAL;
2006 /* copy_from_user should be SMP safe. */
2007 if (copy_from_user(a, args, nargs[call]))
2008 return -EFAULT;
2010 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2011 if (err)
2012 return err;
2014 a0 = a[0];
2015 a1 = a[1];
2017 switch (call) {
2018 case SYS_SOCKET:
2019 err = sys_socket(a0, a1, a[2]);
2020 break;
2021 case SYS_BIND:
2022 err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2023 break;
2024 case SYS_CONNECT:
2025 err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2026 break;
2027 case SYS_LISTEN:
2028 err = sys_listen(a0, a1);
2029 break;
2030 case SYS_ACCEPT:
2031 err =
2032 sys_accept(a0, (struct sockaddr __user *)a1,
2033 (int __user *)a[2]);
2034 break;
2035 case SYS_GETSOCKNAME:
2036 err =
2037 sys_getsockname(a0, (struct sockaddr __user *)a1,
2038 (int __user *)a[2]);
2039 break;
2040 case SYS_GETPEERNAME:
2041 err =
2042 sys_getpeername(a0, (struct sockaddr __user *)a1,
2043 (int __user *)a[2]);
2044 break;
2045 case SYS_SOCKETPAIR:
2046 err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2047 break;
2048 case SYS_SEND:
2049 err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2050 break;
2051 case SYS_SENDTO:
2052 err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2053 (struct sockaddr __user *)a[4], a[5]);
2054 break;
2055 case SYS_RECV:
2056 err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2057 break;
2058 case SYS_RECVFROM:
2059 err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2060 (struct sockaddr __user *)a[4],
2061 (int __user *)a[5]);
2062 break;
2063 case SYS_SHUTDOWN:
2064 err = sys_shutdown(a0, a1);
2065 break;
2066 case SYS_SETSOCKOPT:
2067 err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2068 break;
2069 case SYS_GETSOCKOPT:
2070 err =
2071 sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2072 (int __user *)a[4]);
2073 break;
2074 case SYS_SENDMSG:
2075 err = sys_sendmsg(a0, (struct msghdr __user *)a1, a[2]);
2076 break;
2077 case SYS_RECVMSG:
2078 err = sys_recvmsg(a0, (struct msghdr __user *)a1, a[2]);
2079 break;
2080 default:
2081 err = -EINVAL;
2082 break;
2084 return err;
2087 #endif /* __ARCH_WANT_SYS_SOCKETCALL */
2090 * sock_register - add a socket protocol handler
2091 * @ops: description of protocol
2093 * This function is called by a protocol handler that wants to
2094 * advertise its address family, and have it linked into the
2095 * socket interface. The value ops->family coresponds to the
2096 * socket system call protocol family.
2098 int sock_register(const struct net_proto_family *ops)
2100 int err;
2102 if (ops->family >= NPROTO) {
2103 printk(KERN_CRIT "protocol %d >= NPROTO(%d)\n", ops->family,
2104 NPROTO);
2105 return -ENOBUFS;
2108 spin_lock(&net_family_lock);
2109 if (net_families[ops->family])
2110 err = -EEXIST;
2111 else {
2112 net_families[ops->family] = ops;
2113 err = 0;
2115 spin_unlock(&net_family_lock);
2117 printk(KERN_INFO "NET: Registered protocol family %d\n", ops->family);
2118 return err;
2122 * sock_unregister - remove a protocol handler
2123 * @family: protocol family to remove
2125 * This function is called by a protocol handler that wants to
2126 * remove its address family, and have it unlinked from the
2127 * new socket creation.
2129 * If protocol handler is a module, then it can use module reference
2130 * counts to protect against new references. If protocol handler is not
2131 * a module then it needs to provide its own protection in
2132 * the ops->create routine.
2134 void sock_unregister(int family)
2136 BUG_ON(family < 0 || family >= NPROTO);
2138 spin_lock(&net_family_lock);
2139 net_families[family] = NULL;
2140 spin_unlock(&net_family_lock);
2142 synchronize_rcu();
2144 printk(KERN_INFO "NET: Unregistered protocol family %d\n", family);
2147 static int __init sock_init(void)
2150 * Initialize sock SLAB cache.
2153 sk_init();
2156 * Initialize skbuff SLAB cache
2158 skb_init();
2161 * Initialize the protocols module.
2164 init_inodecache();
2165 register_filesystem(&sock_fs_type);
2166 sock_mnt = kern_mount(&sock_fs_type);
2168 /* The real protocol initialization is performed in later initcalls.
2171 #ifdef CONFIG_NETFILTER
2172 netfilter_init();
2173 #endif
2175 return 0;
2178 core_initcall(sock_init); /* early initcall */
2180 #ifdef CONFIG_PROC_FS
2181 void socket_seq_show(struct seq_file *seq)
2183 int cpu;
2184 int counter = 0;
2186 for_each_possible_cpu(cpu)
2187 counter += per_cpu(sockets_in_use, cpu);
2189 /* It can be negative, by the way. 8) */
2190 if (counter < 0)
2191 counter = 0;
2193 seq_printf(seq, "sockets: used %d\n", counter);
2195 #endif /* CONFIG_PROC_FS */
2197 #ifdef CONFIG_COMPAT
2198 static long compat_sock_ioctl(struct file *file, unsigned cmd,
2199 unsigned long arg)
2201 struct socket *sock = file->private_data;
2202 int ret = -ENOIOCTLCMD;
2204 if (sock->ops->compat_ioctl)
2205 ret = sock->ops->compat_ioctl(sock, cmd, arg);
2207 return ret;
2209 #endif
2211 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
2213 return sock->ops->bind(sock, addr, addrlen);
2216 int kernel_listen(struct socket *sock, int backlog)
2218 return sock->ops->listen(sock, backlog);
2221 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
2223 struct sock *sk = sock->sk;
2224 int err;
2226 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
2227 newsock);
2228 if (err < 0)
2229 goto done;
2231 err = sock->ops->accept(sock, *newsock, flags);
2232 if (err < 0) {
2233 sock_release(*newsock);
2234 goto done;
2237 (*newsock)->ops = sock->ops;
2239 done:
2240 return err;
2243 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
2244 int flags)
2246 return sock->ops->connect(sock, addr, addrlen, flags);
2249 int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
2250 int *addrlen)
2252 return sock->ops->getname(sock, addr, addrlen, 0);
2255 int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
2256 int *addrlen)
2258 return sock->ops->getname(sock, addr, addrlen, 1);
2261 int kernel_getsockopt(struct socket *sock, int level, int optname,
2262 char *optval, int *optlen)
2264 mm_segment_t oldfs = get_fs();
2265 int err;
2267 set_fs(KERNEL_DS);
2268 if (level == SOL_SOCKET)
2269 err = sock_getsockopt(sock, level, optname, optval, optlen);
2270 else
2271 err = sock->ops->getsockopt(sock, level, optname, optval,
2272 optlen);
2273 set_fs(oldfs);
2274 return err;
2277 int kernel_setsockopt(struct socket *sock, int level, int optname,
2278 char *optval, int optlen)
2280 mm_segment_t oldfs = get_fs();
2281 int err;
2283 set_fs(KERNEL_DS);
2284 if (level == SOL_SOCKET)
2285 err = sock_setsockopt(sock, level, optname, optval, optlen);
2286 else
2287 err = sock->ops->setsockopt(sock, level, optname, optval,
2288 optlen);
2289 set_fs(oldfs);
2290 return err;
2293 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
2294 size_t size, int flags)
2296 if (sock->ops->sendpage)
2297 return sock->ops->sendpage(sock, page, offset, size, flags);
2299 return sock_no_sendpage(sock, page, offset, size, flags);
2302 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
2304 mm_segment_t oldfs = get_fs();
2305 int err;
2307 set_fs(KERNEL_DS);
2308 err = sock->ops->ioctl(sock, cmd, arg);
2309 set_fs(oldfs);
2311 return err;
2314 /* ABI emulation layers need these two */
2315 EXPORT_SYMBOL(move_addr_to_kernel);
2316 EXPORT_SYMBOL(move_addr_to_user);
2317 EXPORT_SYMBOL(sock_create);
2318 EXPORT_SYMBOL(sock_create_kern);
2319 EXPORT_SYMBOL(sock_create_lite);
2320 EXPORT_SYMBOL(sock_map_fd);
2321 EXPORT_SYMBOL(sock_recvmsg);
2322 EXPORT_SYMBOL(sock_register);
2323 EXPORT_SYMBOL(sock_release);
2324 EXPORT_SYMBOL(sock_sendmsg);
2325 EXPORT_SYMBOL(sock_unregister);
2326 EXPORT_SYMBOL(sock_wake_async);
2327 EXPORT_SYMBOL(sockfd_lookup);
2328 EXPORT_SYMBOL(kernel_sendmsg);
2329 EXPORT_SYMBOL(kernel_recvmsg);
2330 EXPORT_SYMBOL(kernel_bind);
2331 EXPORT_SYMBOL(kernel_listen);
2332 EXPORT_SYMBOL(kernel_accept);
2333 EXPORT_SYMBOL(kernel_connect);
2334 EXPORT_SYMBOL(kernel_getsockname);
2335 EXPORT_SYMBOL(kernel_getpeername);
2336 EXPORT_SYMBOL(kernel_getsockopt);
2337 EXPORT_SYMBOL(kernel_setsockopt);
2338 EXPORT_SYMBOL(kernel_sendpage);
2339 EXPORT_SYMBOL(kernel_sock_ioctl);