2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
12 * This handles all read/write requests to block devices
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/highmem.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/string.h>
23 #include <linux/init.h>
24 #include <linux/completion.h>
25 #include <linux/slab.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/task_io_accounting_ops.h>
29 #include <linux/fault-inject.h>
30 #include <linux/list_sort.h>
31 #include <linux/delay.h>
32 #include <linux/ratelimit.h>
34 #define CREATE_TRACE_POINTS
35 #include <trace/events/block.h>
38 #include "blk-cgroup.h"
40 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap
);
41 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap
);
42 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete
);
44 DEFINE_IDA(blk_queue_ida
);
47 * For the allocated request tables
49 static struct kmem_cache
*request_cachep
;
52 * For queue allocation
54 struct kmem_cache
*blk_requestq_cachep
;
57 * Controlling structure to kblockd
59 static struct workqueue_struct
*kblockd_workqueue
;
61 static void drive_stat_acct(struct request
*rq
, int new_io
)
63 struct hd_struct
*part
;
64 int rw
= rq_data_dir(rq
);
67 if (!blk_do_io_stat(rq
))
70 cpu
= part_stat_lock();
74 part_stat_inc(cpu
, part
, merges
[rw
]);
76 part
= disk_map_sector_rcu(rq
->rq_disk
, blk_rq_pos(rq
));
77 if (!hd_struct_try_get(part
)) {
79 * The partition is already being removed,
80 * the request will be accounted on the disk only
82 * We take a reference on disk->part0 although that
83 * partition will never be deleted, so we can treat
84 * it as any other partition.
86 part
= &rq
->rq_disk
->part0
;
89 part_round_stats(cpu
, part
);
90 part_inc_in_flight(part
, rw
);
97 void blk_queue_congestion_threshold(struct request_queue
*q
)
101 nr
= q
->nr_requests
- (q
->nr_requests
/ 8) + 1;
102 if (nr
> q
->nr_requests
)
104 q
->nr_congestion_on
= nr
;
106 nr
= q
->nr_requests
- (q
->nr_requests
/ 8) - (q
->nr_requests
/ 16) - 1;
109 q
->nr_congestion_off
= nr
;
113 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
116 * Locates the passed device's request queue and returns the address of its
119 * Will return NULL if the request queue cannot be located.
121 struct backing_dev_info
*blk_get_backing_dev_info(struct block_device
*bdev
)
123 struct backing_dev_info
*ret
= NULL
;
124 struct request_queue
*q
= bdev_get_queue(bdev
);
127 ret
= &q
->backing_dev_info
;
130 EXPORT_SYMBOL(blk_get_backing_dev_info
);
132 void blk_rq_init(struct request_queue
*q
, struct request
*rq
)
134 memset(rq
, 0, sizeof(*rq
));
136 INIT_LIST_HEAD(&rq
->queuelist
);
137 INIT_LIST_HEAD(&rq
->timeout_list
);
140 rq
->__sector
= (sector_t
) -1;
141 INIT_HLIST_NODE(&rq
->hash
);
142 RB_CLEAR_NODE(&rq
->rb_node
);
144 rq
->cmd_len
= BLK_MAX_CDB
;
147 rq
->start_time
= jiffies
;
148 set_start_time_ns(rq
);
151 EXPORT_SYMBOL(blk_rq_init
);
153 static void req_bio_endio(struct request
*rq
, struct bio
*bio
,
154 unsigned int nbytes
, int error
)
157 clear_bit(BIO_UPTODATE
, &bio
->bi_flags
);
158 else if (!test_bit(BIO_UPTODATE
, &bio
->bi_flags
))
161 if (unlikely(nbytes
> bio
->bi_size
)) {
162 printk(KERN_ERR
"%s: want %u bytes done, %u left\n",
163 __func__
, nbytes
, bio
->bi_size
);
164 nbytes
= bio
->bi_size
;
167 if (unlikely(rq
->cmd_flags
& REQ_QUIET
))
168 set_bit(BIO_QUIET
, &bio
->bi_flags
);
170 bio
->bi_size
-= nbytes
;
171 bio
->bi_sector
+= (nbytes
>> 9);
173 if (bio_integrity(bio
))
174 bio_integrity_advance(bio
, nbytes
);
176 /* don't actually finish bio if it's part of flush sequence */
177 if (bio
->bi_size
== 0 && !(rq
->cmd_flags
& REQ_FLUSH_SEQ
))
178 bio_endio(bio
, error
);
181 void blk_dump_rq_flags(struct request
*rq
, char *msg
)
185 printk(KERN_INFO
"%s: dev %s: type=%x, flags=%x\n", msg
,
186 rq
->rq_disk
? rq
->rq_disk
->disk_name
: "?", rq
->cmd_type
,
189 printk(KERN_INFO
" sector %llu, nr/cnr %u/%u\n",
190 (unsigned long long)blk_rq_pos(rq
),
191 blk_rq_sectors(rq
), blk_rq_cur_sectors(rq
));
192 printk(KERN_INFO
" bio %p, biotail %p, buffer %p, len %u\n",
193 rq
->bio
, rq
->biotail
, rq
->buffer
, blk_rq_bytes(rq
));
195 if (rq
->cmd_type
== REQ_TYPE_BLOCK_PC
) {
196 printk(KERN_INFO
" cdb: ");
197 for (bit
= 0; bit
< BLK_MAX_CDB
; bit
++)
198 printk("%02x ", rq
->cmd
[bit
]);
202 EXPORT_SYMBOL(blk_dump_rq_flags
);
204 static void blk_delay_work(struct work_struct
*work
)
206 struct request_queue
*q
;
208 q
= container_of(work
, struct request_queue
, delay_work
.work
);
209 spin_lock_irq(q
->queue_lock
);
211 spin_unlock_irq(q
->queue_lock
);
215 * blk_delay_queue - restart queueing after defined interval
216 * @q: The &struct request_queue in question
217 * @msecs: Delay in msecs
220 * Sometimes queueing needs to be postponed for a little while, to allow
221 * resources to come back. This function will make sure that queueing is
222 * restarted around the specified time.
224 void blk_delay_queue(struct request_queue
*q
, unsigned long msecs
)
226 queue_delayed_work(kblockd_workqueue
, &q
->delay_work
,
227 msecs_to_jiffies(msecs
));
229 EXPORT_SYMBOL(blk_delay_queue
);
232 * blk_start_queue - restart a previously stopped queue
233 * @q: The &struct request_queue in question
236 * blk_start_queue() will clear the stop flag on the queue, and call
237 * the request_fn for the queue if it was in a stopped state when
238 * entered. Also see blk_stop_queue(). Queue lock must be held.
240 void blk_start_queue(struct request_queue
*q
)
242 WARN_ON(!irqs_disabled());
244 queue_flag_clear(QUEUE_FLAG_STOPPED
, q
);
247 EXPORT_SYMBOL(blk_start_queue
);
250 * blk_stop_queue - stop a queue
251 * @q: The &struct request_queue in question
254 * The Linux block layer assumes that a block driver will consume all
255 * entries on the request queue when the request_fn strategy is called.
256 * Often this will not happen, because of hardware limitations (queue
257 * depth settings). If a device driver gets a 'queue full' response,
258 * or if it simply chooses not to queue more I/O at one point, it can
259 * call this function to prevent the request_fn from being called until
260 * the driver has signalled it's ready to go again. This happens by calling
261 * blk_start_queue() to restart queue operations. Queue lock must be held.
263 void blk_stop_queue(struct request_queue
*q
)
265 __cancel_delayed_work(&q
->delay_work
);
266 queue_flag_set(QUEUE_FLAG_STOPPED
, q
);
268 EXPORT_SYMBOL(blk_stop_queue
);
271 * blk_sync_queue - cancel any pending callbacks on a queue
275 * The block layer may perform asynchronous callback activity
276 * on a queue, such as calling the unplug function after a timeout.
277 * A block device may call blk_sync_queue to ensure that any
278 * such activity is cancelled, thus allowing it to release resources
279 * that the callbacks might use. The caller must already have made sure
280 * that its ->make_request_fn will not re-add plugging prior to calling
283 * This function does not cancel any asynchronous activity arising
284 * out of elevator or throttling code. That would require elevaotor_exit()
285 * and blkcg_exit_queue() to be called with queue lock initialized.
288 void blk_sync_queue(struct request_queue
*q
)
290 del_timer_sync(&q
->timeout
);
291 cancel_delayed_work_sync(&q
->delay_work
);
293 EXPORT_SYMBOL(blk_sync_queue
);
296 * __blk_run_queue - run a single device queue
297 * @q: The queue to run
300 * See @blk_run_queue. This variant must be called with the queue lock
301 * held and interrupts disabled.
303 void __blk_run_queue(struct request_queue
*q
)
305 if (unlikely(blk_queue_stopped(q
)))
310 EXPORT_SYMBOL(__blk_run_queue
);
313 * blk_run_queue_async - run a single device queue in workqueue context
314 * @q: The queue to run
317 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf
320 void blk_run_queue_async(struct request_queue
*q
)
322 if (likely(!blk_queue_stopped(q
))) {
323 __cancel_delayed_work(&q
->delay_work
);
324 queue_delayed_work(kblockd_workqueue
, &q
->delay_work
, 0);
327 EXPORT_SYMBOL(blk_run_queue_async
);
330 * blk_run_queue - run a single device queue
331 * @q: The queue to run
334 * Invoke request handling on this queue, if it has pending work to do.
335 * May be used to restart queueing when a request has completed.
337 void blk_run_queue(struct request_queue
*q
)
341 spin_lock_irqsave(q
->queue_lock
, flags
);
343 spin_unlock_irqrestore(q
->queue_lock
, flags
);
345 EXPORT_SYMBOL(blk_run_queue
);
347 void blk_put_queue(struct request_queue
*q
)
349 kobject_put(&q
->kobj
);
351 EXPORT_SYMBOL(blk_put_queue
);
354 * blk_drain_queue - drain requests from request_queue
356 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
358 * Drain requests from @q. If @drain_all is set, all requests are drained.
359 * If not, only ELVPRIV requests are drained. The caller is responsible
360 * for ensuring that no new requests which need to be drained are queued.
362 void blk_drain_queue(struct request_queue
*q
, bool drain_all
)
368 spin_lock_irq(q
->queue_lock
);
371 * The caller might be trying to drain @q before its
372 * elevator is initialized.
375 elv_drain_elevator(q
);
377 blkcg_drain_queue(q
);
380 * This function might be called on a queue which failed
381 * driver init after queue creation or is not yet fully
382 * active yet. Some drivers (e.g. fd and loop) get unhappy
383 * in such cases. Kick queue iff dispatch queue has
384 * something on it and @q has request_fn set.
386 if (!list_empty(&q
->queue_head
) && q
->request_fn
)
389 drain
|= q
->rq
.elvpriv
;
392 * Unfortunately, requests are queued at and tracked from
393 * multiple places and there's no single counter which can
394 * be drained. Check all the queues and counters.
397 drain
|= !list_empty(&q
->queue_head
);
398 for (i
= 0; i
< 2; i
++) {
399 drain
|= q
->rq
.count
[i
];
400 drain
|= q
->in_flight
[i
];
401 drain
|= !list_empty(&q
->flush_queue
[i
]);
405 spin_unlock_irq(q
->queue_lock
);
414 * blk_queue_bypass_start - enter queue bypass mode
415 * @q: queue of interest
417 * In bypass mode, only the dispatch FIFO queue of @q is used. This
418 * function makes @q enter bypass mode and drains all requests which were
419 * throttled or issued before. On return, it's guaranteed that no request
420 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
421 * inside queue or RCU read lock.
423 void blk_queue_bypass_start(struct request_queue
*q
)
427 spin_lock_irq(q
->queue_lock
);
428 drain
= !q
->bypass_depth
++;
429 queue_flag_set(QUEUE_FLAG_BYPASS
, q
);
430 spin_unlock_irq(q
->queue_lock
);
433 blk_drain_queue(q
, false);
434 /* ensure blk_queue_bypass() is %true inside RCU read lock */
438 EXPORT_SYMBOL_GPL(blk_queue_bypass_start
);
441 * blk_queue_bypass_end - leave queue bypass mode
442 * @q: queue of interest
444 * Leave bypass mode and restore the normal queueing behavior.
446 void blk_queue_bypass_end(struct request_queue
*q
)
448 spin_lock_irq(q
->queue_lock
);
449 if (!--q
->bypass_depth
)
450 queue_flag_clear(QUEUE_FLAG_BYPASS
, q
);
451 WARN_ON_ONCE(q
->bypass_depth
< 0);
452 spin_unlock_irq(q
->queue_lock
);
454 EXPORT_SYMBOL_GPL(blk_queue_bypass_end
);
457 * blk_cleanup_queue - shutdown a request queue
458 * @q: request queue to shutdown
460 * Mark @q DEAD, drain all pending requests, destroy and put it. All
461 * future requests will be failed immediately with -ENODEV.
463 void blk_cleanup_queue(struct request_queue
*q
)
465 spinlock_t
*lock
= q
->queue_lock
;
467 /* mark @q DEAD, no new request or merges will be allowed afterwards */
468 mutex_lock(&q
->sysfs_lock
);
469 queue_flag_set_unlocked(QUEUE_FLAG_DEAD
, q
);
474 * Dead queue is permanently in bypass mode till released. Note
475 * that, unlike blk_queue_bypass_start(), we aren't performing
476 * synchronize_rcu() after entering bypass mode to avoid the delay
477 * as some drivers create and destroy a lot of queues while
478 * probing. This is still safe because blk_release_queue() will be
479 * called only after the queue refcnt drops to zero and nothing,
480 * RCU or not, would be traversing the queue by then.
483 queue_flag_set(QUEUE_FLAG_BYPASS
, q
);
485 queue_flag_set(QUEUE_FLAG_NOMERGES
, q
);
486 queue_flag_set(QUEUE_FLAG_NOXMERGES
, q
);
487 queue_flag_set(QUEUE_FLAG_DEAD
, q
);
489 if (q
->queue_lock
!= &q
->__queue_lock
)
490 q
->queue_lock
= &q
->__queue_lock
;
492 spin_unlock_irq(lock
);
493 mutex_unlock(&q
->sysfs_lock
);
495 /* drain all requests queued before DEAD marking */
496 blk_drain_queue(q
, true);
498 /* @q won't process any more request, flush async actions */
499 del_timer_sync(&q
->backing_dev_info
.laptop_mode_wb_timer
);
502 /* @q is and will stay empty, shutdown and put */
505 EXPORT_SYMBOL(blk_cleanup_queue
);
507 static int blk_init_free_list(struct request_queue
*q
)
509 struct request_list
*rl
= &q
->rq
;
511 if (unlikely(rl
->rq_pool
))
514 rl
->count
[BLK_RW_SYNC
] = rl
->count
[BLK_RW_ASYNC
] = 0;
515 rl
->starved
[BLK_RW_SYNC
] = rl
->starved
[BLK_RW_ASYNC
] = 0;
517 init_waitqueue_head(&rl
->wait
[BLK_RW_SYNC
]);
518 init_waitqueue_head(&rl
->wait
[BLK_RW_ASYNC
]);
520 rl
->rq_pool
= mempool_create_node(BLKDEV_MIN_RQ
, mempool_alloc_slab
,
521 mempool_free_slab
, request_cachep
, q
->node
);
529 struct request_queue
*blk_alloc_queue(gfp_t gfp_mask
)
531 return blk_alloc_queue_node(gfp_mask
, -1);
533 EXPORT_SYMBOL(blk_alloc_queue
);
535 struct request_queue
*blk_alloc_queue_node(gfp_t gfp_mask
, int node_id
)
537 struct request_queue
*q
;
540 q
= kmem_cache_alloc_node(blk_requestq_cachep
,
541 gfp_mask
| __GFP_ZERO
, node_id
);
545 q
->id
= ida_simple_get(&blk_queue_ida
, 0, 0, gfp_mask
);
549 q
->backing_dev_info
.ra_pages
=
550 (VM_MAX_READAHEAD
* 1024) / PAGE_CACHE_SIZE
;
551 q
->backing_dev_info
.state
= 0;
552 q
->backing_dev_info
.capabilities
= BDI_CAP_MAP_COPY
;
553 q
->backing_dev_info
.name
= "block";
556 err
= bdi_init(&q
->backing_dev_info
);
560 setup_timer(&q
->backing_dev_info
.laptop_mode_wb_timer
,
561 laptop_mode_timer_fn
, (unsigned long) q
);
562 setup_timer(&q
->timeout
, blk_rq_timed_out_timer
, (unsigned long) q
);
563 INIT_LIST_HEAD(&q
->queue_head
);
564 INIT_LIST_HEAD(&q
->timeout_list
);
565 INIT_LIST_HEAD(&q
->icq_list
);
566 #ifdef CONFIG_BLK_CGROUP
567 INIT_LIST_HEAD(&q
->blkg_list
);
569 INIT_LIST_HEAD(&q
->flush_queue
[0]);
570 INIT_LIST_HEAD(&q
->flush_queue
[1]);
571 INIT_LIST_HEAD(&q
->flush_data_in_flight
);
572 INIT_DELAYED_WORK(&q
->delay_work
, blk_delay_work
);
574 kobject_init(&q
->kobj
, &blk_queue_ktype
);
576 mutex_init(&q
->sysfs_lock
);
577 spin_lock_init(&q
->__queue_lock
);
580 * By default initialize queue_lock to internal lock and driver can
581 * override it later if need be.
583 q
->queue_lock
= &q
->__queue_lock
;
586 * A queue starts its life with bypass turned on to avoid
587 * unnecessary bypass on/off overhead and nasty surprises during
588 * init. The initial bypass will be finished at the end of
589 * blk_init_allocated_queue().
592 __set_bit(QUEUE_FLAG_BYPASS
, &q
->queue_flags
);
594 if (blkcg_init_queue(q
))
600 ida_simple_remove(&blk_queue_ida
, q
->id
);
602 kmem_cache_free(blk_requestq_cachep
, q
);
605 EXPORT_SYMBOL(blk_alloc_queue_node
);
608 * blk_init_queue - prepare a request queue for use with a block device
609 * @rfn: The function to be called to process requests that have been
610 * placed on the queue.
611 * @lock: Request queue spin lock
614 * If a block device wishes to use the standard request handling procedures,
615 * which sorts requests and coalesces adjacent requests, then it must
616 * call blk_init_queue(). The function @rfn will be called when there
617 * are requests on the queue that need to be processed. If the device
618 * supports plugging, then @rfn may not be called immediately when requests
619 * are available on the queue, but may be called at some time later instead.
620 * Plugged queues are generally unplugged when a buffer belonging to one
621 * of the requests on the queue is needed, or due to memory pressure.
623 * @rfn is not required, or even expected, to remove all requests off the
624 * queue, but only as many as it can handle at a time. If it does leave
625 * requests on the queue, it is responsible for arranging that the requests
626 * get dealt with eventually.
628 * The queue spin lock must be held while manipulating the requests on the
629 * request queue; this lock will be taken also from interrupt context, so irq
630 * disabling is needed for it.
632 * Function returns a pointer to the initialized request queue, or %NULL if
636 * blk_init_queue() must be paired with a blk_cleanup_queue() call
637 * when the block device is deactivated (such as at module unload).
640 struct request_queue
*blk_init_queue(request_fn_proc
*rfn
, spinlock_t
*lock
)
642 return blk_init_queue_node(rfn
, lock
, -1);
644 EXPORT_SYMBOL(blk_init_queue
);
646 struct request_queue
*
647 blk_init_queue_node(request_fn_proc
*rfn
, spinlock_t
*lock
, int node_id
)
649 struct request_queue
*uninit_q
, *q
;
651 uninit_q
= blk_alloc_queue_node(GFP_KERNEL
, node_id
);
655 q
= blk_init_allocated_queue(uninit_q
, rfn
, lock
);
657 blk_cleanup_queue(uninit_q
);
661 EXPORT_SYMBOL(blk_init_queue_node
);
663 struct request_queue
*
664 blk_init_allocated_queue(struct request_queue
*q
, request_fn_proc
*rfn
,
670 if (blk_init_free_list(q
))
674 q
->prep_rq_fn
= NULL
;
675 q
->unprep_rq_fn
= NULL
;
676 q
->queue_flags
= QUEUE_FLAG_DEFAULT
;
678 /* Override internal queue lock with supplied lock pointer */
680 q
->queue_lock
= lock
;
683 * This also sets hw/phys segments, boundary and size
685 blk_queue_make_request(q
, blk_queue_bio
);
687 q
->sg_reserved_size
= INT_MAX
;
690 if (elevator_init(q
, NULL
))
693 blk_queue_congestion_threshold(q
);
695 /* all done, end the initial bypass */
696 blk_queue_bypass_end(q
);
699 EXPORT_SYMBOL(blk_init_allocated_queue
);
701 bool blk_get_queue(struct request_queue
*q
)
703 if (likely(!blk_queue_dead(q
))) {
710 EXPORT_SYMBOL(blk_get_queue
);
712 static inline void blk_free_request(struct request_queue
*q
, struct request
*rq
)
714 if (rq
->cmd_flags
& REQ_ELVPRIV
) {
715 elv_put_request(q
, rq
);
717 put_io_context(rq
->elv
.icq
->ioc
);
720 mempool_free(rq
, q
->rq
.rq_pool
);
724 * ioc_batching returns true if the ioc is a valid batching request and
725 * should be given priority access to a request.
727 static inline int ioc_batching(struct request_queue
*q
, struct io_context
*ioc
)
733 * Make sure the process is able to allocate at least 1 request
734 * even if the batch times out, otherwise we could theoretically
737 return ioc
->nr_batch_requests
== q
->nr_batching
||
738 (ioc
->nr_batch_requests
> 0
739 && time_before(jiffies
, ioc
->last_waited
+ BLK_BATCH_TIME
));
743 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
744 * will cause the process to be a "batcher" on all queues in the system. This
745 * is the behaviour we want though - once it gets a wakeup it should be given
748 static void ioc_set_batching(struct request_queue
*q
, struct io_context
*ioc
)
750 if (!ioc
|| ioc_batching(q
, ioc
))
753 ioc
->nr_batch_requests
= q
->nr_batching
;
754 ioc
->last_waited
= jiffies
;
757 static void __freed_request(struct request_queue
*q
, int sync
)
759 struct request_list
*rl
= &q
->rq
;
761 if (rl
->count
[sync
] < queue_congestion_off_threshold(q
))
762 blk_clear_queue_congested(q
, sync
);
764 if (rl
->count
[sync
] + 1 <= q
->nr_requests
) {
765 if (waitqueue_active(&rl
->wait
[sync
]))
766 wake_up(&rl
->wait
[sync
]);
768 blk_clear_queue_full(q
, sync
);
773 * A request has just been released. Account for it, update the full and
774 * congestion status, wake up any waiters. Called under q->queue_lock.
776 static void freed_request(struct request_queue
*q
, unsigned int flags
)
778 struct request_list
*rl
= &q
->rq
;
779 int sync
= rw_is_sync(flags
);
782 if (flags
& REQ_ELVPRIV
)
785 __freed_request(q
, sync
);
787 if (unlikely(rl
->starved
[sync
^ 1]))
788 __freed_request(q
, sync
^ 1);
792 * Determine if elevator data should be initialized when allocating the
793 * request associated with @bio.
795 static bool blk_rq_should_init_elevator(struct bio
*bio
)
801 * Flush requests do not use the elevator so skip initialization.
802 * This allows a request to share the flush and elevator data.
804 if (bio
->bi_rw
& (REQ_FLUSH
| REQ_FUA
))
811 * rq_ioc - determine io_context for request allocation
812 * @bio: request being allocated is for this bio (can be %NULL)
814 * Determine io_context to use for request allocation for @bio. May return
815 * %NULL if %current->io_context doesn't exist.
817 static struct io_context
*rq_ioc(struct bio
*bio
)
819 #ifdef CONFIG_BLK_CGROUP
820 if (bio
&& bio
->bi_ioc
)
823 return current
->io_context
;
827 * get_request - get a free request
828 * @q: request_queue to allocate request from
829 * @rw_flags: RW and SYNC flags
830 * @bio: bio to allocate request for (can be %NULL)
831 * @gfp_mask: allocation mask
833 * Get a free request from @q. This function may fail under memory
834 * pressure or if @q is dead.
836 * Must be callled with @q->queue_lock held and,
837 * Returns %NULL on failure, with @q->queue_lock held.
838 * Returns !%NULL on success, with @q->queue_lock *not held*.
840 static struct request
*get_request(struct request_queue
*q
, int rw_flags
,
841 struct bio
*bio
, gfp_t gfp_mask
)
844 struct request_list
*rl
= &q
->rq
;
845 struct elevator_type
*et
;
846 struct io_context
*ioc
;
847 struct io_cq
*icq
= NULL
;
848 const bool is_sync
= rw_is_sync(rw_flags
) != 0;
849 bool retried
= false;
852 et
= q
->elevator
->type
;
855 if (unlikely(blk_queue_dead(q
)))
858 may_queue
= elv_may_queue(q
, rw_flags
);
859 if (may_queue
== ELV_MQUEUE_NO
)
862 if (rl
->count
[is_sync
]+1 >= queue_congestion_on_threshold(q
)) {
863 if (rl
->count
[is_sync
]+1 >= q
->nr_requests
) {
865 * We want ioc to record batching state. If it's
866 * not already there, creating a new one requires
867 * dropping queue_lock, which in turn requires
868 * retesting conditions to avoid queue hang.
870 if (!ioc
&& !retried
) {
871 spin_unlock_irq(q
->queue_lock
);
872 create_io_context(gfp_mask
, q
->node
);
873 spin_lock_irq(q
->queue_lock
);
879 * The queue will fill after this allocation, so set
880 * it as full, and mark this process as "batching".
881 * This process will be allowed to complete a batch of
882 * requests, others will be blocked.
884 if (!blk_queue_full(q
, is_sync
)) {
885 ioc_set_batching(q
, ioc
);
886 blk_set_queue_full(q
, is_sync
);
888 if (may_queue
!= ELV_MQUEUE_MUST
889 && !ioc_batching(q
, ioc
)) {
891 * The queue is full and the allocating
892 * process is not a "batcher", and not
893 * exempted by the IO scheduler
899 blk_set_queue_congested(q
, is_sync
);
903 * Only allow batching queuers to allocate up to 50% over the defined
904 * limit of requests, otherwise we could have thousands of requests
905 * allocated with any setting of ->nr_requests
907 if (rl
->count
[is_sync
] >= (3 * q
->nr_requests
/ 2))
910 rl
->count
[is_sync
]++;
911 rl
->starved
[is_sync
] = 0;
914 * Decide whether the new request will be managed by elevator. If
915 * so, mark @rw_flags and increment elvpriv. Non-zero elvpriv will
916 * prevent the current elevator from being destroyed until the new
917 * request is freed. This guarantees icq's won't be destroyed and
918 * makes creating new ones safe.
920 * Also, lookup icq while holding queue_lock. If it doesn't exist,
921 * it will be created after releasing queue_lock.
923 if (blk_rq_should_init_elevator(bio
) && !blk_queue_bypass(q
)) {
924 rw_flags
|= REQ_ELVPRIV
;
926 if (et
->icq_cache
&& ioc
)
927 icq
= ioc_lookup_icq(ioc
, q
);
930 if (blk_queue_io_stat(q
))
931 rw_flags
|= REQ_IO_STAT
;
932 spin_unlock_irq(q
->queue_lock
);
934 /* allocate and init request */
935 rq
= mempool_alloc(q
->rq
.rq_pool
, gfp_mask
);
940 rq
->cmd_flags
= rw_flags
| REQ_ALLOCED
;
943 if (rw_flags
& REQ_ELVPRIV
) {
944 if (unlikely(et
->icq_cache
&& !icq
)) {
945 create_io_context(gfp_mask
, q
->node
);
950 icq
= ioc_create_icq(ioc
, q
, gfp_mask
);
956 if (unlikely(elv_set_request(q
, rq
, bio
, gfp_mask
)))
959 /* @rq->elv.icq holds io_context until @rq is freed */
961 get_io_context(icq
->ioc
);
965 * ioc may be NULL here, and ioc_batching will be false. That's
966 * OK, if the queue is under the request limit then requests need
967 * not count toward the nr_batch_requests limit. There will always
968 * be some limit enforced by BLK_BATCH_TIME.
970 if (ioc_batching(q
, ioc
))
971 ioc
->nr_batch_requests
--;
973 trace_block_getrq(q
, bio
, rw_flags
& 1);
978 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed
979 * and may fail indefinitely under memory pressure and thus
980 * shouldn't stall IO. Treat this request as !elvpriv. This will
981 * disturb iosched and blkcg but weird is bettern than dead.
983 printk_ratelimited(KERN_WARNING
"%s: request aux data allocation failed, iosched may be disturbed\n",
984 dev_name(q
->backing_dev_info
.dev
));
986 rq
->cmd_flags
&= ~REQ_ELVPRIV
;
989 spin_lock_irq(q
->queue_lock
);
991 spin_unlock_irq(q
->queue_lock
);
996 * Allocation failed presumably due to memory. Undo anything we
997 * might have messed up.
999 * Allocating task should really be put onto the front of the wait
1000 * queue, but this is pretty rare.
1002 spin_lock_irq(q
->queue_lock
);
1003 freed_request(q
, rw_flags
);
1006 * in the very unlikely event that allocation failed and no
1007 * requests for this direction was pending, mark us starved so that
1008 * freeing of a request in the other direction will notice
1009 * us. another possible fix would be to split the rq mempool into
1013 if (unlikely(rl
->count
[is_sync
] == 0))
1014 rl
->starved
[is_sync
] = 1;
1019 * get_request_wait - get a free request with retry
1020 * @q: request_queue to allocate request from
1021 * @rw_flags: RW and SYNC flags
1022 * @bio: bio to allocate request for (can be %NULL)
1024 * Get a free request from @q. This function keeps retrying under memory
1025 * pressure and fails iff @q is dead.
1027 * Must be callled with @q->queue_lock held and,
1028 * Returns %NULL on failure, with @q->queue_lock held.
1029 * Returns !%NULL on success, with @q->queue_lock *not held*.
1031 static struct request
*get_request_wait(struct request_queue
*q
, int rw_flags
,
1034 const bool is_sync
= rw_is_sync(rw_flags
) != 0;
1037 rq
= get_request(q
, rw_flags
, bio
, GFP_NOIO
);
1040 struct request_list
*rl
= &q
->rq
;
1042 if (unlikely(blk_queue_dead(q
)))
1045 prepare_to_wait_exclusive(&rl
->wait
[is_sync
], &wait
,
1046 TASK_UNINTERRUPTIBLE
);
1048 trace_block_sleeprq(q
, bio
, rw_flags
& 1);
1050 spin_unlock_irq(q
->queue_lock
);
1054 * After sleeping, we become a "batching" process and
1055 * will be able to allocate at least one request, and
1056 * up to a big batch of them for a small period time.
1057 * See ioc_batching, ioc_set_batching
1059 create_io_context(GFP_NOIO
, q
->node
);
1060 ioc_set_batching(q
, current
->io_context
);
1062 spin_lock_irq(q
->queue_lock
);
1063 finish_wait(&rl
->wait
[is_sync
], &wait
);
1065 rq
= get_request(q
, rw_flags
, bio
, GFP_NOIO
);
1071 struct request
*blk_get_request(struct request_queue
*q
, int rw
, gfp_t gfp_mask
)
1075 BUG_ON(rw
!= READ
&& rw
!= WRITE
);
1077 spin_lock_irq(q
->queue_lock
);
1078 if (gfp_mask
& __GFP_WAIT
)
1079 rq
= get_request_wait(q
, rw
, NULL
);
1081 rq
= get_request(q
, rw
, NULL
, gfp_mask
);
1083 spin_unlock_irq(q
->queue_lock
);
1084 /* q->queue_lock is unlocked at this point */
1088 EXPORT_SYMBOL(blk_get_request
);
1091 * blk_make_request - given a bio, allocate a corresponding struct request.
1092 * @q: target request queue
1093 * @bio: The bio describing the memory mappings that will be submitted for IO.
1094 * It may be a chained-bio properly constructed by block/bio layer.
1095 * @gfp_mask: gfp flags to be used for memory allocation
1097 * blk_make_request is the parallel of generic_make_request for BLOCK_PC
1098 * type commands. Where the struct request needs to be farther initialized by
1099 * the caller. It is passed a &struct bio, which describes the memory info of
1102 * The caller of blk_make_request must make sure that bi_io_vec
1103 * are set to describe the memory buffers. That bio_data_dir() will return
1104 * the needed direction of the request. (And all bio's in the passed bio-chain
1105 * are properly set accordingly)
1107 * If called under none-sleepable conditions, mapped bio buffers must not
1108 * need bouncing, by calling the appropriate masked or flagged allocator,
1109 * suitable for the target device. Otherwise the call to blk_queue_bounce will
1112 * WARNING: When allocating/cloning a bio-chain, careful consideration should be
1113 * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for
1114 * anything but the first bio in the chain. Otherwise you risk waiting for IO
1115 * completion of a bio that hasn't been submitted yet, thus resulting in a
1116 * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead
1117 * of bio_alloc(), as that avoids the mempool deadlock.
1118 * If possible a big IO should be split into smaller parts when allocation
1119 * fails. Partial allocation should not be an error, or you risk a live-lock.
1121 struct request
*blk_make_request(struct request_queue
*q
, struct bio
*bio
,
1124 struct request
*rq
= blk_get_request(q
, bio_data_dir(bio
), gfp_mask
);
1127 return ERR_PTR(-ENOMEM
);
1130 struct bio
*bounce_bio
= bio
;
1133 blk_queue_bounce(q
, &bounce_bio
);
1134 ret
= blk_rq_append_bio(q
, rq
, bounce_bio
);
1135 if (unlikely(ret
)) {
1136 blk_put_request(rq
);
1137 return ERR_PTR(ret
);
1143 EXPORT_SYMBOL(blk_make_request
);
1146 * blk_requeue_request - put a request back on queue
1147 * @q: request queue where request should be inserted
1148 * @rq: request to be inserted
1151 * Drivers often keep queueing requests until the hardware cannot accept
1152 * more, when that condition happens we need to put the request back
1153 * on the queue. Must be called with queue lock held.
1155 void blk_requeue_request(struct request_queue
*q
, struct request
*rq
)
1157 blk_delete_timer(rq
);
1158 blk_clear_rq_complete(rq
);
1159 trace_block_rq_requeue(q
, rq
);
1161 if (blk_rq_tagged(rq
))
1162 blk_queue_end_tag(q
, rq
);
1164 BUG_ON(blk_queued_rq(rq
));
1166 elv_requeue_request(q
, rq
);
1168 EXPORT_SYMBOL(blk_requeue_request
);
1170 static void add_acct_request(struct request_queue
*q
, struct request
*rq
,
1173 drive_stat_acct(rq
, 1);
1174 __elv_add_request(q
, rq
, where
);
1177 static void part_round_stats_single(int cpu
, struct hd_struct
*part
,
1180 if (now
== part
->stamp
)
1183 if (part_in_flight(part
)) {
1184 __part_stat_add(cpu
, part
, time_in_queue
,
1185 part_in_flight(part
) * (now
- part
->stamp
));
1186 __part_stat_add(cpu
, part
, io_ticks
, (now
- part
->stamp
));
1192 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1193 * @cpu: cpu number for stats access
1194 * @part: target partition
1196 * The average IO queue length and utilisation statistics are maintained
1197 * by observing the current state of the queue length and the amount of
1198 * time it has been in this state for.
1200 * Normally, that accounting is done on IO completion, but that can result
1201 * in more than a second's worth of IO being accounted for within any one
1202 * second, leading to >100% utilisation. To deal with that, we call this
1203 * function to do a round-off before returning the results when reading
1204 * /proc/diskstats. This accounts immediately for all queue usage up to
1205 * the current jiffies and restarts the counters again.
1207 void part_round_stats(int cpu
, struct hd_struct
*part
)
1209 unsigned long now
= jiffies
;
1212 part_round_stats_single(cpu
, &part_to_disk(part
)->part0
, now
);
1213 part_round_stats_single(cpu
, part
, now
);
1215 EXPORT_SYMBOL_GPL(part_round_stats
);
1218 * queue lock must be held
1220 void __blk_put_request(struct request_queue
*q
, struct request
*req
)
1224 if (unlikely(--req
->ref_count
))
1227 elv_completed_request(q
, req
);
1229 /* this is a bio leak */
1230 WARN_ON(req
->bio
!= NULL
);
1233 * Request may not have originated from ll_rw_blk. if not,
1234 * it didn't come out of our reserved rq pools
1236 if (req
->cmd_flags
& REQ_ALLOCED
) {
1237 unsigned int flags
= req
->cmd_flags
;
1239 BUG_ON(!list_empty(&req
->queuelist
));
1240 BUG_ON(!hlist_unhashed(&req
->hash
));
1242 blk_free_request(q
, req
);
1243 freed_request(q
, flags
);
1246 EXPORT_SYMBOL_GPL(__blk_put_request
);
1248 void blk_put_request(struct request
*req
)
1250 unsigned long flags
;
1251 struct request_queue
*q
= req
->q
;
1253 spin_lock_irqsave(q
->queue_lock
, flags
);
1254 __blk_put_request(q
, req
);
1255 spin_unlock_irqrestore(q
->queue_lock
, flags
);
1257 EXPORT_SYMBOL(blk_put_request
);
1260 * blk_add_request_payload - add a payload to a request
1261 * @rq: request to update
1262 * @page: page backing the payload
1263 * @len: length of the payload.
1265 * This allows to later add a payload to an already submitted request by
1266 * a block driver. The driver needs to take care of freeing the payload
1269 * Note that this is a quite horrible hack and nothing but handling of
1270 * discard requests should ever use it.
1272 void blk_add_request_payload(struct request
*rq
, struct page
*page
,
1275 struct bio
*bio
= rq
->bio
;
1277 bio
->bi_io_vec
->bv_page
= page
;
1278 bio
->bi_io_vec
->bv_offset
= 0;
1279 bio
->bi_io_vec
->bv_len
= len
;
1283 bio
->bi_phys_segments
= 1;
1285 rq
->__data_len
= rq
->resid_len
= len
;
1286 rq
->nr_phys_segments
= 1;
1287 rq
->buffer
= bio_data(bio
);
1289 EXPORT_SYMBOL_GPL(blk_add_request_payload
);
1291 static bool bio_attempt_back_merge(struct request_queue
*q
, struct request
*req
,
1294 const int ff
= bio
->bi_rw
& REQ_FAILFAST_MASK
;
1296 if (!ll_back_merge_fn(q
, req
, bio
))
1299 trace_block_bio_backmerge(q
, bio
);
1301 if ((req
->cmd_flags
& REQ_FAILFAST_MASK
) != ff
)
1302 blk_rq_set_mixed_merge(req
);
1304 req
->biotail
->bi_next
= bio
;
1306 req
->__data_len
+= bio
->bi_size
;
1307 req
->ioprio
= ioprio_best(req
->ioprio
, bio_prio(bio
));
1309 drive_stat_acct(req
, 0);
1313 static bool bio_attempt_front_merge(struct request_queue
*q
,
1314 struct request
*req
, struct bio
*bio
)
1316 const int ff
= bio
->bi_rw
& REQ_FAILFAST_MASK
;
1318 if (!ll_front_merge_fn(q
, req
, bio
))
1321 trace_block_bio_frontmerge(q
, bio
);
1323 if ((req
->cmd_flags
& REQ_FAILFAST_MASK
) != ff
)
1324 blk_rq_set_mixed_merge(req
);
1326 bio
->bi_next
= req
->bio
;
1330 * may not be valid. if the low level driver said
1331 * it didn't need a bounce buffer then it better
1332 * not touch req->buffer either...
1334 req
->buffer
= bio_data(bio
);
1335 req
->__sector
= bio
->bi_sector
;
1336 req
->__data_len
+= bio
->bi_size
;
1337 req
->ioprio
= ioprio_best(req
->ioprio
, bio_prio(bio
));
1339 drive_stat_acct(req
, 0);
1344 * attempt_plug_merge - try to merge with %current's plugged list
1345 * @q: request_queue new bio is being queued at
1346 * @bio: new bio being queued
1347 * @request_count: out parameter for number of traversed plugged requests
1349 * Determine whether @bio being queued on @q can be merged with a request
1350 * on %current's plugged list. Returns %true if merge was successful,
1353 * Plugging coalesces IOs from the same issuer for the same purpose without
1354 * going through @q->queue_lock. As such it's more of an issuing mechanism
1355 * than scheduling, and the request, while may have elvpriv data, is not
1356 * added on the elevator at this point. In addition, we don't have
1357 * reliable access to the elevator outside queue lock. Only check basic
1358 * merging parameters without querying the elevator.
1360 static bool attempt_plug_merge(struct request_queue
*q
, struct bio
*bio
,
1361 unsigned int *request_count
)
1363 struct blk_plug
*plug
;
1367 plug
= current
->plug
;
1372 list_for_each_entry_reverse(rq
, &plug
->list
, queuelist
) {
1378 if (rq
->q
!= q
|| !blk_rq_merge_ok(rq
, bio
))
1381 el_ret
= blk_try_merge(rq
, bio
);
1382 if (el_ret
== ELEVATOR_BACK_MERGE
) {
1383 ret
= bio_attempt_back_merge(q
, rq
, bio
);
1386 } else if (el_ret
== ELEVATOR_FRONT_MERGE
) {
1387 ret
= bio_attempt_front_merge(q
, rq
, bio
);
1396 void init_request_from_bio(struct request
*req
, struct bio
*bio
)
1398 req
->cmd_type
= REQ_TYPE_FS
;
1400 req
->cmd_flags
|= bio
->bi_rw
& REQ_COMMON_MASK
;
1401 if (bio
->bi_rw
& REQ_RAHEAD
)
1402 req
->cmd_flags
|= REQ_FAILFAST_MASK
;
1405 req
->__sector
= bio
->bi_sector
;
1406 req
->ioprio
= bio_prio(bio
);
1407 blk_rq_bio_prep(req
->q
, req
, bio
);
1410 void blk_queue_bio(struct request_queue
*q
, struct bio
*bio
)
1412 const bool sync
= !!(bio
->bi_rw
& REQ_SYNC
);
1413 struct blk_plug
*plug
;
1414 int el_ret
, rw_flags
, where
= ELEVATOR_INSERT_SORT
;
1415 struct request
*req
;
1416 unsigned int request_count
= 0;
1419 * low level driver can indicate that it wants pages above a
1420 * certain limit bounced to low memory (ie for highmem, or even
1421 * ISA dma in theory)
1423 blk_queue_bounce(q
, &bio
);
1425 if (bio
->bi_rw
& (REQ_FLUSH
| REQ_FUA
)) {
1426 spin_lock_irq(q
->queue_lock
);
1427 where
= ELEVATOR_INSERT_FLUSH
;
1432 * Check if we can merge with the plugged list before grabbing
1435 if (attempt_plug_merge(q
, bio
, &request_count
))
1438 spin_lock_irq(q
->queue_lock
);
1440 el_ret
= elv_merge(q
, &req
, bio
);
1441 if (el_ret
== ELEVATOR_BACK_MERGE
) {
1442 if (bio_attempt_back_merge(q
, req
, bio
)) {
1443 elv_bio_merged(q
, req
, bio
);
1444 if (!attempt_back_merge(q
, req
))
1445 elv_merged_request(q
, req
, el_ret
);
1448 } else if (el_ret
== ELEVATOR_FRONT_MERGE
) {
1449 if (bio_attempt_front_merge(q
, req
, bio
)) {
1450 elv_bio_merged(q
, req
, bio
);
1451 if (!attempt_front_merge(q
, req
))
1452 elv_merged_request(q
, req
, el_ret
);
1459 * This sync check and mask will be re-done in init_request_from_bio(),
1460 * but we need to set it earlier to expose the sync flag to the
1461 * rq allocator and io schedulers.
1463 rw_flags
= bio_data_dir(bio
);
1465 rw_flags
|= REQ_SYNC
;
1468 * Grab a free request. This is might sleep but can not fail.
1469 * Returns with the queue unlocked.
1471 req
= get_request_wait(q
, rw_flags
, bio
);
1472 if (unlikely(!req
)) {
1473 bio_endio(bio
, -ENODEV
); /* @q is dead */
1478 * After dropping the lock and possibly sleeping here, our request
1479 * may now be mergeable after it had proven unmergeable (above).
1480 * We don't worry about that case for efficiency. It won't happen
1481 * often, and the elevators are able to handle it.
1483 init_request_from_bio(req
, bio
);
1485 if (test_bit(QUEUE_FLAG_SAME_COMP
, &q
->queue_flags
))
1486 req
->cpu
= raw_smp_processor_id();
1488 plug
= current
->plug
;
1491 * If this is the first request added after a plug, fire
1492 * of a plug trace. If others have been added before, check
1493 * if we have multiple devices in this plug. If so, make a
1494 * note to sort the list before dispatch.
1496 if (list_empty(&plug
->list
))
1497 trace_block_plug(q
);
1499 if (!plug
->should_sort
) {
1500 struct request
*__rq
;
1502 __rq
= list_entry_rq(plug
->list
.prev
);
1504 plug
->should_sort
= 1;
1506 if (request_count
>= BLK_MAX_REQUEST_COUNT
) {
1507 blk_flush_plug_list(plug
, false);
1508 trace_block_plug(q
);
1511 list_add_tail(&req
->queuelist
, &plug
->list
);
1512 drive_stat_acct(req
, 1);
1514 spin_lock_irq(q
->queue_lock
);
1515 add_acct_request(q
, req
, where
);
1518 spin_unlock_irq(q
->queue_lock
);
1521 EXPORT_SYMBOL_GPL(blk_queue_bio
); /* for device mapper only */
1524 * If bio->bi_dev is a partition, remap the location
1526 static inline void blk_partition_remap(struct bio
*bio
)
1528 struct block_device
*bdev
= bio
->bi_bdev
;
1530 if (bio_sectors(bio
) && bdev
!= bdev
->bd_contains
) {
1531 struct hd_struct
*p
= bdev
->bd_part
;
1533 bio
->bi_sector
+= p
->start_sect
;
1534 bio
->bi_bdev
= bdev
->bd_contains
;
1536 trace_block_bio_remap(bdev_get_queue(bio
->bi_bdev
), bio
,
1538 bio
->bi_sector
- p
->start_sect
);
1542 static void handle_bad_sector(struct bio
*bio
)
1544 char b
[BDEVNAME_SIZE
];
1546 printk(KERN_INFO
"attempt to access beyond end of device\n");
1547 printk(KERN_INFO
"%s: rw=%ld, want=%Lu, limit=%Lu\n",
1548 bdevname(bio
->bi_bdev
, b
),
1550 (unsigned long long)bio
->bi_sector
+ bio_sectors(bio
),
1551 (long long)(i_size_read(bio
->bi_bdev
->bd_inode
) >> 9));
1553 set_bit(BIO_EOF
, &bio
->bi_flags
);
1556 #ifdef CONFIG_FAIL_MAKE_REQUEST
1558 static DECLARE_FAULT_ATTR(fail_make_request
);
1560 static int __init
setup_fail_make_request(char *str
)
1562 return setup_fault_attr(&fail_make_request
, str
);
1564 __setup("fail_make_request=", setup_fail_make_request
);
1566 static bool should_fail_request(struct hd_struct
*part
, unsigned int bytes
)
1568 return part
->make_it_fail
&& should_fail(&fail_make_request
, bytes
);
1571 static int __init
fail_make_request_debugfs(void)
1573 struct dentry
*dir
= fault_create_debugfs_attr("fail_make_request",
1574 NULL
, &fail_make_request
);
1576 return IS_ERR(dir
) ? PTR_ERR(dir
) : 0;
1579 late_initcall(fail_make_request_debugfs
);
1581 #else /* CONFIG_FAIL_MAKE_REQUEST */
1583 static inline bool should_fail_request(struct hd_struct
*part
,
1589 #endif /* CONFIG_FAIL_MAKE_REQUEST */
1592 * Check whether this bio extends beyond the end of the device.
1594 static inline int bio_check_eod(struct bio
*bio
, unsigned int nr_sectors
)
1601 /* Test device or partition size, when known. */
1602 maxsector
= i_size_read(bio
->bi_bdev
->bd_inode
) >> 9;
1604 sector_t sector
= bio
->bi_sector
;
1606 if (maxsector
< nr_sectors
|| maxsector
- nr_sectors
< sector
) {
1608 * This may well happen - the kernel calls bread()
1609 * without checking the size of the device, e.g., when
1610 * mounting a device.
1612 handle_bad_sector(bio
);
1620 static noinline_for_stack
bool
1621 generic_make_request_checks(struct bio
*bio
)
1623 struct request_queue
*q
;
1624 int nr_sectors
= bio_sectors(bio
);
1626 char b
[BDEVNAME_SIZE
];
1627 struct hd_struct
*part
;
1631 if (bio_check_eod(bio
, nr_sectors
))
1634 q
= bdev_get_queue(bio
->bi_bdev
);
1637 "generic_make_request: Trying to access "
1638 "nonexistent block-device %s (%Lu)\n",
1639 bdevname(bio
->bi_bdev
, b
),
1640 (long long) bio
->bi_sector
);
1644 if (unlikely(!(bio
->bi_rw
& REQ_DISCARD
) &&
1645 nr_sectors
> queue_max_hw_sectors(q
))) {
1646 printk(KERN_ERR
"bio too big device %s (%u > %u)\n",
1647 bdevname(bio
->bi_bdev
, b
),
1649 queue_max_hw_sectors(q
));
1653 part
= bio
->bi_bdev
->bd_part
;
1654 if (should_fail_request(part
, bio
->bi_size
) ||
1655 should_fail_request(&part_to_disk(part
)->part0
,
1660 * If this device has partitions, remap block n
1661 * of partition p to block n+start(p) of the disk.
1663 blk_partition_remap(bio
);
1665 if (bio_integrity_enabled(bio
) && bio_integrity_prep(bio
))
1668 if (bio_check_eod(bio
, nr_sectors
))
1672 * Filter flush bio's early so that make_request based
1673 * drivers without flush support don't have to worry
1676 if ((bio
->bi_rw
& (REQ_FLUSH
| REQ_FUA
)) && !q
->flush_flags
) {
1677 bio
->bi_rw
&= ~(REQ_FLUSH
| REQ_FUA
);
1684 if ((bio
->bi_rw
& REQ_DISCARD
) &&
1685 (!blk_queue_discard(q
) ||
1686 ((bio
->bi_rw
& REQ_SECURE
) &&
1687 !blk_queue_secdiscard(q
)))) {
1692 if (blk_throtl_bio(q
, bio
))
1693 return false; /* throttled, will be resubmitted later */
1695 trace_block_bio_queue(q
, bio
);
1699 bio_endio(bio
, err
);
1704 * generic_make_request - hand a buffer to its device driver for I/O
1705 * @bio: The bio describing the location in memory and on the device.
1707 * generic_make_request() is used to make I/O requests of block
1708 * devices. It is passed a &struct bio, which describes the I/O that needs
1711 * generic_make_request() does not return any status. The
1712 * success/failure status of the request, along with notification of
1713 * completion, is delivered asynchronously through the bio->bi_end_io
1714 * function described (one day) else where.
1716 * The caller of generic_make_request must make sure that bi_io_vec
1717 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1718 * set to describe the device address, and the
1719 * bi_end_io and optionally bi_private are set to describe how
1720 * completion notification should be signaled.
1722 * generic_make_request and the drivers it calls may use bi_next if this
1723 * bio happens to be merged with someone else, and may resubmit the bio to
1724 * a lower device by calling into generic_make_request recursively, which
1725 * means the bio should NOT be touched after the call to ->make_request_fn.
1727 void generic_make_request(struct bio
*bio
)
1729 struct bio_list bio_list_on_stack
;
1731 if (!generic_make_request_checks(bio
))
1735 * We only want one ->make_request_fn to be active at a time, else
1736 * stack usage with stacked devices could be a problem. So use
1737 * current->bio_list to keep a list of requests submited by a
1738 * make_request_fn function. current->bio_list is also used as a
1739 * flag to say if generic_make_request is currently active in this
1740 * task or not. If it is NULL, then no make_request is active. If
1741 * it is non-NULL, then a make_request is active, and new requests
1742 * should be added at the tail
1744 if (current
->bio_list
) {
1745 bio_list_add(current
->bio_list
, bio
);
1749 /* following loop may be a bit non-obvious, and so deserves some
1751 * Before entering the loop, bio->bi_next is NULL (as all callers
1752 * ensure that) so we have a list with a single bio.
1753 * We pretend that we have just taken it off a longer list, so
1754 * we assign bio_list to a pointer to the bio_list_on_stack,
1755 * thus initialising the bio_list of new bios to be
1756 * added. ->make_request() may indeed add some more bios
1757 * through a recursive call to generic_make_request. If it
1758 * did, we find a non-NULL value in bio_list and re-enter the loop
1759 * from the top. In this case we really did just take the bio
1760 * of the top of the list (no pretending) and so remove it from
1761 * bio_list, and call into ->make_request() again.
1763 BUG_ON(bio
->bi_next
);
1764 bio_list_init(&bio_list_on_stack
);
1765 current
->bio_list
= &bio_list_on_stack
;
1767 struct request_queue
*q
= bdev_get_queue(bio
->bi_bdev
);
1769 q
->make_request_fn(q
, bio
);
1771 bio
= bio_list_pop(current
->bio_list
);
1773 current
->bio_list
= NULL
; /* deactivate */
1775 EXPORT_SYMBOL(generic_make_request
);
1778 * submit_bio - submit a bio to the block device layer for I/O
1779 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1780 * @bio: The &struct bio which describes the I/O
1782 * submit_bio() is very similar in purpose to generic_make_request(), and
1783 * uses that function to do most of the work. Both are fairly rough
1784 * interfaces; @bio must be presetup and ready for I/O.
1787 void submit_bio(int rw
, struct bio
*bio
)
1789 int count
= bio_sectors(bio
);
1794 * If it's a regular read/write or a barrier with data attached,
1795 * go through the normal accounting stuff before submission.
1797 if (bio_has_data(bio
) && !(rw
& REQ_DISCARD
)) {
1799 count_vm_events(PGPGOUT
, count
);
1801 task_io_account_read(bio
->bi_size
);
1802 count_vm_events(PGPGIN
, count
);
1805 if (unlikely(block_dump
)) {
1806 char b
[BDEVNAME_SIZE
];
1807 printk(KERN_DEBUG
"%s(%d): %s block %Lu on %s (%u sectors)\n",
1808 current
->comm
, task_pid_nr(current
),
1809 (rw
& WRITE
) ? "WRITE" : "READ",
1810 (unsigned long long)bio
->bi_sector
,
1811 bdevname(bio
->bi_bdev
, b
),
1816 generic_make_request(bio
);
1818 EXPORT_SYMBOL(submit_bio
);
1821 * blk_rq_check_limits - Helper function to check a request for the queue limit
1823 * @rq: the request being checked
1826 * @rq may have been made based on weaker limitations of upper-level queues
1827 * in request stacking drivers, and it may violate the limitation of @q.
1828 * Since the block layer and the underlying device driver trust @rq
1829 * after it is inserted to @q, it should be checked against @q before
1830 * the insertion using this generic function.
1832 * This function should also be useful for request stacking drivers
1833 * in some cases below, so export this function.
1834 * Request stacking drivers like request-based dm may change the queue
1835 * limits while requests are in the queue (e.g. dm's table swapping).
1836 * Such request stacking drivers should check those requests agaist
1837 * the new queue limits again when they dispatch those requests,
1838 * although such checkings are also done against the old queue limits
1839 * when submitting requests.
1841 int blk_rq_check_limits(struct request_queue
*q
, struct request
*rq
)
1843 if (rq
->cmd_flags
& REQ_DISCARD
)
1846 if (blk_rq_sectors(rq
) > queue_max_sectors(q
) ||
1847 blk_rq_bytes(rq
) > queue_max_hw_sectors(q
) << 9) {
1848 printk(KERN_ERR
"%s: over max size limit.\n", __func__
);
1853 * queue's settings related to segment counting like q->bounce_pfn
1854 * may differ from that of other stacking queues.
1855 * Recalculate it to check the request correctly on this queue's
1858 blk_recalc_rq_segments(rq
);
1859 if (rq
->nr_phys_segments
> queue_max_segments(q
)) {
1860 printk(KERN_ERR
"%s: over max segments limit.\n", __func__
);
1866 EXPORT_SYMBOL_GPL(blk_rq_check_limits
);
1869 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1870 * @q: the queue to submit the request
1871 * @rq: the request being queued
1873 int blk_insert_cloned_request(struct request_queue
*q
, struct request
*rq
)
1875 unsigned long flags
;
1876 int where
= ELEVATOR_INSERT_BACK
;
1878 if (blk_rq_check_limits(q
, rq
))
1882 should_fail_request(&rq
->rq_disk
->part0
, blk_rq_bytes(rq
)))
1885 spin_lock_irqsave(q
->queue_lock
, flags
);
1886 if (unlikely(blk_queue_dead(q
))) {
1887 spin_unlock_irqrestore(q
->queue_lock
, flags
);
1892 * Submitting request must be dequeued before calling this function
1893 * because it will be linked to another request_queue
1895 BUG_ON(blk_queued_rq(rq
));
1897 if (rq
->cmd_flags
& (REQ_FLUSH
|REQ_FUA
))
1898 where
= ELEVATOR_INSERT_FLUSH
;
1900 add_acct_request(q
, rq
, where
);
1901 if (where
== ELEVATOR_INSERT_FLUSH
)
1903 spin_unlock_irqrestore(q
->queue_lock
, flags
);
1907 EXPORT_SYMBOL_GPL(blk_insert_cloned_request
);
1910 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1911 * @rq: request to examine
1914 * A request could be merge of IOs which require different failure
1915 * handling. This function determines the number of bytes which
1916 * can be failed from the beginning of the request without
1917 * crossing into area which need to be retried further.
1920 * The number of bytes to fail.
1923 * queue_lock must be held.
1925 unsigned int blk_rq_err_bytes(const struct request
*rq
)
1927 unsigned int ff
= rq
->cmd_flags
& REQ_FAILFAST_MASK
;
1928 unsigned int bytes
= 0;
1931 if (!(rq
->cmd_flags
& REQ_MIXED_MERGE
))
1932 return blk_rq_bytes(rq
);
1935 * Currently the only 'mixing' which can happen is between
1936 * different fastfail types. We can safely fail portions
1937 * which have all the failfast bits that the first one has -
1938 * the ones which are at least as eager to fail as the first
1941 for (bio
= rq
->bio
; bio
; bio
= bio
->bi_next
) {
1942 if ((bio
->bi_rw
& ff
) != ff
)
1944 bytes
+= bio
->bi_size
;
1947 /* this could lead to infinite loop */
1948 BUG_ON(blk_rq_bytes(rq
) && !bytes
);
1951 EXPORT_SYMBOL_GPL(blk_rq_err_bytes
);
1953 static void blk_account_io_completion(struct request
*req
, unsigned int bytes
)
1955 if (blk_do_io_stat(req
)) {
1956 const int rw
= rq_data_dir(req
);
1957 struct hd_struct
*part
;
1960 cpu
= part_stat_lock();
1962 part_stat_add(cpu
, part
, sectors
[rw
], bytes
>> 9);
1967 static void blk_account_io_done(struct request
*req
)
1970 * Account IO completion. flush_rq isn't accounted as a
1971 * normal IO on queueing nor completion. Accounting the
1972 * containing request is enough.
1974 if (blk_do_io_stat(req
) && !(req
->cmd_flags
& REQ_FLUSH_SEQ
)) {
1975 unsigned long duration
= jiffies
- req
->start_time
;
1976 const int rw
= rq_data_dir(req
);
1977 struct hd_struct
*part
;
1980 cpu
= part_stat_lock();
1983 part_stat_inc(cpu
, part
, ios
[rw
]);
1984 part_stat_add(cpu
, part
, ticks
[rw
], duration
);
1985 part_round_stats(cpu
, part
);
1986 part_dec_in_flight(part
, rw
);
1988 hd_struct_put(part
);
1994 * blk_peek_request - peek at the top of a request queue
1995 * @q: request queue to peek at
1998 * Return the request at the top of @q. The returned request
1999 * should be started using blk_start_request() before LLD starts
2003 * Pointer to the request at the top of @q if available. Null
2007 * queue_lock must be held.
2009 struct request
*blk_peek_request(struct request_queue
*q
)
2014 while ((rq
= __elv_next_request(q
)) != NULL
) {
2015 if (!(rq
->cmd_flags
& REQ_STARTED
)) {
2017 * This is the first time the device driver
2018 * sees this request (possibly after
2019 * requeueing). Notify IO scheduler.
2021 if (rq
->cmd_flags
& REQ_SORTED
)
2022 elv_activate_rq(q
, rq
);
2025 * just mark as started even if we don't start
2026 * it, a request that has been delayed should
2027 * not be passed by new incoming requests
2029 rq
->cmd_flags
|= REQ_STARTED
;
2030 trace_block_rq_issue(q
, rq
);
2033 if (!q
->boundary_rq
|| q
->boundary_rq
== rq
) {
2034 q
->end_sector
= rq_end_sector(rq
);
2035 q
->boundary_rq
= NULL
;
2038 if (rq
->cmd_flags
& REQ_DONTPREP
)
2041 if (q
->dma_drain_size
&& blk_rq_bytes(rq
)) {
2043 * make sure space for the drain appears we
2044 * know we can do this because max_hw_segments
2045 * has been adjusted to be one fewer than the
2048 rq
->nr_phys_segments
++;
2054 ret
= q
->prep_rq_fn(q
, rq
);
2055 if (ret
== BLKPREP_OK
) {
2057 } else if (ret
== BLKPREP_DEFER
) {
2059 * the request may have been (partially) prepped.
2060 * we need to keep this request in the front to
2061 * avoid resource deadlock. REQ_STARTED will
2062 * prevent other fs requests from passing this one.
2064 if (q
->dma_drain_size
&& blk_rq_bytes(rq
) &&
2065 !(rq
->cmd_flags
& REQ_DONTPREP
)) {
2067 * remove the space for the drain we added
2068 * so that we don't add it again
2070 --rq
->nr_phys_segments
;
2075 } else if (ret
== BLKPREP_KILL
) {
2076 rq
->cmd_flags
|= REQ_QUIET
;
2078 * Mark this request as started so we don't trigger
2079 * any debug logic in the end I/O path.
2081 blk_start_request(rq
);
2082 __blk_end_request_all(rq
, -EIO
);
2084 printk(KERN_ERR
"%s: bad return=%d\n", __func__
, ret
);
2091 EXPORT_SYMBOL(blk_peek_request
);
2093 void blk_dequeue_request(struct request
*rq
)
2095 struct request_queue
*q
= rq
->q
;
2097 BUG_ON(list_empty(&rq
->queuelist
));
2098 BUG_ON(ELV_ON_HASH(rq
));
2100 list_del_init(&rq
->queuelist
);
2103 * the time frame between a request being removed from the lists
2104 * and to it is freed is accounted as io that is in progress at
2107 if (blk_account_rq(rq
)) {
2108 q
->in_flight
[rq_is_sync(rq
)]++;
2109 set_io_start_time_ns(rq
);
2114 * blk_start_request - start request processing on the driver
2115 * @req: request to dequeue
2118 * Dequeue @req and start timeout timer on it. This hands off the
2119 * request to the driver.
2121 * Block internal functions which don't want to start timer should
2122 * call blk_dequeue_request().
2125 * queue_lock must be held.
2127 void blk_start_request(struct request
*req
)
2129 blk_dequeue_request(req
);
2132 * We are now handing the request to the hardware, initialize
2133 * resid_len to full count and add the timeout handler.
2135 req
->resid_len
= blk_rq_bytes(req
);
2136 if (unlikely(blk_bidi_rq(req
)))
2137 req
->next_rq
->resid_len
= blk_rq_bytes(req
->next_rq
);
2141 EXPORT_SYMBOL(blk_start_request
);
2144 * blk_fetch_request - fetch a request from a request queue
2145 * @q: request queue to fetch a request from
2148 * Return the request at the top of @q. The request is started on
2149 * return and LLD can start processing it immediately.
2152 * Pointer to the request at the top of @q if available. Null
2156 * queue_lock must be held.
2158 struct request
*blk_fetch_request(struct request_queue
*q
)
2162 rq
= blk_peek_request(q
);
2164 blk_start_request(rq
);
2167 EXPORT_SYMBOL(blk_fetch_request
);
2170 * blk_update_request - Special helper function for request stacking drivers
2171 * @req: the request being processed
2172 * @error: %0 for success, < %0 for error
2173 * @nr_bytes: number of bytes to complete @req
2176 * Ends I/O on a number of bytes attached to @req, but doesn't complete
2177 * the request structure even if @req doesn't have leftover.
2178 * If @req has leftover, sets it up for the next range of segments.
2180 * This special helper function is only for request stacking drivers
2181 * (e.g. request-based dm) so that they can handle partial completion.
2182 * Actual device drivers should use blk_end_request instead.
2184 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2185 * %false return from this function.
2188 * %false - this request doesn't have any more data
2189 * %true - this request has more data
2191 bool blk_update_request(struct request
*req
, int error
, unsigned int nr_bytes
)
2193 int total_bytes
, bio_nbytes
, next_idx
= 0;
2199 trace_block_rq_complete(req
->q
, req
);
2202 * For fs requests, rq is just carrier of independent bio's
2203 * and each partial completion should be handled separately.
2204 * Reset per-request error on each partial completion.
2206 * TODO: tj: This is too subtle. It would be better to let
2207 * low level drivers do what they see fit.
2209 if (req
->cmd_type
== REQ_TYPE_FS
)
2212 if (error
&& req
->cmd_type
== REQ_TYPE_FS
&&
2213 !(req
->cmd_flags
& REQ_QUIET
)) {
2218 error_type
= "recoverable transport";
2221 error_type
= "critical target";
2224 error_type
= "critical nexus";
2231 printk(KERN_ERR
"end_request: %s error, dev %s, sector %llu\n",
2232 error_type
, req
->rq_disk
? req
->rq_disk
->disk_name
: "?",
2233 (unsigned long long)blk_rq_pos(req
));
2236 blk_account_io_completion(req
, nr_bytes
);
2238 total_bytes
= bio_nbytes
= 0;
2239 while ((bio
= req
->bio
) != NULL
) {
2242 if (nr_bytes
>= bio
->bi_size
) {
2243 req
->bio
= bio
->bi_next
;
2244 nbytes
= bio
->bi_size
;
2245 req_bio_endio(req
, bio
, nbytes
, error
);
2249 int idx
= bio
->bi_idx
+ next_idx
;
2251 if (unlikely(idx
>= bio
->bi_vcnt
)) {
2252 blk_dump_rq_flags(req
, "__end_that");
2253 printk(KERN_ERR
"%s: bio idx %d >= vcnt %d\n",
2254 __func__
, idx
, bio
->bi_vcnt
);
2258 nbytes
= bio_iovec_idx(bio
, idx
)->bv_len
;
2259 BIO_BUG_ON(nbytes
> bio
->bi_size
);
2262 * not a complete bvec done
2264 if (unlikely(nbytes
> nr_bytes
)) {
2265 bio_nbytes
+= nr_bytes
;
2266 total_bytes
+= nr_bytes
;
2271 * advance to the next vector
2274 bio_nbytes
+= nbytes
;
2277 total_bytes
+= nbytes
;
2283 * end more in this run, or just return 'not-done'
2285 if (unlikely(nr_bytes
<= 0))
2295 * Reset counters so that the request stacking driver
2296 * can find how many bytes remain in the request
2299 req
->__data_len
= 0;
2304 * if the request wasn't completed, update state
2307 req_bio_endio(req
, bio
, bio_nbytes
, error
);
2308 bio
->bi_idx
+= next_idx
;
2309 bio_iovec(bio
)->bv_offset
+= nr_bytes
;
2310 bio_iovec(bio
)->bv_len
-= nr_bytes
;
2313 req
->__data_len
-= total_bytes
;
2314 req
->buffer
= bio_data(req
->bio
);
2316 /* update sector only for requests with clear definition of sector */
2317 if (req
->cmd_type
== REQ_TYPE_FS
|| (req
->cmd_flags
& REQ_DISCARD
))
2318 req
->__sector
+= total_bytes
>> 9;
2320 /* mixed attributes always follow the first bio */
2321 if (req
->cmd_flags
& REQ_MIXED_MERGE
) {
2322 req
->cmd_flags
&= ~REQ_FAILFAST_MASK
;
2323 req
->cmd_flags
|= req
->bio
->bi_rw
& REQ_FAILFAST_MASK
;
2327 * If total number of sectors is less than the first segment
2328 * size, something has gone terribly wrong.
2330 if (blk_rq_bytes(req
) < blk_rq_cur_bytes(req
)) {
2331 blk_dump_rq_flags(req
, "request botched");
2332 req
->__data_len
= blk_rq_cur_bytes(req
);
2335 /* recalculate the number of segments */
2336 blk_recalc_rq_segments(req
);
2340 EXPORT_SYMBOL_GPL(blk_update_request
);
2342 static bool blk_update_bidi_request(struct request
*rq
, int error
,
2343 unsigned int nr_bytes
,
2344 unsigned int bidi_bytes
)
2346 if (blk_update_request(rq
, error
, nr_bytes
))
2349 /* Bidi request must be completed as a whole */
2350 if (unlikely(blk_bidi_rq(rq
)) &&
2351 blk_update_request(rq
->next_rq
, error
, bidi_bytes
))
2354 if (blk_queue_add_random(rq
->q
))
2355 add_disk_randomness(rq
->rq_disk
);
2361 * blk_unprep_request - unprepare a request
2364 * This function makes a request ready for complete resubmission (or
2365 * completion). It happens only after all error handling is complete,
2366 * so represents the appropriate moment to deallocate any resources
2367 * that were allocated to the request in the prep_rq_fn. The queue
2368 * lock is held when calling this.
2370 void blk_unprep_request(struct request
*req
)
2372 struct request_queue
*q
= req
->q
;
2374 req
->cmd_flags
&= ~REQ_DONTPREP
;
2375 if (q
->unprep_rq_fn
)
2376 q
->unprep_rq_fn(q
, req
);
2378 EXPORT_SYMBOL_GPL(blk_unprep_request
);
2381 * queue lock must be held
2383 static void blk_finish_request(struct request
*req
, int error
)
2385 if (blk_rq_tagged(req
))
2386 blk_queue_end_tag(req
->q
, req
);
2388 BUG_ON(blk_queued_rq(req
));
2390 if (unlikely(laptop_mode
) && req
->cmd_type
== REQ_TYPE_FS
)
2391 laptop_io_completion(&req
->q
->backing_dev_info
);
2393 blk_delete_timer(req
);
2395 if (req
->cmd_flags
& REQ_DONTPREP
)
2396 blk_unprep_request(req
);
2399 blk_account_io_done(req
);
2402 req
->end_io(req
, error
);
2404 if (blk_bidi_rq(req
))
2405 __blk_put_request(req
->next_rq
->q
, req
->next_rq
);
2407 __blk_put_request(req
->q
, req
);
2412 * blk_end_bidi_request - Complete a bidi request
2413 * @rq: the request to complete
2414 * @error: %0 for success, < %0 for error
2415 * @nr_bytes: number of bytes to complete @rq
2416 * @bidi_bytes: number of bytes to complete @rq->next_rq
2419 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2420 * Drivers that supports bidi can safely call this member for any
2421 * type of request, bidi or uni. In the later case @bidi_bytes is
2425 * %false - we are done with this request
2426 * %true - still buffers pending for this request
2428 static bool blk_end_bidi_request(struct request
*rq
, int error
,
2429 unsigned int nr_bytes
, unsigned int bidi_bytes
)
2431 struct request_queue
*q
= rq
->q
;
2432 unsigned long flags
;
2434 if (blk_update_bidi_request(rq
, error
, nr_bytes
, bidi_bytes
))
2437 spin_lock_irqsave(q
->queue_lock
, flags
);
2438 blk_finish_request(rq
, error
);
2439 spin_unlock_irqrestore(q
->queue_lock
, flags
);
2445 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2446 * @rq: the request to complete
2447 * @error: %0 for success, < %0 for error
2448 * @nr_bytes: number of bytes to complete @rq
2449 * @bidi_bytes: number of bytes to complete @rq->next_rq
2452 * Identical to blk_end_bidi_request() except that queue lock is
2453 * assumed to be locked on entry and remains so on return.
2456 * %false - we are done with this request
2457 * %true - still buffers pending for this request
2459 bool __blk_end_bidi_request(struct request
*rq
, int error
,
2460 unsigned int nr_bytes
, unsigned int bidi_bytes
)
2462 if (blk_update_bidi_request(rq
, error
, nr_bytes
, bidi_bytes
))
2465 blk_finish_request(rq
, error
);
2471 * blk_end_request - Helper function for drivers to complete the request.
2472 * @rq: the request being processed
2473 * @error: %0 for success, < %0 for error
2474 * @nr_bytes: number of bytes to complete
2477 * Ends I/O on a number of bytes attached to @rq.
2478 * If @rq has leftover, sets it up for the next range of segments.
2481 * %false - we are done with this request
2482 * %true - still buffers pending for this request
2484 bool blk_end_request(struct request
*rq
, int error
, unsigned int nr_bytes
)
2486 return blk_end_bidi_request(rq
, error
, nr_bytes
, 0);
2488 EXPORT_SYMBOL(blk_end_request
);
2491 * blk_end_request_all - Helper function for drives to finish the request.
2492 * @rq: the request to finish
2493 * @error: %0 for success, < %0 for error
2496 * Completely finish @rq.
2498 void blk_end_request_all(struct request
*rq
, int error
)
2501 unsigned int bidi_bytes
= 0;
2503 if (unlikely(blk_bidi_rq(rq
)))
2504 bidi_bytes
= blk_rq_bytes(rq
->next_rq
);
2506 pending
= blk_end_bidi_request(rq
, error
, blk_rq_bytes(rq
), bidi_bytes
);
2509 EXPORT_SYMBOL(blk_end_request_all
);
2512 * blk_end_request_cur - Helper function to finish the current request chunk.
2513 * @rq: the request to finish the current chunk for
2514 * @error: %0 for success, < %0 for error
2517 * Complete the current consecutively mapped chunk from @rq.
2520 * %false - we are done with this request
2521 * %true - still buffers pending for this request
2523 bool blk_end_request_cur(struct request
*rq
, int error
)
2525 return blk_end_request(rq
, error
, blk_rq_cur_bytes(rq
));
2527 EXPORT_SYMBOL(blk_end_request_cur
);
2530 * blk_end_request_err - Finish a request till the next failure boundary.
2531 * @rq: the request to finish till the next failure boundary for
2532 * @error: must be negative errno
2535 * Complete @rq till the next failure boundary.
2538 * %false - we are done with this request
2539 * %true - still buffers pending for this request
2541 bool blk_end_request_err(struct request
*rq
, int error
)
2543 WARN_ON(error
>= 0);
2544 return blk_end_request(rq
, error
, blk_rq_err_bytes(rq
));
2546 EXPORT_SYMBOL_GPL(blk_end_request_err
);
2549 * __blk_end_request - Helper function for drivers to complete the request.
2550 * @rq: the request being processed
2551 * @error: %0 for success, < %0 for error
2552 * @nr_bytes: number of bytes to complete
2555 * Must be called with queue lock held unlike blk_end_request().
2558 * %false - we are done with this request
2559 * %true - still buffers pending for this request
2561 bool __blk_end_request(struct request
*rq
, int error
, unsigned int nr_bytes
)
2563 return __blk_end_bidi_request(rq
, error
, nr_bytes
, 0);
2565 EXPORT_SYMBOL(__blk_end_request
);
2568 * __blk_end_request_all - Helper function for drives to finish the request.
2569 * @rq: the request to finish
2570 * @error: %0 for success, < %0 for error
2573 * Completely finish @rq. Must be called with queue lock held.
2575 void __blk_end_request_all(struct request
*rq
, int error
)
2578 unsigned int bidi_bytes
= 0;
2580 if (unlikely(blk_bidi_rq(rq
)))
2581 bidi_bytes
= blk_rq_bytes(rq
->next_rq
);
2583 pending
= __blk_end_bidi_request(rq
, error
, blk_rq_bytes(rq
), bidi_bytes
);
2586 EXPORT_SYMBOL(__blk_end_request_all
);
2589 * __blk_end_request_cur - Helper function to finish the current request chunk.
2590 * @rq: the request to finish the current chunk for
2591 * @error: %0 for success, < %0 for error
2594 * Complete the current consecutively mapped chunk from @rq. Must
2595 * be called with queue lock held.
2598 * %false - we are done with this request
2599 * %true - still buffers pending for this request
2601 bool __blk_end_request_cur(struct request
*rq
, int error
)
2603 return __blk_end_request(rq
, error
, blk_rq_cur_bytes(rq
));
2605 EXPORT_SYMBOL(__blk_end_request_cur
);
2608 * __blk_end_request_err - Finish a request till the next failure boundary.
2609 * @rq: the request to finish till the next failure boundary for
2610 * @error: must be negative errno
2613 * Complete @rq till the next failure boundary. Must be called
2614 * with queue lock held.
2617 * %false - we are done with this request
2618 * %true - still buffers pending for this request
2620 bool __blk_end_request_err(struct request
*rq
, int error
)
2622 WARN_ON(error
>= 0);
2623 return __blk_end_request(rq
, error
, blk_rq_err_bytes(rq
));
2625 EXPORT_SYMBOL_GPL(__blk_end_request_err
);
2627 void blk_rq_bio_prep(struct request_queue
*q
, struct request
*rq
,
2630 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */
2631 rq
->cmd_flags
|= bio
->bi_rw
& REQ_WRITE
;
2633 if (bio_has_data(bio
)) {
2634 rq
->nr_phys_segments
= bio_phys_segments(q
, bio
);
2635 rq
->buffer
= bio_data(bio
);
2637 rq
->__data_len
= bio
->bi_size
;
2638 rq
->bio
= rq
->biotail
= bio
;
2641 rq
->rq_disk
= bio
->bi_bdev
->bd_disk
;
2644 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2646 * rq_flush_dcache_pages - Helper function to flush all pages in a request
2647 * @rq: the request to be flushed
2650 * Flush all pages in @rq.
2652 void rq_flush_dcache_pages(struct request
*rq
)
2654 struct req_iterator iter
;
2655 struct bio_vec
*bvec
;
2657 rq_for_each_segment(bvec
, rq
, iter
)
2658 flush_dcache_page(bvec
->bv_page
);
2660 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages
);
2664 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2665 * @q : the queue of the device being checked
2668 * Check if underlying low-level drivers of a device are busy.
2669 * If the drivers want to export their busy state, they must set own
2670 * exporting function using blk_queue_lld_busy() first.
2672 * Basically, this function is used only by request stacking drivers
2673 * to stop dispatching requests to underlying devices when underlying
2674 * devices are busy. This behavior helps more I/O merging on the queue
2675 * of the request stacking driver and prevents I/O throughput regression
2676 * on burst I/O load.
2679 * 0 - Not busy (The request stacking driver should dispatch request)
2680 * 1 - Busy (The request stacking driver should stop dispatching request)
2682 int blk_lld_busy(struct request_queue
*q
)
2685 return q
->lld_busy_fn(q
);
2689 EXPORT_SYMBOL_GPL(blk_lld_busy
);
2692 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2693 * @rq: the clone request to be cleaned up
2696 * Free all bios in @rq for a cloned request.
2698 void blk_rq_unprep_clone(struct request
*rq
)
2702 while ((bio
= rq
->bio
) != NULL
) {
2703 rq
->bio
= bio
->bi_next
;
2708 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone
);
2711 * Copy attributes of the original request to the clone request.
2712 * The actual data parts (e.g. ->cmd, ->buffer, ->sense) are not copied.
2714 static void __blk_rq_prep_clone(struct request
*dst
, struct request
*src
)
2716 dst
->cpu
= src
->cpu
;
2717 dst
->cmd_flags
= (src
->cmd_flags
& REQ_CLONE_MASK
) | REQ_NOMERGE
;
2718 dst
->cmd_type
= src
->cmd_type
;
2719 dst
->__sector
= blk_rq_pos(src
);
2720 dst
->__data_len
= blk_rq_bytes(src
);
2721 dst
->nr_phys_segments
= src
->nr_phys_segments
;
2722 dst
->ioprio
= src
->ioprio
;
2723 dst
->extra_len
= src
->extra_len
;
2727 * blk_rq_prep_clone - Helper function to setup clone request
2728 * @rq: the request to be setup
2729 * @rq_src: original request to be cloned
2730 * @bs: bio_set that bios for clone are allocated from
2731 * @gfp_mask: memory allocation mask for bio
2732 * @bio_ctr: setup function to be called for each clone bio.
2733 * Returns %0 for success, non %0 for failure.
2734 * @data: private data to be passed to @bio_ctr
2737 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
2738 * The actual data parts of @rq_src (e.g. ->cmd, ->buffer, ->sense)
2739 * are not copied, and copying such parts is the caller's responsibility.
2740 * Also, pages which the original bios are pointing to are not copied
2741 * and the cloned bios just point same pages.
2742 * So cloned bios must be completed before original bios, which means
2743 * the caller must complete @rq before @rq_src.
2745 int blk_rq_prep_clone(struct request
*rq
, struct request
*rq_src
,
2746 struct bio_set
*bs
, gfp_t gfp_mask
,
2747 int (*bio_ctr
)(struct bio
*, struct bio
*, void *),
2750 struct bio
*bio
, *bio_src
;
2755 blk_rq_init(NULL
, rq
);
2757 __rq_for_each_bio(bio_src
, rq_src
) {
2758 bio
= bio_alloc_bioset(gfp_mask
, bio_src
->bi_max_vecs
, bs
);
2762 __bio_clone(bio
, bio_src
);
2764 if (bio_integrity(bio_src
) &&
2765 bio_integrity_clone(bio
, bio_src
, gfp_mask
, bs
))
2768 if (bio_ctr
&& bio_ctr(bio
, bio_src
, data
))
2772 rq
->biotail
->bi_next
= bio
;
2775 rq
->bio
= rq
->biotail
= bio
;
2778 __blk_rq_prep_clone(rq
, rq_src
);
2785 blk_rq_unprep_clone(rq
);
2789 EXPORT_SYMBOL_GPL(blk_rq_prep_clone
);
2791 int kblockd_schedule_work(struct request_queue
*q
, struct work_struct
*work
)
2793 return queue_work(kblockd_workqueue
, work
);
2795 EXPORT_SYMBOL(kblockd_schedule_work
);
2797 int kblockd_schedule_delayed_work(struct request_queue
*q
,
2798 struct delayed_work
*dwork
, unsigned long delay
)
2800 return queue_delayed_work(kblockd_workqueue
, dwork
, delay
);
2802 EXPORT_SYMBOL(kblockd_schedule_delayed_work
);
2804 #define PLUG_MAGIC 0x91827364
2807 * blk_start_plug - initialize blk_plug and track it inside the task_struct
2808 * @plug: The &struct blk_plug that needs to be initialized
2811 * Tracking blk_plug inside the task_struct will help with auto-flushing the
2812 * pending I/O should the task end up blocking between blk_start_plug() and
2813 * blk_finish_plug(). This is important from a performance perspective, but
2814 * also ensures that we don't deadlock. For instance, if the task is blocking
2815 * for a memory allocation, memory reclaim could end up wanting to free a
2816 * page belonging to that request that is currently residing in our private
2817 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
2818 * this kind of deadlock.
2820 void blk_start_plug(struct blk_plug
*plug
)
2822 struct task_struct
*tsk
= current
;
2824 plug
->magic
= PLUG_MAGIC
;
2825 INIT_LIST_HEAD(&plug
->list
);
2826 INIT_LIST_HEAD(&plug
->cb_list
);
2827 plug
->should_sort
= 0;
2830 * If this is a nested plug, don't actually assign it. It will be
2831 * flushed on its own.
2835 * Store ordering should not be needed here, since a potential
2836 * preempt will imply a full memory barrier
2841 EXPORT_SYMBOL(blk_start_plug
);
2843 static int plug_rq_cmp(void *priv
, struct list_head
*a
, struct list_head
*b
)
2845 struct request
*rqa
= container_of(a
, struct request
, queuelist
);
2846 struct request
*rqb
= container_of(b
, struct request
, queuelist
);
2848 return !(rqa
->q
<= rqb
->q
);
2852 * If 'from_schedule' is true, then postpone the dispatch of requests
2853 * until a safe kblockd context. We due this to avoid accidental big
2854 * additional stack usage in driver dispatch, in places where the originally
2855 * plugger did not intend it.
2857 static void queue_unplugged(struct request_queue
*q
, unsigned int depth
,
2859 __releases(q
->queue_lock
)
2861 trace_block_unplug(q
, depth
, !from_schedule
);
2864 * Don't mess with dead queue.
2866 if (unlikely(blk_queue_dead(q
))) {
2867 spin_unlock(q
->queue_lock
);
2872 * If we are punting this to kblockd, then we can safely drop
2873 * the queue_lock before waking kblockd (which needs to take
2876 if (from_schedule
) {
2877 spin_unlock(q
->queue_lock
);
2878 blk_run_queue_async(q
);
2881 spin_unlock(q
->queue_lock
);
2886 static void flush_plug_callbacks(struct blk_plug
*plug
)
2888 LIST_HEAD(callbacks
);
2890 if (list_empty(&plug
->cb_list
))
2893 list_splice_init(&plug
->cb_list
, &callbacks
);
2895 while (!list_empty(&callbacks
)) {
2896 struct blk_plug_cb
*cb
= list_first_entry(&callbacks
,
2899 list_del(&cb
->list
);
2904 void blk_flush_plug_list(struct blk_plug
*plug
, bool from_schedule
)
2906 struct request_queue
*q
;
2907 unsigned long flags
;
2912 BUG_ON(plug
->magic
!= PLUG_MAGIC
);
2914 flush_plug_callbacks(plug
);
2915 if (list_empty(&plug
->list
))
2918 list_splice_init(&plug
->list
, &list
);
2920 if (plug
->should_sort
) {
2921 list_sort(NULL
, &list
, plug_rq_cmp
);
2922 plug
->should_sort
= 0;
2929 * Save and disable interrupts here, to avoid doing it for every
2930 * queue lock we have to take.
2932 local_irq_save(flags
);
2933 while (!list_empty(&list
)) {
2934 rq
= list_entry_rq(list
.next
);
2935 list_del_init(&rq
->queuelist
);
2939 * This drops the queue lock
2942 queue_unplugged(q
, depth
, from_schedule
);
2945 spin_lock(q
->queue_lock
);
2949 * Short-circuit if @q is dead
2951 if (unlikely(blk_queue_dead(q
))) {
2952 __blk_end_request_all(rq
, -ENODEV
);
2957 * rq is already accounted, so use raw insert
2959 if (rq
->cmd_flags
& (REQ_FLUSH
| REQ_FUA
))
2960 __elv_add_request(q
, rq
, ELEVATOR_INSERT_FLUSH
);
2962 __elv_add_request(q
, rq
, ELEVATOR_INSERT_SORT_MERGE
);
2968 * This drops the queue lock
2971 queue_unplugged(q
, depth
, from_schedule
);
2973 local_irq_restore(flags
);
2976 void blk_finish_plug(struct blk_plug
*plug
)
2978 blk_flush_plug_list(plug
, false);
2980 if (plug
== current
->plug
)
2981 current
->plug
= NULL
;
2983 EXPORT_SYMBOL(blk_finish_plug
);
2985 int __init
blk_dev_init(void)
2987 BUILD_BUG_ON(__REQ_NR_BITS
> 8 *
2988 sizeof(((struct request
*)0)->cmd_flags
));
2990 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
2991 kblockd_workqueue
= alloc_workqueue("kblockd",
2992 WQ_MEM_RECLAIM
| WQ_HIGHPRI
, 0);
2993 if (!kblockd_workqueue
)
2994 panic("Failed to create kblockd\n");
2996 request_cachep
= kmem_cache_create("blkdev_requests",
2997 sizeof(struct request
), 0, SLAB_PANIC
, NULL
);
2999 blk_requestq_cachep
= kmem_cache_create("blkdev_queue",
3000 sizeof(struct request_queue
), 0, SLAB_PANIC
, NULL
);