x86: memory corruption check - cleanup
[linux-2.6/libata-dev.git] / arch / x86 / mm / init_64.c
blob3e10054c57319c25626bd1f43bf830c11453b255
1 /*
2 * linux/arch/x86_64/mm/init.c
4 * Copyright (C) 1995 Linus Torvalds
5 * Copyright (C) 2000 Pavel Machek <pavel@suse.cz>
6 * Copyright (C) 2002,2003 Andi Kleen <ak@suse.de>
7 */
9 #include <linux/signal.h>
10 #include <linux/sched.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/string.h>
14 #include <linux/types.h>
15 #include <linux/ptrace.h>
16 #include <linux/mman.h>
17 #include <linux/mm.h>
18 #include <linux/swap.h>
19 #include <linux/smp.h>
20 #include <linux/init.h>
21 #include <linux/initrd.h>
22 #include <linux/pagemap.h>
23 #include <linux/bootmem.h>
24 #include <linux/proc_fs.h>
25 #include <linux/pci.h>
26 #include <linux/pfn.h>
27 #include <linux/poison.h>
28 #include <linux/dma-mapping.h>
29 #include <linux/module.h>
30 #include <linux/memory_hotplug.h>
31 #include <linux/nmi.h>
33 #include <asm/processor.h>
34 #include <asm/bios_ebda.h>
35 #include <asm/system.h>
36 #include <asm/uaccess.h>
37 #include <asm/pgtable.h>
38 #include <asm/pgalloc.h>
39 #include <asm/dma.h>
40 #include <asm/fixmap.h>
41 #include <asm/e820.h>
42 #include <asm/apic.h>
43 #include <asm/tlb.h>
44 #include <asm/mmu_context.h>
45 #include <asm/proto.h>
46 #include <asm/smp.h>
47 #include <asm/sections.h>
48 #include <asm/kdebug.h>
49 #include <asm/numa.h>
50 #include <asm/cacheflush.h>
53 * end_pfn only includes RAM, while max_pfn_mapped includes all e820 entries.
54 * The direct mapping extends to max_pfn_mapped, so that we can directly access
55 * apertures, ACPI and other tables without having to play with fixmaps.
57 unsigned long max_low_pfn_mapped;
58 unsigned long max_pfn_mapped;
60 static unsigned long dma_reserve __initdata;
62 DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
64 int direct_gbpages
65 #ifdef CONFIG_DIRECT_GBPAGES
66 = 1
67 #endif
70 static int __init parse_direct_gbpages_off(char *arg)
72 direct_gbpages = 0;
73 return 0;
75 early_param("nogbpages", parse_direct_gbpages_off);
77 static int __init parse_direct_gbpages_on(char *arg)
79 direct_gbpages = 1;
80 return 0;
82 early_param("gbpages", parse_direct_gbpages_on);
85 * NOTE: pagetable_init alloc all the fixmap pagetables contiguous on the
86 * physical space so we can cache the place of the first one and move
87 * around without checking the pgd every time.
90 int after_bootmem;
92 unsigned long __supported_pte_mask __read_mostly = ~0UL;
93 EXPORT_SYMBOL_GPL(__supported_pte_mask);
95 static int do_not_nx __cpuinitdata;
98 * noexec=on|off
99 * Control non-executable mappings for 64-bit processes.
101 * on Enable (default)
102 * off Disable
104 static int __init nonx_setup(char *str)
106 if (!str)
107 return -EINVAL;
108 if (!strncmp(str, "on", 2)) {
109 __supported_pte_mask |= _PAGE_NX;
110 do_not_nx = 0;
111 } else if (!strncmp(str, "off", 3)) {
112 do_not_nx = 1;
113 __supported_pte_mask &= ~_PAGE_NX;
115 return 0;
117 early_param("noexec", nonx_setup);
119 void __cpuinit check_efer(void)
121 unsigned long efer;
123 rdmsrl(MSR_EFER, efer);
124 if (!(efer & EFER_NX) || do_not_nx)
125 __supported_pte_mask &= ~_PAGE_NX;
128 int force_personality32;
131 * noexec32=on|off
132 * Control non executable heap for 32bit processes.
133 * To control the stack too use noexec=off
135 * on PROT_READ does not imply PROT_EXEC for 32-bit processes (default)
136 * off PROT_READ implies PROT_EXEC
138 static int __init nonx32_setup(char *str)
140 if (!strcmp(str, "on"))
141 force_personality32 &= ~READ_IMPLIES_EXEC;
142 else if (!strcmp(str, "off"))
143 force_personality32 |= READ_IMPLIES_EXEC;
144 return 1;
146 __setup("noexec32=", nonx32_setup);
149 * NOTE: This function is marked __ref because it calls __init function
150 * (alloc_bootmem_pages). It's safe to do it ONLY when after_bootmem == 0.
152 static __ref void *spp_getpage(void)
154 void *ptr;
156 if (after_bootmem)
157 ptr = (void *) get_zeroed_page(GFP_ATOMIC);
158 else
159 ptr = alloc_bootmem_pages(PAGE_SIZE);
161 if (!ptr || ((unsigned long)ptr & ~PAGE_MASK)) {
162 panic("set_pte_phys: cannot allocate page data %s\n",
163 after_bootmem ? "after bootmem" : "");
166 pr_debug("spp_getpage %p\n", ptr);
168 return ptr;
171 void
172 set_pte_vaddr_pud(pud_t *pud_page, unsigned long vaddr, pte_t new_pte)
174 pud_t *pud;
175 pmd_t *pmd;
176 pte_t *pte;
178 pud = pud_page + pud_index(vaddr);
179 if (pud_none(*pud)) {
180 pmd = (pmd_t *) spp_getpage();
181 pud_populate(&init_mm, pud, pmd);
182 if (pmd != pmd_offset(pud, 0)) {
183 printk(KERN_ERR "PAGETABLE BUG #01! %p <-> %p\n",
184 pmd, pmd_offset(pud, 0));
185 return;
188 pmd = pmd_offset(pud, vaddr);
189 if (pmd_none(*pmd)) {
190 pte = (pte_t *) spp_getpage();
191 pmd_populate_kernel(&init_mm, pmd, pte);
192 if (pte != pte_offset_kernel(pmd, 0)) {
193 printk(KERN_ERR "PAGETABLE BUG #02!\n");
194 return;
198 pte = pte_offset_kernel(pmd, vaddr);
199 if (!pte_none(*pte) && pte_val(new_pte) &&
200 pte_val(*pte) != (pte_val(new_pte) & __supported_pte_mask))
201 pte_ERROR(*pte);
202 set_pte(pte, new_pte);
205 * It's enough to flush this one mapping.
206 * (PGE mappings get flushed as well)
208 __flush_tlb_one(vaddr);
211 void
212 set_pte_vaddr(unsigned long vaddr, pte_t pteval)
214 pgd_t *pgd;
215 pud_t *pud_page;
217 pr_debug("set_pte_vaddr %lx to %lx\n", vaddr, native_pte_val(pteval));
219 pgd = pgd_offset_k(vaddr);
220 if (pgd_none(*pgd)) {
221 printk(KERN_ERR
222 "PGD FIXMAP MISSING, it should be setup in head.S!\n");
223 return;
225 pud_page = (pud_t*)pgd_page_vaddr(*pgd);
226 set_pte_vaddr_pud(pud_page, vaddr, pteval);
230 * Create large page table mappings for a range of physical addresses.
232 static void __init __init_extra_mapping(unsigned long phys, unsigned long size,
233 pgprot_t prot)
235 pgd_t *pgd;
236 pud_t *pud;
237 pmd_t *pmd;
239 BUG_ON((phys & ~PMD_MASK) || (size & ~PMD_MASK));
240 for (; size; phys += PMD_SIZE, size -= PMD_SIZE) {
241 pgd = pgd_offset_k((unsigned long)__va(phys));
242 if (pgd_none(*pgd)) {
243 pud = (pud_t *) spp_getpage();
244 set_pgd(pgd, __pgd(__pa(pud) | _KERNPG_TABLE |
245 _PAGE_USER));
247 pud = pud_offset(pgd, (unsigned long)__va(phys));
248 if (pud_none(*pud)) {
249 pmd = (pmd_t *) spp_getpage();
250 set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE |
251 _PAGE_USER));
253 pmd = pmd_offset(pud, phys);
254 BUG_ON(!pmd_none(*pmd));
255 set_pmd(pmd, __pmd(phys | pgprot_val(prot)));
259 void __init init_extra_mapping_wb(unsigned long phys, unsigned long size)
261 __init_extra_mapping(phys, size, PAGE_KERNEL_LARGE);
264 void __init init_extra_mapping_uc(unsigned long phys, unsigned long size)
266 __init_extra_mapping(phys, size, PAGE_KERNEL_LARGE_NOCACHE);
270 * The head.S code sets up the kernel high mapping:
272 * from __START_KERNEL_map to __START_KERNEL_map + size (== _end-_text)
274 * phys_addr holds the negative offset to the kernel, which is added
275 * to the compile time generated pmds. This results in invalid pmds up
276 * to the point where we hit the physaddr 0 mapping.
278 * We limit the mappings to the region from _text to _end. _end is
279 * rounded up to the 2MB boundary. This catches the invalid pmds as
280 * well, as they are located before _text:
282 void __init cleanup_highmap(void)
284 unsigned long vaddr = __START_KERNEL_map;
285 unsigned long end = roundup((unsigned long)_end, PMD_SIZE) - 1;
286 pmd_t *pmd = level2_kernel_pgt;
287 pmd_t *last_pmd = pmd + PTRS_PER_PMD;
289 for (; pmd < last_pmd; pmd++, vaddr += PMD_SIZE) {
290 if (pmd_none(*pmd))
291 continue;
292 if (vaddr < (unsigned long) _text || vaddr > end)
293 set_pmd(pmd, __pmd(0));
297 static unsigned long __initdata table_start;
298 static unsigned long __meminitdata table_end;
299 static unsigned long __meminitdata table_top;
301 static __ref void *alloc_low_page(unsigned long *phys)
303 unsigned long pfn = table_end++;
304 void *adr;
306 if (after_bootmem) {
307 adr = (void *)get_zeroed_page(GFP_ATOMIC);
308 *phys = __pa(adr);
310 return adr;
313 if (pfn >= table_top)
314 panic("alloc_low_page: ran out of memory");
316 adr = early_ioremap(pfn * PAGE_SIZE, PAGE_SIZE);
317 memset(adr, 0, PAGE_SIZE);
318 *phys = pfn * PAGE_SIZE;
319 return adr;
322 static __ref void unmap_low_page(void *adr)
324 if (after_bootmem)
325 return;
327 early_iounmap(adr, PAGE_SIZE);
330 static unsigned long __meminit
331 phys_pte_init(pte_t *pte_page, unsigned long addr, unsigned long end,
332 pgprot_t prot)
334 unsigned pages = 0;
335 unsigned long last_map_addr = end;
336 int i;
338 pte_t *pte = pte_page + pte_index(addr);
340 for(i = pte_index(addr); i < PTRS_PER_PTE; i++, addr += PAGE_SIZE, pte++) {
342 if (addr >= end) {
343 if (!after_bootmem) {
344 for(; i < PTRS_PER_PTE; i++, pte++)
345 set_pte(pte, __pte(0));
347 break;
351 * We will re-use the existing mapping.
352 * Xen for example has some special requirements, like mapping
353 * pagetable pages as RO. So assume someone who pre-setup
354 * these mappings are more intelligent.
356 if (pte_val(*pte))
357 continue;
359 if (0)
360 printk(" pte=%p addr=%lx pte=%016lx\n",
361 pte, addr, pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL).pte);
362 pages++;
363 set_pte(pte, pfn_pte(addr >> PAGE_SHIFT, prot));
364 last_map_addr = (addr & PAGE_MASK) + PAGE_SIZE;
367 update_page_count(PG_LEVEL_4K, pages);
369 return last_map_addr;
372 static unsigned long __meminit
373 phys_pte_update(pmd_t *pmd, unsigned long address, unsigned long end,
374 pgprot_t prot)
376 pte_t *pte = (pte_t *)pmd_page_vaddr(*pmd);
378 return phys_pte_init(pte, address, end, prot);
381 static unsigned long __meminit
382 phys_pmd_init(pmd_t *pmd_page, unsigned long address, unsigned long end,
383 unsigned long page_size_mask, pgprot_t prot)
385 unsigned long pages = 0;
386 unsigned long last_map_addr = end;
388 int i = pmd_index(address);
390 for (; i < PTRS_PER_PMD; i++, address += PMD_SIZE) {
391 unsigned long pte_phys;
392 pmd_t *pmd = pmd_page + pmd_index(address);
393 pte_t *pte;
394 pgprot_t new_prot = prot;
396 if (address >= end) {
397 if (!after_bootmem) {
398 for (; i < PTRS_PER_PMD; i++, pmd++)
399 set_pmd(pmd, __pmd(0));
401 break;
404 if (pmd_val(*pmd)) {
405 if (!pmd_large(*pmd)) {
406 spin_lock(&init_mm.page_table_lock);
407 last_map_addr = phys_pte_update(pmd, address,
408 end, prot);
409 spin_unlock(&init_mm.page_table_lock);
410 continue;
413 * If we are ok with PG_LEVEL_2M mapping, then we will
414 * use the existing mapping,
416 * Otherwise, we will split the large page mapping but
417 * use the same existing protection bits except for
418 * large page, so that we don't violate Intel's TLB
419 * Application note (317080) which says, while changing
420 * the page sizes, new and old translations should
421 * not differ with respect to page frame and
422 * attributes.
424 if (page_size_mask & (1 << PG_LEVEL_2M))
425 continue;
426 new_prot = pte_pgprot(pte_clrhuge(*(pte_t *)pmd));
429 if (page_size_mask & (1<<PG_LEVEL_2M)) {
430 pages++;
431 spin_lock(&init_mm.page_table_lock);
432 set_pte((pte_t *)pmd,
433 pfn_pte(address >> PAGE_SHIFT,
434 __pgprot(pgprot_val(prot) | _PAGE_PSE)));
435 spin_unlock(&init_mm.page_table_lock);
436 last_map_addr = (address & PMD_MASK) + PMD_SIZE;
437 continue;
440 pte = alloc_low_page(&pte_phys);
441 last_map_addr = phys_pte_init(pte, address, end, new_prot);
442 unmap_low_page(pte);
444 spin_lock(&init_mm.page_table_lock);
445 pmd_populate_kernel(&init_mm, pmd, __va(pte_phys));
446 spin_unlock(&init_mm.page_table_lock);
448 update_page_count(PG_LEVEL_2M, pages);
449 return last_map_addr;
452 static unsigned long __meminit
453 phys_pmd_update(pud_t *pud, unsigned long address, unsigned long end,
454 unsigned long page_size_mask, pgprot_t prot)
456 pmd_t *pmd = pmd_offset(pud, 0);
457 unsigned long last_map_addr;
459 last_map_addr = phys_pmd_init(pmd, address, end, page_size_mask, prot);
460 __flush_tlb_all();
461 return last_map_addr;
464 static unsigned long __meminit
465 phys_pud_init(pud_t *pud_page, unsigned long addr, unsigned long end,
466 unsigned long page_size_mask)
468 unsigned long pages = 0;
469 unsigned long last_map_addr = end;
470 int i = pud_index(addr);
472 for (; i < PTRS_PER_PUD; i++, addr = (addr & PUD_MASK) + PUD_SIZE) {
473 unsigned long pmd_phys;
474 pud_t *pud = pud_page + pud_index(addr);
475 pmd_t *pmd;
476 pgprot_t prot = PAGE_KERNEL;
478 if (addr >= end)
479 break;
481 if (!after_bootmem &&
482 !e820_any_mapped(addr, addr+PUD_SIZE, 0)) {
483 set_pud(pud, __pud(0));
484 continue;
487 if (pud_val(*pud)) {
488 if (!pud_large(*pud)) {
489 last_map_addr = phys_pmd_update(pud, addr, end,
490 page_size_mask, prot);
491 continue;
494 * If we are ok with PG_LEVEL_1G mapping, then we will
495 * use the existing mapping.
497 * Otherwise, we will split the gbpage mapping but use
498 * the same existing protection bits except for large
499 * page, so that we don't violate Intel's TLB
500 * Application note (317080) which says, while changing
501 * the page sizes, new and old translations should
502 * not differ with respect to page frame and
503 * attributes.
505 if (page_size_mask & (1 << PG_LEVEL_1G))
506 continue;
507 prot = pte_pgprot(pte_clrhuge(*(pte_t *)pud));
510 if (page_size_mask & (1<<PG_LEVEL_1G)) {
511 pages++;
512 spin_lock(&init_mm.page_table_lock);
513 set_pte((pte_t *)pud,
514 pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL_LARGE));
515 spin_unlock(&init_mm.page_table_lock);
516 last_map_addr = (addr & PUD_MASK) + PUD_SIZE;
517 continue;
520 pmd = alloc_low_page(&pmd_phys);
521 last_map_addr = phys_pmd_init(pmd, addr, end, page_size_mask,
522 prot);
523 unmap_low_page(pmd);
525 spin_lock(&init_mm.page_table_lock);
526 pud_populate(&init_mm, pud, __va(pmd_phys));
527 spin_unlock(&init_mm.page_table_lock);
529 __flush_tlb_all();
531 update_page_count(PG_LEVEL_1G, pages);
533 return last_map_addr;
536 static unsigned long __meminit
537 phys_pud_update(pgd_t *pgd, unsigned long addr, unsigned long end,
538 unsigned long page_size_mask)
540 pud_t *pud;
542 pud = (pud_t *)pgd_page_vaddr(*pgd);
544 return phys_pud_init(pud, addr, end, page_size_mask);
547 static void __init find_early_table_space(unsigned long end, int use_pse,
548 int use_gbpages)
550 unsigned long puds, pmds, ptes, tables, start;
552 puds = (end + PUD_SIZE - 1) >> PUD_SHIFT;
553 tables = roundup(puds * sizeof(pud_t), PAGE_SIZE);
554 if (use_gbpages) {
555 unsigned long extra;
556 extra = end - ((end>>PUD_SHIFT) << PUD_SHIFT);
557 pmds = (extra + PMD_SIZE - 1) >> PMD_SHIFT;
558 } else
559 pmds = (end + PMD_SIZE - 1) >> PMD_SHIFT;
560 tables += roundup(pmds * sizeof(pmd_t), PAGE_SIZE);
562 if (use_pse) {
563 unsigned long extra;
564 extra = end - ((end>>PMD_SHIFT) << PMD_SHIFT);
565 ptes = (extra + PAGE_SIZE - 1) >> PAGE_SHIFT;
566 } else
567 ptes = (end + PAGE_SIZE - 1) >> PAGE_SHIFT;
568 tables += roundup(ptes * sizeof(pte_t), PAGE_SIZE);
571 * RED-PEN putting page tables only on node 0 could
572 * cause a hotspot and fill up ZONE_DMA. The page tables
573 * need roughly 0.5KB per GB.
575 start = 0x8000;
576 table_start = find_e820_area(start, end, tables, PAGE_SIZE);
577 if (table_start == -1UL)
578 panic("Cannot find space for the kernel page tables");
580 table_start >>= PAGE_SHIFT;
581 table_end = table_start;
582 table_top = table_start + (tables >> PAGE_SHIFT);
584 printk(KERN_DEBUG "kernel direct mapping tables up to %lx @ %lx-%lx\n",
585 end, table_start << PAGE_SHIFT, table_top << PAGE_SHIFT);
588 static void __init init_gbpages(void)
590 if (direct_gbpages && cpu_has_gbpages)
591 printk(KERN_INFO "Using GB pages for direct mapping\n");
592 else
593 direct_gbpages = 0;
596 static unsigned long __init kernel_physical_mapping_init(unsigned long start,
597 unsigned long end,
598 unsigned long page_size_mask)
601 unsigned long next, last_map_addr = end;
603 start = (unsigned long)__va(start);
604 end = (unsigned long)__va(end);
606 for (; start < end; start = next) {
607 pgd_t *pgd = pgd_offset_k(start);
608 unsigned long pud_phys;
609 pud_t *pud;
611 next = (start + PGDIR_SIZE) & PGDIR_MASK;
612 if (next > end)
613 next = end;
615 if (pgd_val(*pgd)) {
616 last_map_addr = phys_pud_update(pgd, __pa(start),
617 __pa(end), page_size_mask);
618 continue;
621 pud = alloc_low_page(&pud_phys);
622 last_map_addr = phys_pud_init(pud, __pa(start), __pa(next),
623 page_size_mask);
624 unmap_low_page(pud);
626 spin_lock(&init_mm.page_table_lock);
627 pgd_populate(&init_mm, pgd, __va(pud_phys));
628 spin_unlock(&init_mm.page_table_lock);
630 __flush_tlb_all();
632 return last_map_addr;
635 struct map_range {
636 unsigned long start;
637 unsigned long end;
638 unsigned page_size_mask;
641 #define NR_RANGE_MR 5
643 static int save_mr(struct map_range *mr, int nr_range,
644 unsigned long start_pfn, unsigned long end_pfn,
645 unsigned long page_size_mask)
648 if (start_pfn < end_pfn) {
649 if (nr_range >= NR_RANGE_MR)
650 panic("run out of range for init_memory_mapping\n");
651 mr[nr_range].start = start_pfn<<PAGE_SHIFT;
652 mr[nr_range].end = end_pfn<<PAGE_SHIFT;
653 mr[nr_range].page_size_mask = page_size_mask;
654 nr_range++;
657 return nr_range;
661 * Setup the direct mapping of the physical memory at PAGE_OFFSET.
662 * This runs before bootmem is initialized and gets pages directly from
663 * the physical memory. To access them they are temporarily mapped.
665 unsigned long __init_refok init_memory_mapping(unsigned long start,
666 unsigned long end)
668 unsigned long last_map_addr = 0;
669 unsigned long page_size_mask = 0;
670 unsigned long start_pfn, end_pfn;
672 struct map_range mr[NR_RANGE_MR];
673 int nr_range, i;
674 int use_pse, use_gbpages;
676 printk(KERN_INFO "init_memory_mapping\n");
679 * Find space for the kernel direct mapping tables.
681 * Later we should allocate these tables in the local node of the
682 * memory mapped. Unfortunately this is done currently before the
683 * nodes are discovered.
685 if (!after_bootmem)
686 init_gbpages();
688 #ifdef CONFIG_DEBUG_PAGEALLOC
690 * For CONFIG_DEBUG_PAGEALLOC, identity mapping will use small pages.
691 * This will simplify cpa(), which otherwise needs to support splitting
692 * large pages into small in interrupt context, etc.
694 use_pse = use_gbpages = 0;
695 #else
696 use_pse = cpu_has_pse;
697 use_gbpages = direct_gbpages;
698 #endif
700 if (use_gbpages)
701 page_size_mask |= 1 << PG_LEVEL_1G;
702 if (use_pse)
703 page_size_mask |= 1 << PG_LEVEL_2M;
705 memset(mr, 0, sizeof(mr));
706 nr_range = 0;
708 /* head if not big page alignment ?*/
709 start_pfn = start >> PAGE_SHIFT;
710 end_pfn = ((start + (PMD_SIZE - 1)) >> PMD_SHIFT)
711 << (PMD_SHIFT - PAGE_SHIFT);
712 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
714 /* big page (2M) range*/
715 start_pfn = ((start + (PMD_SIZE - 1))>>PMD_SHIFT)
716 << (PMD_SHIFT - PAGE_SHIFT);
717 end_pfn = ((start + (PUD_SIZE - 1))>>PUD_SHIFT)
718 << (PUD_SHIFT - PAGE_SHIFT);
719 if (end_pfn > ((end>>PUD_SHIFT)<<(PUD_SHIFT - PAGE_SHIFT)))
720 end_pfn = ((end>>PUD_SHIFT)<<(PUD_SHIFT - PAGE_SHIFT));
721 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
722 page_size_mask & (1<<PG_LEVEL_2M));
724 /* big page (1G) range */
725 start_pfn = end_pfn;
726 end_pfn = (end>>PUD_SHIFT) << (PUD_SHIFT - PAGE_SHIFT);
727 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
728 page_size_mask &
729 ((1<<PG_LEVEL_2M)|(1<<PG_LEVEL_1G)));
731 /* tail is not big page (1G) alignment */
732 start_pfn = end_pfn;
733 end_pfn = (end>>PMD_SHIFT) << (PMD_SHIFT - PAGE_SHIFT);
734 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
735 page_size_mask & (1<<PG_LEVEL_2M));
737 /* tail is not big page (2M) alignment */
738 start_pfn = end_pfn;
739 end_pfn = end>>PAGE_SHIFT;
740 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
742 /* try to merge same page size and continuous */
743 for (i = 0; nr_range > 1 && i < nr_range - 1; i++) {
744 unsigned long old_start;
745 if (mr[i].end != mr[i+1].start ||
746 mr[i].page_size_mask != mr[i+1].page_size_mask)
747 continue;
748 /* move it */
749 old_start = mr[i].start;
750 memmove(&mr[i], &mr[i+1],
751 (nr_range - 1 - i) * sizeof (struct map_range));
752 mr[i].start = old_start;
753 nr_range--;
756 for (i = 0; i < nr_range; i++)
757 printk(KERN_DEBUG " %010lx - %010lx page %s\n",
758 mr[i].start, mr[i].end,
759 (mr[i].page_size_mask & (1<<PG_LEVEL_1G))?"1G":(
760 (mr[i].page_size_mask & (1<<PG_LEVEL_2M))?"2M":"4k"));
762 if (!after_bootmem)
763 find_early_table_space(end, use_pse, use_gbpages);
765 for (i = 0; i < nr_range; i++)
766 last_map_addr = kernel_physical_mapping_init(
767 mr[i].start, mr[i].end,
768 mr[i].page_size_mask);
770 if (!after_bootmem)
771 mmu_cr4_features = read_cr4();
772 __flush_tlb_all();
774 if (!after_bootmem && table_end > table_start)
775 reserve_early(table_start << PAGE_SHIFT,
776 table_end << PAGE_SHIFT, "PGTABLE");
778 printk(KERN_INFO "last_map_addr: %lx end: %lx\n",
779 last_map_addr, end);
781 if (!after_bootmem)
782 early_memtest(start, end);
784 return last_map_addr >> PAGE_SHIFT;
787 #ifndef CONFIG_NUMA
788 void __init initmem_init(unsigned long start_pfn, unsigned long end_pfn)
790 unsigned long bootmap_size, bootmap;
792 bootmap_size = bootmem_bootmap_pages(end_pfn)<<PAGE_SHIFT;
793 bootmap = find_e820_area(0, end_pfn<<PAGE_SHIFT, bootmap_size,
794 PAGE_SIZE);
795 if (bootmap == -1L)
796 panic("Cannot find bootmem map of size %ld\n", bootmap_size);
797 /* don't touch min_low_pfn */
798 bootmap_size = init_bootmem_node(NODE_DATA(0), bootmap >> PAGE_SHIFT,
799 0, end_pfn);
800 e820_register_active_regions(0, start_pfn, end_pfn);
801 free_bootmem_with_active_regions(0, end_pfn);
802 early_res_to_bootmem(0, end_pfn<<PAGE_SHIFT);
803 reserve_bootmem(bootmap, bootmap_size, BOOTMEM_DEFAULT);
806 void __init paging_init(void)
808 unsigned long max_zone_pfns[MAX_NR_ZONES];
810 memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
811 max_zone_pfns[ZONE_DMA] = MAX_DMA_PFN;
812 max_zone_pfns[ZONE_DMA32] = MAX_DMA32_PFN;
813 max_zone_pfns[ZONE_NORMAL] = max_pfn;
815 memory_present(0, 0, max_pfn);
816 sparse_init();
817 free_area_init_nodes(max_zone_pfns);
819 #endif
822 * Memory hotplug specific functions
824 #ifdef CONFIG_MEMORY_HOTPLUG
826 * Memory is added always to NORMAL zone. This means you will never get
827 * additional DMA/DMA32 memory.
829 int arch_add_memory(int nid, u64 start, u64 size)
831 struct pglist_data *pgdat = NODE_DATA(nid);
832 struct zone *zone = pgdat->node_zones + ZONE_NORMAL;
833 unsigned long last_mapped_pfn, start_pfn = start >> PAGE_SHIFT;
834 unsigned long nr_pages = size >> PAGE_SHIFT;
835 int ret;
837 last_mapped_pfn = init_memory_mapping(start, start + size-1);
838 if (last_mapped_pfn > max_pfn_mapped)
839 max_pfn_mapped = last_mapped_pfn;
841 ret = __add_pages(zone, start_pfn, nr_pages);
842 WARN_ON(1);
844 return ret;
846 EXPORT_SYMBOL_GPL(arch_add_memory);
848 #if !defined(CONFIG_ACPI_NUMA) && defined(CONFIG_NUMA)
849 int memory_add_physaddr_to_nid(u64 start)
851 return 0;
853 EXPORT_SYMBOL_GPL(memory_add_physaddr_to_nid);
854 #endif
856 #endif /* CONFIG_MEMORY_HOTPLUG */
859 * devmem_is_allowed() checks to see if /dev/mem access to a certain address
860 * is valid. The argument is a physical page number.
863 * On x86, access has to be given to the first megabyte of ram because that area
864 * contains bios code and data regions used by X and dosemu and similar apps.
865 * Access has to be given to non-kernel-ram areas as well, these contain the PCI
866 * mmio resources as well as potential bios/acpi data regions.
868 int devmem_is_allowed(unsigned long pagenr)
870 if (pagenr <= 256)
871 return 1;
872 if (!page_is_ram(pagenr))
873 return 1;
874 return 0;
878 static struct kcore_list kcore_mem, kcore_vmalloc, kcore_kernel,
879 kcore_modules, kcore_vsyscall;
881 void __init mem_init(void)
883 long codesize, reservedpages, datasize, initsize;
885 start_periodic_check_for_corruption();
887 pci_iommu_alloc();
889 /* clear_bss() already clear the empty_zero_page */
891 reservedpages = 0;
893 /* this will put all low memory onto the freelists */
894 #ifdef CONFIG_NUMA
895 totalram_pages = numa_free_all_bootmem();
896 #else
897 totalram_pages = free_all_bootmem();
898 #endif
899 reservedpages = max_pfn - totalram_pages -
900 absent_pages_in_range(0, max_pfn);
901 after_bootmem = 1;
903 codesize = (unsigned long) &_etext - (unsigned long) &_text;
904 datasize = (unsigned long) &_edata - (unsigned long) &_etext;
905 initsize = (unsigned long) &__init_end - (unsigned long) &__init_begin;
907 /* Register memory areas for /proc/kcore */
908 kclist_add(&kcore_mem, __va(0), max_low_pfn << PAGE_SHIFT);
909 kclist_add(&kcore_vmalloc, (void *)VMALLOC_START,
910 VMALLOC_END-VMALLOC_START);
911 kclist_add(&kcore_kernel, &_stext, _end - _stext);
912 kclist_add(&kcore_modules, (void *)MODULES_VADDR, MODULES_LEN);
913 kclist_add(&kcore_vsyscall, (void *)VSYSCALL_START,
914 VSYSCALL_END - VSYSCALL_START);
916 printk(KERN_INFO "Memory: %luk/%luk available (%ldk kernel code, "
917 "%ldk reserved, %ldk data, %ldk init)\n",
918 (unsigned long) nr_free_pages() << (PAGE_SHIFT-10),
919 max_pfn << (PAGE_SHIFT-10),
920 codesize >> 10,
921 reservedpages << (PAGE_SHIFT-10),
922 datasize >> 10,
923 initsize >> 10);
926 void free_init_pages(char *what, unsigned long begin, unsigned long end)
928 unsigned long addr = begin;
930 if (addr >= end)
931 return;
934 * If debugging page accesses then do not free this memory but
935 * mark them not present - any buggy init-section access will
936 * create a kernel page fault:
938 #ifdef CONFIG_DEBUG_PAGEALLOC
939 printk(KERN_INFO "debug: unmapping init memory %08lx..%08lx\n",
940 begin, PAGE_ALIGN(end));
941 set_memory_np(begin, (end - begin) >> PAGE_SHIFT);
942 #else
943 printk(KERN_INFO "Freeing %s: %luk freed\n", what, (end - begin) >> 10);
945 for (; addr < end; addr += PAGE_SIZE) {
946 ClearPageReserved(virt_to_page(addr));
947 init_page_count(virt_to_page(addr));
948 memset((void *)(addr & ~(PAGE_SIZE-1)),
949 POISON_FREE_INITMEM, PAGE_SIZE);
950 free_page(addr);
951 totalram_pages++;
953 #endif
956 void free_initmem(void)
958 free_init_pages("unused kernel memory",
959 (unsigned long)(&__init_begin),
960 (unsigned long)(&__init_end));
963 #ifdef CONFIG_DEBUG_RODATA
964 const int rodata_test_data = 0xC3;
965 EXPORT_SYMBOL_GPL(rodata_test_data);
967 void mark_rodata_ro(void)
969 unsigned long start = PFN_ALIGN(_stext), end = PFN_ALIGN(__end_rodata);
970 unsigned long rodata_start =
971 ((unsigned long)__start_rodata + PAGE_SIZE - 1) & PAGE_MASK;
973 #ifdef CONFIG_DYNAMIC_FTRACE
974 /* Dynamic tracing modifies the kernel text section */
975 start = rodata_start;
976 #endif
978 printk(KERN_INFO "Write protecting the kernel read-only data: %luk\n",
979 (end - start) >> 10);
980 set_memory_ro(start, (end - start) >> PAGE_SHIFT);
983 * The rodata section (but not the kernel text!) should also be
984 * not-executable.
986 set_memory_nx(rodata_start, (end - rodata_start) >> PAGE_SHIFT);
988 rodata_test();
990 #ifdef CONFIG_CPA_DEBUG
991 printk(KERN_INFO "Testing CPA: undo %lx-%lx\n", start, end);
992 set_memory_rw(start, (end-start) >> PAGE_SHIFT);
994 printk(KERN_INFO "Testing CPA: again\n");
995 set_memory_ro(start, (end-start) >> PAGE_SHIFT);
996 #endif
999 #endif
1001 #ifdef CONFIG_BLK_DEV_INITRD
1002 void free_initrd_mem(unsigned long start, unsigned long end)
1004 free_init_pages("initrd memory", start, end);
1006 #endif
1008 int __init reserve_bootmem_generic(unsigned long phys, unsigned long len,
1009 int flags)
1011 #ifdef CONFIG_NUMA
1012 int nid, next_nid;
1013 int ret;
1014 #endif
1015 unsigned long pfn = phys >> PAGE_SHIFT;
1017 if (pfn >= max_pfn) {
1019 * This can happen with kdump kernels when accessing
1020 * firmware tables:
1022 if (pfn < max_pfn_mapped)
1023 return -EFAULT;
1025 printk(KERN_ERR "reserve_bootmem: illegal reserve %lx %lu\n",
1026 phys, len);
1027 return -EFAULT;
1030 /* Should check here against the e820 map to avoid double free */
1031 #ifdef CONFIG_NUMA
1032 nid = phys_to_nid(phys);
1033 next_nid = phys_to_nid(phys + len - 1);
1034 if (nid == next_nid)
1035 ret = reserve_bootmem_node(NODE_DATA(nid), phys, len, flags);
1036 else
1037 ret = reserve_bootmem(phys, len, flags);
1039 if (ret != 0)
1040 return ret;
1042 #else
1043 reserve_bootmem(phys, len, BOOTMEM_DEFAULT);
1044 #endif
1046 if (phys+len <= MAX_DMA_PFN*PAGE_SIZE) {
1047 dma_reserve += len / PAGE_SIZE;
1048 set_dma_reserve(dma_reserve);
1051 return 0;
1054 int kern_addr_valid(unsigned long addr)
1056 unsigned long above = ((long)addr) >> __VIRTUAL_MASK_SHIFT;
1057 pgd_t *pgd;
1058 pud_t *pud;
1059 pmd_t *pmd;
1060 pte_t *pte;
1062 if (above != 0 && above != -1UL)
1063 return 0;
1065 pgd = pgd_offset_k(addr);
1066 if (pgd_none(*pgd))
1067 return 0;
1069 pud = pud_offset(pgd, addr);
1070 if (pud_none(*pud))
1071 return 0;
1073 pmd = pmd_offset(pud, addr);
1074 if (pmd_none(*pmd))
1075 return 0;
1077 if (pmd_large(*pmd))
1078 return pfn_valid(pmd_pfn(*pmd));
1080 pte = pte_offset_kernel(pmd, addr);
1081 if (pte_none(*pte))
1082 return 0;
1084 return pfn_valid(pte_pfn(*pte));
1088 * A pseudo VMA to allow ptrace access for the vsyscall page. This only
1089 * covers the 64bit vsyscall page now. 32bit has a real VMA now and does
1090 * not need special handling anymore:
1092 static struct vm_area_struct gate_vma = {
1093 .vm_start = VSYSCALL_START,
1094 .vm_end = VSYSCALL_START + (VSYSCALL_MAPPED_PAGES * PAGE_SIZE),
1095 .vm_page_prot = PAGE_READONLY_EXEC,
1096 .vm_flags = VM_READ | VM_EXEC
1099 struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
1101 #ifdef CONFIG_IA32_EMULATION
1102 if (test_tsk_thread_flag(tsk, TIF_IA32))
1103 return NULL;
1104 #endif
1105 return &gate_vma;
1108 int in_gate_area(struct task_struct *task, unsigned long addr)
1110 struct vm_area_struct *vma = get_gate_vma(task);
1112 if (!vma)
1113 return 0;
1115 return (addr >= vma->vm_start) && (addr < vma->vm_end);
1119 * Use this when you have no reliable task/vma, typically from interrupt
1120 * context. It is less reliable than using the task's vma and may give
1121 * false positives:
1123 int in_gate_area_no_task(unsigned long addr)
1125 return (addr >= VSYSCALL_START) && (addr < VSYSCALL_END);
1128 const char *arch_vma_name(struct vm_area_struct *vma)
1130 if (vma->vm_mm && vma->vm_start == (long)vma->vm_mm->context.vdso)
1131 return "[vdso]";
1132 if (vma == &gate_vma)
1133 return "[vsyscall]";
1134 return NULL;
1137 #ifdef CONFIG_SPARSEMEM_VMEMMAP
1139 * Initialise the sparsemem vmemmap using huge-pages at the PMD level.
1141 static long __meminitdata addr_start, addr_end;
1142 static void __meminitdata *p_start, *p_end;
1143 static int __meminitdata node_start;
1145 int __meminit
1146 vmemmap_populate(struct page *start_page, unsigned long size, int node)
1148 unsigned long addr = (unsigned long)start_page;
1149 unsigned long end = (unsigned long)(start_page + size);
1150 unsigned long next;
1151 pgd_t *pgd;
1152 pud_t *pud;
1153 pmd_t *pmd;
1155 for (; addr < end; addr = next) {
1156 void *p = NULL;
1158 pgd = vmemmap_pgd_populate(addr, node);
1159 if (!pgd)
1160 return -ENOMEM;
1162 pud = vmemmap_pud_populate(pgd, addr, node);
1163 if (!pud)
1164 return -ENOMEM;
1166 if (!cpu_has_pse) {
1167 next = (addr + PAGE_SIZE) & PAGE_MASK;
1168 pmd = vmemmap_pmd_populate(pud, addr, node);
1170 if (!pmd)
1171 return -ENOMEM;
1173 p = vmemmap_pte_populate(pmd, addr, node);
1175 if (!p)
1176 return -ENOMEM;
1178 addr_end = addr + PAGE_SIZE;
1179 p_end = p + PAGE_SIZE;
1180 } else {
1181 next = pmd_addr_end(addr, end);
1183 pmd = pmd_offset(pud, addr);
1184 if (pmd_none(*pmd)) {
1185 pte_t entry;
1187 p = vmemmap_alloc_block(PMD_SIZE, node);
1188 if (!p)
1189 return -ENOMEM;
1191 entry = pfn_pte(__pa(p) >> PAGE_SHIFT,
1192 PAGE_KERNEL_LARGE);
1193 set_pmd(pmd, __pmd(pte_val(entry)));
1195 /* check to see if we have contiguous blocks */
1196 if (p_end != p || node_start != node) {
1197 if (p_start)
1198 printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n",
1199 addr_start, addr_end-1, p_start, p_end-1, node_start);
1200 addr_start = addr;
1201 node_start = node;
1202 p_start = p;
1205 addr_end = addr + PMD_SIZE;
1206 p_end = p + PMD_SIZE;
1207 } else
1208 vmemmap_verify((pte_t *)pmd, node, addr, next);
1212 return 0;
1215 void __meminit vmemmap_populate_print_last(void)
1217 if (p_start) {
1218 printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n",
1219 addr_start, addr_end-1, p_start, p_end-1, node_start);
1220 p_start = NULL;
1221 p_end = NULL;
1222 node_start = 0;
1225 #endif