2 * Modified to interface to the Linux kernel
3 * Copyright (c) 2009, Intel Corporation.
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 * You should have received a copy of the GNU General Public License along with
15 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
16 * Place - Suite 330, Boston, MA 02111-1307 USA.
19 /* --------------------------------------------------------------------------
20 * VMAC and VHASH Implementation by Ted Krovetz (tdk@acm.org) and Wei Dai.
21 * This implementation is herby placed in the public domain.
22 * The authors offers no warranty. Use at your own risk.
23 * Please send bug reports to the authors.
24 * Last modified: 17 APR 08, 1700 PDT
25 * ----------------------------------------------------------------------- */
27 #include <linux/init.h>
28 #include <linux/types.h>
29 #include <linux/crypto.h>
30 #include <linux/module.h>
31 #include <linux/scatterlist.h>
32 #include <asm/byteorder.h>
33 #include <crypto/scatterwalk.h>
34 #include <crypto/vmac.h>
35 #include <crypto/internal/hash.h>
40 #define UINT64_C(x) x##ULL
41 const u64 p64
= UINT64_C(0xfffffffffffffeff); /* 2^64 - 257 prime */
42 const u64 m62
= UINT64_C(0x3fffffffffffffff); /* 62-bit mask */
43 const u64 m63
= UINT64_C(0x7fffffffffffffff); /* 63-bit mask */
44 const u64 m64
= UINT64_C(0xffffffffffffffff); /* 64-bit mask */
45 const u64 mpoly
= UINT64_C(0x1fffffff1fffffff); /* Poly key mask */
47 #define pe64_to_cpup le64_to_cpup /* Prefer little endian */
49 #ifdef __LITTLE_ENDIAN
58 * The following routines are used in this implementation. They are
59 * written via macros to simulate zero-overhead call-by-reference.
61 * MUL64: 64x64->128-bit multiplication
62 * PMUL64: assumes top bits cleared on inputs
63 * ADD128: 128x128->128-bit addition
66 #define ADD128(rh, rl, ih, il) \
75 #define MUL32(i1, i2) ((u64)(u32)(i1)*(u32)(i2))
77 #define PMUL64(rh, rl, i1, i2) /* Assumes m doesn't overflow */ \
79 u64 _i1 = (i1), _i2 = (i2); \
80 u64 m = MUL32(_i1, _i2>>32) + MUL32(_i1>>32, _i2); \
81 rh = MUL32(_i1>>32, _i2>>32); \
82 rl = MUL32(_i1, _i2); \
83 ADD128(rh, rl, (m >> 32), (m << 32)); \
86 #define MUL64(rh, rl, i1, i2) \
88 u64 _i1 = (i1), _i2 = (i2); \
89 u64 m1 = MUL32(_i1, _i2>>32); \
90 u64 m2 = MUL32(_i1>>32, _i2); \
91 rh = MUL32(_i1>>32, _i2>>32); \
92 rl = MUL32(_i1, _i2); \
93 ADD128(rh, rl, (m1 >> 32), (m1 << 32)); \
94 ADD128(rh, rl, (m2 >> 32), (m2 << 32)); \
98 * For highest performance the L1 NH and L2 polynomial hashes should be
99 * carefully implemented to take advantage of one's target architecture.
100 * Here these two hash functions are defined multiple time; once for
101 * 64-bit architectures, once for 32-bit SSE2 architectures, and once
102 * for the rest (32-bit) architectures.
103 * For each, nh_16 *must* be defined (works on multiples of 16 bytes).
104 * Optionally, nh_vmac_nhbytes can be defined (for multiples of
105 * VMAC_NHBYTES), and nh_16_2 and nh_vmac_nhbytes_2 (versions that do two
106 * NH computations at once).
111 #define nh_16(mp, kp, nw, rh, rl) \
115 for (i = 0; i < nw; i += 2) { \
116 MUL64(th, tl, pe64_to_cpup((mp)+i)+(kp)[i], \
117 pe64_to_cpup((mp)+i+1)+(kp)[i+1]); \
118 ADD128(rh, rl, th, tl); \
122 #define nh_16_2(mp, kp, nw, rh, rl, rh1, rl1) \
125 rh1 = rl1 = rh = rl = 0; \
126 for (i = 0; i < nw; i += 2) { \
127 MUL64(th, tl, pe64_to_cpup((mp)+i)+(kp)[i], \
128 pe64_to_cpup((mp)+i+1)+(kp)[i+1]); \
129 ADD128(rh, rl, th, tl); \
130 MUL64(th, tl, pe64_to_cpup((mp)+i)+(kp)[i+2], \
131 pe64_to_cpup((mp)+i+1)+(kp)[i+3]); \
132 ADD128(rh1, rl1, th, tl); \
136 #if (VMAC_NHBYTES >= 64) /* These versions do 64-bytes of message at a time */
137 #define nh_vmac_nhbytes(mp, kp, nw, rh, rl) \
141 for (i = 0; i < nw; i += 8) { \
142 MUL64(th, tl, pe64_to_cpup((mp)+i)+(kp)[i], \
143 pe64_to_cpup((mp)+i+1)+(kp)[i+1]); \
144 ADD128(rh, rl, th, tl); \
145 MUL64(th, tl, pe64_to_cpup((mp)+i+2)+(kp)[i+2], \
146 pe64_to_cpup((mp)+i+3)+(kp)[i+3]); \
147 ADD128(rh, rl, th, tl); \
148 MUL64(th, tl, pe64_to_cpup((mp)+i+4)+(kp)[i+4], \
149 pe64_to_cpup((mp)+i+5)+(kp)[i+5]); \
150 ADD128(rh, rl, th, tl); \
151 MUL64(th, tl, pe64_to_cpup((mp)+i+6)+(kp)[i+6], \
152 pe64_to_cpup((mp)+i+7)+(kp)[i+7]); \
153 ADD128(rh, rl, th, tl); \
157 #define nh_vmac_nhbytes_2(mp, kp, nw, rh, rl, rh1, rl1) \
160 rh1 = rl1 = rh = rl = 0; \
161 for (i = 0; i < nw; i += 8) { \
162 MUL64(th, tl, pe64_to_cpup((mp)+i)+(kp)[i], \
163 pe64_to_cpup((mp)+i+1)+(kp)[i+1]); \
164 ADD128(rh, rl, th, tl); \
165 MUL64(th, tl, pe64_to_cpup((mp)+i)+(kp)[i+2], \
166 pe64_to_cpup((mp)+i+1)+(kp)[i+3]); \
167 ADD128(rh1, rl1, th, tl); \
168 MUL64(th, tl, pe64_to_cpup((mp)+i+2)+(kp)[i+2], \
169 pe64_to_cpup((mp)+i+3)+(kp)[i+3]); \
170 ADD128(rh, rl, th, tl); \
171 MUL64(th, tl, pe64_to_cpup((mp)+i+2)+(kp)[i+4], \
172 pe64_to_cpup((mp)+i+3)+(kp)[i+5]); \
173 ADD128(rh1, rl1, th, tl); \
174 MUL64(th, tl, pe64_to_cpup((mp)+i+4)+(kp)[i+4], \
175 pe64_to_cpup((mp)+i+5)+(kp)[i+5]); \
176 ADD128(rh, rl, th, tl); \
177 MUL64(th, tl, pe64_to_cpup((mp)+i+4)+(kp)[i+6], \
178 pe64_to_cpup((mp)+i+5)+(kp)[i+7]); \
179 ADD128(rh1, rl1, th, tl); \
180 MUL64(th, tl, pe64_to_cpup((mp)+i+6)+(kp)[i+6], \
181 pe64_to_cpup((mp)+i+7)+(kp)[i+7]); \
182 ADD128(rh, rl, th, tl); \
183 MUL64(th, tl, pe64_to_cpup((mp)+i+6)+(kp)[i+8], \
184 pe64_to_cpup((mp)+i+7)+(kp)[i+9]); \
185 ADD128(rh1, rl1, th, tl); \
190 #define poly_step(ah, al, kh, kl, mh, ml) \
192 u64 t1h, t1l, t2h, t2l, t3h, t3l, z = 0; \
193 /* compute ab*cd, put bd into result registers */ \
194 PMUL64(t3h, t3l, al, kh); \
195 PMUL64(t2h, t2l, ah, kl); \
196 PMUL64(t1h, t1l, ah, 2*kh); \
197 PMUL64(ah, al, al, kl); \
198 /* add 2 * ac to result */ \
199 ADD128(ah, al, t1h, t1l); \
200 /* add together ad + bc */ \
201 ADD128(t2h, t2l, t3h, t3l); \
202 /* now (ah,al), (t2l,2*t2h) need summing */ \
203 /* first add the high registers, carrying into t2h */ \
204 ADD128(t2h, ah, z, t2l); \
205 /* double t2h and add top bit of ah */ \
206 t2h = 2 * t2h + (ah >> 63); \
208 /* now add the low registers */ \
209 ADD128(ah, al, mh, ml); \
210 ADD128(ah, al, z, t2h); \
213 #else /* ! CONFIG_64BIT */
216 #define nh_16(mp, kp, nw, rh, rl) \
218 u64 t1, t2, m1, m2, t; \
221 for (i = 0; i < nw; i += 2) { \
222 t1 = pe64_to_cpup(mp+i) + kp[i]; \
223 t2 = pe64_to_cpup(mp+i+1) + kp[i+1]; \
224 m2 = MUL32(t1 >> 32, t2); \
225 m1 = MUL32(t1, t2 >> 32); \
226 ADD128(rh, rl, MUL32(t1 >> 32, t2 >> 32), \
228 rh += (u64)(u32)(m1 >> 32) \
230 t += (u64)(u32)m1 + (u32)m2; \
232 ADD128(rh, rl, (t >> 32), (t << 32)); \
236 static void poly_step_func(u64
*ahi
, u64
*alo
,
237 const u64
*kh
, const u64
*kl
,
238 const u64
*mh
, const u64
*ml
)
240 #define a0 (*(((u32 *)alo)+INDEX_LOW))
241 #define a1 (*(((u32 *)alo)+INDEX_HIGH))
242 #define a2 (*(((u32 *)ahi)+INDEX_LOW))
243 #define a3 (*(((u32 *)ahi)+INDEX_HIGH))
244 #define k0 (*(((u32 *)kl)+INDEX_LOW))
245 #define k1 (*(((u32 *)kl)+INDEX_HIGH))
246 #define k2 (*(((u32 *)kh)+INDEX_LOW))
247 #define k3 (*(((u32 *)kh)+INDEX_HIGH))
264 t
|= ((u64
)((u32
)p
& 0x7fffffff)) << 32;
266 p
+= (u64
)(((u32
*)ml
)[INDEX_LOW
]);
275 p
+= (u64
)(((u32
*)ml
)[INDEX_HIGH
]);
282 *(u64
*)(alo
) = (p
<< 32) | t2
;
284 *(u64
*)(ahi
) = p
+ t
;
296 #define poly_step(ah, al, kh, kl, mh, ml) \
297 poly_step_func(&(ah), &(al), &(kh), &(kl), &(mh), &(ml))
299 #endif /* end of specialized NH and poly definitions */
301 /* At least nh_16 is defined. Defined others as needed here */
303 #define nh_16_2(mp, kp, nw, rh, rl, rh2, rl2) \
305 nh_16(mp, kp, nw, rh, rl); \
306 nh_16(mp, ((kp)+2), nw, rh2, rl2); \
309 #ifndef nh_vmac_nhbytes
310 #define nh_vmac_nhbytes(mp, kp, nw, rh, rl) \
311 nh_16(mp, kp, nw, rh, rl)
313 #ifndef nh_vmac_nhbytes_2
314 #define nh_vmac_nhbytes_2(mp, kp, nw, rh, rl, rh2, rl2) \
316 nh_vmac_nhbytes(mp, kp, nw, rh, rl); \
317 nh_vmac_nhbytes(mp, ((kp)+2), nw, rh2, rl2); \
321 static void vhash_abort(struct vmac_ctx
*ctx
)
323 ctx
->polytmp
[0] = ctx
->polykey
[0] ;
324 ctx
->polytmp
[1] = ctx
->polykey
[1] ;
325 ctx
->first_block_processed
= 0;
328 static u64
l3hash(u64 p1
, u64 p2
, u64 k1
, u64 k2
, u64 len
)
330 u64 rh
, rl
, t
, z
= 0;
332 /* fully reduce (p1,p2)+(len,0) mod p127 */
335 ADD128(p1
, p2
, len
, t
);
336 /* At this point, (p1,p2) is at most 2^127+(len<<64) */
337 t
= (p1
> m63
) + ((p1
== m63
) && (p2
== m64
));
338 ADD128(p1
, p2
, z
, t
);
341 /* compute (p1,p2)/(2^64-2^32) and (p1,p2)%(2^64-2^32) */
344 t
+= (u32
)t
> 0xfffffffeu
;
348 /* compute (p1+k1)%p64 and (p2+k2)%p64 */
350 p1
+= (0 - (p1
< k1
)) & 257;
352 p2
+= (0 - (p2
< k2
)) & 257;
354 /* compute (p1+k1)*(p2+k2)%p64 */
355 MUL64(rh
, rl
, p1
, p2
);
357 ADD128(t
, rl
, z
, rh
);
359 ADD128(t
, rl
, z
, rh
);
362 rl
+= (0 - (rl
< t
)) & 257;
363 rl
+= (0 - (rl
> p64
-1)) & 257;
367 static void vhash_update(const unsigned char *m
,
368 unsigned int mbytes
, /* Pos multiple of VMAC_NHBYTES */
369 struct vmac_ctx
*ctx
)
372 const u64
*kptr
= (u64
*)ctx
->nhkey
;
375 u64 pkh
= ctx
->polykey
[0];
376 u64 pkl
= ctx
->polykey
[1];
379 i
= mbytes
/ VMAC_NHBYTES
; /* Must be non-zero */
381 ch
= ctx
->polytmp
[0];
382 cl
= ctx
->polytmp
[1];
384 if (!ctx
->first_block_processed
) {
385 ctx
->first_block_processed
= 1;
386 nh_vmac_nhbytes(mptr
, kptr
, VMAC_NHBYTES
/8, rh
, rl
);
388 ADD128(ch
, cl
, rh
, rl
);
389 mptr
+= (VMAC_NHBYTES
/sizeof(u64
));
394 nh_vmac_nhbytes(mptr
, kptr
, VMAC_NHBYTES
/8, rh
, rl
);
396 poly_step(ch
, cl
, pkh
, pkl
, rh
, rl
);
397 mptr
+= (VMAC_NHBYTES
/sizeof(u64
));
400 ctx
->polytmp
[0] = ch
;
401 ctx
->polytmp
[1] = cl
;
404 static u64
vhash(unsigned char m
[], unsigned int mbytes
,
405 u64
*tagl
, struct vmac_ctx
*ctx
)
408 const u64
*kptr
= (u64
*)ctx
->nhkey
;
411 u64 pkh
= ctx
->polykey
[0];
412 u64 pkl
= ctx
->polykey
[1];
415 i
= mbytes
/ VMAC_NHBYTES
;
416 remaining
= mbytes
% VMAC_NHBYTES
;
418 if (ctx
->first_block_processed
) {
419 ch
= ctx
->polytmp
[0];
420 cl
= ctx
->polytmp
[1];
422 nh_vmac_nhbytes(mptr
, kptr
, VMAC_NHBYTES
/8, ch
, cl
);
424 ADD128(ch
, cl
, pkh
, pkl
);
425 mptr
+= (VMAC_NHBYTES
/sizeof(u64
));
427 } else if (remaining
) {
428 nh_16(mptr
, kptr
, 2*((remaining
+15)/16), ch
, cl
);
430 ADD128(ch
, cl
, pkh
, pkl
);
431 mptr
+= (VMAC_NHBYTES
/sizeof(u64
));
433 } else {/* Empty String */
439 nh_vmac_nhbytes(mptr
, kptr
, VMAC_NHBYTES
/8, rh
, rl
);
441 poly_step(ch
, cl
, pkh
, pkl
, rh
, rl
);
442 mptr
+= (VMAC_NHBYTES
/sizeof(u64
));
445 nh_16(mptr
, kptr
, 2*((remaining
+15)/16), rh
, rl
);
447 poly_step(ch
, cl
, pkh
, pkl
, rh
, rl
);
453 return l3hash(ch
, cl
, ctx
->l3key
[0], ctx
->l3key
[1], remaining
);
456 static u64
vmac(unsigned char m
[], unsigned int mbytes
,
457 unsigned char n
[16], u64
*tagl
,
458 struct vmac_ctx_t
*ctx
)
464 in_n
= ctx
->__vmac_ctx
.cached_nonce
;
465 out_p
= ctx
->__vmac_ctx
.cached_aes
;
468 if ((*(u64
*)(n
+8) != in_n
[1]) || (*(u64
*)(n
) != in_n
[0])) {
469 in_n
[0] = *(u64
*)(n
);
470 in_n
[1] = *(u64
*)(n
+8);
471 ((unsigned char *)in_n
)[15] &= 0xFE;
472 crypto_cipher_encrypt_one(ctx
->child
,
473 (unsigned char *)out_p
, (unsigned char *)in_n
);
475 ((unsigned char *)in_n
)[15] |= (unsigned char)(1-i
);
477 p
= be64_to_cpup(out_p
+ i
);
478 h
= vhash(m
, mbytes
, (u64
*)0, &ctx
->__vmac_ctx
);
479 return le64_to_cpu(p
+ h
);
482 static int vmac_set_key(unsigned char user_key
[], struct vmac_ctx_t
*ctx
)
484 u64 in
[2] = {0}, out
[2];
488 err
= crypto_cipher_setkey(ctx
->child
, user_key
, VMAC_KEY_LEN
);
493 ((unsigned char *)in
)[0] = 0x80;
494 for (i
= 0; i
< sizeof(ctx
->__vmac_ctx
.nhkey
)/8; i
+= 2) {
495 crypto_cipher_encrypt_one(ctx
->child
,
496 (unsigned char *)out
, (unsigned char *)in
);
497 ctx
->__vmac_ctx
.nhkey
[i
] = be64_to_cpup(out
);
498 ctx
->__vmac_ctx
.nhkey
[i
+1] = be64_to_cpup(out
+1);
499 ((unsigned char *)in
)[15] += 1;
503 ((unsigned char *)in
)[0] = 0xC0;
505 for (i
= 0; i
< sizeof(ctx
->__vmac_ctx
.polykey
)/8; i
+= 2) {
506 crypto_cipher_encrypt_one(ctx
->child
,
507 (unsigned char *)out
, (unsigned char *)in
);
508 ctx
->__vmac_ctx
.polytmp
[i
] =
509 ctx
->__vmac_ctx
.polykey
[i
] =
510 be64_to_cpup(out
) & mpoly
;
511 ctx
->__vmac_ctx
.polytmp
[i
+1] =
512 ctx
->__vmac_ctx
.polykey
[i
+1] =
513 be64_to_cpup(out
+1) & mpoly
;
514 ((unsigned char *)in
)[15] += 1;
518 ((unsigned char *)in
)[0] = 0xE0;
520 for (i
= 0; i
< sizeof(ctx
->__vmac_ctx
.l3key
)/8; i
+= 2) {
522 crypto_cipher_encrypt_one(ctx
->child
,
523 (unsigned char *)out
, (unsigned char *)in
);
524 ctx
->__vmac_ctx
.l3key
[i
] = be64_to_cpup(out
);
525 ctx
->__vmac_ctx
.l3key
[i
+1] = be64_to_cpup(out
+1);
526 ((unsigned char *)in
)[15] += 1;
527 } while (ctx
->__vmac_ctx
.l3key
[i
] >= p64
528 || ctx
->__vmac_ctx
.l3key
[i
+1] >= p64
);
531 /* Invalidate nonce/aes cache and reset other elements */
532 ctx
->__vmac_ctx
.cached_nonce
[0] = (u64
)-1; /* Ensure illegal nonce */
533 ctx
->__vmac_ctx
.cached_nonce
[1] = (u64
)0; /* Ensure illegal nonce */
534 ctx
->__vmac_ctx
.first_block_processed
= 0;
539 static int vmac_setkey(struct crypto_shash
*parent
,
540 const u8
*key
, unsigned int keylen
)
542 struct vmac_ctx_t
*ctx
= crypto_shash_ctx(parent
);
544 if (keylen
!= VMAC_KEY_LEN
) {
545 crypto_shash_set_flags(parent
, CRYPTO_TFM_RES_BAD_KEY_LEN
);
549 return vmac_set_key((u8
*)key
, ctx
);
552 static int vmac_init(struct shash_desc
*pdesc
)
557 static int vmac_update(struct shash_desc
*pdesc
, const u8
*p
,
560 struct crypto_shash
*parent
= pdesc
->tfm
;
561 struct vmac_ctx_t
*ctx
= crypto_shash_ctx(parent
);
563 vhash_update(p
, len
, &ctx
->__vmac_ctx
);
568 static int vmac_final(struct shash_desc
*pdesc
, u8
*out
)
570 struct crypto_shash
*parent
= pdesc
->tfm
;
571 struct vmac_ctx_t
*ctx
= crypto_shash_ctx(parent
);
575 mac
= vmac(NULL
, 0, nonce
, NULL
, ctx
);
576 memcpy(out
, &mac
, sizeof(vmac_t
));
577 memset(&mac
, 0, sizeof(vmac_t
));
578 memset(&ctx
->__vmac_ctx
, 0, sizeof(struct vmac_ctx
));
582 static int vmac_init_tfm(struct crypto_tfm
*tfm
)
584 struct crypto_cipher
*cipher
;
585 struct crypto_instance
*inst
= (void *)tfm
->__crt_alg
;
586 struct crypto_spawn
*spawn
= crypto_instance_ctx(inst
);
587 struct vmac_ctx_t
*ctx
= crypto_tfm_ctx(tfm
);
589 cipher
= crypto_spawn_cipher(spawn
);
591 return PTR_ERR(cipher
);
597 static void vmac_exit_tfm(struct crypto_tfm
*tfm
)
599 struct vmac_ctx_t
*ctx
= crypto_tfm_ctx(tfm
);
600 crypto_free_cipher(ctx
->child
);
603 static int vmac_create(struct crypto_template
*tmpl
, struct rtattr
**tb
)
605 struct shash_instance
*inst
;
606 struct crypto_alg
*alg
;
609 err
= crypto_check_attr_type(tb
, CRYPTO_ALG_TYPE_SHASH
);
613 alg
= crypto_get_attr_alg(tb
, CRYPTO_ALG_TYPE_CIPHER
,
614 CRYPTO_ALG_TYPE_MASK
);
618 inst
= shash_alloc_instance("vmac", alg
);
623 err
= crypto_init_spawn(shash_instance_ctx(inst
), alg
,
624 shash_crypto_instance(inst
),
625 CRYPTO_ALG_TYPE_MASK
);
629 inst
->alg
.base
.cra_priority
= alg
->cra_priority
;
630 inst
->alg
.base
.cra_blocksize
= alg
->cra_blocksize
;
631 inst
->alg
.base
.cra_alignmask
= alg
->cra_alignmask
;
633 inst
->alg
.digestsize
= sizeof(vmac_t
);
634 inst
->alg
.base
.cra_ctxsize
= sizeof(struct vmac_ctx_t
);
635 inst
->alg
.base
.cra_init
= vmac_init_tfm
;
636 inst
->alg
.base
.cra_exit
= vmac_exit_tfm
;
638 inst
->alg
.init
= vmac_init
;
639 inst
->alg
.update
= vmac_update
;
640 inst
->alg
.final
= vmac_final
;
641 inst
->alg
.setkey
= vmac_setkey
;
643 err
= shash_register_instance(tmpl
, inst
);
646 shash_free_instance(shash_crypto_instance(inst
));
654 static struct crypto_template vmac_tmpl
= {
656 .create
= vmac_create
,
657 .free
= shash_free_instance
,
658 .module
= THIS_MODULE
,
661 static int __init
vmac_module_init(void)
663 return crypto_register_template(&vmac_tmpl
);
666 static void __exit
vmac_module_exit(void)
668 crypto_unregister_template(&vmac_tmpl
);
671 module_init(vmac_module_init
);
672 module_exit(vmac_module_exit
);
674 MODULE_LICENSE("GPL");
675 MODULE_DESCRIPTION("VMAC hash algorithm");