4 * Copyright (C) 1994-1999 Linus Torvalds
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
12 #include <linux/module.h>
13 #include <linux/slab.h>
14 #include <linux/compiler.h>
16 #include <linux/uaccess.h>
17 #include <linux/aio.h>
18 #include <linux/capability.h>
19 #include <linux/kernel_stat.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/security.h>
32 #include <linux/syscalls.h>
33 #include <linux/cpuset.h>
34 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
35 #include <linux/memcontrol.h>
36 #include <linux/mm_inline.h> /* for page_is_file_cache() */
40 * FIXME: remove all knowledge of the buffer layer from the core VM
42 #include <linux/buffer_head.h> /* for try_to_free_buffers */
47 * Shared mappings implemented 30.11.1994. It's not fully working yet,
50 * Shared mappings now work. 15.8.1995 Bruno.
52 * finished 'unifying' the page and buffer cache and SMP-threaded the
53 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
55 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
61 * ->i_mmap_lock (vmtruncate)
62 * ->private_lock (__free_pte->__set_page_dirty_buffers)
63 * ->swap_lock (exclusive_swap_page, others)
64 * ->mapping->tree_lock
67 * ->i_mmap_lock (truncate->unmap_mapping_range)
71 * ->page_table_lock or pte_lock (various, mainly in memory.c)
72 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
75 * ->lock_page (access_process_vm)
77 * ->i_mutex (generic_file_buffered_write)
78 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
81 * ->i_alloc_sem (various)
84 * ->sb_lock (fs/fs-writeback.c)
85 * ->mapping->tree_lock (__sync_single_inode)
88 * ->anon_vma.lock (vma_adjust)
91 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
93 * ->page_table_lock or pte_lock
94 * ->swap_lock (try_to_unmap_one)
95 * ->private_lock (try_to_unmap_one)
96 * ->tree_lock (try_to_unmap_one)
97 * ->zone.lru_lock (follow_page->mark_page_accessed)
98 * ->zone.lru_lock (check_pte_range->isolate_lru_page)
99 * ->private_lock (page_remove_rmap->set_page_dirty)
100 * ->tree_lock (page_remove_rmap->set_page_dirty)
101 * ->inode_lock (page_remove_rmap->set_page_dirty)
102 * ->inode_lock (zap_pte_range->set_page_dirty)
103 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
106 * ->dcache_lock (proc_pid_lookup)
110 * Remove a page from the page cache and free it. Caller has to make
111 * sure the page is locked and that nobody else uses it - or that usage
112 * is safe. The caller must hold the mapping's tree_lock.
114 void __remove_from_page_cache(struct page
*page
)
116 struct address_space
*mapping
= page
->mapping
;
118 radix_tree_delete(&mapping
->page_tree
, page
->index
);
119 page
->mapping
= NULL
;
121 __dec_zone_page_state(page
, NR_FILE_PAGES
);
122 if (PageSwapBacked(page
))
123 __dec_zone_page_state(page
, NR_SHMEM
);
124 BUG_ON(page_mapped(page
));
127 * Some filesystems seem to re-dirty the page even after
128 * the VM has canceled the dirty bit (eg ext3 journaling).
130 * Fix it up by doing a final dirty accounting check after
131 * having removed the page entirely.
133 if (PageDirty(page
) && mapping_cap_account_dirty(mapping
)) {
134 dec_zone_page_state(page
, NR_FILE_DIRTY
);
135 dec_bdi_stat(mapping
->backing_dev_info
, BDI_RECLAIMABLE
);
139 void remove_from_page_cache(struct page
*page
)
141 struct address_space
*mapping
= page
->mapping
;
143 BUG_ON(!PageLocked(page
));
145 spin_lock_irq(&mapping
->tree_lock
);
146 __remove_from_page_cache(page
);
147 spin_unlock_irq(&mapping
->tree_lock
);
148 mem_cgroup_uncharge_cache_page(page
);
151 static int sync_page(void *word
)
153 struct address_space
*mapping
;
156 page
= container_of((unsigned long *)word
, struct page
, flags
);
159 * page_mapping() is being called without PG_locked held.
160 * Some knowledge of the state and use of the page is used to
161 * reduce the requirements down to a memory barrier.
162 * The danger here is of a stale page_mapping() return value
163 * indicating a struct address_space different from the one it's
164 * associated with when it is associated with one.
165 * After smp_mb(), it's either the correct page_mapping() for
166 * the page, or an old page_mapping() and the page's own
167 * page_mapping() has gone NULL.
168 * The ->sync_page() address_space operation must tolerate
169 * page_mapping() going NULL. By an amazing coincidence,
170 * this comes about because none of the users of the page
171 * in the ->sync_page() methods make essential use of the
172 * page_mapping(), merely passing the page down to the backing
173 * device's unplug functions when it's non-NULL, which in turn
174 * ignore it for all cases but swap, where only page_private(page) is
175 * of interest. When page_mapping() does go NULL, the entire
176 * call stack gracefully ignores the page and returns.
180 mapping
= page_mapping(page
);
181 if (mapping
&& mapping
->a_ops
&& mapping
->a_ops
->sync_page
)
182 mapping
->a_ops
->sync_page(page
);
187 static int sync_page_killable(void *word
)
190 return fatal_signal_pending(current
) ? -EINTR
: 0;
194 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
195 * @mapping: address space structure to write
196 * @start: offset in bytes where the range starts
197 * @end: offset in bytes where the range ends (inclusive)
198 * @sync_mode: enable synchronous operation
200 * Start writeback against all of a mapping's dirty pages that lie
201 * within the byte offsets <start, end> inclusive.
203 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
204 * opposed to a regular memory cleansing writeback. The difference between
205 * these two operations is that if a dirty page/buffer is encountered, it must
206 * be waited upon, and not just skipped over.
208 int __filemap_fdatawrite_range(struct address_space
*mapping
, loff_t start
,
209 loff_t end
, int sync_mode
)
212 struct writeback_control wbc
= {
213 .sync_mode
= sync_mode
,
214 .nr_to_write
= LONG_MAX
,
215 .range_start
= start
,
219 if (!mapping_cap_writeback_dirty(mapping
))
222 ret
= do_writepages(mapping
, &wbc
);
226 static inline int __filemap_fdatawrite(struct address_space
*mapping
,
229 return __filemap_fdatawrite_range(mapping
, 0, LLONG_MAX
, sync_mode
);
232 int filemap_fdatawrite(struct address_space
*mapping
)
234 return __filemap_fdatawrite(mapping
, WB_SYNC_ALL
);
236 EXPORT_SYMBOL(filemap_fdatawrite
);
238 int filemap_fdatawrite_range(struct address_space
*mapping
, loff_t start
,
241 return __filemap_fdatawrite_range(mapping
, start
, end
, WB_SYNC_ALL
);
243 EXPORT_SYMBOL(filemap_fdatawrite_range
);
246 * filemap_flush - mostly a non-blocking flush
247 * @mapping: target address_space
249 * This is a mostly non-blocking flush. Not suitable for data-integrity
250 * purposes - I/O may not be started against all dirty pages.
252 int filemap_flush(struct address_space
*mapping
)
254 return __filemap_fdatawrite(mapping
, WB_SYNC_NONE
);
256 EXPORT_SYMBOL(filemap_flush
);
259 * wait_on_page_writeback_range - wait for writeback to complete
260 * @mapping: target address_space
261 * @start: beginning page index
262 * @end: ending page index
264 * Wait for writeback to complete against pages indexed by start->end
267 int wait_on_page_writeback_range(struct address_space
*mapping
,
268 pgoff_t start
, pgoff_t end
)
278 pagevec_init(&pvec
, 0);
280 while ((index
<= end
) &&
281 (nr_pages
= pagevec_lookup_tag(&pvec
, mapping
, &index
,
282 PAGECACHE_TAG_WRITEBACK
,
283 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
-1) + 1)) != 0) {
286 for (i
= 0; i
< nr_pages
; i
++) {
287 struct page
*page
= pvec
.pages
[i
];
289 /* until radix tree lookup accepts end_index */
290 if (page
->index
> end
)
293 wait_on_page_writeback(page
);
297 pagevec_release(&pvec
);
301 /* Check for outstanding write errors */
302 if (test_and_clear_bit(AS_ENOSPC
, &mapping
->flags
))
304 if (test_and_clear_bit(AS_EIO
, &mapping
->flags
))
311 * filemap_fdatawait_range - wait for all under-writeback pages to complete in a given range
312 * @mapping: address space structure to wait for
313 * @start: offset in bytes where the range starts
314 * @end: offset in bytes where the range ends (inclusive)
316 * Walk the list of under-writeback pages of the given address space
317 * in the given range and wait for all of them.
319 * This is just a simple wrapper so that callers don't have to convert offsets
320 * to page indexes themselves
322 int filemap_fdatawait_range(struct address_space
*mapping
, loff_t start
,
325 return wait_on_page_writeback_range(mapping
, start
>> PAGE_CACHE_SHIFT
,
326 end
>> PAGE_CACHE_SHIFT
);
328 EXPORT_SYMBOL(filemap_fdatawait_range
);
331 * filemap_fdatawait - wait for all under-writeback pages to complete
332 * @mapping: address space structure to wait for
334 * Walk the list of under-writeback pages of the given address space
335 * and wait for all of them.
337 int filemap_fdatawait(struct address_space
*mapping
)
339 loff_t i_size
= i_size_read(mapping
->host
);
344 return wait_on_page_writeback_range(mapping
, 0,
345 (i_size
- 1) >> PAGE_CACHE_SHIFT
);
347 EXPORT_SYMBOL(filemap_fdatawait
);
349 int filemap_write_and_wait(struct address_space
*mapping
)
353 if (mapping
->nrpages
) {
354 err
= filemap_fdatawrite(mapping
);
356 * Even if the above returned error, the pages may be
357 * written partially (e.g. -ENOSPC), so we wait for it.
358 * But the -EIO is special case, it may indicate the worst
359 * thing (e.g. bug) happened, so we avoid waiting for it.
362 int err2
= filemap_fdatawait(mapping
);
369 EXPORT_SYMBOL(filemap_write_and_wait
);
372 * filemap_write_and_wait_range - write out & wait on a file range
373 * @mapping: the address_space for the pages
374 * @lstart: offset in bytes where the range starts
375 * @lend: offset in bytes where the range ends (inclusive)
377 * Write out and wait upon file offsets lstart->lend, inclusive.
379 * Note that `lend' is inclusive (describes the last byte to be written) so
380 * that this function can be used to write to the very end-of-file (end = -1).
382 int filemap_write_and_wait_range(struct address_space
*mapping
,
383 loff_t lstart
, loff_t lend
)
387 if (mapping
->nrpages
) {
388 err
= __filemap_fdatawrite_range(mapping
, lstart
, lend
,
390 /* See comment of filemap_write_and_wait() */
392 int err2
= wait_on_page_writeback_range(mapping
,
393 lstart
>> PAGE_CACHE_SHIFT
,
394 lend
>> PAGE_CACHE_SHIFT
);
401 EXPORT_SYMBOL(filemap_write_and_wait_range
);
404 * add_to_page_cache_locked - add a locked page to the pagecache
406 * @mapping: the page's address_space
407 * @offset: page index
408 * @gfp_mask: page allocation mode
410 * This function is used to add a page to the pagecache. It must be locked.
411 * This function does not add the page to the LRU. The caller must do that.
413 int add_to_page_cache_locked(struct page
*page
, struct address_space
*mapping
,
414 pgoff_t offset
, gfp_t gfp_mask
)
418 VM_BUG_ON(!PageLocked(page
));
420 error
= mem_cgroup_cache_charge(page
, current
->mm
,
421 gfp_mask
& GFP_RECLAIM_MASK
);
425 error
= radix_tree_preload(gfp_mask
& ~__GFP_HIGHMEM
);
427 page_cache_get(page
);
428 page
->mapping
= mapping
;
429 page
->index
= offset
;
431 spin_lock_irq(&mapping
->tree_lock
);
432 error
= radix_tree_insert(&mapping
->page_tree
, offset
, page
);
433 if (likely(!error
)) {
435 __inc_zone_page_state(page
, NR_FILE_PAGES
);
436 if (PageSwapBacked(page
))
437 __inc_zone_page_state(page
, NR_SHMEM
);
438 spin_unlock_irq(&mapping
->tree_lock
);
440 page
->mapping
= NULL
;
441 spin_unlock_irq(&mapping
->tree_lock
);
442 mem_cgroup_uncharge_cache_page(page
);
443 page_cache_release(page
);
445 radix_tree_preload_end();
447 mem_cgroup_uncharge_cache_page(page
);
451 EXPORT_SYMBOL(add_to_page_cache_locked
);
453 int add_to_page_cache_lru(struct page
*page
, struct address_space
*mapping
,
454 pgoff_t offset
, gfp_t gfp_mask
)
459 * Splice_read and readahead add shmem/tmpfs pages into the page cache
460 * before shmem_readpage has a chance to mark them as SwapBacked: they
461 * need to go on the active_anon lru below, and mem_cgroup_cache_charge
462 * (called in add_to_page_cache) needs to know where they're going too.
464 if (mapping_cap_swap_backed(mapping
))
465 SetPageSwapBacked(page
);
467 ret
= add_to_page_cache(page
, mapping
, offset
, gfp_mask
);
469 if (page_is_file_cache(page
))
470 lru_cache_add_file(page
);
472 lru_cache_add_active_anon(page
);
476 EXPORT_SYMBOL_GPL(add_to_page_cache_lru
);
479 struct page
*__page_cache_alloc(gfp_t gfp
)
481 if (cpuset_do_page_mem_spread()) {
482 int n
= cpuset_mem_spread_node();
483 return alloc_pages_exact_node(n
, gfp
, 0);
485 return alloc_pages(gfp
, 0);
487 EXPORT_SYMBOL(__page_cache_alloc
);
490 static int __sleep_on_page_lock(void *word
)
497 * In order to wait for pages to become available there must be
498 * waitqueues associated with pages. By using a hash table of
499 * waitqueues where the bucket discipline is to maintain all
500 * waiters on the same queue and wake all when any of the pages
501 * become available, and for the woken contexts to check to be
502 * sure the appropriate page became available, this saves space
503 * at a cost of "thundering herd" phenomena during rare hash
506 static wait_queue_head_t
*page_waitqueue(struct page
*page
)
508 const struct zone
*zone
= page_zone(page
);
510 return &zone
->wait_table
[hash_ptr(page
, zone
->wait_table_bits
)];
513 static inline void wake_up_page(struct page
*page
, int bit
)
515 __wake_up_bit(page_waitqueue(page
), &page
->flags
, bit
);
518 void wait_on_page_bit(struct page
*page
, int bit_nr
)
520 DEFINE_WAIT_BIT(wait
, &page
->flags
, bit_nr
);
522 if (test_bit(bit_nr
, &page
->flags
))
523 __wait_on_bit(page_waitqueue(page
), &wait
, sync_page
,
524 TASK_UNINTERRUPTIBLE
);
526 EXPORT_SYMBOL(wait_on_page_bit
);
529 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
530 * @page: Page defining the wait queue of interest
531 * @waiter: Waiter to add to the queue
533 * Add an arbitrary @waiter to the wait queue for the nominated @page.
535 void add_page_wait_queue(struct page
*page
, wait_queue_t
*waiter
)
537 wait_queue_head_t
*q
= page_waitqueue(page
);
540 spin_lock_irqsave(&q
->lock
, flags
);
541 __add_wait_queue(q
, waiter
);
542 spin_unlock_irqrestore(&q
->lock
, flags
);
544 EXPORT_SYMBOL_GPL(add_page_wait_queue
);
547 * unlock_page - unlock a locked page
550 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
551 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
552 * mechananism between PageLocked pages and PageWriteback pages is shared.
553 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
555 * The mb is necessary to enforce ordering between the clear_bit and the read
556 * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
558 void unlock_page(struct page
*page
)
560 VM_BUG_ON(!PageLocked(page
));
561 clear_bit_unlock(PG_locked
, &page
->flags
);
562 smp_mb__after_clear_bit();
563 wake_up_page(page
, PG_locked
);
565 EXPORT_SYMBOL(unlock_page
);
568 * end_page_writeback - end writeback against a page
571 void end_page_writeback(struct page
*page
)
573 if (TestClearPageReclaim(page
))
574 rotate_reclaimable_page(page
);
576 if (!test_clear_page_writeback(page
))
579 smp_mb__after_clear_bit();
580 wake_up_page(page
, PG_writeback
);
582 EXPORT_SYMBOL(end_page_writeback
);
585 * __lock_page - get a lock on the page, assuming we need to sleep to get it
586 * @page: the page to lock
588 * Ugly. Running sync_page() in state TASK_UNINTERRUPTIBLE is scary. If some
589 * random driver's requestfn sets TASK_RUNNING, we could busywait. However
590 * chances are that on the second loop, the block layer's plug list is empty,
591 * so sync_page() will then return in state TASK_UNINTERRUPTIBLE.
593 void __lock_page(struct page
*page
)
595 DEFINE_WAIT_BIT(wait
, &page
->flags
, PG_locked
);
597 __wait_on_bit_lock(page_waitqueue(page
), &wait
, sync_page
,
598 TASK_UNINTERRUPTIBLE
);
600 EXPORT_SYMBOL(__lock_page
);
602 int __lock_page_killable(struct page
*page
)
604 DEFINE_WAIT_BIT(wait
, &page
->flags
, PG_locked
);
606 return __wait_on_bit_lock(page_waitqueue(page
), &wait
,
607 sync_page_killable
, TASK_KILLABLE
);
609 EXPORT_SYMBOL_GPL(__lock_page_killable
);
612 * __lock_page_nosync - get a lock on the page, without calling sync_page()
613 * @page: the page to lock
615 * Variant of lock_page that does not require the caller to hold a reference
616 * on the page's mapping.
618 void __lock_page_nosync(struct page
*page
)
620 DEFINE_WAIT_BIT(wait
, &page
->flags
, PG_locked
);
621 __wait_on_bit_lock(page_waitqueue(page
), &wait
, __sleep_on_page_lock
,
622 TASK_UNINTERRUPTIBLE
);
626 * find_get_page - find and get a page reference
627 * @mapping: the address_space to search
628 * @offset: the page index
630 * Is there a pagecache struct page at the given (mapping, offset) tuple?
631 * If yes, increment its refcount and return it; if no, return NULL.
633 struct page
*find_get_page(struct address_space
*mapping
, pgoff_t offset
)
641 pagep
= radix_tree_lookup_slot(&mapping
->page_tree
, offset
);
643 page
= radix_tree_deref_slot(pagep
);
644 if (unlikely(!page
|| page
== RADIX_TREE_RETRY
))
647 if (!page_cache_get_speculative(page
))
651 * Has the page moved?
652 * This is part of the lockless pagecache protocol. See
653 * include/linux/pagemap.h for details.
655 if (unlikely(page
!= *pagep
)) {
656 page_cache_release(page
);
664 EXPORT_SYMBOL(find_get_page
);
667 * find_lock_page - locate, pin and lock a pagecache page
668 * @mapping: the address_space to search
669 * @offset: the page index
671 * Locates the desired pagecache page, locks it, increments its reference
672 * count and returns its address.
674 * Returns zero if the page was not present. find_lock_page() may sleep.
676 struct page
*find_lock_page(struct address_space
*mapping
, pgoff_t offset
)
681 page
= find_get_page(mapping
, offset
);
684 /* Has the page been truncated? */
685 if (unlikely(page
->mapping
!= mapping
)) {
687 page_cache_release(page
);
690 VM_BUG_ON(page
->index
!= offset
);
694 EXPORT_SYMBOL(find_lock_page
);
697 * find_or_create_page - locate or add a pagecache page
698 * @mapping: the page's address_space
699 * @index: the page's index into the mapping
700 * @gfp_mask: page allocation mode
702 * Locates a page in the pagecache. If the page is not present, a new page
703 * is allocated using @gfp_mask and is added to the pagecache and to the VM's
704 * LRU list. The returned page is locked and has its reference count
707 * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
710 * find_or_create_page() returns the desired page's address, or zero on
713 struct page
*find_or_create_page(struct address_space
*mapping
,
714 pgoff_t index
, gfp_t gfp_mask
)
719 page
= find_lock_page(mapping
, index
);
721 page
= __page_cache_alloc(gfp_mask
);
725 * We want a regular kernel memory (not highmem or DMA etc)
726 * allocation for the radix tree nodes, but we need to honour
727 * the context-specific requirements the caller has asked for.
728 * GFP_RECLAIM_MASK collects those requirements.
730 err
= add_to_page_cache_lru(page
, mapping
, index
,
731 (gfp_mask
& GFP_RECLAIM_MASK
));
733 page_cache_release(page
);
741 EXPORT_SYMBOL(find_or_create_page
);
744 * find_get_pages - gang pagecache lookup
745 * @mapping: The address_space to search
746 * @start: The starting page index
747 * @nr_pages: The maximum number of pages
748 * @pages: Where the resulting pages are placed
750 * find_get_pages() will search for and return a group of up to
751 * @nr_pages pages in the mapping. The pages are placed at @pages.
752 * find_get_pages() takes a reference against the returned pages.
754 * The search returns a group of mapping-contiguous pages with ascending
755 * indexes. There may be holes in the indices due to not-present pages.
757 * find_get_pages() returns the number of pages which were found.
759 unsigned find_get_pages(struct address_space
*mapping
, pgoff_t start
,
760 unsigned int nr_pages
, struct page
**pages
)
764 unsigned int nr_found
;
768 nr_found
= radix_tree_gang_lookup_slot(&mapping
->page_tree
,
769 (void ***)pages
, start
, nr_pages
);
771 for (i
= 0; i
< nr_found
; i
++) {
774 page
= radix_tree_deref_slot((void **)pages
[i
]);
778 * this can only trigger if nr_found == 1, making livelock
781 if (unlikely(page
== RADIX_TREE_RETRY
))
784 if (!page_cache_get_speculative(page
))
787 /* Has the page moved? */
788 if (unlikely(page
!= *((void **)pages
[i
]))) {
789 page_cache_release(page
);
801 * find_get_pages_contig - gang contiguous pagecache lookup
802 * @mapping: The address_space to search
803 * @index: The starting page index
804 * @nr_pages: The maximum number of pages
805 * @pages: Where the resulting pages are placed
807 * find_get_pages_contig() works exactly like find_get_pages(), except
808 * that the returned number of pages are guaranteed to be contiguous.
810 * find_get_pages_contig() returns the number of pages which were found.
812 unsigned find_get_pages_contig(struct address_space
*mapping
, pgoff_t index
,
813 unsigned int nr_pages
, struct page
**pages
)
817 unsigned int nr_found
;
821 nr_found
= radix_tree_gang_lookup_slot(&mapping
->page_tree
,
822 (void ***)pages
, index
, nr_pages
);
824 for (i
= 0; i
< nr_found
; i
++) {
827 page
= radix_tree_deref_slot((void **)pages
[i
]);
831 * this can only trigger if nr_found == 1, making livelock
834 if (unlikely(page
== RADIX_TREE_RETRY
))
837 if (page
->mapping
== NULL
|| page
->index
!= index
)
840 if (!page_cache_get_speculative(page
))
843 /* Has the page moved? */
844 if (unlikely(page
!= *((void **)pages
[i
]))) {
845 page_cache_release(page
);
856 EXPORT_SYMBOL(find_get_pages_contig
);
859 * find_get_pages_tag - find and return pages that match @tag
860 * @mapping: the address_space to search
861 * @index: the starting page index
862 * @tag: the tag index
863 * @nr_pages: the maximum number of pages
864 * @pages: where the resulting pages are placed
866 * Like find_get_pages, except we only return pages which are tagged with
867 * @tag. We update @index to index the next page for the traversal.
869 unsigned find_get_pages_tag(struct address_space
*mapping
, pgoff_t
*index
,
870 int tag
, unsigned int nr_pages
, struct page
**pages
)
874 unsigned int nr_found
;
878 nr_found
= radix_tree_gang_lookup_tag_slot(&mapping
->page_tree
,
879 (void ***)pages
, *index
, nr_pages
, tag
);
881 for (i
= 0; i
< nr_found
; i
++) {
884 page
= radix_tree_deref_slot((void **)pages
[i
]);
888 * this can only trigger if nr_found == 1, making livelock
891 if (unlikely(page
== RADIX_TREE_RETRY
))
894 if (!page_cache_get_speculative(page
))
897 /* Has the page moved? */
898 if (unlikely(page
!= *((void **)pages
[i
]))) {
899 page_cache_release(page
);
909 *index
= pages
[ret
- 1]->index
+ 1;
913 EXPORT_SYMBOL(find_get_pages_tag
);
916 * grab_cache_page_nowait - returns locked page at given index in given cache
917 * @mapping: target address_space
918 * @index: the page index
920 * Same as grab_cache_page(), but do not wait if the page is unavailable.
921 * This is intended for speculative data generators, where the data can
922 * be regenerated if the page couldn't be grabbed. This routine should
923 * be safe to call while holding the lock for another page.
925 * Clear __GFP_FS when allocating the page to avoid recursion into the fs
926 * and deadlock against the caller's locked page.
929 grab_cache_page_nowait(struct address_space
*mapping
, pgoff_t index
)
931 struct page
*page
= find_get_page(mapping
, index
);
934 if (trylock_page(page
))
936 page_cache_release(page
);
939 page
= __page_cache_alloc(mapping_gfp_mask(mapping
) & ~__GFP_FS
);
940 if (page
&& add_to_page_cache_lru(page
, mapping
, index
, GFP_NOFS
)) {
941 page_cache_release(page
);
946 EXPORT_SYMBOL(grab_cache_page_nowait
);
949 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
950 * a _large_ part of the i/o request. Imagine the worst scenario:
952 * ---R__________________________________________B__________
953 * ^ reading here ^ bad block(assume 4k)
955 * read(R) => miss => readahead(R...B) => media error => frustrating retries
956 * => failing the whole request => read(R) => read(R+1) =>
957 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
958 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
959 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
961 * It is going insane. Fix it by quickly scaling down the readahead size.
963 static void shrink_readahead_size_eio(struct file
*filp
,
964 struct file_ra_state
*ra
)
970 * do_generic_file_read - generic file read routine
971 * @filp: the file to read
972 * @ppos: current file position
973 * @desc: read_descriptor
974 * @actor: read method
976 * This is a generic file read routine, and uses the
977 * mapping->a_ops->readpage() function for the actual low-level stuff.
979 * This is really ugly. But the goto's actually try to clarify some
980 * of the logic when it comes to error handling etc.
982 static void do_generic_file_read(struct file
*filp
, loff_t
*ppos
,
983 read_descriptor_t
*desc
, read_actor_t actor
)
985 struct address_space
*mapping
= filp
->f_mapping
;
986 struct inode
*inode
= mapping
->host
;
987 struct file_ra_state
*ra
= &filp
->f_ra
;
991 unsigned long offset
; /* offset into pagecache page */
992 unsigned int prev_offset
;
995 index
= *ppos
>> PAGE_CACHE_SHIFT
;
996 prev_index
= ra
->prev_pos
>> PAGE_CACHE_SHIFT
;
997 prev_offset
= ra
->prev_pos
& (PAGE_CACHE_SIZE
-1);
998 last_index
= (*ppos
+ desc
->count
+ PAGE_CACHE_SIZE
-1) >> PAGE_CACHE_SHIFT
;
999 offset
= *ppos
& ~PAGE_CACHE_MASK
;
1005 unsigned long nr
, ret
;
1009 page
= find_get_page(mapping
, index
);
1011 page_cache_sync_readahead(mapping
,
1013 index
, last_index
- index
);
1014 page
= find_get_page(mapping
, index
);
1015 if (unlikely(page
== NULL
))
1016 goto no_cached_page
;
1018 if (PageReadahead(page
)) {
1019 page_cache_async_readahead(mapping
,
1021 index
, last_index
- index
);
1023 if (!PageUptodate(page
)) {
1024 if (inode
->i_blkbits
== PAGE_CACHE_SHIFT
||
1025 !mapping
->a_ops
->is_partially_uptodate
)
1026 goto page_not_up_to_date
;
1027 if (!trylock_page(page
))
1028 goto page_not_up_to_date
;
1029 if (!mapping
->a_ops
->is_partially_uptodate(page
,
1031 goto page_not_up_to_date_locked
;
1036 * i_size must be checked after we know the page is Uptodate.
1038 * Checking i_size after the check allows us to calculate
1039 * the correct value for "nr", which means the zero-filled
1040 * part of the page is not copied back to userspace (unless
1041 * another truncate extends the file - this is desired though).
1044 isize
= i_size_read(inode
);
1045 end_index
= (isize
- 1) >> PAGE_CACHE_SHIFT
;
1046 if (unlikely(!isize
|| index
> end_index
)) {
1047 page_cache_release(page
);
1051 /* nr is the maximum number of bytes to copy from this page */
1052 nr
= PAGE_CACHE_SIZE
;
1053 if (index
== end_index
) {
1054 nr
= ((isize
- 1) & ~PAGE_CACHE_MASK
) + 1;
1056 page_cache_release(page
);
1062 /* If users can be writing to this page using arbitrary
1063 * virtual addresses, take care about potential aliasing
1064 * before reading the page on the kernel side.
1066 if (mapping_writably_mapped(mapping
))
1067 flush_dcache_page(page
);
1070 * When a sequential read accesses a page several times,
1071 * only mark it as accessed the first time.
1073 if (prev_index
!= index
|| offset
!= prev_offset
)
1074 mark_page_accessed(page
);
1078 * Ok, we have the page, and it's up-to-date, so
1079 * now we can copy it to user space...
1081 * The actor routine returns how many bytes were actually used..
1082 * NOTE! This may not be the same as how much of a user buffer
1083 * we filled up (we may be padding etc), so we can only update
1084 * "pos" here (the actor routine has to update the user buffer
1085 * pointers and the remaining count).
1087 ret
= actor(desc
, page
, offset
, nr
);
1089 index
+= offset
>> PAGE_CACHE_SHIFT
;
1090 offset
&= ~PAGE_CACHE_MASK
;
1091 prev_offset
= offset
;
1093 page_cache_release(page
);
1094 if (ret
== nr
&& desc
->count
)
1098 page_not_up_to_date
:
1099 /* Get exclusive access to the page ... */
1100 error
= lock_page_killable(page
);
1101 if (unlikely(error
))
1102 goto readpage_error
;
1104 page_not_up_to_date_locked
:
1105 /* Did it get truncated before we got the lock? */
1106 if (!page
->mapping
) {
1108 page_cache_release(page
);
1112 /* Did somebody else fill it already? */
1113 if (PageUptodate(page
)) {
1119 /* Start the actual read. The read will unlock the page. */
1120 error
= mapping
->a_ops
->readpage(filp
, page
);
1122 if (unlikely(error
)) {
1123 if (error
== AOP_TRUNCATED_PAGE
) {
1124 page_cache_release(page
);
1127 goto readpage_error
;
1130 if (!PageUptodate(page
)) {
1131 error
= lock_page_killable(page
);
1132 if (unlikely(error
))
1133 goto readpage_error
;
1134 if (!PageUptodate(page
)) {
1135 if (page
->mapping
== NULL
) {
1137 * invalidate_inode_pages got it
1140 page_cache_release(page
);
1144 shrink_readahead_size_eio(filp
, ra
);
1146 goto readpage_error
;
1154 /* UHHUH! A synchronous read error occurred. Report it */
1155 desc
->error
= error
;
1156 page_cache_release(page
);
1161 * Ok, it wasn't cached, so we need to create a new
1164 page
= page_cache_alloc_cold(mapping
);
1166 desc
->error
= -ENOMEM
;
1169 error
= add_to_page_cache_lru(page
, mapping
,
1172 page_cache_release(page
);
1173 if (error
== -EEXIST
)
1175 desc
->error
= error
;
1182 ra
->prev_pos
= prev_index
;
1183 ra
->prev_pos
<<= PAGE_CACHE_SHIFT
;
1184 ra
->prev_pos
|= prev_offset
;
1186 *ppos
= ((loff_t
)index
<< PAGE_CACHE_SHIFT
) + offset
;
1187 file_accessed(filp
);
1190 int file_read_actor(read_descriptor_t
*desc
, struct page
*page
,
1191 unsigned long offset
, unsigned long size
)
1194 unsigned long left
, count
= desc
->count
;
1200 * Faults on the destination of a read are common, so do it before
1203 if (!fault_in_pages_writeable(desc
->arg
.buf
, size
)) {
1204 kaddr
= kmap_atomic(page
, KM_USER0
);
1205 left
= __copy_to_user_inatomic(desc
->arg
.buf
,
1206 kaddr
+ offset
, size
);
1207 kunmap_atomic(kaddr
, KM_USER0
);
1212 /* Do it the slow way */
1214 left
= __copy_to_user(desc
->arg
.buf
, kaddr
+ offset
, size
);
1219 desc
->error
= -EFAULT
;
1222 desc
->count
= count
- size
;
1223 desc
->written
+= size
;
1224 desc
->arg
.buf
+= size
;
1229 * Performs necessary checks before doing a write
1230 * @iov: io vector request
1231 * @nr_segs: number of segments in the iovec
1232 * @count: number of bytes to write
1233 * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE
1235 * Adjust number of segments and amount of bytes to write (nr_segs should be
1236 * properly initialized first). Returns appropriate error code that caller
1237 * should return or zero in case that write should be allowed.
1239 int generic_segment_checks(const struct iovec
*iov
,
1240 unsigned long *nr_segs
, size_t *count
, int access_flags
)
1244 for (seg
= 0; seg
< *nr_segs
; seg
++) {
1245 const struct iovec
*iv
= &iov
[seg
];
1248 * If any segment has a negative length, or the cumulative
1249 * length ever wraps negative then return -EINVAL.
1252 if (unlikely((ssize_t
)(cnt
|iv
->iov_len
) < 0))
1254 if (access_ok(access_flags
, iv
->iov_base
, iv
->iov_len
))
1259 cnt
-= iv
->iov_len
; /* This segment is no good */
1265 EXPORT_SYMBOL(generic_segment_checks
);
1268 * generic_file_aio_read - generic filesystem read routine
1269 * @iocb: kernel I/O control block
1270 * @iov: io vector request
1271 * @nr_segs: number of segments in the iovec
1272 * @pos: current file position
1274 * This is the "read()" routine for all filesystems
1275 * that can use the page cache directly.
1278 generic_file_aio_read(struct kiocb
*iocb
, const struct iovec
*iov
,
1279 unsigned long nr_segs
, loff_t pos
)
1281 struct file
*filp
= iocb
->ki_filp
;
1285 loff_t
*ppos
= &iocb
->ki_pos
;
1288 retval
= generic_segment_checks(iov
, &nr_segs
, &count
, VERIFY_WRITE
);
1292 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1293 if (filp
->f_flags
& O_DIRECT
) {
1295 struct address_space
*mapping
;
1296 struct inode
*inode
;
1298 mapping
= filp
->f_mapping
;
1299 inode
= mapping
->host
;
1301 goto out
; /* skip atime */
1302 size
= i_size_read(inode
);
1304 retval
= filemap_write_and_wait_range(mapping
, pos
,
1305 pos
+ iov_length(iov
, nr_segs
) - 1);
1307 retval
= mapping
->a_ops
->direct_IO(READ
, iocb
,
1311 *ppos
= pos
+ retval
;
1313 file_accessed(filp
);
1319 for (seg
= 0; seg
< nr_segs
; seg
++) {
1320 read_descriptor_t desc
;
1323 desc
.arg
.buf
= iov
[seg
].iov_base
;
1324 desc
.count
= iov
[seg
].iov_len
;
1325 if (desc
.count
== 0)
1328 do_generic_file_read(filp
, ppos
, &desc
, file_read_actor
);
1329 retval
+= desc
.written
;
1331 retval
= retval
?: desc
.error
;
1340 EXPORT_SYMBOL(generic_file_aio_read
);
1343 do_readahead(struct address_space
*mapping
, struct file
*filp
,
1344 pgoff_t index
, unsigned long nr
)
1346 if (!mapping
|| !mapping
->a_ops
|| !mapping
->a_ops
->readpage
)
1349 force_page_cache_readahead(mapping
, filp
, index
, nr
);
1353 SYSCALL_DEFINE(readahead
)(int fd
, loff_t offset
, size_t count
)
1361 if (file
->f_mode
& FMODE_READ
) {
1362 struct address_space
*mapping
= file
->f_mapping
;
1363 pgoff_t start
= offset
>> PAGE_CACHE_SHIFT
;
1364 pgoff_t end
= (offset
+ count
- 1) >> PAGE_CACHE_SHIFT
;
1365 unsigned long len
= end
- start
+ 1;
1366 ret
= do_readahead(mapping
, file
, start
, len
);
1372 #ifdef CONFIG_HAVE_SYSCALL_WRAPPERS
1373 asmlinkage
long SyS_readahead(long fd
, loff_t offset
, long count
)
1375 return SYSC_readahead((int) fd
, offset
, (size_t) count
);
1377 SYSCALL_ALIAS(sys_readahead
, SyS_readahead
);
1382 * page_cache_read - adds requested page to the page cache if not already there
1383 * @file: file to read
1384 * @offset: page index
1386 * This adds the requested page to the page cache if it isn't already there,
1387 * and schedules an I/O to read in its contents from disk.
1389 static int page_cache_read(struct file
*file
, pgoff_t offset
)
1391 struct address_space
*mapping
= file
->f_mapping
;
1396 page
= page_cache_alloc_cold(mapping
);
1400 ret
= add_to_page_cache_lru(page
, mapping
, offset
, GFP_KERNEL
);
1402 ret
= mapping
->a_ops
->readpage(file
, page
);
1403 else if (ret
== -EEXIST
)
1404 ret
= 0; /* losing race to add is OK */
1406 page_cache_release(page
);
1408 } while (ret
== AOP_TRUNCATED_PAGE
);
1413 #define MMAP_LOTSAMISS (100)
1416 * Synchronous readahead happens when we don't even find
1417 * a page in the page cache at all.
1419 static void do_sync_mmap_readahead(struct vm_area_struct
*vma
,
1420 struct file_ra_state
*ra
,
1424 unsigned long ra_pages
;
1425 struct address_space
*mapping
= file
->f_mapping
;
1427 /* If we don't want any read-ahead, don't bother */
1428 if (VM_RandomReadHint(vma
))
1431 if (VM_SequentialReadHint(vma
) ||
1432 offset
- 1 == (ra
->prev_pos
>> PAGE_CACHE_SHIFT
)) {
1433 page_cache_sync_readahead(mapping
, ra
, file
, offset
,
1438 if (ra
->mmap_miss
< INT_MAX
)
1442 * Do we miss much more than hit in this file? If so,
1443 * stop bothering with read-ahead. It will only hurt.
1445 if (ra
->mmap_miss
> MMAP_LOTSAMISS
)
1451 ra_pages
= max_sane_readahead(ra
->ra_pages
);
1453 ra
->start
= max_t(long, 0, offset
- ra_pages
/2);
1454 ra
->size
= ra_pages
;
1456 ra_submit(ra
, mapping
, file
);
1461 * Asynchronous readahead happens when we find the page and PG_readahead,
1462 * so we want to possibly extend the readahead further..
1464 static void do_async_mmap_readahead(struct vm_area_struct
*vma
,
1465 struct file_ra_state
*ra
,
1470 struct address_space
*mapping
= file
->f_mapping
;
1472 /* If we don't want any read-ahead, don't bother */
1473 if (VM_RandomReadHint(vma
))
1475 if (ra
->mmap_miss
> 0)
1477 if (PageReadahead(page
))
1478 page_cache_async_readahead(mapping
, ra
, file
,
1479 page
, offset
, ra
->ra_pages
);
1483 * filemap_fault - read in file data for page fault handling
1484 * @vma: vma in which the fault was taken
1485 * @vmf: struct vm_fault containing details of the fault
1487 * filemap_fault() is invoked via the vma operations vector for a
1488 * mapped memory region to read in file data during a page fault.
1490 * The goto's are kind of ugly, but this streamlines the normal case of having
1491 * it in the page cache, and handles the special cases reasonably without
1492 * having a lot of duplicated code.
1494 int filemap_fault(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
1497 struct file
*file
= vma
->vm_file
;
1498 struct address_space
*mapping
= file
->f_mapping
;
1499 struct file_ra_state
*ra
= &file
->f_ra
;
1500 struct inode
*inode
= mapping
->host
;
1501 pgoff_t offset
= vmf
->pgoff
;
1506 size
= (i_size_read(inode
) + PAGE_CACHE_SIZE
- 1) >> PAGE_CACHE_SHIFT
;
1508 return VM_FAULT_SIGBUS
;
1511 * Do we have something in the page cache already?
1513 page
= find_get_page(mapping
, offset
);
1516 * We found the page, so try async readahead before
1517 * waiting for the lock.
1519 do_async_mmap_readahead(vma
, ra
, file
, page
, offset
);
1522 /* Did it get truncated? */
1523 if (unlikely(page
->mapping
!= mapping
)) {
1526 goto no_cached_page
;
1529 /* No page in the page cache at all */
1530 do_sync_mmap_readahead(vma
, ra
, file
, offset
);
1531 count_vm_event(PGMAJFAULT
);
1532 ret
= VM_FAULT_MAJOR
;
1534 page
= find_lock_page(mapping
, offset
);
1536 goto no_cached_page
;
1540 * We have a locked page in the page cache, now we need to check
1541 * that it's up-to-date. If not, it is going to be due to an error.
1543 if (unlikely(!PageUptodate(page
)))
1544 goto page_not_uptodate
;
1547 * Found the page and have a reference on it.
1548 * We must recheck i_size under page lock.
1550 size
= (i_size_read(inode
) + PAGE_CACHE_SIZE
- 1) >> PAGE_CACHE_SHIFT
;
1551 if (unlikely(offset
>= size
)) {
1553 page_cache_release(page
);
1554 return VM_FAULT_SIGBUS
;
1557 ra
->prev_pos
= (loff_t
)offset
<< PAGE_CACHE_SHIFT
;
1559 return ret
| VM_FAULT_LOCKED
;
1563 * We're only likely to ever get here if MADV_RANDOM is in
1566 error
= page_cache_read(file
, offset
);
1569 * The page we want has now been added to the page cache.
1570 * In the unlikely event that someone removed it in the
1571 * meantime, we'll just come back here and read it again.
1577 * An error return from page_cache_read can result if the
1578 * system is low on memory, or a problem occurs while trying
1581 if (error
== -ENOMEM
)
1582 return VM_FAULT_OOM
;
1583 return VM_FAULT_SIGBUS
;
1587 * Umm, take care of errors if the page isn't up-to-date.
1588 * Try to re-read it _once_. We do this synchronously,
1589 * because there really aren't any performance issues here
1590 * and we need to check for errors.
1592 ClearPageError(page
);
1593 error
= mapping
->a_ops
->readpage(file
, page
);
1595 wait_on_page_locked(page
);
1596 if (!PageUptodate(page
))
1599 page_cache_release(page
);
1601 if (!error
|| error
== AOP_TRUNCATED_PAGE
)
1604 /* Things didn't work out. Return zero to tell the mm layer so. */
1605 shrink_readahead_size_eio(file
, ra
);
1606 return VM_FAULT_SIGBUS
;
1608 EXPORT_SYMBOL(filemap_fault
);
1610 struct vm_operations_struct generic_file_vm_ops
= {
1611 .fault
= filemap_fault
,
1614 /* This is used for a general mmap of a disk file */
1616 int generic_file_mmap(struct file
* file
, struct vm_area_struct
* vma
)
1618 struct address_space
*mapping
= file
->f_mapping
;
1620 if (!mapping
->a_ops
->readpage
)
1622 file_accessed(file
);
1623 vma
->vm_ops
= &generic_file_vm_ops
;
1624 vma
->vm_flags
|= VM_CAN_NONLINEAR
;
1629 * This is for filesystems which do not implement ->writepage.
1631 int generic_file_readonly_mmap(struct file
*file
, struct vm_area_struct
*vma
)
1633 if ((vma
->vm_flags
& VM_SHARED
) && (vma
->vm_flags
& VM_MAYWRITE
))
1635 return generic_file_mmap(file
, vma
);
1638 int generic_file_mmap(struct file
* file
, struct vm_area_struct
* vma
)
1642 int generic_file_readonly_mmap(struct file
* file
, struct vm_area_struct
* vma
)
1646 #endif /* CONFIG_MMU */
1648 EXPORT_SYMBOL(generic_file_mmap
);
1649 EXPORT_SYMBOL(generic_file_readonly_mmap
);
1651 static struct page
*__read_cache_page(struct address_space
*mapping
,
1653 int (*filler
)(void *,struct page
*),
1659 page
= find_get_page(mapping
, index
);
1661 page
= page_cache_alloc_cold(mapping
);
1663 return ERR_PTR(-ENOMEM
);
1664 err
= add_to_page_cache_lru(page
, mapping
, index
, GFP_KERNEL
);
1665 if (unlikely(err
)) {
1666 page_cache_release(page
);
1669 /* Presumably ENOMEM for radix tree node */
1670 return ERR_PTR(err
);
1672 err
= filler(data
, page
);
1674 page_cache_release(page
);
1675 page
= ERR_PTR(err
);
1682 * read_cache_page_async - read into page cache, fill it if needed
1683 * @mapping: the page's address_space
1684 * @index: the page index
1685 * @filler: function to perform the read
1686 * @data: destination for read data
1688 * Same as read_cache_page, but don't wait for page to become unlocked
1689 * after submitting it to the filler.
1691 * Read into the page cache. If a page already exists, and PageUptodate() is
1692 * not set, try to fill the page but don't wait for it to become unlocked.
1694 * If the page does not get brought uptodate, return -EIO.
1696 struct page
*read_cache_page_async(struct address_space
*mapping
,
1698 int (*filler
)(void *,struct page
*),
1705 page
= __read_cache_page(mapping
, index
, filler
, data
);
1708 if (PageUptodate(page
))
1712 if (!page
->mapping
) {
1714 page_cache_release(page
);
1717 if (PageUptodate(page
)) {
1721 err
= filler(data
, page
);
1723 page_cache_release(page
);
1724 return ERR_PTR(err
);
1727 mark_page_accessed(page
);
1730 EXPORT_SYMBOL(read_cache_page_async
);
1733 * read_cache_page - read into page cache, fill it if needed
1734 * @mapping: the page's address_space
1735 * @index: the page index
1736 * @filler: function to perform the read
1737 * @data: destination for read data
1739 * Read into the page cache. If a page already exists, and PageUptodate() is
1740 * not set, try to fill the page then wait for it to become unlocked.
1742 * If the page does not get brought uptodate, return -EIO.
1744 struct page
*read_cache_page(struct address_space
*mapping
,
1746 int (*filler
)(void *,struct page
*),
1751 page
= read_cache_page_async(mapping
, index
, filler
, data
);
1754 wait_on_page_locked(page
);
1755 if (!PageUptodate(page
)) {
1756 page_cache_release(page
);
1757 page
= ERR_PTR(-EIO
);
1762 EXPORT_SYMBOL(read_cache_page
);
1765 * The logic we want is
1767 * if suid or (sgid and xgrp)
1770 int should_remove_suid(struct dentry
*dentry
)
1772 mode_t mode
= dentry
->d_inode
->i_mode
;
1775 /* suid always must be killed */
1776 if (unlikely(mode
& S_ISUID
))
1777 kill
= ATTR_KILL_SUID
;
1780 * sgid without any exec bits is just a mandatory locking mark; leave
1781 * it alone. If some exec bits are set, it's a real sgid; kill it.
1783 if (unlikely((mode
& S_ISGID
) && (mode
& S_IXGRP
)))
1784 kill
|= ATTR_KILL_SGID
;
1786 if (unlikely(kill
&& !capable(CAP_FSETID
) && S_ISREG(mode
)))
1791 EXPORT_SYMBOL(should_remove_suid
);
1793 static int __remove_suid(struct dentry
*dentry
, int kill
)
1795 struct iattr newattrs
;
1797 newattrs
.ia_valid
= ATTR_FORCE
| kill
;
1798 return notify_change(dentry
, &newattrs
);
1801 int file_remove_suid(struct file
*file
)
1803 struct dentry
*dentry
= file
->f_path
.dentry
;
1804 int killsuid
= should_remove_suid(dentry
);
1805 int killpriv
= security_inode_need_killpriv(dentry
);
1811 error
= security_inode_killpriv(dentry
);
1812 if (!error
&& killsuid
)
1813 error
= __remove_suid(dentry
, killsuid
);
1817 EXPORT_SYMBOL(file_remove_suid
);
1819 static size_t __iovec_copy_from_user_inatomic(char *vaddr
,
1820 const struct iovec
*iov
, size_t base
, size_t bytes
)
1822 size_t copied
= 0, left
= 0;
1825 char __user
*buf
= iov
->iov_base
+ base
;
1826 int copy
= min(bytes
, iov
->iov_len
- base
);
1829 left
= __copy_from_user_inatomic(vaddr
, buf
, copy
);
1838 return copied
- left
;
1842 * Copy as much as we can into the page and return the number of bytes which
1843 * were sucessfully copied. If a fault is encountered then return the number of
1844 * bytes which were copied.
1846 size_t iov_iter_copy_from_user_atomic(struct page
*page
,
1847 struct iov_iter
*i
, unsigned long offset
, size_t bytes
)
1852 BUG_ON(!in_atomic());
1853 kaddr
= kmap_atomic(page
, KM_USER0
);
1854 if (likely(i
->nr_segs
== 1)) {
1856 char __user
*buf
= i
->iov
->iov_base
+ i
->iov_offset
;
1857 left
= __copy_from_user_inatomic(kaddr
+ offset
, buf
, bytes
);
1858 copied
= bytes
- left
;
1860 copied
= __iovec_copy_from_user_inatomic(kaddr
+ offset
,
1861 i
->iov
, i
->iov_offset
, bytes
);
1863 kunmap_atomic(kaddr
, KM_USER0
);
1867 EXPORT_SYMBOL(iov_iter_copy_from_user_atomic
);
1870 * This has the same sideeffects and return value as
1871 * iov_iter_copy_from_user_atomic().
1872 * The difference is that it attempts to resolve faults.
1873 * Page must not be locked.
1875 size_t iov_iter_copy_from_user(struct page
*page
,
1876 struct iov_iter
*i
, unsigned long offset
, size_t bytes
)
1882 if (likely(i
->nr_segs
== 1)) {
1884 char __user
*buf
= i
->iov
->iov_base
+ i
->iov_offset
;
1885 left
= __copy_from_user(kaddr
+ offset
, buf
, bytes
);
1886 copied
= bytes
- left
;
1888 copied
= __iovec_copy_from_user_inatomic(kaddr
+ offset
,
1889 i
->iov
, i
->iov_offset
, bytes
);
1894 EXPORT_SYMBOL(iov_iter_copy_from_user
);
1896 void iov_iter_advance(struct iov_iter
*i
, size_t bytes
)
1898 BUG_ON(i
->count
< bytes
);
1900 if (likely(i
->nr_segs
== 1)) {
1901 i
->iov_offset
+= bytes
;
1904 const struct iovec
*iov
= i
->iov
;
1905 size_t base
= i
->iov_offset
;
1908 * The !iov->iov_len check ensures we skip over unlikely
1909 * zero-length segments (without overruning the iovec).
1911 while (bytes
|| unlikely(i
->count
&& !iov
->iov_len
)) {
1914 copy
= min(bytes
, iov
->iov_len
- base
);
1915 BUG_ON(!i
->count
|| i
->count
< copy
);
1919 if (iov
->iov_len
== base
) {
1925 i
->iov_offset
= base
;
1928 EXPORT_SYMBOL(iov_iter_advance
);
1931 * Fault in the first iovec of the given iov_iter, to a maximum length
1932 * of bytes. Returns 0 on success, or non-zero if the memory could not be
1933 * accessed (ie. because it is an invalid address).
1935 * writev-intensive code may want this to prefault several iovecs -- that
1936 * would be possible (callers must not rely on the fact that _only_ the
1937 * first iovec will be faulted with the current implementation).
1939 int iov_iter_fault_in_readable(struct iov_iter
*i
, size_t bytes
)
1941 char __user
*buf
= i
->iov
->iov_base
+ i
->iov_offset
;
1942 bytes
= min(bytes
, i
->iov
->iov_len
- i
->iov_offset
);
1943 return fault_in_pages_readable(buf
, bytes
);
1945 EXPORT_SYMBOL(iov_iter_fault_in_readable
);
1948 * Return the count of just the current iov_iter segment.
1950 size_t iov_iter_single_seg_count(struct iov_iter
*i
)
1952 const struct iovec
*iov
= i
->iov
;
1953 if (i
->nr_segs
== 1)
1956 return min(i
->count
, iov
->iov_len
- i
->iov_offset
);
1958 EXPORT_SYMBOL(iov_iter_single_seg_count
);
1961 * Performs necessary checks before doing a write
1963 * Can adjust writing position or amount of bytes to write.
1964 * Returns appropriate error code that caller should return or
1965 * zero in case that write should be allowed.
1967 inline int generic_write_checks(struct file
*file
, loff_t
*pos
, size_t *count
, int isblk
)
1969 struct inode
*inode
= file
->f_mapping
->host
;
1970 unsigned long limit
= current
->signal
->rlim
[RLIMIT_FSIZE
].rlim_cur
;
1972 if (unlikely(*pos
< 0))
1976 /* FIXME: this is for backwards compatibility with 2.4 */
1977 if (file
->f_flags
& O_APPEND
)
1978 *pos
= i_size_read(inode
);
1980 if (limit
!= RLIM_INFINITY
) {
1981 if (*pos
>= limit
) {
1982 send_sig(SIGXFSZ
, current
, 0);
1985 if (*count
> limit
- (typeof(limit
))*pos
) {
1986 *count
= limit
- (typeof(limit
))*pos
;
1994 if (unlikely(*pos
+ *count
> MAX_NON_LFS
&&
1995 !(file
->f_flags
& O_LARGEFILE
))) {
1996 if (*pos
>= MAX_NON_LFS
) {
1999 if (*count
> MAX_NON_LFS
- (unsigned long)*pos
) {
2000 *count
= MAX_NON_LFS
- (unsigned long)*pos
;
2005 * Are we about to exceed the fs block limit ?
2007 * If we have written data it becomes a short write. If we have
2008 * exceeded without writing data we send a signal and return EFBIG.
2009 * Linus frestrict idea will clean these up nicely..
2011 if (likely(!isblk
)) {
2012 if (unlikely(*pos
>= inode
->i_sb
->s_maxbytes
)) {
2013 if (*count
|| *pos
> inode
->i_sb
->s_maxbytes
) {
2016 /* zero-length writes at ->s_maxbytes are OK */
2019 if (unlikely(*pos
+ *count
> inode
->i_sb
->s_maxbytes
))
2020 *count
= inode
->i_sb
->s_maxbytes
- *pos
;
2024 if (bdev_read_only(I_BDEV(inode
)))
2026 isize
= i_size_read(inode
);
2027 if (*pos
>= isize
) {
2028 if (*count
|| *pos
> isize
)
2032 if (*pos
+ *count
> isize
)
2033 *count
= isize
- *pos
;
2040 EXPORT_SYMBOL(generic_write_checks
);
2042 int pagecache_write_begin(struct file
*file
, struct address_space
*mapping
,
2043 loff_t pos
, unsigned len
, unsigned flags
,
2044 struct page
**pagep
, void **fsdata
)
2046 const struct address_space_operations
*aops
= mapping
->a_ops
;
2048 return aops
->write_begin(file
, mapping
, pos
, len
, flags
,
2051 EXPORT_SYMBOL(pagecache_write_begin
);
2053 int pagecache_write_end(struct file
*file
, struct address_space
*mapping
,
2054 loff_t pos
, unsigned len
, unsigned copied
,
2055 struct page
*page
, void *fsdata
)
2057 const struct address_space_operations
*aops
= mapping
->a_ops
;
2059 mark_page_accessed(page
);
2060 return aops
->write_end(file
, mapping
, pos
, len
, copied
, page
, fsdata
);
2062 EXPORT_SYMBOL(pagecache_write_end
);
2065 generic_file_direct_write(struct kiocb
*iocb
, const struct iovec
*iov
,
2066 unsigned long *nr_segs
, loff_t pos
, loff_t
*ppos
,
2067 size_t count
, size_t ocount
)
2069 struct file
*file
= iocb
->ki_filp
;
2070 struct address_space
*mapping
= file
->f_mapping
;
2071 struct inode
*inode
= mapping
->host
;
2076 if (count
!= ocount
)
2077 *nr_segs
= iov_shorten((struct iovec
*)iov
, *nr_segs
, count
);
2079 write_len
= iov_length(iov
, *nr_segs
);
2080 end
= (pos
+ write_len
- 1) >> PAGE_CACHE_SHIFT
;
2082 written
= filemap_write_and_wait_range(mapping
, pos
, pos
+ write_len
- 1);
2087 * After a write we want buffered reads to be sure to go to disk to get
2088 * the new data. We invalidate clean cached page from the region we're
2089 * about to write. We do this *before* the write so that we can return
2090 * without clobbering -EIOCBQUEUED from ->direct_IO().
2092 if (mapping
->nrpages
) {
2093 written
= invalidate_inode_pages2_range(mapping
,
2094 pos
>> PAGE_CACHE_SHIFT
, end
);
2096 * If a page can not be invalidated, return 0 to fall back
2097 * to buffered write.
2100 if (written
== -EBUSY
)
2106 written
= mapping
->a_ops
->direct_IO(WRITE
, iocb
, iov
, pos
, *nr_segs
);
2109 * Finally, try again to invalidate clean pages which might have been
2110 * cached by non-direct readahead, or faulted in by get_user_pages()
2111 * if the source of the write was an mmap'ed region of the file
2112 * we're writing. Either one is a pretty crazy thing to do,
2113 * so we don't support it 100%. If this invalidation
2114 * fails, tough, the write still worked...
2116 if (mapping
->nrpages
) {
2117 invalidate_inode_pages2_range(mapping
,
2118 pos
>> PAGE_CACHE_SHIFT
, end
);
2122 loff_t end
= pos
+ written
;
2123 if (end
> i_size_read(inode
) && !S_ISBLK(inode
->i_mode
)) {
2124 i_size_write(inode
, end
);
2125 mark_inode_dirty(inode
);
2132 EXPORT_SYMBOL(generic_file_direct_write
);
2135 * Find or create a page at the given pagecache position. Return the locked
2136 * page. This function is specifically for buffered writes.
2138 struct page
*grab_cache_page_write_begin(struct address_space
*mapping
,
2139 pgoff_t index
, unsigned flags
)
2143 gfp_t gfp_notmask
= 0;
2144 if (flags
& AOP_FLAG_NOFS
)
2145 gfp_notmask
= __GFP_FS
;
2147 page
= find_lock_page(mapping
, index
);
2151 page
= __page_cache_alloc(mapping_gfp_mask(mapping
) & ~gfp_notmask
);
2154 status
= add_to_page_cache_lru(page
, mapping
, index
,
2155 GFP_KERNEL
& ~gfp_notmask
);
2156 if (unlikely(status
)) {
2157 page_cache_release(page
);
2158 if (status
== -EEXIST
)
2164 EXPORT_SYMBOL(grab_cache_page_write_begin
);
2166 static ssize_t
generic_perform_write(struct file
*file
,
2167 struct iov_iter
*i
, loff_t pos
)
2169 struct address_space
*mapping
= file
->f_mapping
;
2170 const struct address_space_operations
*a_ops
= mapping
->a_ops
;
2172 ssize_t written
= 0;
2173 unsigned int flags
= 0;
2176 * Copies from kernel address space cannot fail (NFSD is a big user).
2178 if (segment_eq(get_fs(), KERNEL_DS
))
2179 flags
|= AOP_FLAG_UNINTERRUPTIBLE
;
2183 pgoff_t index
; /* Pagecache index for current page */
2184 unsigned long offset
; /* Offset into pagecache page */
2185 unsigned long bytes
; /* Bytes to write to page */
2186 size_t copied
; /* Bytes copied from user */
2189 offset
= (pos
& (PAGE_CACHE_SIZE
- 1));
2190 index
= pos
>> PAGE_CACHE_SHIFT
;
2191 bytes
= min_t(unsigned long, PAGE_CACHE_SIZE
- offset
,
2197 * Bring in the user page that we will copy from _first_.
2198 * Otherwise there's a nasty deadlock on copying from the
2199 * same page as we're writing to, without it being marked
2202 * Not only is this an optimisation, but it is also required
2203 * to check that the address is actually valid, when atomic
2204 * usercopies are used, below.
2206 if (unlikely(iov_iter_fault_in_readable(i
, bytes
))) {
2211 status
= a_ops
->write_begin(file
, mapping
, pos
, bytes
, flags
,
2213 if (unlikely(status
))
2216 pagefault_disable();
2217 copied
= iov_iter_copy_from_user_atomic(page
, i
, offset
, bytes
);
2219 flush_dcache_page(page
);
2221 mark_page_accessed(page
);
2222 status
= a_ops
->write_end(file
, mapping
, pos
, bytes
, copied
,
2224 if (unlikely(status
< 0))
2230 iov_iter_advance(i
, copied
);
2231 if (unlikely(copied
== 0)) {
2233 * If we were unable to copy any data at all, we must
2234 * fall back to a single segment length write.
2236 * If we didn't fallback here, we could livelock
2237 * because not all segments in the iov can be copied at
2238 * once without a pagefault.
2240 bytes
= min_t(unsigned long, PAGE_CACHE_SIZE
- offset
,
2241 iov_iter_single_seg_count(i
));
2247 balance_dirty_pages_ratelimited(mapping
);
2249 } while (iov_iter_count(i
));
2251 return written
? written
: status
;
2255 generic_file_buffered_write(struct kiocb
*iocb
, const struct iovec
*iov
,
2256 unsigned long nr_segs
, loff_t pos
, loff_t
*ppos
,
2257 size_t count
, ssize_t written
)
2259 struct file
*file
= iocb
->ki_filp
;
2260 struct address_space
*mapping
= file
->f_mapping
;
2264 iov_iter_init(&i
, iov
, nr_segs
, count
, written
);
2265 status
= generic_perform_write(file
, &i
, pos
);
2267 if (likely(status
>= 0)) {
2269 *ppos
= pos
+ status
;
2273 * If we get here for O_DIRECT writes then we must have fallen through
2274 * to buffered writes (block instantiation inside i_size). So we sync
2275 * the file data here, to try to honour O_DIRECT expectations.
2277 if (unlikely(file
->f_flags
& O_DIRECT
) && written
)
2278 status
= filemap_write_and_wait_range(mapping
,
2279 pos
, pos
+ written
- 1);
2281 return written
? written
: status
;
2283 EXPORT_SYMBOL(generic_file_buffered_write
);
2286 * __generic_file_aio_write - write data to a file
2287 * @iocb: IO state structure (file, offset, etc.)
2288 * @iov: vector with data to write
2289 * @nr_segs: number of segments in the vector
2290 * @ppos: position where to write
2292 * This function does all the work needed for actually writing data to a
2293 * file. It does all basic checks, removes SUID from the file, updates
2294 * modification times and calls proper subroutines depending on whether we
2295 * do direct IO or a standard buffered write.
2297 * It expects i_mutex to be grabbed unless we work on a block device or similar
2298 * object which does not need locking at all.
2300 * This function does *not* take care of syncing data in case of O_SYNC write.
2301 * A caller has to handle it. This is mainly due to the fact that we want to
2302 * avoid syncing under i_mutex.
2304 ssize_t
__generic_file_aio_write(struct kiocb
*iocb
, const struct iovec
*iov
,
2305 unsigned long nr_segs
, loff_t
*ppos
)
2307 struct file
*file
= iocb
->ki_filp
;
2308 struct address_space
* mapping
= file
->f_mapping
;
2309 size_t ocount
; /* original count */
2310 size_t count
; /* after file limit checks */
2311 struct inode
*inode
= mapping
->host
;
2317 err
= generic_segment_checks(iov
, &nr_segs
, &ocount
, VERIFY_READ
);
2324 vfs_check_frozen(inode
->i_sb
, SB_FREEZE_WRITE
);
2326 /* We can write back this queue in page reclaim */
2327 current
->backing_dev_info
= mapping
->backing_dev_info
;
2330 err
= generic_write_checks(file
, &pos
, &count
, S_ISBLK(inode
->i_mode
));
2337 err
= file_remove_suid(file
);
2341 file_update_time(file
);
2343 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2344 if (unlikely(file
->f_flags
& O_DIRECT
)) {
2346 ssize_t written_buffered
;
2348 written
= generic_file_direct_write(iocb
, iov
, &nr_segs
, pos
,
2349 ppos
, count
, ocount
);
2350 if (written
< 0 || written
== count
)
2353 * direct-io write to a hole: fall through to buffered I/O
2354 * for completing the rest of the request.
2358 written_buffered
= generic_file_buffered_write(iocb
, iov
,
2359 nr_segs
, pos
, ppos
, count
,
2362 * If generic_file_buffered_write() retuned a synchronous error
2363 * then we want to return the number of bytes which were
2364 * direct-written, or the error code if that was zero. Note
2365 * that this differs from normal direct-io semantics, which
2366 * will return -EFOO even if some bytes were written.
2368 if (written_buffered
< 0) {
2369 err
= written_buffered
;
2374 * We need to ensure that the page cache pages are written to
2375 * disk and invalidated to preserve the expected O_DIRECT
2378 endbyte
= pos
+ written_buffered
- written
- 1;
2379 err
= do_sync_mapping_range(file
->f_mapping
, pos
, endbyte
,
2380 SYNC_FILE_RANGE_WAIT_BEFORE
|
2381 SYNC_FILE_RANGE_WRITE
|
2382 SYNC_FILE_RANGE_WAIT_AFTER
);
2384 written
= written_buffered
;
2385 invalidate_mapping_pages(mapping
,
2386 pos
>> PAGE_CACHE_SHIFT
,
2387 endbyte
>> PAGE_CACHE_SHIFT
);
2390 * We don't know how much we wrote, so just return
2391 * the number of bytes which were direct-written
2395 written
= generic_file_buffered_write(iocb
, iov
, nr_segs
,
2396 pos
, ppos
, count
, written
);
2399 current
->backing_dev_info
= NULL
;
2400 return written
? written
: err
;
2402 EXPORT_SYMBOL(__generic_file_aio_write
);
2405 * generic_file_aio_write - write data to a file
2406 * @iocb: IO state structure
2407 * @iov: vector with data to write
2408 * @nr_segs: number of segments in the vector
2409 * @pos: position in file where to write
2411 * This is a wrapper around __generic_file_aio_write() to be used by most
2412 * filesystems. It takes care of syncing the file in case of O_SYNC file
2413 * and acquires i_mutex as needed.
2415 ssize_t
generic_file_aio_write(struct kiocb
*iocb
, const struct iovec
*iov
,
2416 unsigned long nr_segs
, loff_t pos
)
2418 struct file
*file
= iocb
->ki_filp
;
2419 struct inode
*inode
= file
->f_mapping
->host
;
2422 BUG_ON(iocb
->ki_pos
!= pos
);
2424 mutex_lock(&inode
->i_mutex
);
2425 ret
= __generic_file_aio_write(iocb
, iov
, nr_segs
, &iocb
->ki_pos
);
2426 mutex_unlock(&inode
->i_mutex
);
2428 if (ret
> 0 || ret
== -EIOCBQUEUED
) {
2431 err
= generic_write_sync(file
, pos
, ret
);
2432 if (err
< 0 && ret
> 0)
2437 EXPORT_SYMBOL(generic_file_aio_write
);
2440 * try_to_release_page() - release old fs-specific metadata on a page
2442 * @page: the page which the kernel is trying to free
2443 * @gfp_mask: memory allocation flags (and I/O mode)
2445 * The address_space is to try to release any data against the page
2446 * (presumably at page->private). If the release was successful, return `1'.
2447 * Otherwise return zero.
2449 * This may also be called if PG_fscache is set on a page, indicating that the
2450 * page is known to the local caching routines.
2452 * The @gfp_mask argument specifies whether I/O may be performed to release
2453 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS).
2456 int try_to_release_page(struct page
*page
, gfp_t gfp_mask
)
2458 struct address_space
* const mapping
= page
->mapping
;
2460 BUG_ON(!PageLocked(page
));
2461 if (PageWriteback(page
))
2464 if (mapping
&& mapping
->a_ops
->releasepage
)
2465 return mapping
->a_ops
->releasepage(page
, gfp_mask
);
2466 return try_to_free_buffers(page
);
2469 EXPORT_SYMBOL(try_to_release_page
);