[media] pms: fix build error in pms_probe()
[linux-2.6/libata-dev.git] / net / decnet / dn_neigh.c
blobee7013f24fcabc2518b3dfa8234e8cade433daa8
1 /*
2 * DECnet An implementation of the DECnet protocol suite for the LINUX
3 * operating system. DECnet is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * DECnet Neighbour Functions (Adjacency Database and
7 * On-Ethernet Cache)
9 * Author: Steve Whitehouse <SteveW@ACM.org>
12 * Changes:
13 * Steve Whitehouse : Fixed router listing routine
14 * Steve Whitehouse : Added error_report functions
15 * Steve Whitehouse : Added default router detection
16 * Steve Whitehouse : Hop counts in outgoing messages
17 * Steve Whitehouse : Fixed src/dst in outgoing messages so
18 * forwarding now stands a good chance of
19 * working.
20 * Steve Whitehouse : Fixed neighbour states (for now anyway).
21 * Steve Whitehouse : Made error_report functions dummies. This
22 * is not the right place to return skbs.
23 * Steve Whitehouse : Convert to seq_file
27 #include <linux/net.h>
28 #include <linux/module.h>
29 #include <linux/socket.h>
30 #include <linux/if_arp.h>
31 #include <linux/slab.h>
32 #include <linux/if_ether.h>
33 #include <linux/init.h>
34 #include <linux/proc_fs.h>
35 #include <linux/string.h>
36 #include <linux/netfilter_decnet.h>
37 #include <linux/spinlock.h>
38 #include <linux/seq_file.h>
39 #include <linux/rcupdate.h>
40 #include <linux/jhash.h>
41 #include <linux/atomic.h>
42 #include <net/net_namespace.h>
43 #include <net/neighbour.h>
44 #include <net/dst.h>
45 #include <net/flow.h>
46 #include <net/dn.h>
47 #include <net/dn_dev.h>
48 #include <net/dn_neigh.h>
49 #include <net/dn_route.h>
51 static int dn_neigh_construct(struct neighbour *);
52 static void dn_long_error_report(struct neighbour *, struct sk_buff *);
53 static void dn_short_error_report(struct neighbour *, struct sk_buff *);
54 static int dn_long_output(struct neighbour *, struct sk_buff *);
55 static int dn_short_output(struct neighbour *, struct sk_buff *);
56 static int dn_phase3_output(struct neighbour *, struct sk_buff *);
60 * For talking to broadcast devices: Ethernet & PPP
62 static const struct neigh_ops dn_long_ops = {
63 .family = AF_DECnet,
64 .error_report = dn_long_error_report,
65 .output = dn_long_output,
66 .connected_output = dn_long_output,
70 * For talking to pointopoint and multidrop devices: DDCMP and X.25
72 static const struct neigh_ops dn_short_ops = {
73 .family = AF_DECnet,
74 .error_report = dn_short_error_report,
75 .output = dn_short_output,
76 .connected_output = dn_short_output,
80 * For talking to DECnet phase III nodes
82 static const struct neigh_ops dn_phase3_ops = {
83 .family = AF_DECnet,
84 .error_report = dn_short_error_report, /* Can use short version here */
85 .output = dn_phase3_output,
86 .connected_output = dn_phase3_output,
89 static u32 dn_neigh_hash(const void *pkey,
90 const struct net_device *dev,
91 __u32 *hash_rnd)
93 return jhash_2words(*(__u16 *)pkey, 0, hash_rnd[0]);
96 struct neigh_table dn_neigh_table = {
97 .family = PF_DECnet,
98 .entry_size = sizeof(struct dn_neigh),
99 .key_len = sizeof(__le16),
100 .hash = dn_neigh_hash,
101 .constructor = dn_neigh_construct,
102 .id = "dn_neigh_cache",
103 .parms ={
104 .tbl = &dn_neigh_table,
105 .base_reachable_time = 30 * HZ,
106 .retrans_time = 1 * HZ,
107 .gc_staletime = 60 * HZ,
108 .reachable_time = 30 * HZ,
109 .delay_probe_time = 5 * HZ,
110 .queue_len_bytes = 64*1024,
111 .ucast_probes = 0,
112 .app_probes = 0,
113 .mcast_probes = 0,
114 .anycast_delay = 0,
115 .proxy_delay = 0,
116 .proxy_qlen = 0,
117 .locktime = 1 * HZ,
119 .gc_interval = 30 * HZ,
120 .gc_thresh1 = 128,
121 .gc_thresh2 = 512,
122 .gc_thresh3 = 1024,
125 static int dn_neigh_construct(struct neighbour *neigh)
127 struct net_device *dev = neigh->dev;
128 struct dn_neigh *dn = (struct dn_neigh *)neigh;
129 struct dn_dev *dn_db;
130 struct neigh_parms *parms;
132 rcu_read_lock();
133 dn_db = rcu_dereference(dev->dn_ptr);
134 if (dn_db == NULL) {
135 rcu_read_unlock();
136 return -EINVAL;
139 parms = dn_db->neigh_parms;
140 if (!parms) {
141 rcu_read_unlock();
142 return -EINVAL;
145 __neigh_parms_put(neigh->parms);
146 neigh->parms = neigh_parms_clone(parms);
148 if (dn_db->use_long)
149 neigh->ops = &dn_long_ops;
150 else
151 neigh->ops = &dn_short_ops;
152 rcu_read_unlock();
154 if (dn->flags & DN_NDFLAG_P3)
155 neigh->ops = &dn_phase3_ops;
157 neigh->nud_state = NUD_NOARP;
158 neigh->output = neigh->ops->connected_output;
160 if ((dev->type == ARPHRD_IPGRE) || (dev->flags & IFF_POINTOPOINT))
161 memcpy(neigh->ha, dev->broadcast, dev->addr_len);
162 else if ((dev->type == ARPHRD_ETHER) || (dev->type == ARPHRD_LOOPBACK))
163 dn_dn2eth(neigh->ha, dn->addr);
164 else {
165 if (net_ratelimit())
166 printk(KERN_DEBUG "Trying to create neigh for hw %d\n", dev->type);
167 return -EINVAL;
171 * Make an estimate of the remote block size by assuming that its
172 * two less then the device mtu, which it true for ethernet (and
173 * other things which support long format headers) since there is
174 * an extra length field (of 16 bits) which isn't part of the
175 * ethernet headers and which the DECnet specs won't admit is part
176 * of the DECnet routing headers either.
178 * If we over estimate here its no big deal, the NSP negotiations
179 * will prevent us from sending packets which are too large for the
180 * remote node to handle. In any case this figure is normally updated
181 * by a hello message in most cases.
183 dn->blksize = dev->mtu - 2;
185 return 0;
188 static void dn_long_error_report(struct neighbour *neigh, struct sk_buff *skb)
190 printk(KERN_DEBUG "dn_long_error_report: called\n");
191 kfree_skb(skb);
195 static void dn_short_error_report(struct neighbour *neigh, struct sk_buff *skb)
197 printk(KERN_DEBUG "dn_short_error_report: called\n");
198 kfree_skb(skb);
201 static int dn_neigh_output_packet(struct sk_buff *skb)
203 struct dst_entry *dst = skb_dst(skb);
204 struct dn_route *rt = (struct dn_route *)dst;
205 struct neighbour *neigh = dst_get_neighbour_noref(dst);
206 struct net_device *dev = neigh->dev;
207 char mac_addr[ETH_ALEN];
208 unsigned int seq;
209 int err;
211 dn_dn2eth(mac_addr, rt->rt_local_src);
212 do {
213 seq = read_seqbegin(&neigh->ha_lock);
214 err = dev_hard_header(skb, dev, ntohs(skb->protocol),
215 neigh->ha, mac_addr, skb->len);
216 } while (read_seqretry(&neigh->ha_lock, seq));
218 if (err >= 0)
219 err = dev_queue_xmit(skb);
220 else {
221 kfree_skb(skb);
222 err = -EINVAL;
224 return err;
227 static int dn_long_output(struct neighbour *neigh, struct sk_buff *skb)
229 struct net_device *dev = neigh->dev;
230 int headroom = dev->hard_header_len + sizeof(struct dn_long_packet) + 3;
231 unsigned char *data;
232 struct dn_long_packet *lp;
233 struct dn_skb_cb *cb = DN_SKB_CB(skb);
236 if (skb_headroom(skb) < headroom) {
237 struct sk_buff *skb2 = skb_realloc_headroom(skb, headroom);
238 if (skb2 == NULL) {
239 if (net_ratelimit())
240 printk(KERN_CRIT "dn_long_output: no memory\n");
241 kfree_skb(skb);
242 return -ENOBUFS;
244 kfree_skb(skb);
245 skb = skb2;
246 if (net_ratelimit())
247 printk(KERN_INFO "dn_long_output: Increasing headroom\n");
250 data = skb_push(skb, sizeof(struct dn_long_packet) + 3);
251 lp = (struct dn_long_packet *)(data+3);
253 *((__le16 *)data) = cpu_to_le16(skb->len - 2);
254 *(data + 2) = 1 | DN_RT_F_PF; /* Padding */
256 lp->msgflg = DN_RT_PKT_LONG|(cb->rt_flags&(DN_RT_F_IE|DN_RT_F_RQR|DN_RT_F_RTS));
257 lp->d_area = lp->d_subarea = 0;
258 dn_dn2eth(lp->d_id, cb->dst);
259 lp->s_area = lp->s_subarea = 0;
260 dn_dn2eth(lp->s_id, cb->src);
261 lp->nl2 = 0;
262 lp->visit_ct = cb->hops & 0x3f;
263 lp->s_class = 0;
264 lp->pt = 0;
266 skb_reset_network_header(skb);
268 return NF_HOOK(NFPROTO_DECNET, NF_DN_POST_ROUTING, skb, NULL,
269 neigh->dev, dn_neigh_output_packet);
272 static int dn_short_output(struct neighbour *neigh, struct sk_buff *skb)
274 struct net_device *dev = neigh->dev;
275 int headroom = dev->hard_header_len + sizeof(struct dn_short_packet) + 2;
276 struct dn_short_packet *sp;
277 unsigned char *data;
278 struct dn_skb_cb *cb = DN_SKB_CB(skb);
281 if (skb_headroom(skb) < headroom) {
282 struct sk_buff *skb2 = skb_realloc_headroom(skb, headroom);
283 if (skb2 == NULL) {
284 if (net_ratelimit())
285 printk(KERN_CRIT "dn_short_output: no memory\n");
286 kfree_skb(skb);
287 return -ENOBUFS;
289 kfree_skb(skb);
290 skb = skb2;
291 if (net_ratelimit())
292 printk(KERN_INFO "dn_short_output: Increasing headroom\n");
295 data = skb_push(skb, sizeof(struct dn_short_packet) + 2);
296 *((__le16 *)data) = cpu_to_le16(skb->len - 2);
297 sp = (struct dn_short_packet *)(data+2);
299 sp->msgflg = DN_RT_PKT_SHORT|(cb->rt_flags&(DN_RT_F_RQR|DN_RT_F_RTS));
300 sp->dstnode = cb->dst;
301 sp->srcnode = cb->src;
302 sp->forward = cb->hops & 0x3f;
304 skb_reset_network_header(skb);
306 return NF_HOOK(NFPROTO_DECNET, NF_DN_POST_ROUTING, skb, NULL,
307 neigh->dev, dn_neigh_output_packet);
311 * Phase 3 output is the same is short output, execpt that
312 * it clears the area bits before transmission.
314 static int dn_phase3_output(struct neighbour *neigh, struct sk_buff *skb)
316 struct net_device *dev = neigh->dev;
317 int headroom = dev->hard_header_len + sizeof(struct dn_short_packet) + 2;
318 struct dn_short_packet *sp;
319 unsigned char *data;
320 struct dn_skb_cb *cb = DN_SKB_CB(skb);
322 if (skb_headroom(skb) < headroom) {
323 struct sk_buff *skb2 = skb_realloc_headroom(skb, headroom);
324 if (skb2 == NULL) {
325 if (net_ratelimit())
326 printk(KERN_CRIT "dn_phase3_output: no memory\n");
327 kfree_skb(skb);
328 return -ENOBUFS;
330 kfree_skb(skb);
331 skb = skb2;
332 if (net_ratelimit())
333 printk(KERN_INFO "dn_phase3_output: Increasing headroom\n");
336 data = skb_push(skb, sizeof(struct dn_short_packet) + 2);
337 *((__le16 *)data) = cpu_to_le16(skb->len - 2);
338 sp = (struct dn_short_packet *)(data + 2);
340 sp->msgflg = DN_RT_PKT_SHORT|(cb->rt_flags&(DN_RT_F_RQR|DN_RT_F_RTS));
341 sp->dstnode = cb->dst & cpu_to_le16(0x03ff);
342 sp->srcnode = cb->src & cpu_to_le16(0x03ff);
343 sp->forward = cb->hops & 0x3f;
345 skb_reset_network_header(skb);
347 return NF_HOOK(NFPROTO_DECNET, NF_DN_POST_ROUTING, skb, NULL,
348 neigh->dev, dn_neigh_output_packet);
352 * Unfortunately, the neighbour code uses the device in its hash
353 * function, so we don't get any advantage from it. This function
354 * basically does a neigh_lookup(), but without comparing the device
355 * field. This is required for the On-Ethernet cache
359 * Pointopoint link receives a hello message
361 void dn_neigh_pointopoint_hello(struct sk_buff *skb)
363 kfree_skb(skb);
367 * Ethernet router hello message received
369 int dn_neigh_router_hello(struct sk_buff *skb)
371 struct rtnode_hello_message *msg = (struct rtnode_hello_message *)skb->data;
373 struct neighbour *neigh;
374 struct dn_neigh *dn;
375 struct dn_dev *dn_db;
376 __le16 src;
378 src = dn_eth2dn(msg->id);
380 neigh = __neigh_lookup(&dn_neigh_table, &src, skb->dev, 1);
382 dn = (struct dn_neigh *)neigh;
384 if (neigh) {
385 write_lock(&neigh->lock);
387 neigh->used = jiffies;
388 dn_db = rcu_dereference(neigh->dev->dn_ptr);
390 if (!(neigh->nud_state & NUD_PERMANENT)) {
391 neigh->updated = jiffies;
393 if (neigh->dev->type == ARPHRD_ETHER)
394 memcpy(neigh->ha, &eth_hdr(skb)->h_source, ETH_ALEN);
396 dn->blksize = le16_to_cpu(msg->blksize);
397 dn->priority = msg->priority;
399 dn->flags &= ~DN_NDFLAG_P3;
401 switch (msg->iinfo & DN_RT_INFO_TYPE) {
402 case DN_RT_INFO_L1RT:
403 dn->flags &=~DN_NDFLAG_R2;
404 dn->flags |= DN_NDFLAG_R1;
405 break;
406 case DN_RT_INFO_L2RT:
407 dn->flags |= DN_NDFLAG_R2;
411 /* Only use routers in our area */
412 if ((le16_to_cpu(src)>>10) == (le16_to_cpu((decnet_address))>>10)) {
413 if (!dn_db->router) {
414 dn_db->router = neigh_clone(neigh);
415 } else {
416 if (msg->priority > ((struct dn_neigh *)dn_db->router)->priority)
417 neigh_release(xchg(&dn_db->router, neigh_clone(neigh)));
420 write_unlock(&neigh->lock);
421 neigh_release(neigh);
424 kfree_skb(skb);
425 return 0;
429 * Endnode hello message received
431 int dn_neigh_endnode_hello(struct sk_buff *skb)
433 struct endnode_hello_message *msg = (struct endnode_hello_message *)skb->data;
434 struct neighbour *neigh;
435 struct dn_neigh *dn;
436 __le16 src;
438 src = dn_eth2dn(msg->id);
440 neigh = __neigh_lookup(&dn_neigh_table, &src, skb->dev, 1);
442 dn = (struct dn_neigh *)neigh;
444 if (neigh) {
445 write_lock(&neigh->lock);
447 neigh->used = jiffies;
449 if (!(neigh->nud_state & NUD_PERMANENT)) {
450 neigh->updated = jiffies;
452 if (neigh->dev->type == ARPHRD_ETHER)
453 memcpy(neigh->ha, &eth_hdr(skb)->h_source, ETH_ALEN);
454 dn->flags &= ~(DN_NDFLAG_R1 | DN_NDFLAG_R2);
455 dn->blksize = le16_to_cpu(msg->blksize);
456 dn->priority = 0;
459 write_unlock(&neigh->lock);
460 neigh_release(neigh);
463 kfree_skb(skb);
464 return 0;
467 static char *dn_find_slot(char *base, int max, int priority)
469 int i;
470 unsigned char *min = NULL;
472 base += 6; /* skip first id */
474 for(i = 0; i < max; i++) {
475 if (!min || (*base < *min))
476 min = base;
477 base += 7; /* find next priority */
480 if (!min)
481 return NULL;
483 return (*min < priority) ? (min - 6) : NULL;
486 struct elist_cb_state {
487 struct net_device *dev;
488 unsigned char *ptr;
489 unsigned char *rs;
490 int t, n;
493 static void neigh_elist_cb(struct neighbour *neigh, void *_info)
495 struct elist_cb_state *s = _info;
496 struct dn_neigh *dn;
498 if (neigh->dev != s->dev)
499 return;
501 dn = (struct dn_neigh *) neigh;
502 if (!(dn->flags & (DN_NDFLAG_R1|DN_NDFLAG_R2)))
503 return;
505 if (s->t == s->n)
506 s->rs = dn_find_slot(s->ptr, s->n, dn->priority);
507 else
508 s->t++;
509 if (s->rs == NULL)
510 return;
512 dn_dn2eth(s->rs, dn->addr);
513 s->rs += 6;
514 *(s->rs) = neigh->nud_state & NUD_CONNECTED ? 0x80 : 0x0;
515 *(s->rs) |= dn->priority;
516 s->rs++;
519 int dn_neigh_elist(struct net_device *dev, unsigned char *ptr, int n)
521 struct elist_cb_state state;
523 state.dev = dev;
524 state.t = 0;
525 state.n = n;
526 state.ptr = ptr;
527 state.rs = ptr;
529 neigh_for_each(&dn_neigh_table, neigh_elist_cb, &state);
531 return state.t;
535 #ifdef CONFIG_PROC_FS
537 static inline void dn_neigh_format_entry(struct seq_file *seq,
538 struct neighbour *n)
540 struct dn_neigh *dn = (struct dn_neigh *) n;
541 char buf[DN_ASCBUF_LEN];
543 read_lock(&n->lock);
544 seq_printf(seq, "%-7s %s%s%s %02x %02d %07ld %-8s\n",
545 dn_addr2asc(le16_to_cpu(dn->addr), buf),
546 (dn->flags&DN_NDFLAG_R1) ? "1" : "-",
547 (dn->flags&DN_NDFLAG_R2) ? "2" : "-",
548 (dn->flags&DN_NDFLAG_P3) ? "3" : "-",
549 dn->n.nud_state,
550 atomic_read(&dn->n.refcnt),
551 dn->blksize,
552 (dn->n.dev) ? dn->n.dev->name : "?");
553 read_unlock(&n->lock);
556 static int dn_neigh_seq_show(struct seq_file *seq, void *v)
558 if (v == SEQ_START_TOKEN) {
559 seq_puts(seq, "Addr Flags State Use Blksize Dev\n");
560 } else {
561 dn_neigh_format_entry(seq, v);
564 return 0;
567 static void *dn_neigh_seq_start(struct seq_file *seq, loff_t *pos)
569 return neigh_seq_start(seq, pos, &dn_neigh_table,
570 NEIGH_SEQ_NEIGH_ONLY);
573 static const struct seq_operations dn_neigh_seq_ops = {
574 .start = dn_neigh_seq_start,
575 .next = neigh_seq_next,
576 .stop = neigh_seq_stop,
577 .show = dn_neigh_seq_show,
580 static int dn_neigh_seq_open(struct inode *inode, struct file *file)
582 return seq_open_net(inode, file, &dn_neigh_seq_ops,
583 sizeof(struct neigh_seq_state));
586 static const struct file_operations dn_neigh_seq_fops = {
587 .owner = THIS_MODULE,
588 .open = dn_neigh_seq_open,
589 .read = seq_read,
590 .llseek = seq_lseek,
591 .release = seq_release_net,
594 #endif
596 void __init dn_neigh_init(void)
598 neigh_table_init(&dn_neigh_table);
599 proc_net_fops_create(&init_net, "decnet_neigh", S_IRUGO, &dn_neigh_seq_fops);
602 void __exit dn_neigh_cleanup(void)
604 proc_net_remove(&init_net, "decnet_neigh");
605 neigh_table_clear(&dn_neigh_table);