2 * Procedures for maintaining information about logical memory blocks.
4 * Peter Bergner, IBM Corp. June 2001.
5 * Copyright (C) 2001 Peter Bergner.
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version
10 * 2 of the License, or (at your option) any later version.
13 #include <linux/kernel.h>
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/bitops.h>
17 #include <linux/poison.h>
18 #include <linux/pfn.h>
19 #include <linux/debugfs.h>
20 #include <linux/seq_file.h>
21 #include <linux/memblock.h>
23 static struct memblock_region memblock_memory_init_regions
[INIT_MEMBLOCK_REGIONS
] __initdata_memblock
;
24 static struct memblock_region memblock_reserved_init_regions
[INIT_MEMBLOCK_REGIONS
] __initdata_memblock
;
26 struct memblock memblock __initdata_memblock
= {
27 .memory
.regions
= memblock_memory_init_regions
,
28 .memory
.cnt
= 1, /* empty dummy entry */
29 .memory
.max
= INIT_MEMBLOCK_REGIONS
,
31 .reserved
.regions
= memblock_reserved_init_regions
,
32 .reserved
.cnt
= 1, /* empty dummy entry */
33 .reserved
.max
= INIT_MEMBLOCK_REGIONS
,
35 .current_limit
= MEMBLOCK_ALLOC_ANYWHERE
,
38 int memblock_debug __initdata_memblock
;
39 static int memblock_can_resize __initdata_memblock
;
40 static int memblock_memory_in_slab __initdata_memblock
= 0;
41 static int memblock_reserved_in_slab __initdata_memblock
= 0;
43 /* inline so we don't get a warning when pr_debug is compiled out */
44 static inline const char *memblock_type_name(struct memblock_type
*type
)
46 if (type
== &memblock
.memory
)
48 else if (type
== &memblock
.reserved
)
54 /* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
55 static inline phys_addr_t
memblock_cap_size(phys_addr_t base
, phys_addr_t
*size
)
57 return *size
= min(*size
, (phys_addr_t
)ULLONG_MAX
- base
);
61 * Address comparison utilities
63 static unsigned long __init_memblock
memblock_addrs_overlap(phys_addr_t base1
, phys_addr_t size1
,
64 phys_addr_t base2
, phys_addr_t size2
)
66 return ((base1
< (base2
+ size2
)) && (base2
< (base1
+ size1
)));
69 static long __init_memblock
memblock_overlaps_region(struct memblock_type
*type
,
70 phys_addr_t base
, phys_addr_t size
)
74 for (i
= 0; i
< type
->cnt
; i
++) {
75 phys_addr_t rgnbase
= type
->regions
[i
].base
;
76 phys_addr_t rgnsize
= type
->regions
[i
].size
;
77 if (memblock_addrs_overlap(base
, size
, rgnbase
, rgnsize
))
81 return (i
< type
->cnt
) ? i
: -1;
85 * memblock_find_in_range_node - find free area in given range and node
86 * @start: start of candidate range
87 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
88 * @size: size of free area to find
89 * @align: alignment of free area to find
90 * @nid: nid of the free area to find, %MAX_NUMNODES for any node
92 * Find @size free area aligned to @align in the specified range and node.
95 * Found address on success, %0 on failure.
97 phys_addr_t __init_memblock
memblock_find_in_range_node(phys_addr_t start
,
98 phys_addr_t end
, phys_addr_t size
,
99 phys_addr_t align
, int nid
)
101 phys_addr_t this_start
, this_end
, cand
;
105 if (end
== MEMBLOCK_ALLOC_ACCESSIBLE
)
106 end
= memblock
.current_limit
;
108 /* avoid allocating the first page */
109 start
= max_t(phys_addr_t
, start
, PAGE_SIZE
);
110 end
= max(start
, end
);
112 for_each_free_mem_range_reverse(i
, nid
, &this_start
, &this_end
, NULL
) {
113 this_start
= clamp(this_start
, start
, end
);
114 this_end
= clamp(this_end
, start
, end
);
119 cand
= round_down(this_end
- size
, align
);
120 if (cand
>= this_start
)
127 * memblock_find_in_range - find free area in given range
128 * @start: start of candidate range
129 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
130 * @size: size of free area to find
131 * @align: alignment of free area to find
133 * Find @size free area aligned to @align in the specified range.
136 * Found address on success, %0 on failure.
138 phys_addr_t __init_memblock
memblock_find_in_range(phys_addr_t start
,
139 phys_addr_t end
, phys_addr_t size
,
142 return memblock_find_in_range_node(start
, end
, size
, align
,
147 * Free memblock.reserved.regions
149 int __init_memblock
memblock_free_reserved_regions(void)
151 if (memblock
.reserved
.regions
== memblock_reserved_init_regions
)
154 return memblock_free(__pa(memblock
.reserved
.regions
),
155 sizeof(struct memblock_region
) * memblock
.reserved
.max
);
159 * Reserve memblock.reserved.regions
161 int __init_memblock
memblock_reserve_reserved_regions(void)
163 if (memblock
.reserved
.regions
== memblock_reserved_init_regions
)
166 return memblock_reserve(__pa(memblock
.reserved
.regions
),
167 sizeof(struct memblock_region
) * memblock
.reserved
.max
);
170 static void __init_memblock
memblock_remove_region(struct memblock_type
*type
, unsigned long r
)
172 type
->total_size
-= type
->regions
[r
].size
;
173 memmove(&type
->regions
[r
], &type
->regions
[r
+ 1],
174 (type
->cnt
- (r
+ 1)) * sizeof(type
->regions
[r
]));
177 /* Special case for empty arrays */
178 if (type
->cnt
== 0) {
179 WARN_ON(type
->total_size
!= 0);
181 type
->regions
[0].base
= 0;
182 type
->regions
[0].size
= 0;
183 memblock_set_region_node(&type
->regions
[0], MAX_NUMNODES
);
188 * memblock_double_array - double the size of the memblock regions array
189 * @type: memblock type of the regions array being doubled
190 * @new_area_start: starting address of memory range to avoid overlap with
191 * @new_area_size: size of memory range to avoid overlap with
193 * Double the size of the @type regions array. If memblock is being used to
194 * allocate memory for a new reserved regions array and there is a previously
195 * allocated memory range [@new_area_start,@new_area_start+@new_area_size]
196 * waiting to be reserved, ensure the memory used by the new array does
200 * 0 on success, -1 on failure.
202 static int __init_memblock
memblock_double_array(struct memblock_type
*type
,
203 phys_addr_t new_area_start
,
204 phys_addr_t new_area_size
)
206 struct memblock_region
*new_array
, *old_array
;
207 phys_addr_t old_size
, new_size
, addr
;
208 int use_slab
= slab_is_available();
211 /* We don't allow resizing until we know about the reserved regions
212 * of memory that aren't suitable for allocation
214 if (!memblock_can_resize
)
217 /* Calculate new doubled size */
218 old_size
= type
->max
* sizeof(struct memblock_region
);
219 new_size
= old_size
<< 1;
221 /* Retrieve the slab flag */
222 if (type
== &memblock
.memory
)
223 in_slab
= &memblock_memory_in_slab
;
225 in_slab
= &memblock_reserved_in_slab
;
227 /* Try to find some space for it.
229 * WARNING: We assume that either slab_is_available() and we use it or
230 * we use MEMBLOCK for allocations. That means that this is unsafe to use
231 * when bootmem is currently active (unless bootmem itself is implemented
232 * on top of MEMBLOCK which isn't the case yet)
234 * This should however not be an issue for now, as we currently only
235 * call into MEMBLOCK while it's still active, or much later when slab is
236 * active for memory hotplug operations
239 new_array
= kmalloc(new_size
, GFP_KERNEL
);
240 addr
= new_array
? __pa(new_array
) : 0;
242 /* only exclude range when trying to double reserved.regions */
243 if (type
!= &memblock
.reserved
)
244 new_area_start
= new_area_size
= 0;
246 addr
= memblock_find_in_range(new_area_start
+ new_area_size
,
247 memblock
.current_limit
,
248 new_size
, sizeof(phys_addr_t
));
249 if (!addr
&& new_area_size
)
250 addr
= memblock_find_in_range(0,
251 min(new_area_start
, memblock
.current_limit
),
252 new_size
, sizeof(phys_addr_t
));
254 new_array
= addr
? __va(addr
) : 0;
257 pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
258 memblock_type_name(type
), type
->max
, type
->max
* 2);
262 memblock_dbg("memblock: %s array is doubled to %ld at [%#010llx-%#010llx]",
263 memblock_type_name(type
), type
->max
* 2, (u64
)addr
, (u64
)addr
+ new_size
- 1);
265 /* Found space, we now need to move the array over before
266 * we add the reserved region since it may be our reserved
267 * array itself that is full.
269 memcpy(new_array
, type
->regions
, old_size
);
270 memset(new_array
+ type
->max
, 0, old_size
);
271 old_array
= type
->regions
;
272 type
->regions
= new_array
;
275 /* Free old array. We needn't free it if the array is the
280 else if (old_array
!= memblock_memory_init_regions
&&
281 old_array
!= memblock_reserved_init_regions
)
282 memblock_free(__pa(old_array
), old_size
);
284 /* Reserve the new array if that comes from the memblock.
285 * Otherwise, we needn't do it
288 BUG_ON(memblock_reserve(addr
, new_size
));
290 /* Update slab flag */
297 * memblock_merge_regions - merge neighboring compatible regions
298 * @type: memblock type to scan
300 * Scan @type and merge neighboring compatible regions.
302 static void __init_memblock
memblock_merge_regions(struct memblock_type
*type
)
306 /* cnt never goes below 1 */
307 while (i
< type
->cnt
- 1) {
308 struct memblock_region
*this = &type
->regions
[i
];
309 struct memblock_region
*next
= &type
->regions
[i
+ 1];
311 if (this->base
+ this->size
!= next
->base
||
312 memblock_get_region_node(this) !=
313 memblock_get_region_node(next
)) {
314 BUG_ON(this->base
+ this->size
> next
->base
);
319 this->size
+= next
->size
;
320 memmove(next
, next
+ 1, (type
->cnt
- (i
+ 1)) * sizeof(*next
));
326 * memblock_insert_region - insert new memblock region
327 * @type: memblock type to insert into
328 * @idx: index for the insertion point
329 * @base: base address of the new region
330 * @size: size of the new region
332 * Insert new memblock region [@base,@base+@size) into @type at @idx.
333 * @type must already have extra room to accomodate the new region.
335 static void __init_memblock
memblock_insert_region(struct memblock_type
*type
,
336 int idx
, phys_addr_t base
,
337 phys_addr_t size
, int nid
)
339 struct memblock_region
*rgn
= &type
->regions
[idx
];
341 BUG_ON(type
->cnt
>= type
->max
);
342 memmove(rgn
+ 1, rgn
, (type
->cnt
- idx
) * sizeof(*rgn
));
345 memblock_set_region_node(rgn
, nid
);
347 type
->total_size
+= size
;
351 * memblock_add_region - add new memblock region
352 * @type: memblock type to add new region into
353 * @base: base address of the new region
354 * @size: size of the new region
355 * @nid: nid of the new region
357 * Add new memblock region [@base,@base+@size) into @type. The new region
358 * is allowed to overlap with existing ones - overlaps don't affect already
359 * existing regions. @type is guaranteed to be minimal (all neighbouring
360 * compatible regions are merged) after the addition.
363 * 0 on success, -errno on failure.
365 static int __init_memblock
memblock_add_region(struct memblock_type
*type
,
366 phys_addr_t base
, phys_addr_t size
, int nid
)
369 phys_addr_t obase
= base
;
370 phys_addr_t end
= base
+ memblock_cap_size(base
, &size
);
376 /* special case for empty array */
377 if (type
->regions
[0].size
== 0) {
378 WARN_ON(type
->cnt
!= 1 || type
->total_size
);
379 type
->regions
[0].base
= base
;
380 type
->regions
[0].size
= size
;
381 memblock_set_region_node(&type
->regions
[0], nid
);
382 type
->total_size
= size
;
387 * The following is executed twice. Once with %false @insert and
388 * then with %true. The first counts the number of regions needed
389 * to accomodate the new area. The second actually inserts them.
394 for (i
= 0; i
< type
->cnt
; i
++) {
395 struct memblock_region
*rgn
= &type
->regions
[i
];
396 phys_addr_t rbase
= rgn
->base
;
397 phys_addr_t rend
= rbase
+ rgn
->size
;
404 * @rgn overlaps. If it separates the lower part of new
405 * area, insert that portion.
410 memblock_insert_region(type
, i
++, base
,
413 /* area below @rend is dealt with, forget about it */
414 base
= min(rend
, end
);
417 /* insert the remaining portion */
421 memblock_insert_region(type
, i
, base
, end
- base
, nid
);
425 * If this was the first round, resize array and repeat for actual
426 * insertions; otherwise, merge and return.
429 while (type
->cnt
+ nr_new
> type
->max
)
430 if (memblock_double_array(type
, obase
, size
) < 0)
435 memblock_merge_regions(type
);
440 int __init_memblock
memblock_add_node(phys_addr_t base
, phys_addr_t size
,
443 return memblock_add_region(&memblock
.memory
, base
, size
, nid
);
446 int __init_memblock
memblock_add(phys_addr_t base
, phys_addr_t size
)
448 return memblock_add_region(&memblock
.memory
, base
, size
, MAX_NUMNODES
);
452 * memblock_isolate_range - isolate given range into disjoint memblocks
453 * @type: memblock type to isolate range for
454 * @base: base of range to isolate
455 * @size: size of range to isolate
456 * @start_rgn: out parameter for the start of isolated region
457 * @end_rgn: out parameter for the end of isolated region
459 * Walk @type and ensure that regions don't cross the boundaries defined by
460 * [@base,@base+@size). Crossing regions are split at the boundaries,
461 * which may create at most two more regions. The index of the first
462 * region inside the range is returned in *@start_rgn and end in *@end_rgn.
465 * 0 on success, -errno on failure.
467 static int __init_memblock
memblock_isolate_range(struct memblock_type
*type
,
468 phys_addr_t base
, phys_addr_t size
,
469 int *start_rgn
, int *end_rgn
)
471 phys_addr_t end
= base
+ memblock_cap_size(base
, &size
);
474 *start_rgn
= *end_rgn
= 0;
479 /* we'll create at most two more regions */
480 while (type
->cnt
+ 2 > type
->max
)
481 if (memblock_double_array(type
, base
, size
) < 0)
484 for (i
= 0; i
< type
->cnt
; i
++) {
485 struct memblock_region
*rgn
= &type
->regions
[i
];
486 phys_addr_t rbase
= rgn
->base
;
487 phys_addr_t rend
= rbase
+ rgn
->size
;
496 * @rgn intersects from below. Split and continue
497 * to process the next region - the new top half.
500 rgn
->size
-= base
- rbase
;
501 type
->total_size
-= base
- rbase
;
502 memblock_insert_region(type
, i
, rbase
, base
- rbase
,
503 memblock_get_region_node(rgn
));
504 } else if (rend
> end
) {
506 * @rgn intersects from above. Split and redo the
507 * current region - the new bottom half.
510 rgn
->size
-= end
- rbase
;
511 type
->total_size
-= end
- rbase
;
512 memblock_insert_region(type
, i
--, rbase
, end
- rbase
,
513 memblock_get_region_node(rgn
));
515 /* @rgn is fully contained, record it */
525 static int __init_memblock
__memblock_remove(struct memblock_type
*type
,
526 phys_addr_t base
, phys_addr_t size
)
528 int start_rgn
, end_rgn
;
531 ret
= memblock_isolate_range(type
, base
, size
, &start_rgn
, &end_rgn
);
535 for (i
= end_rgn
- 1; i
>= start_rgn
; i
--)
536 memblock_remove_region(type
, i
);
540 int __init_memblock
memblock_remove(phys_addr_t base
, phys_addr_t size
)
542 return __memblock_remove(&memblock
.memory
, base
, size
);
545 int __init_memblock
memblock_free(phys_addr_t base
, phys_addr_t size
)
547 memblock_dbg(" memblock_free: [%#016llx-%#016llx] %pF\n",
548 (unsigned long long)base
,
549 (unsigned long long)base
+ size
,
552 return __memblock_remove(&memblock
.reserved
, base
, size
);
555 int __init_memblock
memblock_reserve(phys_addr_t base
, phys_addr_t size
)
557 struct memblock_type
*_rgn
= &memblock
.reserved
;
559 memblock_dbg("memblock_reserve: [%#016llx-%#016llx] %pF\n",
560 (unsigned long long)base
,
561 (unsigned long long)base
+ size
,
564 return memblock_add_region(_rgn
, base
, size
, MAX_NUMNODES
);
568 * __next_free_mem_range - next function for for_each_free_mem_range()
569 * @idx: pointer to u64 loop variable
570 * @nid: nid: node selector, %MAX_NUMNODES for all nodes
571 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
572 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
573 * @out_nid: ptr to int for nid of the range, can be %NULL
575 * Find the first free area from *@idx which matches @nid, fill the out
576 * parameters, and update *@idx for the next iteration. The lower 32bit of
577 * *@idx contains index into memory region and the upper 32bit indexes the
578 * areas before each reserved region. For example, if reserved regions
579 * look like the following,
581 * 0:[0-16), 1:[32-48), 2:[128-130)
583 * The upper 32bit indexes the following regions.
585 * 0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
587 * As both region arrays are sorted, the function advances the two indices
588 * in lockstep and returns each intersection.
590 void __init_memblock
__next_free_mem_range(u64
*idx
, int nid
,
591 phys_addr_t
*out_start
,
592 phys_addr_t
*out_end
, int *out_nid
)
594 struct memblock_type
*mem
= &memblock
.memory
;
595 struct memblock_type
*rsv
= &memblock
.reserved
;
596 int mi
= *idx
& 0xffffffff;
599 for ( ; mi
< mem
->cnt
; mi
++) {
600 struct memblock_region
*m
= &mem
->regions
[mi
];
601 phys_addr_t m_start
= m
->base
;
602 phys_addr_t m_end
= m
->base
+ m
->size
;
604 /* only memory regions are associated with nodes, check it */
605 if (nid
!= MAX_NUMNODES
&& nid
!= memblock_get_region_node(m
))
608 /* scan areas before each reservation for intersection */
609 for ( ; ri
< rsv
->cnt
+ 1; ri
++) {
610 struct memblock_region
*r
= &rsv
->regions
[ri
];
611 phys_addr_t r_start
= ri
? r
[-1].base
+ r
[-1].size
: 0;
612 phys_addr_t r_end
= ri
< rsv
->cnt
? r
->base
: ULLONG_MAX
;
614 /* if ri advanced past mi, break out to advance mi */
615 if (r_start
>= m_end
)
617 /* if the two regions intersect, we're done */
618 if (m_start
< r_end
) {
620 *out_start
= max(m_start
, r_start
);
622 *out_end
= min(m_end
, r_end
);
624 *out_nid
= memblock_get_region_node(m
);
626 * The region which ends first is advanced
627 * for the next iteration.
633 *idx
= (u32
)mi
| (u64
)ri
<< 32;
639 /* signal end of iteration */
644 * __next_free_mem_range_rev - next function for for_each_free_mem_range_reverse()
645 * @idx: pointer to u64 loop variable
646 * @nid: nid: node selector, %MAX_NUMNODES for all nodes
647 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
648 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
649 * @out_nid: ptr to int for nid of the range, can be %NULL
651 * Reverse of __next_free_mem_range().
653 void __init_memblock
__next_free_mem_range_rev(u64
*idx
, int nid
,
654 phys_addr_t
*out_start
,
655 phys_addr_t
*out_end
, int *out_nid
)
657 struct memblock_type
*mem
= &memblock
.memory
;
658 struct memblock_type
*rsv
= &memblock
.reserved
;
659 int mi
= *idx
& 0xffffffff;
662 if (*idx
== (u64
)ULLONG_MAX
) {
667 for ( ; mi
>= 0; mi
--) {
668 struct memblock_region
*m
= &mem
->regions
[mi
];
669 phys_addr_t m_start
= m
->base
;
670 phys_addr_t m_end
= m
->base
+ m
->size
;
672 /* only memory regions are associated with nodes, check it */
673 if (nid
!= MAX_NUMNODES
&& nid
!= memblock_get_region_node(m
))
676 /* scan areas before each reservation for intersection */
677 for ( ; ri
>= 0; ri
--) {
678 struct memblock_region
*r
= &rsv
->regions
[ri
];
679 phys_addr_t r_start
= ri
? r
[-1].base
+ r
[-1].size
: 0;
680 phys_addr_t r_end
= ri
< rsv
->cnt
? r
->base
: ULLONG_MAX
;
682 /* if ri advanced past mi, break out to advance mi */
683 if (r_end
<= m_start
)
685 /* if the two regions intersect, we're done */
686 if (m_end
> r_start
) {
688 *out_start
= max(m_start
, r_start
);
690 *out_end
= min(m_end
, r_end
);
692 *out_nid
= memblock_get_region_node(m
);
694 if (m_start
>= r_start
)
698 *idx
= (u32
)mi
| (u64
)ri
<< 32;
707 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
709 * Common iterator interface used to define for_each_mem_range().
711 void __init_memblock
__next_mem_pfn_range(int *idx
, int nid
,
712 unsigned long *out_start_pfn
,
713 unsigned long *out_end_pfn
, int *out_nid
)
715 struct memblock_type
*type
= &memblock
.memory
;
716 struct memblock_region
*r
;
718 while (++*idx
< type
->cnt
) {
719 r
= &type
->regions
[*idx
];
721 if (PFN_UP(r
->base
) >= PFN_DOWN(r
->base
+ r
->size
))
723 if (nid
== MAX_NUMNODES
|| nid
== r
->nid
)
726 if (*idx
>= type
->cnt
) {
732 *out_start_pfn
= PFN_UP(r
->base
);
734 *out_end_pfn
= PFN_DOWN(r
->base
+ r
->size
);
740 * memblock_set_node - set node ID on memblock regions
741 * @base: base of area to set node ID for
742 * @size: size of area to set node ID for
743 * @nid: node ID to set
745 * Set the nid of memblock memory regions in [@base,@base+@size) to @nid.
746 * Regions which cross the area boundaries are split as necessary.
749 * 0 on success, -errno on failure.
751 int __init_memblock
memblock_set_node(phys_addr_t base
, phys_addr_t size
,
754 struct memblock_type
*type
= &memblock
.memory
;
755 int start_rgn
, end_rgn
;
758 ret
= memblock_isolate_range(type
, base
, size
, &start_rgn
, &end_rgn
);
762 for (i
= start_rgn
; i
< end_rgn
; i
++)
763 type
->regions
[i
].nid
= nid
;
765 memblock_merge_regions(type
);
768 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
770 static phys_addr_t __init
memblock_alloc_base_nid(phys_addr_t size
,
771 phys_addr_t align
, phys_addr_t max_addr
,
776 /* align @size to avoid excessive fragmentation on reserved array */
777 size
= round_up(size
, align
);
779 found
= memblock_find_in_range_node(0, max_addr
, size
, align
, nid
);
780 if (found
&& !memblock_reserve(found
, size
))
786 phys_addr_t __init
memblock_alloc_nid(phys_addr_t size
, phys_addr_t align
, int nid
)
788 return memblock_alloc_base_nid(size
, align
, MEMBLOCK_ALLOC_ACCESSIBLE
, nid
);
791 phys_addr_t __init
__memblock_alloc_base(phys_addr_t size
, phys_addr_t align
, phys_addr_t max_addr
)
793 return memblock_alloc_base_nid(size
, align
, max_addr
, MAX_NUMNODES
);
796 phys_addr_t __init
memblock_alloc_base(phys_addr_t size
, phys_addr_t align
, phys_addr_t max_addr
)
800 alloc
= __memblock_alloc_base(size
, align
, max_addr
);
803 panic("ERROR: Failed to allocate 0x%llx bytes below 0x%llx.\n",
804 (unsigned long long) size
, (unsigned long long) max_addr
);
809 phys_addr_t __init
memblock_alloc(phys_addr_t size
, phys_addr_t align
)
811 return memblock_alloc_base(size
, align
, MEMBLOCK_ALLOC_ACCESSIBLE
);
814 phys_addr_t __init
memblock_alloc_try_nid(phys_addr_t size
, phys_addr_t align
, int nid
)
816 phys_addr_t res
= memblock_alloc_nid(size
, align
, nid
);
820 return memblock_alloc_base(size
, align
, MEMBLOCK_ALLOC_ACCESSIBLE
);
825 * Remaining API functions
828 phys_addr_t __init
memblock_phys_mem_size(void)
830 return memblock
.memory
.total_size
;
834 phys_addr_t __init_memblock
memblock_start_of_DRAM(void)
836 return memblock
.memory
.regions
[0].base
;
839 phys_addr_t __init_memblock
memblock_end_of_DRAM(void)
841 int idx
= memblock
.memory
.cnt
- 1;
843 return (memblock
.memory
.regions
[idx
].base
+ memblock
.memory
.regions
[idx
].size
);
846 void __init
memblock_enforce_memory_limit(phys_addr_t limit
)
849 phys_addr_t max_addr
= (phys_addr_t
)ULLONG_MAX
;
854 /* find out max address */
855 for (i
= 0; i
< memblock
.memory
.cnt
; i
++) {
856 struct memblock_region
*r
= &memblock
.memory
.regions
[i
];
858 if (limit
<= r
->size
) {
859 max_addr
= r
->base
+ limit
;
865 /* truncate both memory and reserved regions */
866 __memblock_remove(&memblock
.memory
, max_addr
, (phys_addr_t
)ULLONG_MAX
);
867 __memblock_remove(&memblock
.reserved
, max_addr
, (phys_addr_t
)ULLONG_MAX
);
870 static int __init_memblock
memblock_search(struct memblock_type
*type
, phys_addr_t addr
)
872 unsigned int left
= 0, right
= type
->cnt
;
875 unsigned int mid
= (right
+ left
) / 2;
877 if (addr
< type
->regions
[mid
].base
)
879 else if (addr
>= (type
->regions
[mid
].base
+
880 type
->regions
[mid
].size
))
884 } while (left
< right
);
888 int __init
memblock_is_reserved(phys_addr_t addr
)
890 return memblock_search(&memblock
.reserved
, addr
) != -1;
893 int __init_memblock
memblock_is_memory(phys_addr_t addr
)
895 return memblock_search(&memblock
.memory
, addr
) != -1;
899 * memblock_is_region_memory - check if a region is a subset of memory
900 * @base: base of region to check
901 * @size: size of region to check
903 * Check if the region [@base, @base+@size) is a subset of a memory block.
906 * 0 if false, non-zero if true
908 int __init_memblock
memblock_is_region_memory(phys_addr_t base
, phys_addr_t size
)
910 int idx
= memblock_search(&memblock
.memory
, base
);
911 phys_addr_t end
= base
+ memblock_cap_size(base
, &size
);
915 return memblock
.memory
.regions
[idx
].base
<= base
&&
916 (memblock
.memory
.regions
[idx
].base
+
917 memblock
.memory
.regions
[idx
].size
) >= end
;
921 * memblock_is_region_reserved - check if a region intersects reserved memory
922 * @base: base of region to check
923 * @size: size of region to check
925 * Check if the region [@base, @base+@size) intersects a reserved memory block.
928 * 0 if false, non-zero if true
930 int __init_memblock
memblock_is_region_reserved(phys_addr_t base
, phys_addr_t size
)
932 memblock_cap_size(base
, &size
);
933 return memblock_overlaps_region(&memblock
.reserved
, base
, size
) >= 0;
937 void __init_memblock
memblock_set_current_limit(phys_addr_t limit
)
939 memblock
.current_limit
= limit
;
942 static void __init_memblock
memblock_dump(struct memblock_type
*type
, char *name
)
944 unsigned long long base
, size
;
947 pr_info(" %s.cnt = 0x%lx\n", name
, type
->cnt
);
949 for (i
= 0; i
< type
->cnt
; i
++) {
950 struct memblock_region
*rgn
= &type
->regions
[i
];
951 char nid_buf
[32] = "";
955 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
956 if (memblock_get_region_node(rgn
) != MAX_NUMNODES
)
957 snprintf(nid_buf
, sizeof(nid_buf
), " on node %d",
958 memblock_get_region_node(rgn
));
960 pr_info(" %s[%#x]\t[%#016llx-%#016llx], %#llx bytes%s\n",
961 name
, i
, base
, base
+ size
- 1, size
, nid_buf
);
965 void __init_memblock
__memblock_dump_all(void)
967 pr_info("MEMBLOCK configuration:\n");
968 pr_info(" memory size = %#llx reserved size = %#llx\n",
969 (unsigned long long)memblock
.memory
.total_size
,
970 (unsigned long long)memblock
.reserved
.total_size
);
972 memblock_dump(&memblock
.memory
, "memory");
973 memblock_dump(&memblock
.reserved
, "reserved");
976 void __init
memblock_allow_resize(void)
978 memblock_can_resize
= 1;
981 static int __init
early_memblock(char *p
)
983 if (p
&& strstr(p
, "debug"))
987 early_param("memblock", early_memblock
);
989 #if defined(CONFIG_DEBUG_FS) && !defined(CONFIG_ARCH_DISCARD_MEMBLOCK)
991 static int memblock_debug_show(struct seq_file
*m
, void *private)
993 struct memblock_type
*type
= m
->private;
994 struct memblock_region
*reg
;
997 for (i
= 0; i
< type
->cnt
; i
++) {
998 reg
= &type
->regions
[i
];
999 seq_printf(m
, "%4d: ", i
);
1000 if (sizeof(phys_addr_t
) == 4)
1001 seq_printf(m
, "0x%08lx..0x%08lx\n",
1002 (unsigned long)reg
->base
,
1003 (unsigned long)(reg
->base
+ reg
->size
- 1));
1005 seq_printf(m
, "0x%016llx..0x%016llx\n",
1006 (unsigned long long)reg
->base
,
1007 (unsigned long long)(reg
->base
+ reg
->size
- 1));
1013 static int memblock_debug_open(struct inode
*inode
, struct file
*file
)
1015 return single_open(file
, memblock_debug_show
, inode
->i_private
);
1018 static const struct file_operations memblock_debug_fops
= {
1019 .open
= memblock_debug_open
,
1021 .llseek
= seq_lseek
,
1022 .release
= single_release
,
1025 static int __init
memblock_init_debugfs(void)
1027 struct dentry
*root
= debugfs_create_dir("memblock", NULL
);
1030 debugfs_create_file("memory", S_IRUGO
, root
, &memblock
.memory
, &memblock_debug_fops
);
1031 debugfs_create_file("reserved", S_IRUGO
, root
, &memblock
.reserved
, &memblock_debug_fops
);
1035 __initcall(memblock_init_debugfs
);
1037 #endif /* CONFIG_DEBUG_FS */