perf, x86: Move perfctr init code to x86_setup_perfctr()
[linux-2.6/libata-dev.git] / arch / x86 / kernel / cpu / perf_event.c
blob801441a5424521a66f05ea8744102784c5e01888
1 /*
2 * Performance events x86 architecture code
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2009 Jaswinder Singh Rajput
7 * Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
8 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
9 * Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
10 * Copyright (C) 2009 Google, Inc., Stephane Eranian
12 * For licencing details see kernel-base/COPYING
15 #include <linux/perf_event.h>
16 #include <linux/capability.h>
17 #include <linux/notifier.h>
18 #include <linux/hardirq.h>
19 #include <linux/kprobes.h>
20 #include <linux/module.h>
21 #include <linux/kdebug.h>
22 #include <linux/sched.h>
23 #include <linux/uaccess.h>
24 #include <linux/slab.h>
25 #include <linux/highmem.h>
26 #include <linux/cpu.h>
27 #include <linux/bitops.h>
29 #include <asm/apic.h>
30 #include <asm/stacktrace.h>
31 #include <asm/nmi.h>
32 #include <asm/compat.h>
34 #if 0
35 #undef wrmsrl
36 #define wrmsrl(msr, val) \
37 do { \
38 trace_printk("wrmsrl(%lx, %lx)\n", (unsigned long)(msr),\
39 (unsigned long)(val)); \
40 native_write_msr((msr), (u32)((u64)(val)), \
41 (u32)((u64)(val) >> 32)); \
42 } while (0)
43 #endif
46 * best effort, GUP based copy_from_user() that assumes IRQ or NMI context
48 static unsigned long
49 copy_from_user_nmi(void *to, const void __user *from, unsigned long n)
51 unsigned long offset, addr = (unsigned long)from;
52 int type = in_nmi() ? KM_NMI : KM_IRQ0;
53 unsigned long size, len = 0;
54 struct page *page;
55 void *map;
56 int ret;
58 do {
59 ret = __get_user_pages_fast(addr, 1, 0, &page);
60 if (!ret)
61 break;
63 offset = addr & (PAGE_SIZE - 1);
64 size = min(PAGE_SIZE - offset, n - len);
66 map = kmap_atomic(page, type);
67 memcpy(to, map+offset, size);
68 kunmap_atomic(map, type);
69 put_page(page);
71 len += size;
72 to += size;
73 addr += size;
75 } while (len < n);
77 return len;
80 struct event_constraint {
81 union {
82 unsigned long idxmsk[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
83 u64 idxmsk64;
85 u64 code;
86 u64 cmask;
87 int weight;
90 struct amd_nb {
91 int nb_id; /* NorthBridge id */
92 int refcnt; /* reference count */
93 struct perf_event *owners[X86_PMC_IDX_MAX];
94 struct event_constraint event_constraints[X86_PMC_IDX_MAX];
97 #define MAX_LBR_ENTRIES 16
99 struct cpu_hw_events {
101 * Generic x86 PMC bits
103 struct perf_event *events[X86_PMC_IDX_MAX]; /* in counter order */
104 unsigned long active_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
105 int enabled;
107 int n_events;
108 int n_added;
109 int assign[X86_PMC_IDX_MAX]; /* event to counter assignment */
110 u64 tags[X86_PMC_IDX_MAX];
111 struct perf_event *event_list[X86_PMC_IDX_MAX]; /* in enabled order */
114 * Intel DebugStore bits
116 struct debug_store *ds;
117 u64 pebs_enabled;
120 * Intel LBR bits
122 int lbr_users;
123 void *lbr_context;
124 struct perf_branch_stack lbr_stack;
125 struct perf_branch_entry lbr_entries[MAX_LBR_ENTRIES];
128 * AMD specific bits
130 struct amd_nb *amd_nb;
133 #define __EVENT_CONSTRAINT(c, n, m, w) {\
134 { .idxmsk64 = (n) }, \
135 .code = (c), \
136 .cmask = (m), \
137 .weight = (w), \
140 #define EVENT_CONSTRAINT(c, n, m) \
141 __EVENT_CONSTRAINT(c, n, m, HWEIGHT(n))
144 * Constraint on the Event code.
146 #define INTEL_EVENT_CONSTRAINT(c, n) \
147 EVENT_CONSTRAINT(c, n, ARCH_PERFMON_EVENTSEL_EVENT)
150 * Constraint on the Event code + UMask + fixed-mask
152 * filter mask to validate fixed counter events.
153 * the following filters disqualify for fixed counters:
154 * - inv
155 * - edge
156 * - cnt-mask
157 * The other filters are supported by fixed counters.
158 * The any-thread option is supported starting with v3.
160 #define FIXED_EVENT_CONSTRAINT(c, n) \
161 EVENT_CONSTRAINT(c, (1ULL << (32+n)), X86_RAW_EVENT_MASK)
164 * Constraint on the Event code + UMask
166 #define PEBS_EVENT_CONSTRAINT(c, n) \
167 EVENT_CONSTRAINT(c, n, INTEL_ARCH_EVENT_MASK)
169 #define EVENT_CONSTRAINT_END \
170 EVENT_CONSTRAINT(0, 0, 0)
172 #define for_each_event_constraint(e, c) \
173 for ((e) = (c); (e)->cmask; (e)++)
175 union perf_capabilities {
176 struct {
177 u64 lbr_format : 6;
178 u64 pebs_trap : 1;
179 u64 pebs_arch_reg : 1;
180 u64 pebs_format : 4;
181 u64 smm_freeze : 1;
183 u64 capabilities;
187 * struct x86_pmu - generic x86 pmu
189 struct x86_pmu {
191 * Generic x86 PMC bits
193 const char *name;
194 int version;
195 int (*handle_irq)(struct pt_regs *);
196 void (*disable_all)(void);
197 void (*enable_all)(int added);
198 void (*enable)(struct perf_event *);
199 void (*disable)(struct perf_event *);
200 int (*hw_config)(struct perf_event *event);
201 int (*schedule_events)(struct cpu_hw_events *cpuc, int n, int *assign);
202 unsigned eventsel;
203 unsigned perfctr;
204 u64 (*event_map)(int);
205 int max_events;
206 int num_counters;
207 int num_counters_fixed;
208 int cntval_bits;
209 u64 cntval_mask;
210 int apic;
211 u64 max_period;
212 struct event_constraint *
213 (*get_event_constraints)(struct cpu_hw_events *cpuc,
214 struct perf_event *event);
216 void (*put_event_constraints)(struct cpu_hw_events *cpuc,
217 struct perf_event *event);
218 struct event_constraint *event_constraints;
219 void (*quirks)(void);
221 int (*cpu_prepare)(int cpu);
222 void (*cpu_starting)(int cpu);
223 void (*cpu_dying)(int cpu);
224 void (*cpu_dead)(int cpu);
227 * Intel Arch Perfmon v2+
229 u64 intel_ctrl;
230 union perf_capabilities intel_cap;
233 * Intel DebugStore bits
235 int bts, pebs;
236 int pebs_record_size;
237 void (*drain_pebs)(struct pt_regs *regs);
238 struct event_constraint *pebs_constraints;
241 * Intel LBR
243 unsigned long lbr_tos, lbr_from, lbr_to; /* MSR base regs */
244 int lbr_nr; /* hardware stack size */
247 static struct x86_pmu x86_pmu __read_mostly;
249 static DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
250 .enabled = 1,
253 static int x86_perf_event_set_period(struct perf_event *event);
256 * Generalized hw caching related hw_event table, filled
257 * in on a per model basis. A value of 0 means
258 * 'not supported', -1 means 'hw_event makes no sense on
259 * this CPU', any other value means the raw hw_event
260 * ID.
263 #define C(x) PERF_COUNT_HW_CACHE_##x
265 static u64 __read_mostly hw_cache_event_ids
266 [PERF_COUNT_HW_CACHE_MAX]
267 [PERF_COUNT_HW_CACHE_OP_MAX]
268 [PERF_COUNT_HW_CACHE_RESULT_MAX];
271 * Propagate event elapsed time into the generic event.
272 * Can only be executed on the CPU where the event is active.
273 * Returns the delta events processed.
275 static u64
276 x86_perf_event_update(struct perf_event *event)
278 struct hw_perf_event *hwc = &event->hw;
279 int shift = 64 - x86_pmu.cntval_bits;
280 u64 prev_raw_count, new_raw_count;
281 int idx = hwc->idx;
282 s64 delta;
284 if (idx == X86_PMC_IDX_FIXED_BTS)
285 return 0;
288 * Careful: an NMI might modify the previous event value.
290 * Our tactic to handle this is to first atomically read and
291 * exchange a new raw count - then add that new-prev delta
292 * count to the generic event atomically:
294 again:
295 prev_raw_count = atomic64_read(&hwc->prev_count);
296 rdmsrl(hwc->event_base + idx, new_raw_count);
298 if (atomic64_cmpxchg(&hwc->prev_count, prev_raw_count,
299 new_raw_count) != prev_raw_count)
300 goto again;
303 * Now we have the new raw value and have updated the prev
304 * timestamp already. We can now calculate the elapsed delta
305 * (event-)time and add that to the generic event.
307 * Careful, not all hw sign-extends above the physical width
308 * of the count.
310 delta = (new_raw_count << shift) - (prev_raw_count << shift);
311 delta >>= shift;
313 atomic64_add(delta, &event->count);
314 atomic64_sub(delta, &hwc->period_left);
316 return new_raw_count;
319 static atomic_t active_events;
320 static DEFINE_MUTEX(pmc_reserve_mutex);
322 #ifdef CONFIG_X86_LOCAL_APIC
324 static bool reserve_pmc_hardware(void)
326 int i;
328 if (nmi_watchdog == NMI_LOCAL_APIC)
329 disable_lapic_nmi_watchdog();
331 for (i = 0; i < x86_pmu.num_counters; i++) {
332 if (!reserve_perfctr_nmi(x86_pmu.perfctr + i))
333 goto perfctr_fail;
336 for (i = 0; i < x86_pmu.num_counters; i++) {
337 if (!reserve_evntsel_nmi(x86_pmu.eventsel + i))
338 goto eventsel_fail;
341 return true;
343 eventsel_fail:
344 for (i--; i >= 0; i--)
345 release_evntsel_nmi(x86_pmu.eventsel + i);
347 i = x86_pmu.num_counters;
349 perfctr_fail:
350 for (i--; i >= 0; i--)
351 release_perfctr_nmi(x86_pmu.perfctr + i);
353 if (nmi_watchdog == NMI_LOCAL_APIC)
354 enable_lapic_nmi_watchdog();
356 return false;
359 static void release_pmc_hardware(void)
361 int i;
363 for (i = 0; i < x86_pmu.num_counters; i++) {
364 release_perfctr_nmi(x86_pmu.perfctr + i);
365 release_evntsel_nmi(x86_pmu.eventsel + i);
368 if (nmi_watchdog == NMI_LOCAL_APIC)
369 enable_lapic_nmi_watchdog();
372 #else
374 static bool reserve_pmc_hardware(void) { return true; }
375 static void release_pmc_hardware(void) {}
377 #endif
379 static int reserve_ds_buffers(void);
380 static void release_ds_buffers(void);
382 static void hw_perf_event_destroy(struct perf_event *event)
384 if (atomic_dec_and_mutex_lock(&active_events, &pmc_reserve_mutex)) {
385 release_pmc_hardware();
386 release_ds_buffers();
387 mutex_unlock(&pmc_reserve_mutex);
391 static inline int x86_pmu_initialized(void)
393 return x86_pmu.handle_irq != NULL;
396 static inline int
397 set_ext_hw_attr(struct hw_perf_event *hwc, struct perf_event_attr *attr)
399 unsigned int cache_type, cache_op, cache_result;
400 u64 config, val;
402 config = attr->config;
404 cache_type = (config >> 0) & 0xff;
405 if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
406 return -EINVAL;
408 cache_op = (config >> 8) & 0xff;
409 if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
410 return -EINVAL;
412 cache_result = (config >> 16) & 0xff;
413 if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
414 return -EINVAL;
416 val = hw_cache_event_ids[cache_type][cache_op][cache_result];
418 if (val == 0)
419 return -ENOENT;
421 if (val == -1)
422 return -EINVAL;
424 hwc->config |= val;
426 return 0;
429 static int x86_setup_perfctr(struct perf_event *event);
431 static int x86_pmu_hw_config(struct perf_event *event)
434 * Generate PMC IRQs:
435 * (keep 'enabled' bit clear for now)
437 event->hw.config = ARCH_PERFMON_EVENTSEL_INT;
440 * Count user and OS events unless requested not to
442 if (!event->attr.exclude_user)
443 event->hw.config |= ARCH_PERFMON_EVENTSEL_USR;
444 if (!event->attr.exclude_kernel)
445 event->hw.config |= ARCH_PERFMON_EVENTSEL_OS;
447 if (event->attr.type == PERF_TYPE_RAW)
448 event->hw.config |= event->attr.config & X86_RAW_EVENT_MASK;
450 return 0;
454 * Setup the hardware configuration for a given attr_type
456 static int __hw_perf_event_init(struct perf_event *event)
458 int err;
460 if (!x86_pmu_initialized())
461 return -ENODEV;
463 err = 0;
464 if (!atomic_inc_not_zero(&active_events)) {
465 mutex_lock(&pmc_reserve_mutex);
466 if (atomic_read(&active_events) == 0) {
467 if (!reserve_pmc_hardware())
468 err = -EBUSY;
469 else {
470 err = reserve_ds_buffers();
471 if (err)
472 release_pmc_hardware();
475 if (!err)
476 atomic_inc(&active_events);
477 mutex_unlock(&pmc_reserve_mutex);
479 if (err)
480 return err;
482 event->destroy = hw_perf_event_destroy;
484 event->hw.idx = -1;
485 event->hw.last_cpu = -1;
486 event->hw.last_tag = ~0ULL;
488 /* Processor specifics */
489 err = x86_pmu.hw_config(event);
490 if (err)
491 return err;
493 return x86_setup_perfctr(event);
496 static int x86_setup_perfctr(struct perf_event *event)
498 struct perf_event_attr *attr = &event->attr;
499 struct hw_perf_event *hwc = &event->hw;
500 u64 config;
502 if (!hwc->sample_period) {
503 hwc->sample_period = x86_pmu.max_period;
504 hwc->last_period = hwc->sample_period;
505 atomic64_set(&hwc->period_left, hwc->sample_period);
506 } else {
508 * If we have a PMU initialized but no APIC
509 * interrupts, we cannot sample hardware
510 * events (user-space has to fall back and
511 * sample via a hrtimer based software event):
513 if (!x86_pmu.apic)
514 return -EOPNOTSUPP;
517 if (attr->type == PERF_TYPE_RAW)
518 return 0;
520 if (attr->type == PERF_TYPE_HW_CACHE)
521 return set_ext_hw_attr(hwc, attr);
523 if (attr->config >= x86_pmu.max_events)
524 return -EINVAL;
527 * The generic map:
529 config = x86_pmu.event_map(attr->config);
531 if (config == 0)
532 return -ENOENT;
534 if (config == -1LL)
535 return -EINVAL;
538 * Branch tracing:
540 if ((attr->config == PERF_COUNT_HW_BRANCH_INSTRUCTIONS) &&
541 (hwc->sample_period == 1)) {
542 /* BTS is not supported by this architecture. */
543 if (!x86_pmu.bts)
544 return -EOPNOTSUPP;
546 /* BTS is currently only allowed for user-mode. */
547 if (!attr->exclude_kernel)
548 return -EOPNOTSUPP;
551 hwc->config |= config;
553 return 0;
556 static void x86_pmu_disable_all(void)
558 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
559 int idx;
561 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
562 u64 val;
564 if (!test_bit(idx, cpuc->active_mask))
565 continue;
566 rdmsrl(x86_pmu.eventsel + idx, val);
567 if (!(val & ARCH_PERFMON_EVENTSEL_ENABLE))
568 continue;
569 val &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
570 wrmsrl(x86_pmu.eventsel + idx, val);
574 void hw_perf_disable(void)
576 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
578 if (!x86_pmu_initialized())
579 return;
581 if (!cpuc->enabled)
582 return;
584 cpuc->n_added = 0;
585 cpuc->enabled = 0;
586 barrier();
588 x86_pmu.disable_all();
591 static void x86_pmu_enable_all(int added)
593 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
594 int idx;
596 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
597 struct perf_event *event = cpuc->events[idx];
598 u64 val;
600 if (!test_bit(idx, cpuc->active_mask))
601 continue;
603 val = event->hw.config;
604 val |= ARCH_PERFMON_EVENTSEL_ENABLE;
605 wrmsrl(x86_pmu.eventsel + idx, val);
609 static const struct pmu pmu;
611 static inline int is_x86_event(struct perf_event *event)
613 return event->pmu == &pmu;
616 static int x86_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign)
618 struct event_constraint *c, *constraints[X86_PMC_IDX_MAX];
619 unsigned long used_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
620 int i, j, w, wmax, num = 0;
621 struct hw_perf_event *hwc;
623 bitmap_zero(used_mask, X86_PMC_IDX_MAX);
625 for (i = 0; i < n; i++) {
626 c = x86_pmu.get_event_constraints(cpuc, cpuc->event_list[i]);
627 constraints[i] = c;
631 * fastpath, try to reuse previous register
633 for (i = 0; i < n; i++) {
634 hwc = &cpuc->event_list[i]->hw;
635 c = constraints[i];
637 /* never assigned */
638 if (hwc->idx == -1)
639 break;
641 /* constraint still honored */
642 if (!test_bit(hwc->idx, c->idxmsk))
643 break;
645 /* not already used */
646 if (test_bit(hwc->idx, used_mask))
647 break;
649 __set_bit(hwc->idx, used_mask);
650 if (assign)
651 assign[i] = hwc->idx;
653 if (i == n)
654 goto done;
657 * begin slow path
660 bitmap_zero(used_mask, X86_PMC_IDX_MAX);
663 * weight = number of possible counters
665 * 1 = most constrained, only works on one counter
666 * wmax = least constrained, works on any counter
668 * assign events to counters starting with most
669 * constrained events.
671 wmax = x86_pmu.num_counters;
674 * when fixed event counters are present,
675 * wmax is incremented by 1 to account
676 * for one more choice
678 if (x86_pmu.num_counters_fixed)
679 wmax++;
681 for (w = 1, num = n; num && w <= wmax; w++) {
682 /* for each event */
683 for (i = 0; num && i < n; i++) {
684 c = constraints[i];
685 hwc = &cpuc->event_list[i]->hw;
687 if (c->weight != w)
688 continue;
690 for_each_set_bit(j, c->idxmsk, X86_PMC_IDX_MAX) {
691 if (!test_bit(j, used_mask))
692 break;
695 if (j == X86_PMC_IDX_MAX)
696 break;
698 __set_bit(j, used_mask);
700 if (assign)
701 assign[i] = j;
702 num--;
705 done:
707 * scheduling failed or is just a simulation,
708 * free resources if necessary
710 if (!assign || num) {
711 for (i = 0; i < n; i++) {
712 if (x86_pmu.put_event_constraints)
713 x86_pmu.put_event_constraints(cpuc, cpuc->event_list[i]);
716 return num ? -ENOSPC : 0;
720 * dogrp: true if must collect siblings events (group)
721 * returns total number of events and error code
723 static int collect_events(struct cpu_hw_events *cpuc, struct perf_event *leader, bool dogrp)
725 struct perf_event *event;
726 int n, max_count;
728 max_count = x86_pmu.num_counters + x86_pmu.num_counters_fixed;
730 /* current number of events already accepted */
731 n = cpuc->n_events;
733 if (is_x86_event(leader)) {
734 if (n >= max_count)
735 return -ENOSPC;
736 cpuc->event_list[n] = leader;
737 n++;
739 if (!dogrp)
740 return n;
742 list_for_each_entry(event, &leader->sibling_list, group_entry) {
743 if (!is_x86_event(event) ||
744 event->state <= PERF_EVENT_STATE_OFF)
745 continue;
747 if (n >= max_count)
748 return -ENOSPC;
750 cpuc->event_list[n] = event;
751 n++;
753 return n;
756 static inline void x86_assign_hw_event(struct perf_event *event,
757 struct cpu_hw_events *cpuc, int i)
759 struct hw_perf_event *hwc = &event->hw;
761 hwc->idx = cpuc->assign[i];
762 hwc->last_cpu = smp_processor_id();
763 hwc->last_tag = ++cpuc->tags[i];
765 if (hwc->idx == X86_PMC_IDX_FIXED_BTS) {
766 hwc->config_base = 0;
767 hwc->event_base = 0;
768 } else if (hwc->idx >= X86_PMC_IDX_FIXED) {
769 hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
771 * We set it so that event_base + idx in wrmsr/rdmsr maps to
772 * MSR_ARCH_PERFMON_FIXED_CTR0 ... CTR2:
774 hwc->event_base =
775 MSR_ARCH_PERFMON_FIXED_CTR0 - X86_PMC_IDX_FIXED;
776 } else {
777 hwc->config_base = x86_pmu.eventsel;
778 hwc->event_base = x86_pmu.perfctr;
782 static inline int match_prev_assignment(struct hw_perf_event *hwc,
783 struct cpu_hw_events *cpuc,
784 int i)
786 return hwc->idx == cpuc->assign[i] &&
787 hwc->last_cpu == smp_processor_id() &&
788 hwc->last_tag == cpuc->tags[i];
791 static int x86_pmu_start(struct perf_event *event);
792 static void x86_pmu_stop(struct perf_event *event);
794 void hw_perf_enable(void)
796 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
797 struct perf_event *event;
798 struct hw_perf_event *hwc;
799 int i, added = cpuc->n_added;
801 if (!x86_pmu_initialized())
802 return;
804 if (cpuc->enabled)
805 return;
807 if (cpuc->n_added) {
808 int n_running = cpuc->n_events - cpuc->n_added;
810 * apply assignment obtained either from
811 * hw_perf_group_sched_in() or x86_pmu_enable()
813 * step1: save events moving to new counters
814 * step2: reprogram moved events into new counters
816 for (i = 0; i < n_running; i++) {
817 event = cpuc->event_list[i];
818 hwc = &event->hw;
821 * we can avoid reprogramming counter if:
822 * - assigned same counter as last time
823 * - running on same CPU as last time
824 * - no other event has used the counter since
826 if (hwc->idx == -1 ||
827 match_prev_assignment(hwc, cpuc, i))
828 continue;
830 x86_pmu_stop(event);
833 for (i = 0; i < cpuc->n_events; i++) {
834 event = cpuc->event_list[i];
835 hwc = &event->hw;
837 if (!match_prev_assignment(hwc, cpuc, i))
838 x86_assign_hw_event(event, cpuc, i);
839 else if (i < n_running)
840 continue;
842 x86_pmu_start(event);
844 cpuc->n_added = 0;
845 perf_events_lapic_init();
848 cpuc->enabled = 1;
849 barrier();
851 x86_pmu.enable_all(added);
854 static inline void __x86_pmu_enable_event(struct hw_perf_event *hwc)
856 wrmsrl(hwc->config_base + hwc->idx,
857 hwc->config | ARCH_PERFMON_EVENTSEL_ENABLE);
860 static inline void x86_pmu_disable_event(struct perf_event *event)
862 struct hw_perf_event *hwc = &event->hw;
864 wrmsrl(hwc->config_base + hwc->idx, hwc->config);
867 static DEFINE_PER_CPU(u64 [X86_PMC_IDX_MAX], pmc_prev_left);
870 * Set the next IRQ period, based on the hwc->period_left value.
871 * To be called with the event disabled in hw:
873 static int
874 x86_perf_event_set_period(struct perf_event *event)
876 struct hw_perf_event *hwc = &event->hw;
877 s64 left = atomic64_read(&hwc->period_left);
878 s64 period = hwc->sample_period;
879 int ret = 0, idx = hwc->idx;
881 if (idx == X86_PMC_IDX_FIXED_BTS)
882 return 0;
885 * If we are way outside a reasonable range then just skip forward:
887 if (unlikely(left <= -period)) {
888 left = period;
889 atomic64_set(&hwc->period_left, left);
890 hwc->last_period = period;
891 ret = 1;
894 if (unlikely(left <= 0)) {
895 left += period;
896 atomic64_set(&hwc->period_left, left);
897 hwc->last_period = period;
898 ret = 1;
901 * Quirk: certain CPUs dont like it if just 1 hw_event is left:
903 if (unlikely(left < 2))
904 left = 2;
906 if (left > x86_pmu.max_period)
907 left = x86_pmu.max_period;
909 per_cpu(pmc_prev_left[idx], smp_processor_id()) = left;
912 * The hw event starts counting from this event offset,
913 * mark it to be able to extra future deltas:
915 atomic64_set(&hwc->prev_count, (u64)-left);
917 wrmsrl(hwc->event_base + idx,
918 (u64)(-left) & x86_pmu.cntval_mask);
920 perf_event_update_userpage(event);
922 return ret;
925 static void x86_pmu_enable_event(struct perf_event *event)
927 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
928 if (cpuc->enabled)
929 __x86_pmu_enable_event(&event->hw);
933 * activate a single event
935 * The event is added to the group of enabled events
936 * but only if it can be scehduled with existing events.
938 * Called with PMU disabled. If successful and return value 1,
939 * then guaranteed to call perf_enable() and hw_perf_enable()
941 static int x86_pmu_enable(struct perf_event *event)
943 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
944 struct hw_perf_event *hwc;
945 int assign[X86_PMC_IDX_MAX];
946 int n, n0, ret;
948 hwc = &event->hw;
950 n0 = cpuc->n_events;
951 n = collect_events(cpuc, event, false);
952 if (n < 0)
953 return n;
955 ret = x86_pmu.schedule_events(cpuc, n, assign);
956 if (ret)
957 return ret;
959 * copy new assignment, now we know it is possible
960 * will be used by hw_perf_enable()
962 memcpy(cpuc->assign, assign, n*sizeof(int));
964 cpuc->n_events = n;
965 cpuc->n_added += n - n0;
967 return 0;
970 static int x86_pmu_start(struct perf_event *event)
972 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
973 int idx = event->hw.idx;
975 if (idx == -1)
976 return -EAGAIN;
978 x86_perf_event_set_period(event);
979 cpuc->events[idx] = event;
980 __set_bit(idx, cpuc->active_mask);
981 x86_pmu.enable(event);
982 perf_event_update_userpage(event);
984 return 0;
987 static void x86_pmu_unthrottle(struct perf_event *event)
989 int ret = x86_pmu_start(event);
990 WARN_ON_ONCE(ret);
993 void perf_event_print_debug(void)
995 u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed;
996 u64 pebs;
997 struct cpu_hw_events *cpuc;
998 unsigned long flags;
999 int cpu, idx;
1001 if (!x86_pmu.num_counters)
1002 return;
1004 local_irq_save(flags);
1006 cpu = smp_processor_id();
1007 cpuc = &per_cpu(cpu_hw_events, cpu);
1009 if (x86_pmu.version >= 2) {
1010 rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
1011 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
1012 rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
1013 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed);
1014 rdmsrl(MSR_IA32_PEBS_ENABLE, pebs);
1016 pr_info("\n");
1017 pr_info("CPU#%d: ctrl: %016llx\n", cpu, ctrl);
1018 pr_info("CPU#%d: status: %016llx\n", cpu, status);
1019 pr_info("CPU#%d: overflow: %016llx\n", cpu, overflow);
1020 pr_info("CPU#%d: fixed: %016llx\n", cpu, fixed);
1021 pr_info("CPU#%d: pebs: %016llx\n", cpu, pebs);
1023 pr_info("CPU#%d: active: %016llx\n", cpu, *(u64 *)cpuc->active_mask);
1025 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1026 rdmsrl(x86_pmu.eventsel + idx, pmc_ctrl);
1027 rdmsrl(x86_pmu.perfctr + idx, pmc_count);
1029 prev_left = per_cpu(pmc_prev_left[idx], cpu);
1031 pr_info("CPU#%d: gen-PMC%d ctrl: %016llx\n",
1032 cpu, idx, pmc_ctrl);
1033 pr_info("CPU#%d: gen-PMC%d count: %016llx\n",
1034 cpu, idx, pmc_count);
1035 pr_info("CPU#%d: gen-PMC%d left: %016llx\n",
1036 cpu, idx, prev_left);
1038 for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++) {
1039 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, pmc_count);
1041 pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
1042 cpu, idx, pmc_count);
1044 local_irq_restore(flags);
1047 static void x86_pmu_stop(struct perf_event *event)
1049 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1050 struct hw_perf_event *hwc = &event->hw;
1051 int idx = hwc->idx;
1053 if (!__test_and_clear_bit(idx, cpuc->active_mask))
1054 return;
1056 x86_pmu.disable(event);
1059 * Drain the remaining delta count out of a event
1060 * that we are disabling:
1062 x86_perf_event_update(event);
1064 cpuc->events[idx] = NULL;
1067 static void x86_pmu_disable(struct perf_event *event)
1069 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1070 int i;
1072 x86_pmu_stop(event);
1074 for (i = 0; i < cpuc->n_events; i++) {
1075 if (event == cpuc->event_list[i]) {
1077 if (x86_pmu.put_event_constraints)
1078 x86_pmu.put_event_constraints(cpuc, event);
1080 while (++i < cpuc->n_events)
1081 cpuc->event_list[i-1] = cpuc->event_list[i];
1083 --cpuc->n_events;
1084 break;
1087 perf_event_update_userpage(event);
1090 static int x86_pmu_handle_irq(struct pt_regs *regs)
1092 struct perf_sample_data data;
1093 struct cpu_hw_events *cpuc;
1094 struct perf_event *event;
1095 struct hw_perf_event *hwc;
1096 int idx, handled = 0;
1097 u64 val;
1099 perf_sample_data_init(&data, 0);
1101 cpuc = &__get_cpu_var(cpu_hw_events);
1103 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1104 if (!test_bit(idx, cpuc->active_mask))
1105 continue;
1107 event = cpuc->events[idx];
1108 hwc = &event->hw;
1110 val = x86_perf_event_update(event);
1111 if (val & (1ULL << (x86_pmu.cntval_bits - 1)))
1112 continue;
1115 * event overflow
1117 handled = 1;
1118 data.period = event->hw.last_period;
1120 if (!x86_perf_event_set_period(event))
1121 continue;
1123 if (perf_event_overflow(event, 1, &data, regs))
1124 x86_pmu_stop(event);
1127 if (handled)
1128 inc_irq_stat(apic_perf_irqs);
1130 return handled;
1133 void smp_perf_pending_interrupt(struct pt_regs *regs)
1135 irq_enter();
1136 ack_APIC_irq();
1137 inc_irq_stat(apic_pending_irqs);
1138 perf_event_do_pending();
1139 irq_exit();
1142 void set_perf_event_pending(void)
1144 #ifdef CONFIG_X86_LOCAL_APIC
1145 if (!x86_pmu.apic || !x86_pmu_initialized())
1146 return;
1148 apic->send_IPI_self(LOCAL_PENDING_VECTOR);
1149 #endif
1152 void perf_events_lapic_init(void)
1154 if (!x86_pmu.apic || !x86_pmu_initialized())
1155 return;
1158 * Always use NMI for PMU
1160 apic_write(APIC_LVTPC, APIC_DM_NMI);
1163 static int __kprobes
1164 perf_event_nmi_handler(struct notifier_block *self,
1165 unsigned long cmd, void *__args)
1167 struct die_args *args = __args;
1168 struct pt_regs *regs;
1170 if (!atomic_read(&active_events))
1171 return NOTIFY_DONE;
1173 switch (cmd) {
1174 case DIE_NMI:
1175 case DIE_NMI_IPI:
1176 break;
1178 default:
1179 return NOTIFY_DONE;
1182 regs = args->regs;
1184 apic_write(APIC_LVTPC, APIC_DM_NMI);
1186 * Can't rely on the handled return value to say it was our NMI, two
1187 * events could trigger 'simultaneously' raising two back-to-back NMIs.
1189 * If the first NMI handles both, the latter will be empty and daze
1190 * the CPU.
1192 x86_pmu.handle_irq(regs);
1194 return NOTIFY_STOP;
1197 static __read_mostly struct notifier_block perf_event_nmi_notifier = {
1198 .notifier_call = perf_event_nmi_handler,
1199 .next = NULL,
1200 .priority = 1
1203 static struct event_constraint unconstrained;
1204 static struct event_constraint emptyconstraint;
1206 static struct event_constraint *
1207 x86_get_event_constraints(struct cpu_hw_events *cpuc, struct perf_event *event)
1209 struct event_constraint *c;
1211 if (x86_pmu.event_constraints) {
1212 for_each_event_constraint(c, x86_pmu.event_constraints) {
1213 if ((event->hw.config & c->cmask) == c->code)
1214 return c;
1218 return &unconstrained;
1221 static int x86_event_sched_in(struct perf_event *event,
1222 struct perf_cpu_context *cpuctx)
1224 int ret = 0;
1226 event->state = PERF_EVENT_STATE_ACTIVE;
1227 event->oncpu = smp_processor_id();
1228 event->tstamp_running += event->ctx->time - event->tstamp_stopped;
1230 if (!is_x86_event(event))
1231 ret = event->pmu->enable(event);
1233 if (!ret && !is_software_event(event))
1234 cpuctx->active_oncpu++;
1236 if (!ret && event->attr.exclusive)
1237 cpuctx->exclusive = 1;
1239 return ret;
1242 static void x86_event_sched_out(struct perf_event *event,
1243 struct perf_cpu_context *cpuctx)
1245 event->state = PERF_EVENT_STATE_INACTIVE;
1246 event->oncpu = -1;
1248 if (!is_x86_event(event))
1249 event->pmu->disable(event);
1251 event->tstamp_running -= event->ctx->time - event->tstamp_stopped;
1253 if (!is_software_event(event))
1254 cpuctx->active_oncpu--;
1256 if (event->attr.exclusive || !cpuctx->active_oncpu)
1257 cpuctx->exclusive = 0;
1261 * Called to enable a whole group of events.
1262 * Returns 1 if the group was enabled, or -EAGAIN if it could not be.
1263 * Assumes the caller has disabled interrupts and has
1264 * frozen the PMU with hw_perf_save_disable.
1266 * called with PMU disabled. If successful and return value 1,
1267 * then guaranteed to call perf_enable() and hw_perf_enable()
1269 int hw_perf_group_sched_in(struct perf_event *leader,
1270 struct perf_cpu_context *cpuctx,
1271 struct perf_event_context *ctx)
1273 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1274 struct perf_event *sub;
1275 int assign[X86_PMC_IDX_MAX];
1276 int n0, n1, ret;
1278 if (!x86_pmu_initialized())
1279 return 0;
1281 /* n0 = total number of events */
1282 n0 = collect_events(cpuc, leader, true);
1283 if (n0 < 0)
1284 return n0;
1286 ret = x86_pmu.schedule_events(cpuc, n0, assign);
1287 if (ret)
1288 return ret;
1290 ret = x86_event_sched_in(leader, cpuctx);
1291 if (ret)
1292 return ret;
1294 n1 = 1;
1295 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
1296 if (sub->state > PERF_EVENT_STATE_OFF) {
1297 ret = x86_event_sched_in(sub, cpuctx);
1298 if (ret)
1299 goto undo;
1300 ++n1;
1304 * copy new assignment, now we know it is possible
1305 * will be used by hw_perf_enable()
1307 memcpy(cpuc->assign, assign, n0*sizeof(int));
1309 cpuc->n_events = n0;
1310 cpuc->n_added += n1;
1311 ctx->nr_active += n1;
1314 * 1 means successful and events are active
1315 * This is not quite true because we defer
1316 * actual activation until hw_perf_enable() but
1317 * this way we* ensure caller won't try to enable
1318 * individual events
1320 return 1;
1321 undo:
1322 x86_event_sched_out(leader, cpuctx);
1323 n0 = 1;
1324 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
1325 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
1326 x86_event_sched_out(sub, cpuctx);
1327 if (++n0 == n1)
1328 break;
1331 return ret;
1334 #include "perf_event_amd.c"
1335 #include "perf_event_p6.c"
1336 #include "perf_event_p4.c"
1337 #include "perf_event_intel_lbr.c"
1338 #include "perf_event_intel_ds.c"
1339 #include "perf_event_intel.c"
1341 static int __cpuinit
1342 x86_pmu_notifier(struct notifier_block *self, unsigned long action, void *hcpu)
1344 unsigned int cpu = (long)hcpu;
1345 int ret = NOTIFY_OK;
1347 switch (action & ~CPU_TASKS_FROZEN) {
1348 case CPU_UP_PREPARE:
1349 if (x86_pmu.cpu_prepare)
1350 ret = x86_pmu.cpu_prepare(cpu);
1351 break;
1353 case CPU_STARTING:
1354 if (x86_pmu.cpu_starting)
1355 x86_pmu.cpu_starting(cpu);
1356 break;
1358 case CPU_DYING:
1359 if (x86_pmu.cpu_dying)
1360 x86_pmu.cpu_dying(cpu);
1361 break;
1363 case CPU_UP_CANCELED:
1364 case CPU_DEAD:
1365 if (x86_pmu.cpu_dead)
1366 x86_pmu.cpu_dead(cpu);
1367 break;
1369 default:
1370 break;
1373 return ret;
1376 static void __init pmu_check_apic(void)
1378 if (cpu_has_apic)
1379 return;
1381 x86_pmu.apic = 0;
1382 pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n");
1383 pr_info("no hardware sampling interrupt available.\n");
1386 void __init init_hw_perf_events(void)
1388 struct event_constraint *c;
1389 int err;
1391 pr_info("Performance Events: ");
1393 switch (boot_cpu_data.x86_vendor) {
1394 case X86_VENDOR_INTEL:
1395 err = intel_pmu_init();
1396 break;
1397 case X86_VENDOR_AMD:
1398 err = amd_pmu_init();
1399 break;
1400 default:
1401 return;
1403 if (err != 0) {
1404 pr_cont("no PMU driver, software events only.\n");
1405 return;
1408 pmu_check_apic();
1410 pr_cont("%s PMU driver.\n", x86_pmu.name);
1412 if (x86_pmu.quirks)
1413 x86_pmu.quirks();
1415 if (x86_pmu.num_counters > X86_PMC_MAX_GENERIC) {
1416 WARN(1, KERN_ERR "hw perf events %d > max(%d), clipping!",
1417 x86_pmu.num_counters, X86_PMC_MAX_GENERIC);
1418 x86_pmu.num_counters = X86_PMC_MAX_GENERIC;
1420 x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1;
1421 perf_max_events = x86_pmu.num_counters;
1423 if (x86_pmu.num_counters_fixed > X86_PMC_MAX_FIXED) {
1424 WARN(1, KERN_ERR "hw perf events fixed %d > max(%d), clipping!",
1425 x86_pmu.num_counters_fixed, X86_PMC_MAX_FIXED);
1426 x86_pmu.num_counters_fixed = X86_PMC_MAX_FIXED;
1429 x86_pmu.intel_ctrl |=
1430 ((1LL << x86_pmu.num_counters_fixed)-1) << X86_PMC_IDX_FIXED;
1432 perf_events_lapic_init();
1433 register_die_notifier(&perf_event_nmi_notifier);
1435 unconstrained = (struct event_constraint)
1436 __EVENT_CONSTRAINT(0, (1ULL << x86_pmu.num_counters) - 1,
1437 0, x86_pmu.num_counters);
1439 if (x86_pmu.event_constraints) {
1440 for_each_event_constraint(c, x86_pmu.event_constraints) {
1441 if (c->cmask != X86_RAW_EVENT_MASK)
1442 continue;
1444 c->idxmsk64 |= (1ULL << x86_pmu.num_counters) - 1;
1445 c->weight += x86_pmu.num_counters;
1449 pr_info("... version: %d\n", x86_pmu.version);
1450 pr_info("... bit width: %d\n", x86_pmu.cntval_bits);
1451 pr_info("... generic registers: %d\n", x86_pmu.num_counters);
1452 pr_info("... value mask: %016Lx\n", x86_pmu.cntval_mask);
1453 pr_info("... max period: %016Lx\n", x86_pmu.max_period);
1454 pr_info("... fixed-purpose events: %d\n", x86_pmu.num_counters_fixed);
1455 pr_info("... event mask: %016Lx\n", x86_pmu.intel_ctrl);
1457 perf_cpu_notifier(x86_pmu_notifier);
1460 static inline void x86_pmu_read(struct perf_event *event)
1462 x86_perf_event_update(event);
1465 static const struct pmu pmu = {
1466 .enable = x86_pmu_enable,
1467 .disable = x86_pmu_disable,
1468 .start = x86_pmu_start,
1469 .stop = x86_pmu_stop,
1470 .read = x86_pmu_read,
1471 .unthrottle = x86_pmu_unthrottle,
1475 * validate that we can schedule this event
1477 static int validate_event(struct perf_event *event)
1479 struct cpu_hw_events *fake_cpuc;
1480 struct event_constraint *c;
1481 int ret = 0;
1483 fake_cpuc = kmalloc(sizeof(*fake_cpuc), GFP_KERNEL | __GFP_ZERO);
1484 if (!fake_cpuc)
1485 return -ENOMEM;
1487 c = x86_pmu.get_event_constraints(fake_cpuc, event);
1489 if (!c || !c->weight)
1490 ret = -ENOSPC;
1492 if (x86_pmu.put_event_constraints)
1493 x86_pmu.put_event_constraints(fake_cpuc, event);
1495 kfree(fake_cpuc);
1497 return ret;
1501 * validate a single event group
1503 * validation include:
1504 * - check events are compatible which each other
1505 * - events do not compete for the same counter
1506 * - number of events <= number of counters
1508 * validation ensures the group can be loaded onto the
1509 * PMU if it was the only group available.
1511 static int validate_group(struct perf_event *event)
1513 struct perf_event *leader = event->group_leader;
1514 struct cpu_hw_events *fake_cpuc;
1515 int ret, n;
1517 ret = -ENOMEM;
1518 fake_cpuc = kmalloc(sizeof(*fake_cpuc), GFP_KERNEL | __GFP_ZERO);
1519 if (!fake_cpuc)
1520 goto out;
1523 * the event is not yet connected with its
1524 * siblings therefore we must first collect
1525 * existing siblings, then add the new event
1526 * before we can simulate the scheduling
1528 ret = -ENOSPC;
1529 n = collect_events(fake_cpuc, leader, true);
1530 if (n < 0)
1531 goto out_free;
1533 fake_cpuc->n_events = n;
1534 n = collect_events(fake_cpuc, event, false);
1535 if (n < 0)
1536 goto out_free;
1538 fake_cpuc->n_events = n;
1540 ret = x86_pmu.schedule_events(fake_cpuc, n, NULL);
1542 out_free:
1543 kfree(fake_cpuc);
1544 out:
1545 return ret;
1548 const struct pmu *hw_perf_event_init(struct perf_event *event)
1550 const struct pmu *tmp;
1551 int err;
1553 err = __hw_perf_event_init(event);
1554 if (!err) {
1556 * we temporarily connect event to its pmu
1557 * such that validate_group() can classify
1558 * it as an x86 event using is_x86_event()
1560 tmp = event->pmu;
1561 event->pmu = &pmu;
1563 if (event->group_leader != event)
1564 err = validate_group(event);
1565 else
1566 err = validate_event(event);
1568 event->pmu = tmp;
1570 if (err) {
1571 if (event->destroy)
1572 event->destroy(event);
1573 return ERR_PTR(err);
1576 return &pmu;
1580 * callchain support
1583 static inline
1584 void callchain_store(struct perf_callchain_entry *entry, u64 ip)
1586 if (entry->nr < PERF_MAX_STACK_DEPTH)
1587 entry->ip[entry->nr++] = ip;
1590 static DEFINE_PER_CPU(struct perf_callchain_entry, pmc_irq_entry);
1591 static DEFINE_PER_CPU(struct perf_callchain_entry, pmc_nmi_entry);
1594 static void
1595 backtrace_warning_symbol(void *data, char *msg, unsigned long symbol)
1597 /* Ignore warnings */
1600 static void backtrace_warning(void *data, char *msg)
1602 /* Ignore warnings */
1605 static int backtrace_stack(void *data, char *name)
1607 return 0;
1610 static void backtrace_address(void *data, unsigned long addr, int reliable)
1612 struct perf_callchain_entry *entry = data;
1614 callchain_store(entry, addr);
1617 static const struct stacktrace_ops backtrace_ops = {
1618 .warning = backtrace_warning,
1619 .warning_symbol = backtrace_warning_symbol,
1620 .stack = backtrace_stack,
1621 .address = backtrace_address,
1622 .walk_stack = print_context_stack_bp,
1625 #include "../dumpstack.h"
1627 static void
1628 perf_callchain_kernel(struct pt_regs *regs, struct perf_callchain_entry *entry)
1630 callchain_store(entry, PERF_CONTEXT_KERNEL);
1631 callchain_store(entry, regs->ip);
1633 dump_trace(NULL, regs, NULL, regs->bp, &backtrace_ops, entry);
1636 #ifdef CONFIG_COMPAT
1637 static inline int
1638 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry *entry)
1640 /* 32-bit process in 64-bit kernel. */
1641 struct stack_frame_ia32 frame;
1642 const void __user *fp;
1644 if (!test_thread_flag(TIF_IA32))
1645 return 0;
1647 fp = compat_ptr(regs->bp);
1648 while (entry->nr < PERF_MAX_STACK_DEPTH) {
1649 unsigned long bytes;
1650 frame.next_frame = 0;
1651 frame.return_address = 0;
1653 bytes = copy_from_user_nmi(&frame, fp, sizeof(frame));
1654 if (bytes != sizeof(frame))
1655 break;
1657 if (fp < compat_ptr(regs->sp))
1658 break;
1660 callchain_store(entry, frame.return_address);
1661 fp = compat_ptr(frame.next_frame);
1663 return 1;
1665 #else
1666 static inline int
1667 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry *entry)
1669 return 0;
1671 #endif
1673 static void
1674 perf_callchain_user(struct pt_regs *regs, struct perf_callchain_entry *entry)
1676 struct stack_frame frame;
1677 const void __user *fp;
1679 if (!user_mode(regs))
1680 regs = task_pt_regs(current);
1682 fp = (void __user *)regs->bp;
1684 callchain_store(entry, PERF_CONTEXT_USER);
1685 callchain_store(entry, regs->ip);
1687 if (perf_callchain_user32(regs, entry))
1688 return;
1690 while (entry->nr < PERF_MAX_STACK_DEPTH) {
1691 unsigned long bytes;
1692 frame.next_frame = NULL;
1693 frame.return_address = 0;
1695 bytes = copy_from_user_nmi(&frame, fp, sizeof(frame));
1696 if (bytes != sizeof(frame))
1697 break;
1699 if ((unsigned long)fp < regs->sp)
1700 break;
1702 callchain_store(entry, frame.return_address);
1703 fp = frame.next_frame;
1707 static void
1708 perf_do_callchain(struct pt_regs *regs, struct perf_callchain_entry *entry)
1710 int is_user;
1712 if (!regs)
1713 return;
1715 is_user = user_mode(regs);
1717 if (is_user && current->state != TASK_RUNNING)
1718 return;
1720 if (!is_user)
1721 perf_callchain_kernel(regs, entry);
1723 if (current->mm)
1724 perf_callchain_user(regs, entry);
1727 struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
1729 struct perf_callchain_entry *entry;
1731 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
1732 /* TODO: We don't support guest os callchain now */
1733 return NULL;
1736 if (in_nmi())
1737 entry = &__get_cpu_var(pmc_nmi_entry);
1738 else
1739 entry = &__get_cpu_var(pmc_irq_entry);
1741 entry->nr = 0;
1743 perf_do_callchain(regs, entry);
1745 return entry;
1748 void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip, int skip)
1750 regs->ip = ip;
1752 * perf_arch_fetch_caller_regs adds another call, we need to increment
1753 * the skip level
1755 regs->bp = rewind_frame_pointer(skip + 1);
1756 regs->cs = __KERNEL_CS;
1757 local_save_flags(regs->flags);
1760 unsigned long perf_instruction_pointer(struct pt_regs *regs)
1762 unsigned long ip;
1764 if (perf_guest_cbs && perf_guest_cbs->is_in_guest())
1765 ip = perf_guest_cbs->get_guest_ip();
1766 else
1767 ip = instruction_pointer(regs);
1769 return ip;
1772 unsigned long perf_misc_flags(struct pt_regs *regs)
1774 int misc = 0;
1776 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
1777 if (perf_guest_cbs->is_user_mode())
1778 misc |= PERF_RECORD_MISC_GUEST_USER;
1779 else
1780 misc |= PERF_RECORD_MISC_GUEST_KERNEL;
1781 } else {
1782 if (user_mode(regs))
1783 misc |= PERF_RECORD_MISC_USER;
1784 else
1785 misc |= PERF_RECORD_MISC_KERNEL;
1788 if (regs->flags & PERF_EFLAGS_EXACT)
1789 misc |= PERF_RECORD_MISC_EXACT;
1791 return misc;