[NET]: Protect neigh_stat_seq_fops by CONFIG_PROC_FS
[linux-2.6/libata-dev.git] / net / core / neighbour.c
blob5f160082aafc2b07af083c25a4ae7d39ea1456af
1 /*
2 * Generic address resolution entity
4 * Authors:
5 * Pedro Roque <roque@di.fc.ul.pt>
6 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
13 * Fixes:
14 * Vitaly E. Lavrov releasing NULL neighbor in neigh_add.
15 * Harald Welte Add neighbour cache statistics like rtstat
18 #include <linux/config.h>
19 #include <linux/types.h>
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/socket.h>
23 #include <linux/sched.h>
24 #include <linux/netdevice.h>
25 #include <linux/proc_fs.h>
26 #ifdef CONFIG_SYSCTL
27 #include <linux/sysctl.h>
28 #endif
29 #include <linux/times.h>
30 #include <net/neighbour.h>
31 #include <net/dst.h>
32 #include <net/sock.h>
33 #include <linux/rtnetlink.h>
34 #include <linux/random.h>
35 #include <linux/string.h>
37 #define NEIGH_DEBUG 1
39 #define NEIGH_PRINTK(x...) printk(x)
40 #define NEIGH_NOPRINTK(x...) do { ; } while(0)
41 #define NEIGH_PRINTK0 NEIGH_PRINTK
42 #define NEIGH_PRINTK1 NEIGH_NOPRINTK
43 #define NEIGH_PRINTK2 NEIGH_NOPRINTK
45 #if NEIGH_DEBUG >= 1
46 #undef NEIGH_PRINTK1
47 #define NEIGH_PRINTK1 NEIGH_PRINTK
48 #endif
49 #if NEIGH_DEBUG >= 2
50 #undef NEIGH_PRINTK2
51 #define NEIGH_PRINTK2 NEIGH_PRINTK
52 #endif
54 #define PNEIGH_HASHMASK 0xF
56 static void neigh_timer_handler(unsigned long arg);
57 #ifdef CONFIG_ARPD
58 static void neigh_app_notify(struct neighbour *n);
59 #endif
60 static int pneigh_ifdown(struct neigh_table *tbl, struct net_device *dev);
61 void neigh_changeaddr(struct neigh_table *tbl, struct net_device *dev);
63 static struct neigh_table *neigh_tables;
64 #ifdef CONFIG_PROC_FS
65 static struct file_operations neigh_stat_seq_fops;
66 #endif
69 Neighbour hash table buckets are protected with rwlock tbl->lock.
71 - All the scans/updates to hash buckets MUST be made under this lock.
72 - NOTHING clever should be made under this lock: no callbacks
73 to protocol backends, no attempts to send something to network.
74 It will result in deadlocks, if backend/driver wants to use neighbour
75 cache.
76 - If the entry requires some non-trivial actions, increase
77 its reference count and release table lock.
79 Neighbour entries are protected:
80 - with reference count.
81 - with rwlock neigh->lock
83 Reference count prevents destruction.
85 neigh->lock mainly serializes ll address data and its validity state.
86 However, the same lock is used to protect another entry fields:
87 - timer
88 - resolution queue
90 Again, nothing clever shall be made under neigh->lock,
91 the most complicated procedure, which we allow is dev->hard_header.
92 It is supposed, that dev->hard_header is simplistic and does
93 not make callbacks to neighbour tables.
95 The last lock is neigh_tbl_lock. It is pure SMP lock, protecting
96 list of neighbour tables. This list is used only in process context,
99 static DEFINE_RWLOCK(neigh_tbl_lock);
101 static int neigh_blackhole(struct sk_buff *skb)
103 kfree_skb(skb);
104 return -ENETDOWN;
108 * It is random distribution in the interval (1/2)*base...(3/2)*base.
109 * It corresponds to default IPv6 settings and is not overridable,
110 * because it is really reasonable choice.
113 unsigned long neigh_rand_reach_time(unsigned long base)
115 return (base ? (net_random() % base) + (base >> 1) : 0);
119 static int neigh_forced_gc(struct neigh_table *tbl)
121 int shrunk = 0;
122 int i;
124 NEIGH_CACHE_STAT_INC(tbl, forced_gc_runs);
126 write_lock_bh(&tbl->lock);
127 for (i = 0; i <= tbl->hash_mask; i++) {
128 struct neighbour *n, **np;
130 np = &tbl->hash_buckets[i];
131 while ((n = *np) != NULL) {
132 /* Neighbour record may be discarded if:
133 * - nobody refers to it.
134 * - it is not permanent
136 write_lock(&n->lock);
137 if (atomic_read(&n->refcnt) == 1 &&
138 !(n->nud_state & NUD_PERMANENT)) {
139 *np = n->next;
140 n->dead = 1;
141 shrunk = 1;
142 write_unlock(&n->lock);
143 neigh_release(n);
144 continue;
146 write_unlock(&n->lock);
147 np = &n->next;
151 tbl->last_flush = jiffies;
153 write_unlock_bh(&tbl->lock);
155 return shrunk;
158 static int neigh_del_timer(struct neighbour *n)
160 if ((n->nud_state & NUD_IN_TIMER) &&
161 del_timer(&n->timer)) {
162 neigh_release(n);
163 return 1;
165 return 0;
168 static void pneigh_queue_purge(struct sk_buff_head *list)
170 struct sk_buff *skb;
172 while ((skb = skb_dequeue(list)) != NULL) {
173 dev_put(skb->dev);
174 kfree_skb(skb);
178 void neigh_changeaddr(struct neigh_table *tbl, struct net_device *dev)
180 int i;
182 write_lock_bh(&tbl->lock);
184 for (i=0; i <= tbl->hash_mask; i++) {
185 struct neighbour *n, **np;
187 np = &tbl->hash_buckets[i];
188 while ((n = *np) != NULL) {
189 if (dev && n->dev != dev) {
190 np = &n->next;
191 continue;
193 *np = n->next;
194 write_lock_bh(&n->lock);
195 n->dead = 1;
196 neigh_del_timer(n);
197 write_unlock_bh(&n->lock);
198 neigh_release(n);
202 write_unlock_bh(&tbl->lock);
205 int neigh_ifdown(struct neigh_table *tbl, struct net_device *dev)
207 int i;
209 write_lock_bh(&tbl->lock);
211 for (i = 0; i <= tbl->hash_mask; i++) {
212 struct neighbour *n, **np = &tbl->hash_buckets[i];
214 while ((n = *np) != NULL) {
215 if (dev && n->dev != dev) {
216 np = &n->next;
217 continue;
219 *np = n->next;
220 write_lock(&n->lock);
221 neigh_del_timer(n);
222 n->dead = 1;
224 if (atomic_read(&n->refcnt) != 1) {
225 /* The most unpleasant situation.
226 We must destroy neighbour entry,
227 but someone still uses it.
229 The destroy will be delayed until
230 the last user releases us, but
231 we must kill timers etc. and move
232 it to safe state.
234 skb_queue_purge(&n->arp_queue);
235 n->output = neigh_blackhole;
236 if (n->nud_state & NUD_VALID)
237 n->nud_state = NUD_NOARP;
238 else
239 n->nud_state = NUD_NONE;
240 NEIGH_PRINTK2("neigh %p is stray.\n", n);
242 write_unlock(&n->lock);
243 neigh_release(n);
247 pneigh_ifdown(tbl, dev);
248 write_unlock_bh(&tbl->lock);
250 del_timer_sync(&tbl->proxy_timer);
251 pneigh_queue_purge(&tbl->proxy_queue);
252 return 0;
255 static struct neighbour *neigh_alloc(struct neigh_table *tbl)
257 struct neighbour *n = NULL;
258 unsigned long now = jiffies;
259 int entries;
261 entries = atomic_inc_return(&tbl->entries) - 1;
262 if (entries >= tbl->gc_thresh3 ||
263 (entries >= tbl->gc_thresh2 &&
264 time_after(now, tbl->last_flush + 5 * HZ))) {
265 if (!neigh_forced_gc(tbl) &&
266 entries >= tbl->gc_thresh3)
267 goto out_entries;
270 n = kmem_cache_alloc(tbl->kmem_cachep, SLAB_ATOMIC);
271 if (!n)
272 goto out_entries;
274 memset(n, 0, tbl->entry_size);
276 skb_queue_head_init(&n->arp_queue);
277 rwlock_init(&n->lock);
278 n->updated = n->used = now;
279 n->nud_state = NUD_NONE;
280 n->output = neigh_blackhole;
281 n->parms = neigh_parms_clone(&tbl->parms);
282 init_timer(&n->timer);
283 n->timer.function = neigh_timer_handler;
284 n->timer.data = (unsigned long)n;
286 NEIGH_CACHE_STAT_INC(tbl, allocs);
287 n->tbl = tbl;
288 atomic_set(&n->refcnt, 1);
289 n->dead = 1;
290 out:
291 return n;
293 out_entries:
294 atomic_dec(&tbl->entries);
295 goto out;
298 static struct neighbour **neigh_hash_alloc(unsigned int entries)
300 unsigned long size = entries * sizeof(struct neighbour *);
301 struct neighbour **ret;
303 if (size <= PAGE_SIZE) {
304 ret = kmalloc(size, GFP_ATOMIC);
305 } else {
306 ret = (struct neighbour **)
307 __get_free_pages(GFP_ATOMIC, get_order(size));
309 if (ret)
310 memset(ret, 0, size);
312 return ret;
315 static void neigh_hash_free(struct neighbour **hash, unsigned int entries)
317 unsigned long size = entries * sizeof(struct neighbour *);
319 if (size <= PAGE_SIZE)
320 kfree(hash);
321 else
322 free_pages((unsigned long)hash, get_order(size));
325 static void neigh_hash_grow(struct neigh_table *tbl, unsigned long new_entries)
327 struct neighbour **new_hash, **old_hash;
328 unsigned int i, new_hash_mask, old_entries;
330 NEIGH_CACHE_STAT_INC(tbl, hash_grows);
332 BUG_ON(new_entries & (new_entries - 1));
333 new_hash = neigh_hash_alloc(new_entries);
334 if (!new_hash)
335 return;
337 old_entries = tbl->hash_mask + 1;
338 new_hash_mask = new_entries - 1;
339 old_hash = tbl->hash_buckets;
341 get_random_bytes(&tbl->hash_rnd, sizeof(tbl->hash_rnd));
342 for (i = 0; i < old_entries; i++) {
343 struct neighbour *n, *next;
345 for (n = old_hash[i]; n; n = next) {
346 unsigned int hash_val = tbl->hash(n->primary_key, n->dev);
348 hash_val &= new_hash_mask;
349 next = n->next;
351 n->next = new_hash[hash_val];
352 new_hash[hash_val] = n;
355 tbl->hash_buckets = new_hash;
356 tbl->hash_mask = new_hash_mask;
358 neigh_hash_free(old_hash, old_entries);
361 struct neighbour *neigh_lookup(struct neigh_table *tbl, const void *pkey,
362 struct net_device *dev)
364 struct neighbour *n;
365 int key_len = tbl->key_len;
366 u32 hash_val = tbl->hash(pkey, dev) & tbl->hash_mask;
368 NEIGH_CACHE_STAT_INC(tbl, lookups);
370 read_lock_bh(&tbl->lock);
371 for (n = tbl->hash_buckets[hash_val]; n; n = n->next) {
372 if (dev == n->dev && !memcmp(n->primary_key, pkey, key_len)) {
373 neigh_hold(n);
374 NEIGH_CACHE_STAT_INC(tbl, hits);
375 break;
378 read_unlock_bh(&tbl->lock);
379 return n;
382 struct neighbour *neigh_lookup_nodev(struct neigh_table *tbl, const void *pkey)
384 struct neighbour *n;
385 int key_len = tbl->key_len;
386 u32 hash_val = tbl->hash(pkey, NULL) & tbl->hash_mask;
388 NEIGH_CACHE_STAT_INC(tbl, lookups);
390 read_lock_bh(&tbl->lock);
391 for (n = tbl->hash_buckets[hash_val]; n; n = n->next) {
392 if (!memcmp(n->primary_key, pkey, key_len)) {
393 neigh_hold(n);
394 NEIGH_CACHE_STAT_INC(tbl, hits);
395 break;
398 read_unlock_bh(&tbl->lock);
399 return n;
402 struct neighbour *neigh_create(struct neigh_table *tbl, const void *pkey,
403 struct net_device *dev)
405 u32 hash_val;
406 int key_len = tbl->key_len;
407 int error;
408 struct neighbour *n1, *rc, *n = neigh_alloc(tbl);
410 if (!n) {
411 rc = ERR_PTR(-ENOBUFS);
412 goto out;
415 memcpy(n->primary_key, pkey, key_len);
416 n->dev = dev;
417 dev_hold(dev);
419 /* Protocol specific setup. */
420 if (tbl->constructor && (error = tbl->constructor(n)) < 0) {
421 rc = ERR_PTR(error);
422 goto out_neigh_release;
425 /* Device specific setup. */
426 if (n->parms->neigh_setup &&
427 (error = n->parms->neigh_setup(n)) < 0) {
428 rc = ERR_PTR(error);
429 goto out_neigh_release;
432 n->confirmed = jiffies - (n->parms->base_reachable_time << 1);
434 write_lock_bh(&tbl->lock);
436 if (atomic_read(&tbl->entries) > (tbl->hash_mask + 1))
437 neigh_hash_grow(tbl, (tbl->hash_mask + 1) << 1);
439 hash_val = tbl->hash(pkey, dev) & tbl->hash_mask;
441 if (n->parms->dead) {
442 rc = ERR_PTR(-EINVAL);
443 goto out_tbl_unlock;
446 for (n1 = tbl->hash_buckets[hash_val]; n1; n1 = n1->next) {
447 if (dev == n1->dev && !memcmp(n1->primary_key, pkey, key_len)) {
448 neigh_hold(n1);
449 rc = n1;
450 goto out_tbl_unlock;
454 n->next = tbl->hash_buckets[hash_val];
455 tbl->hash_buckets[hash_val] = n;
456 n->dead = 0;
457 neigh_hold(n);
458 write_unlock_bh(&tbl->lock);
459 NEIGH_PRINTK2("neigh %p is created.\n", n);
460 rc = n;
461 out:
462 return rc;
463 out_tbl_unlock:
464 write_unlock_bh(&tbl->lock);
465 out_neigh_release:
466 neigh_release(n);
467 goto out;
470 struct pneigh_entry * pneigh_lookup(struct neigh_table *tbl, const void *pkey,
471 struct net_device *dev, int creat)
473 struct pneigh_entry *n;
474 int key_len = tbl->key_len;
475 u32 hash_val = *(u32 *)(pkey + key_len - 4);
477 hash_val ^= (hash_val >> 16);
478 hash_val ^= hash_val >> 8;
479 hash_val ^= hash_val >> 4;
480 hash_val &= PNEIGH_HASHMASK;
482 read_lock_bh(&tbl->lock);
484 for (n = tbl->phash_buckets[hash_val]; n; n = n->next) {
485 if (!memcmp(n->key, pkey, key_len) &&
486 (n->dev == dev || !n->dev)) {
487 read_unlock_bh(&tbl->lock);
488 goto out;
491 read_unlock_bh(&tbl->lock);
492 n = NULL;
493 if (!creat)
494 goto out;
496 n = kmalloc(sizeof(*n) + key_len, GFP_KERNEL);
497 if (!n)
498 goto out;
500 memcpy(n->key, pkey, key_len);
501 n->dev = dev;
502 if (dev)
503 dev_hold(dev);
505 if (tbl->pconstructor && tbl->pconstructor(n)) {
506 if (dev)
507 dev_put(dev);
508 kfree(n);
509 n = NULL;
510 goto out;
513 write_lock_bh(&tbl->lock);
514 n->next = tbl->phash_buckets[hash_val];
515 tbl->phash_buckets[hash_val] = n;
516 write_unlock_bh(&tbl->lock);
517 out:
518 return n;
522 int pneigh_delete(struct neigh_table *tbl, const void *pkey,
523 struct net_device *dev)
525 struct pneigh_entry *n, **np;
526 int key_len = tbl->key_len;
527 u32 hash_val = *(u32 *)(pkey + key_len - 4);
529 hash_val ^= (hash_val >> 16);
530 hash_val ^= hash_val >> 8;
531 hash_val ^= hash_val >> 4;
532 hash_val &= PNEIGH_HASHMASK;
534 write_lock_bh(&tbl->lock);
535 for (np = &tbl->phash_buckets[hash_val]; (n = *np) != NULL;
536 np = &n->next) {
537 if (!memcmp(n->key, pkey, key_len) && n->dev == dev) {
538 *np = n->next;
539 write_unlock_bh(&tbl->lock);
540 if (tbl->pdestructor)
541 tbl->pdestructor(n);
542 if (n->dev)
543 dev_put(n->dev);
544 kfree(n);
545 return 0;
548 write_unlock_bh(&tbl->lock);
549 return -ENOENT;
552 static int pneigh_ifdown(struct neigh_table *tbl, struct net_device *dev)
554 struct pneigh_entry *n, **np;
555 u32 h;
557 for (h = 0; h <= PNEIGH_HASHMASK; h++) {
558 np = &tbl->phash_buckets[h];
559 while ((n = *np) != NULL) {
560 if (!dev || n->dev == dev) {
561 *np = n->next;
562 if (tbl->pdestructor)
563 tbl->pdestructor(n);
564 if (n->dev)
565 dev_put(n->dev);
566 kfree(n);
567 continue;
569 np = &n->next;
572 return -ENOENT;
577 * neighbour must already be out of the table;
580 void neigh_destroy(struct neighbour *neigh)
582 struct hh_cache *hh;
584 NEIGH_CACHE_STAT_INC(neigh->tbl, destroys);
586 if (!neigh->dead) {
587 printk(KERN_WARNING
588 "Destroying alive neighbour %p\n", neigh);
589 dump_stack();
590 return;
593 if (neigh_del_timer(neigh))
594 printk(KERN_WARNING "Impossible event.\n");
596 while ((hh = neigh->hh) != NULL) {
597 neigh->hh = hh->hh_next;
598 hh->hh_next = NULL;
599 write_lock_bh(&hh->hh_lock);
600 hh->hh_output = neigh_blackhole;
601 write_unlock_bh(&hh->hh_lock);
602 if (atomic_dec_and_test(&hh->hh_refcnt))
603 kfree(hh);
606 if (neigh->ops && neigh->ops->destructor)
607 (neigh->ops->destructor)(neigh);
609 skb_queue_purge(&neigh->arp_queue);
611 dev_put(neigh->dev);
612 neigh_parms_put(neigh->parms);
614 NEIGH_PRINTK2("neigh %p is destroyed.\n", neigh);
616 atomic_dec(&neigh->tbl->entries);
617 kmem_cache_free(neigh->tbl->kmem_cachep, neigh);
620 /* Neighbour state is suspicious;
621 disable fast path.
623 Called with write_locked neigh.
625 static void neigh_suspect(struct neighbour *neigh)
627 struct hh_cache *hh;
629 NEIGH_PRINTK2("neigh %p is suspected.\n", neigh);
631 neigh->output = neigh->ops->output;
633 for (hh = neigh->hh; hh; hh = hh->hh_next)
634 hh->hh_output = neigh->ops->output;
637 /* Neighbour state is OK;
638 enable fast path.
640 Called with write_locked neigh.
642 static void neigh_connect(struct neighbour *neigh)
644 struct hh_cache *hh;
646 NEIGH_PRINTK2("neigh %p is connected.\n", neigh);
648 neigh->output = neigh->ops->connected_output;
650 for (hh = neigh->hh; hh; hh = hh->hh_next)
651 hh->hh_output = neigh->ops->hh_output;
654 static void neigh_periodic_timer(unsigned long arg)
656 struct neigh_table *tbl = (struct neigh_table *)arg;
657 struct neighbour *n, **np;
658 unsigned long expire, now = jiffies;
660 NEIGH_CACHE_STAT_INC(tbl, periodic_gc_runs);
662 write_lock(&tbl->lock);
665 * periodically recompute ReachableTime from random function
668 if (time_after(now, tbl->last_rand + 300 * HZ)) {
669 struct neigh_parms *p;
670 tbl->last_rand = now;
671 for (p = &tbl->parms; p; p = p->next)
672 p->reachable_time =
673 neigh_rand_reach_time(p->base_reachable_time);
676 np = &tbl->hash_buckets[tbl->hash_chain_gc];
677 tbl->hash_chain_gc = ((tbl->hash_chain_gc + 1) & tbl->hash_mask);
679 while ((n = *np) != NULL) {
680 unsigned int state;
682 write_lock(&n->lock);
684 state = n->nud_state;
685 if (state & (NUD_PERMANENT | NUD_IN_TIMER)) {
686 write_unlock(&n->lock);
687 goto next_elt;
690 if (time_before(n->used, n->confirmed))
691 n->used = n->confirmed;
693 if (atomic_read(&n->refcnt) == 1 &&
694 (state == NUD_FAILED ||
695 time_after(now, n->used + n->parms->gc_staletime))) {
696 *np = n->next;
697 n->dead = 1;
698 write_unlock(&n->lock);
699 neigh_release(n);
700 continue;
702 write_unlock(&n->lock);
704 next_elt:
705 np = &n->next;
708 /* Cycle through all hash buckets every base_reachable_time/2 ticks.
709 * ARP entry timeouts range from 1/2 base_reachable_time to 3/2
710 * base_reachable_time.
712 expire = tbl->parms.base_reachable_time >> 1;
713 expire /= (tbl->hash_mask + 1);
714 if (!expire)
715 expire = 1;
717 mod_timer(&tbl->gc_timer, now + expire);
719 write_unlock(&tbl->lock);
722 static __inline__ int neigh_max_probes(struct neighbour *n)
724 struct neigh_parms *p = n->parms;
725 return (n->nud_state & NUD_PROBE ?
726 p->ucast_probes :
727 p->ucast_probes + p->app_probes + p->mcast_probes);
731 /* Called when a timer expires for a neighbour entry. */
733 static void neigh_timer_handler(unsigned long arg)
735 unsigned long now, next;
736 struct neighbour *neigh = (struct neighbour *)arg;
737 unsigned state;
738 int notify = 0;
740 write_lock(&neigh->lock);
742 state = neigh->nud_state;
743 now = jiffies;
744 next = now + HZ;
746 if (!(state & NUD_IN_TIMER)) {
747 #ifndef CONFIG_SMP
748 printk(KERN_WARNING "neigh: timer & !nud_in_timer\n");
749 #endif
750 goto out;
753 if (state & NUD_REACHABLE) {
754 if (time_before_eq(now,
755 neigh->confirmed + neigh->parms->reachable_time)) {
756 NEIGH_PRINTK2("neigh %p is still alive.\n", neigh);
757 next = neigh->confirmed + neigh->parms->reachable_time;
758 } else if (time_before_eq(now,
759 neigh->used + neigh->parms->delay_probe_time)) {
760 NEIGH_PRINTK2("neigh %p is delayed.\n", neigh);
761 neigh->nud_state = NUD_DELAY;
762 neigh_suspect(neigh);
763 next = now + neigh->parms->delay_probe_time;
764 } else {
765 NEIGH_PRINTK2("neigh %p is suspected.\n", neigh);
766 neigh->nud_state = NUD_STALE;
767 neigh_suspect(neigh);
769 } else if (state & NUD_DELAY) {
770 if (time_before_eq(now,
771 neigh->confirmed + neigh->parms->delay_probe_time)) {
772 NEIGH_PRINTK2("neigh %p is now reachable.\n", neigh);
773 neigh->nud_state = NUD_REACHABLE;
774 neigh_connect(neigh);
775 next = neigh->confirmed + neigh->parms->reachable_time;
776 } else {
777 NEIGH_PRINTK2("neigh %p is probed.\n", neigh);
778 neigh->nud_state = NUD_PROBE;
779 atomic_set(&neigh->probes, 0);
780 next = now + neigh->parms->retrans_time;
782 } else {
783 /* NUD_PROBE|NUD_INCOMPLETE */
784 next = now + neigh->parms->retrans_time;
787 if ((neigh->nud_state & (NUD_INCOMPLETE | NUD_PROBE)) &&
788 atomic_read(&neigh->probes) >= neigh_max_probes(neigh)) {
789 struct sk_buff *skb;
791 neigh->nud_state = NUD_FAILED;
792 notify = 1;
793 NEIGH_CACHE_STAT_INC(neigh->tbl, res_failed);
794 NEIGH_PRINTK2("neigh %p is failed.\n", neigh);
796 /* It is very thin place. report_unreachable is very complicated
797 routine. Particularly, it can hit the same neighbour entry!
799 So that, we try to be accurate and avoid dead loop. --ANK
801 while (neigh->nud_state == NUD_FAILED &&
802 (skb = __skb_dequeue(&neigh->arp_queue)) != NULL) {
803 write_unlock(&neigh->lock);
804 neigh->ops->error_report(neigh, skb);
805 write_lock(&neigh->lock);
807 skb_queue_purge(&neigh->arp_queue);
810 if (neigh->nud_state & NUD_IN_TIMER) {
811 neigh_hold(neigh);
812 if (time_before(next, jiffies + HZ/2))
813 next = jiffies + HZ/2;
814 neigh->timer.expires = next;
815 add_timer(&neigh->timer);
817 if (neigh->nud_state & (NUD_INCOMPLETE | NUD_PROBE)) {
818 struct sk_buff *skb = skb_peek(&neigh->arp_queue);
819 /* keep skb alive even if arp_queue overflows */
820 if (skb)
821 skb_get(skb);
822 write_unlock(&neigh->lock);
823 neigh->ops->solicit(neigh, skb);
824 atomic_inc(&neigh->probes);
825 if (skb)
826 kfree_skb(skb);
827 } else {
828 out:
829 write_unlock(&neigh->lock);
832 #ifdef CONFIG_ARPD
833 if (notify && neigh->parms->app_probes)
834 neigh_app_notify(neigh);
835 #endif
836 neigh_release(neigh);
839 int __neigh_event_send(struct neighbour *neigh, struct sk_buff *skb)
841 int rc;
842 unsigned long now;
844 write_lock_bh(&neigh->lock);
846 rc = 0;
847 if (neigh->nud_state & (NUD_CONNECTED | NUD_DELAY | NUD_PROBE))
848 goto out_unlock_bh;
850 now = jiffies;
852 if (!(neigh->nud_state & (NUD_STALE | NUD_INCOMPLETE))) {
853 if (neigh->parms->mcast_probes + neigh->parms->app_probes) {
854 atomic_set(&neigh->probes, neigh->parms->ucast_probes);
855 neigh->nud_state = NUD_INCOMPLETE;
856 neigh_hold(neigh);
857 neigh->timer.expires = now + 1;
858 add_timer(&neigh->timer);
859 } else {
860 neigh->nud_state = NUD_FAILED;
861 write_unlock_bh(&neigh->lock);
863 if (skb)
864 kfree_skb(skb);
865 return 1;
867 } else if (neigh->nud_state & NUD_STALE) {
868 NEIGH_PRINTK2("neigh %p is delayed.\n", neigh);
869 neigh_hold(neigh);
870 neigh->nud_state = NUD_DELAY;
871 neigh->timer.expires = jiffies + neigh->parms->delay_probe_time;
872 add_timer(&neigh->timer);
875 if (neigh->nud_state == NUD_INCOMPLETE) {
876 if (skb) {
877 if (skb_queue_len(&neigh->arp_queue) >=
878 neigh->parms->queue_len) {
879 struct sk_buff *buff;
880 buff = neigh->arp_queue.next;
881 __skb_unlink(buff, &neigh->arp_queue);
882 kfree_skb(buff);
884 __skb_queue_tail(&neigh->arp_queue, skb);
886 rc = 1;
888 out_unlock_bh:
889 write_unlock_bh(&neigh->lock);
890 return rc;
893 static __inline__ void neigh_update_hhs(struct neighbour *neigh)
895 struct hh_cache *hh;
896 void (*update)(struct hh_cache*, struct net_device*, unsigned char *) =
897 neigh->dev->header_cache_update;
899 if (update) {
900 for (hh = neigh->hh; hh; hh = hh->hh_next) {
901 write_lock_bh(&hh->hh_lock);
902 update(hh, neigh->dev, neigh->ha);
903 write_unlock_bh(&hh->hh_lock);
910 /* Generic update routine.
911 -- lladdr is new lladdr or NULL, if it is not supplied.
912 -- new is new state.
913 -- flags
914 NEIGH_UPDATE_F_OVERRIDE allows to override existing lladdr,
915 if it is different.
916 NEIGH_UPDATE_F_WEAK_OVERRIDE will suspect existing "connected"
917 lladdr instead of overriding it
918 if it is different.
919 It also allows to retain current state
920 if lladdr is unchanged.
921 NEIGH_UPDATE_F_ADMIN means that the change is administrative.
923 NEIGH_UPDATE_F_OVERRIDE_ISROUTER allows to override existing
924 NTF_ROUTER flag.
925 NEIGH_UPDATE_F_ISROUTER indicates if the neighbour is known as
926 a router.
928 Caller MUST hold reference count on the entry.
931 int neigh_update(struct neighbour *neigh, const u8 *lladdr, u8 new,
932 u32 flags)
934 u8 old;
935 int err;
936 #ifdef CONFIG_ARPD
937 int notify = 0;
938 #endif
939 struct net_device *dev;
940 int update_isrouter = 0;
942 write_lock_bh(&neigh->lock);
944 dev = neigh->dev;
945 old = neigh->nud_state;
946 err = -EPERM;
948 if (!(flags & NEIGH_UPDATE_F_ADMIN) &&
949 (old & (NUD_NOARP | NUD_PERMANENT)))
950 goto out;
952 if (!(new & NUD_VALID)) {
953 neigh_del_timer(neigh);
954 if (old & NUD_CONNECTED)
955 neigh_suspect(neigh);
956 neigh->nud_state = new;
957 err = 0;
958 #ifdef CONFIG_ARPD
959 notify = old & NUD_VALID;
960 #endif
961 goto out;
964 /* Compare new lladdr with cached one */
965 if (!dev->addr_len) {
966 /* First case: device needs no address. */
967 lladdr = neigh->ha;
968 } else if (lladdr) {
969 /* The second case: if something is already cached
970 and a new address is proposed:
971 - compare new & old
972 - if they are different, check override flag
974 if ((old & NUD_VALID) &&
975 !memcmp(lladdr, neigh->ha, dev->addr_len))
976 lladdr = neigh->ha;
977 } else {
978 /* No address is supplied; if we know something,
979 use it, otherwise discard the request.
981 err = -EINVAL;
982 if (!(old & NUD_VALID))
983 goto out;
984 lladdr = neigh->ha;
987 if (new & NUD_CONNECTED)
988 neigh->confirmed = jiffies;
989 neigh->updated = jiffies;
991 /* If entry was valid and address is not changed,
992 do not change entry state, if new one is STALE.
994 err = 0;
995 update_isrouter = flags & NEIGH_UPDATE_F_OVERRIDE_ISROUTER;
996 if (old & NUD_VALID) {
997 if (lladdr != neigh->ha && !(flags & NEIGH_UPDATE_F_OVERRIDE)) {
998 update_isrouter = 0;
999 if ((flags & NEIGH_UPDATE_F_WEAK_OVERRIDE) &&
1000 (old & NUD_CONNECTED)) {
1001 lladdr = neigh->ha;
1002 new = NUD_STALE;
1003 } else
1004 goto out;
1005 } else {
1006 if (lladdr == neigh->ha && new == NUD_STALE &&
1007 ((flags & NEIGH_UPDATE_F_WEAK_OVERRIDE) ||
1008 (old & NUD_CONNECTED))
1010 new = old;
1014 if (new != old) {
1015 neigh_del_timer(neigh);
1016 if (new & NUD_IN_TIMER) {
1017 neigh_hold(neigh);
1018 neigh->timer.expires = jiffies +
1019 ((new & NUD_REACHABLE) ?
1020 neigh->parms->reachable_time : 0);
1021 add_timer(&neigh->timer);
1023 neigh->nud_state = new;
1026 if (lladdr != neigh->ha) {
1027 memcpy(&neigh->ha, lladdr, dev->addr_len);
1028 neigh_update_hhs(neigh);
1029 if (!(new & NUD_CONNECTED))
1030 neigh->confirmed = jiffies -
1031 (neigh->parms->base_reachable_time << 1);
1032 #ifdef CONFIG_ARPD
1033 notify = 1;
1034 #endif
1036 if (new == old)
1037 goto out;
1038 if (new & NUD_CONNECTED)
1039 neigh_connect(neigh);
1040 else
1041 neigh_suspect(neigh);
1042 if (!(old & NUD_VALID)) {
1043 struct sk_buff *skb;
1045 /* Again: avoid dead loop if something went wrong */
1047 while (neigh->nud_state & NUD_VALID &&
1048 (skb = __skb_dequeue(&neigh->arp_queue)) != NULL) {
1049 struct neighbour *n1 = neigh;
1050 write_unlock_bh(&neigh->lock);
1051 /* On shaper/eql skb->dst->neighbour != neigh :( */
1052 if (skb->dst && skb->dst->neighbour)
1053 n1 = skb->dst->neighbour;
1054 n1->output(skb);
1055 write_lock_bh(&neigh->lock);
1057 skb_queue_purge(&neigh->arp_queue);
1059 out:
1060 if (update_isrouter) {
1061 neigh->flags = (flags & NEIGH_UPDATE_F_ISROUTER) ?
1062 (neigh->flags | NTF_ROUTER) :
1063 (neigh->flags & ~NTF_ROUTER);
1065 write_unlock_bh(&neigh->lock);
1066 #ifdef CONFIG_ARPD
1067 if (notify && neigh->parms->app_probes)
1068 neigh_app_notify(neigh);
1069 #endif
1070 return err;
1073 struct neighbour *neigh_event_ns(struct neigh_table *tbl,
1074 u8 *lladdr, void *saddr,
1075 struct net_device *dev)
1077 struct neighbour *neigh = __neigh_lookup(tbl, saddr, dev,
1078 lladdr || !dev->addr_len);
1079 if (neigh)
1080 neigh_update(neigh, lladdr, NUD_STALE,
1081 NEIGH_UPDATE_F_OVERRIDE);
1082 return neigh;
1085 static void neigh_hh_init(struct neighbour *n, struct dst_entry *dst,
1086 u16 protocol)
1088 struct hh_cache *hh;
1089 struct net_device *dev = dst->dev;
1091 for (hh = n->hh; hh; hh = hh->hh_next)
1092 if (hh->hh_type == protocol)
1093 break;
1095 if (!hh && (hh = kmalloc(sizeof(*hh), GFP_ATOMIC)) != NULL) {
1096 memset(hh, 0, sizeof(struct hh_cache));
1097 rwlock_init(&hh->hh_lock);
1098 hh->hh_type = protocol;
1099 atomic_set(&hh->hh_refcnt, 0);
1100 hh->hh_next = NULL;
1101 if (dev->hard_header_cache(n, hh)) {
1102 kfree(hh);
1103 hh = NULL;
1104 } else {
1105 atomic_inc(&hh->hh_refcnt);
1106 hh->hh_next = n->hh;
1107 n->hh = hh;
1108 if (n->nud_state & NUD_CONNECTED)
1109 hh->hh_output = n->ops->hh_output;
1110 else
1111 hh->hh_output = n->ops->output;
1114 if (hh) {
1115 atomic_inc(&hh->hh_refcnt);
1116 dst->hh = hh;
1120 /* This function can be used in contexts, where only old dev_queue_xmit
1121 worked, f.e. if you want to override normal output path (eql, shaper),
1122 but resolution is not made yet.
1125 int neigh_compat_output(struct sk_buff *skb)
1127 struct net_device *dev = skb->dev;
1129 __skb_pull(skb, skb->nh.raw - skb->data);
1131 if (dev->hard_header &&
1132 dev->hard_header(skb, dev, ntohs(skb->protocol), NULL, NULL,
1133 skb->len) < 0 &&
1134 dev->rebuild_header(skb))
1135 return 0;
1137 return dev_queue_xmit(skb);
1140 /* Slow and careful. */
1142 int neigh_resolve_output(struct sk_buff *skb)
1144 struct dst_entry *dst = skb->dst;
1145 struct neighbour *neigh;
1146 int rc = 0;
1148 if (!dst || !(neigh = dst->neighbour))
1149 goto discard;
1151 __skb_pull(skb, skb->nh.raw - skb->data);
1153 if (!neigh_event_send(neigh, skb)) {
1154 int err;
1155 struct net_device *dev = neigh->dev;
1156 if (dev->hard_header_cache && !dst->hh) {
1157 write_lock_bh(&neigh->lock);
1158 if (!dst->hh)
1159 neigh_hh_init(neigh, dst, dst->ops->protocol);
1160 err = dev->hard_header(skb, dev, ntohs(skb->protocol),
1161 neigh->ha, NULL, skb->len);
1162 write_unlock_bh(&neigh->lock);
1163 } else {
1164 read_lock_bh(&neigh->lock);
1165 err = dev->hard_header(skb, dev, ntohs(skb->protocol),
1166 neigh->ha, NULL, skb->len);
1167 read_unlock_bh(&neigh->lock);
1169 if (err >= 0)
1170 rc = neigh->ops->queue_xmit(skb);
1171 else
1172 goto out_kfree_skb;
1174 out:
1175 return rc;
1176 discard:
1177 NEIGH_PRINTK1("neigh_resolve_output: dst=%p neigh=%p\n",
1178 dst, dst ? dst->neighbour : NULL);
1179 out_kfree_skb:
1180 rc = -EINVAL;
1181 kfree_skb(skb);
1182 goto out;
1185 /* As fast as possible without hh cache */
1187 int neigh_connected_output(struct sk_buff *skb)
1189 int err;
1190 struct dst_entry *dst = skb->dst;
1191 struct neighbour *neigh = dst->neighbour;
1192 struct net_device *dev = neigh->dev;
1194 __skb_pull(skb, skb->nh.raw - skb->data);
1196 read_lock_bh(&neigh->lock);
1197 err = dev->hard_header(skb, dev, ntohs(skb->protocol),
1198 neigh->ha, NULL, skb->len);
1199 read_unlock_bh(&neigh->lock);
1200 if (err >= 0)
1201 err = neigh->ops->queue_xmit(skb);
1202 else {
1203 err = -EINVAL;
1204 kfree_skb(skb);
1206 return err;
1209 static void neigh_proxy_process(unsigned long arg)
1211 struct neigh_table *tbl = (struct neigh_table *)arg;
1212 long sched_next = 0;
1213 unsigned long now = jiffies;
1214 struct sk_buff *skb;
1216 spin_lock(&tbl->proxy_queue.lock);
1218 skb = tbl->proxy_queue.next;
1220 while (skb != (struct sk_buff *)&tbl->proxy_queue) {
1221 struct sk_buff *back = skb;
1222 long tdif = NEIGH_CB(back)->sched_next - now;
1224 skb = skb->next;
1225 if (tdif <= 0) {
1226 struct net_device *dev = back->dev;
1227 __skb_unlink(back, &tbl->proxy_queue);
1228 if (tbl->proxy_redo && netif_running(dev))
1229 tbl->proxy_redo(back);
1230 else
1231 kfree_skb(back);
1233 dev_put(dev);
1234 } else if (!sched_next || tdif < sched_next)
1235 sched_next = tdif;
1237 del_timer(&tbl->proxy_timer);
1238 if (sched_next)
1239 mod_timer(&tbl->proxy_timer, jiffies + sched_next);
1240 spin_unlock(&tbl->proxy_queue.lock);
1243 void pneigh_enqueue(struct neigh_table *tbl, struct neigh_parms *p,
1244 struct sk_buff *skb)
1246 unsigned long now = jiffies;
1247 unsigned long sched_next = now + (net_random() % p->proxy_delay);
1249 if (tbl->proxy_queue.qlen > p->proxy_qlen) {
1250 kfree_skb(skb);
1251 return;
1254 NEIGH_CB(skb)->sched_next = sched_next;
1255 NEIGH_CB(skb)->flags |= LOCALLY_ENQUEUED;
1257 spin_lock(&tbl->proxy_queue.lock);
1258 if (del_timer(&tbl->proxy_timer)) {
1259 if (time_before(tbl->proxy_timer.expires, sched_next))
1260 sched_next = tbl->proxy_timer.expires;
1262 dst_release(skb->dst);
1263 skb->dst = NULL;
1264 dev_hold(skb->dev);
1265 __skb_queue_tail(&tbl->proxy_queue, skb);
1266 mod_timer(&tbl->proxy_timer, sched_next);
1267 spin_unlock(&tbl->proxy_queue.lock);
1271 struct neigh_parms *neigh_parms_alloc(struct net_device *dev,
1272 struct neigh_table *tbl)
1274 struct neigh_parms *p = kmalloc(sizeof(*p), GFP_KERNEL);
1276 if (p) {
1277 memcpy(p, &tbl->parms, sizeof(*p));
1278 p->tbl = tbl;
1279 atomic_set(&p->refcnt, 1);
1280 INIT_RCU_HEAD(&p->rcu_head);
1281 p->reachable_time =
1282 neigh_rand_reach_time(p->base_reachable_time);
1283 if (dev) {
1284 if (dev->neigh_setup && dev->neigh_setup(dev, p)) {
1285 kfree(p);
1286 return NULL;
1289 dev_hold(dev);
1290 p->dev = dev;
1292 p->sysctl_table = NULL;
1293 write_lock_bh(&tbl->lock);
1294 p->next = tbl->parms.next;
1295 tbl->parms.next = p;
1296 write_unlock_bh(&tbl->lock);
1298 return p;
1301 static void neigh_rcu_free_parms(struct rcu_head *head)
1303 struct neigh_parms *parms =
1304 container_of(head, struct neigh_parms, rcu_head);
1306 neigh_parms_put(parms);
1309 void neigh_parms_release(struct neigh_table *tbl, struct neigh_parms *parms)
1311 struct neigh_parms **p;
1313 if (!parms || parms == &tbl->parms)
1314 return;
1315 write_lock_bh(&tbl->lock);
1316 for (p = &tbl->parms.next; *p; p = &(*p)->next) {
1317 if (*p == parms) {
1318 *p = parms->next;
1319 parms->dead = 1;
1320 write_unlock_bh(&tbl->lock);
1321 if (parms->dev)
1322 dev_put(parms->dev);
1323 call_rcu(&parms->rcu_head, neigh_rcu_free_parms);
1324 return;
1327 write_unlock_bh(&tbl->lock);
1328 NEIGH_PRINTK1("neigh_parms_release: not found\n");
1331 void neigh_parms_destroy(struct neigh_parms *parms)
1333 kfree(parms);
1337 void neigh_table_init(struct neigh_table *tbl)
1339 unsigned long now = jiffies;
1340 unsigned long phsize;
1342 atomic_set(&tbl->parms.refcnt, 1);
1343 INIT_RCU_HEAD(&tbl->parms.rcu_head);
1344 tbl->parms.reachable_time =
1345 neigh_rand_reach_time(tbl->parms.base_reachable_time);
1347 if (!tbl->kmem_cachep)
1348 tbl->kmem_cachep = kmem_cache_create(tbl->id,
1349 tbl->entry_size,
1350 0, SLAB_HWCACHE_ALIGN,
1351 NULL, NULL);
1353 if (!tbl->kmem_cachep)
1354 panic("cannot create neighbour cache");
1356 tbl->stats = alloc_percpu(struct neigh_statistics);
1357 if (!tbl->stats)
1358 panic("cannot create neighbour cache statistics");
1360 #ifdef CONFIG_PROC_FS
1361 tbl->pde = create_proc_entry(tbl->id, 0, proc_net_stat);
1362 if (!tbl->pde)
1363 panic("cannot create neighbour proc dir entry");
1364 tbl->pde->proc_fops = &neigh_stat_seq_fops;
1365 tbl->pde->data = tbl;
1366 #endif
1368 tbl->hash_mask = 1;
1369 tbl->hash_buckets = neigh_hash_alloc(tbl->hash_mask + 1);
1371 phsize = (PNEIGH_HASHMASK + 1) * sizeof(struct pneigh_entry *);
1372 tbl->phash_buckets = kmalloc(phsize, GFP_KERNEL);
1374 if (!tbl->hash_buckets || !tbl->phash_buckets)
1375 panic("cannot allocate neighbour cache hashes");
1377 memset(tbl->phash_buckets, 0, phsize);
1379 get_random_bytes(&tbl->hash_rnd, sizeof(tbl->hash_rnd));
1381 rwlock_init(&tbl->lock);
1382 init_timer(&tbl->gc_timer);
1383 tbl->gc_timer.data = (unsigned long)tbl;
1384 tbl->gc_timer.function = neigh_periodic_timer;
1385 tbl->gc_timer.expires = now + 1;
1386 add_timer(&tbl->gc_timer);
1388 init_timer(&tbl->proxy_timer);
1389 tbl->proxy_timer.data = (unsigned long)tbl;
1390 tbl->proxy_timer.function = neigh_proxy_process;
1391 skb_queue_head_init(&tbl->proxy_queue);
1393 tbl->last_flush = now;
1394 tbl->last_rand = now + tbl->parms.reachable_time * 20;
1395 write_lock(&neigh_tbl_lock);
1396 tbl->next = neigh_tables;
1397 neigh_tables = tbl;
1398 write_unlock(&neigh_tbl_lock);
1401 int neigh_table_clear(struct neigh_table *tbl)
1403 struct neigh_table **tp;
1405 /* It is not clean... Fix it to unload IPv6 module safely */
1406 del_timer_sync(&tbl->gc_timer);
1407 del_timer_sync(&tbl->proxy_timer);
1408 pneigh_queue_purge(&tbl->proxy_queue);
1409 neigh_ifdown(tbl, NULL);
1410 if (atomic_read(&tbl->entries))
1411 printk(KERN_CRIT "neighbour leakage\n");
1412 write_lock(&neigh_tbl_lock);
1413 for (tp = &neigh_tables; *tp; tp = &(*tp)->next) {
1414 if (*tp == tbl) {
1415 *tp = tbl->next;
1416 break;
1419 write_unlock(&neigh_tbl_lock);
1421 neigh_hash_free(tbl->hash_buckets, tbl->hash_mask + 1);
1422 tbl->hash_buckets = NULL;
1424 kfree(tbl->phash_buckets);
1425 tbl->phash_buckets = NULL;
1427 return 0;
1430 int neigh_delete(struct sk_buff *skb, struct nlmsghdr *nlh, void *arg)
1432 struct ndmsg *ndm = NLMSG_DATA(nlh);
1433 struct rtattr **nda = arg;
1434 struct neigh_table *tbl;
1435 struct net_device *dev = NULL;
1436 int err = -ENODEV;
1438 if (ndm->ndm_ifindex &&
1439 (dev = dev_get_by_index(ndm->ndm_ifindex)) == NULL)
1440 goto out;
1442 read_lock(&neigh_tbl_lock);
1443 for (tbl = neigh_tables; tbl; tbl = tbl->next) {
1444 struct rtattr *dst_attr = nda[NDA_DST - 1];
1445 struct neighbour *n;
1447 if (tbl->family != ndm->ndm_family)
1448 continue;
1449 read_unlock(&neigh_tbl_lock);
1451 err = -EINVAL;
1452 if (!dst_attr || RTA_PAYLOAD(dst_attr) < tbl->key_len)
1453 goto out_dev_put;
1455 if (ndm->ndm_flags & NTF_PROXY) {
1456 err = pneigh_delete(tbl, RTA_DATA(dst_attr), dev);
1457 goto out_dev_put;
1460 if (!dev)
1461 goto out;
1463 n = neigh_lookup(tbl, RTA_DATA(dst_attr), dev);
1464 if (n) {
1465 err = neigh_update(n, NULL, NUD_FAILED,
1466 NEIGH_UPDATE_F_OVERRIDE|
1467 NEIGH_UPDATE_F_ADMIN);
1468 neigh_release(n);
1470 goto out_dev_put;
1472 read_unlock(&neigh_tbl_lock);
1473 err = -EADDRNOTAVAIL;
1474 out_dev_put:
1475 if (dev)
1476 dev_put(dev);
1477 out:
1478 return err;
1481 int neigh_add(struct sk_buff *skb, struct nlmsghdr *nlh, void *arg)
1483 struct ndmsg *ndm = NLMSG_DATA(nlh);
1484 struct rtattr **nda = arg;
1485 struct neigh_table *tbl;
1486 struct net_device *dev = NULL;
1487 int err = -ENODEV;
1489 if (ndm->ndm_ifindex &&
1490 (dev = dev_get_by_index(ndm->ndm_ifindex)) == NULL)
1491 goto out;
1493 read_lock(&neigh_tbl_lock);
1494 for (tbl = neigh_tables; tbl; tbl = tbl->next) {
1495 struct rtattr *lladdr_attr = nda[NDA_LLADDR - 1];
1496 struct rtattr *dst_attr = nda[NDA_DST - 1];
1497 int override = 1;
1498 struct neighbour *n;
1500 if (tbl->family != ndm->ndm_family)
1501 continue;
1502 read_unlock(&neigh_tbl_lock);
1504 err = -EINVAL;
1505 if (!dst_attr || RTA_PAYLOAD(dst_attr) < tbl->key_len)
1506 goto out_dev_put;
1508 if (ndm->ndm_flags & NTF_PROXY) {
1509 err = -ENOBUFS;
1510 if (pneigh_lookup(tbl, RTA_DATA(dst_attr), dev, 1))
1511 err = 0;
1512 goto out_dev_put;
1515 err = -EINVAL;
1516 if (!dev)
1517 goto out;
1518 if (lladdr_attr && RTA_PAYLOAD(lladdr_attr) < dev->addr_len)
1519 goto out_dev_put;
1521 n = neigh_lookup(tbl, RTA_DATA(dst_attr), dev);
1522 if (n) {
1523 if (nlh->nlmsg_flags & NLM_F_EXCL) {
1524 err = -EEXIST;
1525 neigh_release(n);
1526 goto out_dev_put;
1529 override = nlh->nlmsg_flags & NLM_F_REPLACE;
1530 } else if (!(nlh->nlmsg_flags & NLM_F_CREATE)) {
1531 err = -ENOENT;
1532 goto out_dev_put;
1533 } else {
1534 n = __neigh_lookup_errno(tbl, RTA_DATA(dst_attr), dev);
1535 if (IS_ERR(n)) {
1536 err = PTR_ERR(n);
1537 goto out_dev_put;
1541 err = neigh_update(n,
1542 lladdr_attr ? RTA_DATA(lladdr_attr) : NULL,
1543 ndm->ndm_state,
1544 (override ? NEIGH_UPDATE_F_OVERRIDE : 0) |
1545 NEIGH_UPDATE_F_ADMIN);
1547 neigh_release(n);
1548 goto out_dev_put;
1551 read_unlock(&neigh_tbl_lock);
1552 err = -EADDRNOTAVAIL;
1553 out_dev_put:
1554 if (dev)
1555 dev_put(dev);
1556 out:
1557 return err;
1560 static int neightbl_fill_parms(struct sk_buff *skb, struct neigh_parms *parms)
1562 struct rtattr *nest = NULL;
1564 nest = RTA_NEST(skb, NDTA_PARMS);
1566 if (parms->dev)
1567 RTA_PUT_U32(skb, NDTPA_IFINDEX, parms->dev->ifindex);
1569 RTA_PUT_U32(skb, NDTPA_REFCNT, atomic_read(&parms->refcnt));
1570 RTA_PUT_U32(skb, NDTPA_QUEUE_LEN, parms->queue_len);
1571 RTA_PUT_U32(skb, NDTPA_PROXY_QLEN, parms->proxy_qlen);
1572 RTA_PUT_U32(skb, NDTPA_APP_PROBES, parms->app_probes);
1573 RTA_PUT_U32(skb, NDTPA_UCAST_PROBES, parms->ucast_probes);
1574 RTA_PUT_U32(skb, NDTPA_MCAST_PROBES, parms->mcast_probes);
1575 RTA_PUT_MSECS(skb, NDTPA_REACHABLE_TIME, parms->reachable_time);
1576 RTA_PUT_MSECS(skb, NDTPA_BASE_REACHABLE_TIME,
1577 parms->base_reachable_time);
1578 RTA_PUT_MSECS(skb, NDTPA_GC_STALETIME, parms->gc_staletime);
1579 RTA_PUT_MSECS(skb, NDTPA_DELAY_PROBE_TIME, parms->delay_probe_time);
1580 RTA_PUT_MSECS(skb, NDTPA_RETRANS_TIME, parms->retrans_time);
1581 RTA_PUT_MSECS(skb, NDTPA_ANYCAST_DELAY, parms->anycast_delay);
1582 RTA_PUT_MSECS(skb, NDTPA_PROXY_DELAY, parms->proxy_delay);
1583 RTA_PUT_MSECS(skb, NDTPA_LOCKTIME, parms->locktime);
1585 return RTA_NEST_END(skb, nest);
1587 rtattr_failure:
1588 return RTA_NEST_CANCEL(skb, nest);
1591 static int neightbl_fill_info(struct neigh_table *tbl, struct sk_buff *skb,
1592 struct netlink_callback *cb)
1594 struct nlmsghdr *nlh;
1595 struct ndtmsg *ndtmsg;
1597 nlh = NLMSG_NEW_ANSWER(skb, cb, RTM_NEWNEIGHTBL, sizeof(struct ndtmsg),
1598 NLM_F_MULTI);
1600 ndtmsg = NLMSG_DATA(nlh);
1602 read_lock_bh(&tbl->lock);
1603 ndtmsg->ndtm_family = tbl->family;
1604 ndtmsg->ndtm_pad1 = 0;
1605 ndtmsg->ndtm_pad2 = 0;
1607 RTA_PUT_STRING(skb, NDTA_NAME, tbl->id);
1608 RTA_PUT_MSECS(skb, NDTA_GC_INTERVAL, tbl->gc_interval);
1609 RTA_PUT_U32(skb, NDTA_THRESH1, tbl->gc_thresh1);
1610 RTA_PUT_U32(skb, NDTA_THRESH2, tbl->gc_thresh2);
1611 RTA_PUT_U32(skb, NDTA_THRESH3, tbl->gc_thresh3);
1614 unsigned long now = jiffies;
1615 unsigned int flush_delta = now - tbl->last_flush;
1616 unsigned int rand_delta = now - tbl->last_rand;
1618 struct ndt_config ndc = {
1619 .ndtc_key_len = tbl->key_len,
1620 .ndtc_entry_size = tbl->entry_size,
1621 .ndtc_entries = atomic_read(&tbl->entries),
1622 .ndtc_last_flush = jiffies_to_msecs(flush_delta),
1623 .ndtc_last_rand = jiffies_to_msecs(rand_delta),
1624 .ndtc_hash_rnd = tbl->hash_rnd,
1625 .ndtc_hash_mask = tbl->hash_mask,
1626 .ndtc_hash_chain_gc = tbl->hash_chain_gc,
1627 .ndtc_proxy_qlen = tbl->proxy_queue.qlen,
1630 RTA_PUT(skb, NDTA_CONFIG, sizeof(ndc), &ndc);
1634 int cpu;
1635 struct ndt_stats ndst;
1637 memset(&ndst, 0, sizeof(ndst));
1639 for (cpu = 0; cpu < NR_CPUS; cpu++) {
1640 struct neigh_statistics *st;
1642 if (!cpu_possible(cpu))
1643 continue;
1645 st = per_cpu_ptr(tbl->stats, cpu);
1646 ndst.ndts_allocs += st->allocs;
1647 ndst.ndts_destroys += st->destroys;
1648 ndst.ndts_hash_grows += st->hash_grows;
1649 ndst.ndts_res_failed += st->res_failed;
1650 ndst.ndts_lookups += st->lookups;
1651 ndst.ndts_hits += st->hits;
1652 ndst.ndts_rcv_probes_mcast += st->rcv_probes_mcast;
1653 ndst.ndts_rcv_probes_ucast += st->rcv_probes_ucast;
1654 ndst.ndts_periodic_gc_runs += st->periodic_gc_runs;
1655 ndst.ndts_forced_gc_runs += st->forced_gc_runs;
1658 RTA_PUT(skb, NDTA_STATS, sizeof(ndst), &ndst);
1661 BUG_ON(tbl->parms.dev);
1662 if (neightbl_fill_parms(skb, &tbl->parms) < 0)
1663 goto rtattr_failure;
1665 read_unlock_bh(&tbl->lock);
1666 return NLMSG_END(skb, nlh);
1668 rtattr_failure:
1669 read_unlock_bh(&tbl->lock);
1670 return NLMSG_CANCEL(skb, nlh);
1672 nlmsg_failure:
1673 return -1;
1676 static int neightbl_fill_param_info(struct neigh_table *tbl,
1677 struct neigh_parms *parms,
1678 struct sk_buff *skb,
1679 struct netlink_callback *cb)
1681 struct ndtmsg *ndtmsg;
1682 struct nlmsghdr *nlh;
1684 nlh = NLMSG_NEW_ANSWER(skb, cb, RTM_NEWNEIGHTBL, sizeof(struct ndtmsg),
1685 NLM_F_MULTI);
1687 ndtmsg = NLMSG_DATA(nlh);
1689 read_lock_bh(&tbl->lock);
1690 ndtmsg->ndtm_family = tbl->family;
1691 ndtmsg->ndtm_pad1 = 0;
1692 ndtmsg->ndtm_pad2 = 0;
1693 RTA_PUT_STRING(skb, NDTA_NAME, tbl->id);
1695 if (neightbl_fill_parms(skb, parms) < 0)
1696 goto rtattr_failure;
1698 read_unlock_bh(&tbl->lock);
1699 return NLMSG_END(skb, nlh);
1701 rtattr_failure:
1702 read_unlock_bh(&tbl->lock);
1703 return NLMSG_CANCEL(skb, nlh);
1705 nlmsg_failure:
1706 return -1;
1709 static inline struct neigh_parms *lookup_neigh_params(struct neigh_table *tbl,
1710 int ifindex)
1712 struct neigh_parms *p;
1714 for (p = &tbl->parms; p; p = p->next)
1715 if ((p->dev && p->dev->ifindex == ifindex) ||
1716 (!p->dev && !ifindex))
1717 return p;
1719 return NULL;
1722 int neightbl_set(struct sk_buff *skb, struct nlmsghdr *nlh, void *arg)
1724 struct neigh_table *tbl;
1725 struct ndtmsg *ndtmsg = NLMSG_DATA(nlh);
1726 struct rtattr **tb = arg;
1727 int err = -EINVAL;
1729 if (!tb[NDTA_NAME - 1] || !RTA_PAYLOAD(tb[NDTA_NAME - 1]))
1730 return -EINVAL;
1732 read_lock(&neigh_tbl_lock);
1733 for (tbl = neigh_tables; tbl; tbl = tbl->next) {
1734 if (ndtmsg->ndtm_family && tbl->family != ndtmsg->ndtm_family)
1735 continue;
1737 if (!rtattr_strcmp(tb[NDTA_NAME - 1], tbl->id))
1738 break;
1741 if (tbl == NULL) {
1742 err = -ENOENT;
1743 goto errout;
1747 * We acquire tbl->lock to be nice to the periodic timers and
1748 * make sure they always see a consistent set of values.
1750 write_lock_bh(&tbl->lock);
1752 if (tb[NDTA_THRESH1 - 1])
1753 tbl->gc_thresh1 = RTA_GET_U32(tb[NDTA_THRESH1 - 1]);
1755 if (tb[NDTA_THRESH2 - 1])
1756 tbl->gc_thresh2 = RTA_GET_U32(tb[NDTA_THRESH2 - 1]);
1758 if (tb[NDTA_THRESH3 - 1])
1759 tbl->gc_thresh3 = RTA_GET_U32(tb[NDTA_THRESH3 - 1]);
1761 if (tb[NDTA_GC_INTERVAL - 1])
1762 tbl->gc_interval = RTA_GET_MSECS(tb[NDTA_GC_INTERVAL - 1]);
1764 if (tb[NDTA_PARMS - 1]) {
1765 struct rtattr *tbp[NDTPA_MAX];
1766 struct neigh_parms *p;
1767 u32 ifindex = 0;
1769 if (rtattr_parse_nested(tbp, NDTPA_MAX, tb[NDTA_PARMS - 1]) < 0)
1770 goto rtattr_failure;
1772 if (tbp[NDTPA_IFINDEX - 1])
1773 ifindex = RTA_GET_U32(tbp[NDTPA_IFINDEX - 1]);
1775 p = lookup_neigh_params(tbl, ifindex);
1776 if (p == NULL) {
1777 err = -ENOENT;
1778 goto rtattr_failure;
1781 if (tbp[NDTPA_QUEUE_LEN - 1])
1782 p->queue_len = RTA_GET_U32(tbp[NDTPA_QUEUE_LEN - 1]);
1784 if (tbp[NDTPA_PROXY_QLEN - 1])
1785 p->proxy_qlen = RTA_GET_U32(tbp[NDTPA_PROXY_QLEN - 1]);
1787 if (tbp[NDTPA_APP_PROBES - 1])
1788 p->app_probes = RTA_GET_U32(tbp[NDTPA_APP_PROBES - 1]);
1790 if (tbp[NDTPA_UCAST_PROBES - 1])
1791 p->ucast_probes =
1792 RTA_GET_U32(tbp[NDTPA_UCAST_PROBES - 1]);
1794 if (tbp[NDTPA_MCAST_PROBES - 1])
1795 p->mcast_probes =
1796 RTA_GET_U32(tbp[NDTPA_MCAST_PROBES - 1]);
1798 if (tbp[NDTPA_BASE_REACHABLE_TIME - 1])
1799 p->base_reachable_time =
1800 RTA_GET_MSECS(tbp[NDTPA_BASE_REACHABLE_TIME - 1]);
1802 if (tbp[NDTPA_GC_STALETIME - 1])
1803 p->gc_staletime =
1804 RTA_GET_MSECS(tbp[NDTPA_GC_STALETIME - 1]);
1806 if (tbp[NDTPA_DELAY_PROBE_TIME - 1])
1807 p->delay_probe_time =
1808 RTA_GET_MSECS(tbp[NDTPA_DELAY_PROBE_TIME - 1]);
1810 if (tbp[NDTPA_RETRANS_TIME - 1])
1811 p->retrans_time =
1812 RTA_GET_MSECS(tbp[NDTPA_RETRANS_TIME - 1]);
1814 if (tbp[NDTPA_ANYCAST_DELAY - 1])
1815 p->anycast_delay =
1816 RTA_GET_MSECS(tbp[NDTPA_ANYCAST_DELAY - 1]);
1818 if (tbp[NDTPA_PROXY_DELAY - 1])
1819 p->proxy_delay =
1820 RTA_GET_MSECS(tbp[NDTPA_PROXY_DELAY - 1]);
1822 if (tbp[NDTPA_LOCKTIME - 1])
1823 p->locktime = RTA_GET_MSECS(tbp[NDTPA_LOCKTIME - 1]);
1826 err = 0;
1828 rtattr_failure:
1829 write_unlock_bh(&tbl->lock);
1830 errout:
1831 read_unlock(&neigh_tbl_lock);
1832 return err;
1835 int neightbl_dump_info(struct sk_buff *skb, struct netlink_callback *cb)
1837 int idx, family;
1838 int s_idx = cb->args[0];
1839 struct neigh_table *tbl;
1841 family = ((struct rtgenmsg *)NLMSG_DATA(cb->nlh))->rtgen_family;
1843 read_lock(&neigh_tbl_lock);
1844 for (tbl = neigh_tables, idx = 0; tbl; tbl = tbl->next) {
1845 struct neigh_parms *p;
1847 if (idx < s_idx || (family && tbl->family != family))
1848 continue;
1850 if (neightbl_fill_info(tbl, skb, cb) <= 0)
1851 break;
1853 for (++idx, p = tbl->parms.next; p; p = p->next, idx++) {
1854 if (idx < s_idx)
1855 continue;
1857 if (neightbl_fill_param_info(tbl, p, skb, cb) <= 0)
1858 goto out;
1862 out:
1863 read_unlock(&neigh_tbl_lock);
1864 cb->args[0] = idx;
1866 return skb->len;
1869 static int neigh_fill_info(struct sk_buff *skb, struct neighbour *n,
1870 u32 pid, u32 seq, int event, unsigned int flags)
1872 unsigned long now = jiffies;
1873 unsigned char *b = skb->tail;
1874 struct nda_cacheinfo ci;
1875 int locked = 0;
1876 u32 probes;
1877 struct nlmsghdr *nlh = NLMSG_NEW(skb, pid, seq, event,
1878 sizeof(struct ndmsg), flags);
1879 struct ndmsg *ndm = NLMSG_DATA(nlh);
1881 ndm->ndm_family = n->ops->family;
1882 ndm->ndm_pad1 = 0;
1883 ndm->ndm_pad2 = 0;
1884 ndm->ndm_flags = n->flags;
1885 ndm->ndm_type = n->type;
1886 ndm->ndm_ifindex = n->dev->ifindex;
1887 RTA_PUT(skb, NDA_DST, n->tbl->key_len, n->primary_key);
1888 read_lock_bh(&n->lock);
1889 locked = 1;
1890 ndm->ndm_state = n->nud_state;
1891 if (n->nud_state & NUD_VALID)
1892 RTA_PUT(skb, NDA_LLADDR, n->dev->addr_len, n->ha);
1893 ci.ndm_used = now - n->used;
1894 ci.ndm_confirmed = now - n->confirmed;
1895 ci.ndm_updated = now - n->updated;
1896 ci.ndm_refcnt = atomic_read(&n->refcnt) - 1;
1897 probes = atomic_read(&n->probes);
1898 read_unlock_bh(&n->lock);
1899 locked = 0;
1900 RTA_PUT(skb, NDA_CACHEINFO, sizeof(ci), &ci);
1901 RTA_PUT(skb, NDA_PROBES, sizeof(probes), &probes);
1902 nlh->nlmsg_len = skb->tail - b;
1903 return skb->len;
1905 nlmsg_failure:
1906 rtattr_failure:
1907 if (locked)
1908 read_unlock_bh(&n->lock);
1909 skb_trim(skb, b - skb->data);
1910 return -1;
1914 static int neigh_dump_table(struct neigh_table *tbl, struct sk_buff *skb,
1915 struct netlink_callback *cb)
1917 struct neighbour *n;
1918 int rc, h, s_h = cb->args[1];
1919 int idx, s_idx = idx = cb->args[2];
1921 for (h = 0; h <= tbl->hash_mask; h++) {
1922 if (h < s_h)
1923 continue;
1924 if (h > s_h)
1925 s_idx = 0;
1926 read_lock_bh(&tbl->lock);
1927 for (n = tbl->hash_buckets[h], idx = 0; n; n = n->next, idx++) {
1928 if (idx < s_idx)
1929 continue;
1930 if (neigh_fill_info(skb, n, NETLINK_CB(cb->skb).pid,
1931 cb->nlh->nlmsg_seq,
1932 RTM_NEWNEIGH,
1933 NLM_F_MULTI) <= 0) {
1934 read_unlock_bh(&tbl->lock);
1935 rc = -1;
1936 goto out;
1939 read_unlock_bh(&tbl->lock);
1941 rc = skb->len;
1942 out:
1943 cb->args[1] = h;
1944 cb->args[2] = idx;
1945 return rc;
1948 int neigh_dump_info(struct sk_buff *skb, struct netlink_callback *cb)
1950 struct neigh_table *tbl;
1951 int t, family, s_t;
1953 read_lock(&neigh_tbl_lock);
1954 family = ((struct rtgenmsg *)NLMSG_DATA(cb->nlh))->rtgen_family;
1955 s_t = cb->args[0];
1957 for (tbl = neigh_tables, t = 0; tbl; tbl = tbl->next, t++) {
1958 if (t < s_t || (family && tbl->family != family))
1959 continue;
1960 if (t > s_t)
1961 memset(&cb->args[1], 0, sizeof(cb->args) -
1962 sizeof(cb->args[0]));
1963 if (neigh_dump_table(tbl, skb, cb) < 0)
1964 break;
1966 read_unlock(&neigh_tbl_lock);
1968 cb->args[0] = t;
1969 return skb->len;
1972 void neigh_for_each(struct neigh_table *tbl, void (*cb)(struct neighbour *, void *), void *cookie)
1974 int chain;
1976 read_lock_bh(&tbl->lock);
1977 for (chain = 0; chain <= tbl->hash_mask; chain++) {
1978 struct neighbour *n;
1980 for (n = tbl->hash_buckets[chain]; n; n = n->next)
1981 cb(n, cookie);
1983 read_unlock_bh(&tbl->lock);
1985 EXPORT_SYMBOL(neigh_for_each);
1987 /* The tbl->lock must be held as a writer and BH disabled. */
1988 void __neigh_for_each_release(struct neigh_table *tbl,
1989 int (*cb)(struct neighbour *))
1991 int chain;
1993 for (chain = 0; chain <= tbl->hash_mask; chain++) {
1994 struct neighbour *n, **np;
1996 np = &tbl->hash_buckets[chain];
1997 while ((n = *np) != NULL) {
1998 int release;
2000 write_lock(&n->lock);
2001 release = cb(n);
2002 if (release) {
2003 *np = n->next;
2004 n->dead = 1;
2005 } else
2006 np = &n->next;
2007 write_unlock(&n->lock);
2008 if (release)
2009 neigh_release(n);
2013 EXPORT_SYMBOL(__neigh_for_each_release);
2015 #ifdef CONFIG_PROC_FS
2017 static struct neighbour *neigh_get_first(struct seq_file *seq)
2019 struct neigh_seq_state *state = seq->private;
2020 struct neigh_table *tbl = state->tbl;
2021 struct neighbour *n = NULL;
2022 int bucket = state->bucket;
2024 state->flags &= ~NEIGH_SEQ_IS_PNEIGH;
2025 for (bucket = 0; bucket <= tbl->hash_mask; bucket++) {
2026 n = tbl->hash_buckets[bucket];
2028 while (n) {
2029 if (state->neigh_sub_iter) {
2030 loff_t fakep = 0;
2031 void *v;
2033 v = state->neigh_sub_iter(state, n, &fakep);
2034 if (!v)
2035 goto next;
2037 if (!(state->flags & NEIGH_SEQ_SKIP_NOARP))
2038 break;
2039 if (n->nud_state & ~NUD_NOARP)
2040 break;
2041 next:
2042 n = n->next;
2045 if (n)
2046 break;
2048 state->bucket = bucket;
2050 return n;
2053 static struct neighbour *neigh_get_next(struct seq_file *seq,
2054 struct neighbour *n,
2055 loff_t *pos)
2057 struct neigh_seq_state *state = seq->private;
2058 struct neigh_table *tbl = state->tbl;
2060 if (state->neigh_sub_iter) {
2061 void *v = state->neigh_sub_iter(state, n, pos);
2062 if (v)
2063 return n;
2065 n = n->next;
2067 while (1) {
2068 while (n) {
2069 if (state->neigh_sub_iter) {
2070 void *v = state->neigh_sub_iter(state, n, pos);
2071 if (v)
2072 return n;
2073 goto next;
2075 if (!(state->flags & NEIGH_SEQ_SKIP_NOARP))
2076 break;
2078 if (n->nud_state & ~NUD_NOARP)
2079 break;
2080 next:
2081 n = n->next;
2084 if (n)
2085 break;
2087 if (++state->bucket > tbl->hash_mask)
2088 break;
2090 n = tbl->hash_buckets[state->bucket];
2093 if (n && pos)
2094 --(*pos);
2095 return n;
2098 static struct neighbour *neigh_get_idx(struct seq_file *seq, loff_t *pos)
2100 struct neighbour *n = neigh_get_first(seq);
2102 if (n) {
2103 while (*pos) {
2104 n = neigh_get_next(seq, n, pos);
2105 if (!n)
2106 break;
2109 return *pos ? NULL : n;
2112 static struct pneigh_entry *pneigh_get_first(struct seq_file *seq)
2114 struct neigh_seq_state *state = seq->private;
2115 struct neigh_table *tbl = state->tbl;
2116 struct pneigh_entry *pn = NULL;
2117 int bucket = state->bucket;
2119 state->flags |= NEIGH_SEQ_IS_PNEIGH;
2120 for (bucket = 0; bucket <= PNEIGH_HASHMASK; bucket++) {
2121 pn = tbl->phash_buckets[bucket];
2122 if (pn)
2123 break;
2125 state->bucket = bucket;
2127 return pn;
2130 static struct pneigh_entry *pneigh_get_next(struct seq_file *seq,
2131 struct pneigh_entry *pn,
2132 loff_t *pos)
2134 struct neigh_seq_state *state = seq->private;
2135 struct neigh_table *tbl = state->tbl;
2137 pn = pn->next;
2138 while (!pn) {
2139 if (++state->bucket > PNEIGH_HASHMASK)
2140 break;
2141 pn = tbl->phash_buckets[state->bucket];
2142 if (pn)
2143 break;
2146 if (pn && pos)
2147 --(*pos);
2149 return pn;
2152 static struct pneigh_entry *pneigh_get_idx(struct seq_file *seq, loff_t *pos)
2154 struct pneigh_entry *pn = pneigh_get_first(seq);
2156 if (pn) {
2157 while (*pos) {
2158 pn = pneigh_get_next(seq, pn, pos);
2159 if (!pn)
2160 break;
2163 return *pos ? NULL : pn;
2166 static void *neigh_get_idx_any(struct seq_file *seq, loff_t *pos)
2168 struct neigh_seq_state *state = seq->private;
2169 void *rc;
2171 rc = neigh_get_idx(seq, pos);
2172 if (!rc && !(state->flags & NEIGH_SEQ_NEIGH_ONLY))
2173 rc = pneigh_get_idx(seq, pos);
2175 return rc;
2178 void *neigh_seq_start(struct seq_file *seq, loff_t *pos, struct neigh_table *tbl, unsigned int neigh_seq_flags)
2180 struct neigh_seq_state *state = seq->private;
2181 loff_t pos_minus_one;
2183 state->tbl = tbl;
2184 state->bucket = 0;
2185 state->flags = (neigh_seq_flags & ~NEIGH_SEQ_IS_PNEIGH);
2187 read_lock_bh(&tbl->lock);
2189 pos_minus_one = *pos - 1;
2190 return *pos ? neigh_get_idx_any(seq, &pos_minus_one) : SEQ_START_TOKEN;
2192 EXPORT_SYMBOL(neigh_seq_start);
2194 void *neigh_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2196 struct neigh_seq_state *state;
2197 void *rc;
2199 if (v == SEQ_START_TOKEN) {
2200 rc = neigh_get_idx(seq, pos);
2201 goto out;
2204 state = seq->private;
2205 if (!(state->flags & NEIGH_SEQ_IS_PNEIGH)) {
2206 rc = neigh_get_next(seq, v, NULL);
2207 if (rc)
2208 goto out;
2209 if (!(state->flags & NEIGH_SEQ_NEIGH_ONLY))
2210 rc = pneigh_get_first(seq);
2211 } else {
2212 BUG_ON(state->flags & NEIGH_SEQ_NEIGH_ONLY);
2213 rc = pneigh_get_next(seq, v, NULL);
2215 out:
2216 ++(*pos);
2217 return rc;
2219 EXPORT_SYMBOL(neigh_seq_next);
2221 void neigh_seq_stop(struct seq_file *seq, void *v)
2223 struct neigh_seq_state *state = seq->private;
2224 struct neigh_table *tbl = state->tbl;
2226 read_unlock_bh(&tbl->lock);
2228 EXPORT_SYMBOL(neigh_seq_stop);
2230 /* statistics via seq_file */
2232 static void *neigh_stat_seq_start(struct seq_file *seq, loff_t *pos)
2234 struct proc_dir_entry *pde = seq->private;
2235 struct neigh_table *tbl = pde->data;
2236 int cpu;
2238 if (*pos == 0)
2239 return SEQ_START_TOKEN;
2241 for (cpu = *pos-1; cpu < NR_CPUS; ++cpu) {
2242 if (!cpu_possible(cpu))
2243 continue;
2244 *pos = cpu+1;
2245 return per_cpu_ptr(tbl->stats, cpu);
2247 return NULL;
2250 static void *neigh_stat_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2252 struct proc_dir_entry *pde = seq->private;
2253 struct neigh_table *tbl = pde->data;
2254 int cpu;
2256 for (cpu = *pos; cpu < NR_CPUS; ++cpu) {
2257 if (!cpu_possible(cpu))
2258 continue;
2259 *pos = cpu+1;
2260 return per_cpu_ptr(tbl->stats, cpu);
2262 return NULL;
2265 static void neigh_stat_seq_stop(struct seq_file *seq, void *v)
2270 static int neigh_stat_seq_show(struct seq_file *seq, void *v)
2272 struct proc_dir_entry *pde = seq->private;
2273 struct neigh_table *tbl = pde->data;
2274 struct neigh_statistics *st = v;
2276 if (v == SEQ_START_TOKEN) {
2277 seq_printf(seq, "entries allocs destroys hash_grows lookups hits res_failed rcv_probes_mcast rcv_probes_ucast periodic_gc_runs forced_gc_runs\n");
2278 return 0;
2281 seq_printf(seq, "%08x %08lx %08lx %08lx %08lx %08lx %08lx "
2282 "%08lx %08lx %08lx %08lx\n",
2283 atomic_read(&tbl->entries),
2285 st->allocs,
2286 st->destroys,
2287 st->hash_grows,
2289 st->lookups,
2290 st->hits,
2292 st->res_failed,
2294 st->rcv_probes_mcast,
2295 st->rcv_probes_ucast,
2297 st->periodic_gc_runs,
2298 st->forced_gc_runs
2301 return 0;
2304 static struct seq_operations neigh_stat_seq_ops = {
2305 .start = neigh_stat_seq_start,
2306 .next = neigh_stat_seq_next,
2307 .stop = neigh_stat_seq_stop,
2308 .show = neigh_stat_seq_show,
2311 static int neigh_stat_seq_open(struct inode *inode, struct file *file)
2313 int ret = seq_open(file, &neigh_stat_seq_ops);
2315 if (!ret) {
2316 struct seq_file *sf = file->private_data;
2317 sf->private = PDE(inode);
2319 return ret;
2322 static struct file_operations neigh_stat_seq_fops = {
2323 .owner = THIS_MODULE,
2324 .open = neigh_stat_seq_open,
2325 .read = seq_read,
2326 .llseek = seq_lseek,
2327 .release = seq_release,
2330 #endif /* CONFIG_PROC_FS */
2332 #ifdef CONFIG_ARPD
2333 void neigh_app_ns(struct neighbour *n)
2335 struct nlmsghdr *nlh;
2336 int size = NLMSG_SPACE(sizeof(struct ndmsg) + 256);
2337 struct sk_buff *skb = alloc_skb(size, GFP_ATOMIC);
2339 if (!skb)
2340 return;
2342 if (neigh_fill_info(skb, n, 0, 0, RTM_GETNEIGH, 0) < 0) {
2343 kfree_skb(skb);
2344 return;
2346 nlh = (struct nlmsghdr *)skb->data;
2347 nlh->nlmsg_flags = NLM_F_REQUEST;
2348 NETLINK_CB(skb).dst_group = RTNLGRP_NEIGH;
2349 netlink_broadcast(rtnl, skb, 0, RTNLGRP_NEIGH, GFP_ATOMIC);
2352 static void neigh_app_notify(struct neighbour *n)
2354 struct nlmsghdr *nlh;
2355 int size = NLMSG_SPACE(sizeof(struct ndmsg) + 256);
2356 struct sk_buff *skb = alloc_skb(size, GFP_ATOMIC);
2358 if (!skb)
2359 return;
2361 if (neigh_fill_info(skb, n, 0, 0, RTM_NEWNEIGH, 0) < 0) {
2362 kfree_skb(skb);
2363 return;
2365 nlh = (struct nlmsghdr *)skb->data;
2366 NETLINK_CB(skb).dst_group = RTNLGRP_NEIGH;
2367 netlink_broadcast(rtnl, skb, 0, RTNLGRP_NEIGH, GFP_ATOMIC);
2370 #endif /* CONFIG_ARPD */
2372 #ifdef CONFIG_SYSCTL
2374 static struct neigh_sysctl_table {
2375 struct ctl_table_header *sysctl_header;
2376 ctl_table neigh_vars[__NET_NEIGH_MAX];
2377 ctl_table neigh_dev[2];
2378 ctl_table neigh_neigh_dir[2];
2379 ctl_table neigh_proto_dir[2];
2380 ctl_table neigh_root_dir[2];
2381 } neigh_sysctl_template = {
2382 .neigh_vars = {
2384 .ctl_name = NET_NEIGH_MCAST_SOLICIT,
2385 .procname = "mcast_solicit",
2386 .maxlen = sizeof(int),
2387 .mode = 0644,
2388 .proc_handler = &proc_dointvec,
2391 .ctl_name = NET_NEIGH_UCAST_SOLICIT,
2392 .procname = "ucast_solicit",
2393 .maxlen = sizeof(int),
2394 .mode = 0644,
2395 .proc_handler = &proc_dointvec,
2398 .ctl_name = NET_NEIGH_APP_SOLICIT,
2399 .procname = "app_solicit",
2400 .maxlen = sizeof(int),
2401 .mode = 0644,
2402 .proc_handler = &proc_dointvec,
2405 .ctl_name = NET_NEIGH_RETRANS_TIME,
2406 .procname = "retrans_time",
2407 .maxlen = sizeof(int),
2408 .mode = 0644,
2409 .proc_handler = &proc_dointvec_userhz_jiffies,
2412 .ctl_name = NET_NEIGH_REACHABLE_TIME,
2413 .procname = "base_reachable_time",
2414 .maxlen = sizeof(int),
2415 .mode = 0644,
2416 .proc_handler = &proc_dointvec_jiffies,
2417 .strategy = &sysctl_jiffies,
2420 .ctl_name = NET_NEIGH_DELAY_PROBE_TIME,
2421 .procname = "delay_first_probe_time",
2422 .maxlen = sizeof(int),
2423 .mode = 0644,
2424 .proc_handler = &proc_dointvec_jiffies,
2425 .strategy = &sysctl_jiffies,
2428 .ctl_name = NET_NEIGH_GC_STALE_TIME,
2429 .procname = "gc_stale_time",
2430 .maxlen = sizeof(int),
2431 .mode = 0644,
2432 .proc_handler = &proc_dointvec_jiffies,
2433 .strategy = &sysctl_jiffies,
2436 .ctl_name = NET_NEIGH_UNRES_QLEN,
2437 .procname = "unres_qlen",
2438 .maxlen = sizeof(int),
2439 .mode = 0644,
2440 .proc_handler = &proc_dointvec,
2443 .ctl_name = NET_NEIGH_PROXY_QLEN,
2444 .procname = "proxy_qlen",
2445 .maxlen = sizeof(int),
2446 .mode = 0644,
2447 .proc_handler = &proc_dointvec,
2450 .ctl_name = NET_NEIGH_ANYCAST_DELAY,
2451 .procname = "anycast_delay",
2452 .maxlen = sizeof(int),
2453 .mode = 0644,
2454 .proc_handler = &proc_dointvec_userhz_jiffies,
2457 .ctl_name = NET_NEIGH_PROXY_DELAY,
2458 .procname = "proxy_delay",
2459 .maxlen = sizeof(int),
2460 .mode = 0644,
2461 .proc_handler = &proc_dointvec_userhz_jiffies,
2464 .ctl_name = NET_NEIGH_LOCKTIME,
2465 .procname = "locktime",
2466 .maxlen = sizeof(int),
2467 .mode = 0644,
2468 .proc_handler = &proc_dointvec_userhz_jiffies,
2471 .ctl_name = NET_NEIGH_GC_INTERVAL,
2472 .procname = "gc_interval",
2473 .maxlen = sizeof(int),
2474 .mode = 0644,
2475 .proc_handler = &proc_dointvec_jiffies,
2476 .strategy = &sysctl_jiffies,
2479 .ctl_name = NET_NEIGH_GC_THRESH1,
2480 .procname = "gc_thresh1",
2481 .maxlen = sizeof(int),
2482 .mode = 0644,
2483 .proc_handler = &proc_dointvec,
2486 .ctl_name = NET_NEIGH_GC_THRESH2,
2487 .procname = "gc_thresh2",
2488 .maxlen = sizeof(int),
2489 .mode = 0644,
2490 .proc_handler = &proc_dointvec,
2493 .ctl_name = NET_NEIGH_GC_THRESH3,
2494 .procname = "gc_thresh3",
2495 .maxlen = sizeof(int),
2496 .mode = 0644,
2497 .proc_handler = &proc_dointvec,
2500 .ctl_name = NET_NEIGH_RETRANS_TIME_MS,
2501 .procname = "retrans_time_ms",
2502 .maxlen = sizeof(int),
2503 .mode = 0644,
2504 .proc_handler = &proc_dointvec_ms_jiffies,
2505 .strategy = &sysctl_ms_jiffies,
2508 .ctl_name = NET_NEIGH_REACHABLE_TIME_MS,
2509 .procname = "base_reachable_time_ms",
2510 .maxlen = sizeof(int),
2511 .mode = 0644,
2512 .proc_handler = &proc_dointvec_ms_jiffies,
2513 .strategy = &sysctl_ms_jiffies,
2516 .neigh_dev = {
2518 .ctl_name = NET_PROTO_CONF_DEFAULT,
2519 .procname = "default",
2520 .mode = 0555,
2523 .neigh_neigh_dir = {
2525 .procname = "neigh",
2526 .mode = 0555,
2529 .neigh_proto_dir = {
2531 .mode = 0555,
2534 .neigh_root_dir = {
2536 .ctl_name = CTL_NET,
2537 .procname = "net",
2538 .mode = 0555,
2543 int neigh_sysctl_register(struct net_device *dev, struct neigh_parms *p,
2544 int p_id, int pdev_id, char *p_name,
2545 proc_handler *handler, ctl_handler *strategy)
2547 struct neigh_sysctl_table *t = kmalloc(sizeof(*t), GFP_KERNEL);
2548 const char *dev_name_source = NULL;
2549 char *dev_name = NULL;
2550 int err = 0;
2552 if (!t)
2553 return -ENOBUFS;
2554 memcpy(t, &neigh_sysctl_template, sizeof(*t));
2555 t->neigh_vars[0].data = &p->mcast_probes;
2556 t->neigh_vars[1].data = &p->ucast_probes;
2557 t->neigh_vars[2].data = &p->app_probes;
2558 t->neigh_vars[3].data = &p->retrans_time;
2559 t->neigh_vars[4].data = &p->base_reachable_time;
2560 t->neigh_vars[5].data = &p->delay_probe_time;
2561 t->neigh_vars[6].data = &p->gc_staletime;
2562 t->neigh_vars[7].data = &p->queue_len;
2563 t->neigh_vars[8].data = &p->proxy_qlen;
2564 t->neigh_vars[9].data = &p->anycast_delay;
2565 t->neigh_vars[10].data = &p->proxy_delay;
2566 t->neigh_vars[11].data = &p->locktime;
2568 if (dev) {
2569 dev_name_source = dev->name;
2570 t->neigh_dev[0].ctl_name = dev->ifindex;
2571 t->neigh_vars[12].procname = NULL;
2572 t->neigh_vars[13].procname = NULL;
2573 t->neigh_vars[14].procname = NULL;
2574 t->neigh_vars[15].procname = NULL;
2575 } else {
2576 dev_name_source = t->neigh_dev[0].procname;
2577 t->neigh_vars[12].data = (int *)(p + 1);
2578 t->neigh_vars[13].data = (int *)(p + 1) + 1;
2579 t->neigh_vars[14].data = (int *)(p + 1) + 2;
2580 t->neigh_vars[15].data = (int *)(p + 1) + 3;
2583 t->neigh_vars[16].data = &p->retrans_time;
2584 t->neigh_vars[17].data = &p->base_reachable_time;
2586 if (handler || strategy) {
2587 /* RetransTime */
2588 t->neigh_vars[3].proc_handler = handler;
2589 t->neigh_vars[3].strategy = strategy;
2590 t->neigh_vars[3].extra1 = dev;
2591 /* ReachableTime */
2592 t->neigh_vars[4].proc_handler = handler;
2593 t->neigh_vars[4].strategy = strategy;
2594 t->neigh_vars[4].extra1 = dev;
2595 /* RetransTime (in milliseconds)*/
2596 t->neigh_vars[16].proc_handler = handler;
2597 t->neigh_vars[16].strategy = strategy;
2598 t->neigh_vars[16].extra1 = dev;
2599 /* ReachableTime (in milliseconds) */
2600 t->neigh_vars[17].proc_handler = handler;
2601 t->neigh_vars[17].strategy = strategy;
2602 t->neigh_vars[17].extra1 = dev;
2605 dev_name = kstrdup(dev_name_source, GFP_KERNEL);
2606 if (!dev_name) {
2607 err = -ENOBUFS;
2608 goto free;
2611 t->neigh_dev[0].procname = dev_name;
2613 t->neigh_neigh_dir[0].ctl_name = pdev_id;
2615 t->neigh_proto_dir[0].procname = p_name;
2616 t->neigh_proto_dir[0].ctl_name = p_id;
2618 t->neigh_dev[0].child = t->neigh_vars;
2619 t->neigh_neigh_dir[0].child = t->neigh_dev;
2620 t->neigh_proto_dir[0].child = t->neigh_neigh_dir;
2621 t->neigh_root_dir[0].child = t->neigh_proto_dir;
2623 t->sysctl_header = register_sysctl_table(t->neigh_root_dir, 0);
2624 if (!t->sysctl_header) {
2625 err = -ENOBUFS;
2626 goto free_procname;
2628 p->sysctl_table = t;
2629 return 0;
2631 /* error path */
2632 free_procname:
2633 kfree(dev_name);
2634 free:
2635 kfree(t);
2637 return err;
2640 void neigh_sysctl_unregister(struct neigh_parms *p)
2642 if (p->sysctl_table) {
2643 struct neigh_sysctl_table *t = p->sysctl_table;
2644 p->sysctl_table = NULL;
2645 unregister_sysctl_table(t->sysctl_header);
2646 kfree(t->neigh_dev[0].procname);
2647 kfree(t);
2651 #endif /* CONFIG_SYSCTL */
2653 EXPORT_SYMBOL(__neigh_event_send);
2654 EXPORT_SYMBOL(neigh_add);
2655 EXPORT_SYMBOL(neigh_changeaddr);
2656 EXPORT_SYMBOL(neigh_compat_output);
2657 EXPORT_SYMBOL(neigh_connected_output);
2658 EXPORT_SYMBOL(neigh_create);
2659 EXPORT_SYMBOL(neigh_delete);
2660 EXPORT_SYMBOL(neigh_destroy);
2661 EXPORT_SYMBOL(neigh_dump_info);
2662 EXPORT_SYMBOL(neigh_event_ns);
2663 EXPORT_SYMBOL(neigh_ifdown);
2664 EXPORT_SYMBOL(neigh_lookup);
2665 EXPORT_SYMBOL(neigh_lookup_nodev);
2666 EXPORT_SYMBOL(neigh_parms_alloc);
2667 EXPORT_SYMBOL(neigh_parms_release);
2668 EXPORT_SYMBOL(neigh_rand_reach_time);
2669 EXPORT_SYMBOL(neigh_resolve_output);
2670 EXPORT_SYMBOL(neigh_table_clear);
2671 EXPORT_SYMBOL(neigh_table_init);
2672 EXPORT_SYMBOL(neigh_update);
2673 EXPORT_SYMBOL(neigh_update_hhs);
2674 EXPORT_SYMBOL(pneigh_enqueue);
2675 EXPORT_SYMBOL(pneigh_lookup);
2676 EXPORT_SYMBOL(neightbl_dump_info);
2677 EXPORT_SYMBOL(neightbl_set);
2679 #ifdef CONFIG_ARPD
2680 EXPORT_SYMBOL(neigh_app_ns);
2681 #endif
2682 #ifdef CONFIG_SYSCTL
2683 EXPORT_SYMBOL(neigh_sysctl_register);
2684 EXPORT_SYMBOL(neigh_sysctl_unregister);
2685 #endif