gru: support instruction completion interrupts
[linux-2.6/libata-dev.git] / drivers / cpufreq / cpufreq_ondemand.c
blob1911d1729353fe3bdc621ae76896fbabd0a31c5e
1 /*
2 * drivers/cpufreq/cpufreq_ondemand.c
4 * Copyright (C) 2001 Russell King
5 * (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
6 * Jun Nakajima <jun.nakajima@intel.com>
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/init.h>
16 #include <linux/cpufreq.h>
17 #include <linux/cpu.h>
18 #include <linux/jiffies.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/mutex.h>
21 #include <linux/hrtimer.h>
22 #include <linux/tick.h>
23 #include <linux/ktime.h>
24 #include <linux/sched.h>
27 * dbs is used in this file as a shortform for demandbased switching
28 * It helps to keep variable names smaller, simpler
31 #define DEF_FREQUENCY_DOWN_DIFFERENTIAL (10)
32 #define DEF_FREQUENCY_UP_THRESHOLD (80)
33 #define MICRO_FREQUENCY_DOWN_DIFFERENTIAL (3)
34 #define MICRO_FREQUENCY_UP_THRESHOLD (95)
35 #define MICRO_FREQUENCY_MIN_SAMPLE_RATE (10000)
36 #define MIN_FREQUENCY_UP_THRESHOLD (11)
37 #define MAX_FREQUENCY_UP_THRESHOLD (100)
40 * The polling frequency of this governor depends on the capability of
41 * the processor. Default polling frequency is 1000 times the transition
42 * latency of the processor. The governor will work on any processor with
43 * transition latency <= 10mS, using appropriate sampling
44 * rate.
45 * For CPUs with transition latency > 10mS (mostly drivers with CPUFREQ_ETERNAL)
46 * this governor will not work.
47 * All times here are in uS.
49 #define MIN_SAMPLING_RATE_RATIO (2)
51 static unsigned int min_sampling_rate;
53 #define LATENCY_MULTIPLIER (1000)
54 #define MIN_LATENCY_MULTIPLIER (100)
55 #define TRANSITION_LATENCY_LIMIT (10 * 1000 * 1000)
57 static void do_dbs_timer(struct work_struct *work);
59 /* Sampling types */
60 enum {DBS_NORMAL_SAMPLE, DBS_SUB_SAMPLE};
62 struct cpu_dbs_info_s {
63 cputime64_t prev_cpu_idle;
64 cputime64_t prev_cpu_wall;
65 cputime64_t prev_cpu_nice;
66 struct cpufreq_policy *cur_policy;
67 struct delayed_work work;
68 struct cpufreq_frequency_table *freq_table;
69 unsigned int freq_lo;
70 unsigned int freq_lo_jiffies;
71 unsigned int freq_hi_jiffies;
72 int cpu;
73 unsigned int enable:1,
74 sample_type:1;
76 static DEFINE_PER_CPU(struct cpu_dbs_info_s, cpu_dbs_info);
78 static unsigned int dbs_enable; /* number of CPUs using this policy */
81 * DEADLOCK ALERT! There is a ordering requirement between cpu_hotplug
82 * lock and dbs_mutex. cpu_hotplug lock should always be held before
83 * dbs_mutex. If any function that can potentially take cpu_hotplug lock
84 * (like __cpufreq_driver_target()) is being called with dbs_mutex taken, then
85 * cpu_hotplug lock should be taken before that. Note that cpu_hotplug lock
86 * is recursive for the same process. -Venki
87 * DEADLOCK ALERT! (2) : do_dbs_timer() must not take the dbs_mutex, because it
88 * would deadlock with cancel_delayed_work_sync(), which is needed for proper
89 * raceless workqueue teardown.
91 static DEFINE_MUTEX(dbs_mutex);
93 static struct workqueue_struct *kondemand_wq;
95 static struct dbs_tuners {
96 unsigned int sampling_rate;
97 unsigned int up_threshold;
98 unsigned int down_differential;
99 unsigned int ignore_nice;
100 unsigned int powersave_bias;
101 } dbs_tuners_ins = {
102 .up_threshold = DEF_FREQUENCY_UP_THRESHOLD,
103 .down_differential = DEF_FREQUENCY_DOWN_DIFFERENTIAL,
104 .ignore_nice = 0,
105 .powersave_bias = 0,
108 static inline cputime64_t get_cpu_idle_time_jiffy(unsigned int cpu,
109 cputime64_t *wall)
111 cputime64_t idle_time;
112 cputime64_t cur_wall_time;
113 cputime64_t busy_time;
115 cur_wall_time = jiffies64_to_cputime64(get_jiffies_64());
116 busy_time = cputime64_add(kstat_cpu(cpu).cpustat.user,
117 kstat_cpu(cpu).cpustat.system);
119 busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.irq);
120 busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.softirq);
121 busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.steal);
122 busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.nice);
124 idle_time = cputime64_sub(cur_wall_time, busy_time);
125 if (wall)
126 *wall = cur_wall_time;
128 return idle_time;
131 static inline cputime64_t get_cpu_idle_time(unsigned int cpu, cputime64_t *wall)
133 u64 idle_time = get_cpu_idle_time_us(cpu, wall);
135 if (idle_time == -1ULL)
136 return get_cpu_idle_time_jiffy(cpu, wall);
138 return idle_time;
142 * Find right freq to be set now with powersave_bias on.
143 * Returns the freq_hi to be used right now and will set freq_hi_jiffies,
144 * freq_lo, and freq_lo_jiffies in percpu area for averaging freqs.
146 static unsigned int powersave_bias_target(struct cpufreq_policy *policy,
147 unsigned int freq_next,
148 unsigned int relation)
150 unsigned int freq_req, freq_reduc, freq_avg;
151 unsigned int freq_hi, freq_lo;
152 unsigned int index = 0;
153 unsigned int jiffies_total, jiffies_hi, jiffies_lo;
154 struct cpu_dbs_info_s *dbs_info = &per_cpu(cpu_dbs_info, policy->cpu);
156 if (!dbs_info->freq_table) {
157 dbs_info->freq_lo = 0;
158 dbs_info->freq_lo_jiffies = 0;
159 return freq_next;
162 cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_next,
163 relation, &index);
164 freq_req = dbs_info->freq_table[index].frequency;
165 freq_reduc = freq_req * dbs_tuners_ins.powersave_bias / 1000;
166 freq_avg = freq_req - freq_reduc;
168 /* Find freq bounds for freq_avg in freq_table */
169 index = 0;
170 cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
171 CPUFREQ_RELATION_H, &index);
172 freq_lo = dbs_info->freq_table[index].frequency;
173 index = 0;
174 cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
175 CPUFREQ_RELATION_L, &index);
176 freq_hi = dbs_info->freq_table[index].frequency;
178 /* Find out how long we have to be in hi and lo freqs */
179 if (freq_hi == freq_lo) {
180 dbs_info->freq_lo = 0;
181 dbs_info->freq_lo_jiffies = 0;
182 return freq_lo;
184 jiffies_total = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
185 jiffies_hi = (freq_avg - freq_lo) * jiffies_total;
186 jiffies_hi += ((freq_hi - freq_lo) / 2);
187 jiffies_hi /= (freq_hi - freq_lo);
188 jiffies_lo = jiffies_total - jiffies_hi;
189 dbs_info->freq_lo = freq_lo;
190 dbs_info->freq_lo_jiffies = jiffies_lo;
191 dbs_info->freq_hi_jiffies = jiffies_hi;
192 return freq_hi;
195 static void ondemand_powersave_bias_init(void)
197 int i;
198 for_each_online_cpu(i) {
199 struct cpu_dbs_info_s *dbs_info = &per_cpu(cpu_dbs_info, i);
200 dbs_info->freq_table = cpufreq_frequency_get_table(i);
201 dbs_info->freq_lo = 0;
205 /************************** sysfs interface ************************/
206 static ssize_t show_sampling_rate_max(struct cpufreq_policy *policy, char *buf)
208 printk_once(KERN_INFO "CPUFREQ: ondemand sampling_rate_max "
209 "sysfs file is deprecated - used by: %s\n", current->comm);
210 return sprintf(buf, "%u\n", -1U);
213 static ssize_t show_sampling_rate_min(struct cpufreq_policy *policy, char *buf)
215 return sprintf(buf, "%u\n", min_sampling_rate);
218 #define define_one_ro(_name) \
219 static struct freq_attr _name = \
220 __ATTR(_name, 0444, show_##_name, NULL)
222 define_one_ro(sampling_rate_max);
223 define_one_ro(sampling_rate_min);
225 /* cpufreq_ondemand Governor Tunables */
226 #define show_one(file_name, object) \
227 static ssize_t show_##file_name \
228 (struct cpufreq_policy *unused, char *buf) \
230 return sprintf(buf, "%u\n", dbs_tuners_ins.object); \
232 show_one(sampling_rate, sampling_rate);
233 show_one(up_threshold, up_threshold);
234 show_one(ignore_nice_load, ignore_nice);
235 show_one(powersave_bias, powersave_bias);
237 static ssize_t store_sampling_rate(struct cpufreq_policy *unused,
238 const char *buf, size_t count)
240 unsigned int input;
241 int ret;
242 ret = sscanf(buf, "%u", &input);
244 mutex_lock(&dbs_mutex);
245 if (ret != 1) {
246 mutex_unlock(&dbs_mutex);
247 return -EINVAL;
249 dbs_tuners_ins.sampling_rate = max(input, min_sampling_rate);
250 mutex_unlock(&dbs_mutex);
252 return count;
255 static ssize_t store_up_threshold(struct cpufreq_policy *unused,
256 const char *buf, size_t count)
258 unsigned int input;
259 int ret;
260 ret = sscanf(buf, "%u", &input);
262 mutex_lock(&dbs_mutex);
263 if (ret != 1 || input > MAX_FREQUENCY_UP_THRESHOLD ||
264 input < MIN_FREQUENCY_UP_THRESHOLD) {
265 mutex_unlock(&dbs_mutex);
266 return -EINVAL;
269 dbs_tuners_ins.up_threshold = input;
270 mutex_unlock(&dbs_mutex);
272 return count;
275 static ssize_t store_ignore_nice_load(struct cpufreq_policy *policy,
276 const char *buf, size_t count)
278 unsigned int input;
279 int ret;
281 unsigned int j;
283 ret = sscanf(buf, "%u", &input);
284 if (ret != 1)
285 return -EINVAL;
287 if (input > 1)
288 input = 1;
290 mutex_lock(&dbs_mutex);
291 if (input == dbs_tuners_ins.ignore_nice) { /* nothing to do */
292 mutex_unlock(&dbs_mutex);
293 return count;
295 dbs_tuners_ins.ignore_nice = input;
297 /* we need to re-evaluate prev_cpu_idle */
298 for_each_online_cpu(j) {
299 struct cpu_dbs_info_s *dbs_info;
300 dbs_info = &per_cpu(cpu_dbs_info, j);
301 dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
302 &dbs_info->prev_cpu_wall);
303 if (dbs_tuners_ins.ignore_nice)
304 dbs_info->prev_cpu_nice = kstat_cpu(j).cpustat.nice;
307 mutex_unlock(&dbs_mutex);
309 return count;
312 static ssize_t store_powersave_bias(struct cpufreq_policy *unused,
313 const char *buf, size_t count)
315 unsigned int input;
316 int ret;
317 ret = sscanf(buf, "%u", &input);
319 if (ret != 1)
320 return -EINVAL;
322 if (input > 1000)
323 input = 1000;
325 mutex_lock(&dbs_mutex);
326 dbs_tuners_ins.powersave_bias = input;
327 ondemand_powersave_bias_init();
328 mutex_unlock(&dbs_mutex);
330 return count;
333 #define define_one_rw(_name) \
334 static struct freq_attr _name = \
335 __ATTR(_name, 0644, show_##_name, store_##_name)
337 define_one_rw(sampling_rate);
338 define_one_rw(up_threshold);
339 define_one_rw(ignore_nice_load);
340 define_one_rw(powersave_bias);
342 static struct attribute *dbs_attributes[] = {
343 &sampling_rate_max.attr,
344 &sampling_rate_min.attr,
345 &sampling_rate.attr,
346 &up_threshold.attr,
347 &ignore_nice_load.attr,
348 &powersave_bias.attr,
349 NULL
352 static struct attribute_group dbs_attr_group = {
353 .attrs = dbs_attributes,
354 .name = "ondemand",
357 /************************** sysfs end ************************/
359 static void dbs_check_cpu(struct cpu_dbs_info_s *this_dbs_info)
361 unsigned int max_load_freq;
363 struct cpufreq_policy *policy;
364 unsigned int j;
366 if (!this_dbs_info->enable)
367 return;
369 this_dbs_info->freq_lo = 0;
370 policy = this_dbs_info->cur_policy;
373 * Every sampling_rate, we check, if current idle time is less
374 * than 20% (default), then we try to increase frequency
375 * Every sampling_rate, we look for a the lowest
376 * frequency which can sustain the load while keeping idle time over
377 * 30%. If such a frequency exist, we try to decrease to this frequency.
379 * Any frequency increase takes it to the maximum frequency.
380 * Frequency reduction happens at minimum steps of
381 * 5% (default) of current frequency
384 /* Get Absolute Load - in terms of freq */
385 max_load_freq = 0;
387 for_each_cpu(j, policy->cpus) {
388 struct cpu_dbs_info_s *j_dbs_info;
389 cputime64_t cur_wall_time, cur_idle_time;
390 unsigned int idle_time, wall_time;
391 unsigned int load, load_freq;
392 int freq_avg;
394 j_dbs_info = &per_cpu(cpu_dbs_info, j);
396 cur_idle_time = get_cpu_idle_time(j, &cur_wall_time);
398 wall_time = (unsigned int) cputime64_sub(cur_wall_time,
399 j_dbs_info->prev_cpu_wall);
400 j_dbs_info->prev_cpu_wall = cur_wall_time;
402 idle_time = (unsigned int) cputime64_sub(cur_idle_time,
403 j_dbs_info->prev_cpu_idle);
404 j_dbs_info->prev_cpu_idle = cur_idle_time;
406 if (dbs_tuners_ins.ignore_nice) {
407 cputime64_t cur_nice;
408 unsigned long cur_nice_jiffies;
410 cur_nice = cputime64_sub(kstat_cpu(j).cpustat.nice,
411 j_dbs_info->prev_cpu_nice);
413 * Assumption: nice time between sampling periods will
414 * be less than 2^32 jiffies for 32 bit sys
416 cur_nice_jiffies = (unsigned long)
417 cputime64_to_jiffies64(cur_nice);
419 j_dbs_info->prev_cpu_nice = kstat_cpu(j).cpustat.nice;
420 idle_time += jiffies_to_usecs(cur_nice_jiffies);
423 if (unlikely(!wall_time || wall_time < idle_time))
424 continue;
426 load = 100 * (wall_time - idle_time) / wall_time;
428 freq_avg = __cpufreq_driver_getavg(policy, j);
429 if (freq_avg <= 0)
430 freq_avg = policy->cur;
432 load_freq = load * freq_avg;
433 if (load_freq > max_load_freq)
434 max_load_freq = load_freq;
437 /* Check for frequency increase */
438 if (max_load_freq > dbs_tuners_ins.up_threshold * policy->cur) {
439 /* if we are already at full speed then break out early */
440 if (!dbs_tuners_ins.powersave_bias) {
441 if (policy->cur == policy->max)
442 return;
444 __cpufreq_driver_target(policy, policy->max,
445 CPUFREQ_RELATION_H);
446 } else {
447 int freq = powersave_bias_target(policy, policy->max,
448 CPUFREQ_RELATION_H);
449 __cpufreq_driver_target(policy, freq,
450 CPUFREQ_RELATION_L);
452 return;
455 /* Check for frequency decrease */
456 /* if we cannot reduce the frequency anymore, break out early */
457 if (policy->cur == policy->min)
458 return;
461 * The optimal frequency is the frequency that is the lowest that
462 * can support the current CPU usage without triggering the up
463 * policy. To be safe, we focus 10 points under the threshold.
465 if (max_load_freq <
466 (dbs_tuners_ins.up_threshold - dbs_tuners_ins.down_differential) *
467 policy->cur) {
468 unsigned int freq_next;
469 freq_next = max_load_freq /
470 (dbs_tuners_ins.up_threshold -
471 dbs_tuners_ins.down_differential);
473 if (!dbs_tuners_ins.powersave_bias) {
474 __cpufreq_driver_target(policy, freq_next,
475 CPUFREQ_RELATION_L);
476 } else {
477 int freq = powersave_bias_target(policy, freq_next,
478 CPUFREQ_RELATION_L);
479 __cpufreq_driver_target(policy, freq,
480 CPUFREQ_RELATION_L);
485 static void do_dbs_timer(struct work_struct *work)
487 struct cpu_dbs_info_s *dbs_info =
488 container_of(work, struct cpu_dbs_info_s, work.work);
489 unsigned int cpu = dbs_info->cpu;
490 int sample_type = dbs_info->sample_type;
492 /* We want all CPUs to do sampling nearly on same jiffy */
493 int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
495 delay -= jiffies % delay;
497 if (lock_policy_rwsem_write(cpu) < 0)
498 return;
500 if (!dbs_info->enable) {
501 unlock_policy_rwsem_write(cpu);
502 return;
505 /* Common NORMAL_SAMPLE setup */
506 dbs_info->sample_type = DBS_NORMAL_SAMPLE;
507 if (!dbs_tuners_ins.powersave_bias ||
508 sample_type == DBS_NORMAL_SAMPLE) {
509 dbs_check_cpu(dbs_info);
510 if (dbs_info->freq_lo) {
511 /* Setup timer for SUB_SAMPLE */
512 dbs_info->sample_type = DBS_SUB_SAMPLE;
513 delay = dbs_info->freq_hi_jiffies;
515 } else {
516 __cpufreq_driver_target(dbs_info->cur_policy,
517 dbs_info->freq_lo, CPUFREQ_RELATION_H);
519 queue_delayed_work_on(cpu, kondemand_wq, &dbs_info->work, delay);
520 unlock_policy_rwsem_write(cpu);
523 static inline void dbs_timer_init(struct cpu_dbs_info_s *dbs_info)
525 /* We want all CPUs to do sampling nearly on same jiffy */
526 int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
527 delay -= jiffies % delay;
529 dbs_info->enable = 1;
530 ondemand_powersave_bias_init();
531 dbs_info->sample_type = DBS_NORMAL_SAMPLE;
532 INIT_DELAYED_WORK_DEFERRABLE(&dbs_info->work, do_dbs_timer);
533 queue_delayed_work_on(dbs_info->cpu, kondemand_wq, &dbs_info->work,
534 delay);
537 static inline void dbs_timer_exit(struct cpu_dbs_info_s *dbs_info)
539 dbs_info->enable = 0;
540 cancel_delayed_work_sync(&dbs_info->work);
543 static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
544 unsigned int event)
546 unsigned int cpu = policy->cpu;
547 struct cpu_dbs_info_s *this_dbs_info;
548 unsigned int j;
549 int rc;
551 this_dbs_info = &per_cpu(cpu_dbs_info, cpu);
553 switch (event) {
554 case CPUFREQ_GOV_START:
555 if ((!cpu_online(cpu)) || (!policy->cur))
556 return -EINVAL;
558 if (this_dbs_info->enable) /* Already enabled */
559 break;
561 mutex_lock(&dbs_mutex);
562 dbs_enable++;
564 rc = sysfs_create_group(&policy->kobj, &dbs_attr_group);
565 if (rc) {
566 dbs_enable--;
567 mutex_unlock(&dbs_mutex);
568 return rc;
571 for_each_cpu(j, policy->cpus) {
572 struct cpu_dbs_info_s *j_dbs_info;
573 j_dbs_info = &per_cpu(cpu_dbs_info, j);
574 j_dbs_info->cur_policy = policy;
576 j_dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
577 &j_dbs_info->prev_cpu_wall);
578 if (dbs_tuners_ins.ignore_nice) {
579 j_dbs_info->prev_cpu_nice =
580 kstat_cpu(j).cpustat.nice;
583 this_dbs_info->cpu = cpu;
585 * Start the timerschedule work, when this governor
586 * is used for first time
588 if (dbs_enable == 1) {
589 unsigned int latency;
590 /* policy latency is in nS. Convert it to uS first */
591 latency = policy->cpuinfo.transition_latency / 1000;
592 if (latency == 0)
593 latency = 1;
594 /* Bring kernel and HW constraints together */
595 min_sampling_rate = max(min_sampling_rate,
596 MIN_LATENCY_MULTIPLIER * latency);
597 dbs_tuners_ins.sampling_rate =
598 max(min_sampling_rate,
599 latency * LATENCY_MULTIPLIER);
601 dbs_timer_init(this_dbs_info);
603 mutex_unlock(&dbs_mutex);
604 break;
606 case CPUFREQ_GOV_STOP:
607 mutex_lock(&dbs_mutex);
608 dbs_timer_exit(this_dbs_info);
609 sysfs_remove_group(&policy->kobj, &dbs_attr_group);
610 dbs_enable--;
611 mutex_unlock(&dbs_mutex);
613 break;
615 case CPUFREQ_GOV_LIMITS:
616 mutex_lock(&dbs_mutex);
617 if (policy->max < this_dbs_info->cur_policy->cur)
618 __cpufreq_driver_target(this_dbs_info->cur_policy,
619 policy->max, CPUFREQ_RELATION_H);
620 else if (policy->min > this_dbs_info->cur_policy->cur)
621 __cpufreq_driver_target(this_dbs_info->cur_policy,
622 policy->min, CPUFREQ_RELATION_L);
623 mutex_unlock(&dbs_mutex);
624 break;
626 return 0;
629 #ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
630 static
631 #endif
632 struct cpufreq_governor cpufreq_gov_ondemand = {
633 .name = "ondemand",
634 .governor = cpufreq_governor_dbs,
635 .max_transition_latency = TRANSITION_LATENCY_LIMIT,
636 .owner = THIS_MODULE,
639 static int __init cpufreq_gov_dbs_init(void)
641 int err;
642 cputime64_t wall;
643 u64 idle_time;
644 int cpu = get_cpu();
646 idle_time = get_cpu_idle_time_us(cpu, &wall);
647 put_cpu();
648 if (idle_time != -1ULL) {
649 /* Idle micro accounting is supported. Use finer thresholds */
650 dbs_tuners_ins.up_threshold = MICRO_FREQUENCY_UP_THRESHOLD;
651 dbs_tuners_ins.down_differential =
652 MICRO_FREQUENCY_DOWN_DIFFERENTIAL;
654 * In no_hz/micro accounting case we set the minimum frequency
655 * not depending on HZ, but fixed (very low). The deferred
656 * timer might skip some samples if idle/sleeping as needed.
658 min_sampling_rate = MICRO_FREQUENCY_MIN_SAMPLE_RATE;
659 } else {
660 /* For correct statistics, we need 10 ticks for each measure */
661 min_sampling_rate =
662 MIN_SAMPLING_RATE_RATIO * jiffies_to_usecs(10);
665 kondemand_wq = create_workqueue("kondemand");
666 if (!kondemand_wq) {
667 printk(KERN_ERR "Creation of kondemand failed\n");
668 return -EFAULT;
670 err = cpufreq_register_governor(&cpufreq_gov_ondemand);
671 if (err)
672 destroy_workqueue(kondemand_wq);
674 return err;
677 static void __exit cpufreq_gov_dbs_exit(void)
679 cpufreq_unregister_governor(&cpufreq_gov_ondemand);
680 destroy_workqueue(kondemand_wq);
684 MODULE_AUTHOR("Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>");
685 MODULE_AUTHOR("Alexey Starikovskiy <alexey.y.starikovskiy@intel.com>");
686 MODULE_DESCRIPTION("'cpufreq_ondemand' - A dynamic cpufreq governor for "
687 "Low Latency Frequency Transition capable processors");
688 MODULE_LICENSE("GPL");
690 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
691 fs_initcall(cpufreq_gov_dbs_init);
692 #else
693 module_init(cpufreq_gov_dbs_init);
694 #endif
695 module_exit(cpufreq_gov_dbs_exit);