skbuff.h: fix missing kernel-doc
[linux-2.6/libata-dev.git] / include / linux / skbuff.h
blobeb2e837afaf3f9a44fb82c0d4c591f6a72ae53eb
1 /*
2 * Definitions for the 'struct sk_buff' memory handlers.
4 * Authors:
5 * Alan Cox, <gw4pts@gw4pts.ampr.org>
6 * Florian La Roche, <rzsfl@rz.uni-sb.de>
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
14 #ifndef _LINUX_SKBUFF_H
15 #define _LINUX_SKBUFF_H
17 #include <linux/kernel.h>
18 #include <linux/compiler.h>
19 #include <linux/time.h>
20 #include <linux/cache.h>
22 #include <asm/atomic.h>
23 #include <asm/types.h>
24 #include <linux/spinlock.h>
25 #include <linux/net.h>
26 #include <linux/textsearch.h>
27 #include <net/checksum.h>
28 #include <linux/rcupdate.h>
29 #include <linux/dmaengine.h>
30 #include <linux/hrtimer.h>
32 /* Don't change this without changing skb_csum_unnecessary! */
33 #define CHECKSUM_NONE 0
34 #define CHECKSUM_UNNECESSARY 1
35 #define CHECKSUM_COMPLETE 2
36 #define CHECKSUM_PARTIAL 3
38 #define SKB_DATA_ALIGN(X) (((X) + (SMP_CACHE_BYTES - 1)) & \
39 ~(SMP_CACHE_BYTES - 1))
40 #define SKB_WITH_OVERHEAD(X) \
41 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
42 #define SKB_MAX_ORDER(X, ORDER) \
43 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
44 #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0))
45 #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2))
47 /* A. Checksumming of received packets by device.
49 * NONE: device failed to checksum this packet.
50 * skb->csum is undefined.
52 * UNNECESSARY: device parsed packet and wouldbe verified checksum.
53 * skb->csum is undefined.
54 * It is bad option, but, unfortunately, many of vendors do this.
55 * Apparently with secret goal to sell you new device, when you
56 * will add new protocol to your host. F.e. IPv6. 8)
58 * COMPLETE: the most generic way. Device supplied checksum of _all_
59 * the packet as seen by netif_rx in skb->csum.
60 * NOTE: Even if device supports only some protocols, but
61 * is able to produce some skb->csum, it MUST use COMPLETE,
62 * not UNNECESSARY.
64 * PARTIAL: identical to the case for output below. This may occur
65 * on a packet received directly from another Linux OS, e.g.,
66 * a virtualised Linux kernel on the same host. The packet can
67 * be treated in the same way as UNNECESSARY except that on
68 * output (i.e., forwarding) the checksum must be filled in
69 * by the OS or the hardware.
71 * B. Checksumming on output.
73 * NONE: skb is checksummed by protocol or csum is not required.
75 * PARTIAL: device is required to csum packet as seen by hard_start_xmit
76 * from skb->csum_start to the end and to record the checksum
77 * at skb->csum_start + skb->csum_offset.
79 * Device must show its capabilities in dev->features, set
80 * at device setup time.
81 * NETIF_F_HW_CSUM - it is clever device, it is able to checksum
82 * everything.
83 * NETIF_F_NO_CSUM - loopback or reliable single hop media.
84 * NETIF_F_IP_CSUM - device is dumb. It is able to csum only
85 * TCP/UDP over IPv4. Sigh. Vendors like this
86 * way by an unknown reason. Though, see comment above
87 * about CHECKSUM_UNNECESSARY. 8)
88 * NETIF_F_IPV6_CSUM about as dumb as the last one but does IPv6 instead.
90 * Any questions? No questions, good. --ANK
93 struct net_device;
94 struct scatterlist;
95 struct pipe_inode_info;
97 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
98 struct nf_conntrack {
99 atomic_t use;
101 #endif
103 #ifdef CONFIG_BRIDGE_NETFILTER
104 struct nf_bridge_info {
105 atomic_t use;
106 struct net_device *physindev;
107 struct net_device *physoutdev;
108 unsigned int mask;
109 unsigned long data[32 / sizeof(unsigned long)];
111 #endif
113 struct sk_buff_head {
114 /* These two members must be first. */
115 struct sk_buff *next;
116 struct sk_buff *prev;
118 __u32 qlen;
119 spinlock_t lock;
122 struct sk_buff;
124 /* To allow 64K frame to be packed as single skb without frag_list */
125 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 2)
127 typedef struct skb_frag_struct skb_frag_t;
129 struct skb_frag_struct {
130 struct page *page;
131 __u32 page_offset;
132 __u32 size;
135 #define HAVE_HW_TIME_STAMP
138 * struct skb_shared_hwtstamps - hardware time stamps
139 * @hwtstamp: hardware time stamp transformed into duration
140 * since arbitrary point in time
141 * @syststamp: hwtstamp transformed to system time base
143 * Software time stamps generated by ktime_get_real() are stored in
144 * skb->tstamp. The relation between the different kinds of time
145 * stamps is as follows:
147 * syststamp and tstamp can be compared against each other in
148 * arbitrary combinations. The accuracy of a
149 * syststamp/tstamp/"syststamp from other device" comparison is
150 * limited by the accuracy of the transformation into system time
151 * base. This depends on the device driver and its underlying
152 * hardware.
154 * hwtstamps can only be compared against other hwtstamps from
155 * the same device.
157 * This structure is attached to packets as part of the
158 * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
160 struct skb_shared_hwtstamps {
161 ktime_t hwtstamp;
162 ktime_t syststamp;
166 * struct skb_shared_tx - instructions for time stamping of outgoing packets
167 * @hardware: generate hardware time stamp
168 * @software: generate software time stamp
169 * @in_progress: device driver is going to provide
170 * hardware time stamp
171 * @flags: all shared_tx flags
173 * These flags are attached to packets as part of the
174 * &skb_shared_info. Use skb_tx() to get a pointer.
176 union skb_shared_tx {
177 struct {
178 __u8 hardware:1,
179 software:1,
180 in_progress:1;
182 __u8 flags;
185 /* This data is invariant across clones and lives at
186 * the end of the header data, ie. at skb->end.
188 struct skb_shared_info {
189 atomic_t dataref;
190 unsigned short nr_frags;
191 unsigned short gso_size;
192 /* Warning: this field is not always filled in (UFO)! */
193 unsigned short gso_segs;
194 unsigned short gso_type;
195 __be32 ip6_frag_id;
196 union skb_shared_tx tx_flags;
197 #ifdef CONFIG_HAS_DMA
198 unsigned int num_dma_maps;
199 #endif
200 struct sk_buff *frag_list;
201 struct skb_shared_hwtstamps hwtstamps;
202 skb_frag_t frags[MAX_SKB_FRAGS];
203 #ifdef CONFIG_HAS_DMA
204 dma_addr_t dma_maps[MAX_SKB_FRAGS + 1];
205 #endif
208 /* We divide dataref into two halves. The higher 16 bits hold references
209 * to the payload part of skb->data. The lower 16 bits hold references to
210 * the entire skb->data. A clone of a headerless skb holds the length of
211 * the header in skb->hdr_len.
213 * All users must obey the rule that the skb->data reference count must be
214 * greater than or equal to the payload reference count.
216 * Holding a reference to the payload part means that the user does not
217 * care about modifications to the header part of skb->data.
219 #define SKB_DATAREF_SHIFT 16
220 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
223 enum {
224 SKB_FCLONE_UNAVAILABLE,
225 SKB_FCLONE_ORIG,
226 SKB_FCLONE_CLONE,
229 enum {
230 SKB_GSO_TCPV4 = 1 << 0,
231 SKB_GSO_UDP = 1 << 1,
233 /* This indicates the skb is from an untrusted source. */
234 SKB_GSO_DODGY = 1 << 2,
236 /* This indicates the tcp segment has CWR set. */
237 SKB_GSO_TCP_ECN = 1 << 3,
239 SKB_GSO_TCPV6 = 1 << 4,
242 #if BITS_PER_LONG > 32
243 #define NET_SKBUFF_DATA_USES_OFFSET 1
244 #endif
246 #ifdef NET_SKBUFF_DATA_USES_OFFSET
247 typedef unsigned int sk_buff_data_t;
248 #else
249 typedef unsigned char *sk_buff_data_t;
250 #endif
252 /**
253 * struct sk_buff - socket buffer
254 * @next: Next buffer in list
255 * @prev: Previous buffer in list
256 * @sk: Socket we are owned by
257 * @tstamp: Time we arrived
258 * @dev: Device we arrived on/are leaving by
259 * @transport_header: Transport layer header
260 * @network_header: Network layer header
261 * @mac_header: Link layer header
262 * @dst: destination entry
263 * @sp: the security path, used for xfrm
264 * @cb: Control buffer. Free for use by every layer. Put private vars here
265 * @len: Length of actual data
266 * @data_len: Data length
267 * @mac_len: Length of link layer header
268 * @hdr_len: writable header length of cloned skb
269 * @csum: Checksum (must include start/offset pair)
270 * @csum_start: Offset from skb->head where checksumming should start
271 * @csum_offset: Offset from csum_start where checksum should be stored
272 * @local_df: allow local fragmentation
273 * @cloned: Head may be cloned (check refcnt to be sure)
274 * @nohdr: Payload reference only, must not modify header
275 * @pkt_type: Packet class
276 * @fclone: skbuff clone status
277 * @ip_summed: Driver fed us an IP checksum
278 * @priority: Packet queueing priority
279 * @users: User count - see {datagram,tcp}.c
280 * @protocol: Packet protocol from driver
281 * @truesize: Buffer size
282 * @head: Head of buffer
283 * @data: Data head pointer
284 * @tail: Tail pointer
285 * @end: End pointer
286 * @destructor: Destruct function
287 * @mark: Generic packet mark
288 * @nfct: Associated connection, if any
289 * @ipvs_property: skbuff is owned by ipvs
290 * @peeked: this packet has been seen already, so stats have been
291 * done for it, don't do them again
292 * @nf_trace: netfilter packet trace flag
293 * @nfctinfo: Relationship of this skb to the connection
294 * @nfct_reasm: netfilter conntrack re-assembly pointer
295 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
296 * @iif: ifindex of device we arrived on
297 * @queue_mapping: Queue mapping for multiqueue devices
298 * @tc_index: Traffic control index
299 * @tc_verd: traffic control verdict
300 * @ndisc_nodetype: router type (from link layer)
301 * @do_not_encrypt: set to prevent encryption of this frame
302 * @requeue: set to indicate that the wireless core should attempt
303 * a software retry on this frame if we failed to
304 * receive an ACK for it
305 * @dma_cookie: a cookie to one of several possible DMA operations
306 * done by skb DMA functions
307 * @secmark: security marking
308 * @vlan_tci: vlan tag control information
311 struct sk_buff {
312 /* These two members must be first. */
313 struct sk_buff *next;
314 struct sk_buff *prev;
316 struct sock *sk;
317 ktime_t tstamp;
318 struct net_device *dev;
320 union {
321 struct dst_entry *dst;
322 struct rtable *rtable;
324 #ifdef CONFIG_XFRM
325 struct sec_path *sp;
326 #endif
328 * This is the control buffer. It is free to use for every
329 * layer. Please put your private variables there. If you
330 * want to keep them across layers you have to do a skb_clone()
331 * first. This is owned by whoever has the skb queued ATM.
333 char cb[48];
335 unsigned int len,
336 data_len;
337 __u16 mac_len,
338 hdr_len;
339 union {
340 __wsum csum;
341 struct {
342 __u16 csum_start;
343 __u16 csum_offset;
346 __u32 priority;
347 __u8 local_df:1,
348 cloned:1,
349 ip_summed:2,
350 nohdr:1,
351 nfctinfo:3;
352 __u8 pkt_type:3,
353 fclone:2,
354 ipvs_property:1,
355 peeked:1,
356 nf_trace:1;
357 __be16 protocol;
359 void (*destructor)(struct sk_buff *skb);
360 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
361 struct nf_conntrack *nfct;
362 struct sk_buff *nfct_reasm;
363 #endif
364 #ifdef CONFIG_BRIDGE_NETFILTER
365 struct nf_bridge_info *nf_bridge;
366 #endif
368 int iif;
369 __u16 queue_mapping;
370 #ifdef CONFIG_NET_SCHED
371 __u16 tc_index; /* traffic control index */
372 #ifdef CONFIG_NET_CLS_ACT
373 __u16 tc_verd; /* traffic control verdict */
374 #endif
375 #endif
376 #ifdef CONFIG_IPV6_NDISC_NODETYPE
377 __u8 ndisc_nodetype:2;
378 #endif
379 #if defined(CONFIG_MAC80211) || defined(CONFIG_MAC80211_MODULE)
380 __u8 do_not_encrypt:1;
381 __u8 requeue:1;
382 #endif
383 /* 0/13/14 bit hole */
385 #ifdef CONFIG_NET_DMA
386 dma_cookie_t dma_cookie;
387 #endif
388 #ifdef CONFIG_NETWORK_SECMARK
389 __u32 secmark;
390 #endif
392 __u32 mark;
394 __u16 vlan_tci;
396 sk_buff_data_t transport_header;
397 sk_buff_data_t network_header;
398 sk_buff_data_t mac_header;
399 /* These elements must be at the end, see alloc_skb() for details. */
400 sk_buff_data_t tail;
401 sk_buff_data_t end;
402 unsigned char *head,
403 *data;
404 unsigned int truesize;
405 atomic_t users;
408 #ifdef __KERNEL__
410 * Handling routines are only of interest to the kernel
412 #include <linux/slab.h>
414 #include <asm/system.h>
416 #ifdef CONFIG_HAS_DMA
417 #include <linux/dma-mapping.h>
418 extern int skb_dma_map(struct device *dev, struct sk_buff *skb,
419 enum dma_data_direction dir);
420 extern void skb_dma_unmap(struct device *dev, struct sk_buff *skb,
421 enum dma_data_direction dir);
422 #endif
424 extern void kfree_skb(struct sk_buff *skb);
425 extern void consume_skb(struct sk_buff *skb);
426 extern void __kfree_skb(struct sk_buff *skb);
427 extern struct sk_buff *__alloc_skb(unsigned int size,
428 gfp_t priority, int fclone, int node);
429 static inline struct sk_buff *alloc_skb(unsigned int size,
430 gfp_t priority)
432 return __alloc_skb(size, priority, 0, -1);
435 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
436 gfp_t priority)
438 return __alloc_skb(size, priority, 1, -1);
441 extern int skb_recycle_check(struct sk_buff *skb, int skb_size);
443 extern struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
444 extern struct sk_buff *skb_clone(struct sk_buff *skb,
445 gfp_t priority);
446 extern struct sk_buff *skb_copy(const struct sk_buff *skb,
447 gfp_t priority);
448 extern struct sk_buff *pskb_copy(struct sk_buff *skb,
449 gfp_t gfp_mask);
450 extern int pskb_expand_head(struct sk_buff *skb,
451 int nhead, int ntail,
452 gfp_t gfp_mask);
453 extern struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
454 unsigned int headroom);
455 extern struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
456 int newheadroom, int newtailroom,
457 gfp_t priority);
458 extern int skb_to_sgvec(struct sk_buff *skb,
459 struct scatterlist *sg, int offset,
460 int len);
461 extern int skb_cow_data(struct sk_buff *skb, int tailbits,
462 struct sk_buff **trailer);
463 extern int skb_pad(struct sk_buff *skb, int pad);
464 #define dev_kfree_skb(a) consume_skb(a)
465 #define dev_consume_skb(a) kfree_skb_clean(a)
466 extern void skb_over_panic(struct sk_buff *skb, int len,
467 void *here);
468 extern void skb_under_panic(struct sk_buff *skb, int len,
469 void *here);
471 extern int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
472 int getfrag(void *from, char *to, int offset,
473 int len,int odd, struct sk_buff *skb),
474 void *from, int length);
476 struct skb_seq_state
478 __u32 lower_offset;
479 __u32 upper_offset;
480 __u32 frag_idx;
481 __u32 stepped_offset;
482 struct sk_buff *root_skb;
483 struct sk_buff *cur_skb;
484 __u8 *frag_data;
487 extern void skb_prepare_seq_read(struct sk_buff *skb,
488 unsigned int from, unsigned int to,
489 struct skb_seq_state *st);
490 extern unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
491 struct skb_seq_state *st);
492 extern void skb_abort_seq_read(struct skb_seq_state *st);
494 extern unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
495 unsigned int to, struct ts_config *config,
496 struct ts_state *state);
498 #ifdef NET_SKBUFF_DATA_USES_OFFSET
499 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
501 return skb->head + skb->end;
503 #else
504 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
506 return skb->end;
508 #endif
510 /* Internal */
511 #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB)))
513 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
515 return &skb_shinfo(skb)->hwtstamps;
518 static inline union skb_shared_tx *skb_tx(struct sk_buff *skb)
520 return &skb_shinfo(skb)->tx_flags;
524 * skb_queue_empty - check if a queue is empty
525 * @list: queue head
527 * Returns true if the queue is empty, false otherwise.
529 static inline int skb_queue_empty(const struct sk_buff_head *list)
531 return list->next == (struct sk_buff *)list;
535 * skb_queue_is_last - check if skb is the last entry in the queue
536 * @list: queue head
537 * @skb: buffer
539 * Returns true if @skb is the last buffer on the list.
541 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
542 const struct sk_buff *skb)
544 return (skb->next == (struct sk_buff *) list);
548 * skb_queue_is_first - check if skb is the first entry in the queue
549 * @list: queue head
550 * @skb: buffer
552 * Returns true if @skb is the first buffer on the list.
554 static inline bool skb_queue_is_first(const struct sk_buff_head *list,
555 const struct sk_buff *skb)
557 return (skb->prev == (struct sk_buff *) list);
561 * skb_queue_next - return the next packet in the queue
562 * @list: queue head
563 * @skb: current buffer
565 * Return the next packet in @list after @skb. It is only valid to
566 * call this if skb_queue_is_last() evaluates to false.
568 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
569 const struct sk_buff *skb)
571 /* This BUG_ON may seem severe, but if we just return then we
572 * are going to dereference garbage.
574 BUG_ON(skb_queue_is_last(list, skb));
575 return skb->next;
579 * skb_queue_prev - return the prev packet in the queue
580 * @list: queue head
581 * @skb: current buffer
583 * Return the prev packet in @list before @skb. It is only valid to
584 * call this if skb_queue_is_first() evaluates to false.
586 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
587 const struct sk_buff *skb)
589 /* This BUG_ON may seem severe, but if we just return then we
590 * are going to dereference garbage.
592 BUG_ON(skb_queue_is_first(list, skb));
593 return skb->prev;
597 * skb_get - reference buffer
598 * @skb: buffer to reference
600 * Makes another reference to a socket buffer and returns a pointer
601 * to the buffer.
603 static inline struct sk_buff *skb_get(struct sk_buff *skb)
605 atomic_inc(&skb->users);
606 return skb;
610 * If users == 1, we are the only owner and are can avoid redundant
611 * atomic change.
615 * skb_cloned - is the buffer a clone
616 * @skb: buffer to check
618 * Returns true if the buffer was generated with skb_clone() and is
619 * one of multiple shared copies of the buffer. Cloned buffers are
620 * shared data so must not be written to under normal circumstances.
622 static inline int skb_cloned(const struct sk_buff *skb)
624 return skb->cloned &&
625 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
629 * skb_header_cloned - is the header a clone
630 * @skb: buffer to check
632 * Returns true if modifying the header part of the buffer requires
633 * the data to be copied.
635 static inline int skb_header_cloned(const struct sk_buff *skb)
637 int dataref;
639 if (!skb->cloned)
640 return 0;
642 dataref = atomic_read(&skb_shinfo(skb)->dataref);
643 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
644 return dataref != 1;
648 * skb_header_release - release reference to header
649 * @skb: buffer to operate on
651 * Drop a reference to the header part of the buffer. This is done
652 * by acquiring a payload reference. You must not read from the header
653 * part of skb->data after this.
655 static inline void skb_header_release(struct sk_buff *skb)
657 BUG_ON(skb->nohdr);
658 skb->nohdr = 1;
659 atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
663 * skb_shared - is the buffer shared
664 * @skb: buffer to check
666 * Returns true if more than one person has a reference to this
667 * buffer.
669 static inline int skb_shared(const struct sk_buff *skb)
671 return atomic_read(&skb->users) != 1;
675 * skb_share_check - check if buffer is shared and if so clone it
676 * @skb: buffer to check
677 * @pri: priority for memory allocation
679 * If the buffer is shared the buffer is cloned and the old copy
680 * drops a reference. A new clone with a single reference is returned.
681 * If the buffer is not shared the original buffer is returned. When
682 * being called from interrupt status or with spinlocks held pri must
683 * be GFP_ATOMIC.
685 * NULL is returned on a memory allocation failure.
687 static inline struct sk_buff *skb_share_check(struct sk_buff *skb,
688 gfp_t pri)
690 might_sleep_if(pri & __GFP_WAIT);
691 if (skb_shared(skb)) {
692 struct sk_buff *nskb = skb_clone(skb, pri);
693 kfree_skb(skb);
694 skb = nskb;
696 return skb;
700 * Copy shared buffers into a new sk_buff. We effectively do COW on
701 * packets to handle cases where we have a local reader and forward
702 * and a couple of other messy ones. The normal one is tcpdumping
703 * a packet thats being forwarded.
707 * skb_unshare - make a copy of a shared buffer
708 * @skb: buffer to check
709 * @pri: priority for memory allocation
711 * If the socket buffer is a clone then this function creates a new
712 * copy of the data, drops a reference count on the old copy and returns
713 * the new copy with the reference count at 1. If the buffer is not a clone
714 * the original buffer is returned. When called with a spinlock held or
715 * from interrupt state @pri must be %GFP_ATOMIC
717 * %NULL is returned on a memory allocation failure.
719 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
720 gfp_t pri)
722 might_sleep_if(pri & __GFP_WAIT);
723 if (skb_cloned(skb)) {
724 struct sk_buff *nskb = skb_copy(skb, pri);
725 kfree_skb(skb); /* Free our shared copy */
726 skb = nskb;
728 return skb;
732 * skb_peek
733 * @list_: list to peek at
735 * Peek an &sk_buff. Unlike most other operations you _MUST_
736 * be careful with this one. A peek leaves the buffer on the
737 * list and someone else may run off with it. You must hold
738 * the appropriate locks or have a private queue to do this.
740 * Returns %NULL for an empty list or a pointer to the head element.
741 * The reference count is not incremented and the reference is therefore
742 * volatile. Use with caution.
744 static inline struct sk_buff *skb_peek(struct sk_buff_head *list_)
746 struct sk_buff *list = ((struct sk_buff *)list_)->next;
747 if (list == (struct sk_buff *)list_)
748 list = NULL;
749 return list;
753 * skb_peek_tail
754 * @list_: list to peek at
756 * Peek an &sk_buff. Unlike most other operations you _MUST_
757 * be careful with this one. A peek leaves the buffer on the
758 * list and someone else may run off with it. You must hold
759 * the appropriate locks or have a private queue to do this.
761 * Returns %NULL for an empty list or a pointer to the tail element.
762 * The reference count is not incremented and the reference is therefore
763 * volatile. Use with caution.
765 static inline struct sk_buff *skb_peek_tail(struct sk_buff_head *list_)
767 struct sk_buff *list = ((struct sk_buff *)list_)->prev;
768 if (list == (struct sk_buff *)list_)
769 list = NULL;
770 return list;
774 * skb_queue_len - get queue length
775 * @list_: list to measure
777 * Return the length of an &sk_buff queue.
779 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
781 return list_->qlen;
785 * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
786 * @list: queue to initialize
788 * This initializes only the list and queue length aspects of
789 * an sk_buff_head object. This allows to initialize the list
790 * aspects of an sk_buff_head without reinitializing things like
791 * the spinlock. It can also be used for on-stack sk_buff_head
792 * objects where the spinlock is known to not be used.
794 static inline void __skb_queue_head_init(struct sk_buff_head *list)
796 list->prev = list->next = (struct sk_buff *)list;
797 list->qlen = 0;
801 * This function creates a split out lock class for each invocation;
802 * this is needed for now since a whole lot of users of the skb-queue
803 * infrastructure in drivers have different locking usage (in hardirq)
804 * than the networking core (in softirq only). In the long run either the
805 * network layer or drivers should need annotation to consolidate the
806 * main types of usage into 3 classes.
808 static inline void skb_queue_head_init(struct sk_buff_head *list)
810 spin_lock_init(&list->lock);
811 __skb_queue_head_init(list);
814 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
815 struct lock_class_key *class)
817 skb_queue_head_init(list);
818 lockdep_set_class(&list->lock, class);
822 * Insert an sk_buff on a list.
824 * The "__skb_xxxx()" functions are the non-atomic ones that
825 * can only be called with interrupts disabled.
827 extern void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list);
828 static inline void __skb_insert(struct sk_buff *newsk,
829 struct sk_buff *prev, struct sk_buff *next,
830 struct sk_buff_head *list)
832 newsk->next = next;
833 newsk->prev = prev;
834 next->prev = prev->next = newsk;
835 list->qlen++;
838 static inline void __skb_queue_splice(const struct sk_buff_head *list,
839 struct sk_buff *prev,
840 struct sk_buff *next)
842 struct sk_buff *first = list->next;
843 struct sk_buff *last = list->prev;
845 first->prev = prev;
846 prev->next = first;
848 last->next = next;
849 next->prev = last;
853 * skb_queue_splice - join two skb lists, this is designed for stacks
854 * @list: the new list to add
855 * @head: the place to add it in the first list
857 static inline void skb_queue_splice(const struct sk_buff_head *list,
858 struct sk_buff_head *head)
860 if (!skb_queue_empty(list)) {
861 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
862 head->qlen += list->qlen;
867 * skb_queue_splice - join two skb lists and reinitialise the emptied list
868 * @list: the new list to add
869 * @head: the place to add it in the first list
871 * The list at @list is reinitialised
873 static inline void skb_queue_splice_init(struct sk_buff_head *list,
874 struct sk_buff_head *head)
876 if (!skb_queue_empty(list)) {
877 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
878 head->qlen += list->qlen;
879 __skb_queue_head_init(list);
884 * skb_queue_splice_tail - join two skb lists, each list being a queue
885 * @list: the new list to add
886 * @head: the place to add it in the first list
888 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
889 struct sk_buff_head *head)
891 if (!skb_queue_empty(list)) {
892 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
893 head->qlen += list->qlen;
898 * skb_queue_splice_tail - join two skb lists and reinitialise the emptied list
899 * @list: the new list to add
900 * @head: the place to add it in the first list
902 * Each of the lists is a queue.
903 * The list at @list is reinitialised
905 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
906 struct sk_buff_head *head)
908 if (!skb_queue_empty(list)) {
909 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
910 head->qlen += list->qlen;
911 __skb_queue_head_init(list);
916 * __skb_queue_after - queue a buffer at the list head
917 * @list: list to use
918 * @prev: place after this buffer
919 * @newsk: buffer to queue
921 * Queue a buffer int the middle of a list. This function takes no locks
922 * and you must therefore hold required locks before calling it.
924 * A buffer cannot be placed on two lists at the same time.
926 static inline void __skb_queue_after(struct sk_buff_head *list,
927 struct sk_buff *prev,
928 struct sk_buff *newsk)
930 __skb_insert(newsk, prev, prev->next, list);
933 extern void skb_append(struct sk_buff *old, struct sk_buff *newsk,
934 struct sk_buff_head *list);
936 static inline void __skb_queue_before(struct sk_buff_head *list,
937 struct sk_buff *next,
938 struct sk_buff *newsk)
940 __skb_insert(newsk, next->prev, next, list);
944 * __skb_queue_head - queue a buffer at the list head
945 * @list: list to use
946 * @newsk: buffer to queue
948 * Queue a buffer at the start of a list. This function takes no locks
949 * and you must therefore hold required locks before calling it.
951 * A buffer cannot be placed on two lists at the same time.
953 extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
954 static inline void __skb_queue_head(struct sk_buff_head *list,
955 struct sk_buff *newsk)
957 __skb_queue_after(list, (struct sk_buff *)list, newsk);
961 * __skb_queue_tail - queue a buffer at the list tail
962 * @list: list to use
963 * @newsk: buffer to queue
965 * Queue a buffer at the end of a list. This function takes no locks
966 * and you must therefore hold required locks before calling it.
968 * A buffer cannot be placed on two lists at the same time.
970 extern void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
971 static inline void __skb_queue_tail(struct sk_buff_head *list,
972 struct sk_buff *newsk)
974 __skb_queue_before(list, (struct sk_buff *)list, newsk);
978 * remove sk_buff from list. _Must_ be called atomically, and with
979 * the list known..
981 extern void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
982 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
984 struct sk_buff *next, *prev;
986 list->qlen--;
987 next = skb->next;
988 prev = skb->prev;
989 skb->next = skb->prev = NULL;
990 next->prev = prev;
991 prev->next = next;
995 * __skb_dequeue - remove from the head of the queue
996 * @list: list to dequeue from
998 * Remove the head of the list. This function does not take any locks
999 * so must be used with appropriate locks held only. The head item is
1000 * returned or %NULL if the list is empty.
1002 extern struct sk_buff *skb_dequeue(struct sk_buff_head *list);
1003 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
1005 struct sk_buff *skb = skb_peek(list);
1006 if (skb)
1007 __skb_unlink(skb, list);
1008 return skb;
1012 * __skb_dequeue_tail - remove from the tail of the queue
1013 * @list: list to dequeue from
1015 * Remove the tail of the list. This function does not take any locks
1016 * so must be used with appropriate locks held only. The tail item is
1017 * returned or %NULL if the list is empty.
1019 extern struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
1020 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
1022 struct sk_buff *skb = skb_peek_tail(list);
1023 if (skb)
1024 __skb_unlink(skb, list);
1025 return skb;
1029 static inline int skb_is_nonlinear(const struct sk_buff *skb)
1031 return skb->data_len;
1034 static inline unsigned int skb_headlen(const struct sk_buff *skb)
1036 return skb->len - skb->data_len;
1039 static inline int skb_pagelen(const struct sk_buff *skb)
1041 int i, len = 0;
1043 for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
1044 len += skb_shinfo(skb)->frags[i].size;
1045 return len + skb_headlen(skb);
1048 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
1049 struct page *page, int off, int size)
1051 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1053 frag->page = page;
1054 frag->page_offset = off;
1055 frag->size = size;
1056 skb_shinfo(skb)->nr_frags = i + 1;
1059 extern void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page,
1060 int off, int size);
1062 #define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags)
1063 #define SKB_FRAG_ASSERT(skb) BUG_ON(skb_shinfo(skb)->frag_list)
1064 #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb))
1066 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1067 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1069 return skb->head + skb->tail;
1072 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1074 skb->tail = skb->data - skb->head;
1077 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1079 skb_reset_tail_pointer(skb);
1080 skb->tail += offset;
1082 #else /* NET_SKBUFF_DATA_USES_OFFSET */
1083 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1085 return skb->tail;
1088 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1090 skb->tail = skb->data;
1093 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1095 skb->tail = skb->data + offset;
1098 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
1101 * Add data to an sk_buff
1103 extern unsigned char *skb_put(struct sk_buff *skb, unsigned int len);
1104 static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
1106 unsigned char *tmp = skb_tail_pointer(skb);
1107 SKB_LINEAR_ASSERT(skb);
1108 skb->tail += len;
1109 skb->len += len;
1110 return tmp;
1113 extern unsigned char *skb_push(struct sk_buff *skb, unsigned int len);
1114 static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
1116 skb->data -= len;
1117 skb->len += len;
1118 return skb->data;
1121 extern unsigned char *skb_pull(struct sk_buff *skb, unsigned int len);
1122 static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
1124 skb->len -= len;
1125 BUG_ON(skb->len < skb->data_len);
1126 return skb->data += len;
1129 extern unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
1131 static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
1133 if (len > skb_headlen(skb) &&
1134 !__pskb_pull_tail(skb, len - skb_headlen(skb)))
1135 return NULL;
1136 skb->len -= len;
1137 return skb->data += len;
1140 static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
1142 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
1145 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
1147 if (likely(len <= skb_headlen(skb)))
1148 return 1;
1149 if (unlikely(len > skb->len))
1150 return 0;
1151 return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
1155 * skb_headroom - bytes at buffer head
1156 * @skb: buffer to check
1158 * Return the number of bytes of free space at the head of an &sk_buff.
1160 static inline unsigned int skb_headroom(const struct sk_buff *skb)
1162 return skb->data - skb->head;
1166 * skb_tailroom - bytes at buffer end
1167 * @skb: buffer to check
1169 * Return the number of bytes of free space at the tail of an sk_buff
1171 static inline int skb_tailroom(const struct sk_buff *skb)
1173 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
1177 * skb_reserve - adjust headroom
1178 * @skb: buffer to alter
1179 * @len: bytes to move
1181 * Increase the headroom of an empty &sk_buff by reducing the tail
1182 * room. This is only allowed for an empty buffer.
1184 static inline void skb_reserve(struct sk_buff *skb, int len)
1186 skb->data += len;
1187 skb->tail += len;
1190 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1191 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1193 return skb->head + skb->transport_header;
1196 static inline void skb_reset_transport_header(struct sk_buff *skb)
1198 skb->transport_header = skb->data - skb->head;
1201 static inline void skb_set_transport_header(struct sk_buff *skb,
1202 const int offset)
1204 skb_reset_transport_header(skb);
1205 skb->transport_header += offset;
1208 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1210 return skb->head + skb->network_header;
1213 static inline void skb_reset_network_header(struct sk_buff *skb)
1215 skb->network_header = skb->data - skb->head;
1218 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1220 skb_reset_network_header(skb);
1221 skb->network_header += offset;
1224 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1226 return skb->head + skb->mac_header;
1229 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1231 return skb->mac_header != ~0U;
1234 static inline void skb_reset_mac_header(struct sk_buff *skb)
1236 skb->mac_header = skb->data - skb->head;
1239 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1241 skb_reset_mac_header(skb);
1242 skb->mac_header += offset;
1245 #else /* NET_SKBUFF_DATA_USES_OFFSET */
1247 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1249 return skb->transport_header;
1252 static inline void skb_reset_transport_header(struct sk_buff *skb)
1254 skb->transport_header = skb->data;
1257 static inline void skb_set_transport_header(struct sk_buff *skb,
1258 const int offset)
1260 skb->transport_header = skb->data + offset;
1263 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1265 return skb->network_header;
1268 static inline void skb_reset_network_header(struct sk_buff *skb)
1270 skb->network_header = skb->data;
1273 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1275 skb->network_header = skb->data + offset;
1278 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1280 return skb->mac_header;
1283 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1285 return skb->mac_header != NULL;
1288 static inline void skb_reset_mac_header(struct sk_buff *skb)
1290 skb->mac_header = skb->data;
1293 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1295 skb->mac_header = skb->data + offset;
1297 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
1299 static inline int skb_transport_offset(const struct sk_buff *skb)
1301 return skb_transport_header(skb) - skb->data;
1304 static inline u32 skb_network_header_len(const struct sk_buff *skb)
1306 return skb->transport_header - skb->network_header;
1309 static inline int skb_network_offset(const struct sk_buff *skb)
1311 return skb_network_header(skb) - skb->data;
1315 * CPUs often take a performance hit when accessing unaligned memory
1316 * locations. The actual performance hit varies, it can be small if the
1317 * hardware handles it or large if we have to take an exception and fix it
1318 * in software.
1320 * Since an ethernet header is 14 bytes network drivers often end up with
1321 * the IP header at an unaligned offset. The IP header can be aligned by
1322 * shifting the start of the packet by 2 bytes. Drivers should do this
1323 * with:
1325 * skb_reserve(NET_IP_ALIGN);
1327 * The downside to this alignment of the IP header is that the DMA is now
1328 * unaligned. On some architectures the cost of an unaligned DMA is high
1329 * and this cost outweighs the gains made by aligning the IP header.
1331 * Since this trade off varies between architectures, we allow NET_IP_ALIGN
1332 * to be overridden.
1334 #ifndef NET_IP_ALIGN
1335 #define NET_IP_ALIGN 2
1336 #endif
1339 * The networking layer reserves some headroom in skb data (via
1340 * dev_alloc_skb). This is used to avoid having to reallocate skb data when
1341 * the header has to grow. In the default case, if the header has to grow
1342 * 32 bytes or less we avoid the reallocation.
1344 * Unfortunately this headroom changes the DMA alignment of the resulting
1345 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
1346 * on some architectures. An architecture can override this value,
1347 * perhaps setting it to a cacheline in size (since that will maintain
1348 * cacheline alignment of the DMA). It must be a power of 2.
1350 * Various parts of the networking layer expect at least 32 bytes of
1351 * headroom, you should not reduce this.
1353 #ifndef NET_SKB_PAD
1354 #define NET_SKB_PAD 32
1355 #endif
1357 extern int ___pskb_trim(struct sk_buff *skb, unsigned int len);
1359 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
1361 if (unlikely(skb->data_len)) {
1362 WARN_ON(1);
1363 return;
1365 skb->len = len;
1366 skb_set_tail_pointer(skb, len);
1369 extern void skb_trim(struct sk_buff *skb, unsigned int len);
1371 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
1373 if (skb->data_len)
1374 return ___pskb_trim(skb, len);
1375 __skb_trim(skb, len);
1376 return 0;
1379 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
1381 return (len < skb->len) ? __pskb_trim(skb, len) : 0;
1385 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer
1386 * @skb: buffer to alter
1387 * @len: new length
1389 * This is identical to pskb_trim except that the caller knows that
1390 * the skb is not cloned so we should never get an error due to out-
1391 * of-memory.
1393 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
1395 int err = pskb_trim(skb, len);
1396 BUG_ON(err);
1400 * skb_orphan - orphan a buffer
1401 * @skb: buffer to orphan
1403 * If a buffer currently has an owner then we call the owner's
1404 * destructor function and make the @skb unowned. The buffer continues
1405 * to exist but is no longer charged to its former owner.
1407 static inline void skb_orphan(struct sk_buff *skb)
1409 if (skb->destructor)
1410 skb->destructor(skb);
1411 skb->destructor = NULL;
1412 skb->sk = NULL;
1416 * __skb_queue_purge - empty a list
1417 * @list: list to empty
1419 * Delete all buffers on an &sk_buff list. Each buffer is removed from
1420 * the list and one reference dropped. This function does not take the
1421 * list lock and the caller must hold the relevant locks to use it.
1423 extern void skb_queue_purge(struct sk_buff_head *list);
1424 static inline void __skb_queue_purge(struct sk_buff_head *list)
1426 struct sk_buff *skb;
1427 while ((skb = __skb_dequeue(list)) != NULL)
1428 kfree_skb(skb);
1432 * __dev_alloc_skb - allocate an skbuff for receiving
1433 * @length: length to allocate
1434 * @gfp_mask: get_free_pages mask, passed to alloc_skb
1436 * Allocate a new &sk_buff and assign it a usage count of one. The
1437 * buffer has unspecified headroom built in. Users should allocate
1438 * the headroom they think they need without accounting for the
1439 * built in space. The built in space is used for optimisations.
1441 * %NULL is returned if there is no free memory.
1443 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
1444 gfp_t gfp_mask)
1446 struct sk_buff *skb = alloc_skb(length + NET_SKB_PAD, gfp_mask);
1447 if (likely(skb))
1448 skb_reserve(skb, NET_SKB_PAD);
1449 return skb;
1452 extern struct sk_buff *dev_alloc_skb(unsigned int length);
1454 extern struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
1455 unsigned int length, gfp_t gfp_mask);
1458 * netdev_alloc_skb - allocate an skbuff for rx on a specific device
1459 * @dev: network device to receive on
1460 * @length: length to allocate
1462 * Allocate a new &sk_buff and assign it a usage count of one. The
1463 * buffer has unspecified headroom built in. Users should allocate
1464 * the headroom they think they need without accounting for the
1465 * built in space. The built in space is used for optimisations.
1467 * %NULL is returned if there is no free memory. Although this function
1468 * allocates memory it can be called from an interrupt.
1470 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
1471 unsigned int length)
1473 return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
1476 extern struct page *__netdev_alloc_page(struct net_device *dev, gfp_t gfp_mask);
1479 * netdev_alloc_page - allocate a page for ps-rx on a specific device
1480 * @dev: network device to receive on
1482 * Allocate a new page node local to the specified device.
1484 * %NULL is returned if there is no free memory.
1486 static inline struct page *netdev_alloc_page(struct net_device *dev)
1488 return __netdev_alloc_page(dev, GFP_ATOMIC);
1491 static inline void netdev_free_page(struct net_device *dev, struct page *page)
1493 __free_page(page);
1497 * skb_clone_writable - is the header of a clone writable
1498 * @skb: buffer to check
1499 * @len: length up to which to write
1501 * Returns true if modifying the header part of the cloned buffer
1502 * does not requires the data to be copied.
1504 static inline int skb_clone_writable(struct sk_buff *skb, unsigned int len)
1506 return !skb_header_cloned(skb) &&
1507 skb_headroom(skb) + len <= skb->hdr_len;
1510 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
1511 int cloned)
1513 int delta = 0;
1515 if (headroom < NET_SKB_PAD)
1516 headroom = NET_SKB_PAD;
1517 if (headroom > skb_headroom(skb))
1518 delta = headroom - skb_headroom(skb);
1520 if (delta || cloned)
1521 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
1522 GFP_ATOMIC);
1523 return 0;
1527 * skb_cow - copy header of skb when it is required
1528 * @skb: buffer to cow
1529 * @headroom: needed headroom
1531 * If the skb passed lacks sufficient headroom or its data part
1532 * is shared, data is reallocated. If reallocation fails, an error
1533 * is returned and original skb is not changed.
1535 * The result is skb with writable area skb->head...skb->tail
1536 * and at least @headroom of space at head.
1538 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
1540 return __skb_cow(skb, headroom, skb_cloned(skb));
1544 * skb_cow_head - skb_cow but only making the head writable
1545 * @skb: buffer to cow
1546 * @headroom: needed headroom
1548 * This function is identical to skb_cow except that we replace the
1549 * skb_cloned check by skb_header_cloned. It should be used when
1550 * you only need to push on some header and do not need to modify
1551 * the data.
1553 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
1555 return __skb_cow(skb, headroom, skb_header_cloned(skb));
1559 * skb_padto - pad an skbuff up to a minimal size
1560 * @skb: buffer to pad
1561 * @len: minimal length
1563 * Pads up a buffer to ensure the trailing bytes exist and are
1564 * blanked. If the buffer already contains sufficient data it
1565 * is untouched. Otherwise it is extended. Returns zero on
1566 * success. The skb is freed on error.
1569 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
1571 unsigned int size = skb->len;
1572 if (likely(size >= len))
1573 return 0;
1574 return skb_pad(skb, len - size);
1577 static inline int skb_add_data(struct sk_buff *skb,
1578 char __user *from, int copy)
1580 const int off = skb->len;
1582 if (skb->ip_summed == CHECKSUM_NONE) {
1583 int err = 0;
1584 __wsum csum = csum_and_copy_from_user(from, skb_put(skb, copy),
1585 copy, 0, &err);
1586 if (!err) {
1587 skb->csum = csum_block_add(skb->csum, csum, off);
1588 return 0;
1590 } else if (!copy_from_user(skb_put(skb, copy), from, copy))
1591 return 0;
1593 __skb_trim(skb, off);
1594 return -EFAULT;
1597 static inline int skb_can_coalesce(struct sk_buff *skb, int i,
1598 struct page *page, int off)
1600 if (i) {
1601 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
1603 return page == frag->page &&
1604 off == frag->page_offset + frag->size;
1606 return 0;
1609 static inline int __skb_linearize(struct sk_buff *skb)
1611 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
1615 * skb_linearize - convert paged skb to linear one
1616 * @skb: buffer to linarize
1618 * If there is no free memory -ENOMEM is returned, otherwise zero
1619 * is returned and the old skb data released.
1621 static inline int skb_linearize(struct sk_buff *skb)
1623 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
1627 * skb_linearize_cow - make sure skb is linear and writable
1628 * @skb: buffer to process
1630 * If there is no free memory -ENOMEM is returned, otherwise zero
1631 * is returned and the old skb data released.
1633 static inline int skb_linearize_cow(struct sk_buff *skb)
1635 return skb_is_nonlinear(skb) || skb_cloned(skb) ?
1636 __skb_linearize(skb) : 0;
1640 * skb_postpull_rcsum - update checksum for received skb after pull
1641 * @skb: buffer to update
1642 * @start: start of data before pull
1643 * @len: length of data pulled
1645 * After doing a pull on a received packet, you need to call this to
1646 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to
1647 * CHECKSUM_NONE so that it can be recomputed from scratch.
1650 static inline void skb_postpull_rcsum(struct sk_buff *skb,
1651 const void *start, unsigned int len)
1653 if (skb->ip_summed == CHECKSUM_COMPLETE)
1654 skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
1657 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
1660 * pskb_trim_rcsum - trim received skb and update checksum
1661 * @skb: buffer to trim
1662 * @len: new length
1664 * This is exactly the same as pskb_trim except that it ensures the
1665 * checksum of received packets are still valid after the operation.
1668 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
1670 if (likely(len >= skb->len))
1671 return 0;
1672 if (skb->ip_summed == CHECKSUM_COMPLETE)
1673 skb->ip_summed = CHECKSUM_NONE;
1674 return __pskb_trim(skb, len);
1677 #define skb_queue_walk(queue, skb) \
1678 for (skb = (queue)->next; \
1679 prefetch(skb->next), (skb != (struct sk_buff *)(queue)); \
1680 skb = skb->next)
1682 #define skb_queue_walk_safe(queue, skb, tmp) \
1683 for (skb = (queue)->next, tmp = skb->next; \
1684 skb != (struct sk_buff *)(queue); \
1685 skb = tmp, tmp = skb->next)
1687 #define skb_queue_walk_from(queue, skb) \
1688 for (; prefetch(skb->next), (skb != (struct sk_buff *)(queue)); \
1689 skb = skb->next)
1691 #define skb_queue_walk_from_safe(queue, skb, tmp) \
1692 for (tmp = skb->next; \
1693 skb != (struct sk_buff *)(queue); \
1694 skb = tmp, tmp = skb->next)
1696 #define skb_queue_reverse_walk(queue, skb) \
1697 for (skb = (queue)->prev; \
1698 prefetch(skb->prev), (skb != (struct sk_buff *)(queue)); \
1699 skb = skb->prev)
1702 extern struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
1703 int *peeked, int *err);
1704 extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags,
1705 int noblock, int *err);
1706 extern unsigned int datagram_poll(struct file *file, struct socket *sock,
1707 struct poll_table_struct *wait);
1708 extern int skb_copy_datagram_iovec(const struct sk_buff *from,
1709 int offset, struct iovec *to,
1710 int size);
1711 extern int skb_copy_and_csum_datagram_iovec(struct sk_buff *skb,
1712 int hlen,
1713 struct iovec *iov);
1714 extern int skb_copy_datagram_from_iovec(struct sk_buff *skb,
1715 int offset,
1716 struct iovec *from,
1717 int len);
1718 extern void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
1719 extern int skb_kill_datagram(struct sock *sk, struct sk_buff *skb,
1720 unsigned int flags);
1721 extern __wsum skb_checksum(const struct sk_buff *skb, int offset,
1722 int len, __wsum csum);
1723 extern int skb_copy_bits(const struct sk_buff *skb, int offset,
1724 void *to, int len);
1725 extern int skb_store_bits(struct sk_buff *skb, int offset,
1726 const void *from, int len);
1727 extern __wsum skb_copy_and_csum_bits(const struct sk_buff *skb,
1728 int offset, u8 *to, int len,
1729 __wsum csum);
1730 extern int skb_splice_bits(struct sk_buff *skb,
1731 unsigned int offset,
1732 struct pipe_inode_info *pipe,
1733 unsigned int len,
1734 unsigned int flags);
1735 extern void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
1736 extern void skb_split(struct sk_buff *skb,
1737 struct sk_buff *skb1, const u32 len);
1738 extern int skb_shift(struct sk_buff *tgt, struct sk_buff *skb,
1739 int shiftlen);
1741 extern struct sk_buff *skb_segment(struct sk_buff *skb, int features);
1743 static inline void *skb_header_pointer(const struct sk_buff *skb, int offset,
1744 int len, void *buffer)
1746 int hlen = skb_headlen(skb);
1748 if (hlen - offset >= len)
1749 return skb->data + offset;
1751 if (skb_copy_bits(skb, offset, buffer, len) < 0)
1752 return NULL;
1754 return buffer;
1757 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
1758 void *to,
1759 const unsigned int len)
1761 memcpy(to, skb->data, len);
1764 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
1765 const int offset, void *to,
1766 const unsigned int len)
1768 memcpy(to, skb->data + offset, len);
1771 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
1772 const void *from,
1773 const unsigned int len)
1775 memcpy(skb->data, from, len);
1778 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
1779 const int offset,
1780 const void *from,
1781 const unsigned int len)
1783 memcpy(skb->data + offset, from, len);
1786 extern void skb_init(void);
1788 static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
1790 return skb->tstamp;
1794 * skb_get_timestamp - get timestamp from a skb
1795 * @skb: skb to get stamp from
1796 * @stamp: pointer to struct timeval to store stamp in
1798 * Timestamps are stored in the skb as offsets to a base timestamp.
1799 * This function converts the offset back to a struct timeval and stores
1800 * it in stamp.
1802 static inline void skb_get_timestamp(const struct sk_buff *skb,
1803 struct timeval *stamp)
1805 *stamp = ktime_to_timeval(skb->tstamp);
1808 static inline void skb_get_timestampns(const struct sk_buff *skb,
1809 struct timespec *stamp)
1811 *stamp = ktime_to_timespec(skb->tstamp);
1814 static inline void __net_timestamp(struct sk_buff *skb)
1816 skb->tstamp = ktime_get_real();
1819 static inline ktime_t net_timedelta(ktime_t t)
1821 return ktime_sub(ktime_get_real(), t);
1824 static inline ktime_t net_invalid_timestamp(void)
1826 return ktime_set(0, 0);
1830 * skb_tstamp_tx - queue clone of skb with send time stamps
1831 * @orig_skb: the original outgoing packet
1832 * @hwtstamps: hardware time stamps, may be NULL if not available
1834 * If the skb has a socket associated, then this function clones the
1835 * skb (thus sharing the actual data and optional structures), stores
1836 * the optional hardware time stamping information (if non NULL) or
1837 * generates a software time stamp (otherwise), then queues the clone
1838 * to the error queue of the socket. Errors are silently ignored.
1840 extern void skb_tstamp_tx(struct sk_buff *orig_skb,
1841 struct skb_shared_hwtstamps *hwtstamps);
1843 extern __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
1844 extern __sum16 __skb_checksum_complete(struct sk_buff *skb);
1846 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
1848 return skb->ip_summed & CHECKSUM_UNNECESSARY;
1852 * skb_checksum_complete - Calculate checksum of an entire packet
1853 * @skb: packet to process
1855 * This function calculates the checksum over the entire packet plus
1856 * the value of skb->csum. The latter can be used to supply the
1857 * checksum of a pseudo header as used by TCP/UDP. It returns the
1858 * checksum.
1860 * For protocols that contain complete checksums such as ICMP/TCP/UDP,
1861 * this function can be used to verify that checksum on received
1862 * packets. In that case the function should return zero if the
1863 * checksum is correct. In particular, this function will return zero
1864 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
1865 * hardware has already verified the correctness of the checksum.
1867 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
1869 return skb_csum_unnecessary(skb) ?
1870 0 : __skb_checksum_complete(skb);
1873 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1874 extern void nf_conntrack_destroy(struct nf_conntrack *nfct);
1875 static inline void nf_conntrack_put(struct nf_conntrack *nfct)
1877 if (nfct && atomic_dec_and_test(&nfct->use))
1878 nf_conntrack_destroy(nfct);
1880 static inline void nf_conntrack_get(struct nf_conntrack *nfct)
1882 if (nfct)
1883 atomic_inc(&nfct->use);
1885 static inline void nf_conntrack_get_reasm(struct sk_buff *skb)
1887 if (skb)
1888 atomic_inc(&skb->users);
1890 static inline void nf_conntrack_put_reasm(struct sk_buff *skb)
1892 if (skb)
1893 kfree_skb(skb);
1895 #endif
1896 #ifdef CONFIG_BRIDGE_NETFILTER
1897 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
1899 if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
1900 kfree(nf_bridge);
1902 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
1904 if (nf_bridge)
1905 atomic_inc(&nf_bridge->use);
1907 #endif /* CONFIG_BRIDGE_NETFILTER */
1908 static inline void nf_reset(struct sk_buff *skb)
1910 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1911 nf_conntrack_put(skb->nfct);
1912 skb->nfct = NULL;
1913 nf_conntrack_put_reasm(skb->nfct_reasm);
1914 skb->nfct_reasm = NULL;
1915 #endif
1916 #ifdef CONFIG_BRIDGE_NETFILTER
1917 nf_bridge_put(skb->nf_bridge);
1918 skb->nf_bridge = NULL;
1919 #endif
1922 /* Note: This doesn't put any conntrack and bridge info in dst. */
1923 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src)
1925 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1926 dst->nfct = src->nfct;
1927 nf_conntrack_get(src->nfct);
1928 dst->nfctinfo = src->nfctinfo;
1929 dst->nfct_reasm = src->nfct_reasm;
1930 nf_conntrack_get_reasm(src->nfct_reasm);
1931 #endif
1932 #ifdef CONFIG_BRIDGE_NETFILTER
1933 dst->nf_bridge = src->nf_bridge;
1934 nf_bridge_get(src->nf_bridge);
1935 #endif
1938 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
1940 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1941 nf_conntrack_put(dst->nfct);
1942 nf_conntrack_put_reasm(dst->nfct_reasm);
1943 #endif
1944 #ifdef CONFIG_BRIDGE_NETFILTER
1945 nf_bridge_put(dst->nf_bridge);
1946 #endif
1947 __nf_copy(dst, src);
1950 #ifdef CONFIG_NETWORK_SECMARK
1951 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
1953 to->secmark = from->secmark;
1956 static inline void skb_init_secmark(struct sk_buff *skb)
1958 skb->secmark = 0;
1960 #else
1961 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
1964 static inline void skb_init_secmark(struct sk_buff *skb)
1966 #endif
1968 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
1970 skb->queue_mapping = queue_mapping;
1973 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
1975 return skb->queue_mapping;
1978 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
1980 to->queue_mapping = from->queue_mapping;
1983 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
1985 skb->queue_mapping = rx_queue + 1;
1988 static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
1990 return skb->queue_mapping - 1;
1993 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
1995 return (skb->queue_mapping != 0);
1998 extern u16 skb_tx_hash(const struct net_device *dev,
1999 const struct sk_buff *skb);
2001 #ifdef CONFIG_XFRM
2002 static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
2004 return skb->sp;
2006 #else
2007 static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
2009 return NULL;
2011 #endif
2013 static inline int skb_is_gso(const struct sk_buff *skb)
2015 return skb_shinfo(skb)->gso_size;
2018 static inline int skb_is_gso_v6(const struct sk_buff *skb)
2020 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
2023 extern void __skb_warn_lro_forwarding(const struct sk_buff *skb);
2025 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
2027 /* LRO sets gso_size but not gso_type, whereas if GSO is really
2028 * wanted then gso_type will be set. */
2029 struct skb_shared_info *shinfo = skb_shinfo(skb);
2030 if (shinfo->gso_size != 0 && unlikely(shinfo->gso_type == 0)) {
2031 __skb_warn_lro_forwarding(skb);
2032 return true;
2034 return false;
2037 static inline void skb_forward_csum(struct sk_buff *skb)
2039 /* Unfortunately we don't support this one. Any brave souls? */
2040 if (skb->ip_summed == CHECKSUM_COMPLETE)
2041 skb->ip_summed = CHECKSUM_NONE;
2044 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
2045 #endif /* __KERNEL__ */
2046 #endif /* _LINUX_SKBUFF_H */