Parse mount options just once and copy them to super block
[linux-2.6/libata-dev.git] / fs / namespace.c
blob2432ca6bb223e75fc5aaeebfad8e484a45140b4d
1 /*
2 * linux/fs/namespace.c
4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
11 #include <linux/syscalls.h>
12 #include <linux/slab.h>
13 #include <linux/sched.h>
14 #include <linux/smp_lock.h>
15 #include <linux/init.h>
16 #include <linux/kernel.h>
17 #include <linux/acct.h>
18 #include <linux/capability.h>
19 #include <linux/cpumask.h>
20 #include <linux/module.h>
21 #include <linux/sysfs.h>
22 #include <linux/seq_file.h>
23 #include <linux/mnt_namespace.h>
24 #include <linux/namei.h>
25 #include <linux/security.h>
26 #include <linux/mount.h>
27 #include <linux/ramfs.h>
28 #include <linux/log2.h>
29 #include <linux/idr.h>
30 #include <asm/uaccess.h>
31 #include <asm/unistd.h>
32 #include "pnode.h"
33 #include "internal.h"
35 #define HASH_SHIFT ilog2(PAGE_SIZE / sizeof(struct list_head))
36 #define HASH_SIZE (1UL << HASH_SHIFT)
38 /* spinlock for vfsmount related operations, inplace of dcache_lock */
39 __cacheline_aligned_in_smp DEFINE_SPINLOCK(vfsmount_lock);
41 static int event;
42 static DEFINE_IDA(mnt_id_ida);
43 static DEFINE_IDA(mnt_group_ida);
45 static struct list_head *mount_hashtable __read_mostly;
46 static struct kmem_cache *mnt_cache __read_mostly;
47 static struct rw_semaphore namespace_sem;
49 /* /sys/fs */
50 struct kobject *fs_kobj;
51 EXPORT_SYMBOL_GPL(fs_kobj);
53 static inline unsigned long hash(struct vfsmount *mnt, struct dentry *dentry)
55 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
56 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
57 tmp = tmp + (tmp >> HASH_SHIFT);
58 return tmp & (HASH_SIZE - 1);
61 #define MNT_WRITER_UNDERFLOW_LIMIT -(1<<16)
63 /* allocation is serialized by namespace_sem */
64 static int mnt_alloc_id(struct vfsmount *mnt)
66 int res;
68 retry:
69 ida_pre_get(&mnt_id_ida, GFP_KERNEL);
70 spin_lock(&vfsmount_lock);
71 res = ida_get_new(&mnt_id_ida, &mnt->mnt_id);
72 spin_unlock(&vfsmount_lock);
73 if (res == -EAGAIN)
74 goto retry;
76 return res;
79 static void mnt_free_id(struct vfsmount *mnt)
81 spin_lock(&vfsmount_lock);
82 ida_remove(&mnt_id_ida, mnt->mnt_id);
83 spin_unlock(&vfsmount_lock);
87 * Allocate a new peer group ID
89 * mnt_group_ida is protected by namespace_sem
91 static int mnt_alloc_group_id(struct vfsmount *mnt)
93 if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
94 return -ENOMEM;
96 return ida_get_new_above(&mnt_group_ida, 1, &mnt->mnt_group_id);
100 * Release a peer group ID
102 void mnt_release_group_id(struct vfsmount *mnt)
104 ida_remove(&mnt_group_ida, mnt->mnt_group_id);
105 mnt->mnt_group_id = 0;
108 struct vfsmount *alloc_vfsmnt(const char *name)
110 struct vfsmount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
111 if (mnt) {
112 int err;
114 err = mnt_alloc_id(mnt);
115 if (err)
116 goto out_free_cache;
118 if (name) {
119 mnt->mnt_devname = kstrdup(name, GFP_KERNEL);
120 if (!mnt->mnt_devname)
121 goto out_free_id;
124 atomic_set(&mnt->mnt_count, 1);
125 INIT_LIST_HEAD(&mnt->mnt_hash);
126 INIT_LIST_HEAD(&mnt->mnt_child);
127 INIT_LIST_HEAD(&mnt->mnt_mounts);
128 INIT_LIST_HEAD(&mnt->mnt_list);
129 INIT_LIST_HEAD(&mnt->mnt_expire);
130 INIT_LIST_HEAD(&mnt->mnt_share);
131 INIT_LIST_HEAD(&mnt->mnt_slave_list);
132 INIT_LIST_HEAD(&mnt->mnt_slave);
133 atomic_set(&mnt->__mnt_writers, 0);
135 return mnt;
137 out_free_id:
138 mnt_free_id(mnt);
139 out_free_cache:
140 kmem_cache_free(mnt_cache, mnt);
141 return NULL;
145 * Most r/o checks on a fs are for operations that take
146 * discrete amounts of time, like a write() or unlink().
147 * We must keep track of when those operations start
148 * (for permission checks) and when they end, so that
149 * we can determine when writes are able to occur to
150 * a filesystem.
153 * __mnt_is_readonly: check whether a mount is read-only
154 * @mnt: the mount to check for its write status
156 * This shouldn't be used directly ouside of the VFS.
157 * It does not guarantee that the filesystem will stay
158 * r/w, just that it is right *now*. This can not and
159 * should not be used in place of IS_RDONLY(inode).
160 * mnt_want/drop_write() will _keep_ the filesystem
161 * r/w.
163 int __mnt_is_readonly(struct vfsmount *mnt)
165 if (mnt->mnt_flags & MNT_READONLY)
166 return 1;
167 if (mnt->mnt_sb->s_flags & MS_RDONLY)
168 return 1;
169 return 0;
171 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
173 struct mnt_writer {
175 * If holding multiple instances of this lock, they
176 * must be ordered by cpu number.
178 spinlock_t lock;
179 struct lock_class_key lock_class; /* compiles out with !lockdep */
180 unsigned long count;
181 struct vfsmount *mnt;
182 } ____cacheline_aligned_in_smp;
183 static DEFINE_PER_CPU(struct mnt_writer, mnt_writers);
185 static int __init init_mnt_writers(void)
187 int cpu;
188 for_each_possible_cpu(cpu) {
189 struct mnt_writer *writer = &per_cpu(mnt_writers, cpu);
190 spin_lock_init(&writer->lock);
191 lockdep_set_class(&writer->lock, &writer->lock_class);
192 writer->count = 0;
194 return 0;
196 fs_initcall(init_mnt_writers);
198 static void unlock_mnt_writers(void)
200 int cpu;
201 struct mnt_writer *cpu_writer;
203 for_each_possible_cpu(cpu) {
204 cpu_writer = &per_cpu(mnt_writers, cpu);
205 spin_unlock(&cpu_writer->lock);
209 static inline void __clear_mnt_count(struct mnt_writer *cpu_writer)
211 if (!cpu_writer->mnt)
212 return;
214 * This is in case anyone ever leaves an invalid,
215 * old ->mnt and a count of 0.
217 if (!cpu_writer->count)
218 return;
219 atomic_add(cpu_writer->count, &cpu_writer->mnt->__mnt_writers);
220 cpu_writer->count = 0;
223 * must hold cpu_writer->lock
225 static inline void use_cpu_writer_for_mount(struct mnt_writer *cpu_writer,
226 struct vfsmount *mnt)
228 if (cpu_writer->mnt == mnt)
229 return;
230 __clear_mnt_count(cpu_writer);
231 cpu_writer->mnt = mnt;
235 * Most r/o checks on a fs are for operations that take
236 * discrete amounts of time, like a write() or unlink().
237 * We must keep track of when those operations start
238 * (for permission checks) and when they end, so that
239 * we can determine when writes are able to occur to
240 * a filesystem.
243 * mnt_want_write - get write access to a mount
244 * @mnt: the mount on which to take a write
246 * This tells the low-level filesystem that a write is
247 * about to be performed to it, and makes sure that
248 * writes are allowed before returning success. When
249 * the write operation is finished, mnt_drop_write()
250 * must be called. This is effectively a refcount.
252 int mnt_want_write(struct vfsmount *mnt)
254 int ret = 0;
255 struct mnt_writer *cpu_writer;
257 cpu_writer = &get_cpu_var(mnt_writers);
258 spin_lock(&cpu_writer->lock);
259 if (__mnt_is_readonly(mnt)) {
260 ret = -EROFS;
261 goto out;
263 use_cpu_writer_for_mount(cpu_writer, mnt);
264 cpu_writer->count++;
265 out:
266 spin_unlock(&cpu_writer->lock);
267 put_cpu_var(mnt_writers);
268 return ret;
270 EXPORT_SYMBOL_GPL(mnt_want_write);
272 static void lock_mnt_writers(void)
274 int cpu;
275 struct mnt_writer *cpu_writer;
277 for_each_possible_cpu(cpu) {
278 cpu_writer = &per_cpu(mnt_writers, cpu);
279 spin_lock(&cpu_writer->lock);
280 __clear_mnt_count(cpu_writer);
281 cpu_writer->mnt = NULL;
286 * These per-cpu write counts are not guaranteed to have
287 * matched increments and decrements on any given cpu.
288 * A file open()ed for write on one cpu and close()d on
289 * another cpu will imbalance this count. Make sure it
290 * does not get too far out of whack.
292 static void handle_write_count_underflow(struct vfsmount *mnt)
294 if (atomic_read(&mnt->__mnt_writers) >=
295 MNT_WRITER_UNDERFLOW_LIMIT)
296 return;
298 * It isn't necessary to hold all of the locks
299 * at the same time, but doing it this way makes
300 * us share a lot more code.
302 lock_mnt_writers();
304 * vfsmount_lock is for mnt_flags.
306 spin_lock(&vfsmount_lock);
308 * If coalescing the per-cpu writer counts did not
309 * get us back to a positive writer count, we have
310 * a bug.
312 if ((atomic_read(&mnt->__mnt_writers) < 0) &&
313 !(mnt->mnt_flags & MNT_IMBALANCED_WRITE_COUNT)) {
314 WARN(1, KERN_DEBUG "leak detected on mount(%p) writers "
315 "count: %d\n",
316 mnt, atomic_read(&mnt->__mnt_writers));
317 /* use the flag to keep the dmesg spam down */
318 mnt->mnt_flags |= MNT_IMBALANCED_WRITE_COUNT;
320 spin_unlock(&vfsmount_lock);
321 unlock_mnt_writers();
325 * mnt_drop_write - give up write access to a mount
326 * @mnt: the mount on which to give up write access
328 * Tells the low-level filesystem that we are done
329 * performing writes to it. Must be matched with
330 * mnt_want_write() call above.
332 void mnt_drop_write(struct vfsmount *mnt)
334 int must_check_underflow = 0;
335 struct mnt_writer *cpu_writer;
337 cpu_writer = &get_cpu_var(mnt_writers);
338 spin_lock(&cpu_writer->lock);
340 use_cpu_writer_for_mount(cpu_writer, mnt);
341 if (cpu_writer->count > 0) {
342 cpu_writer->count--;
343 } else {
344 must_check_underflow = 1;
345 atomic_dec(&mnt->__mnt_writers);
348 spin_unlock(&cpu_writer->lock);
350 * Logically, we could call this each time,
351 * but the __mnt_writers cacheline tends to
352 * be cold, and makes this expensive.
354 if (must_check_underflow)
355 handle_write_count_underflow(mnt);
357 * This could be done right after the spinlock
358 * is taken because the spinlock keeps us on
359 * the cpu, and disables preemption. However,
360 * putting it here bounds the amount that
361 * __mnt_writers can underflow. Without it,
362 * we could theoretically wrap __mnt_writers.
364 put_cpu_var(mnt_writers);
366 EXPORT_SYMBOL_GPL(mnt_drop_write);
368 static int mnt_make_readonly(struct vfsmount *mnt)
370 int ret = 0;
372 lock_mnt_writers();
374 * With all the locks held, this value is stable
376 if (atomic_read(&mnt->__mnt_writers) > 0) {
377 ret = -EBUSY;
378 goto out;
381 * nobody can do a successful mnt_want_write() with all
382 * of the counts in MNT_DENIED_WRITE and the locks held.
384 spin_lock(&vfsmount_lock);
385 if (!ret)
386 mnt->mnt_flags |= MNT_READONLY;
387 spin_unlock(&vfsmount_lock);
388 out:
389 unlock_mnt_writers();
390 return ret;
393 static void __mnt_unmake_readonly(struct vfsmount *mnt)
395 spin_lock(&vfsmount_lock);
396 mnt->mnt_flags &= ~MNT_READONLY;
397 spin_unlock(&vfsmount_lock);
400 void simple_set_mnt(struct vfsmount *mnt, struct super_block *sb)
402 mnt->mnt_sb = sb;
403 mnt->mnt_root = dget(sb->s_root);
406 EXPORT_SYMBOL(simple_set_mnt);
408 void free_vfsmnt(struct vfsmount *mnt)
410 kfree(mnt->mnt_devname);
411 mnt_free_id(mnt);
412 kmem_cache_free(mnt_cache, mnt);
416 * find the first or last mount at @dentry on vfsmount @mnt depending on
417 * @dir. If @dir is set return the first mount else return the last mount.
419 struct vfsmount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry,
420 int dir)
422 struct list_head *head = mount_hashtable + hash(mnt, dentry);
423 struct list_head *tmp = head;
424 struct vfsmount *p, *found = NULL;
426 for (;;) {
427 tmp = dir ? tmp->next : tmp->prev;
428 p = NULL;
429 if (tmp == head)
430 break;
431 p = list_entry(tmp, struct vfsmount, mnt_hash);
432 if (p->mnt_parent == mnt && p->mnt_mountpoint == dentry) {
433 found = p;
434 break;
437 return found;
441 * lookup_mnt increments the ref count before returning
442 * the vfsmount struct.
444 struct vfsmount *lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
446 struct vfsmount *child_mnt;
447 spin_lock(&vfsmount_lock);
448 if ((child_mnt = __lookup_mnt(mnt, dentry, 1)))
449 mntget(child_mnt);
450 spin_unlock(&vfsmount_lock);
451 return child_mnt;
454 static inline int check_mnt(struct vfsmount *mnt)
456 return mnt->mnt_ns == current->nsproxy->mnt_ns;
459 static void touch_mnt_namespace(struct mnt_namespace *ns)
461 if (ns) {
462 ns->event = ++event;
463 wake_up_interruptible(&ns->poll);
467 static void __touch_mnt_namespace(struct mnt_namespace *ns)
469 if (ns && ns->event != event) {
470 ns->event = event;
471 wake_up_interruptible(&ns->poll);
475 static void detach_mnt(struct vfsmount *mnt, struct path *old_path)
477 old_path->dentry = mnt->mnt_mountpoint;
478 old_path->mnt = mnt->mnt_parent;
479 mnt->mnt_parent = mnt;
480 mnt->mnt_mountpoint = mnt->mnt_root;
481 list_del_init(&mnt->mnt_child);
482 list_del_init(&mnt->mnt_hash);
483 old_path->dentry->d_mounted--;
486 void mnt_set_mountpoint(struct vfsmount *mnt, struct dentry *dentry,
487 struct vfsmount *child_mnt)
489 child_mnt->mnt_parent = mntget(mnt);
490 child_mnt->mnt_mountpoint = dget(dentry);
491 dentry->d_mounted++;
494 static void attach_mnt(struct vfsmount *mnt, struct path *path)
496 mnt_set_mountpoint(path->mnt, path->dentry, mnt);
497 list_add_tail(&mnt->mnt_hash, mount_hashtable +
498 hash(path->mnt, path->dentry));
499 list_add_tail(&mnt->mnt_child, &path->mnt->mnt_mounts);
503 * the caller must hold vfsmount_lock
505 static void commit_tree(struct vfsmount *mnt)
507 struct vfsmount *parent = mnt->mnt_parent;
508 struct vfsmount *m;
509 LIST_HEAD(head);
510 struct mnt_namespace *n = parent->mnt_ns;
512 BUG_ON(parent == mnt);
514 list_add_tail(&head, &mnt->mnt_list);
515 list_for_each_entry(m, &head, mnt_list)
516 m->mnt_ns = n;
517 list_splice(&head, n->list.prev);
519 list_add_tail(&mnt->mnt_hash, mount_hashtable +
520 hash(parent, mnt->mnt_mountpoint));
521 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
522 touch_mnt_namespace(n);
525 static struct vfsmount *next_mnt(struct vfsmount *p, struct vfsmount *root)
527 struct list_head *next = p->mnt_mounts.next;
528 if (next == &p->mnt_mounts) {
529 while (1) {
530 if (p == root)
531 return NULL;
532 next = p->mnt_child.next;
533 if (next != &p->mnt_parent->mnt_mounts)
534 break;
535 p = p->mnt_parent;
538 return list_entry(next, struct vfsmount, mnt_child);
541 static struct vfsmount *skip_mnt_tree(struct vfsmount *p)
543 struct list_head *prev = p->mnt_mounts.prev;
544 while (prev != &p->mnt_mounts) {
545 p = list_entry(prev, struct vfsmount, mnt_child);
546 prev = p->mnt_mounts.prev;
548 return p;
551 static struct vfsmount *clone_mnt(struct vfsmount *old, struct dentry *root,
552 int flag)
554 struct super_block *sb = old->mnt_sb;
555 struct vfsmount *mnt = alloc_vfsmnt(old->mnt_devname);
557 if (mnt) {
558 if (flag & (CL_SLAVE | CL_PRIVATE))
559 mnt->mnt_group_id = 0; /* not a peer of original */
560 else
561 mnt->mnt_group_id = old->mnt_group_id;
563 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
564 int err = mnt_alloc_group_id(mnt);
565 if (err)
566 goto out_free;
569 mnt->mnt_flags = old->mnt_flags;
570 atomic_inc(&sb->s_active);
571 mnt->mnt_sb = sb;
572 mnt->mnt_root = dget(root);
573 mnt->mnt_mountpoint = mnt->mnt_root;
574 mnt->mnt_parent = mnt;
576 if (flag & CL_SLAVE) {
577 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
578 mnt->mnt_master = old;
579 CLEAR_MNT_SHARED(mnt);
580 } else if (!(flag & CL_PRIVATE)) {
581 if ((flag & CL_PROPAGATION) || IS_MNT_SHARED(old))
582 list_add(&mnt->mnt_share, &old->mnt_share);
583 if (IS_MNT_SLAVE(old))
584 list_add(&mnt->mnt_slave, &old->mnt_slave);
585 mnt->mnt_master = old->mnt_master;
587 if (flag & CL_MAKE_SHARED)
588 set_mnt_shared(mnt);
590 /* stick the duplicate mount on the same expiry list
591 * as the original if that was on one */
592 if (flag & CL_EXPIRE) {
593 if (!list_empty(&old->mnt_expire))
594 list_add(&mnt->mnt_expire, &old->mnt_expire);
597 return mnt;
599 out_free:
600 free_vfsmnt(mnt);
601 return NULL;
604 static inline void __mntput(struct vfsmount *mnt)
606 int cpu;
607 struct super_block *sb = mnt->mnt_sb;
609 * We don't have to hold all of the locks at the
610 * same time here because we know that we're the
611 * last reference to mnt and that no new writers
612 * can come in.
614 for_each_possible_cpu(cpu) {
615 struct mnt_writer *cpu_writer = &per_cpu(mnt_writers, cpu);
616 spin_lock(&cpu_writer->lock);
617 if (cpu_writer->mnt != mnt) {
618 spin_unlock(&cpu_writer->lock);
619 continue;
621 atomic_add(cpu_writer->count, &mnt->__mnt_writers);
622 cpu_writer->count = 0;
624 * Might as well do this so that no one
625 * ever sees the pointer and expects
626 * it to be valid.
628 cpu_writer->mnt = NULL;
629 spin_unlock(&cpu_writer->lock);
632 * This probably indicates that somebody messed
633 * up a mnt_want/drop_write() pair. If this
634 * happens, the filesystem was probably unable
635 * to make r/w->r/o transitions.
637 WARN_ON(atomic_read(&mnt->__mnt_writers));
638 dput(mnt->mnt_root);
639 free_vfsmnt(mnt);
640 deactivate_super(sb);
643 void mntput_no_expire(struct vfsmount *mnt)
645 repeat:
646 if (atomic_dec_and_lock(&mnt->mnt_count, &vfsmount_lock)) {
647 if (likely(!mnt->mnt_pinned)) {
648 spin_unlock(&vfsmount_lock);
649 __mntput(mnt);
650 return;
652 atomic_add(mnt->mnt_pinned + 1, &mnt->mnt_count);
653 mnt->mnt_pinned = 0;
654 spin_unlock(&vfsmount_lock);
655 acct_auto_close_mnt(mnt);
656 security_sb_umount_close(mnt);
657 goto repeat;
661 EXPORT_SYMBOL(mntput_no_expire);
663 void mnt_pin(struct vfsmount *mnt)
665 spin_lock(&vfsmount_lock);
666 mnt->mnt_pinned++;
667 spin_unlock(&vfsmount_lock);
670 EXPORT_SYMBOL(mnt_pin);
672 void mnt_unpin(struct vfsmount *mnt)
674 spin_lock(&vfsmount_lock);
675 if (mnt->mnt_pinned) {
676 atomic_inc(&mnt->mnt_count);
677 mnt->mnt_pinned--;
679 spin_unlock(&vfsmount_lock);
682 EXPORT_SYMBOL(mnt_unpin);
684 static inline void mangle(struct seq_file *m, const char *s)
686 seq_escape(m, s, " \t\n\\");
690 * Simple .show_options callback for filesystems which don't want to
691 * implement more complex mount option showing.
693 * See also save_mount_options().
695 int generic_show_options(struct seq_file *m, struct vfsmount *mnt)
697 const char *options = mnt->mnt_sb->s_options;
699 if (options != NULL && options[0]) {
700 seq_putc(m, ',');
701 mangle(m, options);
704 return 0;
706 EXPORT_SYMBOL(generic_show_options);
709 * If filesystem uses generic_show_options(), this function should be
710 * called from the fill_super() callback.
712 * The .remount_fs callback usually needs to be handled in a special
713 * way, to make sure, that previous options are not overwritten if the
714 * remount fails.
716 * Also note, that if the filesystem's .remount_fs function doesn't
717 * reset all options to their default value, but changes only newly
718 * given options, then the displayed options will not reflect reality
719 * any more.
721 void save_mount_options(struct super_block *sb, char *options)
723 kfree(sb->s_options);
724 sb->s_options = kstrdup(options, GFP_KERNEL);
726 EXPORT_SYMBOL(save_mount_options);
728 #ifdef CONFIG_PROC_FS
729 /* iterator */
730 static void *m_start(struct seq_file *m, loff_t *pos)
732 struct proc_mounts *p = m->private;
734 down_read(&namespace_sem);
735 return seq_list_start(&p->ns->list, *pos);
738 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
740 struct proc_mounts *p = m->private;
742 return seq_list_next(v, &p->ns->list, pos);
745 static void m_stop(struct seq_file *m, void *v)
747 up_read(&namespace_sem);
750 struct proc_fs_info {
751 int flag;
752 const char *str;
755 static int show_sb_opts(struct seq_file *m, struct super_block *sb)
757 static const struct proc_fs_info fs_info[] = {
758 { MS_SYNCHRONOUS, ",sync" },
759 { MS_DIRSYNC, ",dirsync" },
760 { MS_MANDLOCK, ",mand" },
761 { 0, NULL }
763 const struct proc_fs_info *fs_infop;
765 for (fs_infop = fs_info; fs_infop->flag; fs_infop++) {
766 if (sb->s_flags & fs_infop->flag)
767 seq_puts(m, fs_infop->str);
770 return security_sb_show_options(m, sb);
773 static void show_mnt_opts(struct seq_file *m, struct vfsmount *mnt)
775 static const struct proc_fs_info mnt_info[] = {
776 { MNT_NOSUID, ",nosuid" },
777 { MNT_NODEV, ",nodev" },
778 { MNT_NOEXEC, ",noexec" },
779 { MNT_NOATIME, ",noatime" },
780 { MNT_NODIRATIME, ",nodiratime" },
781 { MNT_RELATIME, ",relatime" },
782 { 0, NULL }
784 const struct proc_fs_info *fs_infop;
786 for (fs_infop = mnt_info; fs_infop->flag; fs_infop++) {
787 if (mnt->mnt_flags & fs_infop->flag)
788 seq_puts(m, fs_infop->str);
792 static void show_type(struct seq_file *m, struct super_block *sb)
794 mangle(m, sb->s_type->name);
795 if (sb->s_subtype && sb->s_subtype[0]) {
796 seq_putc(m, '.');
797 mangle(m, sb->s_subtype);
801 static int show_vfsmnt(struct seq_file *m, void *v)
803 struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
804 int err = 0;
805 struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
807 mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none");
808 seq_putc(m, ' ');
809 seq_path(m, &mnt_path, " \t\n\\");
810 seq_putc(m, ' ');
811 show_type(m, mnt->mnt_sb);
812 seq_puts(m, __mnt_is_readonly(mnt) ? " ro" : " rw");
813 err = show_sb_opts(m, mnt->mnt_sb);
814 if (err)
815 goto out;
816 show_mnt_opts(m, mnt);
817 if (mnt->mnt_sb->s_op->show_options)
818 err = mnt->mnt_sb->s_op->show_options(m, mnt);
819 seq_puts(m, " 0 0\n");
820 out:
821 return err;
824 const struct seq_operations mounts_op = {
825 .start = m_start,
826 .next = m_next,
827 .stop = m_stop,
828 .show = show_vfsmnt
831 static int show_mountinfo(struct seq_file *m, void *v)
833 struct proc_mounts *p = m->private;
834 struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
835 struct super_block *sb = mnt->mnt_sb;
836 struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
837 struct path root = p->root;
838 int err = 0;
840 seq_printf(m, "%i %i %u:%u ", mnt->mnt_id, mnt->mnt_parent->mnt_id,
841 MAJOR(sb->s_dev), MINOR(sb->s_dev));
842 seq_dentry(m, mnt->mnt_root, " \t\n\\");
843 seq_putc(m, ' ');
844 seq_path_root(m, &mnt_path, &root, " \t\n\\");
845 if (root.mnt != p->root.mnt || root.dentry != p->root.dentry) {
847 * Mountpoint is outside root, discard that one. Ugly,
848 * but less so than trying to do that in iterator in a
849 * race-free way (due to renames).
851 return SEQ_SKIP;
853 seq_puts(m, mnt->mnt_flags & MNT_READONLY ? " ro" : " rw");
854 show_mnt_opts(m, mnt);
856 /* Tagged fields ("foo:X" or "bar") */
857 if (IS_MNT_SHARED(mnt))
858 seq_printf(m, " shared:%i", mnt->mnt_group_id);
859 if (IS_MNT_SLAVE(mnt)) {
860 int master = mnt->mnt_master->mnt_group_id;
861 int dom = get_dominating_id(mnt, &p->root);
862 seq_printf(m, " master:%i", master);
863 if (dom && dom != master)
864 seq_printf(m, " propagate_from:%i", dom);
866 if (IS_MNT_UNBINDABLE(mnt))
867 seq_puts(m, " unbindable");
869 /* Filesystem specific data */
870 seq_puts(m, " - ");
871 show_type(m, sb);
872 seq_putc(m, ' ');
873 mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none");
874 seq_puts(m, sb->s_flags & MS_RDONLY ? " ro" : " rw");
875 err = show_sb_opts(m, sb);
876 if (err)
877 goto out;
878 if (sb->s_op->show_options)
879 err = sb->s_op->show_options(m, mnt);
880 seq_putc(m, '\n');
881 out:
882 return err;
885 const struct seq_operations mountinfo_op = {
886 .start = m_start,
887 .next = m_next,
888 .stop = m_stop,
889 .show = show_mountinfo,
892 static int show_vfsstat(struct seq_file *m, void *v)
894 struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
895 struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
896 int err = 0;
898 /* device */
899 if (mnt->mnt_devname) {
900 seq_puts(m, "device ");
901 mangle(m, mnt->mnt_devname);
902 } else
903 seq_puts(m, "no device");
905 /* mount point */
906 seq_puts(m, " mounted on ");
907 seq_path(m, &mnt_path, " \t\n\\");
908 seq_putc(m, ' ');
910 /* file system type */
911 seq_puts(m, "with fstype ");
912 show_type(m, mnt->mnt_sb);
914 /* optional statistics */
915 if (mnt->mnt_sb->s_op->show_stats) {
916 seq_putc(m, ' ');
917 err = mnt->mnt_sb->s_op->show_stats(m, mnt);
920 seq_putc(m, '\n');
921 return err;
924 const struct seq_operations mountstats_op = {
925 .start = m_start,
926 .next = m_next,
927 .stop = m_stop,
928 .show = show_vfsstat,
930 #endif /* CONFIG_PROC_FS */
933 * may_umount_tree - check if a mount tree is busy
934 * @mnt: root of mount tree
936 * This is called to check if a tree of mounts has any
937 * open files, pwds, chroots or sub mounts that are
938 * busy.
940 int may_umount_tree(struct vfsmount *mnt)
942 int actual_refs = 0;
943 int minimum_refs = 0;
944 struct vfsmount *p;
946 spin_lock(&vfsmount_lock);
947 for (p = mnt; p; p = next_mnt(p, mnt)) {
948 actual_refs += atomic_read(&p->mnt_count);
949 minimum_refs += 2;
951 spin_unlock(&vfsmount_lock);
953 if (actual_refs > minimum_refs)
954 return 0;
956 return 1;
959 EXPORT_SYMBOL(may_umount_tree);
962 * may_umount - check if a mount point is busy
963 * @mnt: root of mount
965 * This is called to check if a mount point has any
966 * open files, pwds, chroots or sub mounts. If the
967 * mount has sub mounts this will return busy
968 * regardless of whether the sub mounts are busy.
970 * Doesn't take quota and stuff into account. IOW, in some cases it will
971 * give false negatives. The main reason why it's here is that we need
972 * a non-destructive way to look for easily umountable filesystems.
974 int may_umount(struct vfsmount *mnt)
976 int ret = 1;
977 spin_lock(&vfsmount_lock);
978 if (propagate_mount_busy(mnt, 2))
979 ret = 0;
980 spin_unlock(&vfsmount_lock);
981 return ret;
984 EXPORT_SYMBOL(may_umount);
986 void release_mounts(struct list_head *head)
988 struct vfsmount *mnt;
989 while (!list_empty(head)) {
990 mnt = list_first_entry(head, struct vfsmount, mnt_hash);
991 list_del_init(&mnt->mnt_hash);
992 if (mnt->mnt_parent != mnt) {
993 struct dentry *dentry;
994 struct vfsmount *m;
995 spin_lock(&vfsmount_lock);
996 dentry = mnt->mnt_mountpoint;
997 m = mnt->mnt_parent;
998 mnt->mnt_mountpoint = mnt->mnt_root;
999 mnt->mnt_parent = mnt;
1000 m->mnt_ghosts--;
1001 spin_unlock(&vfsmount_lock);
1002 dput(dentry);
1003 mntput(m);
1005 mntput(mnt);
1009 void umount_tree(struct vfsmount *mnt, int propagate, struct list_head *kill)
1011 struct vfsmount *p;
1013 for (p = mnt; p; p = next_mnt(p, mnt))
1014 list_move(&p->mnt_hash, kill);
1016 if (propagate)
1017 propagate_umount(kill);
1019 list_for_each_entry(p, kill, mnt_hash) {
1020 list_del_init(&p->mnt_expire);
1021 list_del_init(&p->mnt_list);
1022 __touch_mnt_namespace(p->mnt_ns);
1023 p->mnt_ns = NULL;
1024 list_del_init(&p->mnt_child);
1025 if (p->mnt_parent != p) {
1026 p->mnt_parent->mnt_ghosts++;
1027 p->mnt_mountpoint->d_mounted--;
1029 change_mnt_propagation(p, MS_PRIVATE);
1033 static void shrink_submounts(struct vfsmount *mnt, struct list_head *umounts);
1035 static int do_umount(struct vfsmount *mnt, int flags)
1037 struct super_block *sb = mnt->mnt_sb;
1038 int retval;
1039 LIST_HEAD(umount_list);
1041 retval = security_sb_umount(mnt, flags);
1042 if (retval)
1043 return retval;
1046 * Allow userspace to request a mountpoint be expired rather than
1047 * unmounting unconditionally. Unmount only happens if:
1048 * (1) the mark is already set (the mark is cleared by mntput())
1049 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1051 if (flags & MNT_EXPIRE) {
1052 if (mnt == current->fs->root.mnt ||
1053 flags & (MNT_FORCE | MNT_DETACH))
1054 return -EINVAL;
1056 if (atomic_read(&mnt->mnt_count) != 2)
1057 return -EBUSY;
1059 if (!xchg(&mnt->mnt_expiry_mark, 1))
1060 return -EAGAIN;
1064 * If we may have to abort operations to get out of this
1065 * mount, and they will themselves hold resources we must
1066 * allow the fs to do things. In the Unix tradition of
1067 * 'Gee thats tricky lets do it in userspace' the umount_begin
1068 * might fail to complete on the first run through as other tasks
1069 * must return, and the like. Thats for the mount program to worry
1070 * about for the moment.
1073 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1074 lock_kernel();
1075 sb->s_op->umount_begin(sb);
1076 unlock_kernel();
1080 * No sense to grab the lock for this test, but test itself looks
1081 * somewhat bogus. Suggestions for better replacement?
1082 * Ho-hum... In principle, we might treat that as umount + switch
1083 * to rootfs. GC would eventually take care of the old vfsmount.
1084 * Actually it makes sense, especially if rootfs would contain a
1085 * /reboot - static binary that would close all descriptors and
1086 * call reboot(9). Then init(8) could umount root and exec /reboot.
1088 if (mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1090 * Special case for "unmounting" root ...
1091 * we just try to remount it readonly.
1093 down_write(&sb->s_umount);
1094 if (!(sb->s_flags & MS_RDONLY)) {
1095 lock_kernel();
1096 retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
1097 unlock_kernel();
1099 up_write(&sb->s_umount);
1100 return retval;
1103 down_write(&namespace_sem);
1104 spin_lock(&vfsmount_lock);
1105 event++;
1107 if (!(flags & MNT_DETACH))
1108 shrink_submounts(mnt, &umount_list);
1110 retval = -EBUSY;
1111 if (flags & MNT_DETACH || !propagate_mount_busy(mnt, 2)) {
1112 if (!list_empty(&mnt->mnt_list))
1113 umount_tree(mnt, 1, &umount_list);
1114 retval = 0;
1116 spin_unlock(&vfsmount_lock);
1117 if (retval)
1118 security_sb_umount_busy(mnt);
1119 up_write(&namespace_sem);
1120 release_mounts(&umount_list);
1121 return retval;
1125 * Now umount can handle mount points as well as block devices.
1126 * This is important for filesystems which use unnamed block devices.
1128 * We now support a flag for forced unmount like the other 'big iron'
1129 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1132 SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1134 struct path path;
1135 int retval;
1137 retval = user_path(name, &path);
1138 if (retval)
1139 goto out;
1140 retval = -EINVAL;
1141 if (path.dentry != path.mnt->mnt_root)
1142 goto dput_and_out;
1143 if (!check_mnt(path.mnt))
1144 goto dput_and_out;
1146 retval = -EPERM;
1147 if (!capable(CAP_SYS_ADMIN))
1148 goto dput_and_out;
1150 retval = do_umount(path.mnt, flags);
1151 dput_and_out:
1152 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
1153 dput(path.dentry);
1154 mntput_no_expire(path.mnt);
1155 out:
1156 return retval;
1159 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1162 * The 2.0 compatible umount. No flags.
1164 SYSCALL_DEFINE1(oldumount, char __user *, name)
1166 return sys_umount(name, 0);
1169 #endif
1171 static int mount_is_safe(struct path *path)
1173 if (capable(CAP_SYS_ADMIN))
1174 return 0;
1175 return -EPERM;
1176 #ifdef notyet
1177 if (S_ISLNK(path->dentry->d_inode->i_mode))
1178 return -EPERM;
1179 if (path->dentry->d_inode->i_mode & S_ISVTX) {
1180 if (current_uid() != path->dentry->d_inode->i_uid)
1181 return -EPERM;
1183 if (inode_permission(path->dentry->d_inode, MAY_WRITE))
1184 return -EPERM;
1185 return 0;
1186 #endif
1189 struct vfsmount *copy_tree(struct vfsmount *mnt, struct dentry *dentry,
1190 int flag)
1192 struct vfsmount *res, *p, *q, *r, *s;
1193 struct path path;
1195 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(mnt))
1196 return NULL;
1198 res = q = clone_mnt(mnt, dentry, flag);
1199 if (!q)
1200 goto Enomem;
1201 q->mnt_mountpoint = mnt->mnt_mountpoint;
1203 p = mnt;
1204 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1205 if (!is_subdir(r->mnt_mountpoint, dentry))
1206 continue;
1208 for (s = r; s; s = next_mnt(s, r)) {
1209 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(s)) {
1210 s = skip_mnt_tree(s);
1211 continue;
1213 while (p != s->mnt_parent) {
1214 p = p->mnt_parent;
1215 q = q->mnt_parent;
1217 p = s;
1218 path.mnt = q;
1219 path.dentry = p->mnt_mountpoint;
1220 q = clone_mnt(p, p->mnt_root, flag);
1221 if (!q)
1222 goto Enomem;
1223 spin_lock(&vfsmount_lock);
1224 list_add_tail(&q->mnt_list, &res->mnt_list);
1225 attach_mnt(q, &path);
1226 spin_unlock(&vfsmount_lock);
1229 return res;
1230 Enomem:
1231 if (res) {
1232 LIST_HEAD(umount_list);
1233 spin_lock(&vfsmount_lock);
1234 umount_tree(res, 0, &umount_list);
1235 spin_unlock(&vfsmount_lock);
1236 release_mounts(&umount_list);
1238 return NULL;
1241 struct vfsmount *collect_mounts(struct vfsmount *mnt, struct dentry *dentry)
1243 struct vfsmount *tree;
1244 down_write(&namespace_sem);
1245 tree = copy_tree(mnt, dentry, CL_COPY_ALL | CL_PRIVATE);
1246 up_write(&namespace_sem);
1247 return tree;
1250 void drop_collected_mounts(struct vfsmount *mnt)
1252 LIST_HEAD(umount_list);
1253 down_write(&namespace_sem);
1254 spin_lock(&vfsmount_lock);
1255 umount_tree(mnt, 0, &umount_list);
1256 spin_unlock(&vfsmount_lock);
1257 up_write(&namespace_sem);
1258 release_mounts(&umount_list);
1261 static void cleanup_group_ids(struct vfsmount *mnt, struct vfsmount *end)
1263 struct vfsmount *p;
1265 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
1266 if (p->mnt_group_id && !IS_MNT_SHARED(p))
1267 mnt_release_group_id(p);
1271 static int invent_group_ids(struct vfsmount *mnt, bool recurse)
1273 struct vfsmount *p;
1275 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
1276 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
1277 int err = mnt_alloc_group_id(p);
1278 if (err) {
1279 cleanup_group_ids(mnt, p);
1280 return err;
1285 return 0;
1289 * @source_mnt : mount tree to be attached
1290 * @nd : place the mount tree @source_mnt is attached
1291 * @parent_nd : if non-null, detach the source_mnt from its parent and
1292 * store the parent mount and mountpoint dentry.
1293 * (done when source_mnt is moved)
1295 * NOTE: in the table below explains the semantics when a source mount
1296 * of a given type is attached to a destination mount of a given type.
1297 * ---------------------------------------------------------------------------
1298 * | BIND MOUNT OPERATION |
1299 * |**************************************************************************
1300 * | source-->| shared | private | slave | unbindable |
1301 * | dest | | | | |
1302 * | | | | | | |
1303 * | v | | | | |
1304 * |**************************************************************************
1305 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
1306 * | | | | | |
1307 * |non-shared| shared (+) | private | slave (*) | invalid |
1308 * ***************************************************************************
1309 * A bind operation clones the source mount and mounts the clone on the
1310 * destination mount.
1312 * (++) the cloned mount is propagated to all the mounts in the propagation
1313 * tree of the destination mount and the cloned mount is added to
1314 * the peer group of the source mount.
1315 * (+) the cloned mount is created under the destination mount and is marked
1316 * as shared. The cloned mount is added to the peer group of the source
1317 * mount.
1318 * (+++) the mount is propagated to all the mounts in the propagation tree
1319 * of the destination mount and the cloned mount is made slave
1320 * of the same master as that of the source mount. The cloned mount
1321 * is marked as 'shared and slave'.
1322 * (*) the cloned mount is made a slave of the same master as that of the
1323 * source mount.
1325 * ---------------------------------------------------------------------------
1326 * | MOVE MOUNT OPERATION |
1327 * |**************************************************************************
1328 * | source-->| shared | private | slave | unbindable |
1329 * | dest | | | | |
1330 * | | | | | | |
1331 * | v | | | | |
1332 * |**************************************************************************
1333 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
1334 * | | | | | |
1335 * |non-shared| shared (+*) | private | slave (*) | unbindable |
1336 * ***************************************************************************
1338 * (+) the mount is moved to the destination. And is then propagated to
1339 * all the mounts in the propagation tree of the destination mount.
1340 * (+*) the mount is moved to the destination.
1341 * (+++) the mount is moved to the destination and is then propagated to
1342 * all the mounts belonging to the destination mount's propagation tree.
1343 * the mount is marked as 'shared and slave'.
1344 * (*) the mount continues to be a slave at the new location.
1346 * if the source mount is a tree, the operations explained above is
1347 * applied to each mount in the tree.
1348 * Must be called without spinlocks held, since this function can sleep
1349 * in allocations.
1351 static int attach_recursive_mnt(struct vfsmount *source_mnt,
1352 struct path *path, struct path *parent_path)
1354 LIST_HEAD(tree_list);
1355 struct vfsmount *dest_mnt = path->mnt;
1356 struct dentry *dest_dentry = path->dentry;
1357 struct vfsmount *child, *p;
1358 int err;
1360 if (IS_MNT_SHARED(dest_mnt)) {
1361 err = invent_group_ids(source_mnt, true);
1362 if (err)
1363 goto out;
1365 err = propagate_mnt(dest_mnt, dest_dentry, source_mnt, &tree_list);
1366 if (err)
1367 goto out_cleanup_ids;
1369 if (IS_MNT_SHARED(dest_mnt)) {
1370 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
1371 set_mnt_shared(p);
1374 spin_lock(&vfsmount_lock);
1375 if (parent_path) {
1376 detach_mnt(source_mnt, parent_path);
1377 attach_mnt(source_mnt, path);
1378 touch_mnt_namespace(current->nsproxy->mnt_ns);
1379 } else {
1380 mnt_set_mountpoint(dest_mnt, dest_dentry, source_mnt);
1381 commit_tree(source_mnt);
1384 list_for_each_entry_safe(child, p, &tree_list, mnt_hash) {
1385 list_del_init(&child->mnt_hash);
1386 commit_tree(child);
1388 spin_unlock(&vfsmount_lock);
1389 return 0;
1391 out_cleanup_ids:
1392 if (IS_MNT_SHARED(dest_mnt))
1393 cleanup_group_ids(source_mnt, NULL);
1394 out:
1395 return err;
1398 static int graft_tree(struct vfsmount *mnt, struct path *path)
1400 int err;
1401 if (mnt->mnt_sb->s_flags & MS_NOUSER)
1402 return -EINVAL;
1404 if (S_ISDIR(path->dentry->d_inode->i_mode) !=
1405 S_ISDIR(mnt->mnt_root->d_inode->i_mode))
1406 return -ENOTDIR;
1408 err = -ENOENT;
1409 mutex_lock(&path->dentry->d_inode->i_mutex);
1410 if (IS_DEADDIR(path->dentry->d_inode))
1411 goto out_unlock;
1413 err = security_sb_check_sb(mnt, path);
1414 if (err)
1415 goto out_unlock;
1417 err = -ENOENT;
1418 if (IS_ROOT(path->dentry) || !d_unhashed(path->dentry))
1419 err = attach_recursive_mnt(mnt, path, NULL);
1420 out_unlock:
1421 mutex_unlock(&path->dentry->d_inode->i_mutex);
1422 if (!err)
1423 security_sb_post_addmount(mnt, path);
1424 return err;
1428 * recursively change the type of the mountpoint.
1430 static int do_change_type(struct path *path, int flag)
1432 struct vfsmount *m, *mnt = path->mnt;
1433 int recurse = flag & MS_REC;
1434 int type = flag & ~MS_REC;
1435 int err = 0;
1437 if (!capable(CAP_SYS_ADMIN))
1438 return -EPERM;
1440 if (path->dentry != path->mnt->mnt_root)
1441 return -EINVAL;
1443 down_write(&namespace_sem);
1444 if (type == MS_SHARED) {
1445 err = invent_group_ids(mnt, recurse);
1446 if (err)
1447 goto out_unlock;
1450 spin_lock(&vfsmount_lock);
1451 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
1452 change_mnt_propagation(m, type);
1453 spin_unlock(&vfsmount_lock);
1455 out_unlock:
1456 up_write(&namespace_sem);
1457 return err;
1461 * do loopback mount.
1463 static int do_loopback(struct path *path, char *old_name,
1464 int recurse)
1466 struct path old_path;
1467 struct vfsmount *mnt = NULL;
1468 int err = mount_is_safe(path);
1469 if (err)
1470 return err;
1471 if (!old_name || !*old_name)
1472 return -EINVAL;
1473 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
1474 if (err)
1475 return err;
1477 down_write(&namespace_sem);
1478 err = -EINVAL;
1479 if (IS_MNT_UNBINDABLE(old_path.mnt))
1480 goto out;
1482 if (!check_mnt(path->mnt) || !check_mnt(old_path.mnt))
1483 goto out;
1485 err = -ENOMEM;
1486 if (recurse)
1487 mnt = copy_tree(old_path.mnt, old_path.dentry, 0);
1488 else
1489 mnt = clone_mnt(old_path.mnt, old_path.dentry, 0);
1491 if (!mnt)
1492 goto out;
1494 err = graft_tree(mnt, path);
1495 if (err) {
1496 LIST_HEAD(umount_list);
1497 spin_lock(&vfsmount_lock);
1498 umount_tree(mnt, 0, &umount_list);
1499 spin_unlock(&vfsmount_lock);
1500 release_mounts(&umount_list);
1503 out:
1504 up_write(&namespace_sem);
1505 path_put(&old_path);
1506 return err;
1509 static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
1511 int error = 0;
1512 int readonly_request = 0;
1514 if (ms_flags & MS_RDONLY)
1515 readonly_request = 1;
1516 if (readonly_request == __mnt_is_readonly(mnt))
1517 return 0;
1519 if (readonly_request)
1520 error = mnt_make_readonly(mnt);
1521 else
1522 __mnt_unmake_readonly(mnt);
1523 return error;
1527 * change filesystem flags. dir should be a physical root of filesystem.
1528 * If you've mounted a non-root directory somewhere and want to do remount
1529 * on it - tough luck.
1531 static int do_remount(struct path *path, int flags, int mnt_flags,
1532 void *data)
1534 int err;
1535 struct super_block *sb = path->mnt->mnt_sb;
1537 if (!capable(CAP_SYS_ADMIN))
1538 return -EPERM;
1540 if (!check_mnt(path->mnt))
1541 return -EINVAL;
1543 if (path->dentry != path->mnt->mnt_root)
1544 return -EINVAL;
1546 down_write(&sb->s_umount);
1547 if (flags & MS_BIND)
1548 err = change_mount_flags(path->mnt, flags);
1549 else
1550 err = do_remount_sb(sb, flags, data, 0);
1551 if (!err)
1552 path->mnt->mnt_flags = mnt_flags;
1553 up_write(&sb->s_umount);
1554 if (!err) {
1555 security_sb_post_remount(path->mnt, flags, data);
1557 spin_lock(&vfsmount_lock);
1558 touch_mnt_namespace(path->mnt->mnt_ns);
1559 spin_unlock(&vfsmount_lock);
1561 return err;
1564 static inline int tree_contains_unbindable(struct vfsmount *mnt)
1566 struct vfsmount *p;
1567 for (p = mnt; p; p = next_mnt(p, mnt)) {
1568 if (IS_MNT_UNBINDABLE(p))
1569 return 1;
1571 return 0;
1574 static int do_move_mount(struct path *path, char *old_name)
1576 struct path old_path, parent_path;
1577 struct vfsmount *p;
1578 int err = 0;
1579 if (!capable(CAP_SYS_ADMIN))
1580 return -EPERM;
1581 if (!old_name || !*old_name)
1582 return -EINVAL;
1583 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
1584 if (err)
1585 return err;
1587 down_write(&namespace_sem);
1588 while (d_mountpoint(path->dentry) &&
1589 follow_down(&path->mnt, &path->dentry))
1591 err = -EINVAL;
1592 if (!check_mnt(path->mnt) || !check_mnt(old_path.mnt))
1593 goto out;
1595 err = -ENOENT;
1596 mutex_lock(&path->dentry->d_inode->i_mutex);
1597 if (IS_DEADDIR(path->dentry->d_inode))
1598 goto out1;
1600 if (!IS_ROOT(path->dentry) && d_unhashed(path->dentry))
1601 goto out1;
1603 err = -EINVAL;
1604 if (old_path.dentry != old_path.mnt->mnt_root)
1605 goto out1;
1607 if (old_path.mnt == old_path.mnt->mnt_parent)
1608 goto out1;
1610 if (S_ISDIR(path->dentry->d_inode->i_mode) !=
1611 S_ISDIR(old_path.dentry->d_inode->i_mode))
1612 goto out1;
1614 * Don't move a mount residing in a shared parent.
1616 if (old_path.mnt->mnt_parent &&
1617 IS_MNT_SHARED(old_path.mnt->mnt_parent))
1618 goto out1;
1620 * Don't move a mount tree containing unbindable mounts to a destination
1621 * mount which is shared.
1623 if (IS_MNT_SHARED(path->mnt) &&
1624 tree_contains_unbindable(old_path.mnt))
1625 goto out1;
1626 err = -ELOOP;
1627 for (p = path->mnt; p->mnt_parent != p; p = p->mnt_parent)
1628 if (p == old_path.mnt)
1629 goto out1;
1631 err = attach_recursive_mnt(old_path.mnt, path, &parent_path);
1632 if (err)
1633 goto out1;
1635 /* if the mount is moved, it should no longer be expire
1636 * automatically */
1637 list_del_init(&old_path.mnt->mnt_expire);
1638 out1:
1639 mutex_unlock(&path->dentry->d_inode->i_mutex);
1640 out:
1641 up_write(&namespace_sem);
1642 if (!err)
1643 path_put(&parent_path);
1644 path_put(&old_path);
1645 return err;
1649 * create a new mount for userspace and request it to be added into the
1650 * namespace's tree
1652 static int do_new_mount(struct path *path, char *type, int flags,
1653 int mnt_flags, char *name, void *data)
1655 struct vfsmount *mnt;
1657 if (!type || !memchr(type, 0, PAGE_SIZE))
1658 return -EINVAL;
1660 /* we need capabilities... */
1661 if (!capable(CAP_SYS_ADMIN))
1662 return -EPERM;
1664 mnt = do_kern_mount(type, flags, name, data);
1665 if (IS_ERR(mnt))
1666 return PTR_ERR(mnt);
1668 return do_add_mount(mnt, path, mnt_flags, NULL);
1672 * add a mount into a namespace's mount tree
1673 * - provide the option of adding the new mount to an expiration list
1675 int do_add_mount(struct vfsmount *newmnt, struct path *path,
1676 int mnt_flags, struct list_head *fslist)
1678 int err;
1680 down_write(&namespace_sem);
1681 /* Something was mounted here while we slept */
1682 while (d_mountpoint(path->dentry) &&
1683 follow_down(&path->mnt, &path->dentry))
1685 err = -EINVAL;
1686 if (!check_mnt(path->mnt))
1687 goto unlock;
1689 /* Refuse the same filesystem on the same mount point */
1690 err = -EBUSY;
1691 if (path->mnt->mnt_sb == newmnt->mnt_sb &&
1692 path->mnt->mnt_root == path->dentry)
1693 goto unlock;
1695 err = -EINVAL;
1696 if (S_ISLNK(newmnt->mnt_root->d_inode->i_mode))
1697 goto unlock;
1699 newmnt->mnt_flags = mnt_flags;
1700 if ((err = graft_tree(newmnt, path)))
1701 goto unlock;
1703 if (fslist) /* add to the specified expiration list */
1704 list_add_tail(&newmnt->mnt_expire, fslist);
1706 up_write(&namespace_sem);
1707 return 0;
1709 unlock:
1710 up_write(&namespace_sem);
1711 mntput(newmnt);
1712 return err;
1715 EXPORT_SYMBOL_GPL(do_add_mount);
1718 * process a list of expirable mountpoints with the intent of discarding any
1719 * mountpoints that aren't in use and haven't been touched since last we came
1720 * here
1722 void mark_mounts_for_expiry(struct list_head *mounts)
1724 struct vfsmount *mnt, *next;
1725 LIST_HEAD(graveyard);
1726 LIST_HEAD(umounts);
1728 if (list_empty(mounts))
1729 return;
1731 down_write(&namespace_sem);
1732 spin_lock(&vfsmount_lock);
1734 /* extract from the expiration list every vfsmount that matches the
1735 * following criteria:
1736 * - only referenced by its parent vfsmount
1737 * - still marked for expiry (marked on the last call here; marks are
1738 * cleared by mntput())
1740 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
1741 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
1742 propagate_mount_busy(mnt, 1))
1743 continue;
1744 list_move(&mnt->mnt_expire, &graveyard);
1746 while (!list_empty(&graveyard)) {
1747 mnt = list_first_entry(&graveyard, struct vfsmount, mnt_expire);
1748 touch_mnt_namespace(mnt->mnt_ns);
1749 umount_tree(mnt, 1, &umounts);
1751 spin_unlock(&vfsmount_lock);
1752 up_write(&namespace_sem);
1754 release_mounts(&umounts);
1757 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
1760 * Ripoff of 'select_parent()'
1762 * search the list of submounts for a given mountpoint, and move any
1763 * shrinkable submounts to the 'graveyard' list.
1765 static int select_submounts(struct vfsmount *parent, struct list_head *graveyard)
1767 struct vfsmount *this_parent = parent;
1768 struct list_head *next;
1769 int found = 0;
1771 repeat:
1772 next = this_parent->mnt_mounts.next;
1773 resume:
1774 while (next != &this_parent->mnt_mounts) {
1775 struct list_head *tmp = next;
1776 struct vfsmount *mnt = list_entry(tmp, struct vfsmount, mnt_child);
1778 next = tmp->next;
1779 if (!(mnt->mnt_flags & MNT_SHRINKABLE))
1780 continue;
1782 * Descend a level if the d_mounts list is non-empty.
1784 if (!list_empty(&mnt->mnt_mounts)) {
1785 this_parent = mnt;
1786 goto repeat;
1789 if (!propagate_mount_busy(mnt, 1)) {
1790 list_move_tail(&mnt->mnt_expire, graveyard);
1791 found++;
1795 * All done at this level ... ascend and resume the search
1797 if (this_parent != parent) {
1798 next = this_parent->mnt_child.next;
1799 this_parent = this_parent->mnt_parent;
1800 goto resume;
1802 return found;
1806 * process a list of expirable mountpoints with the intent of discarding any
1807 * submounts of a specific parent mountpoint
1809 static void shrink_submounts(struct vfsmount *mnt, struct list_head *umounts)
1811 LIST_HEAD(graveyard);
1812 struct vfsmount *m;
1814 /* extract submounts of 'mountpoint' from the expiration list */
1815 while (select_submounts(mnt, &graveyard)) {
1816 while (!list_empty(&graveyard)) {
1817 m = list_first_entry(&graveyard, struct vfsmount,
1818 mnt_expire);
1819 touch_mnt_namespace(m->mnt_ns);
1820 umount_tree(m, 1, umounts);
1826 * Some copy_from_user() implementations do not return the exact number of
1827 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
1828 * Note that this function differs from copy_from_user() in that it will oops
1829 * on bad values of `to', rather than returning a short copy.
1831 static long exact_copy_from_user(void *to, const void __user * from,
1832 unsigned long n)
1834 char *t = to;
1835 const char __user *f = from;
1836 char c;
1838 if (!access_ok(VERIFY_READ, from, n))
1839 return n;
1841 while (n) {
1842 if (__get_user(c, f)) {
1843 memset(t, 0, n);
1844 break;
1846 *t++ = c;
1847 f++;
1848 n--;
1850 return n;
1853 int copy_mount_options(const void __user * data, unsigned long *where)
1855 int i;
1856 unsigned long page;
1857 unsigned long size;
1859 *where = 0;
1860 if (!data)
1861 return 0;
1863 if (!(page = __get_free_page(GFP_KERNEL)))
1864 return -ENOMEM;
1866 /* We only care that *some* data at the address the user
1867 * gave us is valid. Just in case, we'll zero
1868 * the remainder of the page.
1870 /* copy_from_user cannot cross TASK_SIZE ! */
1871 size = TASK_SIZE - (unsigned long)data;
1872 if (size > PAGE_SIZE)
1873 size = PAGE_SIZE;
1875 i = size - exact_copy_from_user((void *)page, data, size);
1876 if (!i) {
1877 free_page(page);
1878 return -EFAULT;
1880 if (i != PAGE_SIZE)
1881 memset((char *)page + i, 0, PAGE_SIZE - i);
1882 *where = page;
1883 return 0;
1887 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
1888 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
1890 * data is a (void *) that can point to any structure up to
1891 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
1892 * information (or be NULL).
1894 * Pre-0.97 versions of mount() didn't have a flags word.
1895 * When the flags word was introduced its top half was required
1896 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
1897 * Therefore, if this magic number is present, it carries no information
1898 * and must be discarded.
1900 long do_mount(char *dev_name, char *dir_name, char *type_page,
1901 unsigned long flags, void *data_page)
1903 struct path path;
1904 int retval = 0;
1905 int mnt_flags = 0;
1907 /* Discard magic */
1908 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
1909 flags &= ~MS_MGC_MSK;
1911 /* Basic sanity checks */
1913 if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE))
1914 return -EINVAL;
1915 if (dev_name && !memchr(dev_name, 0, PAGE_SIZE))
1916 return -EINVAL;
1918 if (data_page)
1919 ((char *)data_page)[PAGE_SIZE - 1] = 0;
1921 /* Separate the per-mountpoint flags */
1922 if (flags & MS_NOSUID)
1923 mnt_flags |= MNT_NOSUID;
1924 if (flags & MS_NODEV)
1925 mnt_flags |= MNT_NODEV;
1926 if (flags & MS_NOEXEC)
1927 mnt_flags |= MNT_NOEXEC;
1928 if (flags & MS_NOATIME)
1929 mnt_flags |= MNT_NOATIME;
1930 if (flags & MS_NODIRATIME)
1931 mnt_flags |= MNT_NODIRATIME;
1932 if (flags & MS_RELATIME)
1933 mnt_flags |= MNT_RELATIME;
1934 if (flags & MS_RDONLY)
1935 mnt_flags |= MNT_READONLY;
1937 flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE |
1938 MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT);
1940 /* ... and get the mountpoint */
1941 retval = kern_path(dir_name, LOOKUP_FOLLOW, &path);
1942 if (retval)
1943 return retval;
1945 retval = security_sb_mount(dev_name, &path,
1946 type_page, flags, data_page);
1947 if (retval)
1948 goto dput_out;
1950 if (flags & MS_REMOUNT)
1951 retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
1952 data_page);
1953 else if (flags & MS_BIND)
1954 retval = do_loopback(&path, dev_name, flags & MS_REC);
1955 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
1956 retval = do_change_type(&path, flags);
1957 else if (flags & MS_MOVE)
1958 retval = do_move_mount(&path, dev_name);
1959 else
1960 retval = do_new_mount(&path, type_page, flags, mnt_flags,
1961 dev_name, data_page);
1962 dput_out:
1963 path_put(&path);
1964 return retval;
1968 * Allocate a new namespace structure and populate it with contents
1969 * copied from the namespace of the passed in task structure.
1971 static struct mnt_namespace *dup_mnt_ns(struct mnt_namespace *mnt_ns,
1972 struct fs_struct *fs)
1974 struct mnt_namespace *new_ns;
1975 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
1976 struct vfsmount *p, *q;
1978 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
1979 if (!new_ns)
1980 return ERR_PTR(-ENOMEM);
1982 atomic_set(&new_ns->count, 1);
1983 INIT_LIST_HEAD(&new_ns->list);
1984 init_waitqueue_head(&new_ns->poll);
1985 new_ns->event = 0;
1987 down_write(&namespace_sem);
1988 /* First pass: copy the tree topology */
1989 new_ns->root = copy_tree(mnt_ns->root, mnt_ns->root->mnt_root,
1990 CL_COPY_ALL | CL_EXPIRE);
1991 if (!new_ns->root) {
1992 up_write(&namespace_sem);
1993 kfree(new_ns);
1994 return ERR_PTR(-ENOMEM);
1996 spin_lock(&vfsmount_lock);
1997 list_add_tail(&new_ns->list, &new_ns->root->mnt_list);
1998 spin_unlock(&vfsmount_lock);
2001 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2002 * as belonging to new namespace. We have already acquired a private
2003 * fs_struct, so tsk->fs->lock is not needed.
2005 p = mnt_ns->root;
2006 q = new_ns->root;
2007 while (p) {
2008 q->mnt_ns = new_ns;
2009 if (fs) {
2010 if (p == fs->root.mnt) {
2011 rootmnt = p;
2012 fs->root.mnt = mntget(q);
2014 if (p == fs->pwd.mnt) {
2015 pwdmnt = p;
2016 fs->pwd.mnt = mntget(q);
2019 p = next_mnt(p, mnt_ns->root);
2020 q = next_mnt(q, new_ns->root);
2022 up_write(&namespace_sem);
2024 if (rootmnt)
2025 mntput(rootmnt);
2026 if (pwdmnt)
2027 mntput(pwdmnt);
2029 return new_ns;
2032 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
2033 struct fs_struct *new_fs)
2035 struct mnt_namespace *new_ns;
2037 BUG_ON(!ns);
2038 get_mnt_ns(ns);
2040 if (!(flags & CLONE_NEWNS))
2041 return ns;
2043 new_ns = dup_mnt_ns(ns, new_fs);
2045 put_mnt_ns(ns);
2046 return new_ns;
2049 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
2050 char __user *, type, unsigned long, flags, void __user *, data)
2052 int retval;
2053 unsigned long data_page;
2054 unsigned long type_page;
2055 unsigned long dev_page;
2056 char *dir_page;
2058 retval = copy_mount_options(type, &type_page);
2059 if (retval < 0)
2060 return retval;
2062 dir_page = getname(dir_name);
2063 retval = PTR_ERR(dir_page);
2064 if (IS_ERR(dir_page))
2065 goto out1;
2067 retval = copy_mount_options(dev_name, &dev_page);
2068 if (retval < 0)
2069 goto out2;
2071 retval = copy_mount_options(data, &data_page);
2072 if (retval < 0)
2073 goto out3;
2075 lock_kernel();
2076 retval = do_mount((char *)dev_page, dir_page, (char *)type_page,
2077 flags, (void *)data_page);
2078 unlock_kernel();
2079 free_page(data_page);
2081 out3:
2082 free_page(dev_page);
2083 out2:
2084 putname(dir_page);
2085 out1:
2086 free_page(type_page);
2087 return retval;
2091 * Replace the fs->{rootmnt,root} with {mnt,dentry}. Put the old values.
2092 * It can block. Requires the big lock held.
2094 void set_fs_root(struct fs_struct *fs, struct path *path)
2096 struct path old_root;
2098 write_lock(&fs->lock);
2099 old_root = fs->root;
2100 fs->root = *path;
2101 path_get(path);
2102 write_unlock(&fs->lock);
2103 if (old_root.dentry)
2104 path_put(&old_root);
2108 * Replace the fs->{pwdmnt,pwd} with {mnt,dentry}. Put the old values.
2109 * It can block. Requires the big lock held.
2111 void set_fs_pwd(struct fs_struct *fs, struct path *path)
2113 struct path old_pwd;
2115 write_lock(&fs->lock);
2116 old_pwd = fs->pwd;
2117 fs->pwd = *path;
2118 path_get(path);
2119 write_unlock(&fs->lock);
2121 if (old_pwd.dentry)
2122 path_put(&old_pwd);
2125 static void chroot_fs_refs(struct path *old_root, struct path *new_root)
2127 struct task_struct *g, *p;
2128 struct fs_struct *fs;
2130 read_lock(&tasklist_lock);
2131 do_each_thread(g, p) {
2132 task_lock(p);
2133 fs = p->fs;
2134 if (fs) {
2135 atomic_inc(&fs->count);
2136 task_unlock(p);
2137 if (fs->root.dentry == old_root->dentry
2138 && fs->root.mnt == old_root->mnt)
2139 set_fs_root(fs, new_root);
2140 if (fs->pwd.dentry == old_root->dentry
2141 && fs->pwd.mnt == old_root->mnt)
2142 set_fs_pwd(fs, new_root);
2143 put_fs_struct(fs);
2144 } else
2145 task_unlock(p);
2146 } while_each_thread(g, p);
2147 read_unlock(&tasklist_lock);
2151 * pivot_root Semantics:
2152 * Moves the root file system of the current process to the directory put_old,
2153 * makes new_root as the new root file system of the current process, and sets
2154 * root/cwd of all processes which had them on the current root to new_root.
2156 * Restrictions:
2157 * The new_root and put_old must be directories, and must not be on the
2158 * same file system as the current process root. The put_old must be
2159 * underneath new_root, i.e. adding a non-zero number of /.. to the string
2160 * pointed to by put_old must yield the same directory as new_root. No other
2161 * file system may be mounted on put_old. After all, new_root is a mountpoint.
2163 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
2164 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
2165 * in this situation.
2167 * Notes:
2168 * - we don't move root/cwd if they are not at the root (reason: if something
2169 * cared enough to change them, it's probably wrong to force them elsewhere)
2170 * - it's okay to pick a root that isn't the root of a file system, e.g.
2171 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
2172 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
2173 * first.
2175 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
2176 const char __user *, put_old)
2178 struct vfsmount *tmp;
2179 struct path new, old, parent_path, root_parent, root;
2180 int error;
2182 if (!capable(CAP_SYS_ADMIN))
2183 return -EPERM;
2185 error = user_path_dir(new_root, &new);
2186 if (error)
2187 goto out0;
2188 error = -EINVAL;
2189 if (!check_mnt(new.mnt))
2190 goto out1;
2192 error = user_path_dir(put_old, &old);
2193 if (error)
2194 goto out1;
2196 error = security_sb_pivotroot(&old, &new);
2197 if (error) {
2198 path_put(&old);
2199 goto out1;
2202 read_lock(&current->fs->lock);
2203 root = current->fs->root;
2204 path_get(&current->fs->root);
2205 read_unlock(&current->fs->lock);
2206 down_write(&namespace_sem);
2207 mutex_lock(&old.dentry->d_inode->i_mutex);
2208 error = -EINVAL;
2209 if (IS_MNT_SHARED(old.mnt) ||
2210 IS_MNT_SHARED(new.mnt->mnt_parent) ||
2211 IS_MNT_SHARED(root.mnt->mnt_parent))
2212 goto out2;
2213 if (!check_mnt(root.mnt))
2214 goto out2;
2215 error = -ENOENT;
2216 if (IS_DEADDIR(new.dentry->d_inode))
2217 goto out2;
2218 if (d_unhashed(new.dentry) && !IS_ROOT(new.dentry))
2219 goto out2;
2220 if (d_unhashed(old.dentry) && !IS_ROOT(old.dentry))
2221 goto out2;
2222 error = -EBUSY;
2223 if (new.mnt == root.mnt ||
2224 old.mnt == root.mnt)
2225 goto out2; /* loop, on the same file system */
2226 error = -EINVAL;
2227 if (root.mnt->mnt_root != root.dentry)
2228 goto out2; /* not a mountpoint */
2229 if (root.mnt->mnt_parent == root.mnt)
2230 goto out2; /* not attached */
2231 if (new.mnt->mnt_root != new.dentry)
2232 goto out2; /* not a mountpoint */
2233 if (new.mnt->mnt_parent == new.mnt)
2234 goto out2; /* not attached */
2235 /* make sure we can reach put_old from new_root */
2236 tmp = old.mnt;
2237 spin_lock(&vfsmount_lock);
2238 if (tmp != new.mnt) {
2239 for (;;) {
2240 if (tmp->mnt_parent == tmp)
2241 goto out3; /* already mounted on put_old */
2242 if (tmp->mnt_parent == new.mnt)
2243 break;
2244 tmp = tmp->mnt_parent;
2246 if (!is_subdir(tmp->mnt_mountpoint, new.dentry))
2247 goto out3;
2248 } else if (!is_subdir(old.dentry, new.dentry))
2249 goto out3;
2250 detach_mnt(new.mnt, &parent_path);
2251 detach_mnt(root.mnt, &root_parent);
2252 /* mount old root on put_old */
2253 attach_mnt(root.mnt, &old);
2254 /* mount new_root on / */
2255 attach_mnt(new.mnt, &root_parent);
2256 touch_mnt_namespace(current->nsproxy->mnt_ns);
2257 spin_unlock(&vfsmount_lock);
2258 chroot_fs_refs(&root, &new);
2259 security_sb_post_pivotroot(&root, &new);
2260 error = 0;
2261 path_put(&root_parent);
2262 path_put(&parent_path);
2263 out2:
2264 mutex_unlock(&old.dentry->d_inode->i_mutex);
2265 up_write(&namespace_sem);
2266 path_put(&root);
2267 path_put(&old);
2268 out1:
2269 path_put(&new);
2270 out0:
2271 return error;
2272 out3:
2273 spin_unlock(&vfsmount_lock);
2274 goto out2;
2277 static void __init init_mount_tree(void)
2279 struct vfsmount *mnt;
2280 struct mnt_namespace *ns;
2281 struct path root;
2283 mnt = do_kern_mount("rootfs", 0, "rootfs", NULL);
2284 if (IS_ERR(mnt))
2285 panic("Can't create rootfs");
2286 ns = kmalloc(sizeof(*ns), GFP_KERNEL);
2287 if (!ns)
2288 panic("Can't allocate initial namespace");
2289 atomic_set(&ns->count, 1);
2290 INIT_LIST_HEAD(&ns->list);
2291 init_waitqueue_head(&ns->poll);
2292 ns->event = 0;
2293 list_add(&mnt->mnt_list, &ns->list);
2294 ns->root = mnt;
2295 mnt->mnt_ns = ns;
2297 init_task.nsproxy->mnt_ns = ns;
2298 get_mnt_ns(ns);
2300 root.mnt = ns->root;
2301 root.dentry = ns->root->mnt_root;
2303 set_fs_pwd(current->fs, &root);
2304 set_fs_root(current->fs, &root);
2307 void __init mnt_init(void)
2309 unsigned u;
2310 int err;
2312 init_rwsem(&namespace_sem);
2314 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct vfsmount),
2315 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
2317 mount_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC);
2319 if (!mount_hashtable)
2320 panic("Failed to allocate mount hash table\n");
2322 printk("Mount-cache hash table entries: %lu\n", HASH_SIZE);
2324 for (u = 0; u < HASH_SIZE; u++)
2325 INIT_LIST_HEAD(&mount_hashtable[u]);
2327 err = sysfs_init();
2328 if (err)
2329 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
2330 __func__, err);
2331 fs_kobj = kobject_create_and_add("fs", NULL);
2332 if (!fs_kobj)
2333 printk(KERN_WARNING "%s: kobj create error\n", __func__);
2334 init_rootfs();
2335 init_mount_tree();
2338 void __put_mnt_ns(struct mnt_namespace *ns)
2340 struct vfsmount *root = ns->root;
2341 LIST_HEAD(umount_list);
2342 ns->root = NULL;
2343 spin_unlock(&vfsmount_lock);
2344 down_write(&namespace_sem);
2345 spin_lock(&vfsmount_lock);
2346 umount_tree(root, 0, &umount_list);
2347 spin_unlock(&vfsmount_lock);
2348 up_write(&namespace_sem);
2349 release_mounts(&umount_list);
2350 kfree(ns);