printk: add %I4, %I6, %i4, %i6 format specifiers
[linux-2.6/libata-dev.git] / kernel / sched.c
blob6625c3c4b10d06c3f76c371becd615d174244902
1 /*
2 * kernel/sched.c
4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/kthread.h>
58 #include <linux/proc_fs.h>
59 #include <linux/seq_file.h>
60 #include <linux/sysctl.h>
61 #include <linux/syscalls.h>
62 #include <linux/times.h>
63 #include <linux/tsacct_kern.h>
64 #include <linux/kprobes.h>
65 #include <linux/delayacct.h>
66 #include <linux/reciprocal_div.h>
67 #include <linux/unistd.h>
68 #include <linux/pagemap.h>
69 #include <linux/hrtimer.h>
70 #include <linux/tick.h>
71 #include <linux/bootmem.h>
72 #include <linux/debugfs.h>
73 #include <linux/ctype.h>
74 #include <linux/ftrace.h>
75 #include <trace/sched.h>
77 #include <asm/tlb.h>
78 #include <asm/irq_regs.h>
80 #include "sched_cpupri.h"
83 * Convert user-nice values [ -20 ... 0 ... 19 ]
84 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
85 * and back.
87 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
88 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
89 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
92 * 'User priority' is the nice value converted to something we
93 * can work with better when scaling various scheduler parameters,
94 * it's a [ 0 ... 39 ] range.
96 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
97 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
98 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
101 * Helpers for converting nanosecond timing to jiffy resolution
103 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
105 #define NICE_0_LOAD SCHED_LOAD_SCALE
106 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
109 * These are the 'tuning knobs' of the scheduler:
111 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
112 * Timeslices get refilled after they expire.
114 #define DEF_TIMESLICE (100 * HZ / 1000)
117 * single value that denotes runtime == period, ie unlimited time.
119 #define RUNTIME_INF ((u64)~0ULL)
121 #ifdef CONFIG_SMP
123 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
124 * Since cpu_power is a 'constant', we can use a reciprocal divide.
126 static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
128 return reciprocal_divide(load, sg->reciprocal_cpu_power);
132 * Each time a sched group cpu_power is changed,
133 * we must compute its reciprocal value
135 static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
137 sg->__cpu_power += val;
138 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
140 #endif
142 static inline int rt_policy(int policy)
144 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
145 return 1;
146 return 0;
149 static inline int task_has_rt_policy(struct task_struct *p)
151 return rt_policy(p->policy);
155 * This is the priority-queue data structure of the RT scheduling class:
157 struct rt_prio_array {
158 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
159 struct list_head queue[MAX_RT_PRIO];
162 struct rt_bandwidth {
163 /* nests inside the rq lock: */
164 spinlock_t rt_runtime_lock;
165 ktime_t rt_period;
166 u64 rt_runtime;
167 struct hrtimer rt_period_timer;
170 static struct rt_bandwidth def_rt_bandwidth;
172 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
174 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
176 struct rt_bandwidth *rt_b =
177 container_of(timer, struct rt_bandwidth, rt_period_timer);
178 ktime_t now;
179 int overrun;
180 int idle = 0;
182 for (;;) {
183 now = hrtimer_cb_get_time(timer);
184 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
186 if (!overrun)
187 break;
189 idle = do_sched_rt_period_timer(rt_b, overrun);
192 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
195 static
196 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
198 rt_b->rt_period = ns_to_ktime(period);
199 rt_b->rt_runtime = runtime;
201 spin_lock_init(&rt_b->rt_runtime_lock);
203 hrtimer_init(&rt_b->rt_period_timer,
204 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
205 rt_b->rt_period_timer.function = sched_rt_period_timer;
206 rt_b->rt_period_timer.cb_mode = HRTIMER_CB_IRQSAFE_UNLOCKED;
209 static inline int rt_bandwidth_enabled(void)
211 return sysctl_sched_rt_runtime >= 0;
214 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
216 ktime_t now;
218 if (rt_bandwidth_enabled() && rt_b->rt_runtime == RUNTIME_INF)
219 return;
221 if (hrtimer_active(&rt_b->rt_period_timer))
222 return;
224 spin_lock(&rt_b->rt_runtime_lock);
225 for (;;) {
226 if (hrtimer_active(&rt_b->rt_period_timer))
227 break;
229 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
230 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
231 hrtimer_start_expires(&rt_b->rt_period_timer,
232 HRTIMER_MODE_ABS);
234 spin_unlock(&rt_b->rt_runtime_lock);
237 #ifdef CONFIG_RT_GROUP_SCHED
238 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
240 hrtimer_cancel(&rt_b->rt_period_timer);
242 #endif
245 * sched_domains_mutex serializes calls to arch_init_sched_domains,
246 * detach_destroy_domains and partition_sched_domains.
248 static DEFINE_MUTEX(sched_domains_mutex);
250 #ifdef CONFIG_GROUP_SCHED
252 #include <linux/cgroup.h>
254 struct cfs_rq;
256 static LIST_HEAD(task_groups);
258 /* task group related information */
259 struct task_group {
260 #ifdef CONFIG_CGROUP_SCHED
261 struct cgroup_subsys_state css;
262 #endif
264 #ifdef CONFIG_FAIR_GROUP_SCHED
265 /* schedulable entities of this group on each cpu */
266 struct sched_entity **se;
267 /* runqueue "owned" by this group on each cpu */
268 struct cfs_rq **cfs_rq;
269 unsigned long shares;
270 #endif
272 #ifdef CONFIG_RT_GROUP_SCHED
273 struct sched_rt_entity **rt_se;
274 struct rt_rq **rt_rq;
276 struct rt_bandwidth rt_bandwidth;
277 #endif
279 struct rcu_head rcu;
280 struct list_head list;
282 struct task_group *parent;
283 struct list_head siblings;
284 struct list_head children;
287 #ifdef CONFIG_USER_SCHED
290 * Root task group.
291 * Every UID task group (including init_task_group aka UID-0) will
292 * be a child to this group.
294 struct task_group root_task_group;
296 #ifdef CONFIG_FAIR_GROUP_SCHED
297 /* Default task group's sched entity on each cpu */
298 static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
299 /* Default task group's cfs_rq on each cpu */
300 static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
301 #endif /* CONFIG_FAIR_GROUP_SCHED */
303 #ifdef CONFIG_RT_GROUP_SCHED
304 static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
305 static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
306 #endif /* CONFIG_RT_GROUP_SCHED */
307 #else /* !CONFIG_USER_SCHED */
308 #define root_task_group init_task_group
309 #endif /* CONFIG_USER_SCHED */
311 /* task_group_lock serializes add/remove of task groups and also changes to
312 * a task group's cpu shares.
314 static DEFINE_SPINLOCK(task_group_lock);
316 #ifdef CONFIG_FAIR_GROUP_SCHED
317 #ifdef CONFIG_USER_SCHED
318 # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
319 #else /* !CONFIG_USER_SCHED */
320 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
321 #endif /* CONFIG_USER_SCHED */
324 * A weight of 0 or 1 can cause arithmetics problems.
325 * A weight of a cfs_rq is the sum of weights of which entities
326 * are queued on this cfs_rq, so a weight of a entity should not be
327 * too large, so as the shares value of a task group.
328 * (The default weight is 1024 - so there's no practical
329 * limitation from this.)
331 #define MIN_SHARES 2
332 #define MAX_SHARES (1UL << 18)
334 static int init_task_group_load = INIT_TASK_GROUP_LOAD;
335 #endif
337 /* Default task group.
338 * Every task in system belong to this group at bootup.
340 struct task_group init_task_group;
342 /* return group to which a task belongs */
343 static inline struct task_group *task_group(struct task_struct *p)
345 struct task_group *tg;
347 #ifdef CONFIG_USER_SCHED
348 tg = p->user->tg;
349 #elif defined(CONFIG_CGROUP_SCHED)
350 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
351 struct task_group, css);
352 #else
353 tg = &init_task_group;
354 #endif
355 return tg;
358 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
359 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
361 #ifdef CONFIG_FAIR_GROUP_SCHED
362 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
363 p->se.parent = task_group(p)->se[cpu];
364 #endif
366 #ifdef CONFIG_RT_GROUP_SCHED
367 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
368 p->rt.parent = task_group(p)->rt_se[cpu];
369 #endif
372 #else
374 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
375 static inline struct task_group *task_group(struct task_struct *p)
377 return NULL;
380 #endif /* CONFIG_GROUP_SCHED */
382 /* CFS-related fields in a runqueue */
383 struct cfs_rq {
384 struct load_weight load;
385 unsigned long nr_running;
387 u64 exec_clock;
388 u64 min_vruntime;
389 u64 pair_start;
391 struct rb_root tasks_timeline;
392 struct rb_node *rb_leftmost;
394 struct list_head tasks;
395 struct list_head *balance_iterator;
398 * 'curr' points to currently running entity on this cfs_rq.
399 * It is set to NULL otherwise (i.e when none are currently running).
401 struct sched_entity *curr, *next;
403 unsigned long nr_spread_over;
405 #ifdef CONFIG_FAIR_GROUP_SCHED
406 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
409 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
410 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
411 * (like users, containers etc.)
413 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
414 * list is used during load balance.
416 struct list_head leaf_cfs_rq_list;
417 struct task_group *tg; /* group that "owns" this runqueue */
419 #ifdef CONFIG_SMP
421 * the part of load.weight contributed by tasks
423 unsigned long task_weight;
426 * h_load = weight * f(tg)
428 * Where f(tg) is the recursive weight fraction assigned to
429 * this group.
431 unsigned long h_load;
434 * this cpu's part of tg->shares
436 unsigned long shares;
439 * load.weight at the time we set shares
441 unsigned long rq_weight;
442 #endif
443 #endif
446 /* Real-Time classes' related field in a runqueue: */
447 struct rt_rq {
448 struct rt_prio_array active;
449 unsigned long rt_nr_running;
450 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
451 int highest_prio; /* highest queued rt task prio */
452 #endif
453 #ifdef CONFIG_SMP
454 unsigned long rt_nr_migratory;
455 int overloaded;
456 #endif
457 int rt_throttled;
458 u64 rt_time;
459 u64 rt_runtime;
460 /* Nests inside the rq lock: */
461 spinlock_t rt_runtime_lock;
463 #ifdef CONFIG_RT_GROUP_SCHED
464 unsigned long rt_nr_boosted;
466 struct rq *rq;
467 struct list_head leaf_rt_rq_list;
468 struct task_group *tg;
469 struct sched_rt_entity *rt_se;
470 #endif
473 #ifdef CONFIG_SMP
476 * We add the notion of a root-domain which will be used to define per-domain
477 * variables. Each exclusive cpuset essentially defines an island domain by
478 * fully partitioning the member cpus from any other cpuset. Whenever a new
479 * exclusive cpuset is created, we also create and attach a new root-domain
480 * object.
483 struct root_domain {
484 atomic_t refcount;
485 cpumask_t span;
486 cpumask_t online;
489 * The "RT overload" flag: it gets set if a CPU has more than
490 * one runnable RT task.
492 cpumask_t rto_mask;
493 atomic_t rto_count;
494 #ifdef CONFIG_SMP
495 struct cpupri cpupri;
496 #endif
500 * By default the system creates a single root-domain with all cpus as
501 * members (mimicking the global state we have today).
503 static struct root_domain def_root_domain;
505 #endif
508 * This is the main, per-CPU runqueue data structure.
510 * Locking rule: those places that want to lock multiple runqueues
511 * (such as the load balancing or the thread migration code), lock
512 * acquire operations must be ordered by ascending &runqueue.
514 struct rq {
515 /* runqueue lock: */
516 spinlock_t lock;
519 * nr_running and cpu_load should be in the same cacheline because
520 * remote CPUs use both these fields when doing load calculation.
522 unsigned long nr_running;
523 #define CPU_LOAD_IDX_MAX 5
524 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
525 unsigned char idle_at_tick;
526 #ifdef CONFIG_NO_HZ
527 unsigned long last_tick_seen;
528 unsigned char in_nohz_recently;
529 #endif
530 /* capture load from *all* tasks on this cpu: */
531 struct load_weight load;
532 unsigned long nr_load_updates;
533 u64 nr_switches;
535 struct cfs_rq cfs;
536 struct rt_rq rt;
538 #ifdef CONFIG_FAIR_GROUP_SCHED
539 /* list of leaf cfs_rq on this cpu: */
540 struct list_head leaf_cfs_rq_list;
541 #endif
542 #ifdef CONFIG_RT_GROUP_SCHED
543 struct list_head leaf_rt_rq_list;
544 #endif
547 * This is part of a global counter where only the total sum
548 * over all CPUs matters. A task can increase this counter on
549 * one CPU and if it got migrated afterwards it may decrease
550 * it on another CPU. Always updated under the runqueue lock:
552 unsigned long nr_uninterruptible;
554 struct task_struct *curr, *idle;
555 unsigned long next_balance;
556 struct mm_struct *prev_mm;
558 u64 clock;
560 atomic_t nr_iowait;
562 #ifdef CONFIG_SMP
563 struct root_domain *rd;
564 struct sched_domain *sd;
566 /* For active balancing */
567 int active_balance;
568 int push_cpu;
569 /* cpu of this runqueue: */
570 int cpu;
571 int online;
573 unsigned long avg_load_per_task;
575 struct task_struct *migration_thread;
576 struct list_head migration_queue;
577 #endif
579 #ifdef CONFIG_SCHED_HRTICK
580 #ifdef CONFIG_SMP
581 int hrtick_csd_pending;
582 struct call_single_data hrtick_csd;
583 #endif
584 struct hrtimer hrtick_timer;
585 #endif
587 #ifdef CONFIG_SCHEDSTATS
588 /* latency stats */
589 struct sched_info rq_sched_info;
591 /* sys_sched_yield() stats */
592 unsigned int yld_exp_empty;
593 unsigned int yld_act_empty;
594 unsigned int yld_both_empty;
595 unsigned int yld_count;
597 /* schedule() stats */
598 unsigned int sched_switch;
599 unsigned int sched_count;
600 unsigned int sched_goidle;
602 /* try_to_wake_up() stats */
603 unsigned int ttwu_count;
604 unsigned int ttwu_local;
606 /* BKL stats */
607 unsigned int bkl_count;
608 #endif
611 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
613 static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
615 rq->curr->sched_class->check_preempt_curr(rq, p, sync);
618 static inline int cpu_of(struct rq *rq)
620 #ifdef CONFIG_SMP
621 return rq->cpu;
622 #else
623 return 0;
624 #endif
628 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
629 * See detach_destroy_domains: synchronize_sched for details.
631 * The domain tree of any CPU may only be accessed from within
632 * preempt-disabled sections.
634 #define for_each_domain(cpu, __sd) \
635 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
637 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
638 #define this_rq() (&__get_cpu_var(runqueues))
639 #define task_rq(p) cpu_rq(task_cpu(p))
640 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
642 static inline void update_rq_clock(struct rq *rq)
644 rq->clock = sched_clock_cpu(cpu_of(rq));
648 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
650 #ifdef CONFIG_SCHED_DEBUG
651 # define const_debug __read_mostly
652 #else
653 # define const_debug static const
654 #endif
657 * runqueue_is_locked
659 * Returns true if the current cpu runqueue is locked.
660 * This interface allows printk to be called with the runqueue lock
661 * held and know whether or not it is OK to wake up the klogd.
663 int runqueue_is_locked(void)
665 int cpu = get_cpu();
666 struct rq *rq = cpu_rq(cpu);
667 int ret;
669 ret = spin_is_locked(&rq->lock);
670 put_cpu();
671 return ret;
675 * Debugging: various feature bits
678 #define SCHED_FEAT(name, enabled) \
679 __SCHED_FEAT_##name ,
681 enum {
682 #include "sched_features.h"
685 #undef SCHED_FEAT
687 #define SCHED_FEAT(name, enabled) \
688 (1UL << __SCHED_FEAT_##name) * enabled |
690 const_debug unsigned int sysctl_sched_features =
691 #include "sched_features.h"
694 #undef SCHED_FEAT
696 #ifdef CONFIG_SCHED_DEBUG
697 #define SCHED_FEAT(name, enabled) \
698 #name ,
700 static __read_mostly char *sched_feat_names[] = {
701 #include "sched_features.h"
702 NULL
705 #undef SCHED_FEAT
707 static int sched_feat_open(struct inode *inode, struct file *filp)
709 filp->private_data = inode->i_private;
710 return 0;
713 static ssize_t
714 sched_feat_read(struct file *filp, char __user *ubuf,
715 size_t cnt, loff_t *ppos)
717 char *buf;
718 int r = 0;
719 int len = 0;
720 int i;
722 for (i = 0; sched_feat_names[i]; i++) {
723 len += strlen(sched_feat_names[i]);
724 len += 4;
727 buf = kmalloc(len + 2, GFP_KERNEL);
728 if (!buf)
729 return -ENOMEM;
731 for (i = 0; sched_feat_names[i]; i++) {
732 if (sysctl_sched_features & (1UL << i))
733 r += sprintf(buf + r, "%s ", sched_feat_names[i]);
734 else
735 r += sprintf(buf + r, "NO_%s ", sched_feat_names[i]);
738 r += sprintf(buf + r, "\n");
739 WARN_ON(r >= len + 2);
741 r = simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
743 kfree(buf);
745 return r;
748 static ssize_t
749 sched_feat_write(struct file *filp, const char __user *ubuf,
750 size_t cnt, loff_t *ppos)
752 char buf[64];
753 char *cmp = buf;
754 int neg = 0;
755 int i;
757 if (cnt > 63)
758 cnt = 63;
760 if (copy_from_user(&buf, ubuf, cnt))
761 return -EFAULT;
763 buf[cnt] = 0;
765 if (strncmp(buf, "NO_", 3) == 0) {
766 neg = 1;
767 cmp += 3;
770 for (i = 0; sched_feat_names[i]; i++) {
771 int len = strlen(sched_feat_names[i]);
773 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
774 if (neg)
775 sysctl_sched_features &= ~(1UL << i);
776 else
777 sysctl_sched_features |= (1UL << i);
778 break;
782 if (!sched_feat_names[i])
783 return -EINVAL;
785 filp->f_pos += cnt;
787 return cnt;
790 static struct file_operations sched_feat_fops = {
791 .open = sched_feat_open,
792 .read = sched_feat_read,
793 .write = sched_feat_write,
796 static __init int sched_init_debug(void)
798 debugfs_create_file("sched_features", 0644, NULL, NULL,
799 &sched_feat_fops);
801 return 0;
803 late_initcall(sched_init_debug);
805 #endif
807 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
810 * Number of tasks to iterate in a single balance run.
811 * Limited because this is done with IRQs disabled.
813 const_debug unsigned int sysctl_sched_nr_migrate = 32;
816 * ratelimit for updating the group shares.
817 * default: 0.25ms
819 unsigned int sysctl_sched_shares_ratelimit = 250000;
822 * Inject some fuzzyness into changing the per-cpu group shares
823 * this avoids remote rq-locks at the expense of fairness.
824 * default: 4
826 unsigned int sysctl_sched_shares_thresh = 4;
829 * period over which we measure -rt task cpu usage in us.
830 * default: 1s
832 unsigned int sysctl_sched_rt_period = 1000000;
834 static __read_mostly int scheduler_running;
837 * part of the period that we allow rt tasks to run in us.
838 * default: 0.95s
840 int sysctl_sched_rt_runtime = 950000;
842 static inline u64 global_rt_period(void)
844 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
847 static inline u64 global_rt_runtime(void)
849 if (sysctl_sched_rt_runtime < 0)
850 return RUNTIME_INF;
852 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
855 #ifndef prepare_arch_switch
856 # define prepare_arch_switch(next) do { } while (0)
857 #endif
858 #ifndef finish_arch_switch
859 # define finish_arch_switch(prev) do { } while (0)
860 #endif
862 static inline int task_current(struct rq *rq, struct task_struct *p)
864 return rq->curr == p;
867 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
868 static inline int task_running(struct rq *rq, struct task_struct *p)
870 return task_current(rq, p);
873 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
877 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
879 #ifdef CONFIG_DEBUG_SPINLOCK
880 /* this is a valid case when another task releases the spinlock */
881 rq->lock.owner = current;
882 #endif
884 * If we are tracking spinlock dependencies then we have to
885 * fix up the runqueue lock - which gets 'carried over' from
886 * prev into current:
888 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
890 spin_unlock_irq(&rq->lock);
893 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
894 static inline int task_running(struct rq *rq, struct task_struct *p)
896 #ifdef CONFIG_SMP
897 return p->oncpu;
898 #else
899 return task_current(rq, p);
900 #endif
903 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
905 #ifdef CONFIG_SMP
907 * We can optimise this out completely for !SMP, because the
908 * SMP rebalancing from interrupt is the only thing that cares
909 * here.
911 next->oncpu = 1;
912 #endif
913 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
914 spin_unlock_irq(&rq->lock);
915 #else
916 spin_unlock(&rq->lock);
917 #endif
920 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
922 #ifdef CONFIG_SMP
924 * After ->oncpu is cleared, the task can be moved to a different CPU.
925 * We must ensure this doesn't happen until the switch is completely
926 * finished.
928 smp_wmb();
929 prev->oncpu = 0;
930 #endif
931 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
932 local_irq_enable();
933 #endif
935 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
938 * __task_rq_lock - lock the runqueue a given task resides on.
939 * Must be called interrupts disabled.
941 static inline struct rq *__task_rq_lock(struct task_struct *p)
942 __acquires(rq->lock)
944 for (;;) {
945 struct rq *rq = task_rq(p);
946 spin_lock(&rq->lock);
947 if (likely(rq == task_rq(p)))
948 return rq;
949 spin_unlock(&rq->lock);
954 * task_rq_lock - lock the runqueue a given task resides on and disable
955 * interrupts. Note the ordering: we can safely lookup the task_rq without
956 * explicitly disabling preemption.
958 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
959 __acquires(rq->lock)
961 struct rq *rq;
963 for (;;) {
964 local_irq_save(*flags);
965 rq = task_rq(p);
966 spin_lock(&rq->lock);
967 if (likely(rq == task_rq(p)))
968 return rq;
969 spin_unlock_irqrestore(&rq->lock, *flags);
973 static void __task_rq_unlock(struct rq *rq)
974 __releases(rq->lock)
976 spin_unlock(&rq->lock);
979 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
980 __releases(rq->lock)
982 spin_unlock_irqrestore(&rq->lock, *flags);
986 * this_rq_lock - lock this runqueue and disable interrupts.
988 static struct rq *this_rq_lock(void)
989 __acquires(rq->lock)
991 struct rq *rq;
993 local_irq_disable();
994 rq = this_rq();
995 spin_lock(&rq->lock);
997 return rq;
1000 #ifdef CONFIG_SCHED_HRTICK
1002 * Use HR-timers to deliver accurate preemption points.
1004 * Its all a bit involved since we cannot program an hrt while holding the
1005 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1006 * reschedule event.
1008 * When we get rescheduled we reprogram the hrtick_timer outside of the
1009 * rq->lock.
1013 * Use hrtick when:
1014 * - enabled by features
1015 * - hrtimer is actually high res
1017 static inline int hrtick_enabled(struct rq *rq)
1019 if (!sched_feat(HRTICK))
1020 return 0;
1021 if (!cpu_active(cpu_of(rq)))
1022 return 0;
1023 return hrtimer_is_hres_active(&rq->hrtick_timer);
1026 static void hrtick_clear(struct rq *rq)
1028 if (hrtimer_active(&rq->hrtick_timer))
1029 hrtimer_cancel(&rq->hrtick_timer);
1033 * High-resolution timer tick.
1034 * Runs from hardirq context with interrupts disabled.
1036 static enum hrtimer_restart hrtick(struct hrtimer *timer)
1038 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1040 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1042 spin_lock(&rq->lock);
1043 update_rq_clock(rq);
1044 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1045 spin_unlock(&rq->lock);
1047 return HRTIMER_NORESTART;
1050 #ifdef CONFIG_SMP
1052 * called from hardirq (IPI) context
1054 static void __hrtick_start(void *arg)
1056 struct rq *rq = arg;
1058 spin_lock(&rq->lock);
1059 hrtimer_restart(&rq->hrtick_timer);
1060 rq->hrtick_csd_pending = 0;
1061 spin_unlock(&rq->lock);
1065 * Called to set the hrtick timer state.
1067 * called with rq->lock held and irqs disabled
1069 static void hrtick_start(struct rq *rq, u64 delay)
1071 struct hrtimer *timer = &rq->hrtick_timer;
1072 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1074 hrtimer_set_expires(timer, time);
1076 if (rq == this_rq()) {
1077 hrtimer_restart(timer);
1078 } else if (!rq->hrtick_csd_pending) {
1079 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd);
1080 rq->hrtick_csd_pending = 1;
1084 static int
1085 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1087 int cpu = (int)(long)hcpu;
1089 switch (action) {
1090 case CPU_UP_CANCELED:
1091 case CPU_UP_CANCELED_FROZEN:
1092 case CPU_DOWN_PREPARE:
1093 case CPU_DOWN_PREPARE_FROZEN:
1094 case CPU_DEAD:
1095 case CPU_DEAD_FROZEN:
1096 hrtick_clear(cpu_rq(cpu));
1097 return NOTIFY_OK;
1100 return NOTIFY_DONE;
1103 static __init void init_hrtick(void)
1105 hotcpu_notifier(hotplug_hrtick, 0);
1107 #else
1109 * Called to set the hrtick timer state.
1111 * called with rq->lock held and irqs disabled
1113 static void hrtick_start(struct rq *rq, u64 delay)
1115 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), HRTIMER_MODE_REL);
1118 static inline void init_hrtick(void)
1121 #endif /* CONFIG_SMP */
1123 static void init_rq_hrtick(struct rq *rq)
1125 #ifdef CONFIG_SMP
1126 rq->hrtick_csd_pending = 0;
1128 rq->hrtick_csd.flags = 0;
1129 rq->hrtick_csd.func = __hrtick_start;
1130 rq->hrtick_csd.info = rq;
1131 #endif
1133 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1134 rq->hrtick_timer.function = hrtick;
1135 rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_PERCPU;
1137 #else /* CONFIG_SCHED_HRTICK */
1138 static inline void hrtick_clear(struct rq *rq)
1142 static inline void init_rq_hrtick(struct rq *rq)
1146 static inline void init_hrtick(void)
1149 #endif /* CONFIG_SCHED_HRTICK */
1152 * resched_task - mark a task 'to be rescheduled now'.
1154 * On UP this means the setting of the need_resched flag, on SMP it
1155 * might also involve a cross-CPU call to trigger the scheduler on
1156 * the target CPU.
1158 #ifdef CONFIG_SMP
1160 #ifndef tsk_is_polling
1161 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1162 #endif
1164 static void resched_task(struct task_struct *p)
1166 int cpu;
1168 assert_spin_locked(&task_rq(p)->lock);
1170 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
1171 return;
1173 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
1175 cpu = task_cpu(p);
1176 if (cpu == smp_processor_id())
1177 return;
1179 /* NEED_RESCHED must be visible before we test polling */
1180 smp_mb();
1181 if (!tsk_is_polling(p))
1182 smp_send_reschedule(cpu);
1185 static void resched_cpu(int cpu)
1187 struct rq *rq = cpu_rq(cpu);
1188 unsigned long flags;
1190 if (!spin_trylock_irqsave(&rq->lock, flags))
1191 return;
1192 resched_task(cpu_curr(cpu));
1193 spin_unlock_irqrestore(&rq->lock, flags);
1196 #ifdef CONFIG_NO_HZ
1198 * When add_timer_on() enqueues a timer into the timer wheel of an
1199 * idle CPU then this timer might expire before the next timer event
1200 * which is scheduled to wake up that CPU. In case of a completely
1201 * idle system the next event might even be infinite time into the
1202 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1203 * leaves the inner idle loop so the newly added timer is taken into
1204 * account when the CPU goes back to idle and evaluates the timer
1205 * wheel for the next timer event.
1207 void wake_up_idle_cpu(int cpu)
1209 struct rq *rq = cpu_rq(cpu);
1211 if (cpu == smp_processor_id())
1212 return;
1215 * This is safe, as this function is called with the timer
1216 * wheel base lock of (cpu) held. When the CPU is on the way
1217 * to idle and has not yet set rq->curr to idle then it will
1218 * be serialized on the timer wheel base lock and take the new
1219 * timer into account automatically.
1221 if (rq->curr != rq->idle)
1222 return;
1225 * We can set TIF_RESCHED on the idle task of the other CPU
1226 * lockless. The worst case is that the other CPU runs the
1227 * idle task through an additional NOOP schedule()
1229 set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);
1231 /* NEED_RESCHED must be visible before we test polling */
1232 smp_mb();
1233 if (!tsk_is_polling(rq->idle))
1234 smp_send_reschedule(cpu);
1236 #endif /* CONFIG_NO_HZ */
1238 #else /* !CONFIG_SMP */
1239 static void resched_task(struct task_struct *p)
1241 assert_spin_locked(&task_rq(p)->lock);
1242 set_tsk_need_resched(p);
1244 #endif /* CONFIG_SMP */
1246 #if BITS_PER_LONG == 32
1247 # define WMULT_CONST (~0UL)
1248 #else
1249 # define WMULT_CONST (1UL << 32)
1250 #endif
1252 #define WMULT_SHIFT 32
1255 * Shift right and round:
1257 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1260 * delta *= weight / lw
1262 static unsigned long
1263 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1264 struct load_weight *lw)
1266 u64 tmp;
1268 if (!lw->inv_weight) {
1269 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1270 lw->inv_weight = 1;
1271 else
1272 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1273 / (lw->weight+1);
1276 tmp = (u64)delta_exec * weight;
1278 * Check whether we'd overflow the 64-bit multiplication:
1280 if (unlikely(tmp > WMULT_CONST))
1281 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1282 WMULT_SHIFT/2);
1283 else
1284 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1286 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1289 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1291 lw->weight += inc;
1292 lw->inv_weight = 0;
1295 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1297 lw->weight -= dec;
1298 lw->inv_weight = 0;
1302 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1303 * of tasks with abnormal "nice" values across CPUs the contribution that
1304 * each task makes to its run queue's load is weighted according to its
1305 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1306 * scaled version of the new time slice allocation that they receive on time
1307 * slice expiry etc.
1310 #define WEIGHT_IDLEPRIO 2
1311 #define WMULT_IDLEPRIO (1 << 31)
1314 * Nice levels are multiplicative, with a gentle 10% change for every
1315 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1316 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1317 * that remained on nice 0.
1319 * The "10% effect" is relative and cumulative: from _any_ nice level,
1320 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1321 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1322 * If a task goes up by ~10% and another task goes down by ~10% then
1323 * the relative distance between them is ~25%.)
1325 static const int prio_to_weight[40] = {
1326 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1327 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1328 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1329 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1330 /* 0 */ 1024, 820, 655, 526, 423,
1331 /* 5 */ 335, 272, 215, 172, 137,
1332 /* 10 */ 110, 87, 70, 56, 45,
1333 /* 15 */ 36, 29, 23, 18, 15,
1337 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1339 * In cases where the weight does not change often, we can use the
1340 * precalculated inverse to speed up arithmetics by turning divisions
1341 * into multiplications:
1343 static const u32 prio_to_wmult[40] = {
1344 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1345 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1346 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1347 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1348 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1349 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1350 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1351 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1354 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1357 * runqueue iterator, to support SMP load-balancing between different
1358 * scheduling classes, without having to expose their internal data
1359 * structures to the load-balancing proper:
1361 struct rq_iterator {
1362 void *arg;
1363 struct task_struct *(*start)(void *);
1364 struct task_struct *(*next)(void *);
1367 #ifdef CONFIG_SMP
1368 static unsigned long
1369 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1370 unsigned long max_load_move, struct sched_domain *sd,
1371 enum cpu_idle_type idle, int *all_pinned,
1372 int *this_best_prio, struct rq_iterator *iterator);
1374 static int
1375 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1376 struct sched_domain *sd, enum cpu_idle_type idle,
1377 struct rq_iterator *iterator);
1378 #endif
1380 #ifdef CONFIG_CGROUP_CPUACCT
1381 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1382 #else
1383 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1384 #endif
1386 static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1388 update_load_add(&rq->load, load);
1391 static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1393 update_load_sub(&rq->load, load);
1396 #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
1397 typedef int (*tg_visitor)(struct task_group *, void *);
1400 * Iterate the full tree, calling @down when first entering a node and @up when
1401 * leaving it for the final time.
1403 static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1405 struct task_group *parent, *child;
1406 int ret;
1408 rcu_read_lock();
1409 parent = &root_task_group;
1410 down:
1411 ret = (*down)(parent, data);
1412 if (ret)
1413 goto out_unlock;
1414 list_for_each_entry_rcu(child, &parent->children, siblings) {
1415 parent = child;
1416 goto down;
1419 continue;
1421 ret = (*up)(parent, data);
1422 if (ret)
1423 goto out_unlock;
1425 child = parent;
1426 parent = parent->parent;
1427 if (parent)
1428 goto up;
1429 out_unlock:
1430 rcu_read_unlock();
1432 return ret;
1435 static int tg_nop(struct task_group *tg, void *data)
1437 return 0;
1439 #endif
1441 #ifdef CONFIG_SMP
1442 static unsigned long source_load(int cpu, int type);
1443 static unsigned long target_load(int cpu, int type);
1444 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1446 static unsigned long cpu_avg_load_per_task(int cpu)
1448 struct rq *rq = cpu_rq(cpu);
1450 if (rq->nr_running)
1451 rq->avg_load_per_task = rq->load.weight / rq->nr_running;
1453 return rq->avg_load_per_task;
1456 #ifdef CONFIG_FAIR_GROUP_SCHED
1458 static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1461 * Calculate and set the cpu's group shares.
1463 static void
1464 update_group_shares_cpu(struct task_group *tg, int cpu,
1465 unsigned long sd_shares, unsigned long sd_rq_weight)
1467 int boost = 0;
1468 unsigned long shares;
1469 unsigned long rq_weight;
1471 if (!tg->se[cpu])
1472 return;
1474 rq_weight = tg->cfs_rq[cpu]->load.weight;
1477 * If there are currently no tasks on the cpu pretend there is one of
1478 * average load so that when a new task gets to run here it will not
1479 * get delayed by group starvation.
1481 if (!rq_weight) {
1482 boost = 1;
1483 rq_weight = NICE_0_LOAD;
1486 if (unlikely(rq_weight > sd_rq_weight))
1487 rq_weight = sd_rq_weight;
1490 * \Sum shares * rq_weight
1491 * shares = -----------------------
1492 * \Sum rq_weight
1495 shares = (sd_shares * rq_weight) / (sd_rq_weight + 1);
1496 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1498 if (abs(shares - tg->se[cpu]->load.weight) >
1499 sysctl_sched_shares_thresh) {
1500 struct rq *rq = cpu_rq(cpu);
1501 unsigned long flags;
1503 spin_lock_irqsave(&rq->lock, flags);
1505 * record the actual number of shares, not the boosted amount.
1507 tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
1508 tg->cfs_rq[cpu]->rq_weight = rq_weight;
1510 __set_se_shares(tg->se[cpu], shares);
1511 spin_unlock_irqrestore(&rq->lock, flags);
1516 * Re-compute the task group their per cpu shares over the given domain.
1517 * This needs to be done in a bottom-up fashion because the rq weight of a
1518 * parent group depends on the shares of its child groups.
1520 static int tg_shares_up(struct task_group *tg, void *data)
1522 unsigned long rq_weight = 0;
1523 unsigned long shares = 0;
1524 struct sched_domain *sd = data;
1525 int i;
1527 for_each_cpu_mask(i, sd->span) {
1528 rq_weight += tg->cfs_rq[i]->load.weight;
1529 shares += tg->cfs_rq[i]->shares;
1532 if ((!shares && rq_weight) || shares > tg->shares)
1533 shares = tg->shares;
1535 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1536 shares = tg->shares;
1538 if (!rq_weight)
1539 rq_weight = cpus_weight(sd->span) * NICE_0_LOAD;
1541 for_each_cpu_mask(i, sd->span)
1542 update_group_shares_cpu(tg, i, shares, rq_weight);
1544 return 0;
1548 * Compute the cpu's hierarchical load factor for each task group.
1549 * This needs to be done in a top-down fashion because the load of a child
1550 * group is a fraction of its parents load.
1552 static int tg_load_down(struct task_group *tg, void *data)
1554 unsigned long load;
1555 long cpu = (long)data;
1557 if (!tg->parent) {
1558 load = cpu_rq(cpu)->load.weight;
1559 } else {
1560 load = tg->parent->cfs_rq[cpu]->h_load;
1561 load *= tg->cfs_rq[cpu]->shares;
1562 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1565 tg->cfs_rq[cpu]->h_load = load;
1567 return 0;
1570 static void update_shares(struct sched_domain *sd)
1572 u64 now = cpu_clock(raw_smp_processor_id());
1573 s64 elapsed = now - sd->last_update;
1575 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1576 sd->last_update = now;
1577 walk_tg_tree(tg_nop, tg_shares_up, sd);
1581 static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1583 spin_unlock(&rq->lock);
1584 update_shares(sd);
1585 spin_lock(&rq->lock);
1588 static void update_h_load(long cpu)
1590 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1593 #else
1595 static inline void update_shares(struct sched_domain *sd)
1599 static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1603 #endif
1605 #endif
1607 #ifdef CONFIG_FAIR_GROUP_SCHED
1608 static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1610 #ifdef CONFIG_SMP
1611 cfs_rq->shares = shares;
1612 #endif
1614 #endif
1616 #include "sched_stats.h"
1617 #include "sched_idletask.c"
1618 #include "sched_fair.c"
1619 #include "sched_rt.c"
1620 #ifdef CONFIG_SCHED_DEBUG
1621 # include "sched_debug.c"
1622 #endif
1624 #define sched_class_highest (&rt_sched_class)
1625 #define for_each_class(class) \
1626 for (class = sched_class_highest; class; class = class->next)
1628 static void inc_nr_running(struct rq *rq)
1630 rq->nr_running++;
1633 static void dec_nr_running(struct rq *rq)
1635 rq->nr_running--;
1638 static void set_load_weight(struct task_struct *p)
1640 if (task_has_rt_policy(p)) {
1641 p->se.load.weight = prio_to_weight[0] * 2;
1642 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1643 return;
1647 * SCHED_IDLE tasks get minimal weight:
1649 if (p->policy == SCHED_IDLE) {
1650 p->se.load.weight = WEIGHT_IDLEPRIO;
1651 p->se.load.inv_weight = WMULT_IDLEPRIO;
1652 return;
1655 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1656 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1659 static void update_avg(u64 *avg, u64 sample)
1661 s64 diff = sample - *avg;
1662 *avg += diff >> 3;
1665 static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1667 sched_info_queued(p);
1668 p->sched_class->enqueue_task(rq, p, wakeup);
1669 p->se.on_rq = 1;
1672 static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1674 if (sleep && p->se.last_wakeup) {
1675 update_avg(&p->se.avg_overlap,
1676 p->se.sum_exec_runtime - p->se.last_wakeup);
1677 p->se.last_wakeup = 0;
1680 sched_info_dequeued(p);
1681 p->sched_class->dequeue_task(rq, p, sleep);
1682 p->se.on_rq = 0;
1686 * __normal_prio - return the priority that is based on the static prio
1688 static inline int __normal_prio(struct task_struct *p)
1690 return p->static_prio;
1694 * Calculate the expected normal priority: i.e. priority
1695 * without taking RT-inheritance into account. Might be
1696 * boosted by interactivity modifiers. Changes upon fork,
1697 * setprio syscalls, and whenever the interactivity
1698 * estimator recalculates.
1700 static inline int normal_prio(struct task_struct *p)
1702 int prio;
1704 if (task_has_rt_policy(p))
1705 prio = MAX_RT_PRIO-1 - p->rt_priority;
1706 else
1707 prio = __normal_prio(p);
1708 return prio;
1712 * Calculate the current priority, i.e. the priority
1713 * taken into account by the scheduler. This value might
1714 * be boosted by RT tasks, or might be boosted by
1715 * interactivity modifiers. Will be RT if the task got
1716 * RT-boosted. If not then it returns p->normal_prio.
1718 static int effective_prio(struct task_struct *p)
1720 p->normal_prio = normal_prio(p);
1722 * If we are RT tasks or we were boosted to RT priority,
1723 * keep the priority unchanged. Otherwise, update priority
1724 * to the normal priority:
1726 if (!rt_prio(p->prio))
1727 return p->normal_prio;
1728 return p->prio;
1732 * activate_task - move a task to the runqueue.
1734 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1736 if (task_contributes_to_load(p))
1737 rq->nr_uninterruptible--;
1739 enqueue_task(rq, p, wakeup);
1740 inc_nr_running(rq);
1744 * deactivate_task - remove a task from the runqueue.
1746 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1748 if (task_contributes_to_load(p))
1749 rq->nr_uninterruptible++;
1751 dequeue_task(rq, p, sleep);
1752 dec_nr_running(rq);
1756 * task_curr - is this task currently executing on a CPU?
1757 * @p: the task in question.
1759 inline int task_curr(const struct task_struct *p)
1761 return cpu_curr(task_cpu(p)) == p;
1764 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1766 set_task_rq(p, cpu);
1767 #ifdef CONFIG_SMP
1769 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1770 * successfuly executed on another CPU. We must ensure that updates of
1771 * per-task data have been completed by this moment.
1773 smp_wmb();
1774 task_thread_info(p)->cpu = cpu;
1775 #endif
1778 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1779 const struct sched_class *prev_class,
1780 int oldprio, int running)
1782 if (prev_class != p->sched_class) {
1783 if (prev_class->switched_from)
1784 prev_class->switched_from(rq, p, running);
1785 p->sched_class->switched_to(rq, p, running);
1786 } else
1787 p->sched_class->prio_changed(rq, p, oldprio, running);
1790 #ifdef CONFIG_SMP
1792 /* Used instead of source_load when we know the type == 0 */
1793 static unsigned long weighted_cpuload(const int cpu)
1795 return cpu_rq(cpu)->load.weight;
1799 * Is this task likely cache-hot:
1801 static int
1802 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1804 s64 delta;
1807 * Buddy candidates are cache hot:
1809 if (sched_feat(CACHE_HOT_BUDDY) && (&p->se == cfs_rq_of(&p->se)->next))
1810 return 1;
1812 if (p->sched_class != &fair_sched_class)
1813 return 0;
1815 if (sysctl_sched_migration_cost == -1)
1816 return 1;
1817 if (sysctl_sched_migration_cost == 0)
1818 return 0;
1820 delta = now - p->se.exec_start;
1822 return delta < (s64)sysctl_sched_migration_cost;
1826 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1828 int old_cpu = task_cpu(p);
1829 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1830 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1831 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1832 u64 clock_offset;
1834 clock_offset = old_rq->clock - new_rq->clock;
1836 #ifdef CONFIG_SCHEDSTATS
1837 if (p->se.wait_start)
1838 p->se.wait_start -= clock_offset;
1839 if (p->se.sleep_start)
1840 p->se.sleep_start -= clock_offset;
1841 if (p->se.block_start)
1842 p->se.block_start -= clock_offset;
1843 if (old_cpu != new_cpu) {
1844 schedstat_inc(p, se.nr_migrations);
1845 if (task_hot(p, old_rq->clock, NULL))
1846 schedstat_inc(p, se.nr_forced2_migrations);
1848 #endif
1849 p->se.vruntime -= old_cfsrq->min_vruntime -
1850 new_cfsrq->min_vruntime;
1852 __set_task_cpu(p, new_cpu);
1855 struct migration_req {
1856 struct list_head list;
1858 struct task_struct *task;
1859 int dest_cpu;
1861 struct completion done;
1865 * The task's runqueue lock must be held.
1866 * Returns true if you have to wait for migration thread.
1868 static int
1869 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1871 struct rq *rq = task_rq(p);
1874 * If the task is not on a runqueue (and not running), then
1875 * it is sufficient to simply update the task's cpu field.
1877 if (!p->se.on_rq && !task_running(rq, p)) {
1878 set_task_cpu(p, dest_cpu);
1879 return 0;
1882 init_completion(&req->done);
1883 req->task = p;
1884 req->dest_cpu = dest_cpu;
1885 list_add(&req->list, &rq->migration_queue);
1887 return 1;
1891 * wait_task_inactive - wait for a thread to unschedule.
1893 * If @match_state is nonzero, it's the @p->state value just checked and
1894 * not expected to change. If it changes, i.e. @p might have woken up,
1895 * then return zero. When we succeed in waiting for @p to be off its CPU,
1896 * we return a positive number (its total switch count). If a second call
1897 * a short while later returns the same number, the caller can be sure that
1898 * @p has remained unscheduled the whole time.
1900 * The caller must ensure that the task *will* unschedule sometime soon,
1901 * else this function might spin for a *long* time. This function can't
1902 * be called with interrupts off, or it may introduce deadlock with
1903 * smp_call_function() if an IPI is sent by the same process we are
1904 * waiting to become inactive.
1906 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1908 unsigned long flags;
1909 int running, on_rq;
1910 unsigned long ncsw;
1911 struct rq *rq;
1913 for (;;) {
1915 * We do the initial early heuristics without holding
1916 * any task-queue locks at all. We'll only try to get
1917 * the runqueue lock when things look like they will
1918 * work out!
1920 rq = task_rq(p);
1923 * If the task is actively running on another CPU
1924 * still, just relax and busy-wait without holding
1925 * any locks.
1927 * NOTE! Since we don't hold any locks, it's not
1928 * even sure that "rq" stays as the right runqueue!
1929 * But we don't care, since "task_running()" will
1930 * return false if the runqueue has changed and p
1931 * is actually now running somewhere else!
1933 while (task_running(rq, p)) {
1934 if (match_state && unlikely(p->state != match_state))
1935 return 0;
1936 cpu_relax();
1940 * Ok, time to look more closely! We need the rq
1941 * lock now, to be *sure*. If we're wrong, we'll
1942 * just go back and repeat.
1944 rq = task_rq_lock(p, &flags);
1945 trace_sched_wait_task(rq, p);
1946 running = task_running(rq, p);
1947 on_rq = p->se.on_rq;
1948 ncsw = 0;
1949 if (!match_state || p->state == match_state)
1950 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1951 task_rq_unlock(rq, &flags);
1954 * If it changed from the expected state, bail out now.
1956 if (unlikely(!ncsw))
1957 break;
1960 * Was it really running after all now that we
1961 * checked with the proper locks actually held?
1963 * Oops. Go back and try again..
1965 if (unlikely(running)) {
1966 cpu_relax();
1967 continue;
1971 * It's not enough that it's not actively running,
1972 * it must be off the runqueue _entirely_, and not
1973 * preempted!
1975 * So if it wa still runnable (but just not actively
1976 * running right now), it's preempted, and we should
1977 * yield - it could be a while.
1979 if (unlikely(on_rq)) {
1980 schedule_timeout_uninterruptible(1);
1981 continue;
1985 * Ahh, all good. It wasn't running, and it wasn't
1986 * runnable, which means that it will never become
1987 * running in the future either. We're all done!
1989 break;
1992 return ncsw;
1995 /***
1996 * kick_process - kick a running thread to enter/exit the kernel
1997 * @p: the to-be-kicked thread
1999 * Cause a process which is running on another CPU to enter
2000 * kernel-mode, without any delay. (to get signals handled.)
2002 * NOTE: this function doesnt have to take the runqueue lock,
2003 * because all it wants to ensure is that the remote task enters
2004 * the kernel. If the IPI races and the task has been migrated
2005 * to another CPU then no harm is done and the purpose has been
2006 * achieved as well.
2008 void kick_process(struct task_struct *p)
2010 int cpu;
2012 preempt_disable();
2013 cpu = task_cpu(p);
2014 if ((cpu != smp_processor_id()) && task_curr(p))
2015 smp_send_reschedule(cpu);
2016 preempt_enable();
2020 * Return a low guess at the load of a migration-source cpu weighted
2021 * according to the scheduling class and "nice" value.
2023 * We want to under-estimate the load of migration sources, to
2024 * balance conservatively.
2026 static unsigned long source_load(int cpu, int type)
2028 struct rq *rq = cpu_rq(cpu);
2029 unsigned long total = weighted_cpuload(cpu);
2031 if (type == 0 || !sched_feat(LB_BIAS))
2032 return total;
2034 return min(rq->cpu_load[type-1], total);
2038 * Return a high guess at the load of a migration-target cpu weighted
2039 * according to the scheduling class and "nice" value.
2041 static unsigned long target_load(int cpu, int type)
2043 struct rq *rq = cpu_rq(cpu);
2044 unsigned long total = weighted_cpuload(cpu);
2046 if (type == 0 || !sched_feat(LB_BIAS))
2047 return total;
2049 return max(rq->cpu_load[type-1], total);
2053 * find_idlest_group finds and returns the least busy CPU group within the
2054 * domain.
2056 static struct sched_group *
2057 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
2059 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
2060 unsigned long min_load = ULONG_MAX, this_load = 0;
2061 int load_idx = sd->forkexec_idx;
2062 int imbalance = 100 + (sd->imbalance_pct-100)/2;
2064 do {
2065 unsigned long load, avg_load;
2066 int local_group;
2067 int i;
2069 /* Skip over this group if it has no CPUs allowed */
2070 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
2071 continue;
2073 local_group = cpu_isset(this_cpu, group->cpumask);
2075 /* Tally up the load of all CPUs in the group */
2076 avg_load = 0;
2078 for_each_cpu_mask_nr(i, group->cpumask) {
2079 /* Bias balancing toward cpus of our domain */
2080 if (local_group)
2081 load = source_load(i, load_idx);
2082 else
2083 load = target_load(i, load_idx);
2085 avg_load += load;
2088 /* Adjust by relative CPU power of the group */
2089 avg_load = sg_div_cpu_power(group,
2090 avg_load * SCHED_LOAD_SCALE);
2092 if (local_group) {
2093 this_load = avg_load;
2094 this = group;
2095 } else if (avg_load < min_load) {
2096 min_load = avg_load;
2097 idlest = group;
2099 } while (group = group->next, group != sd->groups);
2101 if (!idlest || 100*this_load < imbalance*min_load)
2102 return NULL;
2103 return idlest;
2107 * find_idlest_cpu - find the idlest cpu among the cpus in group.
2109 static int
2110 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu,
2111 cpumask_t *tmp)
2113 unsigned long load, min_load = ULONG_MAX;
2114 int idlest = -1;
2115 int i;
2117 /* Traverse only the allowed CPUs */
2118 cpus_and(*tmp, group->cpumask, p->cpus_allowed);
2120 for_each_cpu_mask_nr(i, *tmp) {
2121 load = weighted_cpuload(i);
2123 if (load < min_load || (load == min_load && i == this_cpu)) {
2124 min_load = load;
2125 idlest = i;
2129 return idlest;
2133 * sched_balance_self: balance the current task (running on cpu) in domains
2134 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2135 * SD_BALANCE_EXEC.
2137 * Balance, ie. select the least loaded group.
2139 * Returns the target CPU number, or the same CPU if no balancing is needed.
2141 * preempt must be disabled.
2143 static int sched_balance_self(int cpu, int flag)
2145 struct task_struct *t = current;
2146 struct sched_domain *tmp, *sd = NULL;
2148 for_each_domain(cpu, tmp) {
2150 * If power savings logic is enabled for a domain, stop there.
2152 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
2153 break;
2154 if (tmp->flags & flag)
2155 sd = tmp;
2158 if (sd)
2159 update_shares(sd);
2161 while (sd) {
2162 cpumask_t span, tmpmask;
2163 struct sched_group *group;
2164 int new_cpu, weight;
2166 if (!(sd->flags & flag)) {
2167 sd = sd->child;
2168 continue;
2171 span = sd->span;
2172 group = find_idlest_group(sd, t, cpu);
2173 if (!group) {
2174 sd = sd->child;
2175 continue;
2178 new_cpu = find_idlest_cpu(group, t, cpu, &tmpmask);
2179 if (new_cpu == -1 || new_cpu == cpu) {
2180 /* Now try balancing at a lower domain level of cpu */
2181 sd = sd->child;
2182 continue;
2185 /* Now try balancing at a lower domain level of new_cpu */
2186 cpu = new_cpu;
2187 sd = NULL;
2188 weight = cpus_weight(span);
2189 for_each_domain(cpu, tmp) {
2190 if (weight <= cpus_weight(tmp->span))
2191 break;
2192 if (tmp->flags & flag)
2193 sd = tmp;
2195 /* while loop will break here if sd == NULL */
2198 return cpu;
2201 #endif /* CONFIG_SMP */
2203 /***
2204 * try_to_wake_up - wake up a thread
2205 * @p: the to-be-woken-up thread
2206 * @state: the mask of task states that can be woken
2207 * @sync: do a synchronous wakeup?
2209 * Put it on the run-queue if it's not already there. The "current"
2210 * thread is always on the run-queue (except when the actual
2211 * re-schedule is in progress), and as such you're allowed to do
2212 * the simpler "current->state = TASK_RUNNING" to mark yourself
2213 * runnable without the overhead of this.
2215 * returns failure only if the task is already active.
2217 static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
2219 int cpu, orig_cpu, this_cpu, success = 0;
2220 unsigned long flags;
2221 long old_state;
2222 struct rq *rq;
2224 if (!sched_feat(SYNC_WAKEUPS))
2225 sync = 0;
2227 #ifdef CONFIG_SMP
2228 if (sched_feat(LB_WAKEUP_UPDATE)) {
2229 struct sched_domain *sd;
2231 this_cpu = raw_smp_processor_id();
2232 cpu = task_cpu(p);
2234 for_each_domain(this_cpu, sd) {
2235 if (cpu_isset(cpu, sd->span)) {
2236 update_shares(sd);
2237 break;
2241 #endif
2243 smp_wmb();
2244 rq = task_rq_lock(p, &flags);
2245 old_state = p->state;
2246 if (!(old_state & state))
2247 goto out;
2249 if (p->se.on_rq)
2250 goto out_running;
2252 cpu = task_cpu(p);
2253 orig_cpu = cpu;
2254 this_cpu = smp_processor_id();
2256 #ifdef CONFIG_SMP
2257 if (unlikely(task_running(rq, p)))
2258 goto out_activate;
2260 cpu = p->sched_class->select_task_rq(p, sync);
2261 if (cpu != orig_cpu) {
2262 set_task_cpu(p, cpu);
2263 task_rq_unlock(rq, &flags);
2264 /* might preempt at this point */
2265 rq = task_rq_lock(p, &flags);
2266 old_state = p->state;
2267 if (!(old_state & state))
2268 goto out;
2269 if (p->se.on_rq)
2270 goto out_running;
2272 this_cpu = smp_processor_id();
2273 cpu = task_cpu(p);
2276 #ifdef CONFIG_SCHEDSTATS
2277 schedstat_inc(rq, ttwu_count);
2278 if (cpu == this_cpu)
2279 schedstat_inc(rq, ttwu_local);
2280 else {
2281 struct sched_domain *sd;
2282 for_each_domain(this_cpu, sd) {
2283 if (cpu_isset(cpu, sd->span)) {
2284 schedstat_inc(sd, ttwu_wake_remote);
2285 break;
2289 #endif /* CONFIG_SCHEDSTATS */
2291 out_activate:
2292 #endif /* CONFIG_SMP */
2293 schedstat_inc(p, se.nr_wakeups);
2294 if (sync)
2295 schedstat_inc(p, se.nr_wakeups_sync);
2296 if (orig_cpu != cpu)
2297 schedstat_inc(p, se.nr_wakeups_migrate);
2298 if (cpu == this_cpu)
2299 schedstat_inc(p, se.nr_wakeups_local);
2300 else
2301 schedstat_inc(p, se.nr_wakeups_remote);
2302 update_rq_clock(rq);
2303 activate_task(rq, p, 1);
2304 success = 1;
2306 out_running:
2307 trace_sched_wakeup(rq, p);
2308 check_preempt_curr(rq, p, sync);
2310 p->state = TASK_RUNNING;
2311 #ifdef CONFIG_SMP
2312 if (p->sched_class->task_wake_up)
2313 p->sched_class->task_wake_up(rq, p);
2314 #endif
2315 out:
2316 current->se.last_wakeup = current->se.sum_exec_runtime;
2318 task_rq_unlock(rq, &flags);
2320 return success;
2323 int wake_up_process(struct task_struct *p)
2325 return try_to_wake_up(p, TASK_ALL, 0);
2327 EXPORT_SYMBOL(wake_up_process);
2329 int wake_up_state(struct task_struct *p, unsigned int state)
2331 return try_to_wake_up(p, state, 0);
2335 * Perform scheduler related setup for a newly forked process p.
2336 * p is forked by current.
2338 * __sched_fork() is basic setup used by init_idle() too:
2340 static void __sched_fork(struct task_struct *p)
2342 p->se.exec_start = 0;
2343 p->se.sum_exec_runtime = 0;
2344 p->se.prev_sum_exec_runtime = 0;
2345 p->se.last_wakeup = 0;
2346 p->se.avg_overlap = 0;
2348 #ifdef CONFIG_SCHEDSTATS
2349 p->se.wait_start = 0;
2350 p->se.sum_sleep_runtime = 0;
2351 p->se.sleep_start = 0;
2352 p->se.block_start = 0;
2353 p->se.sleep_max = 0;
2354 p->se.block_max = 0;
2355 p->se.exec_max = 0;
2356 p->se.slice_max = 0;
2357 p->se.wait_max = 0;
2358 #endif
2360 INIT_LIST_HEAD(&p->rt.run_list);
2361 p->se.on_rq = 0;
2362 INIT_LIST_HEAD(&p->se.group_node);
2364 #ifdef CONFIG_PREEMPT_NOTIFIERS
2365 INIT_HLIST_HEAD(&p->preempt_notifiers);
2366 #endif
2369 * We mark the process as running here, but have not actually
2370 * inserted it onto the runqueue yet. This guarantees that
2371 * nobody will actually run it, and a signal or other external
2372 * event cannot wake it up and insert it on the runqueue either.
2374 p->state = TASK_RUNNING;
2378 * fork()/clone()-time setup:
2380 void sched_fork(struct task_struct *p, int clone_flags)
2382 int cpu = get_cpu();
2384 __sched_fork(p);
2386 #ifdef CONFIG_SMP
2387 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
2388 #endif
2389 set_task_cpu(p, cpu);
2392 * Make sure we do not leak PI boosting priority to the child:
2394 p->prio = current->normal_prio;
2395 if (!rt_prio(p->prio))
2396 p->sched_class = &fair_sched_class;
2398 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2399 if (likely(sched_info_on()))
2400 memset(&p->sched_info, 0, sizeof(p->sched_info));
2401 #endif
2402 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2403 p->oncpu = 0;
2404 #endif
2405 #ifdef CONFIG_PREEMPT
2406 /* Want to start with kernel preemption disabled. */
2407 task_thread_info(p)->preempt_count = 1;
2408 #endif
2409 put_cpu();
2413 * wake_up_new_task - wake up a newly created task for the first time.
2415 * This function will do some initial scheduler statistics housekeeping
2416 * that must be done for every newly created context, then puts the task
2417 * on the runqueue and wakes it.
2419 void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
2421 unsigned long flags;
2422 struct rq *rq;
2424 rq = task_rq_lock(p, &flags);
2425 BUG_ON(p->state != TASK_RUNNING);
2426 update_rq_clock(rq);
2428 p->prio = effective_prio(p);
2430 if (!p->sched_class->task_new || !current->se.on_rq) {
2431 activate_task(rq, p, 0);
2432 } else {
2434 * Let the scheduling class do new task startup
2435 * management (if any):
2437 p->sched_class->task_new(rq, p);
2438 inc_nr_running(rq);
2440 trace_sched_wakeup_new(rq, p);
2441 check_preempt_curr(rq, p, 0);
2442 #ifdef CONFIG_SMP
2443 if (p->sched_class->task_wake_up)
2444 p->sched_class->task_wake_up(rq, p);
2445 #endif
2446 task_rq_unlock(rq, &flags);
2449 #ifdef CONFIG_PREEMPT_NOTIFIERS
2452 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
2453 * @notifier: notifier struct to register
2455 void preempt_notifier_register(struct preempt_notifier *notifier)
2457 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2459 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2462 * preempt_notifier_unregister - no longer interested in preemption notifications
2463 * @notifier: notifier struct to unregister
2465 * This is safe to call from within a preemption notifier.
2467 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2469 hlist_del(&notifier->link);
2471 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2473 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2475 struct preempt_notifier *notifier;
2476 struct hlist_node *node;
2478 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2479 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2482 static void
2483 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2484 struct task_struct *next)
2486 struct preempt_notifier *notifier;
2487 struct hlist_node *node;
2489 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2490 notifier->ops->sched_out(notifier, next);
2493 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2495 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2499 static void
2500 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2501 struct task_struct *next)
2505 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2508 * prepare_task_switch - prepare to switch tasks
2509 * @rq: the runqueue preparing to switch
2510 * @prev: the current task that is being switched out
2511 * @next: the task we are going to switch to.
2513 * This is called with the rq lock held and interrupts off. It must
2514 * be paired with a subsequent finish_task_switch after the context
2515 * switch.
2517 * prepare_task_switch sets up locking and calls architecture specific
2518 * hooks.
2520 static inline void
2521 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2522 struct task_struct *next)
2524 fire_sched_out_preempt_notifiers(prev, next);
2525 prepare_lock_switch(rq, next);
2526 prepare_arch_switch(next);
2530 * finish_task_switch - clean up after a task-switch
2531 * @rq: runqueue associated with task-switch
2532 * @prev: the thread we just switched away from.
2534 * finish_task_switch must be called after the context switch, paired
2535 * with a prepare_task_switch call before the context switch.
2536 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2537 * and do any other architecture-specific cleanup actions.
2539 * Note that we may have delayed dropping an mm in context_switch(). If
2540 * so, we finish that here outside of the runqueue lock. (Doing it
2541 * with the lock held can cause deadlocks; see schedule() for
2542 * details.)
2544 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2545 __releases(rq->lock)
2547 struct mm_struct *mm = rq->prev_mm;
2548 long prev_state;
2550 rq->prev_mm = NULL;
2553 * A task struct has one reference for the use as "current".
2554 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2555 * schedule one last time. The schedule call will never return, and
2556 * the scheduled task must drop that reference.
2557 * The test for TASK_DEAD must occur while the runqueue locks are
2558 * still held, otherwise prev could be scheduled on another cpu, die
2559 * there before we look at prev->state, and then the reference would
2560 * be dropped twice.
2561 * Manfred Spraul <manfred@colorfullife.com>
2563 prev_state = prev->state;
2564 finish_arch_switch(prev);
2565 finish_lock_switch(rq, prev);
2566 #ifdef CONFIG_SMP
2567 if (current->sched_class->post_schedule)
2568 current->sched_class->post_schedule(rq);
2569 #endif
2571 fire_sched_in_preempt_notifiers(current);
2572 if (mm)
2573 mmdrop(mm);
2574 if (unlikely(prev_state == TASK_DEAD)) {
2576 * Remove function-return probe instances associated with this
2577 * task and put them back on the free list.
2579 kprobe_flush_task(prev);
2580 put_task_struct(prev);
2585 * schedule_tail - first thing a freshly forked thread must call.
2586 * @prev: the thread we just switched away from.
2588 asmlinkage void schedule_tail(struct task_struct *prev)
2589 __releases(rq->lock)
2591 struct rq *rq = this_rq();
2593 finish_task_switch(rq, prev);
2594 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2595 /* In this case, finish_task_switch does not reenable preemption */
2596 preempt_enable();
2597 #endif
2598 if (current->set_child_tid)
2599 put_user(task_pid_vnr(current), current->set_child_tid);
2603 * context_switch - switch to the new MM and the new
2604 * thread's register state.
2606 static inline void
2607 context_switch(struct rq *rq, struct task_struct *prev,
2608 struct task_struct *next)
2610 struct mm_struct *mm, *oldmm;
2612 prepare_task_switch(rq, prev, next);
2613 trace_sched_switch(rq, prev, next);
2614 mm = next->mm;
2615 oldmm = prev->active_mm;
2617 * For paravirt, this is coupled with an exit in switch_to to
2618 * combine the page table reload and the switch backend into
2619 * one hypercall.
2621 arch_enter_lazy_cpu_mode();
2623 if (unlikely(!mm)) {
2624 next->active_mm = oldmm;
2625 atomic_inc(&oldmm->mm_count);
2626 enter_lazy_tlb(oldmm, next);
2627 } else
2628 switch_mm(oldmm, mm, next);
2630 if (unlikely(!prev->mm)) {
2631 prev->active_mm = NULL;
2632 rq->prev_mm = oldmm;
2635 * Since the runqueue lock will be released by the next
2636 * task (which is an invalid locking op but in the case
2637 * of the scheduler it's an obvious special-case), so we
2638 * do an early lockdep release here:
2640 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2641 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2642 #endif
2644 /* Here we just switch the register state and the stack. */
2645 switch_to(prev, next, prev);
2647 barrier();
2649 * this_rq must be evaluated again because prev may have moved
2650 * CPUs since it called schedule(), thus the 'rq' on its stack
2651 * frame will be invalid.
2653 finish_task_switch(this_rq(), prev);
2657 * nr_running, nr_uninterruptible and nr_context_switches:
2659 * externally visible scheduler statistics: current number of runnable
2660 * threads, current number of uninterruptible-sleeping threads, total
2661 * number of context switches performed since bootup.
2663 unsigned long nr_running(void)
2665 unsigned long i, sum = 0;
2667 for_each_online_cpu(i)
2668 sum += cpu_rq(i)->nr_running;
2670 return sum;
2673 unsigned long nr_uninterruptible(void)
2675 unsigned long i, sum = 0;
2677 for_each_possible_cpu(i)
2678 sum += cpu_rq(i)->nr_uninterruptible;
2681 * Since we read the counters lockless, it might be slightly
2682 * inaccurate. Do not allow it to go below zero though:
2684 if (unlikely((long)sum < 0))
2685 sum = 0;
2687 return sum;
2690 unsigned long long nr_context_switches(void)
2692 int i;
2693 unsigned long long sum = 0;
2695 for_each_possible_cpu(i)
2696 sum += cpu_rq(i)->nr_switches;
2698 return sum;
2701 unsigned long nr_iowait(void)
2703 unsigned long i, sum = 0;
2705 for_each_possible_cpu(i)
2706 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2708 return sum;
2711 unsigned long nr_active(void)
2713 unsigned long i, running = 0, uninterruptible = 0;
2715 for_each_online_cpu(i) {
2716 running += cpu_rq(i)->nr_running;
2717 uninterruptible += cpu_rq(i)->nr_uninterruptible;
2720 if (unlikely((long)uninterruptible < 0))
2721 uninterruptible = 0;
2723 return running + uninterruptible;
2727 * Update rq->cpu_load[] statistics. This function is usually called every
2728 * scheduler tick (TICK_NSEC).
2730 static void update_cpu_load(struct rq *this_rq)
2732 unsigned long this_load = this_rq->load.weight;
2733 int i, scale;
2735 this_rq->nr_load_updates++;
2737 /* Update our load: */
2738 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2739 unsigned long old_load, new_load;
2741 /* scale is effectively 1 << i now, and >> i divides by scale */
2743 old_load = this_rq->cpu_load[i];
2744 new_load = this_load;
2746 * Round up the averaging division if load is increasing. This
2747 * prevents us from getting stuck on 9 if the load is 10, for
2748 * example.
2750 if (new_load > old_load)
2751 new_load += scale-1;
2752 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2756 #ifdef CONFIG_SMP
2759 * double_rq_lock - safely lock two runqueues
2761 * Note this does not disable interrupts like task_rq_lock,
2762 * you need to do so manually before calling.
2764 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
2765 __acquires(rq1->lock)
2766 __acquires(rq2->lock)
2768 BUG_ON(!irqs_disabled());
2769 if (rq1 == rq2) {
2770 spin_lock(&rq1->lock);
2771 __acquire(rq2->lock); /* Fake it out ;) */
2772 } else {
2773 if (rq1 < rq2) {
2774 spin_lock(&rq1->lock);
2775 spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
2776 } else {
2777 spin_lock(&rq2->lock);
2778 spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
2781 update_rq_clock(rq1);
2782 update_rq_clock(rq2);
2786 * double_rq_unlock - safely unlock two runqueues
2788 * Note this does not restore interrupts like task_rq_unlock,
2789 * you need to do so manually after calling.
2791 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2792 __releases(rq1->lock)
2793 __releases(rq2->lock)
2795 spin_unlock(&rq1->lock);
2796 if (rq1 != rq2)
2797 spin_unlock(&rq2->lock);
2798 else
2799 __release(rq2->lock);
2803 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2805 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
2806 __releases(this_rq->lock)
2807 __acquires(busiest->lock)
2808 __acquires(this_rq->lock)
2810 int ret = 0;
2812 if (unlikely(!irqs_disabled())) {
2813 /* printk() doesn't work good under rq->lock */
2814 spin_unlock(&this_rq->lock);
2815 BUG_ON(1);
2817 if (unlikely(!spin_trylock(&busiest->lock))) {
2818 if (busiest < this_rq) {
2819 spin_unlock(&this_rq->lock);
2820 spin_lock(&busiest->lock);
2821 spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
2822 ret = 1;
2823 } else
2824 spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
2826 return ret;
2829 static void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
2830 __releases(busiest->lock)
2832 spin_unlock(&busiest->lock);
2833 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
2837 * If dest_cpu is allowed for this process, migrate the task to it.
2838 * This is accomplished by forcing the cpu_allowed mask to only
2839 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2840 * the cpu_allowed mask is restored.
2842 static void sched_migrate_task(struct task_struct *p, int dest_cpu)
2844 struct migration_req req;
2845 unsigned long flags;
2846 struct rq *rq;
2848 rq = task_rq_lock(p, &flags);
2849 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2850 || unlikely(!cpu_active(dest_cpu)))
2851 goto out;
2853 trace_sched_migrate_task(rq, p, dest_cpu);
2854 /* force the process onto the specified CPU */
2855 if (migrate_task(p, dest_cpu, &req)) {
2856 /* Need to wait for migration thread (might exit: take ref). */
2857 struct task_struct *mt = rq->migration_thread;
2859 get_task_struct(mt);
2860 task_rq_unlock(rq, &flags);
2861 wake_up_process(mt);
2862 put_task_struct(mt);
2863 wait_for_completion(&req.done);
2865 return;
2867 out:
2868 task_rq_unlock(rq, &flags);
2872 * sched_exec - execve() is a valuable balancing opportunity, because at
2873 * this point the task has the smallest effective memory and cache footprint.
2875 void sched_exec(void)
2877 int new_cpu, this_cpu = get_cpu();
2878 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
2879 put_cpu();
2880 if (new_cpu != this_cpu)
2881 sched_migrate_task(current, new_cpu);
2885 * pull_task - move a task from a remote runqueue to the local runqueue.
2886 * Both runqueues must be locked.
2888 static void pull_task(struct rq *src_rq, struct task_struct *p,
2889 struct rq *this_rq, int this_cpu)
2891 deactivate_task(src_rq, p, 0);
2892 set_task_cpu(p, this_cpu);
2893 activate_task(this_rq, p, 0);
2895 * Note that idle threads have a prio of MAX_PRIO, for this test
2896 * to be always true for them.
2898 check_preempt_curr(this_rq, p, 0);
2902 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2904 static
2905 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
2906 struct sched_domain *sd, enum cpu_idle_type idle,
2907 int *all_pinned)
2910 * We do not migrate tasks that are:
2911 * 1) running (obviously), or
2912 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2913 * 3) are cache-hot on their current CPU.
2915 if (!cpu_isset(this_cpu, p->cpus_allowed)) {
2916 schedstat_inc(p, se.nr_failed_migrations_affine);
2917 return 0;
2919 *all_pinned = 0;
2921 if (task_running(rq, p)) {
2922 schedstat_inc(p, se.nr_failed_migrations_running);
2923 return 0;
2927 * Aggressive migration if:
2928 * 1) task is cache cold, or
2929 * 2) too many balance attempts have failed.
2932 if (!task_hot(p, rq->clock, sd) ||
2933 sd->nr_balance_failed > sd->cache_nice_tries) {
2934 #ifdef CONFIG_SCHEDSTATS
2935 if (task_hot(p, rq->clock, sd)) {
2936 schedstat_inc(sd, lb_hot_gained[idle]);
2937 schedstat_inc(p, se.nr_forced_migrations);
2939 #endif
2940 return 1;
2943 if (task_hot(p, rq->clock, sd)) {
2944 schedstat_inc(p, se.nr_failed_migrations_hot);
2945 return 0;
2947 return 1;
2950 static unsigned long
2951 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2952 unsigned long max_load_move, struct sched_domain *sd,
2953 enum cpu_idle_type idle, int *all_pinned,
2954 int *this_best_prio, struct rq_iterator *iterator)
2956 int loops = 0, pulled = 0, pinned = 0;
2957 struct task_struct *p;
2958 long rem_load_move = max_load_move;
2960 if (max_load_move == 0)
2961 goto out;
2963 pinned = 1;
2966 * Start the load-balancing iterator:
2968 p = iterator->start(iterator->arg);
2969 next:
2970 if (!p || loops++ > sysctl_sched_nr_migrate)
2971 goto out;
2973 if ((p->se.load.weight >> 1) > rem_load_move ||
2974 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2975 p = iterator->next(iterator->arg);
2976 goto next;
2979 pull_task(busiest, p, this_rq, this_cpu);
2980 pulled++;
2981 rem_load_move -= p->se.load.weight;
2984 * We only want to steal up to the prescribed amount of weighted load.
2986 if (rem_load_move > 0) {
2987 if (p->prio < *this_best_prio)
2988 *this_best_prio = p->prio;
2989 p = iterator->next(iterator->arg);
2990 goto next;
2992 out:
2994 * Right now, this is one of only two places pull_task() is called,
2995 * so we can safely collect pull_task() stats here rather than
2996 * inside pull_task().
2998 schedstat_add(sd, lb_gained[idle], pulled);
3000 if (all_pinned)
3001 *all_pinned = pinned;
3003 return max_load_move - rem_load_move;
3007 * move_tasks tries to move up to max_load_move weighted load from busiest to
3008 * this_rq, as part of a balancing operation within domain "sd".
3009 * Returns 1 if successful and 0 otherwise.
3011 * Called with both runqueues locked.
3013 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3014 unsigned long max_load_move,
3015 struct sched_domain *sd, enum cpu_idle_type idle,
3016 int *all_pinned)
3018 const struct sched_class *class = sched_class_highest;
3019 unsigned long total_load_moved = 0;
3020 int this_best_prio = this_rq->curr->prio;
3022 do {
3023 total_load_moved +=
3024 class->load_balance(this_rq, this_cpu, busiest,
3025 max_load_move - total_load_moved,
3026 sd, idle, all_pinned, &this_best_prio);
3027 class = class->next;
3029 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
3030 break;
3032 } while (class && max_load_move > total_load_moved);
3034 return total_load_moved > 0;
3037 static int
3038 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3039 struct sched_domain *sd, enum cpu_idle_type idle,
3040 struct rq_iterator *iterator)
3042 struct task_struct *p = iterator->start(iterator->arg);
3043 int pinned = 0;
3045 while (p) {
3046 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3047 pull_task(busiest, p, this_rq, this_cpu);
3049 * Right now, this is only the second place pull_task()
3050 * is called, so we can safely collect pull_task()
3051 * stats here rather than inside pull_task().
3053 schedstat_inc(sd, lb_gained[idle]);
3055 return 1;
3057 p = iterator->next(iterator->arg);
3060 return 0;
3064 * move_one_task tries to move exactly one task from busiest to this_rq, as
3065 * part of active balancing operations within "domain".
3066 * Returns 1 if successful and 0 otherwise.
3068 * Called with both runqueues locked.
3070 static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3071 struct sched_domain *sd, enum cpu_idle_type idle)
3073 const struct sched_class *class;
3075 for (class = sched_class_highest; class; class = class->next)
3076 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
3077 return 1;
3079 return 0;
3083 * find_busiest_group finds and returns the busiest CPU group within the
3084 * domain. It calculates and returns the amount of weighted load which
3085 * should be moved to restore balance via the imbalance parameter.
3087 static struct sched_group *
3088 find_busiest_group(struct sched_domain *sd, int this_cpu,
3089 unsigned long *imbalance, enum cpu_idle_type idle,
3090 int *sd_idle, const cpumask_t *cpus, int *balance)
3092 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
3093 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
3094 unsigned long max_pull;
3095 unsigned long busiest_load_per_task, busiest_nr_running;
3096 unsigned long this_load_per_task, this_nr_running;
3097 int load_idx, group_imb = 0;
3098 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3099 int power_savings_balance = 1;
3100 unsigned long leader_nr_running = 0, min_load_per_task = 0;
3101 unsigned long min_nr_running = ULONG_MAX;
3102 struct sched_group *group_min = NULL, *group_leader = NULL;
3103 #endif
3105 max_load = this_load = total_load = total_pwr = 0;
3106 busiest_load_per_task = busiest_nr_running = 0;
3107 this_load_per_task = this_nr_running = 0;
3109 if (idle == CPU_NOT_IDLE)
3110 load_idx = sd->busy_idx;
3111 else if (idle == CPU_NEWLY_IDLE)
3112 load_idx = sd->newidle_idx;
3113 else
3114 load_idx = sd->idle_idx;
3116 do {
3117 unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
3118 int local_group;
3119 int i;
3120 int __group_imb = 0;
3121 unsigned int balance_cpu = -1, first_idle_cpu = 0;
3122 unsigned long sum_nr_running, sum_weighted_load;
3123 unsigned long sum_avg_load_per_task;
3124 unsigned long avg_load_per_task;
3126 local_group = cpu_isset(this_cpu, group->cpumask);
3128 if (local_group)
3129 balance_cpu = first_cpu(group->cpumask);
3131 /* Tally up the load of all CPUs in the group */
3132 sum_weighted_load = sum_nr_running = avg_load = 0;
3133 sum_avg_load_per_task = avg_load_per_task = 0;
3135 max_cpu_load = 0;
3136 min_cpu_load = ~0UL;
3138 for_each_cpu_mask_nr(i, group->cpumask) {
3139 struct rq *rq;
3141 if (!cpu_isset(i, *cpus))
3142 continue;
3144 rq = cpu_rq(i);
3146 if (*sd_idle && rq->nr_running)
3147 *sd_idle = 0;
3149 /* Bias balancing toward cpus of our domain */
3150 if (local_group) {
3151 if (idle_cpu(i) && !first_idle_cpu) {
3152 first_idle_cpu = 1;
3153 balance_cpu = i;
3156 load = target_load(i, load_idx);
3157 } else {
3158 load = source_load(i, load_idx);
3159 if (load > max_cpu_load)
3160 max_cpu_load = load;
3161 if (min_cpu_load > load)
3162 min_cpu_load = load;
3165 avg_load += load;
3166 sum_nr_running += rq->nr_running;
3167 sum_weighted_load += weighted_cpuload(i);
3169 sum_avg_load_per_task += cpu_avg_load_per_task(i);
3173 * First idle cpu or the first cpu(busiest) in this sched group
3174 * is eligible for doing load balancing at this and above
3175 * domains. In the newly idle case, we will allow all the cpu's
3176 * to do the newly idle load balance.
3178 if (idle != CPU_NEWLY_IDLE && local_group &&
3179 balance_cpu != this_cpu && balance) {
3180 *balance = 0;
3181 goto ret;
3184 total_load += avg_load;
3185 total_pwr += group->__cpu_power;
3187 /* Adjust by relative CPU power of the group */
3188 avg_load = sg_div_cpu_power(group,
3189 avg_load * SCHED_LOAD_SCALE);
3193 * Consider the group unbalanced when the imbalance is larger
3194 * than the average weight of two tasks.
3196 * APZ: with cgroup the avg task weight can vary wildly and
3197 * might not be a suitable number - should we keep a
3198 * normalized nr_running number somewhere that negates
3199 * the hierarchy?
3201 avg_load_per_task = sg_div_cpu_power(group,
3202 sum_avg_load_per_task * SCHED_LOAD_SCALE);
3204 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
3205 __group_imb = 1;
3207 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
3209 if (local_group) {
3210 this_load = avg_load;
3211 this = group;
3212 this_nr_running = sum_nr_running;
3213 this_load_per_task = sum_weighted_load;
3214 } else if (avg_load > max_load &&
3215 (sum_nr_running > group_capacity || __group_imb)) {
3216 max_load = avg_load;
3217 busiest = group;
3218 busiest_nr_running = sum_nr_running;
3219 busiest_load_per_task = sum_weighted_load;
3220 group_imb = __group_imb;
3223 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3225 * Busy processors will not participate in power savings
3226 * balance.
3228 if (idle == CPU_NOT_IDLE ||
3229 !(sd->flags & SD_POWERSAVINGS_BALANCE))
3230 goto group_next;
3233 * If the local group is idle or completely loaded
3234 * no need to do power savings balance at this domain
3236 if (local_group && (this_nr_running >= group_capacity ||
3237 !this_nr_running))
3238 power_savings_balance = 0;
3241 * If a group is already running at full capacity or idle,
3242 * don't include that group in power savings calculations
3244 if (!power_savings_balance || sum_nr_running >= group_capacity
3245 || !sum_nr_running)
3246 goto group_next;
3249 * Calculate the group which has the least non-idle load.
3250 * This is the group from where we need to pick up the load
3251 * for saving power
3253 if ((sum_nr_running < min_nr_running) ||
3254 (sum_nr_running == min_nr_running &&
3255 first_cpu(group->cpumask) <
3256 first_cpu(group_min->cpumask))) {
3257 group_min = group;
3258 min_nr_running = sum_nr_running;
3259 min_load_per_task = sum_weighted_load /
3260 sum_nr_running;
3264 * Calculate the group which is almost near its
3265 * capacity but still has some space to pick up some load
3266 * from other group and save more power
3268 if (sum_nr_running <= group_capacity - 1) {
3269 if (sum_nr_running > leader_nr_running ||
3270 (sum_nr_running == leader_nr_running &&
3271 first_cpu(group->cpumask) >
3272 first_cpu(group_leader->cpumask))) {
3273 group_leader = group;
3274 leader_nr_running = sum_nr_running;
3277 group_next:
3278 #endif
3279 group = group->next;
3280 } while (group != sd->groups);
3282 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
3283 goto out_balanced;
3285 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
3287 if (this_load >= avg_load ||
3288 100*max_load <= sd->imbalance_pct*this_load)
3289 goto out_balanced;
3291 busiest_load_per_task /= busiest_nr_running;
3292 if (group_imb)
3293 busiest_load_per_task = min(busiest_load_per_task, avg_load);
3296 * We're trying to get all the cpus to the average_load, so we don't
3297 * want to push ourselves above the average load, nor do we wish to
3298 * reduce the max loaded cpu below the average load, as either of these
3299 * actions would just result in more rebalancing later, and ping-pong
3300 * tasks around. Thus we look for the minimum possible imbalance.
3301 * Negative imbalances (*we* are more loaded than anyone else) will
3302 * be counted as no imbalance for these purposes -- we can't fix that
3303 * by pulling tasks to us. Be careful of negative numbers as they'll
3304 * appear as very large values with unsigned longs.
3306 if (max_load <= busiest_load_per_task)
3307 goto out_balanced;
3310 * In the presence of smp nice balancing, certain scenarios can have
3311 * max load less than avg load(as we skip the groups at or below
3312 * its cpu_power, while calculating max_load..)
3314 if (max_load < avg_load) {
3315 *imbalance = 0;
3316 goto small_imbalance;
3319 /* Don't want to pull so many tasks that a group would go idle */
3320 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
3322 /* How much load to actually move to equalise the imbalance */
3323 *imbalance = min(max_pull * busiest->__cpu_power,
3324 (avg_load - this_load) * this->__cpu_power)
3325 / SCHED_LOAD_SCALE;
3328 * if *imbalance is less than the average load per runnable task
3329 * there is no gaurantee that any tasks will be moved so we'll have
3330 * a think about bumping its value to force at least one task to be
3331 * moved
3333 if (*imbalance < busiest_load_per_task) {
3334 unsigned long tmp, pwr_now, pwr_move;
3335 unsigned int imbn;
3337 small_imbalance:
3338 pwr_move = pwr_now = 0;
3339 imbn = 2;
3340 if (this_nr_running) {
3341 this_load_per_task /= this_nr_running;
3342 if (busiest_load_per_task > this_load_per_task)
3343 imbn = 1;
3344 } else
3345 this_load_per_task = cpu_avg_load_per_task(this_cpu);
3347 if (max_load - this_load + 2*busiest_load_per_task >=
3348 busiest_load_per_task * imbn) {
3349 *imbalance = busiest_load_per_task;
3350 return busiest;
3354 * OK, we don't have enough imbalance to justify moving tasks,
3355 * however we may be able to increase total CPU power used by
3356 * moving them.
3359 pwr_now += busiest->__cpu_power *
3360 min(busiest_load_per_task, max_load);
3361 pwr_now += this->__cpu_power *
3362 min(this_load_per_task, this_load);
3363 pwr_now /= SCHED_LOAD_SCALE;
3365 /* Amount of load we'd subtract */
3366 tmp = sg_div_cpu_power(busiest,
3367 busiest_load_per_task * SCHED_LOAD_SCALE);
3368 if (max_load > tmp)
3369 pwr_move += busiest->__cpu_power *
3370 min(busiest_load_per_task, max_load - tmp);
3372 /* Amount of load we'd add */
3373 if (max_load * busiest->__cpu_power <
3374 busiest_load_per_task * SCHED_LOAD_SCALE)
3375 tmp = sg_div_cpu_power(this,
3376 max_load * busiest->__cpu_power);
3377 else
3378 tmp = sg_div_cpu_power(this,
3379 busiest_load_per_task * SCHED_LOAD_SCALE);
3380 pwr_move += this->__cpu_power *
3381 min(this_load_per_task, this_load + tmp);
3382 pwr_move /= SCHED_LOAD_SCALE;
3384 /* Move if we gain throughput */
3385 if (pwr_move > pwr_now)
3386 *imbalance = busiest_load_per_task;
3389 return busiest;
3391 out_balanced:
3392 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3393 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3394 goto ret;
3396 if (this == group_leader && group_leader != group_min) {
3397 *imbalance = min_load_per_task;
3398 return group_min;
3400 #endif
3401 ret:
3402 *imbalance = 0;
3403 return NULL;
3407 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3409 static struct rq *
3410 find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
3411 unsigned long imbalance, const cpumask_t *cpus)
3413 struct rq *busiest = NULL, *rq;
3414 unsigned long max_load = 0;
3415 int i;
3417 for_each_cpu_mask_nr(i, group->cpumask) {
3418 unsigned long wl;
3420 if (!cpu_isset(i, *cpus))
3421 continue;
3423 rq = cpu_rq(i);
3424 wl = weighted_cpuload(i);
3426 if (rq->nr_running == 1 && wl > imbalance)
3427 continue;
3429 if (wl > max_load) {
3430 max_load = wl;
3431 busiest = rq;
3435 return busiest;
3439 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3440 * so long as it is large enough.
3442 #define MAX_PINNED_INTERVAL 512
3445 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3446 * tasks if there is an imbalance.
3448 static int load_balance(int this_cpu, struct rq *this_rq,
3449 struct sched_domain *sd, enum cpu_idle_type idle,
3450 int *balance, cpumask_t *cpus)
3452 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
3453 struct sched_group *group;
3454 unsigned long imbalance;
3455 struct rq *busiest;
3456 unsigned long flags;
3458 cpus_setall(*cpus);
3461 * When power savings policy is enabled for the parent domain, idle
3462 * sibling can pick up load irrespective of busy siblings. In this case,
3463 * let the state of idle sibling percolate up as CPU_IDLE, instead of
3464 * portraying it as CPU_NOT_IDLE.
3466 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
3467 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3468 sd_idle = 1;
3470 schedstat_inc(sd, lb_count[idle]);
3472 redo:
3473 update_shares(sd);
3474 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
3475 cpus, balance);
3477 if (*balance == 0)
3478 goto out_balanced;
3480 if (!group) {
3481 schedstat_inc(sd, lb_nobusyg[idle]);
3482 goto out_balanced;
3485 busiest = find_busiest_queue(group, idle, imbalance, cpus);
3486 if (!busiest) {
3487 schedstat_inc(sd, lb_nobusyq[idle]);
3488 goto out_balanced;
3491 BUG_ON(busiest == this_rq);
3493 schedstat_add(sd, lb_imbalance[idle], imbalance);
3495 ld_moved = 0;
3496 if (busiest->nr_running > 1) {
3498 * Attempt to move tasks. If find_busiest_group has found
3499 * an imbalance but busiest->nr_running <= 1, the group is
3500 * still unbalanced. ld_moved simply stays zero, so it is
3501 * correctly treated as an imbalance.
3503 local_irq_save(flags);
3504 double_rq_lock(this_rq, busiest);
3505 ld_moved = move_tasks(this_rq, this_cpu, busiest,
3506 imbalance, sd, idle, &all_pinned);
3507 double_rq_unlock(this_rq, busiest);
3508 local_irq_restore(flags);
3511 * some other cpu did the load balance for us.
3513 if (ld_moved && this_cpu != smp_processor_id())
3514 resched_cpu(this_cpu);
3516 /* All tasks on this runqueue were pinned by CPU affinity */
3517 if (unlikely(all_pinned)) {
3518 cpu_clear(cpu_of(busiest), *cpus);
3519 if (!cpus_empty(*cpus))
3520 goto redo;
3521 goto out_balanced;
3525 if (!ld_moved) {
3526 schedstat_inc(sd, lb_failed[idle]);
3527 sd->nr_balance_failed++;
3529 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
3531 spin_lock_irqsave(&busiest->lock, flags);
3533 /* don't kick the migration_thread, if the curr
3534 * task on busiest cpu can't be moved to this_cpu
3536 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
3537 spin_unlock_irqrestore(&busiest->lock, flags);
3538 all_pinned = 1;
3539 goto out_one_pinned;
3542 if (!busiest->active_balance) {
3543 busiest->active_balance = 1;
3544 busiest->push_cpu = this_cpu;
3545 active_balance = 1;
3547 spin_unlock_irqrestore(&busiest->lock, flags);
3548 if (active_balance)
3549 wake_up_process(busiest->migration_thread);
3552 * We've kicked active balancing, reset the failure
3553 * counter.
3555 sd->nr_balance_failed = sd->cache_nice_tries+1;
3557 } else
3558 sd->nr_balance_failed = 0;
3560 if (likely(!active_balance)) {
3561 /* We were unbalanced, so reset the balancing interval */
3562 sd->balance_interval = sd->min_interval;
3563 } else {
3565 * If we've begun active balancing, start to back off. This
3566 * case may not be covered by the all_pinned logic if there
3567 * is only 1 task on the busy runqueue (because we don't call
3568 * move_tasks).
3570 if (sd->balance_interval < sd->max_interval)
3571 sd->balance_interval *= 2;
3574 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3575 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3576 ld_moved = -1;
3578 goto out;
3580 out_balanced:
3581 schedstat_inc(sd, lb_balanced[idle]);
3583 sd->nr_balance_failed = 0;
3585 out_one_pinned:
3586 /* tune up the balancing interval */
3587 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
3588 (sd->balance_interval < sd->max_interval))
3589 sd->balance_interval *= 2;
3591 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3592 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3593 ld_moved = -1;
3594 else
3595 ld_moved = 0;
3596 out:
3597 if (ld_moved)
3598 update_shares(sd);
3599 return ld_moved;
3603 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3604 * tasks if there is an imbalance.
3606 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
3607 * this_rq is locked.
3609 static int
3610 load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
3611 cpumask_t *cpus)
3613 struct sched_group *group;
3614 struct rq *busiest = NULL;
3615 unsigned long imbalance;
3616 int ld_moved = 0;
3617 int sd_idle = 0;
3618 int all_pinned = 0;
3620 cpus_setall(*cpus);
3623 * When power savings policy is enabled for the parent domain, idle
3624 * sibling can pick up load irrespective of busy siblings. In this case,
3625 * let the state of idle sibling percolate up as IDLE, instead of
3626 * portraying it as CPU_NOT_IDLE.
3628 if (sd->flags & SD_SHARE_CPUPOWER &&
3629 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3630 sd_idle = 1;
3632 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
3633 redo:
3634 update_shares_locked(this_rq, sd);
3635 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
3636 &sd_idle, cpus, NULL);
3637 if (!group) {
3638 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
3639 goto out_balanced;
3642 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
3643 if (!busiest) {
3644 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
3645 goto out_balanced;
3648 BUG_ON(busiest == this_rq);
3650 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
3652 ld_moved = 0;
3653 if (busiest->nr_running > 1) {
3654 /* Attempt to move tasks */
3655 double_lock_balance(this_rq, busiest);
3656 /* this_rq->clock is already updated */
3657 update_rq_clock(busiest);
3658 ld_moved = move_tasks(this_rq, this_cpu, busiest,
3659 imbalance, sd, CPU_NEWLY_IDLE,
3660 &all_pinned);
3661 double_unlock_balance(this_rq, busiest);
3663 if (unlikely(all_pinned)) {
3664 cpu_clear(cpu_of(busiest), *cpus);
3665 if (!cpus_empty(*cpus))
3666 goto redo;
3670 if (!ld_moved) {
3671 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
3672 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3673 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3674 return -1;
3675 } else
3676 sd->nr_balance_failed = 0;
3678 update_shares_locked(this_rq, sd);
3679 return ld_moved;
3681 out_balanced:
3682 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
3683 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3684 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3685 return -1;
3686 sd->nr_balance_failed = 0;
3688 return 0;
3692 * idle_balance is called by schedule() if this_cpu is about to become
3693 * idle. Attempts to pull tasks from other CPUs.
3695 static void idle_balance(int this_cpu, struct rq *this_rq)
3697 struct sched_domain *sd;
3698 int pulled_task = -1;
3699 unsigned long next_balance = jiffies + HZ;
3700 cpumask_t tmpmask;
3702 for_each_domain(this_cpu, sd) {
3703 unsigned long interval;
3705 if (!(sd->flags & SD_LOAD_BALANCE))
3706 continue;
3708 if (sd->flags & SD_BALANCE_NEWIDLE)
3709 /* If we've pulled tasks over stop searching: */
3710 pulled_task = load_balance_newidle(this_cpu, this_rq,
3711 sd, &tmpmask);
3713 interval = msecs_to_jiffies(sd->balance_interval);
3714 if (time_after(next_balance, sd->last_balance + interval))
3715 next_balance = sd->last_balance + interval;
3716 if (pulled_task)
3717 break;
3719 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
3721 * We are going idle. next_balance may be set based on
3722 * a busy processor. So reset next_balance.
3724 this_rq->next_balance = next_balance;
3729 * active_load_balance is run by migration threads. It pushes running tasks
3730 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
3731 * running on each physical CPU where possible, and avoids physical /
3732 * logical imbalances.
3734 * Called with busiest_rq locked.
3736 static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
3738 int target_cpu = busiest_rq->push_cpu;
3739 struct sched_domain *sd;
3740 struct rq *target_rq;
3742 /* Is there any task to move? */
3743 if (busiest_rq->nr_running <= 1)
3744 return;
3746 target_rq = cpu_rq(target_cpu);
3749 * This condition is "impossible", if it occurs
3750 * we need to fix it. Originally reported by
3751 * Bjorn Helgaas on a 128-cpu setup.
3753 BUG_ON(busiest_rq == target_rq);
3755 /* move a task from busiest_rq to target_rq */
3756 double_lock_balance(busiest_rq, target_rq);
3757 update_rq_clock(busiest_rq);
3758 update_rq_clock(target_rq);
3760 /* Search for an sd spanning us and the target CPU. */
3761 for_each_domain(target_cpu, sd) {
3762 if ((sd->flags & SD_LOAD_BALANCE) &&
3763 cpu_isset(busiest_cpu, sd->span))
3764 break;
3767 if (likely(sd)) {
3768 schedstat_inc(sd, alb_count);
3770 if (move_one_task(target_rq, target_cpu, busiest_rq,
3771 sd, CPU_IDLE))
3772 schedstat_inc(sd, alb_pushed);
3773 else
3774 schedstat_inc(sd, alb_failed);
3776 double_unlock_balance(busiest_rq, target_rq);
3779 #ifdef CONFIG_NO_HZ
3780 static struct {
3781 atomic_t load_balancer;
3782 cpumask_t cpu_mask;
3783 } nohz ____cacheline_aligned = {
3784 .load_balancer = ATOMIC_INIT(-1),
3785 .cpu_mask = CPU_MASK_NONE,
3789 * This routine will try to nominate the ilb (idle load balancing)
3790 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3791 * load balancing on behalf of all those cpus. If all the cpus in the system
3792 * go into this tickless mode, then there will be no ilb owner (as there is
3793 * no need for one) and all the cpus will sleep till the next wakeup event
3794 * arrives...
3796 * For the ilb owner, tick is not stopped. And this tick will be used
3797 * for idle load balancing. ilb owner will still be part of
3798 * nohz.cpu_mask..
3800 * While stopping the tick, this cpu will become the ilb owner if there
3801 * is no other owner. And will be the owner till that cpu becomes busy
3802 * or if all cpus in the system stop their ticks at which point
3803 * there is no need for ilb owner.
3805 * When the ilb owner becomes busy, it nominates another owner, during the
3806 * next busy scheduler_tick()
3808 int select_nohz_load_balancer(int stop_tick)
3810 int cpu = smp_processor_id();
3812 if (stop_tick) {
3813 cpu_set(cpu, nohz.cpu_mask);
3814 cpu_rq(cpu)->in_nohz_recently = 1;
3817 * If we are going offline and still the leader, give up!
3819 if (!cpu_active(cpu) &&
3820 atomic_read(&nohz.load_balancer) == cpu) {
3821 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3822 BUG();
3823 return 0;
3826 /* time for ilb owner also to sleep */
3827 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3828 if (atomic_read(&nohz.load_balancer) == cpu)
3829 atomic_set(&nohz.load_balancer, -1);
3830 return 0;
3833 if (atomic_read(&nohz.load_balancer) == -1) {
3834 /* make me the ilb owner */
3835 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
3836 return 1;
3837 } else if (atomic_read(&nohz.load_balancer) == cpu)
3838 return 1;
3839 } else {
3840 if (!cpu_isset(cpu, nohz.cpu_mask))
3841 return 0;
3843 cpu_clear(cpu, nohz.cpu_mask);
3845 if (atomic_read(&nohz.load_balancer) == cpu)
3846 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3847 BUG();
3849 return 0;
3851 #endif
3853 static DEFINE_SPINLOCK(balancing);
3856 * It checks each scheduling domain to see if it is due to be balanced,
3857 * and initiates a balancing operation if so.
3859 * Balancing parameters are set up in arch_init_sched_domains.
3861 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3863 int balance = 1;
3864 struct rq *rq = cpu_rq(cpu);
3865 unsigned long interval;
3866 struct sched_domain *sd;
3867 /* Earliest time when we have to do rebalance again */
3868 unsigned long next_balance = jiffies + 60*HZ;
3869 int update_next_balance = 0;
3870 int need_serialize;
3871 cpumask_t tmp;
3873 for_each_domain(cpu, sd) {
3874 if (!(sd->flags & SD_LOAD_BALANCE))
3875 continue;
3877 interval = sd->balance_interval;
3878 if (idle != CPU_IDLE)
3879 interval *= sd->busy_factor;
3881 /* scale ms to jiffies */
3882 interval = msecs_to_jiffies(interval);
3883 if (unlikely(!interval))
3884 interval = 1;
3885 if (interval > HZ*NR_CPUS/10)
3886 interval = HZ*NR_CPUS/10;
3888 need_serialize = sd->flags & SD_SERIALIZE;
3890 if (need_serialize) {
3891 if (!spin_trylock(&balancing))
3892 goto out;
3895 if (time_after_eq(jiffies, sd->last_balance + interval)) {
3896 if (load_balance(cpu, rq, sd, idle, &balance, &tmp)) {
3898 * We've pulled tasks over so either we're no
3899 * longer idle, or one of our SMT siblings is
3900 * not idle.
3902 idle = CPU_NOT_IDLE;
3904 sd->last_balance = jiffies;
3906 if (need_serialize)
3907 spin_unlock(&balancing);
3908 out:
3909 if (time_after(next_balance, sd->last_balance + interval)) {
3910 next_balance = sd->last_balance + interval;
3911 update_next_balance = 1;
3915 * Stop the load balance at this level. There is another
3916 * CPU in our sched group which is doing load balancing more
3917 * actively.
3919 if (!balance)
3920 break;
3924 * next_balance will be updated only when there is a need.
3925 * When the cpu is attached to null domain for ex, it will not be
3926 * updated.
3928 if (likely(update_next_balance))
3929 rq->next_balance = next_balance;
3933 * run_rebalance_domains is triggered when needed from the scheduler tick.
3934 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3935 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3937 static void run_rebalance_domains(struct softirq_action *h)
3939 int this_cpu = smp_processor_id();
3940 struct rq *this_rq = cpu_rq(this_cpu);
3941 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3942 CPU_IDLE : CPU_NOT_IDLE;
3944 rebalance_domains(this_cpu, idle);
3946 #ifdef CONFIG_NO_HZ
3948 * If this cpu is the owner for idle load balancing, then do the
3949 * balancing on behalf of the other idle cpus whose ticks are
3950 * stopped.
3952 if (this_rq->idle_at_tick &&
3953 atomic_read(&nohz.load_balancer) == this_cpu) {
3954 cpumask_t cpus = nohz.cpu_mask;
3955 struct rq *rq;
3956 int balance_cpu;
3958 cpu_clear(this_cpu, cpus);
3959 for_each_cpu_mask_nr(balance_cpu, cpus) {
3961 * If this cpu gets work to do, stop the load balancing
3962 * work being done for other cpus. Next load
3963 * balancing owner will pick it up.
3965 if (need_resched())
3966 break;
3968 rebalance_domains(balance_cpu, CPU_IDLE);
3970 rq = cpu_rq(balance_cpu);
3971 if (time_after(this_rq->next_balance, rq->next_balance))
3972 this_rq->next_balance = rq->next_balance;
3975 #endif
3979 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3981 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3982 * idle load balancing owner or decide to stop the periodic load balancing,
3983 * if the whole system is idle.
3985 static inline void trigger_load_balance(struct rq *rq, int cpu)
3987 #ifdef CONFIG_NO_HZ
3989 * If we were in the nohz mode recently and busy at the current
3990 * scheduler tick, then check if we need to nominate new idle
3991 * load balancer.
3993 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3994 rq->in_nohz_recently = 0;
3996 if (atomic_read(&nohz.load_balancer) == cpu) {
3997 cpu_clear(cpu, nohz.cpu_mask);
3998 atomic_set(&nohz.load_balancer, -1);
4001 if (atomic_read(&nohz.load_balancer) == -1) {
4003 * simple selection for now: Nominate the
4004 * first cpu in the nohz list to be the next
4005 * ilb owner.
4007 * TBD: Traverse the sched domains and nominate
4008 * the nearest cpu in the nohz.cpu_mask.
4010 int ilb = first_cpu(nohz.cpu_mask);
4012 if (ilb < nr_cpu_ids)
4013 resched_cpu(ilb);
4018 * If this cpu is idle and doing idle load balancing for all the
4019 * cpus with ticks stopped, is it time for that to stop?
4021 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
4022 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
4023 resched_cpu(cpu);
4024 return;
4028 * If this cpu is idle and the idle load balancing is done by
4029 * someone else, then no need raise the SCHED_SOFTIRQ
4031 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
4032 cpu_isset(cpu, nohz.cpu_mask))
4033 return;
4034 #endif
4035 if (time_after_eq(jiffies, rq->next_balance))
4036 raise_softirq(SCHED_SOFTIRQ);
4039 #else /* CONFIG_SMP */
4042 * on UP we do not need to balance between CPUs:
4044 static inline void idle_balance(int cpu, struct rq *rq)
4048 #endif
4050 DEFINE_PER_CPU(struct kernel_stat, kstat);
4052 EXPORT_PER_CPU_SYMBOL(kstat);
4055 * Return any ns on the sched_clock that have not yet been banked in
4056 * @p in case that task is currently running.
4058 unsigned long long task_delta_exec(struct task_struct *p)
4060 unsigned long flags;
4061 struct rq *rq;
4062 u64 ns = 0;
4064 rq = task_rq_lock(p, &flags);
4066 if (task_current(rq, p)) {
4067 u64 delta_exec;
4069 update_rq_clock(rq);
4070 delta_exec = rq->clock - p->se.exec_start;
4071 if ((s64)delta_exec > 0)
4072 ns = delta_exec;
4075 task_rq_unlock(rq, &flags);
4077 return ns;
4081 * Account user cpu time to a process.
4082 * @p: the process that the cpu time gets accounted to
4083 * @cputime: the cpu time spent in user space since the last update
4085 void account_user_time(struct task_struct *p, cputime_t cputime)
4087 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4088 cputime64_t tmp;
4090 p->utime = cputime_add(p->utime, cputime);
4091 account_group_user_time(p, cputime);
4093 /* Add user time to cpustat. */
4094 tmp = cputime_to_cputime64(cputime);
4095 if (TASK_NICE(p) > 0)
4096 cpustat->nice = cputime64_add(cpustat->nice, tmp);
4097 else
4098 cpustat->user = cputime64_add(cpustat->user, tmp);
4099 /* Account for user time used */
4100 acct_update_integrals(p);
4104 * Account guest cpu time to a process.
4105 * @p: the process that the cpu time gets accounted to
4106 * @cputime: the cpu time spent in virtual machine since the last update
4108 static void account_guest_time(struct task_struct *p, cputime_t cputime)
4110 cputime64_t tmp;
4111 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4113 tmp = cputime_to_cputime64(cputime);
4115 p->utime = cputime_add(p->utime, cputime);
4116 account_group_user_time(p, cputime);
4117 p->gtime = cputime_add(p->gtime, cputime);
4119 cpustat->user = cputime64_add(cpustat->user, tmp);
4120 cpustat->guest = cputime64_add(cpustat->guest, tmp);
4124 * Account scaled user cpu time to a process.
4125 * @p: the process that the cpu time gets accounted to
4126 * @cputime: the cpu time spent in user space since the last update
4128 void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
4130 p->utimescaled = cputime_add(p->utimescaled, cputime);
4134 * Account system cpu time to a process.
4135 * @p: the process that the cpu time gets accounted to
4136 * @hardirq_offset: the offset to subtract from hardirq_count()
4137 * @cputime: the cpu time spent in kernel space since the last update
4139 void account_system_time(struct task_struct *p, int hardirq_offset,
4140 cputime_t cputime)
4142 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4143 struct rq *rq = this_rq();
4144 cputime64_t tmp;
4146 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
4147 account_guest_time(p, cputime);
4148 return;
4151 p->stime = cputime_add(p->stime, cputime);
4152 account_group_system_time(p, cputime);
4154 /* Add system time to cpustat. */
4155 tmp = cputime_to_cputime64(cputime);
4156 if (hardirq_count() - hardirq_offset)
4157 cpustat->irq = cputime64_add(cpustat->irq, tmp);
4158 else if (softirq_count())
4159 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
4160 else if (p != rq->idle)
4161 cpustat->system = cputime64_add(cpustat->system, tmp);
4162 else if (atomic_read(&rq->nr_iowait) > 0)
4163 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
4164 else
4165 cpustat->idle = cputime64_add(cpustat->idle, tmp);
4166 /* Account for system time used */
4167 acct_update_integrals(p);
4171 * Account scaled system cpu time to a process.
4172 * @p: the process that the cpu time gets accounted to
4173 * @hardirq_offset: the offset to subtract from hardirq_count()
4174 * @cputime: the cpu time spent in kernel space since the last update
4176 void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
4178 p->stimescaled = cputime_add(p->stimescaled, cputime);
4182 * Account for involuntary wait time.
4183 * @p: the process from which the cpu time has been stolen
4184 * @steal: the cpu time spent in involuntary wait
4186 void account_steal_time(struct task_struct *p, cputime_t steal)
4188 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4189 cputime64_t tmp = cputime_to_cputime64(steal);
4190 struct rq *rq = this_rq();
4192 if (p == rq->idle) {
4193 p->stime = cputime_add(p->stime, steal);
4194 account_group_system_time(p, steal);
4195 if (atomic_read(&rq->nr_iowait) > 0)
4196 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
4197 else
4198 cpustat->idle = cputime64_add(cpustat->idle, tmp);
4199 } else
4200 cpustat->steal = cputime64_add(cpustat->steal, tmp);
4204 * Use precise platform statistics if available:
4206 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
4207 cputime_t task_utime(struct task_struct *p)
4209 return p->utime;
4212 cputime_t task_stime(struct task_struct *p)
4214 return p->stime;
4216 #else
4217 cputime_t task_utime(struct task_struct *p)
4219 clock_t utime = cputime_to_clock_t(p->utime),
4220 total = utime + cputime_to_clock_t(p->stime);
4221 u64 temp;
4224 * Use CFS's precise accounting:
4226 temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);
4228 if (total) {
4229 temp *= utime;
4230 do_div(temp, total);
4232 utime = (clock_t)temp;
4234 p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
4235 return p->prev_utime;
4238 cputime_t task_stime(struct task_struct *p)
4240 clock_t stime;
4243 * Use CFS's precise accounting. (we subtract utime from
4244 * the total, to make sure the total observed by userspace
4245 * grows monotonically - apps rely on that):
4247 stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
4248 cputime_to_clock_t(task_utime(p));
4250 if (stime >= 0)
4251 p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));
4253 return p->prev_stime;
4255 #endif
4257 inline cputime_t task_gtime(struct task_struct *p)
4259 return p->gtime;
4263 * This function gets called by the timer code, with HZ frequency.
4264 * We call it with interrupts disabled.
4266 * It also gets called by the fork code, when changing the parent's
4267 * timeslices.
4269 void scheduler_tick(void)
4271 int cpu = smp_processor_id();
4272 struct rq *rq = cpu_rq(cpu);
4273 struct task_struct *curr = rq->curr;
4275 sched_clock_tick();
4277 spin_lock(&rq->lock);
4278 update_rq_clock(rq);
4279 update_cpu_load(rq);
4280 curr->sched_class->task_tick(rq, curr, 0);
4281 spin_unlock(&rq->lock);
4283 #ifdef CONFIG_SMP
4284 rq->idle_at_tick = idle_cpu(cpu);
4285 trigger_load_balance(rq, cpu);
4286 #endif
4289 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
4290 defined(CONFIG_PREEMPT_TRACER))
4292 static inline unsigned long get_parent_ip(unsigned long addr)
4294 if (in_lock_functions(addr)) {
4295 addr = CALLER_ADDR2;
4296 if (in_lock_functions(addr))
4297 addr = CALLER_ADDR3;
4299 return addr;
4302 void __kprobes add_preempt_count(int val)
4304 #ifdef CONFIG_DEBUG_PREEMPT
4306 * Underflow?
4308 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4309 return;
4310 #endif
4311 preempt_count() += val;
4312 #ifdef CONFIG_DEBUG_PREEMPT
4314 * Spinlock count overflowing soon?
4316 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
4317 PREEMPT_MASK - 10);
4318 #endif
4319 if (preempt_count() == val)
4320 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
4322 EXPORT_SYMBOL(add_preempt_count);
4324 void __kprobes sub_preempt_count(int val)
4326 #ifdef CONFIG_DEBUG_PREEMPT
4328 * Underflow?
4330 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
4331 return;
4333 * Is the spinlock portion underflowing?
4335 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
4336 !(preempt_count() & PREEMPT_MASK)))
4337 return;
4338 #endif
4340 if (preempt_count() == val)
4341 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
4342 preempt_count() -= val;
4344 EXPORT_SYMBOL(sub_preempt_count);
4346 #endif
4349 * Print scheduling while atomic bug:
4351 static noinline void __schedule_bug(struct task_struct *prev)
4353 struct pt_regs *regs = get_irq_regs();
4355 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4356 prev->comm, prev->pid, preempt_count());
4358 debug_show_held_locks(prev);
4359 print_modules();
4360 if (irqs_disabled())
4361 print_irqtrace_events(prev);
4363 if (regs)
4364 show_regs(regs);
4365 else
4366 dump_stack();
4370 * Various schedule()-time debugging checks and statistics:
4372 static inline void schedule_debug(struct task_struct *prev)
4375 * Test if we are atomic. Since do_exit() needs to call into
4376 * schedule() atomically, we ignore that path for now.
4377 * Otherwise, whine if we are scheduling when we should not be.
4379 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
4380 __schedule_bug(prev);
4382 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4384 schedstat_inc(this_rq(), sched_count);
4385 #ifdef CONFIG_SCHEDSTATS
4386 if (unlikely(prev->lock_depth >= 0)) {
4387 schedstat_inc(this_rq(), bkl_count);
4388 schedstat_inc(prev, sched_info.bkl_count);
4390 #endif
4394 * Pick up the highest-prio task:
4396 static inline struct task_struct *
4397 pick_next_task(struct rq *rq, struct task_struct *prev)
4399 const struct sched_class *class;
4400 struct task_struct *p;
4403 * Optimization: we know that if all tasks are in
4404 * the fair class we can call that function directly:
4406 if (likely(rq->nr_running == rq->cfs.nr_running)) {
4407 p = fair_sched_class.pick_next_task(rq);
4408 if (likely(p))
4409 return p;
4412 class = sched_class_highest;
4413 for ( ; ; ) {
4414 p = class->pick_next_task(rq);
4415 if (p)
4416 return p;
4418 * Will never be NULL as the idle class always
4419 * returns a non-NULL p:
4421 class = class->next;
4426 * schedule() is the main scheduler function.
4428 asmlinkage void __sched schedule(void)
4430 struct task_struct *prev, *next;
4431 unsigned long *switch_count;
4432 struct rq *rq;
4433 int cpu;
4435 need_resched:
4436 preempt_disable();
4437 cpu = smp_processor_id();
4438 rq = cpu_rq(cpu);
4439 rcu_qsctr_inc(cpu);
4440 prev = rq->curr;
4441 switch_count = &prev->nivcsw;
4443 release_kernel_lock(prev);
4444 need_resched_nonpreemptible:
4446 schedule_debug(prev);
4448 if (sched_feat(HRTICK))
4449 hrtick_clear(rq);
4451 spin_lock_irq(&rq->lock);
4452 update_rq_clock(rq);
4453 clear_tsk_need_resched(prev);
4455 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
4456 if (unlikely(signal_pending_state(prev->state, prev)))
4457 prev->state = TASK_RUNNING;
4458 else
4459 deactivate_task(rq, prev, 1);
4460 switch_count = &prev->nvcsw;
4463 #ifdef CONFIG_SMP
4464 if (prev->sched_class->pre_schedule)
4465 prev->sched_class->pre_schedule(rq, prev);
4466 #endif
4468 if (unlikely(!rq->nr_running))
4469 idle_balance(cpu, rq);
4471 prev->sched_class->put_prev_task(rq, prev);
4472 next = pick_next_task(rq, prev);
4474 if (likely(prev != next)) {
4475 sched_info_switch(prev, next);
4477 rq->nr_switches++;
4478 rq->curr = next;
4479 ++*switch_count;
4481 context_switch(rq, prev, next); /* unlocks the rq */
4483 * the context switch might have flipped the stack from under
4484 * us, hence refresh the local variables.
4486 cpu = smp_processor_id();
4487 rq = cpu_rq(cpu);
4488 } else
4489 spin_unlock_irq(&rq->lock);
4491 if (unlikely(reacquire_kernel_lock(current) < 0))
4492 goto need_resched_nonpreemptible;
4494 preempt_enable_no_resched();
4495 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
4496 goto need_resched;
4498 EXPORT_SYMBOL(schedule);
4500 #ifdef CONFIG_PREEMPT
4502 * this is the entry point to schedule() from in-kernel preemption
4503 * off of preempt_enable. Kernel preemptions off return from interrupt
4504 * occur there and call schedule directly.
4506 asmlinkage void __sched preempt_schedule(void)
4508 struct thread_info *ti = current_thread_info();
4511 * If there is a non-zero preempt_count or interrupts are disabled,
4512 * we do not want to preempt the current task. Just return..
4514 if (likely(ti->preempt_count || irqs_disabled()))
4515 return;
4517 do {
4518 add_preempt_count(PREEMPT_ACTIVE);
4519 schedule();
4520 sub_preempt_count(PREEMPT_ACTIVE);
4523 * Check again in case we missed a preemption opportunity
4524 * between schedule and now.
4526 barrier();
4527 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
4529 EXPORT_SYMBOL(preempt_schedule);
4532 * this is the entry point to schedule() from kernel preemption
4533 * off of irq context.
4534 * Note, that this is called and return with irqs disabled. This will
4535 * protect us against recursive calling from irq.
4537 asmlinkage void __sched preempt_schedule_irq(void)
4539 struct thread_info *ti = current_thread_info();
4541 /* Catch callers which need to be fixed */
4542 BUG_ON(ti->preempt_count || !irqs_disabled());
4544 do {
4545 add_preempt_count(PREEMPT_ACTIVE);
4546 local_irq_enable();
4547 schedule();
4548 local_irq_disable();
4549 sub_preempt_count(PREEMPT_ACTIVE);
4552 * Check again in case we missed a preemption opportunity
4553 * between schedule and now.
4555 barrier();
4556 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
4559 #endif /* CONFIG_PREEMPT */
4561 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
4562 void *key)
4564 return try_to_wake_up(curr->private, mode, sync);
4566 EXPORT_SYMBOL(default_wake_function);
4569 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4570 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
4571 * number) then we wake all the non-exclusive tasks and one exclusive task.
4573 * There are circumstances in which we can try to wake a task which has already
4574 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
4575 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4577 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
4578 int nr_exclusive, int sync, void *key)
4580 wait_queue_t *curr, *next;
4582 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
4583 unsigned flags = curr->flags;
4585 if (curr->func(curr, mode, sync, key) &&
4586 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
4587 break;
4592 * __wake_up - wake up threads blocked on a waitqueue.
4593 * @q: the waitqueue
4594 * @mode: which threads
4595 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4596 * @key: is directly passed to the wakeup function
4598 void __wake_up(wait_queue_head_t *q, unsigned int mode,
4599 int nr_exclusive, void *key)
4601 unsigned long flags;
4603 spin_lock_irqsave(&q->lock, flags);
4604 __wake_up_common(q, mode, nr_exclusive, 0, key);
4605 spin_unlock_irqrestore(&q->lock, flags);
4607 EXPORT_SYMBOL(__wake_up);
4610 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4612 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
4614 __wake_up_common(q, mode, 1, 0, NULL);
4618 * __wake_up_sync - wake up threads blocked on a waitqueue.
4619 * @q: the waitqueue
4620 * @mode: which threads
4621 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4623 * The sync wakeup differs that the waker knows that it will schedule
4624 * away soon, so while the target thread will be woken up, it will not
4625 * be migrated to another CPU - ie. the two threads are 'synchronized'
4626 * with each other. This can prevent needless bouncing between CPUs.
4628 * On UP it can prevent extra preemption.
4630 void
4631 __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
4633 unsigned long flags;
4634 int sync = 1;
4636 if (unlikely(!q))
4637 return;
4639 if (unlikely(!nr_exclusive))
4640 sync = 0;
4642 spin_lock_irqsave(&q->lock, flags);
4643 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
4644 spin_unlock_irqrestore(&q->lock, flags);
4646 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4649 * complete: - signals a single thread waiting on this completion
4650 * @x: holds the state of this particular completion
4652 * This will wake up a single thread waiting on this completion. Threads will be
4653 * awakened in the same order in which they were queued.
4655 * See also complete_all(), wait_for_completion() and related routines.
4657 void complete(struct completion *x)
4659 unsigned long flags;
4661 spin_lock_irqsave(&x->wait.lock, flags);
4662 x->done++;
4663 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
4664 spin_unlock_irqrestore(&x->wait.lock, flags);
4666 EXPORT_SYMBOL(complete);
4669 * complete_all: - signals all threads waiting on this completion
4670 * @x: holds the state of this particular completion
4672 * This will wake up all threads waiting on this particular completion event.
4674 void complete_all(struct completion *x)
4676 unsigned long flags;
4678 spin_lock_irqsave(&x->wait.lock, flags);
4679 x->done += UINT_MAX/2;
4680 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
4681 spin_unlock_irqrestore(&x->wait.lock, flags);
4683 EXPORT_SYMBOL(complete_all);
4685 static inline long __sched
4686 do_wait_for_common(struct completion *x, long timeout, int state)
4688 if (!x->done) {
4689 DECLARE_WAITQUEUE(wait, current);
4691 wait.flags |= WQ_FLAG_EXCLUSIVE;
4692 __add_wait_queue_tail(&x->wait, &wait);
4693 do {
4694 if (signal_pending_state(state, current)) {
4695 timeout = -ERESTARTSYS;
4696 break;
4698 __set_current_state(state);
4699 spin_unlock_irq(&x->wait.lock);
4700 timeout = schedule_timeout(timeout);
4701 spin_lock_irq(&x->wait.lock);
4702 } while (!x->done && timeout);
4703 __remove_wait_queue(&x->wait, &wait);
4704 if (!x->done)
4705 return timeout;
4707 x->done--;
4708 return timeout ?: 1;
4711 static long __sched
4712 wait_for_common(struct completion *x, long timeout, int state)
4714 might_sleep();
4716 spin_lock_irq(&x->wait.lock);
4717 timeout = do_wait_for_common(x, timeout, state);
4718 spin_unlock_irq(&x->wait.lock);
4719 return timeout;
4723 * wait_for_completion: - waits for completion of a task
4724 * @x: holds the state of this particular completion
4726 * This waits to be signaled for completion of a specific task. It is NOT
4727 * interruptible and there is no timeout.
4729 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4730 * and interrupt capability. Also see complete().
4732 void __sched wait_for_completion(struct completion *x)
4734 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
4736 EXPORT_SYMBOL(wait_for_completion);
4739 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4740 * @x: holds the state of this particular completion
4741 * @timeout: timeout value in jiffies
4743 * This waits for either a completion of a specific task to be signaled or for a
4744 * specified timeout to expire. The timeout is in jiffies. It is not
4745 * interruptible.
4747 unsigned long __sched
4748 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
4750 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
4752 EXPORT_SYMBOL(wait_for_completion_timeout);
4755 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4756 * @x: holds the state of this particular completion
4758 * This waits for completion of a specific task to be signaled. It is
4759 * interruptible.
4761 int __sched wait_for_completion_interruptible(struct completion *x)
4763 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4764 if (t == -ERESTARTSYS)
4765 return t;
4766 return 0;
4768 EXPORT_SYMBOL(wait_for_completion_interruptible);
4771 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4772 * @x: holds the state of this particular completion
4773 * @timeout: timeout value in jiffies
4775 * This waits for either a completion of a specific task to be signaled or for a
4776 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4778 unsigned long __sched
4779 wait_for_completion_interruptible_timeout(struct completion *x,
4780 unsigned long timeout)
4782 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
4784 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
4787 * wait_for_completion_killable: - waits for completion of a task (killable)
4788 * @x: holds the state of this particular completion
4790 * This waits to be signaled for completion of a specific task. It can be
4791 * interrupted by a kill signal.
4793 int __sched wait_for_completion_killable(struct completion *x)
4795 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4796 if (t == -ERESTARTSYS)
4797 return t;
4798 return 0;
4800 EXPORT_SYMBOL(wait_for_completion_killable);
4803 * try_wait_for_completion - try to decrement a completion without blocking
4804 * @x: completion structure
4806 * Returns: 0 if a decrement cannot be done without blocking
4807 * 1 if a decrement succeeded.
4809 * If a completion is being used as a counting completion,
4810 * attempt to decrement the counter without blocking. This
4811 * enables us to avoid waiting if the resource the completion
4812 * is protecting is not available.
4814 bool try_wait_for_completion(struct completion *x)
4816 int ret = 1;
4818 spin_lock_irq(&x->wait.lock);
4819 if (!x->done)
4820 ret = 0;
4821 else
4822 x->done--;
4823 spin_unlock_irq(&x->wait.lock);
4824 return ret;
4826 EXPORT_SYMBOL(try_wait_for_completion);
4829 * completion_done - Test to see if a completion has any waiters
4830 * @x: completion structure
4832 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4833 * 1 if there are no waiters.
4836 bool completion_done(struct completion *x)
4838 int ret = 1;
4840 spin_lock_irq(&x->wait.lock);
4841 if (!x->done)
4842 ret = 0;
4843 spin_unlock_irq(&x->wait.lock);
4844 return ret;
4846 EXPORT_SYMBOL(completion_done);
4848 static long __sched
4849 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
4851 unsigned long flags;
4852 wait_queue_t wait;
4854 init_waitqueue_entry(&wait, current);
4856 __set_current_state(state);
4858 spin_lock_irqsave(&q->lock, flags);
4859 __add_wait_queue(q, &wait);
4860 spin_unlock(&q->lock);
4861 timeout = schedule_timeout(timeout);
4862 spin_lock_irq(&q->lock);
4863 __remove_wait_queue(q, &wait);
4864 spin_unlock_irqrestore(&q->lock, flags);
4866 return timeout;
4869 void __sched interruptible_sleep_on(wait_queue_head_t *q)
4871 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4873 EXPORT_SYMBOL(interruptible_sleep_on);
4875 long __sched
4876 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
4878 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
4880 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4882 void __sched sleep_on(wait_queue_head_t *q)
4884 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4886 EXPORT_SYMBOL(sleep_on);
4888 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
4890 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
4892 EXPORT_SYMBOL(sleep_on_timeout);
4894 #ifdef CONFIG_RT_MUTEXES
4897 * rt_mutex_setprio - set the current priority of a task
4898 * @p: task
4899 * @prio: prio value (kernel-internal form)
4901 * This function changes the 'effective' priority of a task. It does
4902 * not touch ->normal_prio like __setscheduler().
4904 * Used by the rt_mutex code to implement priority inheritance logic.
4906 void rt_mutex_setprio(struct task_struct *p, int prio)
4908 unsigned long flags;
4909 int oldprio, on_rq, running;
4910 struct rq *rq;
4911 const struct sched_class *prev_class = p->sched_class;
4913 BUG_ON(prio < 0 || prio > MAX_PRIO);
4915 rq = task_rq_lock(p, &flags);
4916 update_rq_clock(rq);
4918 oldprio = p->prio;
4919 on_rq = p->se.on_rq;
4920 running = task_current(rq, p);
4921 if (on_rq)
4922 dequeue_task(rq, p, 0);
4923 if (running)
4924 p->sched_class->put_prev_task(rq, p);
4926 if (rt_prio(prio))
4927 p->sched_class = &rt_sched_class;
4928 else
4929 p->sched_class = &fair_sched_class;
4931 p->prio = prio;
4933 if (running)
4934 p->sched_class->set_curr_task(rq);
4935 if (on_rq) {
4936 enqueue_task(rq, p, 0);
4938 check_class_changed(rq, p, prev_class, oldprio, running);
4940 task_rq_unlock(rq, &flags);
4943 #endif
4945 void set_user_nice(struct task_struct *p, long nice)
4947 int old_prio, delta, on_rq;
4948 unsigned long flags;
4949 struct rq *rq;
4951 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4952 return;
4954 * We have to be careful, if called from sys_setpriority(),
4955 * the task might be in the middle of scheduling on another CPU.
4957 rq = task_rq_lock(p, &flags);
4958 update_rq_clock(rq);
4960 * The RT priorities are set via sched_setscheduler(), but we still
4961 * allow the 'normal' nice value to be set - but as expected
4962 * it wont have any effect on scheduling until the task is
4963 * SCHED_FIFO/SCHED_RR:
4965 if (task_has_rt_policy(p)) {
4966 p->static_prio = NICE_TO_PRIO(nice);
4967 goto out_unlock;
4969 on_rq = p->se.on_rq;
4970 if (on_rq)
4971 dequeue_task(rq, p, 0);
4973 p->static_prio = NICE_TO_PRIO(nice);
4974 set_load_weight(p);
4975 old_prio = p->prio;
4976 p->prio = effective_prio(p);
4977 delta = p->prio - old_prio;
4979 if (on_rq) {
4980 enqueue_task(rq, p, 0);
4982 * If the task increased its priority or is running and
4983 * lowered its priority, then reschedule its CPU:
4985 if (delta < 0 || (delta > 0 && task_running(rq, p)))
4986 resched_task(rq->curr);
4988 out_unlock:
4989 task_rq_unlock(rq, &flags);
4991 EXPORT_SYMBOL(set_user_nice);
4994 * can_nice - check if a task can reduce its nice value
4995 * @p: task
4996 * @nice: nice value
4998 int can_nice(const struct task_struct *p, const int nice)
5000 /* convert nice value [19,-20] to rlimit style value [1,40] */
5001 int nice_rlim = 20 - nice;
5003 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
5004 capable(CAP_SYS_NICE));
5007 #ifdef __ARCH_WANT_SYS_NICE
5010 * sys_nice - change the priority of the current process.
5011 * @increment: priority increment
5013 * sys_setpriority is a more generic, but much slower function that
5014 * does similar things.
5016 asmlinkage long sys_nice(int increment)
5018 long nice, retval;
5021 * Setpriority might change our priority at the same moment.
5022 * We don't have to worry. Conceptually one call occurs first
5023 * and we have a single winner.
5025 if (increment < -40)
5026 increment = -40;
5027 if (increment > 40)
5028 increment = 40;
5030 nice = PRIO_TO_NICE(current->static_prio) + increment;
5031 if (nice < -20)
5032 nice = -20;
5033 if (nice > 19)
5034 nice = 19;
5036 if (increment < 0 && !can_nice(current, nice))
5037 return -EPERM;
5039 retval = security_task_setnice(current, nice);
5040 if (retval)
5041 return retval;
5043 set_user_nice(current, nice);
5044 return 0;
5047 #endif
5050 * task_prio - return the priority value of a given task.
5051 * @p: the task in question.
5053 * This is the priority value as seen by users in /proc.
5054 * RT tasks are offset by -200. Normal tasks are centered
5055 * around 0, value goes from -16 to +15.
5057 int task_prio(const struct task_struct *p)
5059 return p->prio - MAX_RT_PRIO;
5063 * task_nice - return the nice value of a given task.
5064 * @p: the task in question.
5066 int task_nice(const struct task_struct *p)
5068 return TASK_NICE(p);
5070 EXPORT_SYMBOL(task_nice);
5073 * idle_cpu - is a given cpu idle currently?
5074 * @cpu: the processor in question.
5076 int idle_cpu(int cpu)
5078 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
5082 * idle_task - return the idle task for a given cpu.
5083 * @cpu: the processor in question.
5085 struct task_struct *idle_task(int cpu)
5087 return cpu_rq(cpu)->idle;
5091 * find_process_by_pid - find a process with a matching PID value.
5092 * @pid: the pid in question.
5094 static struct task_struct *find_process_by_pid(pid_t pid)
5096 return pid ? find_task_by_vpid(pid) : current;
5099 /* Actually do priority change: must hold rq lock. */
5100 static void
5101 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
5103 BUG_ON(p->se.on_rq);
5105 p->policy = policy;
5106 switch (p->policy) {
5107 case SCHED_NORMAL:
5108 case SCHED_BATCH:
5109 case SCHED_IDLE:
5110 p->sched_class = &fair_sched_class;
5111 break;
5112 case SCHED_FIFO:
5113 case SCHED_RR:
5114 p->sched_class = &rt_sched_class;
5115 break;
5118 p->rt_priority = prio;
5119 p->normal_prio = normal_prio(p);
5120 /* we are holding p->pi_lock already */
5121 p->prio = rt_mutex_getprio(p);
5122 set_load_weight(p);
5125 static int __sched_setscheduler(struct task_struct *p, int policy,
5126 struct sched_param *param, bool user)
5128 int retval, oldprio, oldpolicy = -1, on_rq, running;
5129 unsigned long flags;
5130 const struct sched_class *prev_class = p->sched_class;
5131 struct rq *rq;
5133 /* may grab non-irq protected spin_locks */
5134 BUG_ON(in_interrupt());
5135 recheck:
5136 /* double check policy once rq lock held */
5137 if (policy < 0)
5138 policy = oldpolicy = p->policy;
5139 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
5140 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
5141 policy != SCHED_IDLE)
5142 return -EINVAL;
5144 * Valid priorities for SCHED_FIFO and SCHED_RR are
5145 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
5146 * SCHED_BATCH and SCHED_IDLE is 0.
5148 if (param->sched_priority < 0 ||
5149 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
5150 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
5151 return -EINVAL;
5152 if (rt_policy(policy) != (param->sched_priority != 0))
5153 return -EINVAL;
5156 * Allow unprivileged RT tasks to decrease priority:
5158 if (user && !capable(CAP_SYS_NICE)) {
5159 if (rt_policy(policy)) {
5160 unsigned long rlim_rtprio;
5162 if (!lock_task_sighand(p, &flags))
5163 return -ESRCH;
5164 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
5165 unlock_task_sighand(p, &flags);
5167 /* can't set/change the rt policy */
5168 if (policy != p->policy && !rlim_rtprio)
5169 return -EPERM;
5171 /* can't increase priority */
5172 if (param->sched_priority > p->rt_priority &&
5173 param->sched_priority > rlim_rtprio)
5174 return -EPERM;
5177 * Like positive nice levels, dont allow tasks to
5178 * move out of SCHED_IDLE either:
5180 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
5181 return -EPERM;
5183 /* can't change other user's priorities */
5184 if ((current->euid != p->euid) &&
5185 (current->euid != p->uid))
5186 return -EPERM;
5189 if (user) {
5190 #ifdef CONFIG_RT_GROUP_SCHED
5192 * Do not allow realtime tasks into groups that have no runtime
5193 * assigned.
5195 if (rt_bandwidth_enabled() && rt_policy(policy) &&
5196 task_group(p)->rt_bandwidth.rt_runtime == 0)
5197 return -EPERM;
5198 #endif
5200 retval = security_task_setscheduler(p, policy, param);
5201 if (retval)
5202 return retval;
5206 * make sure no PI-waiters arrive (or leave) while we are
5207 * changing the priority of the task:
5209 spin_lock_irqsave(&p->pi_lock, flags);
5211 * To be able to change p->policy safely, the apropriate
5212 * runqueue lock must be held.
5214 rq = __task_rq_lock(p);
5215 /* recheck policy now with rq lock held */
5216 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
5217 policy = oldpolicy = -1;
5218 __task_rq_unlock(rq);
5219 spin_unlock_irqrestore(&p->pi_lock, flags);
5220 goto recheck;
5222 update_rq_clock(rq);
5223 on_rq = p->se.on_rq;
5224 running = task_current(rq, p);
5225 if (on_rq)
5226 deactivate_task(rq, p, 0);
5227 if (running)
5228 p->sched_class->put_prev_task(rq, p);
5230 oldprio = p->prio;
5231 __setscheduler(rq, p, policy, param->sched_priority);
5233 if (running)
5234 p->sched_class->set_curr_task(rq);
5235 if (on_rq) {
5236 activate_task(rq, p, 0);
5238 check_class_changed(rq, p, prev_class, oldprio, running);
5240 __task_rq_unlock(rq);
5241 spin_unlock_irqrestore(&p->pi_lock, flags);
5243 rt_mutex_adjust_pi(p);
5245 return 0;
5249 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5250 * @p: the task in question.
5251 * @policy: new policy.
5252 * @param: structure containing the new RT priority.
5254 * NOTE that the task may be already dead.
5256 int sched_setscheduler(struct task_struct *p, int policy,
5257 struct sched_param *param)
5259 return __sched_setscheduler(p, policy, param, true);
5261 EXPORT_SYMBOL_GPL(sched_setscheduler);
5264 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5265 * @p: the task in question.
5266 * @policy: new policy.
5267 * @param: structure containing the new RT priority.
5269 * Just like sched_setscheduler, only don't bother checking if the
5270 * current context has permission. For example, this is needed in
5271 * stop_machine(): we create temporary high priority worker threads,
5272 * but our caller might not have that capability.
5274 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
5275 struct sched_param *param)
5277 return __sched_setscheduler(p, policy, param, false);
5280 static int
5281 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
5283 struct sched_param lparam;
5284 struct task_struct *p;
5285 int retval;
5287 if (!param || pid < 0)
5288 return -EINVAL;
5289 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5290 return -EFAULT;
5292 rcu_read_lock();
5293 retval = -ESRCH;
5294 p = find_process_by_pid(pid);
5295 if (p != NULL)
5296 retval = sched_setscheduler(p, policy, &lparam);
5297 rcu_read_unlock();
5299 return retval;
5303 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5304 * @pid: the pid in question.
5305 * @policy: new policy.
5306 * @param: structure containing the new RT priority.
5308 asmlinkage long
5309 sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
5311 /* negative values for policy are not valid */
5312 if (policy < 0)
5313 return -EINVAL;
5315 return do_sched_setscheduler(pid, policy, param);
5319 * sys_sched_setparam - set/change the RT priority of a thread
5320 * @pid: the pid in question.
5321 * @param: structure containing the new RT priority.
5323 asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
5325 return do_sched_setscheduler(pid, -1, param);
5329 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5330 * @pid: the pid in question.
5332 asmlinkage long sys_sched_getscheduler(pid_t pid)
5334 struct task_struct *p;
5335 int retval;
5337 if (pid < 0)
5338 return -EINVAL;
5340 retval = -ESRCH;
5341 read_lock(&tasklist_lock);
5342 p = find_process_by_pid(pid);
5343 if (p) {
5344 retval = security_task_getscheduler(p);
5345 if (!retval)
5346 retval = p->policy;
5348 read_unlock(&tasklist_lock);
5349 return retval;
5353 * sys_sched_getscheduler - get the RT priority of a thread
5354 * @pid: the pid in question.
5355 * @param: structure containing the RT priority.
5357 asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
5359 struct sched_param lp;
5360 struct task_struct *p;
5361 int retval;
5363 if (!param || pid < 0)
5364 return -EINVAL;
5366 read_lock(&tasklist_lock);
5367 p = find_process_by_pid(pid);
5368 retval = -ESRCH;
5369 if (!p)
5370 goto out_unlock;
5372 retval = security_task_getscheduler(p);
5373 if (retval)
5374 goto out_unlock;
5376 lp.sched_priority = p->rt_priority;
5377 read_unlock(&tasklist_lock);
5380 * This one might sleep, we cannot do it with a spinlock held ...
5382 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5384 return retval;
5386 out_unlock:
5387 read_unlock(&tasklist_lock);
5388 return retval;
5391 long sched_setaffinity(pid_t pid, const cpumask_t *in_mask)
5393 cpumask_t cpus_allowed;
5394 cpumask_t new_mask = *in_mask;
5395 struct task_struct *p;
5396 int retval;
5398 get_online_cpus();
5399 read_lock(&tasklist_lock);
5401 p = find_process_by_pid(pid);
5402 if (!p) {
5403 read_unlock(&tasklist_lock);
5404 put_online_cpus();
5405 return -ESRCH;
5409 * It is not safe to call set_cpus_allowed with the
5410 * tasklist_lock held. We will bump the task_struct's
5411 * usage count and then drop tasklist_lock.
5413 get_task_struct(p);
5414 read_unlock(&tasklist_lock);
5416 retval = -EPERM;
5417 if ((current->euid != p->euid) && (current->euid != p->uid) &&
5418 !capable(CAP_SYS_NICE))
5419 goto out_unlock;
5421 retval = security_task_setscheduler(p, 0, NULL);
5422 if (retval)
5423 goto out_unlock;
5425 cpuset_cpus_allowed(p, &cpus_allowed);
5426 cpus_and(new_mask, new_mask, cpus_allowed);
5427 again:
5428 retval = set_cpus_allowed_ptr(p, &new_mask);
5430 if (!retval) {
5431 cpuset_cpus_allowed(p, &cpus_allowed);
5432 if (!cpus_subset(new_mask, cpus_allowed)) {
5434 * We must have raced with a concurrent cpuset
5435 * update. Just reset the cpus_allowed to the
5436 * cpuset's cpus_allowed
5438 new_mask = cpus_allowed;
5439 goto again;
5442 out_unlock:
5443 put_task_struct(p);
5444 put_online_cpus();
5445 return retval;
5448 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
5449 cpumask_t *new_mask)
5451 if (len < sizeof(cpumask_t)) {
5452 memset(new_mask, 0, sizeof(cpumask_t));
5453 } else if (len > sizeof(cpumask_t)) {
5454 len = sizeof(cpumask_t);
5456 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5460 * sys_sched_setaffinity - set the cpu affinity of a process
5461 * @pid: pid of the process
5462 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5463 * @user_mask_ptr: user-space pointer to the new cpu mask
5465 asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
5466 unsigned long __user *user_mask_ptr)
5468 cpumask_t new_mask;
5469 int retval;
5471 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
5472 if (retval)
5473 return retval;
5475 return sched_setaffinity(pid, &new_mask);
5478 long sched_getaffinity(pid_t pid, cpumask_t *mask)
5480 struct task_struct *p;
5481 int retval;
5483 get_online_cpus();
5484 read_lock(&tasklist_lock);
5486 retval = -ESRCH;
5487 p = find_process_by_pid(pid);
5488 if (!p)
5489 goto out_unlock;
5491 retval = security_task_getscheduler(p);
5492 if (retval)
5493 goto out_unlock;
5495 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
5497 out_unlock:
5498 read_unlock(&tasklist_lock);
5499 put_online_cpus();
5501 return retval;
5505 * sys_sched_getaffinity - get the cpu affinity of a process
5506 * @pid: pid of the process
5507 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5508 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5510 asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
5511 unsigned long __user *user_mask_ptr)
5513 int ret;
5514 cpumask_t mask;
5516 if (len < sizeof(cpumask_t))
5517 return -EINVAL;
5519 ret = sched_getaffinity(pid, &mask);
5520 if (ret < 0)
5521 return ret;
5523 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
5524 return -EFAULT;
5526 return sizeof(cpumask_t);
5530 * sys_sched_yield - yield the current processor to other threads.
5532 * This function yields the current CPU to other tasks. If there are no
5533 * other threads running on this CPU then this function will return.
5535 asmlinkage long sys_sched_yield(void)
5537 struct rq *rq = this_rq_lock();
5539 schedstat_inc(rq, yld_count);
5540 current->sched_class->yield_task(rq);
5543 * Since we are going to call schedule() anyway, there's
5544 * no need to preempt or enable interrupts:
5546 __release(rq->lock);
5547 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
5548 _raw_spin_unlock(&rq->lock);
5549 preempt_enable_no_resched();
5551 schedule();
5553 return 0;
5556 static void __cond_resched(void)
5558 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
5559 __might_sleep(__FILE__, __LINE__);
5560 #endif
5562 * The BKS might be reacquired before we have dropped
5563 * PREEMPT_ACTIVE, which could trigger a second
5564 * cond_resched() call.
5566 do {
5567 add_preempt_count(PREEMPT_ACTIVE);
5568 schedule();
5569 sub_preempt_count(PREEMPT_ACTIVE);
5570 } while (need_resched());
5573 int __sched _cond_resched(void)
5575 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
5576 system_state == SYSTEM_RUNNING) {
5577 __cond_resched();
5578 return 1;
5580 return 0;
5582 EXPORT_SYMBOL(_cond_resched);
5585 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
5586 * call schedule, and on return reacquire the lock.
5588 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
5589 * operations here to prevent schedule() from being called twice (once via
5590 * spin_unlock(), once by hand).
5592 int cond_resched_lock(spinlock_t *lock)
5594 int resched = need_resched() && system_state == SYSTEM_RUNNING;
5595 int ret = 0;
5597 if (spin_needbreak(lock) || resched) {
5598 spin_unlock(lock);
5599 if (resched && need_resched())
5600 __cond_resched();
5601 else
5602 cpu_relax();
5603 ret = 1;
5604 spin_lock(lock);
5606 return ret;
5608 EXPORT_SYMBOL(cond_resched_lock);
5610 int __sched cond_resched_softirq(void)
5612 BUG_ON(!in_softirq());
5614 if (need_resched() && system_state == SYSTEM_RUNNING) {
5615 local_bh_enable();
5616 __cond_resched();
5617 local_bh_disable();
5618 return 1;
5620 return 0;
5622 EXPORT_SYMBOL(cond_resched_softirq);
5625 * yield - yield the current processor to other threads.
5627 * This is a shortcut for kernel-space yielding - it marks the
5628 * thread runnable and calls sys_sched_yield().
5630 void __sched yield(void)
5632 set_current_state(TASK_RUNNING);
5633 sys_sched_yield();
5635 EXPORT_SYMBOL(yield);
5638 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5639 * that process accounting knows that this is a task in IO wait state.
5641 * But don't do that if it is a deliberate, throttling IO wait (this task
5642 * has set its backing_dev_info: the queue against which it should throttle)
5644 void __sched io_schedule(void)
5646 struct rq *rq = &__raw_get_cpu_var(runqueues);
5648 delayacct_blkio_start();
5649 atomic_inc(&rq->nr_iowait);
5650 schedule();
5651 atomic_dec(&rq->nr_iowait);
5652 delayacct_blkio_end();
5654 EXPORT_SYMBOL(io_schedule);
5656 long __sched io_schedule_timeout(long timeout)
5658 struct rq *rq = &__raw_get_cpu_var(runqueues);
5659 long ret;
5661 delayacct_blkio_start();
5662 atomic_inc(&rq->nr_iowait);
5663 ret = schedule_timeout(timeout);
5664 atomic_dec(&rq->nr_iowait);
5665 delayacct_blkio_end();
5666 return ret;
5670 * sys_sched_get_priority_max - return maximum RT priority.
5671 * @policy: scheduling class.
5673 * this syscall returns the maximum rt_priority that can be used
5674 * by a given scheduling class.
5676 asmlinkage long sys_sched_get_priority_max(int policy)
5678 int ret = -EINVAL;
5680 switch (policy) {
5681 case SCHED_FIFO:
5682 case SCHED_RR:
5683 ret = MAX_USER_RT_PRIO-1;
5684 break;
5685 case SCHED_NORMAL:
5686 case SCHED_BATCH:
5687 case SCHED_IDLE:
5688 ret = 0;
5689 break;
5691 return ret;
5695 * sys_sched_get_priority_min - return minimum RT priority.
5696 * @policy: scheduling class.
5698 * this syscall returns the minimum rt_priority that can be used
5699 * by a given scheduling class.
5701 asmlinkage long sys_sched_get_priority_min(int policy)
5703 int ret = -EINVAL;
5705 switch (policy) {
5706 case SCHED_FIFO:
5707 case SCHED_RR:
5708 ret = 1;
5709 break;
5710 case SCHED_NORMAL:
5711 case SCHED_BATCH:
5712 case SCHED_IDLE:
5713 ret = 0;
5715 return ret;
5719 * sys_sched_rr_get_interval - return the default timeslice of a process.
5720 * @pid: pid of the process.
5721 * @interval: userspace pointer to the timeslice value.
5723 * this syscall writes the default timeslice value of a given process
5724 * into the user-space timespec buffer. A value of '0' means infinity.
5726 asmlinkage
5727 long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
5729 struct task_struct *p;
5730 unsigned int time_slice;
5731 int retval;
5732 struct timespec t;
5734 if (pid < 0)
5735 return -EINVAL;
5737 retval = -ESRCH;
5738 read_lock(&tasklist_lock);
5739 p = find_process_by_pid(pid);
5740 if (!p)
5741 goto out_unlock;
5743 retval = security_task_getscheduler(p);
5744 if (retval)
5745 goto out_unlock;
5748 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
5749 * tasks that are on an otherwise idle runqueue:
5751 time_slice = 0;
5752 if (p->policy == SCHED_RR) {
5753 time_slice = DEF_TIMESLICE;
5754 } else if (p->policy != SCHED_FIFO) {
5755 struct sched_entity *se = &p->se;
5756 unsigned long flags;
5757 struct rq *rq;
5759 rq = task_rq_lock(p, &flags);
5760 if (rq->cfs.load.weight)
5761 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
5762 task_rq_unlock(rq, &flags);
5764 read_unlock(&tasklist_lock);
5765 jiffies_to_timespec(time_slice, &t);
5766 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
5767 return retval;
5769 out_unlock:
5770 read_unlock(&tasklist_lock);
5771 return retval;
5774 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5776 void sched_show_task(struct task_struct *p)
5778 unsigned long free = 0;
5779 unsigned state;
5781 state = p->state ? __ffs(p->state) + 1 : 0;
5782 printk(KERN_INFO "%-13.13s %c", p->comm,
5783 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5784 #if BITS_PER_LONG == 32
5785 if (state == TASK_RUNNING)
5786 printk(KERN_CONT " running ");
5787 else
5788 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
5789 #else
5790 if (state == TASK_RUNNING)
5791 printk(KERN_CONT " running task ");
5792 else
5793 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
5794 #endif
5795 #ifdef CONFIG_DEBUG_STACK_USAGE
5797 unsigned long *n = end_of_stack(p);
5798 while (!*n)
5799 n++;
5800 free = (unsigned long)n - (unsigned long)end_of_stack(p);
5802 #endif
5803 printk(KERN_CONT "%5lu %5d %6d\n", free,
5804 task_pid_nr(p), task_pid_nr(p->real_parent));
5806 show_stack(p, NULL);
5809 void show_state_filter(unsigned long state_filter)
5811 struct task_struct *g, *p;
5813 #if BITS_PER_LONG == 32
5814 printk(KERN_INFO
5815 " task PC stack pid father\n");
5816 #else
5817 printk(KERN_INFO
5818 " task PC stack pid father\n");
5819 #endif
5820 read_lock(&tasklist_lock);
5821 do_each_thread(g, p) {
5823 * reset the NMI-timeout, listing all files on a slow
5824 * console might take alot of time:
5826 touch_nmi_watchdog();
5827 if (!state_filter || (p->state & state_filter))
5828 sched_show_task(p);
5829 } while_each_thread(g, p);
5831 touch_all_softlockup_watchdogs();
5833 #ifdef CONFIG_SCHED_DEBUG
5834 sysrq_sched_debug_show();
5835 #endif
5836 read_unlock(&tasklist_lock);
5838 * Only show locks if all tasks are dumped:
5840 if (state_filter == -1)
5841 debug_show_all_locks();
5844 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5846 idle->sched_class = &idle_sched_class;
5850 * init_idle - set up an idle thread for a given CPU
5851 * @idle: task in question
5852 * @cpu: cpu the idle task belongs to
5854 * NOTE: this function does not set the idle thread's NEED_RESCHED
5855 * flag, to make booting more robust.
5857 void __cpuinit init_idle(struct task_struct *idle, int cpu)
5859 struct rq *rq = cpu_rq(cpu);
5860 unsigned long flags;
5862 __sched_fork(idle);
5863 idle->se.exec_start = sched_clock();
5865 idle->prio = idle->normal_prio = MAX_PRIO;
5866 idle->cpus_allowed = cpumask_of_cpu(cpu);
5867 __set_task_cpu(idle, cpu);
5869 spin_lock_irqsave(&rq->lock, flags);
5870 rq->curr = rq->idle = idle;
5871 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5872 idle->oncpu = 1;
5873 #endif
5874 spin_unlock_irqrestore(&rq->lock, flags);
5876 /* Set the preempt count _outside_ the spinlocks! */
5877 #if defined(CONFIG_PREEMPT)
5878 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
5879 #else
5880 task_thread_info(idle)->preempt_count = 0;
5881 #endif
5883 * The idle tasks have their own, simple scheduling class:
5885 idle->sched_class = &idle_sched_class;
5889 * In a system that switches off the HZ timer nohz_cpu_mask
5890 * indicates which cpus entered this state. This is used
5891 * in the rcu update to wait only for active cpus. For system
5892 * which do not switch off the HZ timer nohz_cpu_mask should
5893 * always be CPU_MASK_NONE.
5895 cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
5898 * Increase the granularity value when there are more CPUs,
5899 * because with more CPUs the 'effective latency' as visible
5900 * to users decreases. But the relationship is not linear,
5901 * so pick a second-best guess by going with the log2 of the
5902 * number of CPUs.
5904 * This idea comes from the SD scheduler of Con Kolivas:
5906 static inline void sched_init_granularity(void)
5908 unsigned int factor = 1 + ilog2(num_online_cpus());
5909 const unsigned long limit = 200000000;
5911 sysctl_sched_min_granularity *= factor;
5912 if (sysctl_sched_min_granularity > limit)
5913 sysctl_sched_min_granularity = limit;
5915 sysctl_sched_latency *= factor;
5916 if (sysctl_sched_latency > limit)
5917 sysctl_sched_latency = limit;
5919 sysctl_sched_wakeup_granularity *= factor;
5921 sysctl_sched_shares_ratelimit *= factor;
5924 #ifdef CONFIG_SMP
5926 * This is how migration works:
5928 * 1) we queue a struct migration_req structure in the source CPU's
5929 * runqueue and wake up that CPU's migration thread.
5930 * 2) we down() the locked semaphore => thread blocks.
5931 * 3) migration thread wakes up (implicitly it forces the migrated
5932 * thread off the CPU)
5933 * 4) it gets the migration request and checks whether the migrated
5934 * task is still in the wrong runqueue.
5935 * 5) if it's in the wrong runqueue then the migration thread removes
5936 * it and puts it into the right queue.
5937 * 6) migration thread up()s the semaphore.
5938 * 7) we wake up and the migration is done.
5942 * Change a given task's CPU affinity. Migrate the thread to a
5943 * proper CPU and schedule it away if the CPU it's executing on
5944 * is removed from the allowed bitmask.
5946 * NOTE: the caller must have a valid reference to the task, the
5947 * task must not exit() & deallocate itself prematurely. The
5948 * call is not atomic; no spinlocks may be held.
5950 int set_cpus_allowed_ptr(struct task_struct *p, const cpumask_t *new_mask)
5952 struct migration_req req;
5953 unsigned long flags;
5954 struct rq *rq;
5955 int ret = 0;
5957 rq = task_rq_lock(p, &flags);
5958 if (!cpus_intersects(*new_mask, cpu_online_map)) {
5959 ret = -EINVAL;
5960 goto out;
5963 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
5964 !cpus_equal(p->cpus_allowed, *new_mask))) {
5965 ret = -EINVAL;
5966 goto out;
5969 if (p->sched_class->set_cpus_allowed)
5970 p->sched_class->set_cpus_allowed(p, new_mask);
5971 else {
5972 p->cpus_allowed = *new_mask;
5973 p->rt.nr_cpus_allowed = cpus_weight(*new_mask);
5976 /* Can the task run on the task's current CPU? If so, we're done */
5977 if (cpu_isset(task_cpu(p), *new_mask))
5978 goto out;
5980 if (migrate_task(p, any_online_cpu(*new_mask), &req)) {
5981 /* Need help from migration thread: drop lock and wait. */
5982 task_rq_unlock(rq, &flags);
5983 wake_up_process(rq->migration_thread);
5984 wait_for_completion(&req.done);
5985 tlb_migrate_finish(p->mm);
5986 return 0;
5988 out:
5989 task_rq_unlock(rq, &flags);
5991 return ret;
5993 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
5996 * Move (not current) task off this cpu, onto dest cpu. We're doing
5997 * this because either it can't run here any more (set_cpus_allowed()
5998 * away from this CPU, or CPU going down), or because we're
5999 * attempting to rebalance this task on exec (sched_exec).
6001 * So we race with normal scheduler movements, but that's OK, as long
6002 * as the task is no longer on this CPU.
6004 * Returns non-zero if task was successfully migrated.
6006 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
6008 struct rq *rq_dest, *rq_src;
6009 int ret = 0, on_rq;
6011 if (unlikely(!cpu_active(dest_cpu)))
6012 return ret;
6014 rq_src = cpu_rq(src_cpu);
6015 rq_dest = cpu_rq(dest_cpu);
6017 double_rq_lock(rq_src, rq_dest);
6018 /* Already moved. */
6019 if (task_cpu(p) != src_cpu)
6020 goto done;
6021 /* Affinity changed (again). */
6022 if (!cpu_isset(dest_cpu, p->cpus_allowed))
6023 goto fail;
6025 on_rq = p->se.on_rq;
6026 if (on_rq)
6027 deactivate_task(rq_src, p, 0);
6029 set_task_cpu(p, dest_cpu);
6030 if (on_rq) {
6031 activate_task(rq_dest, p, 0);
6032 check_preempt_curr(rq_dest, p, 0);
6034 done:
6035 ret = 1;
6036 fail:
6037 double_rq_unlock(rq_src, rq_dest);
6038 return ret;
6042 * migration_thread - this is a highprio system thread that performs
6043 * thread migration by bumping thread off CPU then 'pushing' onto
6044 * another runqueue.
6046 static int migration_thread(void *data)
6048 int cpu = (long)data;
6049 struct rq *rq;
6051 rq = cpu_rq(cpu);
6052 BUG_ON(rq->migration_thread != current);
6054 set_current_state(TASK_INTERRUPTIBLE);
6055 while (!kthread_should_stop()) {
6056 struct migration_req *req;
6057 struct list_head *head;
6059 spin_lock_irq(&rq->lock);
6061 if (cpu_is_offline(cpu)) {
6062 spin_unlock_irq(&rq->lock);
6063 goto wait_to_die;
6066 if (rq->active_balance) {
6067 active_load_balance(rq, cpu);
6068 rq->active_balance = 0;
6071 head = &rq->migration_queue;
6073 if (list_empty(head)) {
6074 spin_unlock_irq(&rq->lock);
6075 schedule();
6076 set_current_state(TASK_INTERRUPTIBLE);
6077 continue;
6079 req = list_entry(head->next, struct migration_req, list);
6080 list_del_init(head->next);
6082 spin_unlock(&rq->lock);
6083 __migrate_task(req->task, cpu, req->dest_cpu);
6084 local_irq_enable();
6086 complete(&req->done);
6088 __set_current_state(TASK_RUNNING);
6089 return 0;
6091 wait_to_die:
6092 /* Wait for kthread_stop */
6093 set_current_state(TASK_INTERRUPTIBLE);
6094 while (!kthread_should_stop()) {
6095 schedule();
6096 set_current_state(TASK_INTERRUPTIBLE);
6098 __set_current_state(TASK_RUNNING);
6099 return 0;
6102 #ifdef CONFIG_HOTPLUG_CPU
6104 static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
6106 int ret;
6108 local_irq_disable();
6109 ret = __migrate_task(p, src_cpu, dest_cpu);
6110 local_irq_enable();
6111 return ret;
6115 * Figure out where task on dead CPU should go, use force if necessary.
6116 * NOTE: interrupts should be disabled by the caller
6118 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
6120 unsigned long flags;
6121 cpumask_t mask;
6122 struct rq *rq;
6123 int dest_cpu;
6125 do {
6126 /* On same node? */
6127 mask = node_to_cpumask(cpu_to_node(dead_cpu));
6128 cpus_and(mask, mask, p->cpus_allowed);
6129 dest_cpu = any_online_cpu(mask);
6131 /* On any allowed CPU? */
6132 if (dest_cpu >= nr_cpu_ids)
6133 dest_cpu = any_online_cpu(p->cpus_allowed);
6135 /* No more Mr. Nice Guy. */
6136 if (dest_cpu >= nr_cpu_ids) {
6137 cpumask_t cpus_allowed;
6139 cpuset_cpus_allowed_locked(p, &cpus_allowed);
6141 * Try to stay on the same cpuset, where the
6142 * current cpuset may be a subset of all cpus.
6143 * The cpuset_cpus_allowed_locked() variant of
6144 * cpuset_cpus_allowed() will not block. It must be
6145 * called within calls to cpuset_lock/cpuset_unlock.
6147 rq = task_rq_lock(p, &flags);
6148 p->cpus_allowed = cpus_allowed;
6149 dest_cpu = any_online_cpu(p->cpus_allowed);
6150 task_rq_unlock(rq, &flags);
6153 * Don't tell them about moving exiting tasks or
6154 * kernel threads (both mm NULL), since they never
6155 * leave kernel.
6157 if (p->mm && printk_ratelimit()) {
6158 printk(KERN_INFO "process %d (%s) no "
6159 "longer affine to cpu%d\n",
6160 task_pid_nr(p), p->comm, dead_cpu);
6163 } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
6167 * While a dead CPU has no uninterruptible tasks queued at this point,
6168 * it might still have a nonzero ->nr_uninterruptible counter, because
6169 * for performance reasons the counter is not stricly tracking tasks to
6170 * their home CPUs. So we just add the counter to another CPU's counter,
6171 * to keep the global sum constant after CPU-down:
6173 static void migrate_nr_uninterruptible(struct rq *rq_src)
6175 struct rq *rq_dest = cpu_rq(any_online_cpu(*CPU_MASK_ALL_PTR));
6176 unsigned long flags;
6178 local_irq_save(flags);
6179 double_rq_lock(rq_src, rq_dest);
6180 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
6181 rq_src->nr_uninterruptible = 0;
6182 double_rq_unlock(rq_src, rq_dest);
6183 local_irq_restore(flags);
6186 /* Run through task list and migrate tasks from the dead cpu. */
6187 static void migrate_live_tasks(int src_cpu)
6189 struct task_struct *p, *t;
6191 read_lock(&tasklist_lock);
6193 do_each_thread(t, p) {
6194 if (p == current)
6195 continue;
6197 if (task_cpu(p) == src_cpu)
6198 move_task_off_dead_cpu(src_cpu, p);
6199 } while_each_thread(t, p);
6201 read_unlock(&tasklist_lock);
6205 * Schedules idle task to be the next runnable task on current CPU.
6206 * It does so by boosting its priority to highest possible.
6207 * Used by CPU offline code.
6209 void sched_idle_next(void)
6211 int this_cpu = smp_processor_id();
6212 struct rq *rq = cpu_rq(this_cpu);
6213 struct task_struct *p = rq->idle;
6214 unsigned long flags;
6216 /* cpu has to be offline */
6217 BUG_ON(cpu_online(this_cpu));
6220 * Strictly not necessary since rest of the CPUs are stopped by now
6221 * and interrupts disabled on the current cpu.
6223 spin_lock_irqsave(&rq->lock, flags);
6225 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
6227 update_rq_clock(rq);
6228 activate_task(rq, p, 0);
6230 spin_unlock_irqrestore(&rq->lock, flags);
6234 * Ensures that the idle task is using init_mm right before its cpu goes
6235 * offline.
6237 void idle_task_exit(void)
6239 struct mm_struct *mm = current->active_mm;
6241 BUG_ON(cpu_online(smp_processor_id()));
6243 if (mm != &init_mm)
6244 switch_mm(mm, &init_mm, current);
6245 mmdrop(mm);
6248 /* called under rq->lock with disabled interrupts */
6249 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
6251 struct rq *rq = cpu_rq(dead_cpu);
6253 /* Must be exiting, otherwise would be on tasklist. */
6254 BUG_ON(!p->exit_state);
6256 /* Cannot have done final schedule yet: would have vanished. */
6257 BUG_ON(p->state == TASK_DEAD);
6259 get_task_struct(p);
6262 * Drop lock around migration; if someone else moves it,
6263 * that's OK. No task can be added to this CPU, so iteration is
6264 * fine.
6266 spin_unlock_irq(&rq->lock);
6267 move_task_off_dead_cpu(dead_cpu, p);
6268 spin_lock_irq(&rq->lock);
6270 put_task_struct(p);
6273 /* release_task() removes task from tasklist, so we won't find dead tasks. */
6274 static void migrate_dead_tasks(unsigned int dead_cpu)
6276 struct rq *rq = cpu_rq(dead_cpu);
6277 struct task_struct *next;
6279 for ( ; ; ) {
6280 if (!rq->nr_running)
6281 break;
6282 update_rq_clock(rq);
6283 next = pick_next_task(rq, rq->curr);
6284 if (!next)
6285 break;
6286 next->sched_class->put_prev_task(rq, next);
6287 migrate_dead(dead_cpu, next);
6291 #endif /* CONFIG_HOTPLUG_CPU */
6293 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
6295 static struct ctl_table sd_ctl_dir[] = {
6297 .procname = "sched_domain",
6298 .mode = 0555,
6300 {0, },
6303 static struct ctl_table sd_ctl_root[] = {
6305 .ctl_name = CTL_KERN,
6306 .procname = "kernel",
6307 .mode = 0555,
6308 .child = sd_ctl_dir,
6310 {0, },
6313 static struct ctl_table *sd_alloc_ctl_entry(int n)
6315 struct ctl_table *entry =
6316 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
6318 return entry;
6321 static void sd_free_ctl_entry(struct ctl_table **tablep)
6323 struct ctl_table *entry;
6326 * In the intermediate directories, both the child directory and
6327 * procname are dynamically allocated and could fail but the mode
6328 * will always be set. In the lowest directory the names are
6329 * static strings and all have proc handlers.
6331 for (entry = *tablep; entry->mode; entry++) {
6332 if (entry->child)
6333 sd_free_ctl_entry(&entry->child);
6334 if (entry->proc_handler == NULL)
6335 kfree(entry->procname);
6338 kfree(*tablep);
6339 *tablep = NULL;
6342 static void
6343 set_table_entry(struct ctl_table *entry,
6344 const char *procname, void *data, int maxlen,
6345 mode_t mode, proc_handler *proc_handler)
6347 entry->procname = procname;
6348 entry->data = data;
6349 entry->maxlen = maxlen;
6350 entry->mode = mode;
6351 entry->proc_handler = proc_handler;
6354 static struct ctl_table *
6355 sd_alloc_ctl_domain_table(struct sched_domain *sd)
6357 struct ctl_table *table = sd_alloc_ctl_entry(13);
6359 if (table == NULL)
6360 return NULL;
6362 set_table_entry(&table[0], "min_interval", &sd->min_interval,
6363 sizeof(long), 0644, proc_doulongvec_minmax);
6364 set_table_entry(&table[1], "max_interval", &sd->max_interval,
6365 sizeof(long), 0644, proc_doulongvec_minmax);
6366 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
6367 sizeof(int), 0644, proc_dointvec_minmax);
6368 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
6369 sizeof(int), 0644, proc_dointvec_minmax);
6370 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
6371 sizeof(int), 0644, proc_dointvec_minmax);
6372 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
6373 sizeof(int), 0644, proc_dointvec_minmax);
6374 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
6375 sizeof(int), 0644, proc_dointvec_minmax);
6376 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
6377 sizeof(int), 0644, proc_dointvec_minmax);
6378 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
6379 sizeof(int), 0644, proc_dointvec_minmax);
6380 set_table_entry(&table[9], "cache_nice_tries",
6381 &sd->cache_nice_tries,
6382 sizeof(int), 0644, proc_dointvec_minmax);
6383 set_table_entry(&table[10], "flags", &sd->flags,
6384 sizeof(int), 0644, proc_dointvec_minmax);
6385 set_table_entry(&table[11], "name", sd->name,
6386 CORENAME_MAX_SIZE, 0444, proc_dostring);
6387 /* &table[12] is terminator */
6389 return table;
6392 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
6394 struct ctl_table *entry, *table;
6395 struct sched_domain *sd;
6396 int domain_num = 0, i;
6397 char buf[32];
6399 for_each_domain(cpu, sd)
6400 domain_num++;
6401 entry = table = sd_alloc_ctl_entry(domain_num + 1);
6402 if (table == NULL)
6403 return NULL;
6405 i = 0;
6406 for_each_domain(cpu, sd) {
6407 snprintf(buf, 32, "domain%d", i);
6408 entry->procname = kstrdup(buf, GFP_KERNEL);
6409 entry->mode = 0555;
6410 entry->child = sd_alloc_ctl_domain_table(sd);
6411 entry++;
6412 i++;
6414 return table;
6417 static struct ctl_table_header *sd_sysctl_header;
6418 static void register_sched_domain_sysctl(void)
6420 int i, cpu_num = num_online_cpus();
6421 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
6422 char buf[32];
6424 WARN_ON(sd_ctl_dir[0].child);
6425 sd_ctl_dir[0].child = entry;
6427 if (entry == NULL)
6428 return;
6430 for_each_online_cpu(i) {
6431 snprintf(buf, 32, "cpu%d", i);
6432 entry->procname = kstrdup(buf, GFP_KERNEL);
6433 entry->mode = 0555;
6434 entry->child = sd_alloc_ctl_cpu_table(i);
6435 entry++;
6438 WARN_ON(sd_sysctl_header);
6439 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
6442 /* may be called multiple times per register */
6443 static void unregister_sched_domain_sysctl(void)
6445 if (sd_sysctl_header)
6446 unregister_sysctl_table(sd_sysctl_header);
6447 sd_sysctl_header = NULL;
6448 if (sd_ctl_dir[0].child)
6449 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6451 #else
6452 static void register_sched_domain_sysctl(void)
6455 static void unregister_sched_domain_sysctl(void)
6458 #endif
6460 static void set_rq_online(struct rq *rq)
6462 if (!rq->online) {
6463 const struct sched_class *class;
6465 cpu_set(rq->cpu, rq->rd->online);
6466 rq->online = 1;
6468 for_each_class(class) {
6469 if (class->rq_online)
6470 class->rq_online(rq);
6475 static void set_rq_offline(struct rq *rq)
6477 if (rq->online) {
6478 const struct sched_class *class;
6480 for_each_class(class) {
6481 if (class->rq_offline)
6482 class->rq_offline(rq);
6485 cpu_clear(rq->cpu, rq->rd->online);
6486 rq->online = 0;
6491 * migration_call - callback that gets triggered when a CPU is added.
6492 * Here we can start up the necessary migration thread for the new CPU.
6494 static int __cpuinit
6495 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
6497 struct task_struct *p;
6498 int cpu = (long)hcpu;
6499 unsigned long flags;
6500 struct rq *rq;
6502 switch (action) {
6504 case CPU_UP_PREPARE:
6505 case CPU_UP_PREPARE_FROZEN:
6506 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
6507 if (IS_ERR(p))
6508 return NOTIFY_BAD;
6509 kthread_bind(p, cpu);
6510 /* Must be high prio: stop_machine expects to yield to it. */
6511 rq = task_rq_lock(p, &flags);
6512 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
6513 task_rq_unlock(rq, &flags);
6514 cpu_rq(cpu)->migration_thread = p;
6515 break;
6517 case CPU_ONLINE:
6518 case CPU_ONLINE_FROZEN:
6519 /* Strictly unnecessary, as first user will wake it. */
6520 wake_up_process(cpu_rq(cpu)->migration_thread);
6522 /* Update our root-domain */
6523 rq = cpu_rq(cpu);
6524 spin_lock_irqsave(&rq->lock, flags);
6525 if (rq->rd) {
6526 BUG_ON(!cpu_isset(cpu, rq->rd->span));
6528 set_rq_online(rq);
6530 spin_unlock_irqrestore(&rq->lock, flags);
6531 break;
6533 #ifdef CONFIG_HOTPLUG_CPU
6534 case CPU_UP_CANCELED:
6535 case CPU_UP_CANCELED_FROZEN:
6536 if (!cpu_rq(cpu)->migration_thread)
6537 break;
6538 /* Unbind it from offline cpu so it can run. Fall thru. */
6539 kthread_bind(cpu_rq(cpu)->migration_thread,
6540 any_online_cpu(cpu_online_map));
6541 kthread_stop(cpu_rq(cpu)->migration_thread);
6542 cpu_rq(cpu)->migration_thread = NULL;
6543 break;
6545 case CPU_DEAD:
6546 case CPU_DEAD_FROZEN:
6547 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
6548 migrate_live_tasks(cpu);
6549 rq = cpu_rq(cpu);
6550 kthread_stop(rq->migration_thread);
6551 rq->migration_thread = NULL;
6552 /* Idle task back to normal (off runqueue, low prio) */
6553 spin_lock_irq(&rq->lock);
6554 update_rq_clock(rq);
6555 deactivate_task(rq, rq->idle, 0);
6556 rq->idle->static_prio = MAX_PRIO;
6557 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
6558 rq->idle->sched_class = &idle_sched_class;
6559 migrate_dead_tasks(cpu);
6560 spin_unlock_irq(&rq->lock);
6561 cpuset_unlock();
6562 migrate_nr_uninterruptible(rq);
6563 BUG_ON(rq->nr_running != 0);
6566 * No need to migrate the tasks: it was best-effort if
6567 * they didn't take sched_hotcpu_mutex. Just wake up
6568 * the requestors.
6570 spin_lock_irq(&rq->lock);
6571 while (!list_empty(&rq->migration_queue)) {
6572 struct migration_req *req;
6574 req = list_entry(rq->migration_queue.next,
6575 struct migration_req, list);
6576 list_del_init(&req->list);
6577 complete(&req->done);
6579 spin_unlock_irq(&rq->lock);
6580 break;
6582 case CPU_DYING:
6583 case CPU_DYING_FROZEN:
6584 /* Update our root-domain */
6585 rq = cpu_rq(cpu);
6586 spin_lock_irqsave(&rq->lock, flags);
6587 if (rq->rd) {
6588 BUG_ON(!cpu_isset(cpu, rq->rd->span));
6589 set_rq_offline(rq);
6591 spin_unlock_irqrestore(&rq->lock, flags);
6592 break;
6593 #endif
6595 return NOTIFY_OK;
6598 /* Register at highest priority so that task migration (migrate_all_tasks)
6599 * happens before everything else.
6601 static struct notifier_block __cpuinitdata migration_notifier = {
6602 .notifier_call = migration_call,
6603 .priority = 10
6606 static int __init migration_init(void)
6608 void *cpu = (void *)(long)smp_processor_id();
6609 int err;
6611 /* Start one for the boot CPU: */
6612 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6613 BUG_ON(err == NOTIFY_BAD);
6614 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6615 register_cpu_notifier(&migration_notifier);
6617 return err;
6619 early_initcall(migration_init);
6620 #endif
6622 #ifdef CONFIG_SMP
6624 #ifdef CONFIG_SCHED_DEBUG
6626 static inline const char *sd_level_to_string(enum sched_domain_level lvl)
6628 switch (lvl) {
6629 case SD_LV_NONE:
6630 return "NONE";
6631 case SD_LV_SIBLING:
6632 return "SIBLING";
6633 case SD_LV_MC:
6634 return "MC";
6635 case SD_LV_CPU:
6636 return "CPU";
6637 case SD_LV_NODE:
6638 return "NODE";
6639 case SD_LV_ALLNODES:
6640 return "ALLNODES";
6641 case SD_LV_MAX:
6642 return "MAX";
6645 return "MAX";
6648 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
6649 cpumask_t *groupmask)
6651 struct sched_group *group = sd->groups;
6652 char str[256];
6654 cpulist_scnprintf(str, sizeof(str), sd->span);
6655 cpus_clear(*groupmask);
6657 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6659 if (!(sd->flags & SD_LOAD_BALANCE)) {
6660 printk("does not load-balance\n");
6661 if (sd->parent)
6662 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6663 " has parent");
6664 return -1;
6667 printk(KERN_CONT "span %s level %s\n",
6668 str, sd_level_to_string(sd->level));
6670 if (!cpu_isset(cpu, sd->span)) {
6671 printk(KERN_ERR "ERROR: domain->span does not contain "
6672 "CPU%d\n", cpu);
6674 if (!cpu_isset(cpu, group->cpumask)) {
6675 printk(KERN_ERR "ERROR: domain->groups does not contain"
6676 " CPU%d\n", cpu);
6679 printk(KERN_DEBUG "%*s groups:", level + 1, "");
6680 do {
6681 if (!group) {
6682 printk("\n");
6683 printk(KERN_ERR "ERROR: group is NULL\n");
6684 break;
6687 if (!group->__cpu_power) {
6688 printk(KERN_CONT "\n");
6689 printk(KERN_ERR "ERROR: domain->cpu_power not "
6690 "set\n");
6691 break;
6694 if (!cpus_weight(group->cpumask)) {
6695 printk(KERN_CONT "\n");
6696 printk(KERN_ERR "ERROR: empty group\n");
6697 break;
6700 if (cpus_intersects(*groupmask, group->cpumask)) {
6701 printk(KERN_CONT "\n");
6702 printk(KERN_ERR "ERROR: repeated CPUs\n");
6703 break;
6706 cpus_or(*groupmask, *groupmask, group->cpumask);
6708 cpulist_scnprintf(str, sizeof(str), group->cpumask);
6709 printk(KERN_CONT " %s", str);
6711 group = group->next;
6712 } while (group != sd->groups);
6713 printk(KERN_CONT "\n");
6715 if (!cpus_equal(sd->span, *groupmask))
6716 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
6718 if (sd->parent && !cpus_subset(*groupmask, sd->parent->span))
6719 printk(KERN_ERR "ERROR: parent span is not a superset "
6720 "of domain->span\n");
6721 return 0;
6724 static void sched_domain_debug(struct sched_domain *sd, int cpu)
6726 cpumask_t *groupmask;
6727 int level = 0;
6729 if (!sd) {
6730 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6731 return;
6734 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6736 groupmask = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
6737 if (!groupmask) {
6738 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
6739 return;
6742 for (;;) {
6743 if (sched_domain_debug_one(sd, cpu, level, groupmask))
6744 break;
6745 level++;
6746 sd = sd->parent;
6747 if (!sd)
6748 break;
6750 kfree(groupmask);
6752 #else /* !CONFIG_SCHED_DEBUG */
6753 # define sched_domain_debug(sd, cpu) do { } while (0)
6754 #endif /* CONFIG_SCHED_DEBUG */
6756 static int sd_degenerate(struct sched_domain *sd)
6758 if (cpus_weight(sd->span) == 1)
6759 return 1;
6761 /* Following flags need at least 2 groups */
6762 if (sd->flags & (SD_LOAD_BALANCE |
6763 SD_BALANCE_NEWIDLE |
6764 SD_BALANCE_FORK |
6765 SD_BALANCE_EXEC |
6766 SD_SHARE_CPUPOWER |
6767 SD_SHARE_PKG_RESOURCES)) {
6768 if (sd->groups != sd->groups->next)
6769 return 0;
6772 /* Following flags don't use groups */
6773 if (sd->flags & (SD_WAKE_IDLE |
6774 SD_WAKE_AFFINE |
6775 SD_WAKE_BALANCE))
6776 return 0;
6778 return 1;
6781 static int
6782 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6784 unsigned long cflags = sd->flags, pflags = parent->flags;
6786 if (sd_degenerate(parent))
6787 return 1;
6789 if (!cpus_equal(sd->span, parent->span))
6790 return 0;
6792 /* Does parent contain flags not in child? */
6793 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
6794 if (cflags & SD_WAKE_AFFINE)
6795 pflags &= ~SD_WAKE_BALANCE;
6796 /* Flags needing groups don't count if only 1 group in parent */
6797 if (parent->groups == parent->groups->next) {
6798 pflags &= ~(SD_LOAD_BALANCE |
6799 SD_BALANCE_NEWIDLE |
6800 SD_BALANCE_FORK |
6801 SD_BALANCE_EXEC |
6802 SD_SHARE_CPUPOWER |
6803 SD_SHARE_PKG_RESOURCES);
6805 if (~cflags & pflags)
6806 return 0;
6808 return 1;
6811 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6813 unsigned long flags;
6815 spin_lock_irqsave(&rq->lock, flags);
6817 if (rq->rd) {
6818 struct root_domain *old_rd = rq->rd;
6820 if (cpu_isset(rq->cpu, old_rd->online))
6821 set_rq_offline(rq);
6823 cpu_clear(rq->cpu, old_rd->span);
6825 if (atomic_dec_and_test(&old_rd->refcount))
6826 kfree(old_rd);
6829 atomic_inc(&rd->refcount);
6830 rq->rd = rd;
6832 cpu_set(rq->cpu, rd->span);
6833 if (cpu_isset(rq->cpu, cpu_online_map))
6834 set_rq_online(rq);
6836 spin_unlock_irqrestore(&rq->lock, flags);
6839 static void init_rootdomain(struct root_domain *rd)
6841 memset(rd, 0, sizeof(*rd));
6843 cpus_clear(rd->span);
6844 cpus_clear(rd->online);
6846 cpupri_init(&rd->cpupri);
6849 static void init_defrootdomain(void)
6851 init_rootdomain(&def_root_domain);
6852 atomic_set(&def_root_domain.refcount, 1);
6855 static struct root_domain *alloc_rootdomain(void)
6857 struct root_domain *rd;
6859 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6860 if (!rd)
6861 return NULL;
6863 init_rootdomain(rd);
6865 return rd;
6869 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
6870 * hold the hotplug lock.
6872 static void
6873 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
6875 struct rq *rq = cpu_rq(cpu);
6876 struct sched_domain *tmp;
6878 /* Remove the sched domains which do not contribute to scheduling. */
6879 for (tmp = sd; tmp; tmp = tmp->parent) {
6880 struct sched_domain *parent = tmp->parent;
6881 if (!parent)
6882 break;
6883 if (sd_parent_degenerate(tmp, parent)) {
6884 tmp->parent = parent->parent;
6885 if (parent->parent)
6886 parent->parent->child = tmp;
6890 if (sd && sd_degenerate(sd)) {
6891 sd = sd->parent;
6892 if (sd)
6893 sd->child = NULL;
6896 sched_domain_debug(sd, cpu);
6898 rq_attach_root(rq, rd);
6899 rcu_assign_pointer(rq->sd, sd);
6902 /* cpus with isolated domains */
6903 static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
6905 /* Setup the mask of cpus configured for isolated domains */
6906 static int __init isolated_cpu_setup(char *str)
6908 static int __initdata ints[NR_CPUS];
6909 int i;
6911 str = get_options(str, ARRAY_SIZE(ints), ints);
6912 cpus_clear(cpu_isolated_map);
6913 for (i = 1; i <= ints[0]; i++)
6914 if (ints[i] < NR_CPUS)
6915 cpu_set(ints[i], cpu_isolated_map);
6916 return 1;
6919 __setup("isolcpus=", isolated_cpu_setup);
6922 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6923 * to a function which identifies what group(along with sched group) a CPU
6924 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
6925 * (due to the fact that we keep track of groups covered with a cpumask_t).
6927 * init_sched_build_groups will build a circular linked list of the groups
6928 * covered by the given span, and will set each group's ->cpumask correctly,
6929 * and ->cpu_power to 0.
6931 static void
6932 init_sched_build_groups(const cpumask_t *span, const cpumask_t *cpu_map,
6933 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
6934 struct sched_group **sg,
6935 cpumask_t *tmpmask),
6936 cpumask_t *covered, cpumask_t *tmpmask)
6938 struct sched_group *first = NULL, *last = NULL;
6939 int i;
6941 cpus_clear(*covered);
6943 for_each_cpu_mask_nr(i, *span) {
6944 struct sched_group *sg;
6945 int group = group_fn(i, cpu_map, &sg, tmpmask);
6946 int j;
6948 if (cpu_isset(i, *covered))
6949 continue;
6951 cpus_clear(sg->cpumask);
6952 sg->__cpu_power = 0;
6954 for_each_cpu_mask_nr(j, *span) {
6955 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
6956 continue;
6958 cpu_set(j, *covered);
6959 cpu_set(j, sg->cpumask);
6961 if (!first)
6962 first = sg;
6963 if (last)
6964 last->next = sg;
6965 last = sg;
6967 last->next = first;
6970 #define SD_NODES_PER_DOMAIN 16
6972 #ifdef CONFIG_NUMA
6975 * find_next_best_node - find the next node to include in a sched_domain
6976 * @node: node whose sched_domain we're building
6977 * @used_nodes: nodes already in the sched_domain
6979 * Find the next node to include in a given scheduling domain. Simply
6980 * finds the closest node not already in the @used_nodes map.
6982 * Should use nodemask_t.
6984 static int find_next_best_node(int node, nodemask_t *used_nodes)
6986 int i, n, val, min_val, best_node = 0;
6988 min_val = INT_MAX;
6990 for (i = 0; i < nr_node_ids; i++) {
6991 /* Start at @node */
6992 n = (node + i) % nr_node_ids;
6994 if (!nr_cpus_node(n))
6995 continue;
6997 /* Skip already used nodes */
6998 if (node_isset(n, *used_nodes))
6999 continue;
7001 /* Simple min distance search */
7002 val = node_distance(node, n);
7004 if (val < min_val) {
7005 min_val = val;
7006 best_node = n;
7010 node_set(best_node, *used_nodes);
7011 return best_node;
7015 * sched_domain_node_span - get a cpumask for a node's sched_domain
7016 * @node: node whose cpumask we're constructing
7017 * @span: resulting cpumask
7019 * Given a node, construct a good cpumask for its sched_domain to span. It
7020 * should be one that prevents unnecessary balancing, but also spreads tasks
7021 * out optimally.
7023 static void sched_domain_node_span(int node, cpumask_t *span)
7025 nodemask_t used_nodes;
7026 node_to_cpumask_ptr(nodemask, node);
7027 int i;
7029 cpus_clear(*span);
7030 nodes_clear(used_nodes);
7032 cpus_or(*span, *span, *nodemask);
7033 node_set(node, used_nodes);
7035 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
7036 int next_node = find_next_best_node(node, &used_nodes);
7038 node_to_cpumask_ptr_next(nodemask, next_node);
7039 cpus_or(*span, *span, *nodemask);
7042 #endif /* CONFIG_NUMA */
7044 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
7047 * SMT sched-domains:
7049 #ifdef CONFIG_SCHED_SMT
7050 static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
7051 static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
7053 static int
7054 cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
7055 cpumask_t *unused)
7057 if (sg)
7058 *sg = &per_cpu(sched_group_cpus, cpu);
7059 return cpu;
7061 #endif /* CONFIG_SCHED_SMT */
7064 * multi-core sched-domains:
7066 #ifdef CONFIG_SCHED_MC
7067 static DEFINE_PER_CPU(struct sched_domain, core_domains);
7068 static DEFINE_PER_CPU(struct sched_group, sched_group_core);
7069 #endif /* CONFIG_SCHED_MC */
7071 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
7072 static int
7073 cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
7074 cpumask_t *mask)
7076 int group;
7078 *mask = per_cpu(cpu_sibling_map, cpu);
7079 cpus_and(*mask, *mask, *cpu_map);
7080 group = first_cpu(*mask);
7081 if (sg)
7082 *sg = &per_cpu(sched_group_core, group);
7083 return group;
7085 #elif defined(CONFIG_SCHED_MC)
7086 static int
7087 cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
7088 cpumask_t *unused)
7090 if (sg)
7091 *sg = &per_cpu(sched_group_core, cpu);
7092 return cpu;
7094 #endif
7096 static DEFINE_PER_CPU(struct sched_domain, phys_domains);
7097 static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
7099 static int
7100 cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
7101 cpumask_t *mask)
7103 int group;
7104 #ifdef CONFIG_SCHED_MC
7105 *mask = cpu_coregroup_map(cpu);
7106 cpus_and(*mask, *mask, *cpu_map);
7107 group = first_cpu(*mask);
7108 #elif defined(CONFIG_SCHED_SMT)
7109 *mask = per_cpu(cpu_sibling_map, cpu);
7110 cpus_and(*mask, *mask, *cpu_map);
7111 group = first_cpu(*mask);
7112 #else
7113 group = cpu;
7114 #endif
7115 if (sg)
7116 *sg = &per_cpu(sched_group_phys, group);
7117 return group;
7120 #ifdef CONFIG_NUMA
7122 * The init_sched_build_groups can't handle what we want to do with node
7123 * groups, so roll our own. Now each node has its own list of groups which
7124 * gets dynamically allocated.
7126 static DEFINE_PER_CPU(struct sched_domain, node_domains);
7127 static struct sched_group ***sched_group_nodes_bycpu;
7129 static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
7130 static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
7132 static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
7133 struct sched_group **sg, cpumask_t *nodemask)
7135 int group;
7137 *nodemask = node_to_cpumask(cpu_to_node(cpu));
7138 cpus_and(*nodemask, *nodemask, *cpu_map);
7139 group = first_cpu(*nodemask);
7141 if (sg)
7142 *sg = &per_cpu(sched_group_allnodes, group);
7143 return group;
7146 static void init_numa_sched_groups_power(struct sched_group *group_head)
7148 struct sched_group *sg = group_head;
7149 int j;
7151 if (!sg)
7152 return;
7153 do {
7154 for_each_cpu_mask_nr(j, sg->cpumask) {
7155 struct sched_domain *sd;
7157 sd = &per_cpu(phys_domains, j);
7158 if (j != first_cpu(sd->groups->cpumask)) {
7160 * Only add "power" once for each
7161 * physical package.
7163 continue;
7166 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
7168 sg = sg->next;
7169 } while (sg != group_head);
7171 #endif /* CONFIG_NUMA */
7173 #ifdef CONFIG_NUMA
7174 /* Free memory allocated for various sched_group structures */
7175 static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
7177 int cpu, i;
7179 for_each_cpu_mask_nr(cpu, *cpu_map) {
7180 struct sched_group **sched_group_nodes
7181 = sched_group_nodes_bycpu[cpu];
7183 if (!sched_group_nodes)
7184 continue;
7186 for (i = 0; i < nr_node_ids; i++) {
7187 struct sched_group *oldsg, *sg = sched_group_nodes[i];
7189 *nodemask = node_to_cpumask(i);
7190 cpus_and(*nodemask, *nodemask, *cpu_map);
7191 if (cpus_empty(*nodemask))
7192 continue;
7194 if (sg == NULL)
7195 continue;
7196 sg = sg->next;
7197 next_sg:
7198 oldsg = sg;
7199 sg = sg->next;
7200 kfree(oldsg);
7201 if (oldsg != sched_group_nodes[i])
7202 goto next_sg;
7204 kfree(sched_group_nodes);
7205 sched_group_nodes_bycpu[cpu] = NULL;
7208 #else /* !CONFIG_NUMA */
7209 static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
7212 #endif /* CONFIG_NUMA */
7215 * Initialize sched groups cpu_power.
7217 * cpu_power indicates the capacity of sched group, which is used while
7218 * distributing the load between different sched groups in a sched domain.
7219 * Typically cpu_power for all the groups in a sched domain will be same unless
7220 * there are asymmetries in the topology. If there are asymmetries, group
7221 * having more cpu_power will pickup more load compared to the group having
7222 * less cpu_power.
7224 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
7225 * the maximum number of tasks a group can handle in the presence of other idle
7226 * or lightly loaded groups in the same sched domain.
7228 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
7230 struct sched_domain *child;
7231 struct sched_group *group;
7233 WARN_ON(!sd || !sd->groups);
7235 if (cpu != first_cpu(sd->groups->cpumask))
7236 return;
7238 child = sd->child;
7240 sd->groups->__cpu_power = 0;
7243 * For perf policy, if the groups in child domain share resources
7244 * (for example cores sharing some portions of the cache hierarchy
7245 * or SMT), then set this domain groups cpu_power such that each group
7246 * can handle only one task, when there are other idle groups in the
7247 * same sched domain.
7249 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
7250 (child->flags &
7251 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
7252 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
7253 return;
7257 * add cpu_power of each child group to this groups cpu_power
7259 group = child->groups;
7260 do {
7261 sg_inc_cpu_power(sd->groups, group->__cpu_power);
7262 group = group->next;
7263 } while (group != child->groups);
7267 * Initializers for schedule domains
7268 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
7271 #ifdef CONFIG_SCHED_DEBUG
7272 # define SD_INIT_NAME(sd, type) sd->name = #type
7273 #else
7274 # define SD_INIT_NAME(sd, type) do { } while (0)
7275 #endif
7277 #define SD_INIT(sd, type) sd_init_##type(sd)
7279 #define SD_INIT_FUNC(type) \
7280 static noinline void sd_init_##type(struct sched_domain *sd) \
7282 memset(sd, 0, sizeof(*sd)); \
7283 *sd = SD_##type##_INIT; \
7284 sd->level = SD_LV_##type; \
7285 SD_INIT_NAME(sd, type); \
7288 SD_INIT_FUNC(CPU)
7289 #ifdef CONFIG_NUMA
7290 SD_INIT_FUNC(ALLNODES)
7291 SD_INIT_FUNC(NODE)
7292 #endif
7293 #ifdef CONFIG_SCHED_SMT
7294 SD_INIT_FUNC(SIBLING)
7295 #endif
7296 #ifdef CONFIG_SCHED_MC
7297 SD_INIT_FUNC(MC)
7298 #endif
7301 * To minimize stack usage kmalloc room for cpumasks and share the
7302 * space as the usage in build_sched_domains() dictates. Used only
7303 * if the amount of space is significant.
7305 struct allmasks {
7306 cpumask_t tmpmask; /* make this one first */
7307 union {
7308 cpumask_t nodemask;
7309 cpumask_t this_sibling_map;
7310 cpumask_t this_core_map;
7312 cpumask_t send_covered;
7314 #ifdef CONFIG_NUMA
7315 cpumask_t domainspan;
7316 cpumask_t covered;
7317 cpumask_t notcovered;
7318 #endif
7321 #if NR_CPUS > 128
7322 #define SCHED_CPUMASK_ALLOC 1
7323 #define SCHED_CPUMASK_FREE(v) kfree(v)
7324 #define SCHED_CPUMASK_DECLARE(v) struct allmasks *v
7325 #else
7326 #define SCHED_CPUMASK_ALLOC 0
7327 #define SCHED_CPUMASK_FREE(v)
7328 #define SCHED_CPUMASK_DECLARE(v) struct allmasks _v, *v = &_v
7329 #endif
7331 #define SCHED_CPUMASK_VAR(v, a) cpumask_t *v = (cpumask_t *) \
7332 ((unsigned long)(a) + offsetof(struct allmasks, v))
7334 static int default_relax_domain_level = -1;
7336 static int __init setup_relax_domain_level(char *str)
7338 unsigned long val;
7340 val = simple_strtoul(str, NULL, 0);
7341 if (val < SD_LV_MAX)
7342 default_relax_domain_level = val;
7344 return 1;
7346 __setup("relax_domain_level=", setup_relax_domain_level);
7348 static void set_domain_attribute(struct sched_domain *sd,
7349 struct sched_domain_attr *attr)
7351 int request;
7353 if (!attr || attr->relax_domain_level < 0) {
7354 if (default_relax_domain_level < 0)
7355 return;
7356 else
7357 request = default_relax_domain_level;
7358 } else
7359 request = attr->relax_domain_level;
7360 if (request < sd->level) {
7361 /* turn off idle balance on this domain */
7362 sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
7363 } else {
7364 /* turn on idle balance on this domain */
7365 sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
7370 * Build sched domains for a given set of cpus and attach the sched domains
7371 * to the individual cpus
7373 static int __build_sched_domains(const cpumask_t *cpu_map,
7374 struct sched_domain_attr *attr)
7376 int i;
7377 struct root_domain *rd;
7378 SCHED_CPUMASK_DECLARE(allmasks);
7379 cpumask_t *tmpmask;
7380 #ifdef CONFIG_NUMA
7381 struct sched_group **sched_group_nodes = NULL;
7382 int sd_allnodes = 0;
7385 * Allocate the per-node list of sched groups
7387 sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
7388 GFP_KERNEL);
7389 if (!sched_group_nodes) {
7390 printk(KERN_WARNING "Can not alloc sched group node list\n");
7391 return -ENOMEM;
7393 #endif
7395 rd = alloc_rootdomain();
7396 if (!rd) {
7397 printk(KERN_WARNING "Cannot alloc root domain\n");
7398 #ifdef CONFIG_NUMA
7399 kfree(sched_group_nodes);
7400 #endif
7401 return -ENOMEM;
7404 #if SCHED_CPUMASK_ALLOC
7405 /* get space for all scratch cpumask variables */
7406 allmasks = kmalloc(sizeof(*allmasks), GFP_KERNEL);
7407 if (!allmasks) {
7408 printk(KERN_WARNING "Cannot alloc cpumask array\n");
7409 kfree(rd);
7410 #ifdef CONFIG_NUMA
7411 kfree(sched_group_nodes);
7412 #endif
7413 return -ENOMEM;
7415 #endif
7416 tmpmask = (cpumask_t *)allmasks;
7419 #ifdef CONFIG_NUMA
7420 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
7421 #endif
7424 * Set up domains for cpus specified by the cpu_map.
7426 for_each_cpu_mask_nr(i, *cpu_map) {
7427 struct sched_domain *sd = NULL, *p;
7428 SCHED_CPUMASK_VAR(nodemask, allmasks);
7430 *nodemask = node_to_cpumask(cpu_to_node(i));
7431 cpus_and(*nodemask, *nodemask, *cpu_map);
7433 #ifdef CONFIG_NUMA
7434 if (cpus_weight(*cpu_map) >
7435 SD_NODES_PER_DOMAIN*cpus_weight(*nodemask)) {
7436 sd = &per_cpu(allnodes_domains, i);
7437 SD_INIT(sd, ALLNODES);
7438 set_domain_attribute(sd, attr);
7439 sd->span = *cpu_map;
7440 cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
7441 p = sd;
7442 sd_allnodes = 1;
7443 } else
7444 p = NULL;
7446 sd = &per_cpu(node_domains, i);
7447 SD_INIT(sd, NODE);
7448 set_domain_attribute(sd, attr);
7449 sched_domain_node_span(cpu_to_node(i), &sd->span);
7450 sd->parent = p;
7451 if (p)
7452 p->child = sd;
7453 cpus_and(sd->span, sd->span, *cpu_map);
7454 #endif
7456 p = sd;
7457 sd = &per_cpu(phys_domains, i);
7458 SD_INIT(sd, CPU);
7459 set_domain_attribute(sd, attr);
7460 sd->span = *nodemask;
7461 sd->parent = p;
7462 if (p)
7463 p->child = sd;
7464 cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
7466 #ifdef CONFIG_SCHED_MC
7467 p = sd;
7468 sd = &per_cpu(core_domains, i);
7469 SD_INIT(sd, MC);
7470 set_domain_attribute(sd, attr);
7471 sd->span = cpu_coregroup_map(i);
7472 cpus_and(sd->span, sd->span, *cpu_map);
7473 sd->parent = p;
7474 p->child = sd;
7475 cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
7476 #endif
7478 #ifdef CONFIG_SCHED_SMT
7479 p = sd;
7480 sd = &per_cpu(cpu_domains, i);
7481 SD_INIT(sd, SIBLING);
7482 set_domain_attribute(sd, attr);
7483 sd->span = per_cpu(cpu_sibling_map, i);
7484 cpus_and(sd->span, sd->span, *cpu_map);
7485 sd->parent = p;
7486 p->child = sd;
7487 cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
7488 #endif
7491 #ifdef CONFIG_SCHED_SMT
7492 /* Set up CPU (sibling) groups */
7493 for_each_cpu_mask_nr(i, *cpu_map) {
7494 SCHED_CPUMASK_VAR(this_sibling_map, allmasks);
7495 SCHED_CPUMASK_VAR(send_covered, allmasks);
7497 *this_sibling_map = per_cpu(cpu_sibling_map, i);
7498 cpus_and(*this_sibling_map, *this_sibling_map, *cpu_map);
7499 if (i != first_cpu(*this_sibling_map))
7500 continue;
7502 init_sched_build_groups(this_sibling_map, cpu_map,
7503 &cpu_to_cpu_group,
7504 send_covered, tmpmask);
7506 #endif
7508 #ifdef CONFIG_SCHED_MC
7509 /* Set up multi-core groups */
7510 for_each_cpu_mask_nr(i, *cpu_map) {
7511 SCHED_CPUMASK_VAR(this_core_map, allmasks);
7512 SCHED_CPUMASK_VAR(send_covered, allmasks);
7514 *this_core_map = cpu_coregroup_map(i);
7515 cpus_and(*this_core_map, *this_core_map, *cpu_map);
7516 if (i != first_cpu(*this_core_map))
7517 continue;
7519 init_sched_build_groups(this_core_map, cpu_map,
7520 &cpu_to_core_group,
7521 send_covered, tmpmask);
7523 #endif
7525 /* Set up physical groups */
7526 for (i = 0; i < nr_node_ids; i++) {
7527 SCHED_CPUMASK_VAR(nodemask, allmasks);
7528 SCHED_CPUMASK_VAR(send_covered, allmasks);
7530 *nodemask = node_to_cpumask(i);
7531 cpus_and(*nodemask, *nodemask, *cpu_map);
7532 if (cpus_empty(*nodemask))
7533 continue;
7535 init_sched_build_groups(nodemask, cpu_map,
7536 &cpu_to_phys_group,
7537 send_covered, tmpmask);
7540 #ifdef CONFIG_NUMA
7541 /* Set up node groups */
7542 if (sd_allnodes) {
7543 SCHED_CPUMASK_VAR(send_covered, allmasks);
7545 init_sched_build_groups(cpu_map, cpu_map,
7546 &cpu_to_allnodes_group,
7547 send_covered, tmpmask);
7550 for (i = 0; i < nr_node_ids; i++) {
7551 /* Set up node groups */
7552 struct sched_group *sg, *prev;
7553 SCHED_CPUMASK_VAR(nodemask, allmasks);
7554 SCHED_CPUMASK_VAR(domainspan, allmasks);
7555 SCHED_CPUMASK_VAR(covered, allmasks);
7556 int j;
7558 *nodemask = node_to_cpumask(i);
7559 cpus_clear(*covered);
7561 cpus_and(*nodemask, *nodemask, *cpu_map);
7562 if (cpus_empty(*nodemask)) {
7563 sched_group_nodes[i] = NULL;
7564 continue;
7567 sched_domain_node_span(i, domainspan);
7568 cpus_and(*domainspan, *domainspan, *cpu_map);
7570 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
7571 if (!sg) {
7572 printk(KERN_WARNING "Can not alloc domain group for "
7573 "node %d\n", i);
7574 goto error;
7576 sched_group_nodes[i] = sg;
7577 for_each_cpu_mask_nr(j, *nodemask) {
7578 struct sched_domain *sd;
7580 sd = &per_cpu(node_domains, j);
7581 sd->groups = sg;
7583 sg->__cpu_power = 0;
7584 sg->cpumask = *nodemask;
7585 sg->next = sg;
7586 cpus_or(*covered, *covered, *nodemask);
7587 prev = sg;
7589 for (j = 0; j < nr_node_ids; j++) {
7590 SCHED_CPUMASK_VAR(notcovered, allmasks);
7591 int n = (i + j) % nr_node_ids;
7592 node_to_cpumask_ptr(pnodemask, n);
7594 cpus_complement(*notcovered, *covered);
7595 cpus_and(*tmpmask, *notcovered, *cpu_map);
7596 cpus_and(*tmpmask, *tmpmask, *domainspan);
7597 if (cpus_empty(*tmpmask))
7598 break;
7600 cpus_and(*tmpmask, *tmpmask, *pnodemask);
7601 if (cpus_empty(*tmpmask))
7602 continue;
7604 sg = kmalloc_node(sizeof(struct sched_group),
7605 GFP_KERNEL, i);
7606 if (!sg) {
7607 printk(KERN_WARNING
7608 "Can not alloc domain group for node %d\n", j);
7609 goto error;
7611 sg->__cpu_power = 0;
7612 sg->cpumask = *tmpmask;
7613 sg->next = prev->next;
7614 cpus_or(*covered, *covered, *tmpmask);
7615 prev->next = sg;
7616 prev = sg;
7619 #endif
7621 /* Calculate CPU power for physical packages and nodes */
7622 #ifdef CONFIG_SCHED_SMT
7623 for_each_cpu_mask_nr(i, *cpu_map) {
7624 struct sched_domain *sd = &per_cpu(cpu_domains, i);
7626 init_sched_groups_power(i, sd);
7628 #endif
7629 #ifdef CONFIG_SCHED_MC
7630 for_each_cpu_mask_nr(i, *cpu_map) {
7631 struct sched_domain *sd = &per_cpu(core_domains, i);
7633 init_sched_groups_power(i, sd);
7635 #endif
7637 for_each_cpu_mask_nr(i, *cpu_map) {
7638 struct sched_domain *sd = &per_cpu(phys_domains, i);
7640 init_sched_groups_power(i, sd);
7643 #ifdef CONFIG_NUMA
7644 for (i = 0; i < nr_node_ids; i++)
7645 init_numa_sched_groups_power(sched_group_nodes[i]);
7647 if (sd_allnodes) {
7648 struct sched_group *sg;
7650 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg,
7651 tmpmask);
7652 init_numa_sched_groups_power(sg);
7654 #endif
7656 /* Attach the domains */
7657 for_each_cpu_mask_nr(i, *cpu_map) {
7658 struct sched_domain *sd;
7659 #ifdef CONFIG_SCHED_SMT
7660 sd = &per_cpu(cpu_domains, i);
7661 #elif defined(CONFIG_SCHED_MC)
7662 sd = &per_cpu(core_domains, i);
7663 #else
7664 sd = &per_cpu(phys_domains, i);
7665 #endif
7666 cpu_attach_domain(sd, rd, i);
7669 SCHED_CPUMASK_FREE((void *)allmasks);
7670 return 0;
7672 #ifdef CONFIG_NUMA
7673 error:
7674 free_sched_groups(cpu_map, tmpmask);
7675 SCHED_CPUMASK_FREE((void *)allmasks);
7676 return -ENOMEM;
7677 #endif
7680 static int build_sched_domains(const cpumask_t *cpu_map)
7682 return __build_sched_domains(cpu_map, NULL);
7685 static cpumask_t *doms_cur; /* current sched domains */
7686 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
7687 static struct sched_domain_attr *dattr_cur;
7688 /* attribues of custom domains in 'doms_cur' */
7691 * Special case: If a kmalloc of a doms_cur partition (array of
7692 * cpumask_t) fails, then fallback to a single sched domain,
7693 * as determined by the single cpumask_t fallback_doms.
7695 static cpumask_t fallback_doms;
7697 void __attribute__((weak)) arch_update_cpu_topology(void)
7702 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
7703 * For now this just excludes isolated cpus, but could be used to
7704 * exclude other special cases in the future.
7706 static int arch_init_sched_domains(const cpumask_t *cpu_map)
7708 int err;
7710 arch_update_cpu_topology();
7711 ndoms_cur = 1;
7712 doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
7713 if (!doms_cur)
7714 doms_cur = &fallback_doms;
7715 cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
7716 dattr_cur = NULL;
7717 err = build_sched_domains(doms_cur);
7718 register_sched_domain_sysctl();
7720 return err;
7723 static void arch_destroy_sched_domains(const cpumask_t *cpu_map,
7724 cpumask_t *tmpmask)
7726 free_sched_groups(cpu_map, tmpmask);
7730 * Detach sched domains from a group of cpus specified in cpu_map
7731 * These cpus will now be attached to the NULL domain
7733 static void detach_destroy_domains(const cpumask_t *cpu_map)
7735 cpumask_t tmpmask;
7736 int i;
7738 unregister_sched_domain_sysctl();
7740 for_each_cpu_mask_nr(i, *cpu_map)
7741 cpu_attach_domain(NULL, &def_root_domain, i);
7742 synchronize_sched();
7743 arch_destroy_sched_domains(cpu_map, &tmpmask);
7746 /* handle null as "default" */
7747 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7748 struct sched_domain_attr *new, int idx_new)
7750 struct sched_domain_attr tmp;
7752 /* fast path */
7753 if (!new && !cur)
7754 return 1;
7756 tmp = SD_ATTR_INIT;
7757 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7758 new ? (new + idx_new) : &tmp,
7759 sizeof(struct sched_domain_attr));
7763 * Partition sched domains as specified by the 'ndoms_new'
7764 * cpumasks in the array doms_new[] of cpumasks. This compares
7765 * doms_new[] to the current sched domain partitioning, doms_cur[].
7766 * It destroys each deleted domain and builds each new domain.
7768 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
7769 * The masks don't intersect (don't overlap.) We should setup one
7770 * sched domain for each mask. CPUs not in any of the cpumasks will
7771 * not be load balanced. If the same cpumask appears both in the
7772 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7773 * it as it is.
7775 * The passed in 'doms_new' should be kmalloc'd. This routine takes
7776 * ownership of it and will kfree it when done with it. If the caller
7777 * failed the kmalloc call, then it can pass in doms_new == NULL,
7778 * and partition_sched_domains() will fallback to the single partition
7779 * 'fallback_doms', it also forces the domains to be rebuilt.
7781 * If doms_new==NULL it will be replaced with cpu_online_map.
7782 * ndoms_new==0 is a special case for destroying existing domains.
7783 * It will not create the default domain.
7785 * Call with hotplug lock held
7787 void partition_sched_domains(int ndoms_new, cpumask_t *doms_new,
7788 struct sched_domain_attr *dattr_new)
7790 int i, j, n;
7792 mutex_lock(&sched_domains_mutex);
7794 /* always unregister in case we don't destroy any domains */
7795 unregister_sched_domain_sysctl();
7797 n = doms_new ? ndoms_new : 0;
7799 /* Destroy deleted domains */
7800 for (i = 0; i < ndoms_cur; i++) {
7801 for (j = 0; j < n; j++) {
7802 if (cpus_equal(doms_cur[i], doms_new[j])
7803 && dattrs_equal(dattr_cur, i, dattr_new, j))
7804 goto match1;
7806 /* no match - a current sched domain not in new doms_new[] */
7807 detach_destroy_domains(doms_cur + i);
7808 match1:
7812 if (doms_new == NULL) {
7813 ndoms_cur = 0;
7814 doms_new = &fallback_doms;
7815 cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
7816 dattr_new = NULL;
7819 /* Build new domains */
7820 for (i = 0; i < ndoms_new; i++) {
7821 for (j = 0; j < ndoms_cur; j++) {
7822 if (cpus_equal(doms_new[i], doms_cur[j])
7823 && dattrs_equal(dattr_new, i, dattr_cur, j))
7824 goto match2;
7826 /* no match - add a new doms_new */
7827 __build_sched_domains(doms_new + i,
7828 dattr_new ? dattr_new + i : NULL);
7829 match2:
7833 /* Remember the new sched domains */
7834 if (doms_cur != &fallback_doms)
7835 kfree(doms_cur);
7836 kfree(dattr_cur); /* kfree(NULL) is safe */
7837 doms_cur = doms_new;
7838 dattr_cur = dattr_new;
7839 ndoms_cur = ndoms_new;
7841 register_sched_domain_sysctl();
7843 mutex_unlock(&sched_domains_mutex);
7846 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7847 int arch_reinit_sched_domains(void)
7849 get_online_cpus();
7851 /* Destroy domains first to force the rebuild */
7852 partition_sched_domains(0, NULL, NULL);
7854 rebuild_sched_domains();
7855 put_online_cpus();
7857 return 0;
7860 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7862 int ret;
7864 if (buf[0] != '0' && buf[0] != '1')
7865 return -EINVAL;
7867 if (smt)
7868 sched_smt_power_savings = (buf[0] == '1');
7869 else
7870 sched_mc_power_savings = (buf[0] == '1');
7872 ret = arch_reinit_sched_domains();
7874 return ret ? ret : count;
7877 #ifdef CONFIG_SCHED_MC
7878 static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
7879 char *page)
7881 return sprintf(page, "%u\n", sched_mc_power_savings);
7883 static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
7884 const char *buf, size_t count)
7886 return sched_power_savings_store(buf, count, 0);
7888 static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
7889 sched_mc_power_savings_show,
7890 sched_mc_power_savings_store);
7891 #endif
7893 #ifdef CONFIG_SCHED_SMT
7894 static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
7895 char *page)
7897 return sprintf(page, "%u\n", sched_smt_power_savings);
7899 static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
7900 const char *buf, size_t count)
7902 return sched_power_savings_store(buf, count, 1);
7904 static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
7905 sched_smt_power_savings_show,
7906 sched_smt_power_savings_store);
7907 #endif
7909 int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
7911 int err = 0;
7913 #ifdef CONFIG_SCHED_SMT
7914 if (smt_capable())
7915 err = sysfs_create_file(&cls->kset.kobj,
7916 &attr_sched_smt_power_savings.attr);
7917 #endif
7918 #ifdef CONFIG_SCHED_MC
7919 if (!err && mc_capable())
7920 err = sysfs_create_file(&cls->kset.kobj,
7921 &attr_sched_mc_power_savings.attr);
7922 #endif
7923 return err;
7925 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
7927 #ifndef CONFIG_CPUSETS
7929 * Add online and remove offline CPUs from the scheduler domains.
7930 * When cpusets are enabled they take over this function.
7932 static int update_sched_domains(struct notifier_block *nfb,
7933 unsigned long action, void *hcpu)
7935 switch (action) {
7936 case CPU_ONLINE:
7937 case CPU_ONLINE_FROZEN:
7938 case CPU_DEAD:
7939 case CPU_DEAD_FROZEN:
7940 partition_sched_domains(1, NULL, NULL);
7941 return NOTIFY_OK;
7943 default:
7944 return NOTIFY_DONE;
7947 #endif
7949 static int update_runtime(struct notifier_block *nfb,
7950 unsigned long action, void *hcpu)
7952 int cpu = (int)(long)hcpu;
7954 switch (action) {
7955 case CPU_DOWN_PREPARE:
7956 case CPU_DOWN_PREPARE_FROZEN:
7957 disable_runtime(cpu_rq(cpu));
7958 return NOTIFY_OK;
7960 case CPU_DOWN_FAILED:
7961 case CPU_DOWN_FAILED_FROZEN:
7962 case CPU_ONLINE:
7963 case CPU_ONLINE_FROZEN:
7964 enable_runtime(cpu_rq(cpu));
7965 return NOTIFY_OK;
7967 default:
7968 return NOTIFY_DONE;
7972 void __init sched_init_smp(void)
7974 cpumask_t non_isolated_cpus;
7976 #if defined(CONFIG_NUMA)
7977 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
7978 GFP_KERNEL);
7979 BUG_ON(sched_group_nodes_bycpu == NULL);
7980 #endif
7981 get_online_cpus();
7982 mutex_lock(&sched_domains_mutex);
7983 arch_init_sched_domains(&cpu_online_map);
7984 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
7985 if (cpus_empty(non_isolated_cpus))
7986 cpu_set(smp_processor_id(), non_isolated_cpus);
7987 mutex_unlock(&sched_domains_mutex);
7988 put_online_cpus();
7990 #ifndef CONFIG_CPUSETS
7991 /* XXX: Theoretical race here - CPU may be hotplugged now */
7992 hotcpu_notifier(update_sched_domains, 0);
7993 #endif
7995 /* RT runtime code needs to handle some hotplug events */
7996 hotcpu_notifier(update_runtime, 0);
7998 init_hrtick();
8000 /* Move init over to a non-isolated CPU */
8001 if (set_cpus_allowed_ptr(current, &non_isolated_cpus) < 0)
8002 BUG();
8003 sched_init_granularity();
8005 #else
8006 void __init sched_init_smp(void)
8008 sched_init_granularity();
8010 #endif /* CONFIG_SMP */
8012 int in_sched_functions(unsigned long addr)
8014 return in_lock_functions(addr) ||
8015 (addr >= (unsigned long)__sched_text_start
8016 && addr < (unsigned long)__sched_text_end);
8019 static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
8021 cfs_rq->tasks_timeline = RB_ROOT;
8022 INIT_LIST_HEAD(&cfs_rq->tasks);
8023 #ifdef CONFIG_FAIR_GROUP_SCHED
8024 cfs_rq->rq = rq;
8025 #endif
8026 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
8029 static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
8031 struct rt_prio_array *array;
8032 int i;
8034 array = &rt_rq->active;
8035 for (i = 0; i < MAX_RT_PRIO; i++) {
8036 INIT_LIST_HEAD(array->queue + i);
8037 __clear_bit(i, array->bitmap);
8039 /* delimiter for bitsearch: */
8040 __set_bit(MAX_RT_PRIO, array->bitmap);
8042 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
8043 rt_rq->highest_prio = MAX_RT_PRIO;
8044 #endif
8045 #ifdef CONFIG_SMP
8046 rt_rq->rt_nr_migratory = 0;
8047 rt_rq->overloaded = 0;
8048 #endif
8050 rt_rq->rt_time = 0;
8051 rt_rq->rt_throttled = 0;
8052 rt_rq->rt_runtime = 0;
8053 spin_lock_init(&rt_rq->rt_runtime_lock);
8055 #ifdef CONFIG_RT_GROUP_SCHED
8056 rt_rq->rt_nr_boosted = 0;
8057 rt_rq->rq = rq;
8058 #endif
8061 #ifdef CONFIG_FAIR_GROUP_SCHED
8062 static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
8063 struct sched_entity *se, int cpu, int add,
8064 struct sched_entity *parent)
8066 struct rq *rq = cpu_rq(cpu);
8067 tg->cfs_rq[cpu] = cfs_rq;
8068 init_cfs_rq(cfs_rq, rq);
8069 cfs_rq->tg = tg;
8070 if (add)
8071 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
8073 tg->se[cpu] = se;
8074 /* se could be NULL for init_task_group */
8075 if (!se)
8076 return;
8078 if (!parent)
8079 se->cfs_rq = &rq->cfs;
8080 else
8081 se->cfs_rq = parent->my_q;
8083 se->my_q = cfs_rq;
8084 se->load.weight = tg->shares;
8085 se->load.inv_weight = 0;
8086 se->parent = parent;
8088 #endif
8090 #ifdef CONFIG_RT_GROUP_SCHED
8091 static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
8092 struct sched_rt_entity *rt_se, int cpu, int add,
8093 struct sched_rt_entity *parent)
8095 struct rq *rq = cpu_rq(cpu);
8097 tg->rt_rq[cpu] = rt_rq;
8098 init_rt_rq(rt_rq, rq);
8099 rt_rq->tg = tg;
8100 rt_rq->rt_se = rt_se;
8101 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
8102 if (add)
8103 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
8105 tg->rt_se[cpu] = rt_se;
8106 if (!rt_se)
8107 return;
8109 if (!parent)
8110 rt_se->rt_rq = &rq->rt;
8111 else
8112 rt_se->rt_rq = parent->my_q;
8114 rt_se->my_q = rt_rq;
8115 rt_se->parent = parent;
8116 INIT_LIST_HEAD(&rt_se->run_list);
8118 #endif
8120 void __init sched_init(void)
8122 int i, j;
8123 unsigned long alloc_size = 0, ptr;
8125 #ifdef CONFIG_FAIR_GROUP_SCHED
8126 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8127 #endif
8128 #ifdef CONFIG_RT_GROUP_SCHED
8129 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8130 #endif
8131 #ifdef CONFIG_USER_SCHED
8132 alloc_size *= 2;
8133 #endif
8135 * As sched_init() is called before page_alloc is setup,
8136 * we use alloc_bootmem().
8138 if (alloc_size) {
8139 ptr = (unsigned long)alloc_bootmem(alloc_size);
8141 #ifdef CONFIG_FAIR_GROUP_SCHED
8142 init_task_group.se = (struct sched_entity **)ptr;
8143 ptr += nr_cpu_ids * sizeof(void **);
8145 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
8146 ptr += nr_cpu_ids * sizeof(void **);
8148 #ifdef CONFIG_USER_SCHED
8149 root_task_group.se = (struct sched_entity **)ptr;
8150 ptr += nr_cpu_ids * sizeof(void **);
8152 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
8153 ptr += nr_cpu_ids * sizeof(void **);
8154 #endif /* CONFIG_USER_SCHED */
8155 #endif /* CONFIG_FAIR_GROUP_SCHED */
8156 #ifdef CONFIG_RT_GROUP_SCHED
8157 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
8158 ptr += nr_cpu_ids * sizeof(void **);
8160 init_task_group.rt_rq = (struct rt_rq **)ptr;
8161 ptr += nr_cpu_ids * sizeof(void **);
8163 #ifdef CONFIG_USER_SCHED
8164 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
8165 ptr += nr_cpu_ids * sizeof(void **);
8167 root_task_group.rt_rq = (struct rt_rq **)ptr;
8168 ptr += nr_cpu_ids * sizeof(void **);
8169 #endif /* CONFIG_USER_SCHED */
8170 #endif /* CONFIG_RT_GROUP_SCHED */
8173 #ifdef CONFIG_SMP
8174 init_defrootdomain();
8175 #endif
8177 init_rt_bandwidth(&def_rt_bandwidth,
8178 global_rt_period(), global_rt_runtime());
8180 #ifdef CONFIG_RT_GROUP_SCHED
8181 init_rt_bandwidth(&init_task_group.rt_bandwidth,
8182 global_rt_period(), global_rt_runtime());
8183 #ifdef CONFIG_USER_SCHED
8184 init_rt_bandwidth(&root_task_group.rt_bandwidth,
8185 global_rt_period(), RUNTIME_INF);
8186 #endif /* CONFIG_USER_SCHED */
8187 #endif /* CONFIG_RT_GROUP_SCHED */
8189 #ifdef CONFIG_GROUP_SCHED
8190 list_add(&init_task_group.list, &task_groups);
8191 INIT_LIST_HEAD(&init_task_group.children);
8193 #ifdef CONFIG_USER_SCHED
8194 INIT_LIST_HEAD(&root_task_group.children);
8195 init_task_group.parent = &root_task_group;
8196 list_add(&init_task_group.siblings, &root_task_group.children);
8197 #endif /* CONFIG_USER_SCHED */
8198 #endif /* CONFIG_GROUP_SCHED */
8200 for_each_possible_cpu(i) {
8201 struct rq *rq;
8203 rq = cpu_rq(i);
8204 spin_lock_init(&rq->lock);
8205 rq->nr_running = 0;
8206 init_cfs_rq(&rq->cfs, rq);
8207 init_rt_rq(&rq->rt, rq);
8208 #ifdef CONFIG_FAIR_GROUP_SCHED
8209 init_task_group.shares = init_task_group_load;
8210 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
8211 #ifdef CONFIG_CGROUP_SCHED
8213 * How much cpu bandwidth does init_task_group get?
8215 * In case of task-groups formed thr' the cgroup filesystem, it
8216 * gets 100% of the cpu resources in the system. This overall
8217 * system cpu resource is divided among the tasks of
8218 * init_task_group and its child task-groups in a fair manner,
8219 * based on each entity's (task or task-group's) weight
8220 * (se->load.weight).
8222 * In other words, if init_task_group has 10 tasks of weight
8223 * 1024) and two child groups A0 and A1 (of weight 1024 each),
8224 * then A0's share of the cpu resource is:
8226 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
8228 * We achieve this by letting init_task_group's tasks sit
8229 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
8231 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
8232 #elif defined CONFIG_USER_SCHED
8233 root_task_group.shares = NICE_0_LOAD;
8234 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
8236 * In case of task-groups formed thr' the user id of tasks,
8237 * init_task_group represents tasks belonging to root user.
8238 * Hence it forms a sibling of all subsequent groups formed.
8239 * In this case, init_task_group gets only a fraction of overall
8240 * system cpu resource, based on the weight assigned to root
8241 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
8242 * by letting tasks of init_task_group sit in a separate cfs_rq
8243 * (init_cfs_rq) and having one entity represent this group of
8244 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
8246 init_tg_cfs_entry(&init_task_group,
8247 &per_cpu(init_cfs_rq, i),
8248 &per_cpu(init_sched_entity, i), i, 1,
8249 root_task_group.se[i]);
8251 #endif
8252 #endif /* CONFIG_FAIR_GROUP_SCHED */
8254 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
8255 #ifdef CONFIG_RT_GROUP_SCHED
8256 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
8257 #ifdef CONFIG_CGROUP_SCHED
8258 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
8259 #elif defined CONFIG_USER_SCHED
8260 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
8261 init_tg_rt_entry(&init_task_group,
8262 &per_cpu(init_rt_rq, i),
8263 &per_cpu(init_sched_rt_entity, i), i, 1,
8264 root_task_group.rt_se[i]);
8265 #endif
8266 #endif
8268 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
8269 rq->cpu_load[j] = 0;
8270 #ifdef CONFIG_SMP
8271 rq->sd = NULL;
8272 rq->rd = NULL;
8273 rq->active_balance = 0;
8274 rq->next_balance = jiffies;
8275 rq->push_cpu = 0;
8276 rq->cpu = i;
8277 rq->online = 0;
8278 rq->migration_thread = NULL;
8279 INIT_LIST_HEAD(&rq->migration_queue);
8280 rq_attach_root(rq, &def_root_domain);
8281 #endif
8282 init_rq_hrtick(rq);
8283 atomic_set(&rq->nr_iowait, 0);
8286 set_load_weight(&init_task);
8288 #ifdef CONFIG_PREEMPT_NOTIFIERS
8289 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
8290 #endif
8292 #ifdef CONFIG_SMP
8293 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
8294 #endif
8296 #ifdef CONFIG_RT_MUTEXES
8297 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
8298 #endif
8301 * The boot idle thread does lazy MMU switching as well:
8303 atomic_inc(&init_mm.mm_count);
8304 enter_lazy_tlb(&init_mm, current);
8307 * Make us the idle thread. Technically, schedule() should not be
8308 * called from this thread, however somewhere below it might be,
8309 * but because we are the idle thread, we just pick up running again
8310 * when this runqueue becomes "idle".
8312 init_idle(current, smp_processor_id());
8314 * During early bootup we pretend to be a normal task:
8316 current->sched_class = &fair_sched_class;
8318 scheduler_running = 1;
8321 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
8322 void __might_sleep(char *file, int line)
8324 #ifdef in_atomic
8325 static unsigned long prev_jiffy; /* ratelimiting */
8327 if ((!in_atomic() && !irqs_disabled()) ||
8328 system_state != SYSTEM_RUNNING || oops_in_progress)
8329 return;
8330 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8331 return;
8332 prev_jiffy = jiffies;
8334 printk(KERN_ERR
8335 "BUG: sleeping function called from invalid context at %s:%d\n",
8336 file, line);
8337 printk(KERN_ERR
8338 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
8339 in_atomic(), irqs_disabled(),
8340 current->pid, current->comm);
8342 debug_show_held_locks(current);
8343 if (irqs_disabled())
8344 print_irqtrace_events(current);
8345 dump_stack();
8346 #endif
8348 EXPORT_SYMBOL(__might_sleep);
8349 #endif
8351 #ifdef CONFIG_MAGIC_SYSRQ
8352 static void normalize_task(struct rq *rq, struct task_struct *p)
8354 int on_rq;
8356 update_rq_clock(rq);
8357 on_rq = p->se.on_rq;
8358 if (on_rq)
8359 deactivate_task(rq, p, 0);
8360 __setscheduler(rq, p, SCHED_NORMAL, 0);
8361 if (on_rq) {
8362 activate_task(rq, p, 0);
8363 resched_task(rq->curr);
8367 void normalize_rt_tasks(void)
8369 struct task_struct *g, *p;
8370 unsigned long flags;
8371 struct rq *rq;
8373 read_lock_irqsave(&tasklist_lock, flags);
8374 do_each_thread(g, p) {
8376 * Only normalize user tasks:
8378 if (!p->mm)
8379 continue;
8381 p->se.exec_start = 0;
8382 #ifdef CONFIG_SCHEDSTATS
8383 p->se.wait_start = 0;
8384 p->se.sleep_start = 0;
8385 p->se.block_start = 0;
8386 #endif
8388 if (!rt_task(p)) {
8390 * Renice negative nice level userspace
8391 * tasks back to 0:
8393 if (TASK_NICE(p) < 0 && p->mm)
8394 set_user_nice(p, 0);
8395 continue;
8398 spin_lock(&p->pi_lock);
8399 rq = __task_rq_lock(p);
8401 normalize_task(rq, p);
8403 __task_rq_unlock(rq);
8404 spin_unlock(&p->pi_lock);
8405 } while_each_thread(g, p);
8407 read_unlock_irqrestore(&tasklist_lock, flags);
8410 #endif /* CONFIG_MAGIC_SYSRQ */
8412 #ifdef CONFIG_IA64
8414 * These functions are only useful for the IA64 MCA handling.
8416 * They can only be called when the whole system has been
8417 * stopped - every CPU needs to be quiescent, and no scheduling
8418 * activity can take place. Using them for anything else would
8419 * be a serious bug, and as a result, they aren't even visible
8420 * under any other configuration.
8424 * curr_task - return the current task for a given cpu.
8425 * @cpu: the processor in question.
8427 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8429 struct task_struct *curr_task(int cpu)
8431 return cpu_curr(cpu);
8435 * set_curr_task - set the current task for a given cpu.
8436 * @cpu: the processor in question.
8437 * @p: the task pointer to set.
8439 * Description: This function must only be used when non-maskable interrupts
8440 * are serviced on a separate stack. It allows the architecture to switch the
8441 * notion of the current task on a cpu in a non-blocking manner. This function
8442 * must be called with all CPU's synchronized, and interrupts disabled, the
8443 * and caller must save the original value of the current task (see
8444 * curr_task() above) and restore that value before reenabling interrupts and
8445 * re-starting the system.
8447 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8449 void set_curr_task(int cpu, struct task_struct *p)
8451 cpu_curr(cpu) = p;
8454 #endif
8456 #ifdef CONFIG_FAIR_GROUP_SCHED
8457 static void free_fair_sched_group(struct task_group *tg)
8459 int i;
8461 for_each_possible_cpu(i) {
8462 if (tg->cfs_rq)
8463 kfree(tg->cfs_rq[i]);
8464 if (tg->se)
8465 kfree(tg->se[i]);
8468 kfree(tg->cfs_rq);
8469 kfree(tg->se);
8472 static
8473 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8475 struct cfs_rq *cfs_rq;
8476 struct sched_entity *se, *parent_se;
8477 struct rq *rq;
8478 int i;
8480 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
8481 if (!tg->cfs_rq)
8482 goto err;
8483 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
8484 if (!tg->se)
8485 goto err;
8487 tg->shares = NICE_0_LOAD;
8489 for_each_possible_cpu(i) {
8490 rq = cpu_rq(i);
8492 cfs_rq = kmalloc_node(sizeof(struct cfs_rq),
8493 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
8494 if (!cfs_rq)
8495 goto err;
8497 se = kmalloc_node(sizeof(struct sched_entity),
8498 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
8499 if (!se)
8500 goto err;
8502 parent_se = parent ? parent->se[i] : NULL;
8503 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent_se);
8506 return 1;
8508 err:
8509 return 0;
8512 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8514 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
8515 &cpu_rq(cpu)->leaf_cfs_rq_list);
8518 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8520 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
8522 #else /* !CONFG_FAIR_GROUP_SCHED */
8523 static inline void free_fair_sched_group(struct task_group *tg)
8527 static inline
8528 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8530 return 1;
8533 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8537 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8540 #endif /* CONFIG_FAIR_GROUP_SCHED */
8542 #ifdef CONFIG_RT_GROUP_SCHED
8543 static void free_rt_sched_group(struct task_group *tg)
8545 int i;
8547 destroy_rt_bandwidth(&tg->rt_bandwidth);
8549 for_each_possible_cpu(i) {
8550 if (tg->rt_rq)
8551 kfree(tg->rt_rq[i]);
8552 if (tg->rt_se)
8553 kfree(tg->rt_se[i]);
8556 kfree(tg->rt_rq);
8557 kfree(tg->rt_se);
8560 static
8561 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8563 struct rt_rq *rt_rq;
8564 struct sched_rt_entity *rt_se, *parent_se;
8565 struct rq *rq;
8566 int i;
8568 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
8569 if (!tg->rt_rq)
8570 goto err;
8571 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
8572 if (!tg->rt_se)
8573 goto err;
8575 init_rt_bandwidth(&tg->rt_bandwidth,
8576 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
8578 for_each_possible_cpu(i) {
8579 rq = cpu_rq(i);
8581 rt_rq = kmalloc_node(sizeof(struct rt_rq),
8582 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
8583 if (!rt_rq)
8584 goto err;
8586 rt_se = kmalloc_node(sizeof(struct sched_rt_entity),
8587 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
8588 if (!rt_se)
8589 goto err;
8591 parent_se = parent ? parent->rt_se[i] : NULL;
8592 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent_se);
8595 return 1;
8597 err:
8598 return 0;
8601 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8603 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
8604 &cpu_rq(cpu)->leaf_rt_rq_list);
8607 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8609 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
8611 #else /* !CONFIG_RT_GROUP_SCHED */
8612 static inline void free_rt_sched_group(struct task_group *tg)
8616 static inline
8617 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8619 return 1;
8622 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8626 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8629 #endif /* CONFIG_RT_GROUP_SCHED */
8631 #ifdef CONFIG_GROUP_SCHED
8632 static void free_sched_group(struct task_group *tg)
8634 free_fair_sched_group(tg);
8635 free_rt_sched_group(tg);
8636 kfree(tg);
8639 /* allocate runqueue etc for a new task group */
8640 struct task_group *sched_create_group(struct task_group *parent)
8642 struct task_group *tg;
8643 unsigned long flags;
8644 int i;
8646 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8647 if (!tg)
8648 return ERR_PTR(-ENOMEM);
8650 if (!alloc_fair_sched_group(tg, parent))
8651 goto err;
8653 if (!alloc_rt_sched_group(tg, parent))
8654 goto err;
8656 spin_lock_irqsave(&task_group_lock, flags);
8657 for_each_possible_cpu(i) {
8658 register_fair_sched_group(tg, i);
8659 register_rt_sched_group(tg, i);
8661 list_add_rcu(&tg->list, &task_groups);
8663 WARN_ON(!parent); /* root should already exist */
8665 tg->parent = parent;
8666 INIT_LIST_HEAD(&tg->children);
8667 list_add_rcu(&tg->siblings, &parent->children);
8668 spin_unlock_irqrestore(&task_group_lock, flags);
8670 return tg;
8672 err:
8673 free_sched_group(tg);
8674 return ERR_PTR(-ENOMEM);
8677 /* rcu callback to free various structures associated with a task group */
8678 static void free_sched_group_rcu(struct rcu_head *rhp)
8680 /* now it should be safe to free those cfs_rqs */
8681 free_sched_group(container_of(rhp, struct task_group, rcu));
8684 /* Destroy runqueue etc associated with a task group */
8685 void sched_destroy_group(struct task_group *tg)
8687 unsigned long flags;
8688 int i;
8690 spin_lock_irqsave(&task_group_lock, flags);
8691 for_each_possible_cpu(i) {
8692 unregister_fair_sched_group(tg, i);
8693 unregister_rt_sched_group(tg, i);
8695 list_del_rcu(&tg->list);
8696 list_del_rcu(&tg->siblings);
8697 spin_unlock_irqrestore(&task_group_lock, flags);
8699 /* wait for possible concurrent references to cfs_rqs complete */
8700 call_rcu(&tg->rcu, free_sched_group_rcu);
8703 /* change task's runqueue when it moves between groups.
8704 * The caller of this function should have put the task in its new group
8705 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8706 * reflect its new group.
8708 void sched_move_task(struct task_struct *tsk)
8710 int on_rq, running;
8711 unsigned long flags;
8712 struct rq *rq;
8714 rq = task_rq_lock(tsk, &flags);
8716 update_rq_clock(rq);
8718 running = task_current(rq, tsk);
8719 on_rq = tsk->se.on_rq;
8721 if (on_rq)
8722 dequeue_task(rq, tsk, 0);
8723 if (unlikely(running))
8724 tsk->sched_class->put_prev_task(rq, tsk);
8726 set_task_rq(tsk, task_cpu(tsk));
8728 #ifdef CONFIG_FAIR_GROUP_SCHED
8729 if (tsk->sched_class->moved_group)
8730 tsk->sched_class->moved_group(tsk);
8731 #endif
8733 if (unlikely(running))
8734 tsk->sched_class->set_curr_task(rq);
8735 if (on_rq)
8736 enqueue_task(rq, tsk, 0);
8738 task_rq_unlock(rq, &flags);
8740 #endif /* CONFIG_GROUP_SCHED */
8742 #ifdef CONFIG_FAIR_GROUP_SCHED
8743 static void __set_se_shares(struct sched_entity *se, unsigned long shares)
8745 struct cfs_rq *cfs_rq = se->cfs_rq;
8746 int on_rq;
8748 on_rq = se->on_rq;
8749 if (on_rq)
8750 dequeue_entity(cfs_rq, se, 0);
8752 se->load.weight = shares;
8753 se->load.inv_weight = 0;
8755 if (on_rq)
8756 enqueue_entity(cfs_rq, se, 0);
8759 static void set_se_shares(struct sched_entity *se, unsigned long shares)
8761 struct cfs_rq *cfs_rq = se->cfs_rq;
8762 struct rq *rq = cfs_rq->rq;
8763 unsigned long flags;
8765 spin_lock_irqsave(&rq->lock, flags);
8766 __set_se_shares(se, shares);
8767 spin_unlock_irqrestore(&rq->lock, flags);
8770 static DEFINE_MUTEX(shares_mutex);
8772 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
8774 int i;
8775 unsigned long flags;
8778 * We can't change the weight of the root cgroup.
8780 if (!tg->se[0])
8781 return -EINVAL;
8783 if (shares < MIN_SHARES)
8784 shares = MIN_SHARES;
8785 else if (shares > MAX_SHARES)
8786 shares = MAX_SHARES;
8788 mutex_lock(&shares_mutex);
8789 if (tg->shares == shares)
8790 goto done;
8792 spin_lock_irqsave(&task_group_lock, flags);
8793 for_each_possible_cpu(i)
8794 unregister_fair_sched_group(tg, i);
8795 list_del_rcu(&tg->siblings);
8796 spin_unlock_irqrestore(&task_group_lock, flags);
8798 /* wait for any ongoing reference to this group to finish */
8799 synchronize_sched();
8802 * Now we are free to modify the group's share on each cpu
8803 * w/o tripping rebalance_share or load_balance_fair.
8805 tg->shares = shares;
8806 for_each_possible_cpu(i) {
8808 * force a rebalance
8810 cfs_rq_set_shares(tg->cfs_rq[i], 0);
8811 set_se_shares(tg->se[i], shares);
8815 * Enable load balance activity on this group, by inserting it back on
8816 * each cpu's rq->leaf_cfs_rq_list.
8818 spin_lock_irqsave(&task_group_lock, flags);
8819 for_each_possible_cpu(i)
8820 register_fair_sched_group(tg, i);
8821 list_add_rcu(&tg->siblings, &tg->parent->children);
8822 spin_unlock_irqrestore(&task_group_lock, flags);
8823 done:
8824 mutex_unlock(&shares_mutex);
8825 return 0;
8828 unsigned long sched_group_shares(struct task_group *tg)
8830 return tg->shares;
8832 #endif
8834 #ifdef CONFIG_RT_GROUP_SCHED
8836 * Ensure that the real time constraints are schedulable.
8838 static DEFINE_MUTEX(rt_constraints_mutex);
8840 static unsigned long to_ratio(u64 period, u64 runtime)
8842 if (runtime == RUNTIME_INF)
8843 return 1ULL << 20;
8845 return div64_u64(runtime << 20, period);
8848 /* Must be called with tasklist_lock held */
8849 static inline int tg_has_rt_tasks(struct task_group *tg)
8851 struct task_struct *g, *p;
8853 do_each_thread(g, p) {
8854 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8855 return 1;
8856 } while_each_thread(g, p);
8858 return 0;
8861 struct rt_schedulable_data {
8862 struct task_group *tg;
8863 u64 rt_period;
8864 u64 rt_runtime;
8867 static int tg_schedulable(struct task_group *tg, void *data)
8869 struct rt_schedulable_data *d = data;
8870 struct task_group *child;
8871 unsigned long total, sum = 0;
8872 u64 period, runtime;
8874 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8875 runtime = tg->rt_bandwidth.rt_runtime;
8877 if (tg == d->tg) {
8878 period = d->rt_period;
8879 runtime = d->rt_runtime;
8883 * Cannot have more runtime than the period.
8885 if (runtime > period && runtime != RUNTIME_INF)
8886 return -EINVAL;
8889 * Ensure we don't starve existing RT tasks.
8891 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
8892 return -EBUSY;
8894 total = to_ratio(period, runtime);
8897 * Nobody can have more than the global setting allows.
8899 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
8900 return -EINVAL;
8903 * The sum of our children's runtime should not exceed our own.
8905 list_for_each_entry_rcu(child, &tg->children, siblings) {
8906 period = ktime_to_ns(child->rt_bandwidth.rt_period);
8907 runtime = child->rt_bandwidth.rt_runtime;
8909 if (child == d->tg) {
8910 period = d->rt_period;
8911 runtime = d->rt_runtime;
8914 sum += to_ratio(period, runtime);
8917 if (sum > total)
8918 return -EINVAL;
8920 return 0;
8923 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8925 struct rt_schedulable_data data = {
8926 .tg = tg,
8927 .rt_period = period,
8928 .rt_runtime = runtime,
8931 return walk_tg_tree(tg_schedulable, tg_nop, &data);
8934 static int tg_set_bandwidth(struct task_group *tg,
8935 u64 rt_period, u64 rt_runtime)
8937 int i, err = 0;
8939 mutex_lock(&rt_constraints_mutex);
8940 read_lock(&tasklist_lock);
8941 err = __rt_schedulable(tg, rt_period, rt_runtime);
8942 if (err)
8943 goto unlock;
8945 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8946 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8947 tg->rt_bandwidth.rt_runtime = rt_runtime;
8949 for_each_possible_cpu(i) {
8950 struct rt_rq *rt_rq = tg->rt_rq[i];
8952 spin_lock(&rt_rq->rt_runtime_lock);
8953 rt_rq->rt_runtime = rt_runtime;
8954 spin_unlock(&rt_rq->rt_runtime_lock);
8956 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8957 unlock:
8958 read_unlock(&tasklist_lock);
8959 mutex_unlock(&rt_constraints_mutex);
8961 return err;
8964 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8966 u64 rt_runtime, rt_period;
8968 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8969 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8970 if (rt_runtime_us < 0)
8971 rt_runtime = RUNTIME_INF;
8973 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8976 long sched_group_rt_runtime(struct task_group *tg)
8978 u64 rt_runtime_us;
8980 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
8981 return -1;
8983 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
8984 do_div(rt_runtime_us, NSEC_PER_USEC);
8985 return rt_runtime_us;
8988 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
8990 u64 rt_runtime, rt_period;
8992 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
8993 rt_runtime = tg->rt_bandwidth.rt_runtime;
8995 if (rt_period == 0)
8996 return -EINVAL;
8998 return tg_set_bandwidth(tg, rt_period, rt_runtime);
9001 long sched_group_rt_period(struct task_group *tg)
9003 u64 rt_period_us;
9005 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
9006 do_div(rt_period_us, NSEC_PER_USEC);
9007 return rt_period_us;
9010 static int sched_rt_global_constraints(void)
9012 u64 runtime, period;
9013 int ret = 0;
9015 if (sysctl_sched_rt_period <= 0)
9016 return -EINVAL;
9018 runtime = global_rt_runtime();
9019 period = global_rt_period();
9022 * Sanity check on the sysctl variables.
9024 if (runtime > period && runtime != RUNTIME_INF)
9025 return -EINVAL;
9027 mutex_lock(&rt_constraints_mutex);
9028 read_lock(&tasklist_lock);
9029 ret = __rt_schedulable(NULL, 0, 0);
9030 read_unlock(&tasklist_lock);
9031 mutex_unlock(&rt_constraints_mutex);
9033 return ret;
9035 #else /* !CONFIG_RT_GROUP_SCHED */
9036 static int sched_rt_global_constraints(void)
9038 unsigned long flags;
9039 int i;
9041 if (sysctl_sched_rt_period <= 0)
9042 return -EINVAL;
9044 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
9045 for_each_possible_cpu(i) {
9046 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
9048 spin_lock(&rt_rq->rt_runtime_lock);
9049 rt_rq->rt_runtime = global_rt_runtime();
9050 spin_unlock(&rt_rq->rt_runtime_lock);
9052 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
9054 return 0;
9056 #endif /* CONFIG_RT_GROUP_SCHED */
9058 int sched_rt_handler(struct ctl_table *table, int write,
9059 struct file *filp, void __user *buffer, size_t *lenp,
9060 loff_t *ppos)
9062 int ret;
9063 int old_period, old_runtime;
9064 static DEFINE_MUTEX(mutex);
9066 mutex_lock(&mutex);
9067 old_period = sysctl_sched_rt_period;
9068 old_runtime = sysctl_sched_rt_runtime;
9070 ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
9072 if (!ret && write) {
9073 ret = sched_rt_global_constraints();
9074 if (ret) {
9075 sysctl_sched_rt_period = old_period;
9076 sysctl_sched_rt_runtime = old_runtime;
9077 } else {
9078 def_rt_bandwidth.rt_runtime = global_rt_runtime();
9079 def_rt_bandwidth.rt_period =
9080 ns_to_ktime(global_rt_period());
9083 mutex_unlock(&mutex);
9085 return ret;
9088 #ifdef CONFIG_CGROUP_SCHED
9090 /* return corresponding task_group object of a cgroup */
9091 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
9093 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
9094 struct task_group, css);
9097 static struct cgroup_subsys_state *
9098 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
9100 struct task_group *tg, *parent;
9102 if (!cgrp->parent) {
9103 /* This is early initialization for the top cgroup */
9104 return &init_task_group.css;
9107 parent = cgroup_tg(cgrp->parent);
9108 tg = sched_create_group(parent);
9109 if (IS_ERR(tg))
9110 return ERR_PTR(-ENOMEM);
9112 return &tg->css;
9115 static void
9116 cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9118 struct task_group *tg = cgroup_tg(cgrp);
9120 sched_destroy_group(tg);
9123 static int
9124 cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
9125 struct task_struct *tsk)
9127 #ifdef CONFIG_RT_GROUP_SCHED
9128 /* Don't accept realtime tasks when there is no way for them to run */
9129 if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
9130 return -EINVAL;
9131 #else
9132 /* We don't support RT-tasks being in separate groups */
9133 if (tsk->sched_class != &fair_sched_class)
9134 return -EINVAL;
9135 #endif
9137 return 0;
9140 static void
9141 cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
9142 struct cgroup *old_cont, struct task_struct *tsk)
9144 sched_move_task(tsk);
9147 #ifdef CONFIG_FAIR_GROUP_SCHED
9148 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
9149 u64 shareval)
9151 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
9154 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
9156 struct task_group *tg = cgroup_tg(cgrp);
9158 return (u64) tg->shares;
9160 #endif /* CONFIG_FAIR_GROUP_SCHED */
9162 #ifdef CONFIG_RT_GROUP_SCHED
9163 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
9164 s64 val)
9166 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
9169 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
9171 return sched_group_rt_runtime(cgroup_tg(cgrp));
9174 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
9175 u64 rt_period_us)
9177 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
9180 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
9182 return sched_group_rt_period(cgroup_tg(cgrp));
9184 #endif /* CONFIG_RT_GROUP_SCHED */
9186 static struct cftype cpu_files[] = {
9187 #ifdef CONFIG_FAIR_GROUP_SCHED
9189 .name = "shares",
9190 .read_u64 = cpu_shares_read_u64,
9191 .write_u64 = cpu_shares_write_u64,
9193 #endif
9194 #ifdef CONFIG_RT_GROUP_SCHED
9196 .name = "rt_runtime_us",
9197 .read_s64 = cpu_rt_runtime_read,
9198 .write_s64 = cpu_rt_runtime_write,
9201 .name = "rt_period_us",
9202 .read_u64 = cpu_rt_period_read_uint,
9203 .write_u64 = cpu_rt_period_write_uint,
9205 #endif
9208 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
9210 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
9213 struct cgroup_subsys cpu_cgroup_subsys = {
9214 .name = "cpu",
9215 .create = cpu_cgroup_create,
9216 .destroy = cpu_cgroup_destroy,
9217 .can_attach = cpu_cgroup_can_attach,
9218 .attach = cpu_cgroup_attach,
9219 .populate = cpu_cgroup_populate,
9220 .subsys_id = cpu_cgroup_subsys_id,
9221 .early_init = 1,
9224 #endif /* CONFIG_CGROUP_SCHED */
9226 #ifdef CONFIG_CGROUP_CPUACCT
9229 * CPU accounting code for task groups.
9231 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
9232 * (balbir@in.ibm.com).
9235 /* track cpu usage of a group of tasks */
9236 struct cpuacct {
9237 struct cgroup_subsys_state css;
9238 /* cpuusage holds pointer to a u64-type object on every cpu */
9239 u64 *cpuusage;
9242 struct cgroup_subsys cpuacct_subsys;
9244 /* return cpu accounting group corresponding to this container */
9245 static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
9247 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
9248 struct cpuacct, css);
9251 /* return cpu accounting group to which this task belongs */
9252 static inline struct cpuacct *task_ca(struct task_struct *tsk)
9254 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
9255 struct cpuacct, css);
9258 /* create a new cpu accounting group */
9259 static struct cgroup_subsys_state *cpuacct_create(
9260 struct cgroup_subsys *ss, struct cgroup *cgrp)
9262 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
9264 if (!ca)
9265 return ERR_PTR(-ENOMEM);
9267 ca->cpuusage = alloc_percpu(u64);
9268 if (!ca->cpuusage) {
9269 kfree(ca);
9270 return ERR_PTR(-ENOMEM);
9273 return &ca->css;
9276 /* destroy an existing cpu accounting group */
9277 static void
9278 cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9280 struct cpuacct *ca = cgroup_ca(cgrp);
9282 free_percpu(ca->cpuusage);
9283 kfree(ca);
9286 /* return total cpu usage (in nanoseconds) of a group */
9287 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
9289 struct cpuacct *ca = cgroup_ca(cgrp);
9290 u64 totalcpuusage = 0;
9291 int i;
9293 for_each_possible_cpu(i) {
9294 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
9297 * Take rq->lock to make 64-bit addition safe on 32-bit
9298 * platforms.
9300 spin_lock_irq(&cpu_rq(i)->lock);
9301 totalcpuusage += *cpuusage;
9302 spin_unlock_irq(&cpu_rq(i)->lock);
9305 return totalcpuusage;
9308 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
9309 u64 reset)
9311 struct cpuacct *ca = cgroup_ca(cgrp);
9312 int err = 0;
9313 int i;
9315 if (reset) {
9316 err = -EINVAL;
9317 goto out;
9320 for_each_possible_cpu(i) {
9321 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
9323 spin_lock_irq(&cpu_rq(i)->lock);
9324 *cpuusage = 0;
9325 spin_unlock_irq(&cpu_rq(i)->lock);
9327 out:
9328 return err;
9331 static struct cftype files[] = {
9333 .name = "usage",
9334 .read_u64 = cpuusage_read,
9335 .write_u64 = cpuusage_write,
9339 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
9341 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
9345 * charge this task's execution time to its accounting group.
9347 * called with rq->lock held.
9349 static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
9351 struct cpuacct *ca;
9353 if (!cpuacct_subsys.active)
9354 return;
9356 ca = task_ca(tsk);
9357 if (ca) {
9358 u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));
9360 *cpuusage += cputime;
9364 struct cgroup_subsys cpuacct_subsys = {
9365 .name = "cpuacct",
9366 .create = cpuacct_create,
9367 .destroy = cpuacct_destroy,
9368 .populate = cpuacct_populate,
9369 .subsys_id = cpuacct_subsys_id,
9371 #endif /* CONFIG_CGROUP_CPUACCT */