PNP SMCf010 quirk: work around Toshiba Portege 4000 ACPI issues
[linux-2.6/libata-dev.git] / fs / splice.c
blobe7d7080de2f9799860a475a4df50a7742561d09f
1 /*
2 * "splice": joining two ropes together by interweaving their strands.
4 * This is the "extended pipe" functionality, where a pipe is used as
5 * an arbitrary in-memory buffer. Think of a pipe as a small kernel
6 * buffer that you can use to transfer data from one end to the other.
8 * The traditional unix read/write is extended with a "splice()" operation
9 * that transfers data buffers to or from a pipe buffer.
11 * Named by Larry McVoy, original implementation from Linus, extended by
12 * Jens to support splicing to files, network, direct splicing, etc and
13 * fixing lots of bugs.
15 * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk>
16 * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org>
17 * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu>
20 #include <linux/fs.h>
21 #include <linux/file.h>
22 #include <linux/pagemap.h>
23 #include <linux/pipe_fs_i.h>
24 #include <linux/mm_inline.h>
25 #include <linux/swap.h>
26 #include <linux/writeback.h>
27 #include <linux/buffer_head.h>
28 #include <linux/module.h>
29 #include <linux/syscalls.h>
30 #include <linux/uio.h>
32 struct partial_page {
33 unsigned int offset;
34 unsigned int len;
38 * Passed to splice_to_pipe
40 struct splice_pipe_desc {
41 struct page **pages; /* page map */
42 struct partial_page *partial; /* pages[] may not be contig */
43 int nr_pages; /* number of pages in map */
44 unsigned int flags; /* splice flags */
45 const struct pipe_buf_operations *ops;/* ops associated with output pipe */
49 * Attempt to steal a page from a pipe buffer. This should perhaps go into
50 * a vm helper function, it's already simplified quite a bit by the
51 * addition of remove_mapping(). If success is returned, the caller may
52 * attempt to reuse this page for another destination.
54 static int page_cache_pipe_buf_steal(struct pipe_inode_info *pipe,
55 struct pipe_buffer *buf)
57 struct page *page = buf->page;
58 struct address_space *mapping;
60 lock_page(page);
62 mapping = page_mapping(page);
63 if (mapping) {
64 WARN_ON(!PageUptodate(page));
67 * At least for ext2 with nobh option, we need to wait on
68 * writeback completing on this page, since we'll remove it
69 * from the pagecache. Otherwise truncate wont wait on the
70 * page, allowing the disk blocks to be reused by someone else
71 * before we actually wrote our data to them. fs corruption
72 * ensues.
74 wait_on_page_writeback(page);
76 if (PagePrivate(page))
77 try_to_release_page(page, GFP_KERNEL);
80 * If we succeeded in removing the mapping, set LRU flag
81 * and return good.
83 if (remove_mapping(mapping, page)) {
84 buf->flags |= PIPE_BUF_FLAG_LRU;
85 return 0;
90 * Raced with truncate or failed to remove page from current
91 * address space, unlock and return failure.
93 unlock_page(page);
94 return 1;
97 static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe,
98 struct pipe_buffer *buf)
100 page_cache_release(buf->page);
101 buf->flags &= ~PIPE_BUF_FLAG_LRU;
104 static int page_cache_pipe_buf_pin(struct pipe_inode_info *pipe,
105 struct pipe_buffer *buf)
107 struct page *page = buf->page;
108 int err;
110 if (!PageUptodate(page)) {
111 lock_page(page);
114 * Page got truncated/unhashed. This will cause a 0-byte
115 * splice, if this is the first page.
117 if (!page->mapping) {
118 err = -ENODATA;
119 goto error;
123 * Uh oh, read-error from disk.
125 if (!PageUptodate(page)) {
126 err = -EIO;
127 goto error;
131 * Page is ok afterall, we are done.
133 unlock_page(page);
136 return 0;
137 error:
138 unlock_page(page);
139 return err;
142 static const struct pipe_buf_operations page_cache_pipe_buf_ops = {
143 .can_merge = 0,
144 .map = generic_pipe_buf_map,
145 .unmap = generic_pipe_buf_unmap,
146 .pin = page_cache_pipe_buf_pin,
147 .release = page_cache_pipe_buf_release,
148 .steal = page_cache_pipe_buf_steal,
149 .get = generic_pipe_buf_get,
152 static int user_page_pipe_buf_steal(struct pipe_inode_info *pipe,
153 struct pipe_buffer *buf)
155 if (!(buf->flags & PIPE_BUF_FLAG_GIFT))
156 return 1;
158 buf->flags |= PIPE_BUF_FLAG_LRU;
159 return generic_pipe_buf_steal(pipe, buf);
162 static const struct pipe_buf_operations user_page_pipe_buf_ops = {
163 .can_merge = 0,
164 .map = generic_pipe_buf_map,
165 .unmap = generic_pipe_buf_unmap,
166 .pin = generic_pipe_buf_pin,
167 .release = page_cache_pipe_buf_release,
168 .steal = user_page_pipe_buf_steal,
169 .get = generic_pipe_buf_get,
173 * Pipe output worker. This sets up our pipe format with the page cache
174 * pipe buffer operations. Otherwise very similar to the regular pipe_writev().
176 static ssize_t splice_to_pipe(struct pipe_inode_info *pipe,
177 struct splice_pipe_desc *spd)
179 unsigned int spd_pages = spd->nr_pages;
180 int ret, do_wakeup, page_nr;
182 ret = 0;
183 do_wakeup = 0;
184 page_nr = 0;
186 if (pipe->inode)
187 mutex_lock(&pipe->inode->i_mutex);
189 for (;;) {
190 if (!pipe->readers) {
191 send_sig(SIGPIPE, current, 0);
192 if (!ret)
193 ret = -EPIPE;
194 break;
197 if (pipe->nrbufs < PIPE_BUFFERS) {
198 int newbuf = (pipe->curbuf + pipe->nrbufs) & (PIPE_BUFFERS - 1);
199 struct pipe_buffer *buf = pipe->bufs + newbuf;
201 buf->page = spd->pages[page_nr];
202 buf->offset = spd->partial[page_nr].offset;
203 buf->len = spd->partial[page_nr].len;
204 buf->ops = spd->ops;
205 if (spd->flags & SPLICE_F_GIFT)
206 buf->flags |= PIPE_BUF_FLAG_GIFT;
208 pipe->nrbufs++;
209 page_nr++;
210 ret += buf->len;
212 if (pipe->inode)
213 do_wakeup = 1;
215 if (!--spd->nr_pages)
216 break;
217 if (pipe->nrbufs < PIPE_BUFFERS)
218 continue;
220 break;
223 if (spd->flags & SPLICE_F_NONBLOCK) {
224 if (!ret)
225 ret = -EAGAIN;
226 break;
229 if (signal_pending(current)) {
230 if (!ret)
231 ret = -ERESTARTSYS;
232 break;
235 if (do_wakeup) {
236 smp_mb();
237 if (waitqueue_active(&pipe->wait))
238 wake_up_interruptible_sync(&pipe->wait);
239 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
240 do_wakeup = 0;
243 pipe->waiting_writers++;
244 pipe_wait(pipe);
245 pipe->waiting_writers--;
248 if (pipe->inode) {
249 mutex_unlock(&pipe->inode->i_mutex);
251 if (do_wakeup) {
252 smp_mb();
253 if (waitqueue_active(&pipe->wait))
254 wake_up_interruptible(&pipe->wait);
255 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
259 while (page_nr < spd_pages)
260 page_cache_release(spd->pages[page_nr++]);
262 return ret;
265 static int
266 __generic_file_splice_read(struct file *in, loff_t *ppos,
267 struct pipe_inode_info *pipe, size_t len,
268 unsigned int flags)
270 struct address_space *mapping = in->f_mapping;
271 unsigned int loff, nr_pages;
272 struct page *pages[PIPE_BUFFERS];
273 struct partial_page partial[PIPE_BUFFERS];
274 struct page *page;
275 pgoff_t index, end_index;
276 loff_t isize;
277 int error, page_nr;
278 struct splice_pipe_desc spd = {
279 .pages = pages,
280 .partial = partial,
281 .flags = flags,
282 .ops = &page_cache_pipe_buf_ops,
285 index = *ppos >> PAGE_CACHE_SHIFT;
286 loff = *ppos & ~PAGE_CACHE_MASK;
287 nr_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
289 if (nr_pages > PIPE_BUFFERS)
290 nr_pages = PIPE_BUFFERS;
293 * Don't try to 2nd guess the read-ahead logic, call into
294 * page_cache_readahead() like the page cache reads would do.
296 page_cache_readahead(mapping, &in->f_ra, in, index, nr_pages);
299 * Now fill in the holes:
301 error = 0;
304 * Lookup the (hopefully) full range of pages we need.
306 spd.nr_pages = find_get_pages_contig(mapping, index, nr_pages, pages);
309 * If find_get_pages_contig() returned fewer pages than we needed,
310 * allocate the rest.
312 index += spd.nr_pages;
313 while (spd.nr_pages < nr_pages) {
315 * Page could be there, find_get_pages_contig() breaks on
316 * the first hole.
318 page = find_get_page(mapping, index);
319 if (!page) {
321 * Make sure the read-ahead engine is notified
322 * about this failure.
324 handle_ra_miss(mapping, &in->f_ra, index);
327 * page didn't exist, allocate one.
329 page = page_cache_alloc_cold(mapping);
330 if (!page)
331 break;
333 error = add_to_page_cache_lru(page, mapping, index,
334 GFP_KERNEL);
335 if (unlikely(error)) {
336 page_cache_release(page);
337 if (error == -EEXIST)
338 continue;
339 break;
342 * add_to_page_cache() locks the page, unlock it
343 * to avoid convoluting the logic below even more.
345 unlock_page(page);
348 pages[spd.nr_pages++] = page;
349 index++;
353 * Now loop over the map and see if we need to start IO on any
354 * pages, fill in the partial map, etc.
356 index = *ppos >> PAGE_CACHE_SHIFT;
357 nr_pages = spd.nr_pages;
358 spd.nr_pages = 0;
359 for (page_nr = 0; page_nr < nr_pages; page_nr++) {
360 unsigned int this_len;
362 if (!len)
363 break;
366 * this_len is the max we'll use from this page
368 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
369 page = pages[page_nr];
372 * If the page isn't uptodate, we may need to start io on it
374 if (!PageUptodate(page)) {
376 * If in nonblock mode then dont block on waiting
377 * for an in-flight io page
379 if (flags & SPLICE_F_NONBLOCK) {
380 if (TestSetPageLocked(page))
381 break;
382 } else
383 lock_page(page);
386 * page was truncated, stop here. if this isn't the
387 * first page, we'll just complete what we already
388 * added
390 if (!page->mapping) {
391 unlock_page(page);
392 break;
395 * page was already under io and is now done, great
397 if (PageUptodate(page)) {
398 unlock_page(page);
399 goto fill_it;
403 * need to read in the page
405 error = mapping->a_ops->readpage(in, page);
406 if (unlikely(error)) {
408 * We really should re-lookup the page here,
409 * but it complicates things a lot. Instead
410 * lets just do what we already stored, and
411 * we'll get it the next time we are called.
413 if (error == AOP_TRUNCATED_PAGE)
414 error = 0;
416 break;
419 fill_it:
421 * i_size must be checked after PageUptodate.
423 isize = i_size_read(mapping->host);
424 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
425 if (unlikely(!isize || index > end_index))
426 break;
429 * if this is the last page, see if we need to shrink
430 * the length and stop
432 if (end_index == index) {
433 unsigned int plen;
436 * max good bytes in this page
438 plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
439 if (plen <= loff)
440 break;
443 * force quit after adding this page
445 this_len = min(this_len, plen - loff);
446 len = this_len;
449 partial[page_nr].offset = loff;
450 partial[page_nr].len = this_len;
451 len -= this_len;
452 loff = 0;
453 spd.nr_pages++;
454 index++;
458 * Release any pages at the end, if we quit early. 'page_nr' is how far
459 * we got, 'nr_pages' is how many pages are in the map.
461 while (page_nr < nr_pages)
462 page_cache_release(pages[page_nr++]);
464 if (spd.nr_pages)
465 return splice_to_pipe(pipe, &spd);
467 return error;
471 * generic_file_splice_read - splice data from file to a pipe
472 * @in: file to splice from
473 * @pipe: pipe to splice to
474 * @len: number of bytes to splice
475 * @flags: splice modifier flags
477 * Will read pages from given file and fill them into a pipe.
479 ssize_t generic_file_splice_read(struct file *in, loff_t *ppos,
480 struct pipe_inode_info *pipe, size_t len,
481 unsigned int flags)
483 ssize_t spliced;
484 int ret;
485 loff_t isize, left;
487 isize = i_size_read(in->f_mapping->host);
488 if (unlikely(*ppos >= isize))
489 return 0;
491 left = isize - *ppos;
492 if (unlikely(left < len))
493 len = left;
495 ret = 0;
496 spliced = 0;
497 while (len) {
498 ret = __generic_file_splice_read(in, ppos, pipe, len, flags);
500 if (ret < 0)
501 break;
502 else if (!ret) {
503 if (spliced)
504 break;
505 if (flags & SPLICE_F_NONBLOCK) {
506 ret = -EAGAIN;
507 break;
511 *ppos += ret;
512 len -= ret;
513 spliced += ret;
516 if (spliced)
517 return spliced;
519 return ret;
522 EXPORT_SYMBOL(generic_file_splice_read);
525 * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos'
526 * using sendpage(). Return the number of bytes sent.
528 static int pipe_to_sendpage(struct pipe_inode_info *pipe,
529 struct pipe_buffer *buf, struct splice_desc *sd)
531 struct file *file = sd->file;
532 loff_t pos = sd->pos;
533 int ret, more;
535 ret = buf->ops->pin(pipe, buf);
536 if (!ret) {
537 more = (sd->flags & SPLICE_F_MORE) || sd->len < sd->total_len;
539 ret = file->f_op->sendpage(file, buf->page, buf->offset,
540 sd->len, &pos, more);
543 return ret;
547 * This is a little more tricky than the file -> pipe splicing. There are
548 * basically three cases:
550 * - Destination page already exists in the address space and there
551 * are users of it. For that case we have no other option that
552 * copying the data. Tough luck.
553 * - Destination page already exists in the address space, but there
554 * are no users of it. Make sure it's uptodate, then drop it. Fall
555 * through to last case.
556 * - Destination page does not exist, we can add the pipe page to
557 * the page cache and avoid the copy.
559 * If asked to move pages to the output file (SPLICE_F_MOVE is set in
560 * sd->flags), we attempt to migrate pages from the pipe to the output
561 * file address space page cache. This is possible if no one else has
562 * the pipe page referenced outside of the pipe and page cache. If
563 * SPLICE_F_MOVE isn't set, or we cannot move the page, we simply create
564 * a new page in the output file page cache and fill/dirty that.
566 static int pipe_to_file(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
567 struct splice_desc *sd)
569 struct file *file = sd->file;
570 struct address_space *mapping = file->f_mapping;
571 unsigned int offset, this_len;
572 struct page *page;
573 pgoff_t index;
574 int ret;
577 * make sure the data in this buffer is uptodate
579 ret = buf->ops->pin(pipe, buf);
580 if (unlikely(ret))
581 return ret;
583 index = sd->pos >> PAGE_CACHE_SHIFT;
584 offset = sd->pos & ~PAGE_CACHE_MASK;
586 this_len = sd->len;
587 if (this_len + offset > PAGE_CACHE_SIZE)
588 this_len = PAGE_CACHE_SIZE - offset;
590 find_page:
591 page = find_lock_page(mapping, index);
592 if (!page) {
593 ret = -ENOMEM;
594 page = page_cache_alloc_cold(mapping);
595 if (unlikely(!page))
596 goto out_ret;
599 * This will also lock the page
601 ret = add_to_page_cache_lru(page, mapping, index,
602 GFP_KERNEL);
603 if (unlikely(ret))
604 goto out;
607 ret = mapping->a_ops->prepare_write(file, page, offset, offset+this_len);
608 if (unlikely(ret)) {
609 loff_t isize = i_size_read(mapping->host);
611 if (ret != AOP_TRUNCATED_PAGE)
612 unlock_page(page);
613 page_cache_release(page);
614 if (ret == AOP_TRUNCATED_PAGE)
615 goto find_page;
618 * prepare_write() may have instantiated a few blocks
619 * outside i_size. Trim these off again.
621 if (sd->pos + this_len > isize)
622 vmtruncate(mapping->host, isize);
624 goto out_ret;
627 if (buf->page != page) {
629 * Careful, ->map() uses KM_USER0!
631 char *src = buf->ops->map(pipe, buf, 1);
632 char *dst = kmap_atomic(page, KM_USER1);
634 memcpy(dst + offset, src + buf->offset, this_len);
635 flush_dcache_page(page);
636 kunmap_atomic(dst, KM_USER1);
637 buf->ops->unmap(pipe, buf, src);
640 ret = mapping->a_ops->commit_write(file, page, offset, offset+this_len);
641 if (ret) {
642 if (ret == AOP_TRUNCATED_PAGE) {
643 page_cache_release(page);
644 goto find_page;
646 if (ret < 0)
647 goto out;
649 * Partial write has happened, so 'ret' already initialized by
650 * number of bytes written, Where is nothing we have to do here.
652 } else
653 ret = this_len;
655 * Return the number of bytes written and mark page as
656 * accessed, we are now done!
658 mark_page_accessed(page);
659 out:
660 page_cache_release(page);
661 unlock_page(page);
662 out_ret:
663 return ret;
667 * Pipe input worker. Most of this logic works like a regular pipe, the
668 * key here is the 'actor' worker passed in that actually moves the data
669 * to the wanted destination. See pipe_to_file/pipe_to_sendpage above.
671 ssize_t __splice_from_pipe(struct pipe_inode_info *pipe,
672 struct file *out, loff_t *ppos, size_t len,
673 unsigned int flags, splice_actor *actor)
675 int ret, do_wakeup, err;
676 struct splice_desc sd;
678 ret = 0;
679 do_wakeup = 0;
681 sd.total_len = len;
682 sd.flags = flags;
683 sd.file = out;
684 sd.pos = *ppos;
686 for (;;) {
687 if (pipe->nrbufs) {
688 struct pipe_buffer *buf = pipe->bufs + pipe->curbuf;
689 const struct pipe_buf_operations *ops = buf->ops;
691 sd.len = buf->len;
692 if (sd.len > sd.total_len)
693 sd.len = sd.total_len;
695 err = actor(pipe, buf, &sd);
696 if (err <= 0) {
697 if (!ret && err != -ENODATA)
698 ret = err;
700 break;
703 ret += err;
704 buf->offset += err;
705 buf->len -= err;
707 sd.len -= err;
708 sd.pos += err;
709 sd.total_len -= err;
710 if (sd.len)
711 continue;
713 if (!buf->len) {
714 buf->ops = NULL;
715 ops->release(pipe, buf);
716 pipe->curbuf = (pipe->curbuf + 1) & (PIPE_BUFFERS - 1);
717 pipe->nrbufs--;
718 if (pipe->inode)
719 do_wakeup = 1;
722 if (!sd.total_len)
723 break;
726 if (pipe->nrbufs)
727 continue;
728 if (!pipe->writers)
729 break;
730 if (!pipe->waiting_writers) {
731 if (ret)
732 break;
735 if (flags & SPLICE_F_NONBLOCK) {
736 if (!ret)
737 ret = -EAGAIN;
738 break;
741 if (signal_pending(current)) {
742 if (!ret)
743 ret = -ERESTARTSYS;
744 break;
747 if (do_wakeup) {
748 smp_mb();
749 if (waitqueue_active(&pipe->wait))
750 wake_up_interruptible_sync(&pipe->wait);
751 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
752 do_wakeup = 0;
755 pipe_wait(pipe);
758 if (do_wakeup) {
759 smp_mb();
760 if (waitqueue_active(&pipe->wait))
761 wake_up_interruptible(&pipe->wait);
762 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
765 return ret;
767 EXPORT_SYMBOL(__splice_from_pipe);
769 ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out,
770 loff_t *ppos, size_t len, unsigned int flags,
771 splice_actor *actor)
773 ssize_t ret;
774 struct inode *inode = out->f_mapping->host;
777 * The actor worker might be calling ->prepare_write and
778 * ->commit_write. Most of the time, these expect i_mutex to
779 * be held. Since this may result in an ABBA deadlock with
780 * pipe->inode, we have to order lock acquiry here.
782 inode_double_lock(inode, pipe->inode);
783 ret = __splice_from_pipe(pipe, out, ppos, len, flags, actor);
784 inode_double_unlock(inode, pipe->inode);
786 return ret;
790 * generic_file_splice_write_nolock - generic_file_splice_write without mutexes
791 * @pipe: pipe info
792 * @out: file to write to
793 * @len: number of bytes to splice
794 * @flags: splice modifier flags
796 * Will either move or copy pages (determined by @flags options) from
797 * the given pipe inode to the given file. The caller is responsible
798 * for acquiring i_mutex on both inodes.
801 ssize_t
802 generic_file_splice_write_nolock(struct pipe_inode_info *pipe, struct file *out,
803 loff_t *ppos, size_t len, unsigned int flags)
805 struct address_space *mapping = out->f_mapping;
806 struct inode *inode = mapping->host;
807 ssize_t ret;
808 int err;
810 err = remove_suid(out->f_path.dentry);
811 if (unlikely(err))
812 return err;
814 ret = __splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_file);
815 if (ret > 0) {
816 unsigned long nr_pages;
818 *ppos += ret;
819 nr_pages = (ret + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
822 * If file or inode is SYNC and we actually wrote some data,
823 * sync it.
825 if (unlikely((out->f_flags & O_SYNC) || IS_SYNC(inode))) {
826 err = generic_osync_inode(inode, mapping,
827 OSYNC_METADATA|OSYNC_DATA);
829 if (err)
830 ret = err;
832 balance_dirty_pages_ratelimited_nr(mapping, nr_pages);
835 return ret;
838 EXPORT_SYMBOL(generic_file_splice_write_nolock);
841 * generic_file_splice_write - splice data from a pipe to a file
842 * @pipe: pipe info
843 * @out: file to write to
844 * @len: number of bytes to splice
845 * @flags: splice modifier flags
847 * Will either move or copy pages (determined by @flags options) from
848 * the given pipe inode to the given file.
851 ssize_t
852 generic_file_splice_write(struct pipe_inode_info *pipe, struct file *out,
853 loff_t *ppos, size_t len, unsigned int flags)
855 struct address_space *mapping = out->f_mapping;
856 struct inode *inode = mapping->host;
857 ssize_t ret;
858 int err;
860 err = should_remove_suid(out->f_path.dentry);
861 if (unlikely(err)) {
862 mutex_lock(&inode->i_mutex);
863 err = __remove_suid(out->f_path.dentry, err);
864 mutex_unlock(&inode->i_mutex);
865 if (err)
866 return err;
869 ret = splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_file);
870 if (ret > 0) {
871 unsigned long nr_pages;
873 *ppos += ret;
874 nr_pages = (ret + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
877 * If file or inode is SYNC and we actually wrote some data,
878 * sync it.
880 if (unlikely((out->f_flags & O_SYNC) || IS_SYNC(inode))) {
881 mutex_lock(&inode->i_mutex);
882 err = generic_osync_inode(inode, mapping,
883 OSYNC_METADATA|OSYNC_DATA);
884 mutex_unlock(&inode->i_mutex);
886 if (err)
887 ret = err;
889 balance_dirty_pages_ratelimited_nr(mapping, nr_pages);
892 return ret;
895 EXPORT_SYMBOL(generic_file_splice_write);
898 * generic_splice_sendpage - splice data from a pipe to a socket
899 * @inode: pipe inode
900 * @out: socket to write to
901 * @len: number of bytes to splice
902 * @flags: splice modifier flags
904 * Will send @len bytes from the pipe to a network socket. No data copying
905 * is involved.
908 ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out,
909 loff_t *ppos, size_t len, unsigned int flags)
911 return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_sendpage);
914 EXPORT_SYMBOL(generic_splice_sendpage);
917 * Attempt to initiate a splice from pipe to file.
919 static long do_splice_from(struct pipe_inode_info *pipe, struct file *out,
920 loff_t *ppos, size_t len, unsigned int flags)
922 int ret;
924 if (unlikely(!out->f_op || !out->f_op->splice_write))
925 return -EINVAL;
927 if (unlikely(!(out->f_mode & FMODE_WRITE)))
928 return -EBADF;
930 ret = rw_verify_area(WRITE, out, ppos, len);
931 if (unlikely(ret < 0))
932 return ret;
934 return out->f_op->splice_write(pipe, out, ppos, len, flags);
938 * Attempt to initiate a splice from a file to a pipe.
940 static long do_splice_to(struct file *in, loff_t *ppos,
941 struct pipe_inode_info *pipe, size_t len,
942 unsigned int flags)
944 int ret;
946 if (unlikely(!in->f_op || !in->f_op->splice_read))
947 return -EINVAL;
949 if (unlikely(!(in->f_mode & FMODE_READ)))
950 return -EBADF;
952 ret = rw_verify_area(READ, in, ppos, len);
953 if (unlikely(ret < 0))
954 return ret;
956 return in->f_op->splice_read(in, ppos, pipe, len, flags);
959 long do_splice_direct(struct file *in, loff_t *ppos, struct file *out,
960 size_t len, unsigned int flags)
962 struct pipe_inode_info *pipe;
963 long ret, bytes;
964 loff_t out_off;
965 umode_t i_mode;
966 int i;
969 * We require the input being a regular file, as we don't want to
970 * randomly drop data for eg socket -> socket splicing. Use the
971 * piped splicing for that!
973 i_mode = in->f_path.dentry->d_inode->i_mode;
974 if (unlikely(!S_ISREG(i_mode) && !S_ISBLK(i_mode)))
975 return -EINVAL;
978 * neither in nor out is a pipe, setup an internal pipe attached to
979 * 'out' and transfer the wanted data from 'in' to 'out' through that
981 pipe = current->splice_pipe;
982 if (unlikely(!pipe)) {
983 pipe = alloc_pipe_info(NULL);
984 if (!pipe)
985 return -ENOMEM;
988 * We don't have an immediate reader, but we'll read the stuff
989 * out of the pipe right after the splice_to_pipe(). So set
990 * PIPE_READERS appropriately.
992 pipe->readers = 1;
994 current->splice_pipe = pipe;
998 * Do the splice.
1000 ret = 0;
1001 bytes = 0;
1002 out_off = 0;
1004 while (len) {
1005 size_t read_len, max_read_len;
1008 * Do at most PIPE_BUFFERS pages worth of transfer:
1010 max_read_len = min(len, (size_t)(PIPE_BUFFERS*PAGE_SIZE));
1012 ret = do_splice_to(in, ppos, pipe, max_read_len, flags);
1013 if (unlikely(ret < 0))
1014 goto out_release;
1016 read_len = ret;
1019 * NOTE: nonblocking mode only applies to the input. We
1020 * must not do the output in nonblocking mode as then we
1021 * could get stuck data in the internal pipe:
1023 ret = do_splice_from(pipe, out, &out_off, read_len,
1024 flags & ~SPLICE_F_NONBLOCK);
1025 if (unlikely(ret < 0))
1026 goto out_release;
1028 bytes += ret;
1029 len -= ret;
1032 * In nonblocking mode, if we got back a short read then
1033 * that was due to either an IO error or due to the
1034 * pagecache entry not being there. In the IO error case
1035 * the _next_ splice attempt will produce a clean IO error
1036 * return value (not a short read), so in both cases it's
1037 * correct to break out of the loop here:
1039 if ((flags & SPLICE_F_NONBLOCK) && (read_len < max_read_len))
1040 break;
1043 pipe->nrbufs = pipe->curbuf = 0;
1045 return bytes;
1047 out_release:
1049 * If we did an incomplete transfer we must release
1050 * the pipe buffers in question:
1052 for (i = 0; i < PIPE_BUFFERS; i++) {
1053 struct pipe_buffer *buf = pipe->bufs + i;
1055 if (buf->ops) {
1056 buf->ops->release(pipe, buf);
1057 buf->ops = NULL;
1060 pipe->nrbufs = pipe->curbuf = 0;
1063 * If we transferred some data, return the number of bytes:
1065 if (bytes > 0)
1066 return bytes;
1068 return ret;
1072 * After the inode slimming patch, i_pipe/i_bdev/i_cdev share the same
1073 * location, so checking ->i_pipe is not enough to verify that this is a
1074 * pipe.
1076 static inline struct pipe_inode_info *pipe_info(struct inode *inode)
1078 if (S_ISFIFO(inode->i_mode))
1079 return inode->i_pipe;
1081 return NULL;
1085 * Determine where to splice to/from.
1087 static long do_splice(struct file *in, loff_t __user *off_in,
1088 struct file *out, loff_t __user *off_out,
1089 size_t len, unsigned int flags)
1091 struct pipe_inode_info *pipe;
1092 loff_t offset, *off;
1093 long ret;
1095 pipe = pipe_info(in->f_path.dentry->d_inode);
1096 if (pipe) {
1097 if (off_in)
1098 return -ESPIPE;
1099 if (off_out) {
1100 if (out->f_op->llseek == no_llseek)
1101 return -EINVAL;
1102 if (copy_from_user(&offset, off_out, sizeof(loff_t)))
1103 return -EFAULT;
1104 off = &offset;
1105 } else
1106 off = &out->f_pos;
1108 ret = do_splice_from(pipe, out, off, len, flags);
1110 if (off_out && copy_to_user(off_out, off, sizeof(loff_t)))
1111 ret = -EFAULT;
1113 return ret;
1116 pipe = pipe_info(out->f_path.dentry->d_inode);
1117 if (pipe) {
1118 if (off_out)
1119 return -ESPIPE;
1120 if (off_in) {
1121 if (in->f_op->llseek == no_llseek)
1122 return -EINVAL;
1123 if (copy_from_user(&offset, off_in, sizeof(loff_t)))
1124 return -EFAULT;
1125 off = &offset;
1126 } else
1127 off = &in->f_pos;
1129 ret = do_splice_to(in, off, pipe, len, flags);
1131 if (off_in && copy_to_user(off_in, off, sizeof(loff_t)))
1132 ret = -EFAULT;
1134 return ret;
1137 return -EINVAL;
1141 * Map an iov into an array of pages and offset/length tupples. With the
1142 * partial_page structure, we can map several non-contiguous ranges into
1143 * our ones pages[] map instead of splitting that operation into pieces.
1144 * Could easily be exported as a generic helper for other users, in which
1145 * case one would probably want to add a 'max_nr_pages' parameter as well.
1147 static int get_iovec_page_array(const struct iovec __user *iov,
1148 unsigned int nr_vecs, struct page **pages,
1149 struct partial_page *partial, int aligned)
1151 int buffers = 0, error = 0;
1154 * It's ok to take the mmap_sem for reading, even
1155 * across a "get_user()".
1157 down_read(&current->mm->mmap_sem);
1159 while (nr_vecs) {
1160 unsigned long off, npages;
1161 void __user *base;
1162 size_t len;
1163 int i;
1166 * Get user address base and length for this iovec.
1168 error = get_user(base, &iov->iov_base);
1169 if (unlikely(error))
1170 break;
1171 error = get_user(len, &iov->iov_len);
1172 if (unlikely(error))
1173 break;
1176 * Sanity check this iovec. 0 read succeeds.
1178 if (unlikely(!len))
1179 break;
1180 error = -EFAULT;
1181 if (unlikely(!base))
1182 break;
1185 * Get this base offset and number of pages, then map
1186 * in the user pages.
1188 off = (unsigned long) base & ~PAGE_MASK;
1191 * If asked for alignment, the offset must be zero and the
1192 * length a multiple of the PAGE_SIZE.
1194 error = -EINVAL;
1195 if (aligned && (off || len & ~PAGE_MASK))
1196 break;
1198 npages = (off + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1199 if (npages > PIPE_BUFFERS - buffers)
1200 npages = PIPE_BUFFERS - buffers;
1202 error = get_user_pages(current, current->mm,
1203 (unsigned long) base, npages, 0, 0,
1204 &pages[buffers], NULL);
1206 if (unlikely(error <= 0))
1207 break;
1210 * Fill this contiguous range into the partial page map.
1212 for (i = 0; i < error; i++) {
1213 const int plen = min_t(size_t, len, PAGE_SIZE - off);
1215 partial[buffers].offset = off;
1216 partial[buffers].len = plen;
1218 off = 0;
1219 len -= plen;
1220 buffers++;
1224 * We didn't complete this iov, stop here since it probably
1225 * means we have to move some of this into a pipe to
1226 * be able to continue.
1228 if (len)
1229 break;
1232 * Don't continue if we mapped fewer pages than we asked for,
1233 * or if we mapped the max number of pages that we have
1234 * room for.
1236 if (error < npages || buffers == PIPE_BUFFERS)
1237 break;
1239 nr_vecs--;
1240 iov++;
1243 up_read(&current->mm->mmap_sem);
1245 if (buffers)
1246 return buffers;
1248 return error;
1252 * vmsplice splices a user address range into a pipe. It can be thought of
1253 * as splice-from-memory, where the regular splice is splice-from-file (or
1254 * to file). In both cases the output is a pipe, naturally.
1256 * Note that vmsplice only supports splicing _from_ user memory to a pipe,
1257 * not the other way around. Splicing from user memory is a simple operation
1258 * that can be supported without any funky alignment restrictions or nasty
1259 * vm tricks. We simply map in the user memory and fill them into a pipe.
1260 * The reverse isn't quite as easy, though. There are two possible solutions
1261 * for that:
1263 * - memcpy() the data internally, at which point we might as well just
1264 * do a regular read() on the buffer anyway.
1265 * - Lots of nasty vm tricks, that are neither fast nor flexible (it
1266 * has restriction limitations on both ends of the pipe).
1268 * Alas, it isn't here.
1271 static long do_vmsplice(struct file *file, const struct iovec __user *iov,
1272 unsigned long nr_segs, unsigned int flags)
1274 struct pipe_inode_info *pipe;
1275 struct page *pages[PIPE_BUFFERS];
1276 struct partial_page partial[PIPE_BUFFERS];
1277 struct splice_pipe_desc spd = {
1278 .pages = pages,
1279 .partial = partial,
1280 .flags = flags,
1281 .ops = &user_page_pipe_buf_ops,
1284 pipe = pipe_info(file->f_path.dentry->d_inode);
1285 if (!pipe)
1286 return -EBADF;
1287 if (unlikely(nr_segs > UIO_MAXIOV))
1288 return -EINVAL;
1289 else if (unlikely(!nr_segs))
1290 return 0;
1292 spd.nr_pages = get_iovec_page_array(iov, nr_segs, pages, partial,
1293 flags & SPLICE_F_GIFT);
1294 if (spd.nr_pages <= 0)
1295 return spd.nr_pages;
1297 return splice_to_pipe(pipe, &spd);
1300 asmlinkage long sys_vmsplice(int fd, const struct iovec __user *iov,
1301 unsigned long nr_segs, unsigned int flags)
1303 struct file *file;
1304 long error;
1305 int fput;
1307 error = -EBADF;
1308 file = fget_light(fd, &fput);
1309 if (file) {
1310 if (file->f_mode & FMODE_WRITE)
1311 error = do_vmsplice(file, iov, nr_segs, flags);
1313 fput_light(file, fput);
1316 return error;
1319 asmlinkage long sys_splice(int fd_in, loff_t __user *off_in,
1320 int fd_out, loff_t __user *off_out,
1321 size_t len, unsigned int flags)
1323 long error;
1324 struct file *in, *out;
1325 int fput_in, fput_out;
1327 if (unlikely(!len))
1328 return 0;
1330 error = -EBADF;
1331 in = fget_light(fd_in, &fput_in);
1332 if (in) {
1333 if (in->f_mode & FMODE_READ) {
1334 out = fget_light(fd_out, &fput_out);
1335 if (out) {
1336 if (out->f_mode & FMODE_WRITE)
1337 error = do_splice(in, off_in,
1338 out, off_out,
1339 len, flags);
1340 fput_light(out, fput_out);
1344 fput_light(in, fput_in);
1347 return error;
1351 * Make sure there's data to read. Wait for input if we can, otherwise
1352 * return an appropriate error.
1354 static int link_ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1356 int ret;
1359 * Check ->nrbufs without the inode lock first. This function
1360 * is speculative anyways, so missing one is ok.
1362 if (pipe->nrbufs)
1363 return 0;
1365 ret = 0;
1366 mutex_lock(&pipe->inode->i_mutex);
1368 while (!pipe->nrbufs) {
1369 if (signal_pending(current)) {
1370 ret = -ERESTARTSYS;
1371 break;
1373 if (!pipe->writers)
1374 break;
1375 if (!pipe->waiting_writers) {
1376 if (flags & SPLICE_F_NONBLOCK) {
1377 ret = -EAGAIN;
1378 break;
1381 pipe_wait(pipe);
1384 mutex_unlock(&pipe->inode->i_mutex);
1385 return ret;
1389 * Make sure there's writeable room. Wait for room if we can, otherwise
1390 * return an appropriate error.
1392 static int link_opipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1394 int ret;
1397 * Check ->nrbufs without the inode lock first. This function
1398 * is speculative anyways, so missing one is ok.
1400 if (pipe->nrbufs < PIPE_BUFFERS)
1401 return 0;
1403 ret = 0;
1404 mutex_lock(&pipe->inode->i_mutex);
1406 while (pipe->nrbufs >= PIPE_BUFFERS) {
1407 if (!pipe->readers) {
1408 send_sig(SIGPIPE, current, 0);
1409 ret = -EPIPE;
1410 break;
1412 if (flags & SPLICE_F_NONBLOCK) {
1413 ret = -EAGAIN;
1414 break;
1416 if (signal_pending(current)) {
1417 ret = -ERESTARTSYS;
1418 break;
1420 pipe->waiting_writers++;
1421 pipe_wait(pipe);
1422 pipe->waiting_writers--;
1425 mutex_unlock(&pipe->inode->i_mutex);
1426 return ret;
1430 * Link contents of ipipe to opipe.
1432 static int link_pipe(struct pipe_inode_info *ipipe,
1433 struct pipe_inode_info *opipe,
1434 size_t len, unsigned int flags)
1436 struct pipe_buffer *ibuf, *obuf;
1437 int ret = 0, i = 0, nbuf;
1440 * Potential ABBA deadlock, work around it by ordering lock
1441 * grabbing by inode address. Otherwise two different processes
1442 * could deadlock (one doing tee from A -> B, the other from B -> A).
1444 inode_double_lock(ipipe->inode, opipe->inode);
1446 do {
1447 if (!opipe->readers) {
1448 send_sig(SIGPIPE, current, 0);
1449 if (!ret)
1450 ret = -EPIPE;
1451 break;
1455 * If we have iterated all input buffers or ran out of
1456 * output room, break.
1458 if (i >= ipipe->nrbufs || opipe->nrbufs >= PIPE_BUFFERS)
1459 break;
1461 ibuf = ipipe->bufs + ((ipipe->curbuf + i) & (PIPE_BUFFERS - 1));
1462 nbuf = (opipe->curbuf + opipe->nrbufs) & (PIPE_BUFFERS - 1);
1465 * Get a reference to this pipe buffer,
1466 * so we can copy the contents over.
1468 ibuf->ops->get(ipipe, ibuf);
1470 obuf = opipe->bufs + nbuf;
1471 *obuf = *ibuf;
1474 * Don't inherit the gift flag, we need to
1475 * prevent multiple steals of this page.
1477 obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1479 if (obuf->len > len)
1480 obuf->len = len;
1482 opipe->nrbufs++;
1483 ret += obuf->len;
1484 len -= obuf->len;
1485 i++;
1486 } while (len);
1488 inode_double_unlock(ipipe->inode, opipe->inode);
1491 * If we put data in the output pipe, wakeup any potential readers.
1493 if (ret > 0) {
1494 smp_mb();
1495 if (waitqueue_active(&opipe->wait))
1496 wake_up_interruptible(&opipe->wait);
1497 kill_fasync(&opipe->fasync_readers, SIGIO, POLL_IN);
1500 return ret;
1504 * This is a tee(1) implementation that works on pipes. It doesn't copy
1505 * any data, it simply references the 'in' pages on the 'out' pipe.
1506 * The 'flags' used are the SPLICE_F_* variants, currently the only
1507 * applicable one is SPLICE_F_NONBLOCK.
1509 static long do_tee(struct file *in, struct file *out, size_t len,
1510 unsigned int flags)
1512 struct pipe_inode_info *ipipe = pipe_info(in->f_path.dentry->d_inode);
1513 struct pipe_inode_info *opipe = pipe_info(out->f_path.dentry->d_inode);
1514 int ret = -EINVAL;
1517 * Duplicate the contents of ipipe to opipe without actually
1518 * copying the data.
1520 if (ipipe && opipe && ipipe != opipe) {
1522 * Keep going, unless we encounter an error. The ipipe/opipe
1523 * ordering doesn't really matter.
1525 ret = link_ipipe_prep(ipipe, flags);
1526 if (!ret) {
1527 ret = link_opipe_prep(opipe, flags);
1528 if (!ret) {
1529 ret = link_pipe(ipipe, opipe, len, flags);
1530 if (!ret && (flags & SPLICE_F_NONBLOCK))
1531 ret = -EAGAIN;
1536 return ret;
1539 asmlinkage long sys_tee(int fdin, int fdout, size_t len, unsigned int flags)
1541 struct file *in;
1542 int error, fput_in;
1544 if (unlikely(!len))
1545 return 0;
1547 error = -EBADF;
1548 in = fget_light(fdin, &fput_in);
1549 if (in) {
1550 if (in->f_mode & FMODE_READ) {
1551 int fput_out;
1552 struct file *out = fget_light(fdout, &fput_out);
1554 if (out) {
1555 if (out->f_mode & FMODE_WRITE)
1556 error = do_tee(in, out, len, flags);
1557 fput_light(out, fput_out);
1560 fput_light(in, fput_in);
1563 return error;