mm: oom analysis: add shmem vmstat
[linux-2.6/libata-dev.git] / mm / filemap.c
blobbcc7372aebbc4375d0763e4f3acd8d096bcb612d
1 /*
2 * linux/mm/filemap.c
4 * Copyright (C) 1994-1999 Linus Torvalds
5 */
7 /*
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
12 #include <linux/module.h>
13 #include <linux/slab.h>
14 #include <linux/compiler.h>
15 #include <linux/fs.h>
16 #include <linux/uaccess.h>
17 #include <linux/aio.h>
18 #include <linux/capability.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/security.h>
32 #include <linux/syscalls.h>
33 #include <linux/cpuset.h>
34 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
35 #include <linux/memcontrol.h>
36 #include <linux/mm_inline.h> /* for page_is_file_cache() */
37 #include "internal.h"
40 * FIXME: remove all knowledge of the buffer layer from the core VM
42 #include <linux/buffer_head.h> /* for try_to_free_buffers */
44 #include <asm/mman.h>
47 * Shared mappings implemented 30.11.1994. It's not fully working yet,
48 * though.
50 * Shared mappings now work. 15.8.1995 Bruno.
52 * finished 'unifying' the page and buffer cache and SMP-threaded the
53 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
55 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
59 * Lock ordering:
61 * ->i_mmap_lock (vmtruncate)
62 * ->private_lock (__free_pte->__set_page_dirty_buffers)
63 * ->swap_lock (exclusive_swap_page, others)
64 * ->mapping->tree_lock
66 * ->i_mutex
67 * ->i_mmap_lock (truncate->unmap_mapping_range)
69 * ->mmap_sem
70 * ->i_mmap_lock
71 * ->page_table_lock or pte_lock (various, mainly in memory.c)
72 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
74 * ->mmap_sem
75 * ->lock_page (access_process_vm)
77 * ->i_mutex (generic_file_buffered_write)
78 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
80 * ->i_mutex
81 * ->i_alloc_sem (various)
83 * ->inode_lock
84 * ->sb_lock (fs/fs-writeback.c)
85 * ->mapping->tree_lock (__sync_single_inode)
87 * ->i_mmap_lock
88 * ->anon_vma.lock (vma_adjust)
90 * ->anon_vma.lock
91 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
93 * ->page_table_lock or pte_lock
94 * ->swap_lock (try_to_unmap_one)
95 * ->private_lock (try_to_unmap_one)
96 * ->tree_lock (try_to_unmap_one)
97 * ->zone.lru_lock (follow_page->mark_page_accessed)
98 * ->zone.lru_lock (check_pte_range->isolate_lru_page)
99 * ->private_lock (page_remove_rmap->set_page_dirty)
100 * ->tree_lock (page_remove_rmap->set_page_dirty)
101 * ->inode_lock (page_remove_rmap->set_page_dirty)
102 * ->inode_lock (zap_pte_range->set_page_dirty)
103 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
105 * ->task->proc_lock
106 * ->dcache_lock (proc_pid_lookup)
110 * Remove a page from the page cache and free it. Caller has to make
111 * sure the page is locked and that nobody else uses it - or that usage
112 * is safe. The caller must hold the mapping's tree_lock.
114 void __remove_from_page_cache(struct page *page)
116 struct address_space *mapping = page->mapping;
118 radix_tree_delete(&mapping->page_tree, page->index);
119 page->mapping = NULL;
120 mapping->nrpages--;
121 __dec_zone_page_state(page, NR_FILE_PAGES);
122 if (PageSwapBacked(page))
123 __dec_zone_page_state(page, NR_SHMEM);
124 BUG_ON(page_mapped(page));
127 * Some filesystems seem to re-dirty the page even after
128 * the VM has canceled the dirty bit (eg ext3 journaling).
130 * Fix it up by doing a final dirty accounting check after
131 * having removed the page entirely.
133 if (PageDirty(page) && mapping_cap_account_dirty(mapping)) {
134 dec_zone_page_state(page, NR_FILE_DIRTY);
135 dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
139 void remove_from_page_cache(struct page *page)
141 struct address_space *mapping = page->mapping;
143 BUG_ON(!PageLocked(page));
145 spin_lock_irq(&mapping->tree_lock);
146 __remove_from_page_cache(page);
147 spin_unlock_irq(&mapping->tree_lock);
148 mem_cgroup_uncharge_cache_page(page);
151 static int sync_page(void *word)
153 struct address_space *mapping;
154 struct page *page;
156 page = container_of((unsigned long *)word, struct page, flags);
159 * page_mapping() is being called without PG_locked held.
160 * Some knowledge of the state and use of the page is used to
161 * reduce the requirements down to a memory barrier.
162 * The danger here is of a stale page_mapping() return value
163 * indicating a struct address_space different from the one it's
164 * associated with when it is associated with one.
165 * After smp_mb(), it's either the correct page_mapping() for
166 * the page, or an old page_mapping() and the page's own
167 * page_mapping() has gone NULL.
168 * The ->sync_page() address_space operation must tolerate
169 * page_mapping() going NULL. By an amazing coincidence,
170 * this comes about because none of the users of the page
171 * in the ->sync_page() methods make essential use of the
172 * page_mapping(), merely passing the page down to the backing
173 * device's unplug functions when it's non-NULL, which in turn
174 * ignore it for all cases but swap, where only page_private(page) is
175 * of interest. When page_mapping() does go NULL, the entire
176 * call stack gracefully ignores the page and returns.
177 * -- wli
179 smp_mb();
180 mapping = page_mapping(page);
181 if (mapping && mapping->a_ops && mapping->a_ops->sync_page)
182 mapping->a_ops->sync_page(page);
183 io_schedule();
184 return 0;
187 static int sync_page_killable(void *word)
189 sync_page(word);
190 return fatal_signal_pending(current) ? -EINTR : 0;
194 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
195 * @mapping: address space structure to write
196 * @start: offset in bytes where the range starts
197 * @end: offset in bytes where the range ends (inclusive)
198 * @sync_mode: enable synchronous operation
200 * Start writeback against all of a mapping's dirty pages that lie
201 * within the byte offsets <start, end> inclusive.
203 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
204 * opposed to a regular memory cleansing writeback. The difference between
205 * these two operations is that if a dirty page/buffer is encountered, it must
206 * be waited upon, and not just skipped over.
208 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
209 loff_t end, int sync_mode)
211 int ret;
212 struct writeback_control wbc = {
213 .sync_mode = sync_mode,
214 .nr_to_write = LONG_MAX,
215 .range_start = start,
216 .range_end = end,
219 if (!mapping_cap_writeback_dirty(mapping))
220 return 0;
222 ret = do_writepages(mapping, &wbc);
223 return ret;
226 static inline int __filemap_fdatawrite(struct address_space *mapping,
227 int sync_mode)
229 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
232 int filemap_fdatawrite(struct address_space *mapping)
234 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
236 EXPORT_SYMBOL(filemap_fdatawrite);
238 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
239 loff_t end)
241 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
243 EXPORT_SYMBOL(filemap_fdatawrite_range);
246 * filemap_flush - mostly a non-blocking flush
247 * @mapping: target address_space
249 * This is a mostly non-blocking flush. Not suitable for data-integrity
250 * purposes - I/O may not be started against all dirty pages.
252 int filemap_flush(struct address_space *mapping)
254 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
256 EXPORT_SYMBOL(filemap_flush);
259 * wait_on_page_writeback_range - wait for writeback to complete
260 * @mapping: target address_space
261 * @start: beginning page index
262 * @end: ending page index
264 * Wait for writeback to complete against pages indexed by start->end
265 * inclusive
267 int wait_on_page_writeback_range(struct address_space *mapping,
268 pgoff_t start, pgoff_t end)
270 struct pagevec pvec;
271 int nr_pages;
272 int ret = 0;
273 pgoff_t index;
275 if (end < start)
276 return 0;
278 pagevec_init(&pvec, 0);
279 index = start;
280 while ((index <= end) &&
281 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
282 PAGECACHE_TAG_WRITEBACK,
283 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
284 unsigned i;
286 for (i = 0; i < nr_pages; i++) {
287 struct page *page = pvec.pages[i];
289 /* until radix tree lookup accepts end_index */
290 if (page->index > end)
291 continue;
293 wait_on_page_writeback(page);
294 if (PageError(page))
295 ret = -EIO;
297 pagevec_release(&pvec);
298 cond_resched();
301 /* Check for outstanding write errors */
302 if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
303 ret = -ENOSPC;
304 if (test_and_clear_bit(AS_EIO, &mapping->flags))
305 ret = -EIO;
307 return ret;
311 * filemap_fdatawait_range - wait for all under-writeback pages to complete in a given range
312 * @mapping: address space structure to wait for
313 * @start: offset in bytes where the range starts
314 * @end: offset in bytes where the range ends (inclusive)
316 * Walk the list of under-writeback pages of the given address space
317 * in the given range and wait for all of them.
319 * This is just a simple wrapper so that callers don't have to convert offsets
320 * to page indexes themselves
322 int filemap_fdatawait_range(struct address_space *mapping, loff_t start,
323 loff_t end)
325 return wait_on_page_writeback_range(mapping, start >> PAGE_CACHE_SHIFT,
326 end >> PAGE_CACHE_SHIFT);
328 EXPORT_SYMBOL(filemap_fdatawait_range);
331 * filemap_fdatawait - wait for all under-writeback pages to complete
332 * @mapping: address space structure to wait for
334 * Walk the list of under-writeback pages of the given address space
335 * and wait for all of them.
337 int filemap_fdatawait(struct address_space *mapping)
339 loff_t i_size = i_size_read(mapping->host);
341 if (i_size == 0)
342 return 0;
344 return wait_on_page_writeback_range(mapping, 0,
345 (i_size - 1) >> PAGE_CACHE_SHIFT);
347 EXPORT_SYMBOL(filemap_fdatawait);
349 int filemap_write_and_wait(struct address_space *mapping)
351 int err = 0;
353 if (mapping->nrpages) {
354 err = filemap_fdatawrite(mapping);
356 * Even if the above returned error, the pages may be
357 * written partially (e.g. -ENOSPC), so we wait for it.
358 * But the -EIO is special case, it may indicate the worst
359 * thing (e.g. bug) happened, so we avoid waiting for it.
361 if (err != -EIO) {
362 int err2 = filemap_fdatawait(mapping);
363 if (!err)
364 err = err2;
367 return err;
369 EXPORT_SYMBOL(filemap_write_and_wait);
372 * filemap_write_and_wait_range - write out & wait on a file range
373 * @mapping: the address_space for the pages
374 * @lstart: offset in bytes where the range starts
375 * @lend: offset in bytes where the range ends (inclusive)
377 * Write out and wait upon file offsets lstart->lend, inclusive.
379 * Note that `lend' is inclusive (describes the last byte to be written) so
380 * that this function can be used to write to the very end-of-file (end = -1).
382 int filemap_write_and_wait_range(struct address_space *mapping,
383 loff_t lstart, loff_t lend)
385 int err = 0;
387 if (mapping->nrpages) {
388 err = __filemap_fdatawrite_range(mapping, lstart, lend,
389 WB_SYNC_ALL);
390 /* See comment of filemap_write_and_wait() */
391 if (err != -EIO) {
392 int err2 = wait_on_page_writeback_range(mapping,
393 lstart >> PAGE_CACHE_SHIFT,
394 lend >> PAGE_CACHE_SHIFT);
395 if (!err)
396 err = err2;
399 return err;
401 EXPORT_SYMBOL(filemap_write_and_wait_range);
404 * add_to_page_cache_locked - add a locked page to the pagecache
405 * @page: page to add
406 * @mapping: the page's address_space
407 * @offset: page index
408 * @gfp_mask: page allocation mode
410 * This function is used to add a page to the pagecache. It must be locked.
411 * This function does not add the page to the LRU. The caller must do that.
413 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
414 pgoff_t offset, gfp_t gfp_mask)
416 int error;
418 VM_BUG_ON(!PageLocked(page));
420 error = mem_cgroup_cache_charge(page, current->mm,
421 gfp_mask & GFP_RECLAIM_MASK);
422 if (error)
423 goto out;
425 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
426 if (error == 0) {
427 page_cache_get(page);
428 page->mapping = mapping;
429 page->index = offset;
431 spin_lock_irq(&mapping->tree_lock);
432 error = radix_tree_insert(&mapping->page_tree, offset, page);
433 if (likely(!error)) {
434 mapping->nrpages++;
435 __inc_zone_page_state(page, NR_FILE_PAGES);
436 if (PageSwapBacked(page))
437 __inc_zone_page_state(page, NR_SHMEM);
438 spin_unlock_irq(&mapping->tree_lock);
439 } else {
440 page->mapping = NULL;
441 spin_unlock_irq(&mapping->tree_lock);
442 mem_cgroup_uncharge_cache_page(page);
443 page_cache_release(page);
445 radix_tree_preload_end();
446 } else
447 mem_cgroup_uncharge_cache_page(page);
448 out:
449 return error;
451 EXPORT_SYMBOL(add_to_page_cache_locked);
453 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
454 pgoff_t offset, gfp_t gfp_mask)
456 int ret;
459 * Splice_read and readahead add shmem/tmpfs pages into the page cache
460 * before shmem_readpage has a chance to mark them as SwapBacked: they
461 * need to go on the active_anon lru below, and mem_cgroup_cache_charge
462 * (called in add_to_page_cache) needs to know where they're going too.
464 if (mapping_cap_swap_backed(mapping))
465 SetPageSwapBacked(page);
467 ret = add_to_page_cache(page, mapping, offset, gfp_mask);
468 if (ret == 0) {
469 if (page_is_file_cache(page))
470 lru_cache_add_file(page);
471 else
472 lru_cache_add_active_anon(page);
474 return ret;
476 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
478 #ifdef CONFIG_NUMA
479 struct page *__page_cache_alloc(gfp_t gfp)
481 if (cpuset_do_page_mem_spread()) {
482 int n = cpuset_mem_spread_node();
483 return alloc_pages_exact_node(n, gfp, 0);
485 return alloc_pages(gfp, 0);
487 EXPORT_SYMBOL(__page_cache_alloc);
488 #endif
490 static int __sleep_on_page_lock(void *word)
492 io_schedule();
493 return 0;
497 * In order to wait for pages to become available there must be
498 * waitqueues associated with pages. By using a hash table of
499 * waitqueues where the bucket discipline is to maintain all
500 * waiters on the same queue and wake all when any of the pages
501 * become available, and for the woken contexts to check to be
502 * sure the appropriate page became available, this saves space
503 * at a cost of "thundering herd" phenomena during rare hash
504 * collisions.
506 static wait_queue_head_t *page_waitqueue(struct page *page)
508 const struct zone *zone = page_zone(page);
510 return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
513 static inline void wake_up_page(struct page *page, int bit)
515 __wake_up_bit(page_waitqueue(page), &page->flags, bit);
518 void wait_on_page_bit(struct page *page, int bit_nr)
520 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
522 if (test_bit(bit_nr, &page->flags))
523 __wait_on_bit(page_waitqueue(page), &wait, sync_page,
524 TASK_UNINTERRUPTIBLE);
526 EXPORT_SYMBOL(wait_on_page_bit);
529 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
530 * @page: Page defining the wait queue of interest
531 * @waiter: Waiter to add to the queue
533 * Add an arbitrary @waiter to the wait queue for the nominated @page.
535 void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
537 wait_queue_head_t *q = page_waitqueue(page);
538 unsigned long flags;
540 spin_lock_irqsave(&q->lock, flags);
541 __add_wait_queue(q, waiter);
542 spin_unlock_irqrestore(&q->lock, flags);
544 EXPORT_SYMBOL_GPL(add_page_wait_queue);
547 * unlock_page - unlock a locked page
548 * @page: the page
550 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
551 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
552 * mechananism between PageLocked pages and PageWriteback pages is shared.
553 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
555 * The mb is necessary to enforce ordering between the clear_bit and the read
556 * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
558 void unlock_page(struct page *page)
560 VM_BUG_ON(!PageLocked(page));
561 clear_bit_unlock(PG_locked, &page->flags);
562 smp_mb__after_clear_bit();
563 wake_up_page(page, PG_locked);
565 EXPORT_SYMBOL(unlock_page);
568 * end_page_writeback - end writeback against a page
569 * @page: the page
571 void end_page_writeback(struct page *page)
573 if (TestClearPageReclaim(page))
574 rotate_reclaimable_page(page);
576 if (!test_clear_page_writeback(page))
577 BUG();
579 smp_mb__after_clear_bit();
580 wake_up_page(page, PG_writeback);
582 EXPORT_SYMBOL(end_page_writeback);
585 * __lock_page - get a lock on the page, assuming we need to sleep to get it
586 * @page: the page to lock
588 * Ugly. Running sync_page() in state TASK_UNINTERRUPTIBLE is scary. If some
589 * random driver's requestfn sets TASK_RUNNING, we could busywait. However
590 * chances are that on the second loop, the block layer's plug list is empty,
591 * so sync_page() will then return in state TASK_UNINTERRUPTIBLE.
593 void __lock_page(struct page *page)
595 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
597 __wait_on_bit_lock(page_waitqueue(page), &wait, sync_page,
598 TASK_UNINTERRUPTIBLE);
600 EXPORT_SYMBOL(__lock_page);
602 int __lock_page_killable(struct page *page)
604 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
606 return __wait_on_bit_lock(page_waitqueue(page), &wait,
607 sync_page_killable, TASK_KILLABLE);
609 EXPORT_SYMBOL_GPL(__lock_page_killable);
612 * __lock_page_nosync - get a lock on the page, without calling sync_page()
613 * @page: the page to lock
615 * Variant of lock_page that does not require the caller to hold a reference
616 * on the page's mapping.
618 void __lock_page_nosync(struct page *page)
620 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
621 __wait_on_bit_lock(page_waitqueue(page), &wait, __sleep_on_page_lock,
622 TASK_UNINTERRUPTIBLE);
626 * find_get_page - find and get a page reference
627 * @mapping: the address_space to search
628 * @offset: the page index
630 * Is there a pagecache struct page at the given (mapping, offset) tuple?
631 * If yes, increment its refcount and return it; if no, return NULL.
633 struct page *find_get_page(struct address_space *mapping, pgoff_t offset)
635 void **pagep;
636 struct page *page;
638 rcu_read_lock();
639 repeat:
640 page = NULL;
641 pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
642 if (pagep) {
643 page = radix_tree_deref_slot(pagep);
644 if (unlikely(!page || page == RADIX_TREE_RETRY))
645 goto repeat;
647 if (!page_cache_get_speculative(page))
648 goto repeat;
651 * Has the page moved?
652 * This is part of the lockless pagecache protocol. See
653 * include/linux/pagemap.h for details.
655 if (unlikely(page != *pagep)) {
656 page_cache_release(page);
657 goto repeat;
660 rcu_read_unlock();
662 return page;
664 EXPORT_SYMBOL(find_get_page);
667 * find_lock_page - locate, pin and lock a pagecache page
668 * @mapping: the address_space to search
669 * @offset: the page index
671 * Locates the desired pagecache page, locks it, increments its reference
672 * count and returns its address.
674 * Returns zero if the page was not present. find_lock_page() may sleep.
676 struct page *find_lock_page(struct address_space *mapping, pgoff_t offset)
678 struct page *page;
680 repeat:
681 page = find_get_page(mapping, offset);
682 if (page) {
683 lock_page(page);
684 /* Has the page been truncated? */
685 if (unlikely(page->mapping != mapping)) {
686 unlock_page(page);
687 page_cache_release(page);
688 goto repeat;
690 VM_BUG_ON(page->index != offset);
692 return page;
694 EXPORT_SYMBOL(find_lock_page);
697 * find_or_create_page - locate or add a pagecache page
698 * @mapping: the page's address_space
699 * @index: the page's index into the mapping
700 * @gfp_mask: page allocation mode
702 * Locates a page in the pagecache. If the page is not present, a new page
703 * is allocated using @gfp_mask and is added to the pagecache and to the VM's
704 * LRU list. The returned page is locked and has its reference count
705 * incremented.
707 * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
708 * allocation!
710 * find_or_create_page() returns the desired page's address, or zero on
711 * memory exhaustion.
713 struct page *find_or_create_page(struct address_space *mapping,
714 pgoff_t index, gfp_t gfp_mask)
716 struct page *page;
717 int err;
718 repeat:
719 page = find_lock_page(mapping, index);
720 if (!page) {
721 page = __page_cache_alloc(gfp_mask);
722 if (!page)
723 return NULL;
725 * We want a regular kernel memory (not highmem or DMA etc)
726 * allocation for the radix tree nodes, but we need to honour
727 * the context-specific requirements the caller has asked for.
728 * GFP_RECLAIM_MASK collects those requirements.
730 err = add_to_page_cache_lru(page, mapping, index,
731 (gfp_mask & GFP_RECLAIM_MASK));
732 if (unlikely(err)) {
733 page_cache_release(page);
734 page = NULL;
735 if (err == -EEXIST)
736 goto repeat;
739 return page;
741 EXPORT_SYMBOL(find_or_create_page);
744 * find_get_pages - gang pagecache lookup
745 * @mapping: The address_space to search
746 * @start: The starting page index
747 * @nr_pages: The maximum number of pages
748 * @pages: Where the resulting pages are placed
750 * find_get_pages() will search for and return a group of up to
751 * @nr_pages pages in the mapping. The pages are placed at @pages.
752 * find_get_pages() takes a reference against the returned pages.
754 * The search returns a group of mapping-contiguous pages with ascending
755 * indexes. There may be holes in the indices due to not-present pages.
757 * find_get_pages() returns the number of pages which were found.
759 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
760 unsigned int nr_pages, struct page **pages)
762 unsigned int i;
763 unsigned int ret;
764 unsigned int nr_found;
766 rcu_read_lock();
767 restart:
768 nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
769 (void ***)pages, start, nr_pages);
770 ret = 0;
771 for (i = 0; i < nr_found; i++) {
772 struct page *page;
773 repeat:
774 page = radix_tree_deref_slot((void **)pages[i]);
775 if (unlikely(!page))
776 continue;
778 * this can only trigger if nr_found == 1, making livelock
779 * a non issue.
781 if (unlikely(page == RADIX_TREE_RETRY))
782 goto restart;
784 if (!page_cache_get_speculative(page))
785 goto repeat;
787 /* Has the page moved? */
788 if (unlikely(page != *((void **)pages[i]))) {
789 page_cache_release(page);
790 goto repeat;
793 pages[ret] = page;
794 ret++;
796 rcu_read_unlock();
797 return ret;
801 * find_get_pages_contig - gang contiguous pagecache lookup
802 * @mapping: The address_space to search
803 * @index: The starting page index
804 * @nr_pages: The maximum number of pages
805 * @pages: Where the resulting pages are placed
807 * find_get_pages_contig() works exactly like find_get_pages(), except
808 * that the returned number of pages are guaranteed to be contiguous.
810 * find_get_pages_contig() returns the number of pages which were found.
812 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
813 unsigned int nr_pages, struct page **pages)
815 unsigned int i;
816 unsigned int ret;
817 unsigned int nr_found;
819 rcu_read_lock();
820 restart:
821 nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
822 (void ***)pages, index, nr_pages);
823 ret = 0;
824 for (i = 0; i < nr_found; i++) {
825 struct page *page;
826 repeat:
827 page = radix_tree_deref_slot((void **)pages[i]);
828 if (unlikely(!page))
829 continue;
831 * this can only trigger if nr_found == 1, making livelock
832 * a non issue.
834 if (unlikely(page == RADIX_TREE_RETRY))
835 goto restart;
837 if (page->mapping == NULL || page->index != index)
838 break;
840 if (!page_cache_get_speculative(page))
841 goto repeat;
843 /* Has the page moved? */
844 if (unlikely(page != *((void **)pages[i]))) {
845 page_cache_release(page);
846 goto repeat;
849 pages[ret] = page;
850 ret++;
851 index++;
853 rcu_read_unlock();
854 return ret;
856 EXPORT_SYMBOL(find_get_pages_contig);
859 * find_get_pages_tag - find and return pages that match @tag
860 * @mapping: the address_space to search
861 * @index: the starting page index
862 * @tag: the tag index
863 * @nr_pages: the maximum number of pages
864 * @pages: where the resulting pages are placed
866 * Like find_get_pages, except we only return pages which are tagged with
867 * @tag. We update @index to index the next page for the traversal.
869 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
870 int tag, unsigned int nr_pages, struct page **pages)
872 unsigned int i;
873 unsigned int ret;
874 unsigned int nr_found;
876 rcu_read_lock();
877 restart:
878 nr_found = radix_tree_gang_lookup_tag_slot(&mapping->page_tree,
879 (void ***)pages, *index, nr_pages, tag);
880 ret = 0;
881 for (i = 0; i < nr_found; i++) {
882 struct page *page;
883 repeat:
884 page = radix_tree_deref_slot((void **)pages[i]);
885 if (unlikely(!page))
886 continue;
888 * this can only trigger if nr_found == 1, making livelock
889 * a non issue.
891 if (unlikely(page == RADIX_TREE_RETRY))
892 goto restart;
894 if (!page_cache_get_speculative(page))
895 goto repeat;
897 /* Has the page moved? */
898 if (unlikely(page != *((void **)pages[i]))) {
899 page_cache_release(page);
900 goto repeat;
903 pages[ret] = page;
904 ret++;
906 rcu_read_unlock();
908 if (ret)
909 *index = pages[ret - 1]->index + 1;
911 return ret;
913 EXPORT_SYMBOL(find_get_pages_tag);
916 * grab_cache_page_nowait - returns locked page at given index in given cache
917 * @mapping: target address_space
918 * @index: the page index
920 * Same as grab_cache_page(), but do not wait if the page is unavailable.
921 * This is intended for speculative data generators, where the data can
922 * be regenerated if the page couldn't be grabbed. This routine should
923 * be safe to call while holding the lock for another page.
925 * Clear __GFP_FS when allocating the page to avoid recursion into the fs
926 * and deadlock against the caller's locked page.
928 struct page *
929 grab_cache_page_nowait(struct address_space *mapping, pgoff_t index)
931 struct page *page = find_get_page(mapping, index);
933 if (page) {
934 if (trylock_page(page))
935 return page;
936 page_cache_release(page);
937 return NULL;
939 page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS);
940 if (page && add_to_page_cache_lru(page, mapping, index, GFP_NOFS)) {
941 page_cache_release(page);
942 page = NULL;
944 return page;
946 EXPORT_SYMBOL(grab_cache_page_nowait);
949 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
950 * a _large_ part of the i/o request. Imagine the worst scenario:
952 * ---R__________________________________________B__________
953 * ^ reading here ^ bad block(assume 4k)
955 * read(R) => miss => readahead(R...B) => media error => frustrating retries
956 * => failing the whole request => read(R) => read(R+1) =>
957 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
958 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
959 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
961 * It is going insane. Fix it by quickly scaling down the readahead size.
963 static void shrink_readahead_size_eio(struct file *filp,
964 struct file_ra_state *ra)
966 ra->ra_pages /= 4;
970 * do_generic_file_read - generic file read routine
971 * @filp: the file to read
972 * @ppos: current file position
973 * @desc: read_descriptor
974 * @actor: read method
976 * This is a generic file read routine, and uses the
977 * mapping->a_ops->readpage() function for the actual low-level stuff.
979 * This is really ugly. But the goto's actually try to clarify some
980 * of the logic when it comes to error handling etc.
982 static void do_generic_file_read(struct file *filp, loff_t *ppos,
983 read_descriptor_t *desc, read_actor_t actor)
985 struct address_space *mapping = filp->f_mapping;
986 struct inode *inode = mapping->host;
987 struct file_ra_state *ra = &filp->f_ra;
988 pgoff_t index;
989 pgoff_t last_index;
990 pgoff_t prev_index;
991 unsigned long offset; /* offset into pagecache page */
992 unsigned int prev_offset;
993 int error;
995 index = *ppos >> PAGE_CACHE_SHIFT;
996 prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
997 prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
998 last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
999 offset = *ppos & ~PAGE_CACHE_MASK;
1001 for (;;) {
1002 struct page *page;
1003 pgoff_t end_index;
1004 loff_t isize;
1005 unsigned long nr, ret;
1007 cond_resched();
1008 find_page:
1009 page = find_get_page(mapping, index);
1010 if (!page) {
1011 page_cache_sync_readahead(mapping,
1012 ra, filp,
1013 index, last_index - index);
1014 page = find_get_page(mapping, index);
1015 if (unlikely(page == NULL))
1016 goto no_cached_page;
1018 if (PageReadahead(page)) {
1019 page_cache_async_readahead(mapping,
1020 ra, filp, page,
1021 index, last_index - index);
1023 if (!PageUptodate(page)) {
1024 if (inode->i_blkbits == PAGE_CACHE_SHIFT ||
1025 !mapping->a_ops->is_partially_uptodate)
1026 goto page_not_up_to_date;
1027 if (!trylock_page(page))
1028 goto page_not_up_to_date;
1029 if (!mapping->a_ops->is_partially_uptodate(page,
1030 desc, offset))
1031 goto page_not_up_to_date_locked;
1032 unlock_page(page);
1034 page_ok:
1036 * i_size must be checked after we know the page is Uptodate.
1038 * Checking i_size after the check allows us to calculate
1039 * the correct value for "nr", which means the zero-filled
1040 * part of the page is not copied back to userspace (unless
1041 * another truncate extends the file - this is desired though).
1044 isize = i_size_read(inode);
1045 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1046 if (unlikely(!isize || index > end_index)) {
1047 page_cache_release(page);
1048 goto out;
1051 /* nr is the maximum number of bytes to copy from this page */
1052 nr = PAGE_CACHE_SIZE;
1053 if (index == end_index) {
1054 nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1055 if (nr <= offset) {
1056 page_cache_release(page);
1057 goto out;
1060 nr = nr - offset;
1062 /* If users can be writing to this page using arbitrary
1063 * virtual addresses, take care about potential aliasing
1064 * before reading the page on the kernel side.
1066 if (mapping_writably_mapped(mapping))
1067 flush_dcache_page(page);
1070 * When a sequential read accesses a page several times,
1071 * only mark it as accessed the first time.
1073 if (prev_index != index || offset != prev_offset)
1074 mark_page_accessed(page);
1075 prev_index = index;
1078 * Ok, we have the page, and it's up-to-date, so
1079 * now we can copy it to user space...
1081 * The actor routine returns how many bytes were actually used..
1082 * NOTE! This may not be the same as how much of a user buffer
1083 * we filled up (we may be padding etc), so we can only update
1084 * "pos" here (the actor routine has to update the user buffer
1085 * pointers and the remaining count).
1087 ret = actor(desc, page, offset, nr);
1088 offset += ret;
1089 index += offset >> PAGE_CACHE_SHIFT;
1090 offset &= ~PAGE_CACHE_MASK;
1091 prev_offset = offset;
1093 page_cache_release(page);
1094 if (ret == nr && desc->count)
1095 continue;
1096 goto out;
1098 page_not_up_to_date:
1099 /* Get exclusive access to the page ... */
1100 error = lock_page_killable(page);
1101 if (unlikely(error))
1102 goto readpage_error;
1104 page_not_up_to_date_locked:
1105 /* Did it get truncated before we got the lock? */
1106 if (!page->mapping) {
1107 unlock_page(page);
1108 page_cache_release(page);
1109 continue;
1112 /* Did somebody else fill it already? */
1113 if (PageUptodate(page)) {
1114 unlock_page(page);
1115 goto page_ok;
1118 readpage:
1119 /* Start the actual read. The read will unlock the page. */
1120 error = mapping->a_ops->readpage(filp, page);
1122 if (unlikely(error)) {
1123 if (error == AOP_TRUNCATED_PAGE) {
1124 page_cache_release(page);
1125 goto find_page;
1127 goto readpage_error;
1130 if (!PageUptodate(page)) {
1131 error = lock_page_killable(page);
1132 if (unlikely(error))
1133 goto readpage_error;
1134 if (!PageUptodate(page)) {
1135 if (page->mapping == NULL) {
1137 * invalidate_inode_pages got it
1139 unlock_page(page);
1140 page_cache_release(page);
1141 goto find_page;
1143 unlock_page(page);
1144 shrink_readahead_size_eio(filp, ra);
1145 error = -EIO;
1146 goto readpage_error;
1148 unlock_page(page);
1151 goto page_ok;
1153 readpage_error:
1154 /* UHHUH! A synchronous read error occurred. Report it */
1155 desc->error = error;
1156 page_cache_release(page);
1157 goto out;
1159 no_cached_page:
1161 * Ok, it wasn't cached, so we need to create a new
1162 * page..
1164 page = page_cache_alloc_cold(mapping);
1165 if (!page) {
1166 desc->error = -ENOMEM;
1167 goto out;
1169 error = add_to_page_cache_lru(page, mapping,
1170 index, GFP_KERNEL);
1171 if (error) {
1172 page_cache_release(page);
1173 if (error == -EEXIST)
1174 goto find_page;
1175 desc->error = error;
1176 goto out;
1178 goto readpage;
1181 out:
1182 ra->prev_pos = prev_index;
1183 ra->prev_pos <<= PAGE_CACHE_SHIFT;
1184 ra->prev_pos |= prev_offset;
1186 *ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
1187 file_accessed(filp);
1190 int file_read_actor(read_descriptor_t *desc, struct page *page,
1191 unsigned long offset, unsigned long size)
1193 char *kaddr;
1194 unsigned long left, count = desc->count;
1196 if (size > count)
1197 size = count;
1200 * Faults on the destination of a read are common, so do it before
1201 * taking the kmap.
1203 if (!fault_in_pages_writeable(desc->arg.buf, size)) {
1204 kaddr = kmap_atomic(page, KM_USER0);
1205 left = __copy_to_user_inatomic(desc->arg.buf,
1206 kaddr + offset, size);
1207 kunmap_atomic(kaddr, KM_USER0);
1208 if (left == 0)
1209 goto success;
1212 /* Do it the slow way */
1213 kaddr = kmap(page);
1214 left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
1215 kunmap(page);
1217 if (left) {
1218 size -= left;
1219 desc->error = -EFAULT;
1221 success:
1222 desc->count = count - size;
1223 desc->written += size;
1224 desc->arg.buf += size;
1225 return size;
1229 * Performs necessary checks before doing a write
1230 * @iov: io vector request
1231 * @nr_segs: number of segments in the iovec
1232 * @count: number of bytes to write
1233 * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE
1235 * Adjust number of segments and amount of bytes to write (nr_segs should be
1236 * properly initialized first). Returns appropriate error code that caller
1237 * should return or zero in case that write should be allowed.
1239 int generic_segment_checks(const struct iovec *iov,
1240 unsigned long *nr_segs, size_t *count, int access_flags)
1242 unsigned long seg;
1243 size_t cnt = 0;
1244 for (seg = 0; seg < *nr_segs; seg++) {
1245 const struct iovec *iv = &iov[seg];
1248 * If any segment has a negative length, or the cumulative
1249 * length ever wraps negative then return -EINVAL.
1251 cnt += iv->iov_len;
1252 if (unlikely((ssize_t)(cnt|iv->iov_len) < 0))
1253 return -EINVAL;
1254 if (access_ok(access_flags, iv->iov_base, iv->iov_len))
1255 continue;
1256 if (seg == 0)
1257 return -EFAULT;
1258 *nr_segs = seg;
1259 cnt -= iv->iov_len; /* This segment is no good */
1260 break;
1262 *count = cnt;
1263 return 0;
1265 EXPORT_SYMBOL(generic_segment_checks);
1268 * generic_file_aio_read - generic filesystem read routine
1269 * @iocb: kernel I/O control block
1270 * @iov: io vector request
1271 * @nr_segs: number of segments in the iovec
1272 * @pos: current file position
1274 * This is the "read()" routine for all filesystems
1275 * that can use the page cache directly.
1277 ssize_t
1278 generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
1279 unsigned long nr_segs, loff_t pos)
1281 struct file *filp = iocb->ki_filp;
1282 ssize_t retval;
1283 unsigned long seg;
1284 size_t count;
1285 loff_t *ppos = &iocb->ki_pos;
1287 count = 0;
1288 retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1289 if (retval)
1290 return retval;
1292 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1293 if (filp->f_flags & O_DIRECT) {
1294 loff_t size;
1295 struct address_space *mapping;
1296 struct inode *inode;
1298 mapping = filp->f_mapping;
1299 inode = mapping->host;
1300 if (!count)
1301 goto out; /* skip atime */
1302 size = i_size_read(inode);
1303 if (pos < size) {
1304 retval = filemap_write_and_wait_range(mapping, pos,
1305 pos + iov_length(iov, nr_segs) - 1);
1306 if (!retval) {
1307 retval = mapping->a_ops->direct_IO(READ, iocb,
1308 iov, pos, nr_segs);
1310 if (retval > 0)
1311 *ppos = pos + retval;
1312 if (retval) {
1313 file_accessed(filp);
1314 goto out;
1319 for (seg = 0; seg < nr_segs; seg++) {
1320 read_descriptor_t desc;
1322 desc.written = 0;
1323 desc.arg.buf = iov[seg].iov_base;
1324 desc.count = iov[seg].iov_len;
1325 if (desc.count == 0)
1326 continue;
1327 desc.error = 0;
1328 do_generic_file_read(filp, ppos, &desc, file_read_actor);
1329 retval += desc.written;
1330 if (desc.error) {
1331 retval = retval ?: desc.error;
1332 break;
1334 if (desc.count > 0)
1335 break;
1337 out:
1338 return retval;
1340 EXPORT_SYMBOL(generic_file_aio_read);
1342 static ssize_t
1343 do_readahead(struct address_space *mapping, struct file *filp,
1344 pgoff_t index, unsigned long nr)
1346 if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage)
1347 return -EINVAL;
1349 force_page_cache_readahead(mapping, filp, index, nr);
1350 return 0;
1353 SYSCALL_DEFINE(readahead)(int fd, loff_t offset, size_t count)
1355 ssize_t ret;
1356 struct file *file;
1358 ret = -EBADF;
1359 file = fget(fd);
1360 if (file) {
1361 if (file->f_mode & FMODE_READ) {
1362 struct address_space *mapping = file->f_mapping;
1363 pgoff_t start = offset >> PAGE_CACHE_SHIFT;
1364 pgoff_t end = (offset + count - 1) >> PAGE_CACHE_SHIFT;
1365 unsigned long len = end - start + 1;
1366 ret = do_readahead(mapping, file, start, len);
1368 fput(file);
1370 return ret;
1372 #ifdef CONFIG_HAVE_SYSCALL_WRAPPERS
1373 asmlinkage long SyS_readahead(long fd, loff_t offset, long count)
1375 return SYSC_readahead((int) fd, offset, (size_t) count);
1377 SYSCALL_ALIAS(sys_readahead, SyS_readahead);
1378 #endif
1380 #ifdef CONFIG_MMU
1382 * page_cache_read - adds requested page to the page cache if not already there
1383 * @file: file to read
1384 * @offset: page index
1386 * This adds the requested page to the page cache if it isn't already there,
1387 * and schedules an I/O to read in its contents from disk.
1389 static int page_cache_read(struct file *file, pgoff_t offset)
1391 struct address_space *mapping = file->f_mapping;
1392 struct page *page;
1393 int ret;
1395 do {
1396 page = page_cache_alloc_cold(mapping);
1397 if (!page)
1398 return -ENOMEM;
1400 ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1401 if (ret == 0)
1402 ret = mapping->a_ops->readpage(file, page);
1403 else if (ret == -EEXIST)
1404 ret = 0; /* losing race to add is OK */
1406 page_cache_release(page);
1408 } while (ret == AOP_TRUNCATED_PAGE);
1410 return ret;
1413 #define MMAP_LOTSAMISS (100)
1416 * Synchronous readahead happens when we don't even find
1417 * a page in the page cache at all.
1419 static void do_sync_mmap_readahead(struct vm_area_struct *vma,
1420 struct file_ra_state *ra,
1421 struct file *file,
1422 pgoff_t offset)
1424 unsigned long ra_pages;
1425 struct address_space *mapping = file->f_mapping;
1427 /* If we don't want any read-ahead, don't bother */
1428 if (VM_RandomReadHint(vma))
1429 return;
1431 if (VM_SequentialReadHint(vma) ||
1432 offset - 1 == (ra->prev_pos >> PAGE_CACHE_SHIFT)) {
1433 page_cache_sync_readahead(mapping, ra, file, offset,
1434 ra->ra_pages);
1435 return;
1438 if (ra->mmap_miss < INT_MAX)
1439 ra->mmap_miss++;
1442 * Do we miss much more than hit in this file? If so,
1443 * stop bothering with read-ahead. It will only hurt.
1445 if (ra->mmap_miss > MMAP_LOTSAMISS)
1446 return;
1449 * mmap read-around
1451 ra_pages = max_sane_readahead(ra->ra_pages);
1452 if (ra_pages) {
1453 ra->start = max_t(long, 0, offset - ra_pages/2);
1454 ra->size = ra_pages;
1455 ra->async_size = 0;
1456 ra_submit(ra, mapping, file);
1461 * Asynchronous readahead happens when we find the page and PG_readahead,
1462 * so we want to possibly extend the readahead further..
1464 static void do_async_mmap_readahead(struct vm_area_struct *vma,
1465 struct file_ra_state *ra,
1466 struct file *file,
1467 struct page *page,
1468 pgoff_t offset)
1470 struct address_space *mapping = file->f_mapping;
1472 /* If we don't want any read-ahead, don't bother */
1473 if (VM_RandomReadHint(vma))
1474 return;
1475 if (ra->mmap_miss > 0)
1476 ra->mmap_miss--;
1477 if (PageReadahead(page))
1478 page_cache_async_readahead(mapping, ra, file,
1479 page, offset, ra->ra_pages);
1483 * filemap_fault - read in file data for page fault handling
1484 * @vma: vma in which the fault was taken
1485 * @vmf: struct vm_fault containing details of the fault
1487 * filemap_fault() is invoked via the vma operations vector for a
1488 * mapped memory region to read in file data during a page fault.
1490 * The goto's are kind of ugly, but this streamlines the normal case of having
1491 * it in the page cache, and handles the special cases reasonably without
1492 * having a lot of duplicated code.
1494 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1496 int error;
1497 struct file *file = vma->vm_file;
1498 struct address_space *mapping = file->f_mapping;
1499 struct file_ra_state *ra = &file->f_ra;
1500 struct inode *inode = mapping->host;
1501 pgoff_t offset = vmf->pgoff;
1502 struct page *page;
1503 pgoff_t size;
1504 int ret = 0;
1506 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1507 if (offset >= size)
1508 return VM_FAULT_SIGBUS;
1511 * Do we have something in the page cache already?
1513 page = find_get_page(mapping, offset);
1514 if (likely(page)) {
1516 * We found the page, so try async readahead before
1517 * waiting for the lock.
1519 do_async_mmap_readahead(vma, ra, file, page, offset);
1520 lock_page(page);
1522 /* Did it get truncated? */
1523 if (unlikely(page->mapping != mapping)) {
1524 unlock_page(page);
1525 put_page(page);
1526 goto no_cached_page;
1528 } else {
1529 /* No page in the page cache at all */
1530 do_sync_mmap_readahead(vma, ra, file, offset);
1531 count_vm_event(PGMAJFAULT);
1532 ret = VM_FAULT_MAJOR;
1533 retry_find:
1534 page = find_lock_page(mapping, offset);
1535 if (!page)
1536 goto no_cached_page;
1540 * We have a locked page in the page cache, now we need to check
1541 * that it's up-to-date. If not, it is going to be due to an error.
1543 if (unlikely(!PageUptodate(page)))
1544 goto page_not_uptodate;
1547 * Found the page and have a reference on it.
1548 * We must recheck i_size under page lock.
1550 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1551 if (unlikely(offset >= size)) {
1552 unlock_page(page);
1553 page_cache_release(page);
1554 return VM_FAULT_SIGBUS;
1557 ra->prev_pos = (loff_t)offset << PAGE_CACHE_SHIFT;
1558 vmf->page = page;
1559 return ret | VM_FAULT_LOCKED;
1561 no_cached_page:
1563 * We're only likely to ever get here if MADV_RANDOM is in
1564 * effect.
1566 error = page_cache_read(file, offset);
1569 * The page we want has now been added to the page cache.
1570 * In the unlikely event that someone removed it in the
1571 * meantime, we'll just come back here and read it again.
1573 if (error >= 0)
1574 goto retry_find;
1577 * An error return from page_cache_read can result if the
1578 * system is low on memory, or a problem occurs while trying
1579 * to schedule I/O.
1581 if (error == -ENOMEM)
1582 return VM_FAULT_OOM;
1583 return VM_FAULT_SIGBUS;
1585 page_not_uptodate:
1587 * Umm, take care of errors if the page isn't up-to-date.
1588 * Try to re-read it _once_. We do this synchronously,
1589 * because there really aren't any performance issues here
1590 * and we need to check for errors.
1592 ClearPageError(page);
1593 error = mapping->a_ops->readpage(file, page);
1594 if (!error) {
1595 wait_on_page_locked(page);
1596 if (!PageUptodate(page))
1597 error = -EIO;
1599 page_cache_release(page);
1601 if (!error || error == AOP_TRUNCATED_PAGE)
1602 goto retry_find;
1604 /* Things didn't work out. Return zero to tell the mm layer so. */
1605 shrink_readahead_size_eio(file, ra);
1606 return VM_FAULT_SIGBUS;
1608 EXPORT_SYMBOL(filemap_fault);
1610 struct vm_operations_struct generic_file_vm_ops = {
1611 .fault = filemap_fault,
1614 /* This is used for a general mmap of a disk file */
1616 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1618 struct address_space *mapping = file->f_mapping;
1620 if (!mapping->a_ops->readpage)
1621 return -ENOEXEC;
1622 file_accessed(file);
1623 vma->vm_ops = &generic_file_vm_ops;
1624 vma->vm_flags |= VM_CAN_NONLINEAR;
1625 return 0;
1629 * This is for filesystems which do not implement ->writepage.
1631 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
1633 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
1634 return -EINVAL;
1635 return generic_file_mmap(file, vma);
1637 #else
1638 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1640 return -ENOSYS;
1642 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
1644 return -ENOSYS;
1646 #endif /* CONFIG_MMU */
1648 EXPORT_SYMBOL(generic_file_mmap);
1649 EXPORT_SYMBOL(generic_file_readonly_mmap);
1651 static struct page *__read_cache_page(struct address_space *mapping,
1652 pgoff_t index,
1653 int (*filler)(void *,struct page*),
1654 void *data)
1656 struct page *page;
1657 int err;
1658 repeat:
1659 page = find_get_page(mapping, index);
1660 if (!page) {
1661 page = page_cache_alloc_cold(mapping);
1662 if (!page)
1663 return ERR_PTR(-ENOMEM);
1664 err = add_to_page_cache_lru(page, mapping, index, GFP_KERNEL);
1665 if (unlikely(err)) {
1666 page_cache_release(page);
1667 if (err == -EEXIST)
1668 goto repeat;
1669 /* Presumably ENOMEM for radix tree node */
1670 return ERR_PTR(err);
1672 err = filler(data, page);
1673 if (err < 0) {
1674 page_cache_release(page);
1675 page = ERR_PTR(err);
1678 return page;
1682 * read_cache_page_async - read into page cache, fill it if needed
1683 * @mapping: the page's address_space
1684 * @index: the page index
1685 * @filler: function to perform the read
1686 * @data: destination for read data
1688 * Same as read_cache_page, but don't wait for page to become unlocked
1689 * after submitting it to the filler.
1691 * Read into the page cache. If a page already exists, and PageUptodate() is
1692 * not set, try to fill the page but don't wait for it to become unlocked.
1694 * If the page does not get brought uptodate, return -EIO.
1696 struct page *read_cache_page_async(struct address_space *mapping,
1697 pgoff_t index,
1698 int (*filler)(void *,struct page*),
1699 void *data)
1701 struct page *page;
1702 int err;
1704 retry:
1705 page = __read_cache_page(mapping, index, filler, data);
1706 if (IS_ERR(page))
1707 return page;
1708 if (PageUptodate(page))
1709 goto out;
1711 lock_page(page);
1712 if (!page->mapping) {
1713 unlock_page(page);
1714 page_cache_release(page);
1715 goto retry;
1717 if (PageUptodate(page)) {
1718 unlock_page(page);
1719 goto out;
1721 err = filler(data, page);
1722 if (err < 0) {
1723 page_cache_release(page);
1724 return ERR_PTR(err);
1726 out:
1727 mark_page_accessed(page);
1728 return page;
1730 EXPORT_SYMBOL(read_cache_page_async);
1733 * read_cache_page - read into page cache, fill it if needed
1734 * @mapping: the page's address_space
1735 * @index: the page index
1736 * @filler: function to perform the read
1737 * @data: destination for read data
1739 * Read into the page cache. If a page already exists, and PageUptodate() is
1740 * not set, try to fill the page then wait for it to become unlocked.
1742 * If the page does not get brought uptodate, return -EIO.
1744 struct page *read_cache_page(struct address_space *mapping,
1745 pgoff_t index,
1746 int (*filler)(void *,struct page*),
1747 void *data)
1749 struct page *page;
1751 page = read_cache_page_async(mapping, index, filler, data);
1752 if (IS_ERR(page))
1753 goto out;
1754 wait_on_page_locked(page);
1755 if (!PageUptodate(page)) {
1756 page_cache_release(page);
1757 page = ERR_PTR(-EIO);
1759 out:
1760 return page;
1762 EXPORT_SYMBOL(read_cache_page);
1765 * The logic we want is
1767 * if suid or (sgid and xgrp)
1768 * remove privs
1770 int should_remove_suid(struct dentry *dentry)
1772 mode_t mode = dentry->d_inode->i_mode;
1773 int kill = 0;
1775 /* suid always must be killed */
1776 if (unlikely(mode & S_ISUID))
1777 kill = ATTR_KILL_SUID;
1780 * sgid without any exec bits is just a mandatory locking mark; leave
1781 * it alone. If some exec bits are set, it's a real sgid; kill it.
1783 if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1784 kill |= ATTR_KILL_SGID;
1786 if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
1787 return kill;
1789 return 0;
1791 EXPORT_SYMBOL(should_remove_suid);
1793 static int __remove_suid(struct dentry *dentry, int kill)
1795 struct iattr newattrs;
1797 newattrs.ia_valid = ATTR_FORCE | kill;
1798 return notify_change(dentry, &newattrs);
1801 int file_remove_suid(struct file *file)
1803 struct dentry *dentry = file->f_path.dentry;
1804 int killsuid = should_remove_suid(dentry);
1805 int killpriv = security_inode_need_killpriv(dentry);
1806 int error = 0;
1808 if (killpriv < 0)
1809 return killpriv;
1810 if (killpriv)
1811 error = security_inode_killpriv(dentry);
1812 if (!error && killsuid)
1813 error = __remove_suid(dentry, killsuid);
1815 return error;
1817 EXPORT_SYMBOL(file_remove_suid);
1819 static size_t __iovec_copy_from_user_inatomic(char *vaddr,
1820 const struct iovec *iov, size_t base, size_t bytes)
1822 size_t copied = 0, left = 0;
1824 while (bytes) {
1825 char __user *buf = iov->iov_base + base;
1826 int copy = min(bytes, iov->iov_len - base);
1828 base = 0;
1829 left = __copy_from_user_inatomic(vaddr, buf, copy);
1830 copied += copy;
1831 bytes -= copy;
1832 vaddr += copy;
1833 iov++;
1835 if (unlikely(left))
1836 break;
1838 return copied - left;
1842 * Copy as much as we can into the page and return the number of bytes which
1843 * were sucessfully copied. If a fault is encountered then return the number of
1844 * bytes which were copied.
1846 size_t iov_iter_copy_from_user_atomic(struct page *page,
1847 struct iov_iter *i, unsigned long offset, size_t bytes)
1849 char *kaddr;
1850 size_t copied;
1852 BUG_ON(!in_atomic());
1853 kaddr = kmap_atomic(page, KM_USER0);
1854 if (likely(i->nr_segs == 1)) {
1855 int left;
1856 char __user *buf = i->iov->iov_base + i->iov_offset;
1857 left = __copy_from_user_inatomic(kaddr + offset, buf, bytes);
1858 copied = bytes - left;
1859 } else {
1860 copied = __iovec_copy_from_user_inatomic(kaddr + offset,
1861 i->iov, i->iov_offset, bytes);
1863 kunmap_atomic(kaddr, KM_USER0);
1865 return copied;
1867 EXPORT_SYMBOL(iov_iter_copy_from_user_atomic);
1870 * This has the same sideeffects and return value as
1871 * iov_iter_copy_from_user_atomic().
1872 * The difference is that it attempts to resolve faults.
1873 * Page must not be locked.
1875 size_t iov_iter_copy_from_user(struct page *page,
1876 struct iov_iter *i, unsigned long offset, size_t bytes)
1878 char *kaddr;
1879 size_t copied;
1881 kaddr = kmap(page);
1882 if (likely(i->nr_segs == 1)) {
1883 int left;
1884 char __user *buf = i->iov->iov_base + i->iov_offset;
1885 left = __copy_from_user(kaddr + offset, buf, bytes);
1886 copied = bytes - left;
1887 } else {
1888 copied = __iovec_copy_from_user_inatomic(kaddr + offset,
1889 i->iov, i->iov_offset, bytes);
1891 kunmap(page);
1892 return copied;
1894 EXPORT_SYMBOL(iov_iter_copy_from_user);
1896 void iov_iter_advance(struct iov_iter *i, size_t bytes)
1898 BUG_ON(i->count < bytes);
1900 if (likely(i->nr_segs == 1)) {
1901 i->iov_offset += bytes;
1902 i->count -= bytes;
1903 } else {
1904 const struct iovec *iov = i->iov;
1905 size_t base = i->iov_offset;
1908 * The !iov->iov_len check ensures we skip over unlikely
1909 * zero-length segments (without overruning the iovec).
1911 while (bytes || unlikely(i->count && !iov->iov_len)) {
1912 int copy;
1914 copy = min(bytes, iov->iov_len - base);
1915 BUG_ON(!i->count || i->count < copy);
1916 i->count -= copy;
1917 bytes -= copy;
1918 base += copy;
1919 if (iov->iov_len == base) {
1920 iov++;
1921 base = 0;
1924 i->iov = iov;
1925 i->iov_offset = base;
1928 EXPORT_SYMBOL(iov_iter_advance);
1931 * Fault in the first iovec of the given iov_iter, to a maximum length
1932 * of bytes. Returns 0 on success, or non-zero if the memory could not be
1933 * accessed (ie. because it is an invalid address).
1935 * writev-intensive code may want this to prefault several iovecs -- that
1936 * would be possible (callers must not rely on the fact that _only_ the
1937 * first iovec will be faulted with the current implementation).
1939 int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes)
1941 char __user *buf = i->iov->iov_base + i->iov_offset;
1942 bytes = min(bytes, i->iov->iov_len - i->iov_offset);
1943 return fault_in_pages_readable(buf, bytes);
1945 EXPORT_SYMBOL(iov_iter_fault_in_readable);
1948 * Return the count of just the current iov_iter segment.
1950 size_t iov_iter_single_seg_count(struct iov_iter *i)
1952 const struct iovec *iov = i->iov;
1953 if (i->nr_segs == 1)
1954 return i->count;
1955 else
1956 return min(i->count, iov->iov_len - i->iov_offset);
1958 EXPORT_SYMBOL(iov_iter_single_seg_count);
1961 * Performs necessary checks before doing a write
1963 * Can adjust writing position or amount of bytes to write.
1964 * Returns appropriate error code that caller should return or
1965 * zero in case that write should be allowed.
1967 inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
1969 struct inode *inode = file->f_mapping->host;
1970 unsigned long limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
1972 if (unlikely(*pos < 0))
1973 return -EINVAL;
1975 if (!isblk) {
1976 /* FIXME: this is for backwards compatibility with 2.4 */
1977 if (file->f_flags & O_APPEND)
1978 *pos = i_size_read(inode);
1980 if (limit != RLIM_INFINITY) {
1981 if (*pos >= limit) {
1982 send_sig(SIGXFSZ, current, 0);
1983 return -EFBIG;
1985 if (*count > limit - (typeof(limit))*pos) {
1986 *count = limit - (typeof(limit))*pos;
1992 * LFS rule
1994 if (unlikely(*pos + *count > MAX_NON_LFS &&
1995 !(file->f_flags & O_LARGEFILE))) {
1996 if (*pos >= MAX_NON_LFS) {
1997 return -EFBIG;
1999 if (*count > MAX_NON_LFS - (unsigned long)*pos) {
2000 *count = MAX_NON_LFS - (unsigned long)*pos;
2005 * Are we about to exceed the fs block limit ?
2007 * If we have written data it becomes a short write. If we have
2008 * exceeded without writing data we send a signal and return EFBIG.
2009 * Linus frestrict idea will clean these up nicely..
2011 if (likely(!isblk)) {
2012 if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
2013 if (*count || *pos > inode->i_sb->s_maxbytes) {
2014 return -EFBIG;
2016 /* zero-length writes at ->s_maxbytes are OK */
2019 if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
2020 *count = inode->i_sb->s_maxbytes - *pos;
2021 } else {
2022 #ifdef CONFIG_BLOCK
2023 loff_t isize;
2024 if (bdev_read_only(I_BDEV(inode)))
2025 return -EPERM;
2026 isize = i_size_read(inode);
2027 if (*pos >= isize) {
2028 if (*count || *pos > isize)
2029 return -ENOSPC;
2032 if (*pos + *count > isize)
2033 *count = isize - *pos;
2034 #else
2035 return -EPERM;
2036 #endif
2038 return 0;
2040 EXPORT_SYMBOL(generic_write_checks);
2042 int pagecache_write_begin(struct file *file, struct address_space *mapping,
2043 loff_t pos, unsigned len, unsigned flags,
2044 struct page **pagep, void **fsdata)
2046 const struct address_space_operations *aops = mapping->a_ops;
2048 return aops->write_begin(file, mapping, pos, len, flags,
2049 pagep, fsdata);
2051 EXPORT_SYMBOL(pagecache_write_begin);
2053 int pagecache_write_end(struct file *file, struct address_space *mapping,
2054 loff_t pos, unsigned len, unsigned copied,
2055 struct page *page, void *fsdata)
2057 const struct address_space_operations *aops = mapping->a_ops;
2059 mark_page_accessed(page);
2060 return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2062 EXPORT_SYMBOL(pagecache_write_end);
2064 ssize_t
2065 generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
2066 unsigned long *nr_segs, loff_t pos, loff_t *ppos,
2067 size_t count, size_t ocount)
2069 struct file *file = iocb->ki_filp;
2070 struct address_space *mapping = file->f_mapping;
2071 struct inode *inode = mapping->host;
2072 ssize_t written;
2073 size_t write_len;
2074 pgoff_t end;
2076 if (count != ocount)
2077 *nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
2079 write_len = iov_length(iov, *nr_segs);
2080 end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT;
2082 written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
2083 if (written)
2084 goto out;
2087 * After a write we want buffered reads to be sure to go to disk to get
2088 * the new data. We invalidate clean cached page from the region we're
2089 * about to write. We do this *before* the write so that we can return
2090 * without clobbering -EIOCBQUEUED from ->direct_IO().
2092 if (mapping->nrpages) {
2093 written = invalidate_inode_pages2_range(mapping,
2094 pos >> PAGE_CACHE_SHIFT, end);
2096 * If a page can not be invalidated, return 0 to fall back
2097 * to buffered write.
2099 if (written) {
2100 if (written == -EBUSY)
2101 return 0;
2102 goto out;
2106 written = mapping->a_ops->direct_IO(WRITE, iocb, iov, pos, *nr_segs);
2109 * Finally, try again to invalidate clean pages which might have been
2110 * cached by non-direct readahead, or faulted in by get_user_pages()
2111 * if the source of the write was an mmap'ed region of the file
2112 * we're writing. Either one is a pretty crazy thing to do,
2113 * so we don't support it 100%. If this invalidation
2114 * fails, tough, the write still worked...
2116 if (mapping->nrpages) {
2117 invalidate_inode_pages2_range(mapping,
2118 pos >> PAGE_CACHE_SHIFT, end);
2121 if (written > 0) {
2122 loff_t end = pos + written;
2123 if (end > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2124 i_size_write(inode, end);
2125 mark_inode_dirty(inode);
2127 *ppos = end;
2129 out:
2130 return written;
2132 EXPORT_SYMBOL(generic_file_direct_write);
2135 * Find or create a page at the given pagecache position. Return the locked
2136 * page. This function is specifically for buffered writes.
2138 struct page *grab_cache_page_write_begin(struct address_space *mapping,
2139 pgoff_t index, unsigned flags)
2141 int status;
2142 struct page *page;
2143 gfp_t gfp_notmask = 0;
2144 if (flags & AOP_FLAG_NOFS)
2145 gfp_notmask = __GFP_FS;
2146 repeat:
2147 page = find_lock_page(mapping, index);
2148 if (likely(page))
2149 return page;
2151 page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~gfp_notmask);
2152 if (!page)
2153 return NULL;
2154 status = add_to_page_cache_lru(page, mapping, index,
2155 GFP_KERNEL & ~gfp_notmask);
2156 if (unlikely(status)) {
2157 page_cache_release(page);
2158 if (status == -EEXIST)
2159 goto repeat;
2160 return NULL;
2162 return page;
2164 EXPORT_SYMBOL(grab_cache_page_write_begin);
2166 static ssize_t generic_perform_write(struct file *file,
2167 struct iov_iter *i, loff_t pos)
2169 struct address_space *mapping = file->f_mapping;
2170 const struct address_space_operations *a_ops = mapping->a_ops;
2171 long status = 0;
2172 ssize_t written = 0;
2173 unsigned int flags = 0;
2176 * Copies from kernel address space cannot fail (NFSD is a big user).
2178 if (segment_eq(get_fs(), KERNEL_DS))
2179 flags |= AOP_FLAG_UNINTERRUPTIBLE;
2181 do {
2182 struct page *page;
2183 pgoff_t index; /* Pagecache index for current page */
2184 unsigned long offset; /* Offset into pagecache page */
2185 unsigned long bytes; /* Bytes to write to page */
2186 size_t copied; /* Bytes copied from user */
2187 void *fsdata;
2189 offset = (pos & (PAGE_CACHE_SIZE - 1));
2190 index = pos >> PAGE_CACHE_SHIFT;
2191 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2192 iov_iter_count(i));
2194 again:
2197 * Bring in the user page that we will copy from _first_.
2198 * Otherwise there's a nasty deadlock on copying from the
2199 * same page as we're writing to, without it being marked
2200 * up-to-date.
2202 * Not only is this an optimisation, but it is also required
2203 * to check that the address is actually valid, when atomic
2204 * usercopies are used, below.
2206 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2207 status = -EFAULT;
2208 break;
2211 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2212 &page, &fsdata);
2213 if (unlikely(status))
2214 break;
2216 pagefault_disable();
2217 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2218 pagefault_enable();
2219 flush_dcache_page(page);
2221 mark_page_accessed(page);
2222 status = a_ops->write_end(file, mapping, pos, bytes, copied,
2223 page, fsdata);
2224 if (unlikely(status < 0))
2225 break;
2226 copied = status;
2228 cond_resched();
2230 iov_iter_advance(i, copied);
2231 if (unlikely(copied == 0)) {
2233 * If we were unable to copy any data at all, we must
2234 * fall back to a single segment length write.
2236 * If we didn't fallback here, we could livelock
2237 * because not all segments in the iov can be copied at
2238 * once without a pagefault.
2240 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2241 iov_iter_single_seg_count(i));
2242 goto again;
2244 pos += copied;
2245 written += copied;
2247 balance_dirty_pages_ratelimited(mapping);
2249 } while (iov_iter_count(i));
2251 return written ? written : status;
2254 ssize_t
2255 generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
2256 unsigned long nr_segs, loff_t pos, loff_t *ppos,
2257 size_t count, ssize_t written)
2259 struct file *file = iocb->ki_filp;
2260 struct address_space *mapping = file->f_mapping;
2261 ssize_t status;
2262 struct iov_iter i;
2264 iov_iter_init(&i, iov, nr_segs, count, written);
2265 status = generic_perform_write(file, &i, pos);
2267 if (likely(status >= 0)) {
2268 written += status;
2269 *ppos = pos + status;
2273 * If we get here for O_DIRECT writes then we must have fallen through
2274 * to buffered writes (block instantiation inside i_size). So we sync
2275 * the file data here, to try to honour O_DIRECT expectations.
2277 if (unlikely(file->f_flags & O_DIRECT) && written)
2278 status = filemap_write_and_wait_range(mapping,
2279 pos, pos + written - 1);
2281 return written ? written : status;
2283 EXPORT_SYMBOL(generic_file_buffered_write);
2286 * __generic_file_aio_write - write data to a file
2287 * @iocb: IO state structure (file, offset, etc.)
2288 * @iov: vector with data to write
2289 * @nr_segs: number of segments in the vector
2290 * @ppos: position where to write
2292 * This function does all the work needed for actually writing data to a
2293 * file. It does all basic checks, removes SUID from the file, updates
2294 * modification times and calls proper subroutines depending on whether we
2295 * do direct IO or a standard buffered write.
2297 * It expects i_mutex to be grabbed unless we work on a block device or similar
2298 * object which does not need locking at all.
2300 * This function does *not* take care of syncing data in case of O_SYNC write.
2301 * A caller has to handle it. This is mainly due to the fact that we want to
2302 * avoid syncing under i_mutex.
2304 ssize_t __generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2305 unsigned long nr_segs, loff_t *ppos)
2307 struct file *file = iocb->ki_filp;
2308 struct address_space * mapping = file->f_mapping;
2309 size_t ocount; /* original count */
2310 size_t count; /* after file limit checks */
2311 struct inode *inode = mapping->host;
2312 loff_t pos;
2313 ssize_t written;
2314 ssize_t err;
2316 ocount = 0;
2317 err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
2318 if (err)
2319 return err;
2321 count = ocount;
2322 pos = *ppos;
2324 vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
2326 /* We can write back this queue in page reclaim */
2327 current->backing_dev_info = mapping->backing_dev_info;
2328 written = 0;
2330 err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2331 if (err)
2332 goto out;
2334 if (count == 0)
2335 goto out;
2337 err = file_remove_suid(file);
2338 if (err)
2339 goto out;
2341 file_update_time(file);
2343 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2344 if (unlikely(file->f_flags & O_DIRECT)) {
2345 loff_t endbyte;
2346 ssize_t written_buffered;
2348 written = generic_file_direct_write(iocb, iov, &nr_segs, pos,
2349 ppos, count, ocount);
2350 if (written < 0 || written == count)
2351 goto out;
2353 * direct-io write to a hole: fall through to buffered I/O
2354 * for completing the rest of the request.
2356 pos += written;
2357 count -= written;
2358 written_buffered = generic_file_buffered_write(iocb, iov,
2359 nr_segs, pos, ppos, count,
2360 written);
2362 * If generic_file_buffered_write() retuned a synchronous error
2363 * then we want to return the number of bytes which were
2364 * direct-written, or the error code if that was zero. Note
2365 * that this differs from normal direct-io semantics, which
2366 * will return -EFOO even if some bytes were written.
2368 if (written_buffered < 0) {
2369 err = written_buffered;
2370 goto out;
2374 * We need to ensure that the page cache pages are written to
2375 * disk and invalidated to preserve the expected O_DIRECT
2376 * semantics.
2378 endbyte = pos + written_buffered - written - 1;
2379 err = do_sync_mapping_range(file->f_mapping, pos, endbyte,
2380 SYNC_FILE_RANGE_WAIT_BEFORE|
2381 SYNC_FILE_RANGE_WRITE|
2382 SYNC_FILE_RANGE_WAIT_AFTER);
2383 if (err == 0) {
2384 written = written_buffered;
2385 invalidate_mapping_pages(mapping,
2386 pos >> PAGE_CACHE_SHIFT,
2387 endbyte >> PAGE_CACHE_SHIFT);
2388 } else {
2390 * We don't know how much we wrote, so just return
2391 * the number of bytes which were direct-written
2394 } else {
2395 written = generic_file_buffered_write(iocb, iov, nr_segs,
2396 pos, ppos, count, written);
2398 out:
2399 current->backing_dev_info = NULL;
2400 return written ? written : err;
2402 EXPORT_SYMBOL(__generic_file_aio_write);
2405 * generic_file_aio_write - write data to a file
2406 * @iocb: IO state structure
2407 * @iov: vector with data to write
2408 * @nr_segs: number of segments in the vector
2409 * @pos: position in file where to write
2411 * This is a wrapper around __generic_file_aio_write() to be used by most
2412 * filesystems. It takes care of syncing the file in case of O_SYNC file
2413 * and acquires i_mutex as needed.
2415 ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2416 unsigned long nr_segs, loff_t pos)
2418 struct file *file = iocb->ki_filp;
2419 struct inode *inode = file->f_mapping->host;
2420 ssize_t ret;
2422 BUG_ON(iocb->ki_pos != pos);
2424 mutex_lock(&inode->i_mutex);
2425 ret = __generic_file_aio_write(iocb, iov, nr_segs, &iocb->ki_pos);
2426 mutex_unlock(&inode->i_mutex);
2428 if (ret > 0 || ret == -EIOCBQUEUED) {
2429 ssize_t err;
2431 err = generic_write_sync(file, pos, ret);
2432 if (err < 0 && ret > 0)
2433 ret = err;
2435 return ret;
2437 EXPORT_SYMBOL(generic_file_aio_write);
2440 * try_to_release_page() - release old fs-specific metadata on a page
2442 * @page: the page which the kernel is trying to free
2443 * @gfp_mask: memory allocation flags (and I/O mode)
2445 * The address_space is to try to release any data against the page
2446 * (presumably at page->private). If the release was successful, return `1'.
2447 * Otherwise return zero.
2449 * This may also be called if PG_fscache is set on a page, indicating that the
2450 * page is known to the local caching routines.
2452 * The @gfp_mask argument specifies whether I/O may be performed to release
2453 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS).
2456 int try_to_release_page(struct page *page, gfp_t gfp_mask)
2458 struct address_space * const mapping = page->mapping;
2460 BUG_ON(!PageLocked(page));
2461 if (PageWriteback(page))
2462 return 0;
2464 if (mapping && mapping->a_ops->releasepage)
2465 return mapping->a_ops->releasepage(page, gfp_mask);
2466 return try_to_free_buffers(page);
2469 EXPORT_SYMBOL(try_to_release_page);