2 * kexec.c - kexec system call
3 * Copyright (C) 2002-2004 Eric Biederman <ebiederm@xmission.com>
5 * This source code is licensed under the GNU General Public License,
6 * Version 2. See the file COPYING for more details.
9 #include <linux/capability.h>
11 #include <linux/file.h>
12 #include <linux/slab.h>
14 #include <linux/kexec.h>
15 #include <linux/mutex.h>
16 #include <linux/list.h>
17 #include <linux/highmem.h>
18 #include <linux/syscalls.h>
19 #include <linux/reboot.h>
20 #include <linux/ioport.h>
21 #include <linux/hardirq.h>
22 #include <linux/elf.h>
23 #include <linux/elfcore.h>
24 #include <generated/utsrelease.h>
25 #include <linux/utsname.h>
26 #include <linux/numa.h>
27 #include <linux/suspend.h>
28 #include <linux/device.h>
29 #include <linux/freezer.h>
31 #include <linux/cpu.h>
32 #include <linux/console.h>
33 #include <linux/vmalloc.h>
34 #include <linux/swap.h>
35 #include <linux/syscore_ops.h>
38 #include <asm/uaccess.h>
40 #include <asm/sections.h>
42 /* Per cpu memory for storing cpu states in case of system crash. */
43 note_buf_t __percpu
*crash_notes
;
45 /* vmcoreinfo stuff */
46 static unsigned char vmcoreinfo_data
[VMCOREINFO_BYTES
];
47 u32 vmcoreinfo_note
[VMCOREINFO_NOTE_SIZE
/4];
48 size_t vmcoreinfo_size
;
49 size_t vmcoreinfo_max_size
= sizeof(vmcoreinfo_data
);
51 /* Location of the reserved area for the crash kernel */
52 struct resource crashk_res
= {
53 .name
= "Crash kernel",
56 .flags
= IORESOURCE_BUSY
| IORESOURCE_MEM
59 int kexec_should_crash(struct task_struct
*p
)
61 if (in_interrupt() || !p
->pid
|| is_global_init(p
) || panic_on_oops
)
67 * When kexec transitions to the new kernel there is a one-to-one
68 * mapping between physical and virtual addresses. On processors
69 * where you can disable the MMU this is trivial, and easy. For
70 * others it is still a simple predictable page table to setup.
72 * In that environment kexec copies the new kernel to its final
73 * resting place. This means I can only support memory whose
74 * physical address can fit in an unsigned long. In particular
75 * addresses where (pfn << PAGE_SHIFT) > ULONG_MAX cannot be handled.
76 * If the assembly stub has more restrictive requirements
77 * KEXEC_SOURCE_MEMORY_LIMIT and KEXEC_DEST_MEMORY_LIMIT can be
78 * defined more restrictively in <asm/kexec.h>.
80 * The code for the transition from the current kernel to the
81 * the new kernel is placed in the control_code_buffer, whose size
82 * is given by KEXEC_CONTROL_PAGE_SIZE. In the best case only a single
83 * page of memory is necessary, but some architectures require more.
84 * Because this memory must be identity mapped in the transition from
85 * virtual to physical addresses it must live in the range
86 * 0 - TASK_SIZE, as only the user space mappings are arbitrarily
89 * The assembly stub in the control code buffer is passed a linked list
90 * of descriptor pages detailing the source pages of the new kernel,
91 * and the destination addresses of those source pages. As this data
92 * structure is not used in the context of the current OS, it must
95 * The code has been made to work with highmem pages and will use a
96 * destination page in its final resting place (if it happens
97 * to allocate it). The end product of this is that most of the
98 * physical address space, and most of RAM can be used.
100 * Future directions include:
101 * - allocating a page table with the control code buffer identity
102 * mapped, to simplify machine_kexec and make kexec_on_panic more
107 * KIMAGE_NO_DEST is an impossible destination address..., for
108 * allocating pages whose destination address we do not care about.
110 #define KIMAGE_NO_DEST (-1UL)
112 static int kimage_is_destination_range(struct kimage
*image
,
113 unsigned long start
, unsigned long end
);
114 static struct page
*kimage_alloc_page(struct kimage
*image
,
118 static int do_kimage_alloc(struct kimage
**rimage
, unsigned long entry
,
119 unsigned long nr_segments
,
120 struct kexec_segment __user
*segments
)
122 size_t segment_bytes
;
123 struct kimage
*image
;
127 /* Allocate a controlling structure */
129 image
= kzalloc(sizeof(*image
), GFP_KERNEL
);
134 image
->entry
= &image
->head
;
135 image
->last_entry
= &image
->head
;
136 image
->control_page
= ~0; /* By default this does not apply */
137 image
->start
= entry
;
138 image
->type
= KEXEC_TYPE_DEFAULT
;
140 /* Initialize the list of control pages */
141 INIT_LIST_HEAD(&image
->control_pages
);
143 /* Initialize the list of destination pages */
144 INIT_LIST_HEAD(&image
->dest_pages
);
146 /* Initialize the list of unusable pages */
147 INIT_LIST_HEAD(&image
->unuseable_pages
);
149 /* Read in the segments */
150 image
->nr_segments
= nr_segments
;
151 segment_bytes
= nr_segments
* sizeof(*segments
);
152 result
= copy_from_user(image
->segment
, segments
, segment_bytes
);
159 * Verify we have good destination addresses. The caller is
160 * responsible for making certain we don't attempt to load
161 * the new image into invalid or reserved areas of RAM. This
162 * just verifies it is an address we can use.
164 * Since the kernel does everything in page size chunks ensure
165 * the destination addresses are page aligned. Too many
166 * special cases crop of when we don't do this. The most
167 * insidious is getting overlapping destination addresses
168 * simply because addresses are changed to page size
171 result
= -EADDRNOTAVAIL
;
172 for (i
= 0; i
< nr_segments
; i
++) {
173 unsigned long mstart
, mend
;
175 mstart
= image
->segment
[i
].mem
;
176 mend
= mstart
+ image
->segment
[i
].memsz
;
177 if ((mstart
& ~PAGE_MASK
) || (mend
& ~PAGE_MASK
))
179 if (mend
>= KEXEC_DESTINATION_MEMORY_LIMIT
)
183 /* Verify our destination addresses do not overlap.
184 * If we alloed overlapping destination addresses
185 * through very weird things can happen with no
186 * easy explanation as one segment stops on another.
189 for (i
= 0; i
< nr_segments
; i
++) {
190 unsigned long mstart
, mend
;
193 mstart
= image
->segment
[i
].mem
;
194 mend
= mstart
+ image
->segment
[i
].memsz
;
195 for (j
= 0; j
< i
; j
++) {
196 unsigned long pstart
, pend
;
197 pstart
= image
->segment
[j
].mem
;
198 pend
= pstart
+ image
->segment
[j
].memsz
;
199 /* Do the segments overlap ? */
200 if ((mend
> pstart
) && (mstart
< pend
))
205 /* Ensure our buffer sizes are strictly less than
206 * our memory sizes. This should always be the case,
207 * and it is easier to check up front than to be surprised
211 for (i
= 0; i
< nr_segments
; i
++) {
212 if (image
->segment
[i
].bufsz
> image
->segment
[i
].memsz
)
227 static int kimage_normal_alloc(struct kimage
**rimage
, unsigned long entry
,
228 unsigned long nr_segments
,
229 struct kexec_segment __user
*segments
)
232 struct kimage
*image
;
234 /* Allocate and initialize a controlling structure */
236 result
= do_kimage_alloc(&image
, entry
, nr_segments
, segments
);
243 * Find a location for the control code buffer, and add it
244 * the vector of segments so that it's pages will also be
245 * counted as destination pages.
248 image
->control_code_page
= kimage_alloc_control_pages(image
,
249 get_order(KEXEC_CONTROL_PAGE_SIZE
));
250 if (!image
->control_code_page
) {
251 printk(KERN_ERR
"Could not allocate control_code_buffer\n");
255 image
->swap_page
= kimage_alloc_control_pages(image
, 0);
256 if (!image
->swap_page
) {
257 printk(KERN_ERR
"Could not allocate swap buffer\n");
271 static int kimage_crash_alloc(struct kimage
**rimage
, unsigned long entry
,
272 unsigned long nr_segments
,
273 struct kexec_segment __user
*segments
)
276 struct kimage
*image
;
280 /* Verify we have a valid entry point */
281 if ((entry
< crashk_res
.start
) || (entry
> crashk_res
.end
)) {
282 result
= -EADDRNOTAVAIL
;
286 /* Allocate and initialize a controlling structure */
287 result
= do_kimage_alloc(&image
, entry
, nr_segments
, segments
);
291 /* Enable the special crash kernel control page
294 image
->control_page
= crashk_res
.start
;
295 image
->type
= KEXEC_TYPE_CRASH
;
298 * Verify we have good destination addresses. Normally
299 * the caller is responsible for making certain we don't
300 * attempt to load the new image into invalid or reserved
301 * areas of RAM. But crash kernels are preloaded into a
302 * reserved area of ram. We must ensure the addresses
303 * are in the reserved area otherwise preloading the
304 * kernel could corrupt things.
306 result
= -EADDRNOTAVAIL
;
307 for (i
= 0; i
< nr_segments
; i
++) {
308 unsigned long mstart
, mend
;
310 mstart
= image
->segment
[i
].mem
;
311 mend
= mstart
+ image
->segment
[i
].memsz
- 1;
312 /* Ensure we are within the crash kernel limits */
313 if ((mstart
< crashk_res
.start
) || (mend
> crashk_res
.end
))
318 * Find a location for the control code buffer, and add
319 * the vector of segments so that it's pages will also be
320 * counted as destination pages.
323 image
->control_code_page
= kimage_alloc_control_pages(image
,
324 get_order(KEXEC_CONTROL_PAGE_SIZE
));
325 if (!image
->control_code_page
) {
326 printk(KERN_ERR
"Could not allocate control_code_buffer\n");
340 static int kimage_is_destination_range(struct kimage
*image
,
346 for (i
= 0; i
< image
->nr_segments
; i
++) {
347 unsigned long mstart
, mend
;
349 mstart
= image
->segment
[i
].mem
;
350 mend
= mstart
+ image
->segment
[i
].memsz
;
351 if ((end
> mstart
) && (start
< mend
))
358 static struct page
*kimage_alloc_pages(gfp_t gfp_mask
, unsigned int order
)
362 pages
= alloc_pages(gfp_mask
, order
);
364 unsigned int count
, i
;
365 pages
->mapping
= NULL
;
366 set_page_private(pages
, order
);
368 for (i
= 0; i
< count
; i
++)
369 SetPageReserved(pages
+ i
);
375 static void kimage_free_pages(struct page
*page
)
377 unsigned int order
, count
, i
;
379 order
= page_private(page
);
381 for (i
= 0; i
< count
; i
++)
382 ClearPageReserved(page
+ i
);
383 __free_pages(page
, order
);
386 static void kimage_free_page_list(struct list_head
*list
)
388 struct list_head
*pos
, *next
;
390 list_for_each_safe(pos
, next
, list
) {
393 page
= list_entry(pos
, struct page
, lru
);
394 list_del(&page
->lru
);
395 kimage_free_pages(page
);
399 static struct page
*kimage_alloc_normal_control_pages(struct kimage
*image
,
402 /* Control pages are special, they are the intermediaries
403 * that are needed while we copy the rest of the pages
404 * to their final resting place. As such they must
405 * not conflict with either the destination addresses
406 * or memory the kernel is already using.
408 * The only case where we really need more than one of
409 * these are for architectures where we cannot disable
410 * the MMU and must instead generate an identity mapped
411 * page table for all of the memory.
413 * At worst this runs in O(N) of the image size.
415 struct list_head extra_pages
;
420 INIT_LIST_HEAD(&extra_pages
);
422 /* Loop while I can allocate a page and the page allocated
423 * is a destination page.
426 unsigned long pfn
, epfn
, addr
, eaddr
;
428 pages
= kimage_alloc_pages(GFP_KERNEL
, order
);
431 pfn
= page_to_pfn(pages
);
433 addr
= pfn
<< PAGE_SHIFT
;
434 eaddr
= epfn
<< PAGE_SHIFT
;
435 if ((epfn
>= (KEXEC_CONTROL_MEMORY_LIMIT
>> PAGE_SHIFT
)) ||
436 kimage_is_destination_range(image
, addr
, eaddr
)) {
437 list_add(&pages
->lru
, &extra_pages
);
443 /* Remember the allocated page... */
444 list_add(&pages
->lru
, &image
->control_pages
);
446 /* Because the page is already in it's destination
447 * location we will never allocate another page at
448 * that address. Therefore kimage_alloc_pages
449 * will not return it (again) and we don't need
450 * to give it an entry in image->segment[].
453 /* Deal with the destination pages I have inadvertently allocated.
455 * Ideally I would convert multi-page allocations into single
456 * page allocations, and add everything to image->dest_pages.
458 * For now it is simpler to just free the pages.
460 kimage_free_page_list(&extra_pages
);
465 static struct page
*kimage_alloc_crash_control_pages(struct kimage
*image
,
468 /* Control pages are special, they are the intermediaries
469 * that are needed while we copy the rest of the pages
470 * to their final resting place. As such they must
471 * not conflict with either the destination addresses
472 * or memory the kernel is already using.
474 * Control pages are also the only pags we must allocate
475 * when loading a crash kernel. All of the other pages
476 * are specified by the segments and we just memcpy
477 * into them directly.
479 * The only case where we really need more than one of
480 * these are for architectures where we cannot disable
481 * the MMU and must instead generate an identity mapped
482 * page table for all of the memory.
484 * Given the low demand this implements a very simple
485 * allocator that finds the first hole of the appropriate
486 * size in the reserved memory region, and allocates all
487 * of the memory up to and including the hole.
489 unsigned long hole_start
, hole_end
, size
;
493 size
= (1 << order
) << PAGE_SHIFT
;
494 hole_start
= (image
->control_page
+ (size
- 1)) & ~(size
- 1);
495 hole_end
= hole_start
+ size
- 1;
496 while (hole_end
<= crashk_res
.end
) {
499 if (hole_end
> KEXEC_CRASH_CONTROL_MEMORY_LIMIT
)
501 if (hole_end
> crashk_res
.end
)
503 /* See if I overlap any of the segments */
504 for (i
= 0; i
< image
->nr_segments
; i
++) {
505 unsigned long mstart
, mend
;
507 mstart
= image
->segment
[i
].mem
;
508 mend
= mstart
+ image
->segment
[i
].memsz
- 1;
509 if ((hole_end
>= mstart
) && (hole_start
<= mend
)) {
510 /* Advance the hole to the end of the segment */
511 hole_start
= (mend
+ (size
- 1)) & ~(size
- 1);
512 hole_end
= hole_start
+ size
- 1;
516 /* If I don't overlap any segments I have found my hole! */
517 if (i
== image
->nr_segments
) {
518 pages
= pfn_to_page(hole_start
>> PAGE_SHIFT
);
523 image
->control_page
= hole_end
;
529 struct page
*kimage_alloc_control_pages(struct kimage
*image
,
532 struct page
*pages
= NULL
;
534 switch (image
->type
) {
535 case KEXEC_TYPE_DEFAULT
:
536 pages
= kimage_alloc_normal_control_pages(image
, order
);
538 case KEXEC_TYPE_CRASH
:
539 pages
= kimage_alloc_crash_control_pages(image
, order
);
546 static int kimage_add_entry(struct kimage
*image
, kimage_entry_t entry
)
548 if (*image
->entry
!= 0)
551 if (image
->entry
== image
->last_entry
) {
552 kimage_entry_t
*ind_page
;
555 page
= kimage_alloc_page(image
, GFP_KERNEL
, KIMAGE_NO_DEST
);
559 ind_page
= page_address(page
);
560 *image
->entry
= virt_to_phys(ind_page
) | IND_INDIRECTION
;
561 image
->entry
= ind_page
;
562 image
->last_entry
= ind_page
+
563 ((PAGE_SIZE
/sizeof(kimage_entry_t
)) - 1);
565 *image
->entry
= entry
;
572 static int kimage_set_destination(struct kimage
*image
,
573 unsigned long destination
)
577 destination
&= PAGE_MASK
;
578 result
= kimage_add_entry(image
, destination
| IND_DESTINATION
);
580 image
->destination
= destination
;
586 static int kimage_add_page(struct kimage
*image
, unsigned long page
)
591 result
= kimage_add_entry(image
, page
| IND_SOURCE
);
593 image
->destination
+= PAGE_SIZE
;
599 static void kimage_free_extra_pages(struct kimage
*image
)
601 /* Walk through and free any extra destination pages I may have */
602 kimage_free_page_list(&image
->dest_pages
);
604 /* Walk through and free any unusable pages I have cached */
605 kimage_free_page_list(&image
->unuseable_pages
);
608 static void kimage_terminate(struct kimage
*image
)
610 if (*image
->entry
!= 0)
613 *image
->entry
= IND_DONE
;
616 #define for_each_kimage_entry(image, ptr, entry) \
617 for (ptr = &image->head; (entry = *ptr) && !(entry & IND_DONE); \
618 ptr = (entry & IND_INDIRECTION)? \
619 phys_to_virt((entry & PAGE_MASK)): ptr +1)
621 static void kimage_free_entry(kimage_entry_t entry
)
625 page
= pfn_to_page(entry
>> PAGE_SHIFT
);
626 kimage_free_pages(page
);
629 static void kimage_free(struct kimage
*image
)
631 kimage_entry_t
*ptr
, entry
;
632 kimage_entry_t ind
= 0;
637 kimage_free_extra_pages(image
);
638 for_each_kimage_entry(image
, ptr
, entry
) {
639 if (entry
& IND_INDIRECTION
) {
640 /* Free the previous indirection page */
641 if (ind
& IND_INDIRECTION
)
642 kimage_free_entry(ind
);
643 /* Save this indirection page until we are
648 else if (entry
& IND_SOURCE
)
649 kimage_free_entry(entry
);
651 /* Free the final indirection page */
652 if (ind
& IND_INDIRECTION
)
653 kimage_free_entry(ind
);
655 /* Handle any machine specific cleanup */
656 machine_kexec_cleanup(image
);
658 /* Free the kexec control pages... */
659 kimage_free_page_list(&image
->control_pages
);
663 static kimage_entry_t
*kimage_dst_used(struct kimage
*image
,
666 kimage_entry_t
*ptr
, entry
;
667 unsigned long destination
= 0;
669 for_each_kimage_entry(image
, ptr
, entry
) {
670 if (entry
& IND_DESTINATION
)
671 destination
= entry
& PAGE_MASK
;
672 else if (entry
& IND_SOURCE
) {
673 if (page
== destination
)
675 destination
+= PAGE_SIZE
;
682 static struct page
*kimage_alloc_page(struct kimage
*image
,
684 unsigned long destination
)
687 * Here we implement safeguards to ensure that a source page
688 * is not copied to its destination page before the data on
689 * the destination page is no longer useful.
691 * To do this we maintain the invariant that a source page is
692 * either its own destination page, or it is not a
693 * destination page at all.
695 * That is slightly stronger than required, but the proof
696 * that no problems will not occur is trivial, and the
697 * implementation is simply to verify.
699 * When allocating all pages normally this algorithm will run
700 * in O(N) time, but in the worst case it will run in O(N^2)
701 * time. If the runtime is a problem the data structures can
708 * Walk through the list of destination pages, and see if I
711 list_for_each_entry(page
, &image
->dest_pages
, lru
) {
712 addr
= page_to_pfn(page
) << PAGE_SHIFT
;
713 if (addr
== destination
) {
714 list_del(&page
->lru
);
722 /* Allocate a page, if we run out of memory give up */
723 page
= kimage_alloc_pages(gfp_mask
, 0);
726 /* If the page cannot be used file it away */
727 if (page_to_pfn(page
) >
728 (KEXEC_SOURCE_MEMORY_LIMIT
>> PAGE_SHIFT
)) {
729 list_add(&page
->lru
, &image
->unuseable_pages
);
732 addr
= page_to_pfn(page
) << PAGE_SHIFT
;
734 /* If it is the destination page we want use it */
735 if (addr
== destination
)
738 /* If the page is not a destination page use it */
739 if (!kimage_is_destination_range(image
, addr
,
744 * I know that the page is someones destination page.
745 * See if there is already a source page for this
746 * destination page. And if so swap the source pages.
748 old
= kimage_dst_used(image
, addr
);
751 unsigned long old_addr
;
752 struct page
*old_page
;
754 old_addr
= *old
& PAGE_MASK
;
755 old_page
= pfn_to_page(old_addr
>> PAGE_SHIFT
);
756 copy_highpage(page
, old_page
);
757 *old
= addr
| (*old
& ~PAGE_MASK
);
759 /* The old page I have found cannot be a
760 * destination page, so return it if it's
761 * gfp_flags honor the ones passed in.
763 if (!(gfp_mask
& __GFP_HIGHMEM
) &&
764 PageHighMem(old_page
)) {
765 kimage_free_pages(old_page
);
773 /* Place the page on the destination list I
776 list_add(&page
->lru
, &image
->dest_pages
);
783 static int kimage_load_normal_segment(struct kimage
*image
,
784 struct kexec_segment
*segment
)
787 unsigned long ubytes
, mbytes
;
789 unsigned char __user
*buf
;
793 ubytes
= segment
->bufsz
;
794 mbytes
= segment
->memsz
;
795 maddr
= segment
->mem
;
797 result
= kimage_set_destination(image
, maddr
);
804 size_t uchunk
, mchunk
;
806 page
= kimage_alloc_page(image
, GFP_HIGHUSER
, maddr
);
811 result
= kimage_add_page(image
, page_to_pfn(page
)
817 /* Start with a clear page */
819 ptr
+= maddr
& ~PAGE_MASK
;
820 mchunk
= PAGE_SIZE
- (maddr
& ~PAGE_MASK
);
828 result
= copy_from_user(ptr
, buf
, uchunk
);
843 static int kimage_load_crash_segment(struct kimage
*image
,
844 struct kexec_segment
*segment
)
846 /* For crash dumps kernels we simply copy the data from
847 * user space to it's destination.
848 * We do things a page at a time for the sake of kmap.
851 unsigned long ubytes
, mbytes
;
853 unsigned char __user
*buf
;
857 ubytes
= segment
->bufsz
;
858 mbytes
= segment
->memsz
;
859 maddr
= segment
->mem
;
863 size_t uchunk
, mchunk
;
865 page
= pfn_to_page(maddr
>> PAGE_SHIFT
);
871 ptr
+= maddr
& ~PAGE_MASK
;
872 mchunk
= PAGE_SIZE
- (maddr
& ~PAGE_MASK
);
877 if (uchunk
> ubytes
) {
879 /* Zero the trailing part of the page */
880 memset(ptr
+ uchunk
, 0, mchunk
- uchunk
);
882 result
= copy_from_user(ptr
, buf
, uchunk
);
883 kexec_flush_icache_page(page
);
898 static int kimage_load_segment(struct kimage
*image
,
899 struct kexec_segment
*segment
)
901 int result
= -ENOMEM
;
903 switch (image
->type
) {
904 case KEXEC_TYPE_DEFAULT
:
905 result
= kimage_load_normal_segment(image
, segment
);
907 case KEXEC_TYPE_CRASH
:
908 result
= kimage_load_crash_segment(image
, segment
);
916 * Exec Kernel system call: for obvious reasons only root may call it.
918 * This call breaks up into three pieces.
919 * - A generic part which loads the new kernel from the current
920 * address space, and very carefully places the data in the
923 * - A generic part that interacts with the kernel and tells all of
924 * the devices to shut down. Preventing on-going dmas, and placing
925 * the devices in a consistent state so a later kernel can
928 * - A machine specific part that includes the syscall number
929 * and the copies the image to it's final destination. And
930 * jumps into the image at entry.
932 * kexec does not sync, or unmount filesystems so if you need
933 * that to happen you need to do that yourself.
935 struct kimage
*kexec_image
;
936 struct kimage
*kexec_crash_image
;
938 static DEFINE_MUTEX(kexec_mutex
);
940 SYSCALL_DEFINE4(kexec_load
, unsigned long, entry
, unsigned long, nr_segments
,
941 struct kexec_segment __user
*, segments
, unsigned long, flags
)
943 struct kimage
**dest_image
, *image
;
946 /* We only trust the superuser with rebooting the system. */
947 if (!capable(CAP_SYS_BOOT
))
951 * Verify we have a legal set of flags
952 * This leaves us room for future extensions.
954 if ((flags
& KEXEC_FLAGS
) != (flags
& ~KEXEC_ARCH_MASK
))
957 /* Verify we are on the appropriate architecture */
958 if (((flags
& KEXEC_ARCH_MASK
) != KEXEC_ARCH
) &&
959 ((flags
& KEXEC_ARCH_MASK
) != KEXEC_ARCH_DEFAULT
))
962 /* Put an artificial cap on the number
963 * of segments passed to kexec_load.
965 if (nr_segments
> KEXEC_SEGMENT_MAX
)
971 /* Because we write directly to the reserved memory
972 * region when loading crash kernels we need a mutex here to
973 * prevent multiple crash kernels from attempting to load
974 * simultaneously, and to prevent a crash kernel from loading
975 * over the top of a in use crash kernel.
977 * KISS: always take the mutex.
979 if (!mutex_trylock(&kexec_mutex
))
982 dest_image
= &kexec_image
;
983 if (flags
& KEXEC_ON_CRASH
)
984 dest_image
= &kexec_crash_image
;
985 if (nr_segments
> 0) {
988 /* Loading another kernel to reboot into */
989 if ((flags
& KEXEC_ON_CRASH
) == 0)
990 result
= kimage_normal_alloc(&image
, entry
,
991 nr_segments
, segments
);
992 /* Loading another kernel to switch to if this one crashes */
993 else if (flags
& KEXEC_ON_CRASH
) {
994 /* Free any current crash dump kernel before
997 kimage_free(xchg(&kexec_crash_image
, NULL
));
998 result
= kimage_crash_alloc(&image
, entry
,
999 nr_segments
, segments
);
1000 crash_map_reserved_pages();
1005 if (flags
& KEXEC_PRESERVE_CONTEXT
)
1006 image
->preserve_context
= 1;
1007 result
= machine_kexec_prepare(image
);
1011 for (i
= 0; i
< nr_segments
; i
++) {
1012 result
= kimage_load_segment(image
, &image
->segment
[i
]);
1016 kimage_terminate(image
);
1017 if (flags
& KEXEC_ON_CRASH
)
1018 crash_unmap_reserved_pages();
1020 /* Install the new kernel, and Uninstall the old */
1021 image
= xchg(dest_image
, image
);
1024 mutex_unlock(&kexec_mutex
);
1031 * Add and remove page tables for crashkernel memory
1033 * Provide an empty default implementation here -- architecture
1034 * code may override this
1036 void __weak
crash_map_reserved_pages(void)
1039 void __weak
crash_unmap_reserved_pages(void)
1042 #ifdef CONFIG_COMPAT
1043 asmlinkage
long compat_sys_kexec_load(unsigned long entry
,
1044 unsigned long nr_segments
,
1045 struct compat_kexec_segment __user
*segments
,
1046 unsigned long flags
)
1048 struct compat_kexec_segment in
;
1049 struct kexec_segment out
, __user
*ksegments
;
1050 unsigned long i
, result
;
1052 /* Don't allow clients that don't understand the native
1053 * architecture to do anything.
1055 if ((flags
& KEXEC_ARCH_MASK
) == KEXEC_ARCH_DEFAULT
)
1058 if (nr_segments
> KEXEC_SEGMENT_MAX
)
1061 ksegments
= compat_alloc_user_space(nr_segments
* sizeof(out
));
1062 for (i
=0; i
< nr_segments
; i
++) {
1063 result
= copy_from_user(&in
, &segments
[i
], sizeof(in
));
1067 out
.buf
= compat_ptr(in
.buf
);
1068 out
.bufsz
= in
.bufsz
;
1070 out
.memsz
= in
.memsz
;
1072 result
= copy_to_user(&ksegments
[i
], &out
, sizeof(out
));
1077 return sys_kexec_load(entry
, nr_segments
, ksegments
, flags
);
1081 void crash_kexec(struct pt_regs
*regs
)
1083 /* Take the kexec_mutex here to prevent sys_kexec_load
1084 * running on one cpu from replacing the crash kernel
1085 * we are using after a panic on a different cpu.
1087 * If the crash kernel was not located in a fixed area
1088 * of memory the xchg(&kexec_crash_image) would be
1089 * sufficient. But since I reuse the memory...
1091 if (mutex_trylock(&kexec_mutex
)) {
1092 if (kexec_crash_image
) {
1093 struct pt_regs fixed_regs
;
1095 crash_setup_regs(&fixed_regs
, regs
);
1096 crash_save_vmcoreinfo();
1097 machine_crash_shutdown(&fixed_regs
);
1098 machine_kexec(kexec_crash_image
);
1100 mutex_unlock(&kexec_mutex
);
1104 size_t crash_get_memory_size(void)
1107 mutex_lock(&kexec_mutex
);
1108 if (crashk_res
.end
!= crashk_res
.start
)
1109 size
= resource_size(&crashk_res
);
1110 mutex_unlock(&kexec_mutex
);
1114 void __weak
crash_free_reserved_phys_range(unsigned long begin
,
1119 for (addr
= begin
; addr
< end
; addr
+= PAGE_SIZE
) {
1120 ClearPageReserved(pfn_to_page(addr
>> PAGE_SHIFT
));
1121 init_page_count(pfn_to_page(addr
>> PAGE_SHIFT
));
1122 free_page((unsigned long)__va(addr
));
1127 int crash_shrink_memory(unsigned long new_size
)
1130 unsigned long start
, end
;
1131 unsigned long old_size
;
1132 struct resource
*ram_res
;
1134 mutex_lock(&kexec_mutex
);
1136 if (kexec_crash_image
) {
1140 start
= crashk_res
.start
;
1141 end
= crashk_res
.end
;
1142 old_size
= (end
== 0) ? 0 : end
- start
+ 1;
1143 if (new_size
>= old_size
) {
1144 ret
= (new_size
== old_size
) ? 0 : -EINVAL
;
1148 ram_res
= kzalloc(sizeof(*ram_res
), GFP_KERNEL
);
1154 start
= roundup(start
, KEXEC_CRASH_MEM_ALIGN
);
1155 end
= roundup(start
+ new_size
, KEXEC_CRASH_MEM_ALIGN
);
1157 crash_map_reserved_pages();
1158 crash_free_reserved_phys_range(end
, crashk_res
.end
);
1160 if ((start
== end
) && (crashk_res
.parent
!= NULL
))
1161 release_resource(&crashk_res
);
1163 ram_res
->start
= end
;
1164 ram_res
->end
= crashk_res
.end
;
1165 ram_res
->flags
= IORESOURCE_BUSY
| IORESOURCE_MEM
;
1166 ram_res
->name
= "System RAM";
1168 crashk_res
.end
= end
- 1;
1170 insert_resource(&iomem_resource
, ram_res
);
1171 crash_unmap_reserved_pages();
1174 mutex_unlock(&kexec_mutex
);
1178 static u32
*append_elf_note(u32
*buf
, char *name
, unsigned type
, void *data
,
1181 struct elf_note note
;
1183 note
.n_namesz
= strlen(name
) + 1;
1184 note
.n_descsz
= data_len
;
1186 memcpy(buf
, ¬e
, sizeof(note
));
1187 buf
+= (sizeof(note
) + 3)/4;
1188 memcpy(buf
, name
, note
.n_namesz
);
1189 buf
+= (note
.n_namesz
+ 3)/4;
1190 memcpy(buf
, data
, note
.n_descsz
);
1191 buf
+= (note
.n_descsz
+ 3)/4;
1196 static void final_note(u32
*buf
)
1198 struct elf_note note
;
1203 memcpy(buf
, ¬e
, sizeof(note
));
1206 void crash_save_cpu(struct pt_regs
*regs
, int cpu
)
1208 struct elf_prstatus prstatus
;
1211 if ((cpu
< 0) || (cpu
>= nr_cpu_ids
))
1214 /* Using ELF notes here is opportunistic.
1215 * I need a well defined structure format
1216 * for the data I pass, and I need tags
1217 * on the data to indicate what information I have
1218 * squirrelled away. ELF notes happen to provide
1219 * all of that, so there is no need to invent something new.
1221 buf
= (u32
*)per_cpu_ptr(crash_notes
, cpu
);
1224 memset(&prstatus
, 0, sizeof(prstatus
));
1225 prstatus
.pr_pid
= current
->pid
;
1226 elf_core_copy_kernel_regs(&prstatus
.pr_reg
, regs
);
1227 buf
= append_elf_note(buf
, KEXEC_CORE_NOTE_NAME
, NT_PRSTATUS
,
1228 &prstatus
, sizeof(prstatus
));
1232 static int __init
crash_notes_memory_init(void)
1234 /* Allocate memory for saving cpu registers. */
1235 crash_notes
= alloc_percpu(note_buf_t
);
1237 printk("Kexec: Memory allocation for saving cpu register"
1238 " states failed\n");
1243 module_init(crash_notes_memory_init
)
1247 * parsing the "crashkernel" commandline
1249 * this code is intended to be called from architecture specific code
1254 * This function parses command lines in the format
1256 * crashkernel=ramsize-range:size[,...][@offset]
1258 * The function returns 0 on success and -EINVAL on failure.
1260 static int __init
parse_crashkernel_mem(char *cmdline
,
1261 unsigned long long system_ram
,
1262 unsigned long long *crash_size
,
1263 unsigned long long *crash_base
)
1265 char *cur
= cmdline
, *tmp
;
1267 /* for each entry of the comma-separated list */
1269 unsigned long long start
, end
= ULLONG_MAX
, size
;
1271 /* get the start of the range */
1272 start
= memparse(cur
, &tmp
);
1274 pr_warning("crashkernel: Memory value expected\n");
1279 pr_warning("crashkernel: '-' expected\n");
1284 /* if no ':' is here, than we read the end */
1286 end
= memparse(cur
, &tmp
);
1288 pr_warning("crashkernel: Memory "
1289 "value expected\n");
1294 pr_warning("crashkernel: end <= start\n");
1300 pr_warning("crashkernel: ':' expected\n");
1305 size
= memparse(cur
, &tmp
);
1307 pr_warning("Memory value expected\n");
1311 if (size
>= system_ram
) {
1312 pr_warning("crashkernel: invalid size\n");
1317 if (system_ram
>= start
&& system_ram
< end
) {
1321 } while (*cur
++ == ',');
1323 if (*crash_size
> 0) {
1324 while (*cur
&& *cur
!= ' ' && *cur
!= '@')
1328 *crash_base
= memparse(cur
, &tmp
);
1330 pr_warning("Memory value expected "
1341 * That function parses "simple" (old) crashkernel command lines like
1343 * crashkernel=size[@offset]
1345 * It returns 0 on success and -EINVAL on failure.
1347 static int __init
parse_crashkernel_simple(char *cmdline
,
1348 unsigned long long *crash_size
,
1349 unsigned long long *crash_base
)
1351 char *cur
= cmdline
;
1353 *crash_size
= memparse(cmdline
, &cur
);
1354 if (cmdline
== cur
) {
1355 pr_warning("crashkernel: memory value expected\n");
1360 *crash_base
= memparse(cur
+1, &cur
);
1361 else if (*cur
!= ' ' && *cur
!= '\0') {
1362 pr_warning("crashkernel: unrecognized char\n");
1370 * That function is the entry point for command line parsing and should be
1371 * called from the arch-specific code.
1373 int __init
parse_crashkernel(char *cmdline
,
1374 unsigned long long system_ram
,
1375 unsigned long long *crash_size
,
1376 unsigned long long *crash_base
)
1378 char *p
= cmdline
, *ck_cmdline
= NULL
;
1379 char *first_colon
, *first_space
;
1381 BUG_ON(!crash_size
|| !crash_base
);
1385 /* find crashkernel and use the last one if there are more */
1386 p
= strstr(p
, "crashkernel=");
1389 p
= strstr(p
+1, "crashkernel=");
1395 ck_cmdline
+= 12; /* strlen("crashkernel=") */
1398 * if the commandline contains a ':', then that's the extended
1399 * syntax -- if not, it must be the classic syntax
1401 first_colon
= strchr(ck_cmdline
, ':');
1402 first_space
= strchr(ck_cmdline
, ' ');
1403 if (first_colon
&& (!first_space
|| first_colon
< first_space
))
1404 return parse_crashkernel_mem(ck_cmdline
, system_ram
,
1405 crash_size
, crash_base
);
1407 return parse_crashkernel_simple(ck_cmdline
, crash_size
,
1414 static void update_vmcoreinfo_note(void)
1416 u32
*buf
= vmcoreinfo_note
;
1418 if (!vmcoreinfo_size
)
1420 buf
= append_elf_note(buf
, VMCOREINFO_NOTE_NAME
, 0, vmcoreinfo_data
,
1425 void crash_save_vmcoreinfo(void)
1427 vmcoreinfo_append_str("CRASHTIME=%ld", get_seconds());
1428 update_vmcoreinfo_note();
1431 void vmcoreinfo_append_str(const char *fmt
, ...)
1437 va_start(args
, fmt
);
1438 r
= vsnprintf(buf
, sizeof(buf
), fmt
, args
);
1441 if (r
+ vmcoreinfo_size
> vmcoreinfo_max_size
)
1442 r
= vmcoreinfo_max_size
- vmcoreinfo_size
;
1444 memcpy(&vmcoreinfo_data
[vmcoreinfo_size
], buf
, r
);
1446 vmcoreinfo_size
+= r
;
1450 * provide an empty default implementation here -- architecture
1451 * code may override this
1453 void __attribute__ ((weak
)) arch_crash_save_vmcoreinfo(void)
1456 unsigned long __attribute__ ((weak
)) paddr_vmcoreinfo_note(void)
1458 return __pa((unsigned long)(char *)&vmcoreinfo_note
);
1461 static int __init
crash_save_vmcoreinfo_init(void)
1463 VMCOREINFO_OSRELEASE(init_uts_ns
.name
.release
);
1464 VMCOREINFO_PAGESIZE(PAGE_SIZE
);
1466 VMCOREINFO_SYMBOL(init_uts_ns
);
1467 VMCOREINFO_SYMBOL(node_online_map
);
1469 VMCOREINFO_SYMBOL(swapper_pg_dir
);
1471 VMCOREINFO_SYMBOL(_stext
);
1472 VMCOREINFO_SYMBOL(vmlist
);
1474 #ifndef CONFIG_NEED_MULTIPLE_NODES
1475 VMCOREINFO_SYMBOL(mem_map
);
1476 VMCOREINFO_SYMBOL(contig_page_data
);
1478 #ifdef CONFIG_SPARSEMEM
1479 VMCOREINFO_SYMBOL(mem_section
);
1480 VMCOREINFO_LENGTH(mem_section
, NR_SECTION_ROOTS
);
1481 VMCOREINFO_STRUCT_SIZE(mem_section
);
1482 VMCOREINFO_OFFSET(mem_section
, section_mem_map
);
1484 VMCOREINFO_STRUCT_SIZE(page
);
1485 VMCOREINFO_STRUCT_SIZE(pglist_data
);
1486 VMCOREINFO_STRUCT_SIZE(zone
);
1487 VMCOREINFO_STRUCT_SIZE(free_area
);
1488 VMCOREINFO_STRUCT_SIZE(list_head
);
1489 VMCOREINFO_SIZE(nodemask_t
);
1490 VMCOREINFO_OFFSET(page
, flags
);
1491 VMCOREINFO_OFFSET(page
, _count
);
1492 VMCOREINFO_OFFSET(page
, mapping
);
1493 VMCOREINFO_OFFSET(page
, lru
);
1494 VMCOREINFO_OFFSET(pglist_data
, node_zones
);
1495 VMCOREINFO_OFFSET(pglist_data
, nr_zones
);
1496 #ifdef CONFIG_FLAT_NODE_MEM_MAP
1497 VMCOREINFO_OFFSET(pglist_data
, node_mem_map
);
1499 VMCOREINFO_OFFSET(pglist_data
, node_start_pfn
);
1500 VMCOREINFO_OFFSET(pglist_data
, node_spanned_pages
);
1501 VMCOREINFO_OFFSET(pglist_data
, node_id
);
1502 VMCOREINFO_OFFSET(zone
, free_area
);
1503 VMCOREINFO_OFFSET(zone
, vm_stat
);
1504 VMCOREINFO_OFFSET(zone
, spanned_pages
);
1505 VMCOREINFO_OFFSET(free_area
, free_list
);
1506 VMCOREINFO_OFFSET(list_head
, next
);
1507 VMCOREINFO_OFFSET(list_head
, prev
);
1508 VMCOREINFO_OFFSET(vm_struct
, addr
);
1509 VMCOREINFO_LENGTH(zone
.free_area
, MAX_ORDER
);
1510 log_buf_kexec_setup();
1511 VMCOREINFO_LENGTH(free_area
.free_list
, MIGRATE_TYPES
);
1512 VMCOREINFO_NUMBER(NR_FREE_PAGES
);
1513 VMCOREINFO_NUMBER(PG_lru
);
1514 VMCOREINFO_NUMBER(PG_private
);
1515 VMCOREINFO_NUMBER(PG_swapcache
);
1517 arch_crash_save_vmcoreinfo();
1518 update_vmcoreinfo_note();
1523 module_init(crash_save_vmcoreinfo_init
)
1526 * Move into place and start executing a preloaded standalone
1527 * executable. If nothing was preloaded return an error.
1529 int kernel_kexec(void)
1533 if (!mutex_trylock(&kexec_mutex
))
1540 #ifdef CONFIG_KEXEC_JUMP
1541 if (kexec_image
->preserve_context
) {
1542 lock_system_sleep();
1543 pm_prepare_console();
1544 error
= freeze_processes();
1547 goto Restore_console
;
1550 error
= dpm_suspend_start(PMSG_FREEZE
);
1552 goto Resume_console
;
1553 /* At this point, dpm_suspend_start() has been called,
1554 * but *not* dpm_suspend_end(). We *must* call
1555 * dpm_suspend_end() now. Otherwise, drivers for
1556 * some devices (e.g. interrupt controllers) become
1557 * desynchronized with the actual state of the
1558 * hardware at resume time, and evil weirdness ensues.
1560 error
= dpm_suspend_end(PMSG_FREEZE
);
1562 goto Resume_devices
;
1563 error
= disable_nonboot_cpus();
1566 local_irq_disable();
1567 error
= syscore_suspend();
1573 kernel_restart_prepare(NULL
);
1574 printk(KERN_EMERG
"Starting new kernel\n");
1578 machine_kexec(kexec_image
);
1580 #ifdef CONFIG_KEXEC_JUMP
1581 if (kexec_image
->preserve_context
) {
1586 enable_nonboot_cpus();
1587 dpm_resume_start(PMSG_RESTORE
);
1589 dpm_resume_end(PMSG_RESTORE
);
1594 pm_restore_console();
1595 unlock_system_sleep();
1600 mutex_unlock(&kexec_mutex
);