net: sk_update_clone is only used in net/core/sock.c
[linux-2.6/libata-dev.git] / net / core / sock.c
blobc3ae73de023993c2a2ce94b1d8bbde1af99617ba
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Generic socket support routines. Memory allocators, socket lock/release
7 * handler for protocols to use and generic option handler.
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Alan Cox, <A.Cox@swansea.ac.uk>
15 * Fixes:
16 * Alan Cox : Numerous verify_area() problems
17 * Alan Cox : Connecting on a connecting socket
18 * now returns an error for tcp.
19 * Alan Cox : sock->protocol is set correctly.
20 * and is not sometimes left as 0.
21 * Alan Cox : connect handles icmp errors on a
22 * connect properly. Unfortunately there
23 * is a restart syscall nasty there. I
24 * can't match BSD without hacking the C
25 * library. Ideas urgently sought!
26 * Alan Cox : Disallow bind() to addresses that are
27 * not ours - especially broadcast ones!!
28 * Alan Cox : Socket 1024 _IS_ ok for users. (fencepost)
29 * Alan Cox : sock_wfree/sock_rfree don't destroy sockets,
30 * instead they leave that for the DESTROY timer.
31 * Alan Cox : Clean up error flag in accept
32 * Alan Cox : TCP ack handling is buggy, the DESTROY timer
33 * was buggy. Put a remove_sock() in the handler
34 * for memory when we hit 0. Also altered the timer
35 * code. The ACK stuff can wait and needs major
36 * TCP layer surgery.
37 * Alan Cox : Fixed TCP ack bug, removed remove sock
38 * and fixed timer/inet_bh race.
39 * Alan Cox : Added zapped flag for TCP
40 * Alan Cox : Move kfree_skb into skbuff.c and tidied up surplus code
41 * Alan Cox : for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
42 * Alan Cox : kfree_s calls now are kfree_skbmem so we can track skb resources
43 * Alan Cox : Supports socket option broadcast now as does udp. Packet and raw need fixing.
44 * Alan Cox : Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
45 * Rick Sladkey : Relaxed UDP rules for matching packets.
46 * C.E.Hawkins : IFF_PROMISC/SIOCGHWADDR support
47 * Pauline Middelink : identd support
48 * Alan Cox : Fixed connect() taking signals I think.
49 * Alan Cox : SO_LINGER supported
50 * Alan Cox : Error reporting fixes
51 * Anonymous : inet_create tidied up (sk->reuse setting)
52 * Alan Cox : inet sockets don't set sk->type!
53 * Alan Cox : Split socket option code
54 * Alan Cox : Callbacks
55 * Alan Cox : Nagle flag for Charles & Johannes stuff
56 * Alex : Removed restriction on inet fioctl
57 * Alan Cox : Splitting INET from NET core
58 * Alan Cox : Fixed bogus SO_TYPE handling in getsockopt()
59 * Adam Caldwell : Missing return in SO_DONTROUTE/SO_DEBUG code
60 * Alan Cox : Split IP from generic code
61 * Alan Cox : New kfree_skbmem()
62 * Alan Cox : Make SO_DEBUG superuser only.
63 * Alan Cox : Allow anyone to clear SO_DEBUG
64 * (compatibility fix)
65 * Alan Cox : Added optimistic memory grabbing for AF_UNIX throughput.
66 * Alan Cox : Allocator for a socket is settable.
67 * Alan Cox : SO_ERROR includes soft errors.
68 * Alan Cox : Allow NULL arguments on some SO_ opts
69 * Alan Cox : Generic socket allocation to make hooks
70 * easier (suggested by Craig Metz).
71 * Michael Pall : SO_ERROR returns positive errno again
72 * Steve Whitehouse: Added default destructor to free
73 * protocol private data.
74 * Steve Whitehouse: Added various other default routines
75 * common to several socket families.
76 * Chris Evans : Call suser() check last on F_SETOWN
77 * Jay Schulist : Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
78 * Andi Kleen : Add sock_kmalloc()/sock_kfree_s()
79 * Andi Kleen : Fix write_space callback
80 * Chris Evans : Security fixes - signedness again
81 * Arnaldo C. Melo : cleanups, use skb_queue_purge
83 * To Fix:
86 * This program is free software; you can redistribute it and/or
87 * modify it under the terms of the GNU General Public License
88 * as published by the Free Software Foundation; either version
89 * 2 of the License, or (at your option) any later version.
92 #include <linux/capability.h>
93 #include <linux/errno.h>
94 #include <linux/types.h>
95 #include <linux/socket.h>
96 #include <linux/in.h>
97 #include <linux/kernel.h>
98 #include <linux/module.h>
99 #include <linux/proc_fs.h>
100 #include <linux/seq_file.h>
101 #include <linux/sched.h>
102 #include <linux/timer.h>
103 #include <linux/string.h>
104 #include <linux/sockios.h>
105 #include <linux/net.h>
106 #include <linux/mm.h>
107 #include <linux/slab.h>
108 #include <linux/interrupt.h>
109 #include <linux/poll.h>
110 #include <linux/tcp.h>
111 #include <linux/init.h>
112 #include <linux/highmem.h>
113 #include <linux/user_namespace.h>
114 #include <linux/jump_label.h>
116 #include <asm/uaccess.h>
117 #include <asm/system.h>
119 #include <linux/netdevice.h>
120 #include <net/protocol.h>
121 #include <linux/skbuff.h>
122 #include <net/net_namespace.h>
123 #include <net/request_sock.h>
124 #include <net/sock.h>
125 #include <linux/net_tstamp.h>
126 #include <net/xfrm.h>
127 #include <linux/ipsec.h>
128 #include <net/cls_cgroup.h>
129 #include <net/netprio_cgroup.h>
131 #include <linux/filter.h>
133 #include <trace/events/sock.h>
135 #ifdef CONFIG_INET
136 #include <net/tcp.h>
137 #endif
139 static DEFINE_MUTEX(proto_list_mutex);
140 static LIST_HEAD(proto_list);
142 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
143 int mem_cgroup_sockets_init(struct cgroup *cgrp, struct cgroup_subsys *ss)
145 struct proto *proto;
146 int ret = 0;
148 mutex_lock(&proto_list_mutex);
149 list_for_each_entry(proto, &proto_list, node) {
150 if (proto->init_cgroup) {
151 ret = proto->init_cgroup(cgrp, ss);
152 if (ret)
153 goto out;
157 mutex_unlock(&proto_list_mutex);
158 return ret;
159 out:
160 list_for_each_entry_continue_reverse(proto, &proto_list, node)
161 if (proto->destroy_cgroup)
162 proto->destroy_cgroup(cgrp, ss);
163 mutex_unlock(&proto_list_mutex);
164 return ret;
167 void mem_cgroup_sockets_destroy(struct cgroup *cgrp, struct cgroup_subsys *ss)
169 struct proto *proto;
171 mutex_lock(&proto_list_mutex);
172 list_for_each_entry_reverse(proto, &proto_list, node)
173 if (proto->destroy_cgroup)
174 proto->destroy_cgroup(cgrp, ss);
175 mutex_unlock(&proto_list_mutex);
177 #endif
180 * Each address family might have different locking rules, so we have
181 * one slock key per address family:
183 static struct lock_class_key af_family_keys[AF_MAX];
184 static struct lock_class_key af_family_slock_keys[AF_MAX];
186 struct jump_label_key memcg_socket_limit_enabled;
187 EXPORT_SYMBOL(memcg_socket_limit_enabled);
190 * Make lock validator output more readable. (we pre-construct these
191 * strings build-time, so that runtime initialization of socket
192 * locks is fast):
194 static const char *const af_family_key_strings[AF_MAX+1] = {
195 "sk_lock-AF_UNSPEC", "sk_lock-AF_UNIX" , "sk_lock-AF_INET" ,
196 "sk_lock-AF_AX25" , "sk_lock-AF_IPX" , "sk_lock-AF_APPLETALK",
197 "sk_lock-AF_NETROM", "sk_lock-AF_BRIDGE" , "sk_lock-AF_ATMPVC" ,
198 "sk_lock-AF_X25" , "sk_lock-AF_INET6" , "sk_lock-AF_ROSE" ,
199 "sk_lock-AF_DECnet", "sk_lock-AF_NETBEUI" , "sk_lock-AF_SECURITY" ,
200 "sk_lock-AF_KEY" , "sk_lock-AF_NETLINK" , "sk_lock-AF_PACKET" ,
201 "sk_lock-AF_ASH" , "sk_lock-AF_ECONET" , "sk_lock-AF_ATMSVC" ,
202 "sk_lock-AF_RDS" , "sk_lock-AF_SNA" , "sk_lock-AF_IRDA" ,
203 "sk_lock-AF_PPPOX" , "sk_lock-AF_WANPIPE" , "sk_lock-AF_LLC" ,
204 "sk_lock-27" , "sk_lock-28" , "sk_lock-AF_CAN" ,
205 "sk_lock-AF_TIPC" , "sk_lock-AF_BLUETOOTH", "sk_lock-IUCV" ,
206 "sk_lock-AF_RXRPC" , "sk_lock-AF_ISDN" , "sk_lock-AF_PHONET" ,
207 "sk_lock-AF_IEEE802154", "sk_lock-AF_CAIF" , "sk_lock-AF_ALG" ,
208 "sk_lock-AF_NFC" , "sk_lock-AF_MAX"
210 static const char *const af_family_slock_key_strings[AF_MAX+1] = {
211 "slock-AF_UNSPEC", "slock-AF_UNIX" , "slock-AF_INET" ,
212 "slock-AF_AX25" , "slock-AF_IPX" , "slock-AF_APPLETALK",
213 "slock-AF_NETROM", "slock-AF_BRIDGE" , "slock-AF_ATMPVC" ,
214 "slock-AF_X25" , "slock-AF_INET6" , "slock-AF_ROSE" ,
215 "slock-AF_DECnet", "slock-AF_NETBEUI" , "slock-AF_SECURITY" ,
216 "slock-AF_KEY" , "slock-AF_NETLINK" , "slock-AF_PACKET" ,
217 "slock-AF_ASH" , "slock-AF_ECONET" , "slock-AF_ATMSVC" ,
218 "slock-AF_RDS" , "slock-AF_SNA" , "slock-AF_IRDA" ,
219 "slock-AF_PPPOX" , "slock-AF_WANPIPE" , "slock-AF_LLC" ,
220 "slock-27" , "slock-28" , "slock-AF_CAN" ,
221 "slock-AF_TIPC" , "slock-AF_BLUETOOTH", "slock-AF_IUCV" ,
222 "slock-AF_RXRPC" , "slock-AF_ISDN" , "slock-AF_PHONET" ,
223 "slock-AF_IEEE802154", "slock-AF_CAIF" , "slock-AF_ALG" ,
224 "slock-AF_NFC" , "slock-AF_MAX"
226 static const char *const af_family_clock_key_strings[AF_MAX+1] = {
227 "clock-AF_UNSPEC", "clock-AF_UNIX" , "clock-AF_INET" ,
228 "clock-AF_AX25" , "clock-AF_IPX" , "clock-AF_APPLETALK",
229 "clock-AF_NETROM", "clock-AF_BRIDGE" , "clock-AF_ATMPVC" ,
230 "clock-AF_X25" , "clock-AF_INET6" , "clock-AF_ROSE" ,
231 "clock-AF_DECnet", "clock-AF_NETBEUI" , "clock-AF_SECURITY" ,
232 "clock-AF_KEY" , "clock-AF_NETLINK" , "clock-AF_PACKET" ,
233 "clock-AF_ASH" , "clock-AF_ECONET" , "clock-AF_ATMSVC" ,
234 "clock-AF_RDS" , "clock-AF_SNA" , "clock-AF_IRDA" ,
235 "clock-AF_PPPOX" , "clock-AF_WANPIPE" , "clock-AF_LLC" ,
236 "clock-27" , "clock-28" , "clock-AF_CAN" ,
237 "clock-AF_TIPC" , "clock-AF_BLUETOOTH", "clock-AF_IUCV" ,
238 "clock-AF_RXRPC" , "clock-AF_ISDN" , "clock-AF_PHONET" ,
239 "clock-AF_IEEE802154", "clock-AF_CAIF" , "clock-AF_ALG" ,
240 "clock-AF_NFC" , "clock-AF_MAX"
244 * sk_callback_lock locking rules are per-address-family,
245 * so split the lock classes by using a per-AF key:
247 static struct lock_class_key af_callback_keys[AF_MAX];
249 /* Take into consideration the size of the struct sk_buff overhead in the
250 * determination of these values, since that is non-constant across
251 * platforms. This makes socket queueing behavior and performance
252 * not depend upon such differences.
254 #define _SK_MEM_PACKETS 256
255 #define _SK_MEM_OVERHEAD SKB_TRUESIZE(256)
256 #define SK_WMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
257 #define SK_RMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
259 /* Run time adjustable parameters. */
260 __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
261 __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
262 __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
263 __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
265 /* Maximal space eaten by iovec or ancillary data plus some space */
266 int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
267 EXPORT_SYMBOL(sysctl_optmem_max);
269 #if defined(CONFIG_CGROUPS)
270 #if !defined(CONFIG_NET_CLS_CGROUP)
271 int net_cls_subsys_id = -1;
272 EXPORT_SYMBOL_GPL(net_cls_subsys_id);
273 #endif
274 #if !defined(CONFIG_NETPRIO_CGROUP)
275 int net_prio_subsys_id = -1;
276 EXPORT_SYMBOL_GPL(net_prio_subsys_id);
277 #endif
278 #endif
280 static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen)
282 struct timeval tv;
284 if (optlen < sizeof(tv))
285 return -EINVAL;
286 if (copy_from_user(&tv, optval, sizeof(tv)))
287 return -EFAULT;
288 if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
289 return -EDOM;
291 if (tv.tv_sec < 0) {
292 static int warned __read_mostly;
294 *timeo_p = 0;
295 if (warned < 10 && net_ratelimit()) {
296 warned++;
297 printk(KERN_INFO "sock_set_timeout: `%s' (pid %d) "
298 "tries to set negative timeout\n",
299 current->comm, task_pid_nr(current));
301 return 0;
303 *timeo_p = MAX_SCHEDULE_TIMEOUT;
304 if (tv.tv_sec == 0 && tv.tv_usec == 0)
305 return 0;
306 if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1))
307 *timeo_p = tv.tv_sec*HZ + (tv.tv_usec+(1000000/HZ-1))/(1000000/HZ);
308 return 0;
311 static void sock_warn_obsolete_bsdism(const char *name)
313 static int warned;
314 static char warncomm[TASK_COMM_LEN];
315 if (strcmp(warncomm, current->comm) && warned < 5) {
316 strcpy(warncomm, current->comm);
317 printk(KERN_WARNING "process `%s' is using obsolete "
318 "%s SO_BSDCOMPAT\n", warncomm, name);
319 warned++;
323 #define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
325 static void sock_disable_timestamp(struct sock *sk, unsigned long flags)
327 if (sk->sk_flags & flags) {
328 sk->sk_flags &= ~flags;
329 if (!(sk->sk_flags & SK_FLAGS_TIMESTAMP))
330 net_disable_timestamp();
335 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
337 int err;
338 int skb_len;
339 unsigned long flags;
340 struct sk_buff_head *list = &sk->sk_receive_queue;
342 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) {
343 atomic_inc(&sk->sk_drops);
344 trace_sock_rcvqueue_full(sk, skb);
345 return -ENOMEM;
348 err = sk_filter(sk, skb);
349 if (err)
350 return err;
352 if (!sk_rmem_schedule(sk, skb->truesize)) {
353 atomic_inc(&sk->sk_drops);
354 return -ENOBUFS;
357 skb->dev = NULL;
358 skb_set_owner_r(skb, sk);
360 /* Cache the SKB length before we tack it onto the receive
361 * queue. Once it is added it no longer belongs to us and
362 * may be freed by other threads of control pulling packets
363 * from the queue.
365 skb_len = skb->len;
367 /* we escape from rcu protected region, make sure we dont leak
368 * a norefcounted dst
370 skb_dst_force(skb);
372 spin_lock_irqsave(&list->lock, flags);
373 skb->dropcount = atomic_read(&sk->sk_drops);
374 __skb_queue_tail(list, skb);
375 spin_unlock_irqrestore(&list->lock, flags);
377 if (!sock_flag(sk, SOCK_DEAD))
378 sk->sk_data_ready(sk, skb_len);
379 return 0;
381 EXPORT_SYMBOL(sock_queue_rcv_skb);
383 int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested)
385 int rc = NET_RX_SUCCESS;
387 if (sk_filter(sk, skb))
388 goto discard_and_relse;
390 skb->dev = NULL;
392 if (sk_rcvqueues_full(sk, skb)) {
393 atomic_inc(&sk->sk_drops);
394 goto discard_and_relse;
396 if (nested)
397 bh_lock_sock_nested(sk);
398 else
399 bh_lock_sock(sk);
400 if (!sock_owned_by_user(sk)) {
402 * trylock + unlock semantics:
404 mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
406 rc = sk_backlog_rcv(sk, skb);
408 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
409 } else if (sk_add_backlog(sk, skb)) {
410 bh_unlock_sock(sk);
411 atomic_inc(&sk->sk_drops);
412 goto discard_and_relse;
415 bh_unlock_sock(sk);
416 out:
417 sock_put(sk);
418 return rc;
419 discard_and_relse:
420 kfree_skb(skb);
421 goto out;
423 EXPORT_SYMBOL(sk_receive_skb);
425 void sk_reset_txq(struct sock *sk)
427 sk_tx_queue_clear(sk);
429 EXPORT_SYMBOL(sk_reset_txq);
431 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
433 struct dst_entry *dst = __sk_dst_get(sk);
435 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
436 sk_tx_queue_clear(sk);
437 RCU_INIT_POINTER(sk->sk_dst_cache, NULL);
438 dst_release(dst);
439 return NULL;
442 return dst;
444 EXPORT_SYMBOL(__sk_dst_check);
446 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
448 struct dst_entry *dst = sk_dst_get(sk);
450 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
451 sk_dst_reset(sk);
452 dst_release(dst);
453 return NULL;
456 return dst;
458 EXPORT_SYMBOL(sk_dst_check);
460 static int sock_bindtodevice(struct sock *sk, char __user *optval, int optlen)
462 int ret = -ENOPROTOOPT;
463 #ifdef CONFIG_NETDEVICES
464 struct net *net = sock_net(sk);
465 char devname[IFNAMSIZ];
466 int index;
468 /* Sorry... */
469 ret = -EPERM;
470 if (!capable(CAP_NET_RAW))
471 goto out;
473 ret = -EINVAL;
474 if (optlen < 0)
475 goto out;
477 /* Bind this socket to a particular device like "eth0",
478 * as specified in the passed interface name. If the
479 * name is "" or the option length is zero the socket
480 * is not bound.
482 if (optlen > IFNAMSIZ - 1)
483 optlen = IFNAMSIZ - 1;
484 memset(devname, 0, sizeof(devname));
486 ret = -EFAULT;
487 if (copy_from_user(devname, optval, optlen))
488 goto out;
490 index = 0;
491 if (devname[0] != '\0') {
492 struct net_device *dev;
494 rcu_read_lock();
495 dev = dev_get_by_name_rcu(net, devname);
496 if (dev)
497 index = dev->ifindex;
498 rcu_read_unlock();
499 ret = -ENODEV;
500 if (!dev)
501 goto out;
504 lock_sock(sk);
505 sk->sk_bound_dev_if = index;
506 sk_dst_reset(sk);
507 release_sock(sk);
509 ret = 0;
511 out:
512 #endif
514 return ret;
517 static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool)
519 if (valbool)
520 sock_set_flag(sk, bit);
521 else
522 sock_reset_flag(sk, bit);
526 * This is meant for all protocols to use and covers goings on
527 * at the socket level. Everything here is generic.
530 int sock_setsockopt(struct socket *sock, int level, int optname,
531 char __user *optval, unsigned int optlen)
533 struct sock *sk = sock->sk;
534 int val;
535 int valbool;
536 struct linger ling;
537 int ret = 0;
540 * Options without arguments
543 if (optname == SO_BINDTODEVICE)
544 return sock_bindtodevice(sk, optval, optlen);
546 if (optlen < sizeof(int))
547 return -EINVAL;
549 if (get_user(val, (int __user *)optval))
550 return -EFAULT;
552 valbool = val ? 1 : 0;
554 lock_sock(sk);
556 switch (optname) {
557 case SO_DEBUG:
558 if (val && !capable(CAP_NET_ADMIN))
559 ret = -EACCES;
560 else
561 sock_valbool_flag(sk, SOCK_DBG, valbool);
562 break;
563 case SO_REUSEADDR:
564 sk->sk_reuse = valbool;
565 break;
566 case SO_TYPE:
567 case SO_PROTOCOL:
568 case SO_DOMAIN:
569 case SO_ERROR:
570 ret = -ENOPROTOOPT;
571 break;
572 case SO_DONTROUTE:
573 sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
574 break;
575 case SO_BROADCAST:
576 sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
577 break;
578 case SO_SNDBUF:
579 /* Don't error on this BSD doesn't and if you think
580 about it this is right. Otherwise apps have to
581 play 'guess the biggest size' games. RCVBUF/SNDBUF
582 are treated in BSD as hints */
584 if (val > sysctl_wmem_max)
585 val = sysctl_wmem_max;
586 set_sndbuf:
587 sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
588 if ((val * 2) < SOCK_MIN_SNDBUF)
589 sk->sk_sndbuf = SOCK_MIN_SNDBUF;
590 else
591 sk->sk_sndbuf = val * 2;
594 * Wake up sending tasks if we
595 * upped the value.
597 sk->sk_write_space(sk);
598 break;
600 case SO_SNDBUFFORCE:
601 if (!capable(CAP_NET_ADMIN)) {
602 ret = -EPERM;
603 break;
605 goto set_sndbuf;
607 case SO_RCVBUF:
608 /* Don't error on this BSD doesn't and if you think
609 about it this is right. Otherwise apps have to
610 play 'guess the biggest size' games. RCVBUF/SNDBUF
611 are treated in BSD as hints */
613 if (val > sysctl_rmem_max)
614 val = sysctl_rmem_max;
615 set_rcvbuf:
616 sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
618 * We double it on the way in to account for
619 * "struct sk_buff" etc. overhead. Applications
620 * assume that the SO_RCVBUF setting they make will
621 * allow that much actual data to be received on that
622 * socket.
624 * Applications are unaware that "struct sk_buff" and
625 * other overheads allocate from the receive buffer
626 * during socket buffer allocation.
628 * And after considering the possible alternatives,
629 * returning the value we actually used in getsockopt
630 * is the most desirable behavior.
632 if ((val * 2) < SOCK_MIN_RCVBUF)
633 sk->sk_rcvbuf = SOCK_MIN_RCVBUF;
634 else
635 sk->sk_rcvbuf = val * 2;
636 break;
638 case SO_RCVBUFFORCE:
639 if (!capable(CAP_NET_ADMIN)) {
640 ret = -EPERM;
641 break;
643 goto set_rcvbuf;
645 case SO_KEEPALIVE:
646 #ifdef CONFIG_INET
647 if (sk->sk_protocol == IPPROTO_TCP)
648 tcp_set_keepalive(sk, valbool);
649 #endif
650 sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
651 break;
653 case SO_OOBINLINE:
654 sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
655 break;
657 case SO_NO_CHECK:
658 sk->sk_no_check = valbool;
659 break;
661 case SO_PRIORITY:
662 if ((val >= 0 && val <= 6) || capable(CAP_NET_ADMIN))
663 sk->sk_priority = val;
664 else
665 ret = -EPERM;
666 break;
668 case SO_LINGER:
669 if (optlen < sizeof(ling)) {
670 ret = -EINVAL; /* 1003.1g */
671 break;
673 if (copy_from_user(&ling, optval, sizeof(ling))) {
674 ret = -EFAULT;
675 break;
677 if (!ling.l_onoff)
678 sock_reset_flag(sk, SOCK_LINGER);
679 else {
680 #if (BITS_PER_LONG == 32)
681 if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
682 sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
683 else
684 #endif
685 sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
686 sock_set_flag(sk, SOCK_LINGER);
688 break;
690 case SO_BSDCOMPAT:
691 sock_warn_obsolete_bsdism("setsockopt");
692 break;
694 case SO_PASSCRED:
695 if (valbool)
696 set_bit(SOCK_PASSCRED, &sock->flags);
697 else
698 clear_bit(SOCK_PASSCRED, &sock->flags);
699 break;
701 case SO_TIMESTAMP:
702 case SO_TIMESTAMPNS:
703 if (valbool) {
704 if (optname == SO_TIMESTAMP)
705 sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
706 else
707 sock_set_flag(sk, SOCK_RCVTSTAMPNS);
708 sock_set_flag(sk, SOCK_RCVTSTAMP);
709 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
710 } else {
711 sock_reset_flag(sk, SOCK_RCVTSTAMP);
712 sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
714 break;
716 case SO_TIMESTAMPING:
717 if (val & ~SOF_TIMESTAMPING_MASK) {
718 ret = -EINVAL;
719 break;
721 sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE,
722 val & SOF_TIMESTAMPING_TX_HARDWARE);
723 sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE,
724 val & SOF_TIMESTAMPING_TX_SOFTWARE);
725 sock_valbool_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE,
726 val & SOF_TIMESTAMPING_RX_HARDWARE);
727 if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
728 sock_enable_timestamp(sk,
729 SOCK_TIMESTAMPING_RX_SOFTWARE);
730 else
731 sock_disable_timestamp(sk,
732 (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE));
733 sock_valbool_flag(sk, SOCK_TIMESTAMPING_SOFTWARE,
734 val & SOF_TIMESTAMPING_SOFTWARE);
735 sock_valbool_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE,
736 val & SOF_TIMESTAMPING_SYS_HARDWARE);
737 sock_valbool_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE,
738 val & SOF_TIMESTAMPING_RAW_HARDWARE);
739 break;
741 case SO_RCVLOWAT:
742 if (val < 0)
743 val = INT_MAX;
744 sk->sk_rcvlowat = val ? : 1;
745 break;
747 case SO_RCVTIMEO:
748 ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen);
749 break;
751 case SO_SNDTIMEO:
752 ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen);
753 break;
755 case SO_ATTACH_FILTER:
756 ret = -EINVAL;
757 if (optlen == sizeof(struct sock_fprog)) {
758 struct sock_fprog fprog;
760 ret = -EFAULT;
761 if (copy_from_user(&fprog, optval, sizeof(fprog)))
762 break;
764 ret = sk_attach_filter(&fprog, sk);
766 break;
768 case SO_DETACH_FILTER:
769 ret = sk_detach_filter(sk);
770 break;
772 case SO_PASSSEC:
773 if (valbool)
774 set_bit(SOCK_PASSSEC, &sock->flags);
775 else
776 clear_bit(SOCK_PASSSEC, &sock->flags);
777 break;
778 case SO_MARK:
779 if (!capable(CAP_NET_ADMIN))
780 ret = -EPERM;
781 else
782 sk->sk_mark = val;
783 break;
785 /* We implement the SO_SNDLOWAT etc to
786 not be settable (1003.1g 5.3) */
787 case SO_RXQ_OVFL:
788 sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool);
789 break;
791 case SO_WIFI_STATUS:
792 sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool);
793 break;
795 default:
796 ret = -ENOPROTOOPT;
797 break;
799 release_sock(sk);
800 return ret;
802 EXPORT_SYMBOL(sock_setsockopt);
805 void cred_to_ucred(struct pid *pid, const struct cred *cred,
806 struct ucred *ucred)
808 ucred->pid = pid_vnr(pid);
809 ucred->uid = ucred->gid = -1;
810 if (cred) {
811 struct user_namespace *current_ns = current_user_ns();
813 ucred->uid = user_ns_map_uid(current_ns, cred, cred->euid);
814 ucred->gid = user_ns_map_gid(current_ns, cred, cred->egid);
817 EXPORT_SYMBOL_GPL(cred_to_ucred);
819 int sock_getsockopt(struct socket *sock, int level, int optname,
820 char __user *optval, int __user *optlen)
822 struct sock *sk = sock->sk;
824 union {
825 int val;
826 struct linger ling;
827 struct timeval tm;
828 } v;
830 int lv = sizeof(int);
831 int len;
833 if (get_user(len, optlen))
834 return -EFAULT;
835 if (len < 0)
836 return -EINVAL;
838 memset(&v, 0, sizeof(v));
840 switch (optname) {
841 case SO_DEBUG:
842 v.val = sock_flag(sk, SOCK_DBG);
843 break;
845 case SO_DONTROUTE:
846 v.val = sock_flag(sk, SOCK_LOCALROUTE);
847 break;
849 case SO_BROADCAST:
850 v.val = !!sock_flag(sk, SOCK_BROADCAST);
851 break;
853 case SO_SNDBUF:
854 v.val = sk->sk_sndbuf;
855 break;
857 case SO_RCVBUF:
858 v.val = sk->sk_rcvbuf;
859 break;
861 case SO_REUSEADDR:
862 v.val = sk->sk_reuse;
863 break;
865 case SO_KEEPALIVE:
866 v.val = !!sock_flag(sk, SOCK_KEEPOPEN);
867 break;
869 case SO_TYPE:
870 v.val = sk->sk_type;
871 break;
873 case SO_PROTOCOL:
874 v.val = sk->sk_protocol;
875 break;
877 case SO_DOMAIN:
878 v.val = sk->sk_family;
879 break;
881 case SO_ERROR:
882 v.val = -sock_error(sk);
883 if (v.val == 0)
884 v.val = xchg(&sk->sk_err_soft, 0);
885 break;
887 case SO_OOBINLINE:
888 v.val = !!sock_flag(sk, SOCK_URGINLINE);
889 break;
891 case SO_NO_CHECK:
892 v.val = sk->sk_no_check;
893 break;
895 case SO_PRIORITY:
896 v.val = sk->sk_priority;
897 break;
899 case SO_LINGER:
900 lv = sizeof(v.ling);
901 v.ling.l_onoff = !!sock_flag(sk, SOCK_LINGER);
902 v.ling.l_linger = sk->sk_lingertime / HZ;
903 break;
905 case SO_BSDCOMPAT:
906 sock_warn_obsolete_bsdism("getsockopt");
907 break;
909 case SO_TIMESTAMP:
910 v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
911 !sock_flag(sk, SOCK_RCVTSTAMPNS);
912 break;
914 case SO_TIMESTAMPNS:
915 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS);
916 break;
918 case SO_TIMESTAMPING:
919 v.val = 0;
920 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE))
921 v.val |= SOF_TIMESTAMPING_TX_HARDWARE;
922 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE))
923 v.val |= SOF_TIMESTAMPING_TX_SOFTWARE;
924 if (sock_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE))
925 v.val |= SOF_TIMESTAMPING_RX_HARDWARE;
926 if (sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE))
927 v.val |= SOF_TIMESTAMPING_RX_SOFTWARE;
928 if (sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE))
929 v.val |= SOF_TIMESTAMPING_SOFTWARE;
930 if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE))
931 v.val |= SOF_TIMESTAMPING_SYS_HARDWARE;
932 if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE))
933 v.val |= SOF_TIMESTAMPING_RAW_HARDWARE;
934 break;
936 case SO_RCVTIMEO:
937 lv = sizeof(struct timeval);
938 if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) {
939 v.tm.tv_sec = 0;
940 v.tm.tv_usec = 0;
941 } else {
942 v.tm.tv_sec = sk->sk_rcvtimeo / HZ;
943 v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * 1000000) / HZ;
945 break;
947 case SO_SNDTIMEO:
948 lv = sizeof(struct timeval);
949 if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) {
950 v.tm.tv_sec = 0;
951 v.tm.tv_usec = 0;
952 } else {
953 v.tm.tv_sec = sk->sk_sndtimeo / HZ;
954 v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * 1000000) / HZ;
956 break;
958 case SO_RCVLOWAT:
959 v.val = sk->sk_rcvlowat;
960 break;
962 case SO_SNDLOWAT:
963 v.val = 1;
964 break;
966 case SO_PASSCRED:
967 v.val = test_bit(SOCK_PASSCRED, &sock->flags) ? 1 : 0;
968 break;
970 case SO_PEERCRED:
972 struct ucred peercred;
973 if (len > sizeof(peercred))
974 len = sizeof(peercred);
975 cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred);
976 if (copy_to_user(optval, &peercred, len))
977 return -EFAULT;
978 goto lenout;
981 case SO_PEERNAME:
983 char address[128];
985 if (sock->ops->getname(sock, (struct sockaddr *)address, &lv, 2))
986 return -ENOTCONN;
987 if (lv < len)
988 return -EINVAL;
989 if (copy_to_user(optval, address, len))
990 return -EFAULT;
991 goto lenout;
994 /* Dubious BSD thing... Probably nobody even uses it, but
995 * the UNIX standard wants it for whatever reason... -DaveM
997 case SO_ACCEPTCONN:
998 v.val = sk->sk_state == TCP_LISTEN;
999 break;
1001 case SO_PASSSEC:
1002 v.val = test_bit(SOCK_PASSSEC, &sock->flags) ? 1 : 0;
1003 break;
1005 case SO_PEERSEC:
1006 return security_socket_getpeersec_stream(sock, optval, optlen, len);
1008 case SO_MARK:
1009 v.val = sk->sk_mark;
1010 break;
1012 case SO_RXQ_OVFL:
1013 v.val = !!sock_flag(sk, SOCK_RXQ_OVFL);
1014 break;
1016 case SO_WIFI_STATUS:
1017 v.val = !!sock_flag(sk, SOCK_WIFI_STATUS);
1018 break;
1020 default:
1021 return -ENOPROTOOPT;
1024 if (len > lv)
1025 len = lv;
1026 if (copy_to_user(optval, &v, len))
1027 return -EFAULT;
1028 lenout:
1029 if (put_user(len, optlen))
1030 return -EFAULT;
1031 return 0;
1035 * Initialize an sk_lock.
1037 * (We also register the sk_lock with the lock validator.)
1039 static inline void sock_lock_init(struct sock *sk)
1041 sock_lock_init_class_and_name(sk,
1042 af_family_slock_key_strings[sk->sk_family],
1043 af_family_slock_keys + sk->sk_family,
1044 af_family_key_strings[sk->sk_family],
1045 af_family_keys + sk->sk_family);
1049 * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
1050 * even temporarly, because of RCU lookups. sk_node should also be left as is.
1051 * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
1053 static void sock_copy(struct sock *nsk, const struct sock *osk)
1055 #ifdef CONFIG_SECURITY_NETWORK
1056 void *sptr = nsk->sk_security;
1057 #endif
1058 memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin));
1060 memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end,
1061 osk->sk_prot->obj_size - offsetof(struct sock, sk_dontcopy_end));
1063 #ifdef CONFIG_SECURITY_NETWORK
1064 nsk->sk_security = sptr;
1065 security_sk_clone(osk, nsk);
1066 #endif
1070 * caches using SLAB_DESTROY_BY_RCU should let .next pointer from nulls nodes
1071 * un-modified. Special care is taken when initializing object to zero.
1073 static inline void sk_prot_clear_nulls(struct sock *sk, int size)
1075 if (offsetof(struct sock, sk_node.next) != 0)
1076 memset(sk, 0, offsetof(struct sock, sk_node.next));
1077 memset(&sk->sk_node.pprev, 0,
1078 size - offsetof(struct sock, sk_node.pprev));
1081 void sk_prot_clear_portaddr_nulls(struct sock *sk, int size)
1083 unsigned long nulls1, nulls2;
1085 nulls1 = offsetof(struct sock, __sk_common.skc_node.next);
1086 nulls2 = offsetof(struct sock, __sk_common.skc_portaddr_node.next);
1087 if (nulls1 > nulls2)
1088 swap(nulls1, nulls2);
1090 if (nulls1 != 0)
1091 memset((char *)sk, 0, nulls1);
1092 memset((char *)sk + nulls1 + sizeof(void *), 0,
1093 nulls2 - nulls1 - sizeof(void *));
1094 memset((char *)sk + nulls2 + sizeof(void *), 0,
1095 size - nulls2 - sizeof(void *));
1097 EXPORT_SYMBOL(sk_prot_clear_portaddr_nulls);
1099 static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
1100 int family)
1102 struct sock *sk;
1103 struct kmem_cache *slab;
1105 slab = prot->slab;
1106 if (slab != NULL) {
1107 sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
1108 if (!sk)
1109 return sk;
1110 if (priority & __GFP_ZERO) {
1111 if (prot->clear_sk)
1112 prot->clear_sk(sk, prot->obj_size);
1113 else
1114 sk_prot_clear_nulls(sk, prot->obj_size);
1116 } else
1117 sk = kmalloc(prot->obj_size, priority);
1119 if (sk != NULL) {
1120 kmemcheck_annotate_bitfield(sk, flags);
1122 if (security_sk_alloc(sk, family, priority))
1123 goto out_free;
1125 if (!try_module_get(prot->owner))
1126 goto out_free_sec;
1127 sk_tx_queue_clear(sk);
1130 return sk;
1132 out_free_sec:
1133 security_sk_free(sk);
1134 out_free:
1135 if (slab != NULL)
1136 kmem_cache_free(slab, sk);
1137 else
1138 kfree(sk);
1139 return NULL;
1142 static void sk_prot_free(struct proto *prot, struct sock *sk)
1144 struct kmem_cache *slab;
1145 struct module *owner;
1147 owner = prot->owner;
1148 slab = prot->slab;
1150 security_sk_free(sk);
1151 if (slab != NULL)
1152 kmem_cache_free(slab, sk);
1153 else
1154 kfree(sk);
1155 module_put(owner);
1158 #ifdef CONFIG_CGROUPS
1159 void sock_update_classid(struct sock *sk)
1161 u32 classid;
1163 rcu_read_lock(); /* doing current task, which cannot vanish. */
1164 classid = task_cls_classid(current);
1165 rcu_read_unlock();
1166 if (classid && classid != sk->sk_classid)
1167 sk->sk_classid = classid;
1169 EXPORT_SYMBOL(sock_update_classid);
1171 void sock_update_netprioidx(struct sock *sk)
1173 struct cgroup_netprio_state *state;
1174 if (in_interrupt())
1175 return;
1176 rcu_read_lock();
1177 state = task_netprio_state(current);
1178 sk->sk_cgrp_prioidx = state ? state->prioidx : 0;
1179 rcu_read_unlock();
1181 EXPORT_SYMBOL_GPL(sock_update_netprioidx);
1182 #endif
1185 * sk_alloc - All socket objects are allocated here
1186 * @net: the applicable net namespace
1187 * @family: protocol family
1188 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1189 * @prot: struct proto associated with this new sock instance
1191 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1192 struct proto *prot)
1194 struct sock *sk;
1196 sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
1197 if (sk) {
1198 sk->sk_family = family;
1200 * See comment in struct sock definition to understand
1201 * why we need sk_prot_creator -acme
1203 sk->sk_prot = sk->sk_prot_creator = prot;
1204 sock_lock_init(sk);
1205 sock_net_set(sk, get_net(net));
1206 atomic_set(&sk->sk_wmem_alloc, 1);
1208 sock_update_classid(sk);
1209 sock_update_netprioidx(sk);
1212 return sk;
1214 EXPORT_SYMBOL(sk_alloc);
1216 static void __sk_free(struct sock *sk)
1218 struct sk_filter *filter;
1220 if (sk->sk_destruct)
1221 sk->sk_destruct(sk);
1223 filter = rcu_dereference_check(sk->sk_filter,
1224 atomic_read(&sk->sk_wmem_alloc) == 0);
1225 if (filter) {
1226 sk_filter_uncharge(sk, filter);
1227 RCU_INIT_POINTER(sk->sk_filter, NULL);
1230 sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP);
1232 if (atomic_read(&sk->sk_omem_alloc))
1233 printk(KERN_DEBUG "%s: optmem leakage (%d bytes) detected.\n",
1234 __func__, atomic_read(&sk->sk_omem_alloc));
1236 if (sk->sk_peer_cred)
1237 put_cred(sk->sk_peer_cred);
1238 put_pid(sk->sk_peer_pid);
1239 put_net(sock_net(sk));
1240 sk_prot_free(sk->sk_prot_creator, sk);
1243 void sk_free(struct sock *sk)
1246 * We subtract one from sk_wmem_alloc and can know if
1247 * some packets are still in some tx queue.
1248 * If not null, sock_wfree() will call __sk_free(sk) later
1250 if (atomic_dec_and_test(&sk->sk_wmem_alloc))
1251 __sk_free(sk);
1253 EXPORT_SYMBOL(sk_free);
1256 * Last sock_put should drop reference to sk->sk_net. It has already
1257 * been dropped in sk_change_net. Taking reference to stopping namespace
1258 * is not an option.
1259 * Take reference to a socket to remove it from hash _alive_ and after that
1260 * destroy it in the context of init_net.
1262 void sk_release_kernel(struct sock *sk)
1264 if (sk == NULL || sk->sk_socket == NULL)
1265 return;
1267 sock_hold(sk);
1268 sock_release(sk->sk_socket);
1269 release_net(sock_net(sk));
1270 sock_net_set(sk, get_net(&init_net));
1271 sock_put(sk);
1273 EXPORT_SYMBOL(sk_release_kernel);
1275 static void sk_update_clone(const struct sock *sk, struct sock *newsk)
1277 if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1278 sock_update_memcg(newsk);
1282 * sk_clone_lock - clone a socket, and lock its clone
1283 * @sk: the socket to clone
1284 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1286 * Caller must unlock socket even in error path (bh_unlock_sock(newsk))
1288 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority)
1290 struct sock *newsk;
1292 newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family);
1293 if (newsk != NULL) {
1294 struct sk_filter *filter;
1296 sock_copy(newsk, sk);
1298 /* SANITY */
1299 get_net(sock_net(newsk));
1300 sk_node_init(&newsk->sk_node);
1301 sock_lock_init(newsk);
1302 bh_lock_sock(newsk);
1303 newsk->sk_backlog.head = newsk->sk_backlog.tail = NULL;
1304 newsk->sk_backlog.len = 0;
1306 atomic_set(&newsk->sk_rmem_alloc, 0);
1308 * sk_wmem_alloc set to one (see sk_free() and sock_wfree())
1310 atomic_set(&newsk->sk_wmem_alloc, 1);
1311 atomic_set(&newsk->sk_omem_alloc, 0);
1312 skb_queue_head_init(&newsk->sk_receive_queue);
1313 skb_queue_head_init(&newsk->sk_write_queue);
1314 #ifdef CONFIG_NET_DMA
1315 skb_queue_head_init(&newsk->sk_async_wait_queue);
1316 #endif
1318 spin_lock_init(&newsk->sk_dst_lock);
1319 rwlock_init(&newsk->sk_callback_lock);
1320 lockdep_set_class_and_name(&newsk->sk_callback_lock,
1321 af_callback_keys + newsk->sk_family,
1322 af_family_clock_key_strings[newsk->sk_family]);
1324 newsk->sk_dst_cache = NULL;
1325 newsk->sk_wmem_queued = 0;
1326 newsk->sk_forward_alloc = 0;
1327 newsk->sk_send_head = NULL;
1328 newsk->sk_userlocks = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
1330 sock_reset_flag(newsk, SOCK_DONE);
1331 skb_queue_head_init(&newsk->sk_error_queue);
1333 filter = rcu_dereference_protected(newsk->sk_filter, 1);
1334 if (filter != NULL)
1335 sk_filter_charge(newsk, filter);
1337 if (unlikely(xfrm_sk_clone_policy(newsk))) {
1338 /* It is still raw copy of parent, so invalidate
1339 * destructor and make plain sk_free() */
1340 newsk->sk_destruct = NULL;
1341 bh_unlock_sock(newsk);
1342 sk_free(newsk);
1343 newsk = NULL;
1344 goto out;
1347 newsk->sk_err = 0;
1348 newsk->sk_priority = 0;
1350 * Before updating sk_refcnt, we must commit prior changes to memory
1351 * (Documentation/RCU/rculist_nulls.txt for details)
1353 smp_wmb();
1354 atomic_set(&newsk->sk_refcnt, 2);
1357 * Increment the counter in the same struct proto as the master
1358 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1359 * is the same as sk->sk_prot->socks, as this field was copied
1360 * with memcpy).
1362 * This _changes_ the previous behaviour, where
1363 * tcp_create_openreq_child always was incrementing the
1364 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1365 * to be taken into account in all callers. -acme
1367 sk_refcnt_debug_inc(newsk);
1368 sk_set_socket(newsk, NULL);
1369 newsk->sk_wq = NULL;
1371 sk_update_clone(sk, newsk);
1373 if (newsk->sk_prot->sockets_allocated)
1374 sk_sockets_allocated_inc(newsk);
1376 if (newsk->sk_flags & SK_FLAGS_TIMESTAMP)
1377 net_enable_timestamp();
1379 out:
1380 return newsk;
1382 EXPORT_SYMBOL_GPL(sk_clone_lock);
1384 void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
1386 __sk_dst_set(sk, dst);
1387 sk->sk_route_caps = dst->dev->features;
1388 if (sk->sk_route_caps & NETIF_F_GSO)
1389 sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
1390 sk->sk_route_caps &= ~sk->sk_route_nocaps;
1391 if (sk_can_gso(sk)) {
1392 if (dst->header_len) {
1393 sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1394 } else {
1395 sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
1396 sk->sk_gso_max_size = dst->dev->gso_max_size;
1400 EXPORT_SYMBOL_GPL(sk_setup_caps);
1402 void __init sk_init(void)
1404 if (totalram_pages <= 4096) {
1405 sysctl_wmem_max = 32767;
1406 sysctl_rmem_max = 32767;
1407 sysctl_wmem_default = 32767;
1408 sysctl_rmem_default = 32767;
1409 } else if (totalram_pages >= 131072) {
1410 sysctl_wmem_max = 131071;
1411 sysctl_rmem_max = 131071;
1416 * Simple resource managers for sockets.
1421 * Write buffer destructor automatically called from kfree_skb.
1423 void sock_wfree(struct sk_buff *skb)
1425 struct sock *sk = skb->sk;
1426 unsigned int len = skb->truesize;
1428 if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
1430 * Keep a reference on sk_wmem_alloc, this will be released
1431 * after sk_write_space() call
1433 atomic_sub(len - 1, &sk->sk_wmem_alloc);
1434 sk->sk_write_space(sk);
1435 len = 1;
1438 * if sk_wmem_alloc reaches 0, we must finish what sk_free()
1439 * could not do because of in-flight packets
1441 if (atomic_sub_and_test(len, &sk->sk_wmem_alloc))
1442 __sk_free(sk);
1444 EXPORT_SYMBOL(sock_wfree);
1447 * Read buffer destructor automatically called from kfree_skb.
1449 void sock_rfree(struct sk_buff *skb)
1451 struct sock *sk = skb->sk;
1452 unsigned int len = skb->truesize;
1454 atomic_sub(len, &sk->sk_rmem_alloc);
1455 sk_mem_uncharge(sk, len);
1457 EXPORT_SYMBOL(sock_rfree);
1460 int sock_i_uid(struct sock *sk)
1462 int uid;
1464 read_lock_bh(&sk->sk_callback_lock);
1465 uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : 0;
1466 read_unlock_bh(&sk->sk_callback_lock);
1467 return uid;
1469 EXPORT_SYMBOL(sock_i_uid);
1471 unsigned long sock_i_ino(struct sock *sk)
1473 unsigned long ino;
1475 read_lock_bh(&sk->sk_callback_lock);
1476 ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
1477 read_unlock_bh(&sk->sk_callback_lock);
1478 return ino;
1480 EXPORT_SYMBOL(sock_i_ino);
1483 * Allocate a skb from the socket's send buffer.
1485 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1486 gfp_t priority)
1488 if (force || atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1489 struct sk_buff *skb = alloc_skb(size, priority);
1490 if (skb) {
1491 skb_set_owner_w(skb, sk);
1492 return skb;
1495 return NULL;
1497 EXPORT_SYMBOL(sock_wmalloc);
1500 * Allocate a skb from the socket's receive buffer.
1502 struct sk_buff *sock_rmalloc(struct sock *sk, unsigned long size, int force,
1503 gfp_t priority)
1505 if (force || atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf) {
1506 struct sk_buff *skb = alloc_skb(size, priority);
1507 if (skb) {
1508 skb_set_owner_r(skb, sk);
1509 return skb;
1512 return NULL;
1516 * Allocate a memory block from the socket's option memory buffer.
1518 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
1520 if ((unsigned)size <= sysctl_optmem_max &&
1521 atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
1522 void *mem;
1523 /* First do the add, to avoid the race if kmalloc
1524 * might sleep.
1526 atomic_add(size, &sk->sk_omem_alloc);
1527 mem = kmalloc(size, priority);
1528 if (mem)
1529 return mem;
1530 atomic_sub(size, &sk->sk_omem_alloc);
1532 return NULL;
1534 EXPORT_SYMBOL(sock_kmalloc);
1537 * Free an option memory block.
1539 void sock_kfree_s(struct sock *sk, void *mem, int size)
1541 kfree(mem);
1542 atomic_sub(size, &sk->sk_omem_alloc);
1544 EXPORT_SYMBOL(sock_kfree_s);
1546 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
1547 I think, these locks should be removed for datagram sockets.
1549 static long sock_wait_for_wmem(struct sock *sk, long timeo)
1551 DEFINE_WAIT(wait);
1553 clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1554 for (;;) {
1555 if (!timeo)
1556 break;
1557 if (signal_pending(current))
1558 break;
1559 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1560 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1561 if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf)
1562 break;
1563 if (sk->sk_shutdown & SEND_SHUTDOWN)
1564 break;
1565 if (sk->sk_err)
1566 break;
1567 timeo = schedule_timeout(timeo);
1569 finish_wait(sk_sleep(sk), &wait);
1570 return timeo;
1575 * Generic send/receive buffer handlers
1578 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1579 unsigned long data_len, int noblock,
1580 int *errcode)
1582 struct sk_buff *skb;
1583 gfp_t gfp_mask;
1584 long timeo;
1585 int err;
1587 gfp_mask = sk->sk_allocation;
1588 if (gfp_mask & __GFP_WAIT)
1589 gfp_mask |= __GFP_REPEAT;
1591 timeo = sock_sndtimeo(sk, noblock);
1592 while (1) {
1593 err = sock_error(sk);
1594 if (err != 0)
1595 goto failure;
1597 err = -EPIPE;
1598 if (sk->sk_shutdown & SEND_SHUTDOWN)
1599 goto failure;
1601 if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1602 skb = alloc_skb(header_len, gfp_mask);
1603 if (skb) {
1604 int npages;
1605 int i;
1607 /* No pages, we're done... */
1608 if (!data_len)
1609 break;
1611 npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
1612 skb->truesize += data_len;
1613 skb_shinfo(skb)->nr_frags = npages;
1614 for (i = 0; i < npages; i++) {
1615 struct page *page;
1617 page = alloc_pages(sk->sk_allocation, 0);
1618 if (!page) {
1619 err = -ENOBUFS;
1620 skb_shinfo(skb)->nr_frags = i;
1621 kfree_skb(skb);
1622 goto failure;
1625 __skb_fill_page_desc(skb, i,
1626 page, 0,
1627 (data_len >= PAGE_SIZE ?
1628 PAGE_SIZE :
1629 data_len));
1630 data_len -= PAGE_SIZE;
1633 /* Full success... */
1634 break;
1636 err = -ENOBUFS;
1637 goto failure;
1639 set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1640 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1641 err = -EAGAIN;
1642 if (!timeo)
1643 goto failure;
1644 if (signal_pending(current))
1645 goto interrupted;
1646 timeo = sock_wait_for_wmem(sk, timeo);
1649 skb_set_owner_w(skb, sk);
1650 return skb;
1652 interrupted:
1653 err = sock_intr_errno(timeo);
1654 failure:
1655 *errcode = err;
1656 return NULL;
1658 EXPORT_SYMBOL(sock_alloc_send_pskb);
1660 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1661 int noblock, int *errcode)
1663 return sock_alloc_send_pskb(sk, size, 0, noblock, errcode);
1665 EXPORT_SYMBOL(sock_alloc_send_skb);
1667 static void __lock_sock(struct sock *sk)
1668 __releases(&sk->sk_lock.slock)
1669 __acquires(&sk->sk_lock.slock)
1671 DEFINE_WAIT(wait);
1673 for (;;) {
1674 prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
1675 TASK_UNINTERRUPTIBLE);
1676 spin_unlock_bh(&sk->sk_lock.slock);
1677 schedule();
1678 spin_lock_bh(&sk->sk_lock.slock);
1679 if (!sock_owned_by_user(sk))
1680 break;
1682 finish_wait(&sk->sk_lock.wq, &wait);
1685 static void __release_sock(struct sock *sk)
1686 __releases(&sk->sk_lock.slock)
1687 __acquires(&sk->sk_lock.slock)
1689 struct sk_buff *skb = sk->sk_backlog.head;
1691 do {
1692 sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
1693 bh_unlock_sock(sk);
1695 do {
1696 struct sk_buff *next = skb->next;
1698 WARN_ON_ONCE(skb_dst_is_noref(skb));
1699 skb->next = NULL;
1700 sk_backlog_rcv(sk, skb);
1703 * We are in process context here with softirqs
1704 * disabled, use cond_resched_softirq() to preempt.
1705 * This is safe to do because we've taken the backlog
1706 * queue private:
1708 cond_resched_softirq();
1710 skb = next;
1711 } while (skb != NULL);
1713 bh_lock_sock(sk);
1714 } while ((skb = sk->sk_backlog.head) != NULL);
1717 * Doing the zeroing here guarantee we can not loop forever
1718 * while a wild producer attempts to flood us.
1720 sk->sk_backlog.len = 0;
1724 * sk_wait_data - wait for data to arrive at sk_receive_queue
1725 * @sk: sock to wait on
1726 * @timeo: for how long
1728 * Now socket state including sk->sk_err is changed only under lock,
1729 * hence we may omit checks after joining wait queue.
1730 * We check receive queue before schedule() only as optimization;
1731 * it is very likely that release_sock() added new data.
1733 int sk_wait_data(struct sock *sk, long *timeo)
1735 int rc;
1736 DEFINE_WAIT(wait);
1738 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1739 set_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1740 rc = sk_wait_event(sk, timeo, !skb_queue_empty(&sk->sk_receive_queue));
1741 clear_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1742 finish_wait(sk_sleep(sk), &wait);
1743 return rc;
1745 EXPORT_SYMBOL(sk_wait_data);
1748 * __sk_mem_schedule - increase sk_forward_alloc and memory_allocated
1749 * @sk: socket
1750 * @size: memory size to allocate
1751 * @kind: allocation type
1753 * If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
1754 * rmem allocation. This function assumes that protocols which have
1755 * memory_pressure use sk_wmem_queued as write buffer accounting.
1757 int __sk_mem_schedule(struct sock *sk, int size, int kind)
1759 struct proto *prot = sk->sk_prot;
1760 int amt = sk_mem_pages(size);
1761 long allocated;
1762 int parent_status = UNDER_LIMIT;
1764 sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
1766 allocated = sk_memory_allocated_add(sk, amt, &parent_status);
1768 /* Under limit. */
1769 if (parent_status == UNDER_LIMIT &&
1770 allocated <= sk_prot_mem_limits(sk, 0)) {
1771 sk_leave_memory_pressure(sk);
1772 return 1;
1775 /* Under pressure. (we or our parents) */
1776 if ((parent_status > SOFT_LIMIT) ||
1777 allocated > sk_prot_mem_limits(sk, 1))
1778 sk_enter_memory_pressure(sk);
1780 /* Over hard limit (we or our parents) */
1781 if ((parent_status == OVER_LIMIT) ||
1782 (allocated > sk_prot_mem_limits(sk, 2)))
1783 goto suppress_allocation;
1785 /* guarantee minimum buffer size under pressure */
1786 if (kind == SK_MEM_RECV) {
1787 if (atomic_read(&sk->sk_rmem_alloc) < prot->sysctl_rmem[0])
1788 return 1;
1790 } else { /* SK_MEM_SEND */
1791 if (sk->sk_type == SOCK_STREAM) {
1792 if (sk->sk_wmem_queued < prot->sysctl_wmem[0])
1793 return 1;
1794 } else if (atomic_read(&sk->sk_wmem_alloc) <
1795 prot->sysctl_wmem[0])
1796 return 1;
1799 if (sk_has_memory_pressure(sk)) {
1800 int alloc;
1802 if (!sk_under_memory_pressure(sk))
1803 return 1;
1804 alloc = sk_sockets_allocated_read_positive(sk);
1805 if (sk_prot_mem_limits(sk, 2) > alloc *
1806 sk_mem_pages(sk->sk_wmem_queued +
1807 atomic_read(&sk->sk_rmem_alloc) +
1808 sk->sk_forward_alloc))
1809 return 1;
1812 suppress_allocation:
1814 if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
1815 sk_stream_moderate_sndbuf(sk);
1817 /* Fail only if socket is _under_ its sndbuf.
1818 * In this case we cannot block, so that we have to fail.
1820 if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
1821 return 1;
1824 trace_sock_exceed_buf_limit(sk, prot, allocated);
1826 /* Alas. Undo changes. */
1827 sk->sk_forward_alloc -= amt * SK_MEM_QUANTUM;
1829 sk_memory_allocated_sub(sk, amt, parent_status);
1831 return 0;
1833 EXPORT_SYMBOL(__sk_mem_schedule);
1836 * __sk_reclaim - reclaim memory_allocated
1837 * @sk: socket
1839 void __sk_mem_reclaim(struct sock *sk)
1841 sk_memory_allocated_sub(sk,
1842 sk->sk_forward_alloc >> SK_MEM_QUANTUM_SHIFT, 0);
1843 sk->sk_forward_alloc &= SK_MEM_QUANTUM - 1;
1845 if (sk_under_memory_pressure(sk) &&
1846 (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)))
1847 sk_leave_memory_pressure(sk);
1849 EXPORT_SYMBOL(__sk_mem_reclaim);
1853 * Set of default routines for initialising struct proto_ops when
1854 * the protocol does not support a particular function. In certain
1855 * cases where it makes no sense for a protocol to have a "do nothing"
1856 * function, some default processing is provided.
1859 int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
1861 return -EOPNOTSUPP;
1863 EXPORT_SYMBOL(sock_no_bind);
1865 int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
1866 int len, int flags)
1868 return -EOPNOTSUPP;
1870 EXPORT_SYMBOL(sock_no_connect);
1872 int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
1874 return -EOPNOTSUPP;
1876 EXPORT_SYMBOL(sock_no_socketpair);
1878 int sock_no_accept(struct socket *sock, struct socket *newsock, int flags)
1880 return -EOPNOTSUPP;
1882 EXPORT_SYMBOL(sock_no_accept);
1884 int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
1885 int *len, int peer)
1887 return -EOPNOTSUPP;
1889 EXPORT_SYMBOL(sock_no_getname);
1891 unsigned int sock_no_poll(struct file *file, struct socket *sock, poll_table *pt)
1893 return 0;
1895 EXPORT_SYMBOL(sock_no_poll);
1897 int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
1899 return -EOPNOTSUPP;
1901 EXPORT_SYMBOL(sock_no_ioctl);
1903 int sock_no_listen(struct socket *sock, int backlog)
1905 return -EOPNOTSUPP;
1907 EXPORT_SYMBOL(sock_no_listen);
1909 int sock_no_shutdown(struct socket *sock, int how)
1911 return -EOPNOTSUPP;
1913 EXPORT_SYMBOL(sock_no_shutdown);
1915 int sock_no_setsockopt(struct socket *sock, int level, int optname,
1916 char __user *optval, unsigned int optlen)
1918 return -EOPNOTSUPP;
1920 EXPORT_SYMBOL(sock_no_setsockopt);
1922 int sock_no_getsockopt(struct socket *sock, int level, int optname,
1923 char __user *optval, int __user *optlen)
1925 return -EOPNOTSUPP;
1927 EXPORT_SYMBOL(sock_no_getsockopt);
1929 int sock_no_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
1930 size_t len)
1932 return -EOPNOTSUPP;
1934 EXPORT_SYMBOL(sock_no_sendmsg);
1936 int sock_no_recvmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
1937 size_t len, int flags)
1939 return -EOPNOTSUPP;
1941 EXPORT_SYMBOL(sock_no_recvmsg);
1943 int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
1945 /* Mirror missing mmap method error code */
1946 return -ENODEV;
1948 EXPORT_SYMBOL(sock_no_mmap);
1950 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
1952 ssize_t res;
1953 struct msghdr msg = {.msg_flags = flags};
1954 struct kvec iov;
1955 char *kaddr = kmap(page);
1956 iov.iov_base = kaddr + offset;
1957 iov.iov_len = size;
1958 res = kernel_sendmsg(sock, &msg, &iov, 1, size);
1959 kunmap(page);
1960 return res;
1962 EXPORT_SYMBOL(sock_no_sendpage);
1965 * Default Socket Callbacks
1968 static void sock_def_wakeup(struct sock *sk)
1970 struct socket_wq *wq;
1972 rcu_read_lock();
1973 wq = rcu_dereference(sk->sk_wq);
1974 if (wq_has_sleeper(wq))
1975 wake_up_interruptible_all(&wq->wait);
1976 rcu_read_unlock();
1979 static void sock_def_error_report(struct sock *sk)
1981 struct socket_wq *wq;
1983 rcu_read_lock();
1984 wq = rcu_dereference(sk->sk_wq);
1985 if (wq_has_sleeper(wq))
1986 wake_up_interruptible_poll(&wq->wait, POLLERR);
1987 sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
1988 rcu_read_unlock();
1991 static void sock_def_readable(struct sock *sk, int len)
1993 struct socket_wq *wq;
1995 rcu_read_lock();
1996 wq = rcu_dereference(sk->sk_wq);
1997 if (wq_has_sleeper(wq))
1998 wake_up_interruptible_sync_poll(&wq->wait, POLLIN | POLLPRI |
1999 POLLRDNORM | POLLRDBAND);
2000 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
2001 rcu_read_unlock();
2004 static void sock_def_write_space(struct sock *sk)
2006 struct socket_wq *wq;
2008 rcu_read_lock();
2010 /* Do not wake up a writer until he can make "significant"
2011 * progress. --DaveM
2013 if ((atomic_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) {
2014 wq = rcu_dereference(sk->sk_wq);
2015 if (wq_has_sleeper(wq))
2016 wake_up_interruptible_sync_poll(&wq->wait, POLLOUT |
2017 POLLWRNORM | POLLWRBAND);
2019 /* Should agree with poll, otherwise some programs break */
2020 if (sock_writeable(sk))
2021 sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
2024 rcu_read_unlock();
2027 static void sock_def_destruct(struct sock *sk)
2029 kfree(sk->sk_protinfo);
2032 void sk_send_sigurg(struct sock *sk)
2034 if (sk->sk_socket && sk->sk_socket->file)
2035 if (send_sigurg(&sk->sk_socket->file->f_owner))
2036 sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
2038 EXPORT_SYMBOL(sk_send_sigurg);
2040 void sk_reset_timer(struct sock *sk, struct timer_list* timer,
2041 unsigned long expires)
2043 if (!mod_timer(timer, expires))
2044 sock_hold(sk);
2046 EXPORT_SYMBOL(sk_reset_timer);
2048 void sk_stop_timer(struct sock *sk, struct timer_list* timer)
2050 if (timer_pending(timer) && del_timer(timer))
2051 __sock_put(sk);
2053 EXPORT_SYMBOL(sk_stop_timer);
2055 void sock_init_data(struct socket *sock, struct sock *sk)
2057 skb_queue_head_init(&sk->sk_receive_queue);
2058 skb_queue_head_init(&sk->sk_write_queue);
2059 skb_queue_head_init(&sk->sk_error_queue);
2060 #ifdef CONFIG_NET_DMA
2061 skb_queue_head_init(&sk->sk_async_wait_queue);
2062 #endif
2064 sk->sk_send_head = NULL;
2066 init_timer(&sk->sk_timer);
2068 sk->sk_allocation = GFP_KERNEL;
2069 sk->sk_rcvbuf = sysctl_rmem_default;
2070 sk->sk_sndbuf = sysctl_wmem_default;
2071 sk->sk_state = TCP_CLOSE;
2072 sk_set_socket(sk, sock);
2074 sock_set_flag(sk, SOCK_ZAPPED);
2076 if (sock) {
2077 sk->sk_type = sock->type;
2078 sk->sk_wq = sock->wq;
2079 sock->sk = sk;
2080 } else
2081 sk->sk_wq = NULL;
2083 spin_lock_init(&sk->sk_dst_lock);
2084 rwlock_init(&sk->sk_callback_lock);
2085 lockdep_set_class_and_name(&sk->sk_callback_lock,
2086 af_callback_keys + sk->sk_family,
2087 af_family_clock_key_strings[sk->sk_family]);
2089 sk->sk_state_change = sock_def_wakeup;
2090 sk->sk_data_ready = sock_def_readable;
2091 sk->sk_write_space = sock_def_write_space;
2092 sk->sk_error_report = sock_def_error_report;
2093 sk->sk_destruct = sock_def_destruct;
2095 sk->sk_sndmsg_page = NULL;
2096 sk->sk_sndmsg_off = 0;
2098 sk->sk_peer_pid = NULL;
2099 sk->sk_peer_cred = NULL;
2100 sk->sk_write_pending = 0;
2101 sk->sk_rcvlowat = 1;
2102 sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT;
2103 sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
2105 sk->sk_stamp = ktime_set(-1L, 0);
2108 * Before updating sk_refcnt, we must commit prior changes to memory
2109 * (Documentation/RCU/rculist_nulls.txt for details)
2111 smp_wmb();
2112 atomic_set(&sk->sk_refcnt, 1);
2113 atomic_set(&sk->sk_drops, 0);
2115 EXPORT_SYMBOL(sock_init_data);
2117 void lock_sock_nested(struct sock *sk, int subclass)
2119 might_sleep();
2120 spin_lock_bh(&sk->sk_lock.slock);
2121 if (sk->sk_lock.owned)
2122 __lock_sock(sk);
2123 sk->sk_lock.owned = 1;
2124 spin_unlock(&sk->sk_lock.slock);
2126 * The sk_lock has mutex_lock() semantics here:
2128 mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
2129 local_bh_enable();
2131 EXPORT_SYMBOL(lock_sock_nested);
2133 void release_sock(struct sock *sk)
2136 * The sk_lock has mutex_unlock() semantics:
2138 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
2140 spin_lock_bh(&sk->sk_lock.slock);
2141 if (sk->sk_backlog.tail)
2142 __release_sock(sk);
2143 sk->sk_lock.owned = 0;
2144 if (waitqueue_active(&sk->sk_lock.wq))
2145 wake_up(&sk->sk_lock.wq);
2146 spin_unlock_bh(&sk->sk_lock.slock);
2148 EXPORT_SYMBOL(release_sock);
2151 * lock_sock_fast - fast version of lock_sock
2152 * @sk: socket
2154 * This version should be used for very small section, where process wont block
2155 * return false if fast path is taken
2156 * sk_lock.slock locked, owned = 0, BH disabled
2157 * return true if slow path is taken
2158 * sk_lock.slock unlocked, owned = 1, BH enabled
2160 bool lock_sock_fast(struct sock *sk)
2162 might_sleep();
2163 spin_lock_bh(&sk->sk_lock.slock);
2165 if (!sk->sk_lock.owned)
2167 * Note : We must disable BH
2169 return false;
2171 __lock_sock(sk);
2172 sk->sk_lock.owned = 1;
2173 spin_unlock(&sk->sk_lock.slock);
2175 * The sk_lock has mutex_lock() semantics here:
2177 mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
2178 local_bh_enable();
2179 return true;
2181 EXPORT_SYMBOL(lock_sock_fast);
2183 int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp)
2185 struct timeval tv;
2186 if (!sock_flag(sk, SOCK_TIMESTAMP))
2187 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2188 tv = ktime_to_timeval(sk->sk_stamp);
2189 if (tv.tv_sec == -1)
2190 return -ENOENT;
2191 if (tv.tv_sec == 0) {
2192 sk->sk_stamp = ktime_get_real();
2193 tv = ktime_to_timeval(sk->sk_stamp);
2195 return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0;
2197 EXPORT_SYMBOL(sock_get_timestamp);
2199 int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp)
2201 struct timespec ts;
2202 if (!sock_flag(sk, SOCK_TIMESTAMP))
2203 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2204 ts = ktime_to_timespec(sk->sk_stamp);
2205 if (ts.tv_sec == -1)
2206 return -ENOENT;
2207 if (ts.tv_sec == 0) {
2208 sk->sk_stamp = ktime_get_real();
2209 ts = ktime_to_timespec(sk->sk_stamp);
2211 return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0;
2213 EXPORT_SYMBOL(sock_get_timestampns);
2215 void sock_enable_timestamp(struct sock *sk, int flag)
2217 if (!sock_flag(sk, flag)) {
2218 unsigned long previous_flags = sk->sk_flags;
2220 sock_set_flag(sk, flag);
2222 * we just set one of the two flags which require net
2223 * time stamping, but time stamping might have been on
2224 * already because of the other one
2226 if (!(previous_flags & SK_FLAGS_TIMESTAMP))
2227 net_enable_timestamp();
2232 * Get a socket option on an socket.
2234 * FIX: POSIX 1003.1g is very ambiguous here. It states that
2235 * asynchronous errors should be reported by getsockopt. We assume
2236 * this means if you specify SO_ERROR (otherwise whats the point of it).
2238 int sock_common_getsockopt(struct socket *sock, int level, int optname,
2239 char __user *optval, int __user *optlen)
2241 struct sock *sk = sock->sk;
2243 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2245 EXPORT_SYMBOL(sock_common_getsockopt);
2247 #ifdef CONFIG_COMPAT
2248 int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
2249 char __user *optval, int __user *optlen)
2251 struct sock *sk = sock->sk;
2253 if (sk->sk_prot->compat_getsockopt != NULL)
2254 return sk->sk_prot->compat_getsockopt(sk, level, optname,
2255 optval, optlen);
2256 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2258 EXPORT_SYMBOL(compat_sock_common_getsockopt);
2259 #endif
2261 int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
2262 struct msghdr *msg, size_t size, int flags)
2264 struct sock *sk = sock->sk;
2265 int addr_len = 0;
2266 int err;
2268 err = sk->sk_prot->recvmsg(iocb, sk, msg, size, flags & MSG_DONTWAIT,
2269 flags & ~MSG_DONTWAIT, &addr_len);
2270 if (err >= 0)
2271 msg->msg_namelen = addr_len;
2272 return err;
2274 EXPORT_SYMBOL(sock_common_recvmsg);
2277 * Set socket options on an inet socket.
2279 int sock_common_setsockopt(struct socket *sock, int level, int optname,
2280 char __user *optval, unsigned int optlen)
2282 struct sock *sk = sock->sk;
2284 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2286 EXPORT_SYMBOL(sock_common_setsockopt);
2288 #ifdef CONFIG_COMPAT
2289 int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
2290 char __user *optval, unsigned int optlen)
2292 struct sock *sk = sock->sk;
2294 if (sk->sk_prot->compat_setsockopt != NULL)
2295 return sk->sk_prot->compat_setsockopt(sk, level, optname,
2296 optval, optlen);
2297 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2299 EXPORT_SYMBOL(compat_sock_common_setsockopt);
2300 #endif
2302 void sk_common_release(struct sock *sk)
2304 if (sk->sk_prot->destroy)
2305 sk->sk_prot->destroy(sk);
2308 * Observation: when sock_common_release is called, processes have
2309 * no access to socket. But net still has.
2310 * Step one, detach it from networking:
2312 * A. Remove from hash tables.
2315 sk->sk_prot->unhash(sk);
2318 * In this point socket cannot receive new packets, but it is possible
2319 * that some packets are in flight because some CPU runs receiver and
2320 * did hash table lookup before we unhashed socket. They will achieve
2321 * receive queue and will be purged by socket destructor.
2323 * Also we still have packets pending on receive queue and probably,
2324 * our own packets waiting in device queues. sock_destroy will drain
2325 * receive queue, but transmitted packets will delay socket destruction
2326 * until the last reference will be released.
2329 sock_orphan(sk);
2331 xfrm_sk_free_policy(sk);
2333 sk_refcnt_debug_release(sk);
2334 sock_put(sk);
2336 EXPORT_SYMBOL(sk_common_release);
2338 #ifdef CONFIG_PROC_FS
2339 #define PROTO_INUSE_NR 64 /* should be enough for the first time */
2340 struct prot_inuse {
2341 int val[PROTO_INUSE_NR];
2344 static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
2346 #ifdef CONFIG_NET_NS
2347 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2349 __this_cpu_add(net->core.inuse->val[prot->inuse_idx], val);
2351 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2353 int sock_prot_inuse_get(struct net *net, struct proto *prot)
2355 int cpu, idx = prot->inuse_idx;
2356 int res = 0;
2358 for_each_possible_cpu(cpu)
2359 res += per_cpu_ptr(net->core.inuse, cpu)->val[idx];
2361 return res >= 0 ? res : 0;
2363 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2365 static int __net_init sock_inuse_init_net(struct net *net)
2367 net->core.inuse = alloc_percpu(struct prot_inuse);
2368 return net->core.inuse ? 0 : -ENOMEM;
2371 static void __net_exit sock_inuse_exit_net(struct net *net)
2373 free_percpu(net->core.inuse);
2376 static struct pernet_operations net_inuse_ops = {
2377 .init = sock_inuse_init_net,
2378 .exit = sock_inuse_exit_net,
2381 static __init int net_inuse_init(void)
2383 if (register_pernet_subsys(&net_inuse_ops))
2384 panic("Cannot initialize net inuse counters");
2386 return 0;
2389 core_initcall(net_inuse_init);
2390 #else
2391 static DEFINE_PER_CPU(struct prot_inuse, prot_inuse);
2393 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2395 __this_cpu_add(prot_inuse.val[prot->inuse_idx], val);
2397 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2399 int sock_prot_inuse_get(struct net *net, struct proto *prot)
2401 int cpu, idx = prot->inuse_idx;
2402 int res = 0;
2404 for_each_possible_cpu(cpu)
2405 res += per_cpu(prot_inuse, cpu).val[idx];
2407 return res >= 0 ? res : 0;
2409 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2410 #endif
2412 static void assign_proto_idx(struct proto *prot)
2414 prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
2416 if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
2417 printk(KERN_ERR "PROTO_INUSE_NR exhausted\n");
2418 return;
2421 set_bit(prot->inuse_idx, proto_inuse_idx);
2424 static void release_proto_idx(struct proto *prot)
2426 if (prot->inuse_idx != PROTO_INUSE_NR - 1)
2427 clear_bit(prot->inuse_idx, proto_inuse_idx);
2429 #else
2430 static inline void assign_proto_idx(struct proto *prot)
2434 static inline void release_proto_idx(struct proto *prot)
2437 #endif
2439 int proto_register(struct proto *prot, int alloc_slab)
2441 if (alloc_slab) {
2442 prot->slab = kmem_cache_create(prot->name, prot->obj_size, 0,
2443 SLAB_HWCACHE_ALIGN | prot->slab_flags,
2444 NULL);
2446 if (prot->slab == NULL) {
2447 printk(KERN_CRIT "%s: Can't create sock SLAB cache!\n",
2448 prot->name);
2449 goto out;
2452 if (prot->rsk_prot != NULL) {
2453 prot->rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s", prot->name);
2454 if (prot->rsk_prot->slab_name == NULL)
2455 goto out_free_sock_slab;
2457 prot->rsk_prot->slab = kmem_cache_create(prot->rsk_prot->slab_name,
2458 prot->rsk_prot->obj_size, 0,
2459 SLAB_HWCACHE_ALIGN, NULL);
2461 if (prot->rsk_prot->slab == NULL) {
2462 printk(KERN_CRIT "%s: Can't create request sock SLAB cache!\n",
2463 prot->name);
2464 goto out_free_request_sock_slab_name;
2468 if (prot->twsk_prot != NULL) {
2469 prot->twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", prot->name);
2471 if (prot->twsk_prot->twsk_slab_name == NULL)
2472 goto out_free_request_sock_slab;
2474 prot->twsk_prot->twsk_slab =
2475 kmem_cache_create(prot->twsk_prot->twsk_slab_name,
2476 prot->twsk_prot->twsk_obj_size,
2478 SLAB_HWCACHE_ALIGN |
2479 prot->slab_flags,
2480 NULL);
2481 if (prot->twsk_prot->twsk_slab == NULL)
2482 goto out_free_timewait_sock_slab_name;
2486 mutex_lock(&proto_list_mutex);
2487 list_add(&prot->node, &proto_list);
2488 assign_proto_idx(prot);
2489 mutex_unlock(&proto_list_mutex);
2490 return 0;
2492 out_free_timewait_sock_slab_name:
2493 kfree(prot->twsk_prot->twsk_slab_name);
2494 out_free_request_sock_slab:
2495 if (prot->rsk_prot && prot->rsk_prot->slab) {
2496 kmem_cache_destroy(prot->rsk_prot->slab);
2497 prot->rsk_prot->slab = NULL;
2499 out_free_request_sock_slab_name:
2500 if (prot->rsk_prot)
2501 kfree(prot->rsk_prot->slab_name);
2502 out_free_sock_slab:
2503 kmem_cache_destroy(prot->slab);
2504 prot->slab = NULL;
2505 out:
2506 return -ENOBUFS;
2508 EXPORT_SYMBOL(proto_register);
2510 void proto_unregister(struct proto *prot)
2512 mutex_lock(&proto_list_mutex);
2513 release_proto_idx(prot);
2514 list_del(&prot->node);
2515 mutex_unlock(&proto_list_mutex);
2517 if (prot->slab != NULL) {
2518 kmem_cache_destroy(prot->slab);
2519 prot->slab = NULL;
2522 if (prot->rsk_prot != NULL && prot->rsk_prot->slab != NULL) {
2523 kmem_cache_destroy(prot->rsk_prot->slab);
2524 kfree(prot->rsk_prot->slab_name);
2525 prot->rsk_prot->slab = NULL;
2528 if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
2529 kmem_cache_destroy(prot->twsk_prot->twsk_slab);
2530 kfree(prot->twsk_prot->twsk_slab_name);
2531 prot->twsk_prot->twsk_slab = NULL;
2534 EXPORT_SYMBOL(proto_unregister);
2536 #ifdef CONFIG_PROC_FS
2537 static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
2538 __acquires(proto_list_mutex)
2540 mutex_lock(&proto_list_mutex);
2541 return seq_list_start_head(&proto_list, *pos);
2544 static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2546 return seq_list_next(v, &proto_list, pos);
2549 static void proto_seq_stop(struct seq_file *seq, void *v)
2550 __releases(proto_list_mutex)
2552 mutex_unlock(&proto_list_mutex);
2555 static char proto_method_implemented(const void *method)
2557 return method == NULL ? 'n' : 'y';
2559 static long sock_prot_memory_allocated(struct proto *proto)
2561 return proto->memory_allocated != NULL ? proto_memory_allocated(proto): -1L;
2564 static char *sock_prot_memory_pressure(struct proto *proto)
2566 return proto->memory_pressure != NULL ?
2567 proto_memory_pressure(proto) ? "yes" : "no" : "NI";
2570 static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
2573 seq_printf(seq, "%-9s %4u %6d %6ld %-3s %6u %-3s %-10s "
2574 "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
2575 proto->name,
2576 proto->obj_size,
2577 sock_prot_inuse_get(seq_file_net(seq), proto),
2578 sock_prot_memory_allocated(proto),
2579 sock_prot_memory_pressure(proto),
2580 proto->max_header,
2581 proto->slab == NULL ? "no" : "yes",
2582 module_name(proto->owner),
2583 proto_method_implemented(proto->close),
2584 proto_method_implemented(proto->connect),
2585 proto_method_implemented(proto->disconnect),
2586 proto_method_implemented(proto->accept),
2587 proto_method_implemented(proto->ioctl),
2588 proto_method_implemented(proto->init),
2589 proto_method_implemented(proto->destroy),
2590 proto_method_implemented(proto->shutdown),
2591 proto_method_implemented(proto->setsockopt),
2592 proto_method_implemented(proto->getsockopt),
2593 proto_method_implemented(proto->sendmsg),
2594 proto_method_implemented(proto->recvmsg),
2595 proto_method_implemented(proto->sendpage),
2596 proto_method_implemented(proto->bind),
2597 proto_method_implemented(proto->backlog_rcv),
2598 proto_method_implemented(proto->hash),
2599 proto_method_implemented(proto->unhash),
2600 proto_method_implemented(proto->get_port),
2601 proto_method_implemented(proto->enter_memory_pressure));
2604 static int proto_seq_show(struct seq_file *seq, void *v)
2606 if (v == &proto_list)
2607 seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
2608 "protocol",
2609 "size",
2610 "sockets",
2611 "memory",
2612 "press",
2613 "maxhdr",
2614 "slab",
2615 "module",
2616 "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
2617 else
2618 proto_seq_printf(seq, list_entry(v, struct proto, node));
2619 return 0;
2622 static const struct seq_operations proto_seq_ops = {
2623 .start = proto_seq_start,
2624 .next = proto_seq_next,
2625 .stop = proto_seq_stop,
2626 .show = proto_seq_show,
2629 static int proto_seq_open(struct inode *inode, struct file *file)
2631 return seq_open_net(inode, file, &proto_seq_ops,
2632 sizeof(struct seq_net_private));
2635 static const struct file_operations proto_seq_fops = {
2636 .owner = THIS_MODULE,
2637 .open = proto_seq_open,
2638 .read = seq_read,
2639 .llseek = seq_lseek,
2640 .release = seq_release_net,
2643 static __net_init int proto_init_net(struct net *net)
2645 if (!proc_net_fops_create(net, "protocols", S_IRUGO, &proto_seq_fops))
2646 return -ENOMEM;
2648 return 0;
2651 static __net_exit void proto_exit_net(struct net *net)
2653 proc_net_remove(net, "protocols");
2657 static __net_initdata struct pernet_operations proto_net_ops = {
2658 .init = proto_init_net,
2659 .exit = proto_exit_net,
2662 static int __init proto_init(void)
2664 return register_pernet_subsys(&proto_net_ops);
2667 subsys_initcall(proto_init);
2669 #endif /* PROC_FS */