2 * Copyright (C) 2007,2008 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include <linux/rbtree.h>
24 #include "transaction.h"
25 #include "print-tree.h"
28 static int split_node(struct btrfs_trans_handle
*trans
, struct btrfs_root
29 *root
, struct btrfs_path
*path
, int level
);
30 static int split_leaf(struct btrfs_trans_handle
*trans
, struct btrfs_root
31 *root
, struct btrfs_key
*ins_key
,
32 struct btrfs_path
*path
, int data_size
, int extend
);
33 static int push_node_left(struct btrfs_trans_handle
*trans
,
34 struct btrfs_root
*root
, struct extent_buffer
*dst
,
35 struct extent_buffer
*src
, int empty
);
36 static int balance_node_right(struct btrfs_trans_handle
*trans
,
37 struct btrfs_root
*root
,
38 struct extent_buffer
*dst_buf
,
39 struct extent_buffer
*src_buf
);
40 static void del_ptr(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
41 struct btrfs_path
*path
, int level
, int slot
,
43 static void tree_mod_log_free_eb(struct btrfs_fs_info
*fs_info
,
44 struct extent_buffer
*eb
);
45 struct extent_buffer
*read_old_tree_block(struct btrfs_root
*root
, u64 bytenr
,
46 u32 blocksize
, u64 parent_transid
,
48 struct extent_buffer
*btrfs_find_old_tree_block(struct btrfs_root
*root
,
49 u64 bytenr
, u32 blocksize
,
52 struct btrfs_path
*btrfs_alloc_path(void)
54 struct btrfs_path
*path
;
55 path
= kmem_cache_zalloc(btrfs_path_cachep
, GFP_NOFS
);
60 * set all locked nodes in the path to blocking locks. This should
61 * be done before scheduling
63 noinline
void btrfs_set_path_blocking(struct btrfs_path
*p
)
66 for (i
= 0; i
< BTRFS_MAX_LEVEL
; i
++) {
67 if (!p
->nodes
[i
] || !p
->locks
[i
])
69 btrfs_set_lock_blocking_rw(p
->nodes
[i
], p
->locks
[i
]);
70 if (p
->locks
[i
] == BTRFS_READ_LOCK
)
71 p
->locks
[i
] = BTRFS_READ_LOCK_BLOCKING
;
72 else if (p
->locks
[i
] == BTRFS_WRITE_LOCK
)
73 p
->locks
[i
] = BTRFS_WRITE_LOCK_BLOCKING
;
78 * reset all the locked nodes in the patch to spinning locks.
80 * held is used to keep lockdep happy, when lockdep is enabled
81 * we set held to a blocking lock before we go around and
82 * retake all the spinlocks in the path. You can safely use NULL
85 noinline
void btrfs_clear_path_blocking(struct btrfs_path
*p
,
86 struct extent_buffer
*held
, int held_rw
)
90 #ifdef CONFIG_DEBUG_LOCK_ALLOC
91 /* lockdep really cares that we take all of these spinlocks
92 * in the right order. If any of the locks in the path are not
93 * currently blocking, it is going to complain. So, make really
94 * really sure by forcing the path to blocking before we clear
98 btrfs_set_lock_blocking_rw(held
, held_rw
);
99 if (held_rw
== BTRFS_WRITE_LOCK
)
100 held_rw
= BTRFS_WRITE_LOCK_BLOCKING
;
101 else if (held_rw
== BTRFS_READ_LOCK
)
102 held_rw
= BTRFS_READ_LOCK_BLOCKING
;
104 btrfs_set_path_blocking(p
);
107 for (i
= BTRFS_MAX_LEVEL
- 1; i
>= 0; i
--) {
108 if (p
->nodes
[i
] && p
->locks
[i
]) {
109 btrfs_clear_lock_blocking_rw(p
->nodes
[i
], p
->locks
[i
]);
110 if (p
->locks
[i
] == BTRFS_WRITE_LOCK_BLOCKING
)
111 p
->locks
[i
] = BTRFS_WRITE_LOCK
;
112 else if (p
->locks
[i
] == BTRFS_READ_LOCK_BLOCKING
)
113 p
->locks
[i
] = BTRFS_READ_LOCK
;
117 #ifdef CONFIG_DEBUG_LOCK_ALLOC
119 btrfs_clear_lock_blocking_rw(held
, held_rw
);
123 /* this also releases the path */
124 void btrfs_free_path(struct btrfs_path
*p
)
128 btrfs_release_path(p
);
129 kmem_cache_free(btrfs_path_cachep
, p
);
133 * path release drops references on the extent buffers in the path
134 * and it drops any locks held by this path
136 * It is safe to call this on paths that no locks or extent buffers held.
138 noinline
void btrfs_release_path(struct btrfs_path
*p
)
142 for (i
= 0; i
< BTRFS_MAX_LEVEL
; i
++) {
147 btrfs_tree_unlock_rw(p
->nodes
[i
], p
->locks
[i
]);
150 free_extent_buffer(p
->nodes
[i
]);
156 * safely gets a reference on the root node of a tree. A lock
157 * is not taken, so a concurrent writer may put a different node
158 * at the root of the tree. See btrfs_lock_root_node for the
161 * The extent buffer returned by this has a reference taken, so
162 * it won't disappear. It may stop being the root of the tree
163 * at any time because there are no locks held.
165 struct extent_buffer
*btrfs_root_node(struct btrfs_root
*root
)
167 struct extent_buffer
*eb
;
171 eb
= rcu_dereference(root
->node
);
174 * RCU really hurts here, we could free up the root node because
175 * it was cow'ed but we may not get the new root node yet so do
176 * the inc_not_zero dance and if it doesn't work then
177 * synchronize_rcu and try again.
179 if (atomic_inc_not_zero(&eb
->refs
)) {
189 /* loop around taking references on and locking the root node of the
190 * tree until you end up with a lock on the root. A locked buffer
191 * is returned, with a reference held.
193 struct extent_buffer
*btrfs_lock_root_node(struct btrfs_root
*root
)
195 struct extent_buffer
*eb
;
198 eb
= btrfs_root_node(root
);
200 if (eb
== root
->node
)
202 btrfs_tree_unlock(eb
);
203 free_extent_buffer(eb
);
208 /* loop around taking references on and locking the root node of the
209 * tree until you end up with a lock on the root. A locked buffer
210 * is returned, with a reference held.
212 struct extent_buffer
*btrfs_read_lock_root_node(struct btrfs_root
*root
)
214 struct extent_buffer
*eb
;
217 eb
= btrfs_root_node(root
);
218 btrfs_tree_read_lock(eb
);
219 if (eb
== root
->node
)
221 btrfs_tree_read_unlock(eb
);
222 free_extent_buffer(eb
);
227 /* cowonly root (everything not a reference counted cow subvolume), just get
228 * put onto a simple dirty list. transaction.c walks this to make sure they
229 * get properly updated on disk.
231 static void add_root_to_dirty_list(struct btrfs_root
*root
)
233 spin_lock(&root
->fs_info
->trans_lock
);
234 if (root
->track_dirty
&& list_empty(&root
->dirty_list
)) {
235 list_add(&root
->dirty_list
,
236 &root
->fs_info
->dirty_cowonly_roots
);
238 spin_unlock(&root
->fs_info
->trans_lock
);
242 * used by snapshot creation to make a copy of a root for a tree with
243 * a given objectid. The buffer with the new root node is returned in
244 * cow_ret, and this func returns zero on success or a negative error code.
246 int btrfs_copy_root(struct btrfs_trans_handle
*trans
,
247 struct btrfs_root
*root
,
248 struct extent_buffer
*buf
,
249 struct extent_buffer
**cow_ret
, u64 new_root_objectid
)
251 struct extent_buffer
*cow
;
254 struct btrfs_disk_key disk_key
;
256 WARN_ON(root
->ref_cows
&& trans
->transid
!=
257 root
->fs_info
->running_transaction
->transid
);
258 WARN_ON(root
->ref_cows
&& trans
->transid
!= root
->last_trans
);
260 level
= btrfs_header_level(buf
);
262 btrfs_item_key(buf
, &disk_key
, 0);
264 btrfs_node_key(buf
, &disk_key
, 0);
266 cow
= btrfs_alloc_free_block(trans
, root
, buf
->len
, 0,
267 new_root_objectid
, &disk_key
, level
,
272 copy_extent_buffer(cow
, buf
, 0, 0, cow
->len
);
273 btrfs_set_header_bytenr(cow
, cow
->start
);
274 btrfs_set_header_generation(cow
, trans
->transid
);
275 btrfs_set_header_backref_rev(cow
, BTRFS_MIXED_BACKREF_REV
);
276 btrfs_clear_header_flag(cow
, BTRFS_HEADER_FLAG_WRITTEN
|
277 BTRFS_HEADER_FLAG_RELOC
);
278 if (new_root_objectid
== BTRFS_TREE_RELOC_OBJECTID
)
279 btrfs_set_header_flag(cow
, BTRFS_HEADER_FLAG_RELOC
);
281 btrfs_set_header_owner(cow
, new_root_objectid
);
283 write_extent_buffer(cow
, root
->fs_info
->fsid
,
284 (unsigned long)btrfs_header_fsid(cow
),
287 WARN_ON(btrfs_header_generation(buf
) > trans
->transid
);
288 if (new_root_objectid
== BTRFS_TREE_RELOC_OBJECTID
)
289 ret
= btrfs_inc_ref(trans
, root
, cow
, 1, 1);
291 ret
= btrfs_inc_ref(trans
, root
, cow
, 0, 1);
296 btrfs_mark_buffer_dirty(cow
);
305 MOD_LOG_KEY_REMOVE_WHILE_FREEING
,
306 MOD_LOG_KEY_REMOVE_WHILE_MOVING
,
308 MOD_LOG_ROOT_REPLACE
,
311 struct tree_mod_move
{
316 struct tree_mod_root
{
321 struct tree_mod_elem
{
323 u64 index
; /* shifted logical */
327 /* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */
330 /* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */
333 /* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */
334 struct btrfs_disk_key key
;
337 /* this is used for op == MOD_LOG_MOVE_KEYS */
338 struct tree_mod_move move
;
340 /* this is used for op == MOD_LOG_ROOT_REPLACE */
341 struct tree_mod_root old_root
;
344 static inline void tree_mod_log_read_lock(struct btrfs_fs_info
*fs_info
)
346 read_lock(&fs_info
->tree_mod_log_lock
);
349 static inline void tree_mod_log_read_unlock(struct btrfs_fs_info
*fs_info
)
351 read_unlock(&fs_info
->tree_mod_log_lock
);
354 static inline void tree_mod_log_write_lock(struct btrfs_fs_info
*fs_info
)
356 write_lock(&fs_info
->tree_mod_log_lock
);
359 static inline void tree_mod_log_write_unlock(struct btrfs_fs_info
*fs_info
)
361 write_unlock(&fs_info
->tree_mod_log_lock
);
365 * This adds a new blocker to the tree mod log's blocker list if the @elem
366 * passed does not already have a sequence number set. So when a caller expects
367 * to record tree modifications, it should ensure to set elem->seq to zero
368 * before calling btrfs_get_tree_mod_seq.
369 * Returns a fresh, unused tree log modification sequence number, even if no new
372 u64
btrfs_get_tree_mod_seq(struct btrfs_fs_info
*fs_info
,
373 struct seq_list
*elem
)
377 tree_mod_log_write_lock(fs_info
);
378 spin_lock(&fs_info
->tree_mod_seq_lock
);
380 elem
->seq
= btrfs_inc_tree_mod_seq(fs_info
);
381 list_add_tail(&elem
->list
, &fs_info
->tree_mod_seq_list
);
383 seq
= btrfs_inc_tree_mod_seq(fs_info
);
384 spin_unlock(&fs_info
->tree_mod_seq_lock
);
385 tree_mod_log_write_unlock(fs_info
);
390 void btrfs_put_tree_mod_seq(struct btrfs_fs_info
*fs_info
,
391 struct seq_list
*elem
)
393 struct rb_root
*tm_root
;
394 struct rb_node
*node
;
395 struct rb_node
*next
;
396 struct seq_list
*cur_elem
;
397 struct tree_mod_elem
*tm
;
398 u64 min_seq
= (u64
)-1;
399 u64 seq_putting
= elem
->seq
;
404 spin_lock(&fs_info
->tree_mod_seq_lock
);
405 list_del(&elem
->list
);
408 list_for_each_entry(cur_elem
, &fs_info
->tree_mod_seq_list
, list
) {
409 if (cur_elem
->seq
< min_seq
) {
410 if (seq_putting
> cur_elem
->seq
) {
412 * blocker with lower sequence number exists, we
413 * cannot remove anything from the log
415 spin_unlock(&fs_info
->tree_mod_seq_lock
);
418 min_seq
= cur_elem
->seq
;
421 spin_unlock(&fs_info
->tree_mod_seq_lock
);
424 * we removed the lowest blocker from the blocker list, so there may be
425 * more processible delayed refs.
427 wake_up(&fs_info
->tree_mod_seq_wait
);
430 * anything that's lower than the lowest existing (read: blocked)
431 * sequence number can be removed from the tree.
433 tree_mod_log_write_lock(fs_info
);
434 tm_root
= &fs_info
->tree_mod_log
;
435 for (node
= rb_first(tm_root
); node
; node
= next
) {
436 next
= rb_next(node
);
437 tm
= container_of(node
, struct tree_mod_elem
, node
);
438 if (tm
->seq
> min_seq
)
440 rb_erase(node
, tm_root
);
443 tree_mod_log_write_unlock(fs_info
);
447 * key order of the log:
450 * the index is the shifted logical of the *new* root node for root replace
451 * operations, or the shifted logical of the affected block for all other
455 __tree_mod_log_insert(struct btrfs_fs_info
*fs_info
, struct tree_mod_elem
*tm
)
457 struct rb_root
*tm_root
;
458 struct rb_node
**new;
459 struct rb_node
*parent
= NULL
;
460 struct tree_mod_elem
*cur
;
462 BUG_ON(!tm
|| !tm
->seq
);
464 tm_root
= &fs_info
->tree_mod_log
;
465 new = &tm_root
->rb_node
;
467 cur
= container_of(*new, struct tree_mod_elem
, node
);
469 if (cur
->index
< tm
->index
)
470 new = &((*new)->rb_left
);
471 else if (cur
->index
> tm
->index
)
472 new = &((*new)->rb_right
);
473 else if (cur
->seq
< tm
->seq
)
474 new = &((*new)->rb_left
);
475 else if (cur
->seq
> tm
->seq
)
476 new = &((*new)->rb_right
);
483 rb_link_node(&tm
->node
, parent
, new);
484 rb_insert_color(&tm
->node
, tm_root
);
489 * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it
490 * returns zero with the tree_mod_log_lock acquired. The caller must hold
491 * this until all tree mod log insertions are recorded in the rb tree and then
492 * call tree_mod_log_write_unlock() to release.
494 static inline int tree_mod_dont_log(struct btrfs_fs_info
*fs_info
,
495 struct extent_buffer
*eb
) {
497 if (list_empty(&(fs_info
)->tree_mod_seq_list
))
499 if (eb
&& btrfs_header_level(eb
) == 0)
502 tree_mod_log_write_lock(fs_info
);
503 if (list_empty(&fs_info
->tree_mod_seq_list
)) {
505 * someone emptied the list while we were waiting for the lock.
506 * we must not add to the list when no blocker exists.
508 tree_mod_log_write_unlock(fs_info
);
516 * This allocates memory and gets a tree modification sequence number.
518 * Returns <0 on error.
519 * Returns >0 (the added sequence number) on success.
521 static inline int tree_mod_alloc(struct btrfs_fs_info
*fs_info
, gfp_t flags
,
522 struct tree_mod_elem
**tm_ret
)
524 struct tree_mod_elem
*tm
;
527 * once we switch from spin locks to something different, we should
528 * honor the flags parameter here.
530 tm
= *tm_ret
= kzalloc(sizeof(*tm
), GFP_ATOMIC
);
534 tm
->seq
= btrfs_inc_tree_mod_seq(fs_info
);
539 __tree_mod_log_insert_key(struct btrfs_fs_info
*fs_info
,
540 struct extent_buffer
*eb
, int slot
,
541 enum mod_log_op op
, gfp_t flags
)
544 struct tree_mod_elem
*tm
;
546 ret
= tree_mod_alloc(fs_info
, flags
, &tm
);
550 tm
->index
= eb
->start
>> PAGE_CACHE_SHIFT
;
551 if (op
!= MOD_LOG_KEY_ADD
) {
552 btrfs_node_key(eb
, &tm
->key
, slot
);
553 tm
->blockptr
= btrfs_node_blockptr(eb
, slot
);
557 tm
->generation
= btrfs_node_ptr_generation(eb
, slot
);
559 return __tree_mod_log_insert(fs_info
, tm
);
563 tree_mod_log_insert_key_mask(struct btrfs_fs_info
*fs_info
,
564 struct extent_buffer
*eb
, int slot
,
565 enum mod_log_op op
, gfp_t flags
)
569 if (tree_mod_dont_log(fs_info
, eb
))
572 ret
= __tree_mod_log_insert_key(fs_info
, eb
, slot
, op
, flags
);
574 tree_mod_log_write_unlock(fs_info
);
579 tree_mod_log_insert_key(struct btrfs_fs_info
*fs_info
, struct extent_buffer
*eb
,
580 int slot
, enum mod_log_op op
)
582 return tree_mod_log_insert_key_mask(fs_info
, eb
, slot
, op
, GFP_NOFS
);
586 tree_mod_log_insert_key_locked(struct btrfs_fs_info
*fs_info
,
587 struct extent_buffer
*eb
, int slot
,
590 return __tree_mod_log_insert_key(fs_info
, eb
, slot
, op
, GFP_NOFS
);
594 tree_mod_log_insert_move(struct btrfs_fs_info
*fs_info
,
595 struct extent_buffer
*eb
, int dst_slot
, int src_slot
,
596 int nr_items
, gfp_t flags
)
598 struct tree_mod_elem
*tm
;
602 if (tree_mod_dont_log(fs_info
, eb
))
605 for (i
= 0; i
+ dst_slot
< src_slot
&& i
< nr_items
; i
++) {
606 ret
= tree_mod_log_insert_key_locked(fs_info
, eb
, i
+ dst_slot
,
607 MOD_LOG_KEY_REMOVE_WHILE_MOVING
);
611 ret
= tree_mod_alloc(fs_info
, flags
, &tm
);
615 tm
->index
= eb
->start
>> PAGE_CACHE_SHIFT
;
617 tm
->move
.dst_slot
= dst_slot
;
618 tm
->move
.nr_items
= nr_items
;
619 tm
->op
= MOD_LOG_MOVE_KEYS
;
621 ret
= __tree_mod_log_insert(fs_info
, tm
);
623 tree_mod_log_write_unlock(fs_info
);
628 __tree_mod_log_free_eb(struct btrfs_fs_info
*fs_info
, struct extent_buffer
*eb
)
634 nritems
= btrfs_header_nritems(eb
);
635 for (i
= nritems
- 1; i
>= 0; i
--) {
636 ret
= tree_mod_log_insert_key_locked(fs_info
, eb
, i
,
637 MOD_LOG_KEY_REMOVE_WHILE_FREEING
);
643 tree_mod_log_insert_root(struct btrfs_fs_info
*fs_info
,
644 struct extent_buffer
*old_root
,
645 struct extent_buffer
*new_root
, gfp_t flags
)
647 struct tree_mod_elem
*tm
;
650 if (tree_mod_dont_log(fs_info
, NULL
))
653 __tree_mod_log_free_eb(fs_info
, old_root
);
655 ret
= tree_mod_alloc(fs_info
, flags
, &tm
);
659 tm
->index
= new_root
->start
>> PAGE_CACHE_SHIFT
;
660 tm
->old_root
.logical
= old_root
->start
;
661 tm
->old_root
.level
= btrfs_header_level(old_root
);
662 tm
->generation
= btrfs_header_generation(old_root
);
663 tm
->op
= MOD_LOG_ROOT_REPLACE
;
665 ret
= __tree_mod_log_insert(fs_info
, tm
);
667 tree_mod_log_write_unlock(fs_info
);
671 static struct tree_mod_elem
*
672 __tree_mod_log_search(struct btrfs_fs_info
*fs_info
, u64 start
, u64 min_seq
,
675 struct rb_root
*tm_root
;
676 struct rb_node
*node
;
677 struct tree_mod_elem
*cur
= NULL
;
678 struct tree_mod_elem
*found
= NULL
;
679 u64 index
= start
>> PAGE_CACHE_SHIFT
;
681 tree_mod_log_read_lock(fs_info
);
682 tm_root
= &fs_info
->tree_mod_log
;
683 node
= tm_root
->rb_node
;
685 cur
= container_of(node
, struct tree_mod_elem
, node
);
686 if (cur
->index
< index
) {
687 node
= node
->rb_left
;
688 } else if (cur
->index
> index
) {
689 node
= node
->rb_right
;
690 } else if (cur
->seq
< min_seq
) {
691 node
= node
->rb_left
;
692 } else if (!smallest
) {
693 /* we want the node with the highest seq */
695 BUG_ON(found
->seq
> cur
->seq
);
697 node
= node
->rb_left
;
698 } else if (cur
->seq
> min_seq
) {
699 /* we want the node with the smallest seq */
701 BUG_ON(found
->seq
< cur
->seq
);
703 node
= node
->rb_right
;
709 tree_mod_log_read_unlock(fs_info
);
715 * this returns the element from the log with the smallest time sequence
716 * value that's in the log (the oldest log item). any element with a time
717 * sequence lower than min_seq will be ignored.
719 static struct tree_mod_elem
*
720 tree_mod_log_search_oldest(struct btrfs_fs_info
*fs_info
, u64 start
,
723 return __tree_mod_log_search(fs_info
, start
, min_seq
, 1);
727 * this returns the element from the log with the largest time sequence
728 * value that's in the log (the most recent log item). any element with
729 * a time sequence lower than min_seq will be ignored.
731 static struct tree_mod_elem
*
732 tree_mod_log_search(struct btrfs_fs_info
*fs_info
, u64 start
, u64 min_seq
)
734 return __tree_mod_log_search(fs_info
, start
, min_seq
, 0);
738 tree_mod_log_eb_copy(struct btrfs_fs_info
*fs_info
, struct extent_buffer
*dst
,
739 struct extent_buffer
*src
, unsigned long dst_offset
,
740 unsigned long src_offset
, int nr_items
)
745 if (tree_mod_dont_log(fs_info
, NULL
))
748 if (btrfs_header_level(dst
) == 0 && btrfs_header_level(src
) == 0) {
749 tree_mod_log_write_unlock(fs_info
);
753 for (i
= 0; i
< nr_items
; i
++) {
754 ret
= tree_mod_log_insert_key_locked(fs_info
, src
,
758 ret
= tree_mod_log_insert_key_locked(fs_info
, dst
,
764 tree_mod_log_write_unlock(fs_info
);
768 tree_mod_log_eb_move(struct btrfs_fs_info
*fs_info
, struct extent_buffer
*dst
,
769 int dst_offset
, int src_offset
, int nr_items
)
772 ret
= tree_mod_log_insert_move(fs_info
, dst
, dst_offset
, src_offset
,
778 tree_mod_log_set_node_key(struct btrfs_fs_info
*fs_info
,
779 struct extent_buffer
*eb
,
780 struct btrfs_disk_key
*disk_key
, int slot
, int atomic
)
784 ret
= tree_mod_log_insert_key_mask(fs_info
, eb
, slot
,
786 atomic
? GFP_ATOMIC
: GFP_NOFS
);
791 tree_mod_log_free_eb(struct btrfs_fs_info
*fs_info
, struct extent_buffer
*eb
)
793 if (tree_mod_dont_log(fs_info
, eb
))
796 __tree_mod_log_free_eb(fs_info
, eb
);
798 tree_mod_log_write_unlock(fs_info
);
802 tree_mod_log_set_root_pointer(struct btrfs_root
*root
,
803 struct extent_buffer
*new_root_node
)
806 ret
= tree_mod_log_insert_root(root
->fs_info
, root
->node
,
807 new_root_node
, GFP_NOFS
);
812 * check if the tree block can be shared by multiple trees
814 int btrfs_block_can_be_shared(struct btrfs_root
*root
,
815 struct extent_buffer
*buf
)
818 * Tree blocks not in refernece counted trees and tree roots
819 * are never shared. If a block was allocated after the last
820 * snapshot and the block was not allocated by tree relocation,
821 * we know the block is not shared.
823 if (root
->ref_cows
&&
824 buf
!= root
->node
&& buf
!= root
->commit_root
&&
825 (btrfs_header_generation(buf
) <=
826 btrfs_root_last_snapshot(&root
->root_item
) ||
827 btrfs_header_flag(buf
, BTRFS_HEADER_FLAG_RELOC
)))
829 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
830 if (root
->ref_cows
&&
831 btrfs_header_backref_rev(buf
) < BTRFS_MIXED_BACKREF_REV
)
837 static noinline
int update_ref_for_cow(struct btrfs_trans_handle
*trans
,
838 struct btrfs_root
*root
,
839 struct extent_buffer
*buf
,
840 struct extent_buffer
*cow
,
850 * Backrefs update rules:
852 * Always use full backrefs for extent pointers in tree block
853 * allocated by tree relocation.
855 * If a shared tree block is no longer referenced by its owner
856 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
857 * use full backrefs for extent pointers in tree block.
859 * If a tree block is been relocating
860 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
861 * use full backrefs for extent pointers in tree block.
862 * The reason for this is some operations (such as drop tree)
863 * are only allowed for blocks use full backrefs.
866 if (btrfs_block_can_be_shared(root
, buf
)) {
867 ret
= btrfs_lookup_extent_info(trans
, root
, buf
->start
,
868 buf
->len
, &refs
, &flags
);
873 btrfs_std_error(root
->fs_info
, ret
);
878 if (root
->root_key
.objectid
== BTRFS_TREE_RELOC_OBJECTID
||
879 btrfs_header_backref_rev(buf
) < BTRFS_MIXED_BACKREF_REV
)
880 flags
= BTRFS_BLOCK_FLAG_FULL_BACKREF
;
885 owner
= btrfs_header_owner(buf
);
886 BUG_ON(owner
== BTRFS_TREE_RELOC_OBJECTID
&&
887 !(flags
& BTRFS_BLOCK_FLAG_FULL_BACKREF
));
890 if ((owner
== root
->root_key
.objectid
||
891 root
->root_key
.objectid
== BTRFS_TREE_RELOC_OBJECTID
) &&
892 !(flags
& BTRFS_BLOCK_FLAG_FULL_BACKREF
)) {
893 ret
= btrfs_inc_ref(trans
, root
, buf
, 1, 1);
894 BUG_ON(ret
); /* -ENOMEM */
896 if (root
->root_key
.objectid
==
897 BTRFS_TREE_RELOC_OBJECTID
) {
898 ret
= btrfs_dec_ref(trans
, root
, buf
, 0, 1);
899 BUG_ON(ret
); /* -ENOMEM */
900 ret
= btrfs_inc_ref(trans
, root
, cow
, 1, 1);
901 BUG_ON(ret
); /* -ENOMEM */
903 new_flags
|= BTRFS_BLOCK_FLAG_FULL_BACKREF
;
906 if (root
->root_key
.objectid
==
907 BTRFS_TREE_RELOC_OBJECTID
)
908 ret
= btrfs_inc_ref(trans
, root
, cow
, 1, 1);
910 ret
= btrfs_inc_ref(trans
, root
, cow
, 0, 1);
911 BUG_ON(ret
); /* -ENOMEM */
913 if (new_flags
!= 0) {
914 ret
= btrfs_set_disk_extent_flags(trans
, root
,
922 if (flags
& BTRFS_BLOCK_FLAG_FULL_BACKREF
) {
923 if (root
->root_key
.objectid
==
924 BTRFS_TREE_RELOC_OBJECTID
)
925 ret
= btrfs_inc_ref(trans
, root
, cow
, 1, 1);
927 ret
= btrfs_inc_ref(trans
, root
, cow
, 0, 1);
928 BUG_ON(ret
); /* -ENOMEM */
929 ret
= btrfs_dec_ref(trans
, root
, buf
, 1, 1);
930 BUG_ON(ret
); /* -ENOMEM */
933 * don't log freeing in case we're freeing the root node, this
934 * is done by tree_mod_log_set_root_pointer later
936 if (buf
!= root
->node
&& btrfs_header_level(buf
) != 0)
937 tree_mod_log_free_eb(root
->fs_info
, buf
);
938 clean_tree_block(trans
, root
, buf
);
945 * does the dirty work in cow of a single block. The parent block (if
946 * supplied) is updated to point to the new cow copy. The new buffer is marked
947 * dirty and returned locked. If you modify the block it needs to be marked
950 * search_start -- an allocation hint for the new block
952 * empty_size -- a hint that you plan on doing more cow. This is the size in
953 * bytes the allocator should try to find free next to the block it returns.
954 * This is just a hint and may be ignored by the allocator.
956 static noinline
int __btrfs_cow_block(struct btrfs_trans_handle
*trans
,
957 struct btrfs_root
*root
,
958 struct extent_buffer
*buf
,
959 struct extent_buffer
*parent
, int parent_slot
,
960 struct extent_buffer
**cow_ret
,
961 u64 search_start
, u64 empty_size
)
963 struct btrfs_disk_key disk_key
;
964 struct extent_buffer
*cow
;
973 btrfs_assert_tree_locked(buf
);
975 WARN_ON(root
->ref_cows
&& trans
->transid
!=
976 root
->fs_info
->running_transaction
->transid
);
977 WARN_ON(root
->ref_cows
&& trans
->transid
!= root
->last_trans
);
979 level
= btrfs_header_level(buf
);
982 btrfs_item_key(buf
, &disk_key
, 0);
984 btrfs_node_key(buf
, &disk_key
, 0);
986 if (root
->root_key
.objectid
== BTRFS_TREE_RELOC_OBJECTID
) {
988 parent_start
= parent
->start
;
994 cow
= btrfs_alloc_free_block(trans
, root
, buf
->len
, parent_start
,
995 root
->root_key
.objectid
, &disk_key
,
996 level
, search_start
, empty_size
);
1000 /* cow is set to blocking by btrfs_init_new_buffer */
1002 copy_extent_buffer(cow
, buf
, 0, 0, cow
->len
);
1003 btrfs_set_header_bytenr(cow
, cow
->start
);
1004 btrfs_set_header_generation(cow
, trans
->transid
);
1005 btrfs_set_header_backref_rev(cow
, BTRFS_MIXED_BACKREF_REV
);
1006 btrfs_clear_header_flag(cow
, BTRFS_HEADER_FLAG_WRITTEN
|
1007 BTRFS_HEADER_FLAG_RELOC
);
1008 if (root
->root_key
.objectid
== BTRFS_TREE_RELOC_OBJECTID
)
1009 btrfs_set_header_flag(cow
, BTRFS_HEADER_FLAG_RELOC
);
1011 btrfs_set_header_owner(cow
, root
->root_key
.objectid
);
1013 write_extent_buffer(cow
, root
->fs_info
->fsid
,
1014 (unsigned long)btrfs_header_fsid(cow
),
1017 ret
= update_ref_for_cow(trans
, root
, buf
, cow
, &last_ref
);
1019 btrfs_abort_transaction(trans
, root
, ret
);
1024 btrfs_reloc_cow_block(trans
, root
, buf
, cow
);
1026 if (buf
== root
->node
) {
1027 WARN_ON(parent
&& parent
!= buf
);
1028 if (root
->root_key
.objectid
== BTRFS_TREE_RELOC_OBJECTID
||
1029 btrfs_header_backref_rev(buf
) < BTRFS_MIXED_BACKREF_REV
)
1030 parent_start
= buf
->start
;
1034 extent_buffer_get(cow
);
1035 tree_mod_log_set_root_pointer(root
, cow
);
1036 rcu_assign_pointer(root
->node
, cow
);
1038 btrfs_free_tree_block(trans
, root
, buf
, parent_start
,
1040 free_extent_buffer(buf
);
1041 add_root_to_dirty_list(root
);
1043 if (root
->root_key
.objectid
== BTRFS_TREE_RELOC_OBJECTID
)
1044 parent_start
= parent
->start
;
1048 WARN_ON(trans
->transid
!= btrfs_header_generation(parent
));
1049 tree_mod_log_insert_key(root
->fs_info
, parent
, parent_slot
,
1050 MOD_LOG_KEY_REPLACE
);
1051 btrfs_set_node_blockptr(parent
, parent_slot
,
1053 btrfs_set_node_ptr_generation(parent
, parent_slot
,
1055 btrfs_mark_buffer_dirty(parent
);
1056 btrfs_free_tree_block(trans
, root
, buf
, parent_start
,
1060 btrfs_tree_unlock(buf
);
1061 free_extent_buffer_stale(buf
);
1062 btrfs_mark_buffer_dirty(cow
);
1068 * returns the logical address of the oldest predecessor of the given root.
1069 * entries older than time_seq are ignored.
1071 static struct tree_mod_elem
*
1072 __tree_mod_log_oldest_root(struct btrfs_fs_info
*fs_info
,
1073 struct btrfs_root
*root
, u64 time_seq
)
1075 struct tree_mod_elem
*tm
;
1076 struct tree_mod_elem
*found
= NULL
;
1077 u64 root_logical
= root
->node
->start
;
1084 * the very last operation that's logged for a root is the replacement
1085 * operation (if it is replaced at all). this has the index of the *new*
1086 * root, making it the very first operation that's logged for this root.
1089 tm
= tree_mod_log_search_oldest(fs_info
, root_logical
,
1094 * if there are no tree operation for the oldest root, we simply
1095 * return it. this should only happen if that (old) root is at
1102 * if there's an operation that's not a root replacement, we
1103 * found the oldest version of our root. normally, we'll find a
1104 * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
1106 if (tm
->op
!= MOD_LOG_ROOT_REPLACE
)
1110 root_logical
= tm
->old_root
.logical
;
1111 BUG_ON(root_logical
== root
->node
->start
);
1115 /* if there's no old root to return, return what we found instead */
1123 * tm is a pointer to the first operation to rewind within eb. then, all
1124 * previous operations will be rewinded (until we reach something older than
1128 __tree_mod_log_rewind(struct extent_buffer
*eb
, u64 time_seq
,
1129 struct tree_mod_elem
*first_tm
)
1132 struct rb_node
*next
;
1133 struct tree_mod_elem
*tm
= first_tm
;
1134 unsigned long o_dst
;
1135 unsigned long o_src
;
1136 unsigned long p_size
= sizeof(struct btrfs_key_ptr
);
1138 n
= btrfs_header_nritems(eb
);
1139 while (tm
&& tm
->seq
>= time_seq
) {
1141 * all the operations are recorded with the operator used for
1142 * the modification. as we're going backwards, we do the
1143 * opposite of each operation here.
1146 case MOD_LOG_KEY_REMOVE_WHILE_FREEING
:
1147 BUG_ON(tm
->slot
< n
);
1148 case MOD_LOG_KEY_REMOVE_WHILE_MOVING
:
1149 case MOD_LOG_KEY_REMOVE
:
1150 btrfs_set_node_key(eb
, &tm
->key
, tm
->slot
);
1151 btrfs_set_node_blockptr(eb
, tm
->slot
, tm
->blockptr
);
1152 btrfs_set_node_ptr_generation(eb
, tm
->slot
,
1156 case MOD_LOG_KEY_REPLACE
:
1157 BUG_ON(tm
->slot
>= n
);
1158 btrfs_set_node_key(eb
, &tm
->key
, tm
->slot
);
1159 btrfs_set_node_blockptr(eb
, tm
->slot
, tm
->blockptr
);
1160 btrfs_set_node_ptr_generation(eb
, tm
->slot
,
1163 case MOD_LOG_KEY_ADD
:
1164 /* if a move operation is needed it's in the log */
1167 case MOD_LOG_MOVE_KEYS
:
1168 o_dst
= btrfs_node_key_ptr_offset(tm
->slot
);
1169 o_src
= btrfs_node_key_ptr_offset(tm
->move
.dst_slot
);
1170 memmove_extent_buffer(eb
, o_dst
, o_src
,
1171 tm
->move
.nr_items
* p_size
);
1173 case MOD_LOG_ROOT_REPLACE
:
1175 * this operation is special. for roots, this must be
1176 * handled explicitly before rewinding.
1177 * for non-roots, this operation may exist if the node
1178 * was a root: root A -> child B; then A gets empty and
1179 * B is promoted to the new root. in the mod log, we'll
1180 * have a root-replace operation for B, a tree block
1181 * that is no root. we simply ignore that operation.
1185 next
= rb_next(&tm
->node
);
1188 tm
= container_of(next
, struct tree_mod_elem
, node
);
1189 if (tm
->index
!= first_tm
->index
)
1192 btrfs_set_header_nritems(eb
, n
);
1195 static struct extent_buffer
*
1196 tree_mod_log_rewind(struct btrfs_fs_info
*fs_info
, struct extent_buffer
*eb
,
1199 struct extent_buffer
*eb_rewin
;
1200 struct tree_mod_elem
*tm
;
1205 if (btrfs_header_level(eb
) == 0)
1208 tm
= tree_mod_log_search(fs_info
, eb
->start
, time_seq
);
1212 if (tm
->op
== MOD_LOG_KEY_REMOVE_WHILE_FREEING
) {
1213 BUG_ON(tm
->slot
!= 0);
1214 eb_rewin
= alloc_dummy_extent_buffer(eb
->start
,
1215 fs_info
->tree_root
->nodesize
);
1217 btrfs_set_header_bytenr(eb_rewin
, eb
->start
);
1218 btrfs_set_header_backref_rev(eb_rewin
,
1219 btrfs_header_backref_rev(eb
));
1220 btrfs_set_header_owner(eb_rewin
, btrfs_header_owner(eb
));
1221 btrfs_set_header_level(eb_rewin
, btrfs_header_level(eb
));
1223 eb_rewin
= btrfs_clone_extent_buffer(eb
);
1227 extent_buffer_get(eb_rewin
);
1228 free_extent_buffer(eb
);
1230 __tree_mod_log_rewind(eb_rewin
, time_seq
, tm
);
1236 * get_old_root() rewinds the state of @root's root node to the given @time_seq
1237 * value. If there are no changes, the current root->root_node is returned. If
1238 * anything changed in between, there's a fresh buffer allocated on which the
1239 * rewind operations are done. In any case, the returned buffer is read locked.
1240 * Returns NULL on error (with no locks held).
1242 static inline struct extent_buffer
*
1243 get_old_root(struct btrfs_root
*root
, u64 time_seq
)
1245 struct tree_mod_elem
*tm
;
1246 struct extent_buffer
*eb
;
1247 struct tree_mod_root
*old_root
= NULL
;
1248 u64 old_generation
= 0;
1251 eb
= btrfs_read_lock_root_node(root
);
1252 tm
= __tree_mod_log_oldest_root(root
->fs_info
, root
, time_seq
);
1256 if (tm
->op
== MOD_LOG_ROOT_REPLACE
) {
1257 old_root
= &tm
->old_root
;
1258 old_generation
= tm
->generation
;
1259 logical
= old_root
->logical
;
1261 logical
= root
->node
->start
;
1264 tm
= tree_mod_log_search(root
->fs_info
, logical
, time_seq
);
1266 eb
= alloc_dummy_extent_buffer(logical
, root
->nodesize
);
1268 eb
= btrfs_clone_extent_buffer(root
->node
);
1269 btrfs_tree_read_unlock(root
->node
);
1270 free_extent_buffer(root
->node
);
1273 btrfs_tree_read_lock(eb
);
1275 btrfs_set_header_bytenr(eb
, eb
->start
);
1276 btrfs_set_header_backref_rev(eb
, BTRFS_MIXED_BACKREF_REV
);
1277 btrfs_set_header_owner(eb
, root
->root_key
.objectid
);
1278 btrfs_set_header_level(eb
, old_root
->level
);
1279 btrfs_set_header_generation(eb
, old_generation
);
1282 __tree_mod_log_rewind(eb
, time_seq
, tm
);
1284 WARN_ON(btrfs_header_level(eb
) != 0);
1285 extent_buffer_get(eb
);
1290 static inline int should_cow_block(struct btrfs_trans_handle
*trans
,
1291 struct btrfs_root
*root
,
1292 struct extent_buffer
*buf
)
1294 /* ensure we can see the force_cow */
1298 * We do not need to cow a block if
1299 * 1) this block is not created or changed in this transaction;
1300 * 2) this block does not belong to TREE_RELOC tree;
1301 * 3) the root is not forced COW.
1303 * What is forced COW:
1304 * when we create snapshot during commiting the transaction,
1305 * after we've finished coping src root, we must COW the shared
1306 * block to ensure the metadata consistency.
1308 if (btrfs_header_generation(buf
) == trans
->transid
&&
1309 !btrfs_header_flag(buf
, BTRFS_HEADER_FLAG_WRITTEN
) &&
1310 !(root
->root_key
.objectid
!= BTRFS_TREE_RELOC_OBJECTID
&&
1311 btrfs_header_flag(buf
, BTRFS_HEADER_FLAG_RELOC
)) &&
1318 * cows a single block, see __btrfs_cow_block for the real work.
1319 * This version of it has extra checks so that a block isn't cow'd more than
1320 * once per transaction, as long as it hasn't been written yet
1322 noinline
int btrfs_cow_block(struct btrfs_trans_handle
*trans
,
1323 struct btrfs_root
*root
, struct extent_buffer
*buf
,
1324 struct extent_buffer
*parent
, int parent_slot
,
1325 struct extent_buffer
**cow_ret
)
1330 if (trans
->transaction
!= root
->fs_info
->running_transaction
) {
1331 printk(KERN_CRIT
"trans %llu running %llu\n",
1332 (unsigned long long)trans
->transid
,
1333 (unsigned long long)
1334 root
->fs_info
->running_transaction
->transid
);
1337 if (trans
->transid
!= root
->fs_info
->generation
) {
1338 printk(KERN_CRIT
"trans %llu running %llu\n",
1339 (unsigned long long)trans
->transid
,
1340 (unsigned long long)root
->fs_info
->generation
);
1344 if (!should_cow_block(trans
, root
, buf
)) {
1349 search_start
= buf
->start
& ~((u64
)(1024 * 1024 * 1024) - 1);
1352 btrfs_set_lock_blocking(parent
);
1353 btrfs_set_lock_blocking(buf
);
1355 ret
= __btrfs_cow_block(trans
, root
, buf
, parent
,
1356 parent_slot
, cow_ret
, search_start
, 0);
1358 trace_btrfs_cow_block(root
, buf
, *cow_ret
);
1364 * helper function for defrag to decide if two blocks pointed to by a
1365 * node are actually close by
1367 static int close_blocks(u64 blocknr
, u64 other
, u32 blocksize
)
1369 if (blocknr
< other
&& other
- (blocknr
+ blocksize
) < 32768)
1371 if (blocknr
> other
&& blocknr
- (other
+ blocksize
) < 32768)
1377 * compare two keys in a memcmp fashion
1379 static int comp_keys(struct btrfs_disk_key
*disk
, struct btrfs_key
*k2
)
1381 struct btrfs_key k1
;
1383 btrfs_disk_key_to_cpu(&k1
, disk
);
1385 return btrfs_comp_cpu_keys(&k1
, k2
);
1389 * same as comp_keys only with two btrfs_key's
1391 int btrfs_comp_cpu_keys(struct btrfs_key
*k1
, struct btrfs_key
*k2
)
1393 if (k1
->objectid
> k2
->objectid
)
1395 if (k1
->objectid
< k2
->objectid
)
1397 if (k1
->type
> k2
->type
)
1399 if (k1
->type
< k2
->type
)
1401 if (k1
->offset
> k2
->offset
)
1403 if (k1
->offset
< k2
->offset
)
1409 * this is used by the defrag code to go through all the
1410 * leaves pointed to by a node and reallocate them so that
1411 * disk order is close to key order
1413 int btrfs_realloc_node(struct btrfs_trans_handle
*trans
,
1414 struct btrfs_root
*root
, struct extent_buffer
*parent
,
1415 int start_slot
, int cache_only
, u64
*last_ret
,
1416 struct btrfs_key
*progress
)
1418 struct extent_buffer
*cur
;
1421 u64 search_start
= *last_ret
;
1431 int progress_passed
= 0;
1432 struct btrfs_disk_key disk_key
;
1434 parent_level
= btrfs_header_level(parent
);
1435 if (cache_only
&& parent_level
!= 1)
1438 if (trans
->transaction
!= root
->fs_info
->running_transaction
)
1440 if (trans
->transid
!= root
->fs_info
->generation
)
1443 parent_nritems
= btrfs_header_nritems(parent
);
1444 blocksize
= btrfs_level_size(root
, parent_level
- 1);
1445 end_slot
= parent_nritems
;
1447 if (parent_nritems
== 1)
1450 btrfs_set_lock_blocking(parent
);
1452 for (i
= start_slot
; i
< end_slot
; i
++) {
1455 btrfs_node_key(parent
, &disk_key
, i
);
1456 if (!progress_passed
&& comp_keys(&disk_key
, progress
) < 0)
1459 progress_passed
= 1;
1460 blocknr
= btrfs_node_blockptr(parent
, i
);
1461 gen
= btrfs_node_ptr_generation(parent
, i
);
1462 if (last_block
== 0)
1463 last_block
= blocknr
;
1466 other
= btrfs_node_blockptr(parent
, i
- 1);
1467 close
= close_blocks(blocknr
, other
, blocksize
);
1469 if (!close
&& i
< end_slot
- 2) {
1470 other
= btrfs_node_blockptr(parent
, i
+ 1);
1471 close
= close_blocks(blocknr
, other
, blocksize
);
1474 last_block
= blocknr
;
1478 cur
= btrfs_find_tree_block(root
, blocknr
, blocksize
);
1480 uptodate
= btrfs_buffer_uptodate(cur
, gen
, 0);
1483 if (!cur
|| !uptodate
) {
1485 free_extent_buffer(cur
);
1489 cur
= read_tree_block(root
, blocknr
,
1493 } else if (!uptodate
) {
1494 err
= btrfs_read_buffer(cur
, gen
);
1496 free_extent_buffer(cur
);
1501 if (search_start
== 0)
1502 search_start
= last_block
;
1504 btrfs_tree_lock(cur
);
1505 btrfs_set_lock_blocking(cur
);
1506 err
= __btrfs_cow_block(trans
, root
, cur
, parent
, i
,
1509 (end_slot
- i
) * blocksize
));
1511 btrfs_tree_unlock(cur
);
1512 free_extent_buffer(cur
);
1515 search_start
= cur
->start
;
1516 last_block
= cur
->start
;
1517 *last_ret
= search_start
;
1518 btrfs_tree_unlock(cur
);
1519 free_extent_buffer(cur
);
1525 * The leaf data grows from end-to-front in the node.
1526 * this returns the address of the start of the last item,
1527 * which is the stop of the leaf data stack
1529 static inline unsigned int leaf_data_end(struct btrfs_root
*root
,
1530 struct extent_buffer
*leaf
)
1532 u32 nr
= btrfs_header_nritems(leaf
);
1534 return BTRFS_LEAF_DATA_SIZE(root
);
1535 return btrfs_item_offset_nr(leaf
, nr
- 1);
1540 * search for key in the extent_buffer. The items start at offset p,
1541 * and they are item_size apart. There are 'max' items in p.
1543 * the slot in the array is returned via slot, and it points to
1544 * the place where you would insert key if it is not found in
1547 * slot may point to max if the key is bigger than all of the keys
1549 static noinline
int generic_bin_search(struct extent_buffer
*eb
,
1551 int item_size
, struct btrfs_key
*key
,
1558 struct btrfs_disk_key
*tmp
= NULL
;
1559 struct btrfs_disk_key unaligned
;
1560 unsigned long offset
;
1562 unsigned long map_start
= 0;
1563 unsigned long map_len
= 0;
1566 while (low
< high
) {
1567 mid
= (low
+ high
) / 2;
1568 offset
= p
+ mid
* item_size
;
1570 if (!kaddr
|| offset
< map_start
||
1571 (offset
+ sizeof(struct btrfs_disk_key
)) >
1572 map_start
+ map_len
) {
1574 err
= map_private_extent_buffer(eb
, offset
,
1575 sizeof(struct btrfs_disk_key
),
1576 &kaddr
, &map_start
, &map_len
);
1579 tmp
= (struct btrfs_disk_key
*)(kaddr
+ offset
-
1582 read_extent_buffer(eb
, &unaligned
,
1583 offset
, sizeof(unaligned
));
1588 tmp
= (struct btrfs_disk_key
*)(kaddr
+ offset
-
1591 ret
= comp_keys(tmp
, key
);
1607 * simple bin_search frontend that does the right thing for
1610 static int bin_search(struct extent_buffer
*eb
, struct btrfs_key
*key
,
1611 int level
, int *slot
)
1614 return generic_bin_search(eb
,
1615 offsetof(struct btrfs_leaf
, items
),
1616 sizeof(struct btrfs_item
),
1617 key
, btrfs_header_nritems(eb
),
1620 return generic_bin_search(eb
,
1621 offsetof(struct btrfs_node
, ptrs
),
1622 sizeof(struct btrfs_key_ptr
),
1623 key
, btrfs_header_nritems(eb
),
1627 int btrfs_bin_search(struct extent_buffer
*eb
, struct btrfs_key
*key
,
1628 int level
, int *slot
)
1630 return bin_search(eb
, key
, level
, slot
);
1633 static void root_add_used(struct btrfs_root
*root
, u32 size
)
1635 spin_lock(&root
->accounting_lock
);
1636 btrfs_set_root_used(&root
->root_item
,
1637 btrfs_root_used(&root
->root_item
) + size
);
1638 spin_unlock(&root
->accounting_lock
);
1641 static void root_sub_used(struct btrfs_root
*root
, u32 size
)
1643 spin_lock(&root
->accounting_lock
);
1644 btrfs_set_root_used(&root
->root_item
,
1645 btrfs_root_used(&root
->root_item
) - size
);
1646 spin_unlock(&root
->accounting_lock
);
1649 /* given a node and slot number, this reads the blocks it points to. The
1650 * extent buffer is returned with a reference taken (but unlocked).
1651 * NULL is returned on error.
1653 static noinline
struct extent_buffer
*read_node_slot(struct btrfs_root
*root
,
1654 struct extent_buffer
*parent
, int slot
)
1656 int level
= btrfs_header_level(parent
);
1659 if (slot
>= btrfs_header_nritems(parent
))
1664 return read_tree_block(root
, btrfs_node_blockptr(parent
, slot
),
1665 btrfs_level_size(root
, level
- 1),
1666 btrfs_node_ptr_generation(parent
, slot
));
1670 * node level balancing, used to make sure nodes are in proper order for
1671 * item deletion. We balance from the top down, so we have to make sure
1672 * that a deletion won't leave an node completely empty later on.
1674 static noinline
int balance_level(struct btrfs_trans_handle
*trans
,
1675 struct btrfs_root
*root
,
1676 struct btrfs_path
*path
, int level
)
1678 struct extent_buffer
*right
= NULL
;
1679 struct extent_buffer
*mid
;
1680 struct extent_buffer
*left
= NULL
;
1681 struct extent_buffer
*parent
= NULL
;
1685 int orig_slot
= path
->slots
[level
];
1691 mid
= path
->nodes
[level
];
1693 WARN_ON(path
->locks
[level
] != BTRFS_WRITE_LOCK
&&
1694 path
->locks
[level
] != BTRFS_WRITE_LOCK_BLOCKING
);
1695 WARN_ON(btrfs_header_generation(mid
) != trans
->transid
);
1697 orig_ptr
= btrfs_node_blockptr(mid
, orig_slot
);
1699 if (level
< BTRFS_MAX_LEVEL
- 1) {
1700 parent
= path
->nodes
[level
+ 1];
1701 pslot
= path
->slots
[level
+ 1];
1705 * deal with the case where there is only one pointer in the root
1706 * by promoting the node below to a root
1709 struct extent_buffer
*child
;
1711 if (btrfs_header_nritems(mid
) != 1)
1714 /* promote the child to a root */
1715 child
= read_node_slot(root
, mid
, 0);
1718 btrfs_std_error(root
->fs_info
, ret
);
1722 btrfs_tree_lock(child
);
1723 btrfs_set_lock_blocking(child
);
1724 ret
= btrfs_cow_block(trans
, root
, child
, mid
, 0, &child
);
1726 btrfs_tree_unlock(child
);
1727 free_extent_buffer(child
);
1731 tree_mod_log_set_root_pointer(root
, child
);
1732 rcu_assign_pointer(root
->node
, child
);
1734 add_root_to_dirty_list(root
);
1735 btrfs_tree_unlock(child
);
1737 path
->locks
[level
] = 0;
1738 path
->nodes
[level
] = NULL
;
1739 clean_tree_block(trans
, root
, mid
);
1740 btrfs_tree_unlock(mid
);
1741 /* once for the path */
1742 free_extent_buffer(mid
);
1744 root_sub_used(root
, mid
->len
);
1745 btrfs_free_tree_block(trans
, root
, mid
, 0, 1);
1746 /* once for the root ptr */
1747 free_extent_buffer_stale(mid
);
1750 if (btrfs_header_nritems(mid
) >
1751 BTRFS_NODEPTRS_PER_BLOCK(root
) / 4)
1754 left
= read_node_slot(root
, parent
, pslot
- 1);
1756 btrfs_tree_lock(left
);
1757 btrfs_set_lock_blocking(left
);
1758 wret
= btrfs_cow_block(trans
, root
, left
,
1759 parent
, pslot
- 1, &left
);
1765 right
= read_node_slot(root
, parent
, pslot
+ 1);
1767 btrfs_tree_lock(right
);
1768 btrfs_set_lock_blocking(right
);
1769 wret
= btrfs_cow_block(trans
, root
, right
,
1770 parent
, pslot
+ 1, &right
);
1777 /* first, try to make some room in the middle buffer */
1779 orig_slot
+= btrfs_header_nritems(left
);
1780 wret
= push_node_left(trans
, root
, left
, mid
, 1);
1786 * then try to empty the right most buffer into the middle
1789 wret
= push_node_left(trans
, root
, mid
, right
, 1);
1790 if (wret
< 0 && wret
!= -ENOSPC
)
1792 if (btrfs_header_nritems(right
) == 0) {
1793 clean_tree_block(trans
, root
, right
);
1794 btrfs_tree_unlock(right
);
1795 del_ptr(trans
, root
, path
, level
+ 1, pslot
+ 1, 1);
1796 root_sub_used(root
, right
->len
);
1797 btrfs_free_tree_block(trans
, root
, right
, 0, 1);
1798 free_extent_buffer_stale(right
);
1801 struct btrfs_disk_key right_key
;
1802 btrfs_node_key(right
, &right_key
, 0);
1803 tree_mod_log_set_node_key(root
->fs_info
, parent
,
1804 &right_key
, pslot
+ 1, 0);
1805 btrfs_set_node_key(parent
, &right_key
, pslot
+ 1);
1806 btrfs_mark_buffer_dirty(parent
);
1809 if (btrfs_header_nritems(mid
) == 1) {
1811 * we're not allowed to leave a node with one item in the
1812 * tree during a delete. A deletion from lower in the tree
1813 * could try to delete the only pointer in this node.
1814 * So, pull some keys from the left.
1815 * There has to be a left pointer at this point because
1816 * otherwise we would have pulled some pointers from the
1821 btrfs_std_error(root
->fs_info
, ret
);
1824 wret
= balance_node_right(trans
, root
, mid
, left
);
1830 wret
= push_node_left(trans
, root
, left
, mid
, 1);
1836 if (btrfs_header_nritems(mid
) == 0) {
1837 clean_tree_block(trans
, root
, mid
);
1838 btrfs_tree_unlock(mid
);
1839 del_ptr(trans
, root
, path
, level
+ 1, pslot
, 1);
1840 root_sub_used(root
, mid
->len
);
1841 btrfs_free_tree_block(trans
, root
, mid
, 0, 1);
1842 free_extent_buffer_stale(mid
);
1845 /* update the parent key to reflect our changes */
1846 struct btrfs_disk_key mid_key
;
1847 btrfs_node_key(mid
, &mid_key
, 0);
1848 tree_mod_log_set_node_key(root
->fs_info
, parent
, &mid_key
,
1850 btrfs_set_node_key(parent
, &mid_key
, pslot
);
1851 btrfs_mark_buffer_dirty(parent
);
1854 /* update the path */
1856 if (btrfs_header_nritems(left
) > orig_slot
) {
1857 extent_buffer_get(left
);
1858 /* left was locked after cow */
1859 path
->nodes
[level
] = left
;
1860 path
->slots
[level
+ 1] -= 1;
1861 path
->slots
[level
] = orig_slot
;
1863 btrfs_tree_unlock(mid
);
1864 free_extent_buffer(mid
);
1867 orig_slot
-= btrfs_header_nritems(left
);
1868 path
->slots
[level
] = orig_slot
;
1871 /* double check we haven't messed things up */
1873 btrfs_node_blockptr(path
->nodes
[level
], path
->slots
[level
]))
1877 btrfs_tree_unlock(right
);
1878 free_extent_buffer(right
);
1881 if (path
->nodes
[level
] != left
)
1882 btrfs_tree_unlock(left
);
1883 free_extent_buffer(left
);
1888 /* Node balancing for insertion. Here we only split or push nodes around
1889 * when they are completely full. This is also done top down, so we
1890 * have to be pessimistic.
1892 static noinline
int push_nodes_for_insert(struct btrfs_trans_handle
*trans
,
1893 struct btrfs_root
*root
,
1894 struct btrfs_path
*path
, int level
)
1896 struct extent_buffer
*right
= NULL
;
1897 struct extent_buffer
*mid
;
1898 struct extent_buffer
*left
= NULL
;
1899 struct extent_buffer
*parent
= NULL
;
1903 int orig_slot
= path
->slots
[level
];
1908 mid
= path
->nodes
[level
];
1909 WARN_ON(btrfs_header_generation(mid
) != trans
->transid
);
1911 if (level
< BTRFS_MAX_LEVEL
- 1) {
1912 parent
= path
->nodes
[level
+ 1];
1913 pslot
= path
->slots
[level
+ 1];
1919 left
= read_node_slot(root
, parent
, pslot
- 1);
1921 /* first, try to make some room in the middle buffer */
1925 btrfs_tree_lock(left
);
1926 btrfs_set_lock_blocking(left
);
1928 left_nr
= btrfs_header_nritems(left
);
1929 if (left_nr
>= BTRFS_NODEPTRS_PER_BLOCK(root
) - 1) {
1932 ret
= btrfs_cow_block(trans
, root
, left
, parent
,
1937 wret
= push_node_left(trans
, root
,
1944 struct btrfs_disk_key disk_key
;
1945 orig_slot
+= left_nr
;
1946 btrfs_node_key(mid
, &disk_key
, 0);
1947 tree_mod_log_set_node_key(root
->fs_info
, parent
,
1948 &disk_key
, pslot
, 0);
1949 btrfs_set_node_key(parent
, &disk_key
, pslot
);
1950 btrfs_mark_buffer_dirty(parent
);
1951 if (btrfs_header_nritems(left
) > orig_slot
) {
1952 path
->nodes
[level
] = left
;
1953 path
->slots
[level
+ 1] -= 1;
1954 path
->slots
[level
] = orig_slot
;
1955 btrfs_tree_unlock(mid
);
1956 free_extent_buffer(mid
);
1959 btrfs_header_nritems(left
);
1960 path
->slots
[level
] = orig_slot
;
1961 btrfs_tree_unlock(left
);
1962 free_extent_buffer(left
);
1966 btrfs_tree_unlock(left
);
1967 free_extent_buffer(left
);
1969 right
= read_node_slot(root
, parent
, pslot
+ 1);
1972 * then try to empty the right most buffer into the middle
1977 btrfs_tree_lock(right
);
1978 btrfs_set_lock_blocking(right
);
1980 right_nr
= btrfs_header_nritems(right
);
1981 if (right_nr
>= BTRFS_NODEPTRS_PER_BLOCK(root
) - 1) {
1984 ret
= btrfs_cow_block(trans
, root
, right
,
1990 wret
= balance_node_right(trans
, root
,
1997 struct btrfs_disk_key disk_key
;
1999 btrfs_node_key(right
, &disk_key
, 0);
2000 tree_mod_log_set_node_key(root
->fs_info
, parent
,
2001 &disk_key
, pslot
+ 1, 0);
2002 btrfs_set_node_key(parent
, &disk_key
, pslot
+ 1);
2003 btrfs_mark_buffer_dirty(parent
);
2005 if (btrfs_header_nritems(mid
) <= orig_slot
) {
2006 path
->nodes
[level
] = right
;
2007 path
->slots
[level
+ 1] += 1;
2008 path
->slots
[level
] = orig_slot
-
2009 btrfs_header_nritems(mid
);
2010 btrfs_tree_unlock(mid
);
2011 free_extent_buffer(mid
);
2013 btrfs_tree_unlock(right
);
2014 free_extent_buffer(right
);
2018 btrfs_tree_unlock(right
);
2019 free_extent_buffer(right
);
2025 * readahead one full node of leaves, finding things that are close
2026 * to the block in 'slot', and triggering ra on them.
2028 static void reada_for_search(struct btrfs_root
*root
,
2029 struct btrfs_path
*path
,
2030 int level
, int slot
, u64 objectid
)
2032 struct extent_buffer
*node
;
2033 struct btrfs_disk_key disk_key
;
2039 int direction
= path
->reada
;
2040 struct extent_buffer
*eb
;
2048 if (!path
->nodes
[level
])
2051 node
= path
->nodes
[level
];
2053 search
= btrfs_node_blockptr(node
, slot
);
2054 blocksize
= btrfs_level_size(root
, level
- 1);
2055 eb
= btrfs_find_tree_block(root
, search
, blocksize
);
2057 free_extent_buffer(eb
);
2063 nritems
= btrfs_header_nritems(node
);
2067 if (direction
< 0) {
2071 } else if (direction
> 0) {
2076 if (path
->reada
< 0 && objectid
) {
2077 btrfs_node_key(node
, &disk_key
, nr
);
2078 if (btrfs_disk_key_objectid(&disk_key
) != objectid
)
2081 search
= btrfs_node_blockptr(node
, nr
);
2082 if ((search
<= target
&& target
- search
<= 65536) ||
2083 (search
> target
&& search
- target
<= 65536)) {
2084 gen
= btrfs_node_ptr_generation(node
, nr
);
2085 readahead_tree_block(root
, search
, blocksize
, gen
);
2089 if ((nread
> 65536 || nscan
> 32))
2095 * returns -EAGAIN if it had to drop the path, or zero if everything was in
2098 static noinline
int reada_for_balance(struct btrfs_root
*root
,
2099 struct btrfs_path
*path
, int level
)
2103 struct extent_buffer
*parent
;
2104 struct extent_buffer
*eb
;
2111 parent
= path
->nodes
[level
+ 1];
2115 nritems
= btrfs_header_nritems(parent
);
2116 slot
= path
->slots
[level
+ 1];
2117 blocksize
= btrfs_level_size(root
, level
);
2120 block1
= btrfs_node_blockptr(parent
, slot
- 1);
2121 gen
= btrfs_node_ptr_generation(parent
, slot
- 1);
2122 eb
= btrfs_find_tree_block(root
, block1
, blocksize
);
2124 * if we get -eagain from btrfs_buffer_uptodate, we
2125 * don't want to return eagain here. That will loop
2128 if (eb
&& btrfs_buffer_uptodate(eb
, gen
, 1) != 0)
2130 free_extent_buffer(eb
);
2132 if (slot
+ 1 < nritems
) {
2133 block2
= btrfs_node_blockptr(parent
, slot
+ 1);
2134 gen
= btrfs_node_ptr_generation(parent
, slot
+ 1);
2135 eb
= btrfs_find_tree_block(root
, block2
, blocksize
);
2136 if (eb
&& btrfs_buffer_uptodate(eb
, gen
, 1) != 0)
2138 free_extent_buffer(eb
);
2140 if (block1
|| block2
) {
2143 /* release the whole path */
2144 btrfs_release_path(path
);
2146 /* read the blocks */
2148 readahead_tree_block(root
, block1
, blocksize
, 0);
2150 readahead_tree_block(root
, block2
, blocksize
, 0);
2153 eb
= read_tree_block(root
, block1
, blocksize
, 0);
2154 free_extent_buffer(eb
);
2157 eb
= read_tree_block(root
, block2
, blocksize
, 0);
2158 free_extent_buffer(eb
);
2166 * when we walk down the tree, it is usually safe to unlock the higher layers
2167 * in the tree. The exceptions are when our path goes through slot 0, because
2168 * operations on the tree might require changing key pointers higher up in the
2171 * callers might also have set path->keep_locks, which tells this code to keep
2172 * the lock if the path points to the last slot in the block. This is part of
2173 * walking through the tree, and selecting the next slot in the higher block.
2175 * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so
2176 * if lowest_unlock is 1, level 0 won't be unlocked
2178 static noinline
void unlock_up(struct btrfs_path
*path
, int level
,
2179 int lowest_unlock
, int min_write_lock_level
,
2180 int *write_lock_level
)
2183 int skip_level
= level
;
2185 struct extent_buffer
*t
;
2187 for (i
= level
; i
< BTRFS_MAX_LEVEL
; i
++) {
2188 if (!path
->nodes
[i
])
2190 if (!path
->locks
[i
])
2192 if (!no_skips
&& path
->slots
[i
] == 0) {
2196 if (!no_skips
&& path
->keep_locks
) {
2199 nritems
= btrfs_header_nritems(t
);
2200 if (nritems
< 1 || path
->slots
[i
] >= nritems
- 1) {
2205 if (skip_level
< i
&& i
>= lowest_unlock
)
2209 if (i
>= lowest_unlock
&& i
> skip_level
&& path
->locks
[i
]) {
2210 btrfs_tree_unlock_rw(t
, path
->locks
[i
]);
2212 if (write_lock_level
&&
2213 i
> min_write_lock_level
&&
2214 i
<= *write_lock_level
) {
2215 *write_lock_level
= i
- 1;
2222 * This releases any locks held in the path starting at level and
2223 * going all the way up to the root.
2225 * btrfs_search_slot will keep the lock held on higher nodes in a few
2226 * corner cases, such as COW of the block at slot zero in the node. This
2227 * ignores those rules, and it should only be called when there are no
2228 * more updates to be done higher up in the tree.
2230 noinline
void btrfs_unlock_up_safe(struct btrfs_path
*path
, int level
)
2234 if (path
->keep_locks
)
2237 for (i
= level
; i
< BTRFS_MAX_LEVEL
; i
++) {
2238 if (!path
->nodes
[i
])
2240 if (!path
->locks
[i
])
2242 btrfs_tree_unlock_rw(path
->nodes
[i
], path
->locks
[i
]);
2248 * helper function for btrfs_search_slot. The goal is to find a block
2249 * in cache without setting the path to blocking. If we find the block
2250 * we return zero and the path is unchanged.
2252 * If we can't find the block, we set the path blocking and do some
2253 * reada. -EAGAIN is returned and the search must be repeated.
2256 read_block_for_search(struct btrfs_trans_handle
*trans
,
2257 struct btrfs_root
*root
, struct btrfs_path
*p
,
2258 struct extent_buffer
**eb_ret
, int level
, int slot
,
2259 struct btrfs_key
*key
, u64 time_seq
)
2264 struct extent_buffer
*b
= *eb_ret
;
2265 struct extent_buffer
*tmp
;
2268 blocknr
= btrfs_node_blockptr(b
, slot
);
2269 gen
= btrfs_node_ptr_generation(b
, slot
);
2270 blocksize
= btrfs_level_size(root
, level
- 1);
2272 tmp
= btrfs_find_tree_block(root
, blocknr
, blocksize
);
2274 /* first we do an atomic uptodate check */
2275 if (btrfs_buffer_uptodate(tmp
, 0, 1) > 0) {
2276 if (btrfs_buffer_uptodate(tmp
, gen
, 1) > 0) {
2278 * we found an up to date block without
2285 /* the pages were up to date, but we failed
2286 * the generation number check. Do a full
2287 * read for the generation number that is correct.
2288 * We must do this without dropping locks so
2289 * we can trust our generation number
2291 free_extent_buffer(tmp
);
2292 btrfs_set_path_blocking(p
);
2294 /* now we're allowed to do a blocking uptodate check */
2295 tmp
= read_tree_block(root
, blocknr
, blocksize
, gen
);
2296 if (tmp
&& btrfs_buffer_uptodate(tmp
, gen
, 0) > 0) {
2300 free_extent_buffer(tmp
);
2301 btrfs_release_path(p
);
2307 * reduce lock contention at high levels
2308 * of the btree by dropping locks before
2309 * we read. Don't release the lock on the current
2310 * level because we need to walk this node to figure
2311 * out which blocks to read.
2313 btrfs_unlock_up_safe(p
, level
+ 1);
2314 btrfs_set_path_blocking(p
);
2316 free_extent_buffer(tmp
);
2318 reada_for_search(root
, p
, level
, slot
, key
->objectid
);
2320 btrfs_release_path(p
);
2323 tmp
= read_tree_block(root
, blocknr
, blocksize
, 0);
2326 * If the read above didn't mark this buffer up to date,
2327 * it will never end up being up to date. Set ret to EIO now
2328 * and give up so that our caller doesn't loop forever
2331 if (!btrfs_buffer_uptodate(tmp
, 0, 0))
2333 free_extent_buffer(tmp
);
2339 * helper function for btrfs_search_slot. This does all of the checks
2340 * for node-level blocks and does any balancing required based on
2343 * If no extra work was required, zero is returned. If we had to
2344 * drop the path, -EAGAIN is returned and btrfs_search_slot must
2348 setup_nodes_for_search(struct btrfs_trans_handle
*trans
,
2349 struct btrfs_root
*root
, struct btrfs_path
*p
,
2350 struct extent_buffer
*b
, int level
, int ins_len
,
2351 int *write_lock_level
)
2354 if ((p
->search_for_split
|| ins_len
> 0) && btrfs_header_nritems(b
) >=
2355 BTRFS_NODEPTRS_PER_BLOCK(root
) - 3) {
2358 if (*write_lock_level
< level
+ 1) {
2359 *write_lock_level
= level
+ 1;
2360 btrfs_release_path(p
);
2364 sret
= reada_for_balance(root
, p
, level
);
2368 btrfs_set_path_blocking(p
);
2369 sret
= split_node(trans
, root
, p
, level
);
2370 btrfs_clear_path_blocking(p
, NULL
, 0);
2377 b
= p
->nodes
[level
];
2378 } else if (ins_len
< 0 && btrfs_header_nritems(b
) <
2379 BTRFS_NODEPTRS_PER_BLOCK(root
) / 2) {
2382 if (*write_lock_level
< level
+ 1) {
2383 *write_lock_level
= level
+ 1;
2384 btrfs_release_path(p
);
2388 sret
= reada_for_balance(root
, p
, level
);
2392 btrfs_set_path_blocking(p
);
2393 sret
= balance_level(trans
, root
, p
, level
);
2394 btrfs_clear_path_blocking(p
, NULL
, 0);
2400 b
= p
->nodes
[level
];
2402 btrfs_release_path(p
);
2405 BUG_ON(btrfs_header_nritems(b
) == 1);
2416 * look for key in the tree. path is filled in with nodes along the way
2417 * if key is found, we return zero and you can find the item in the leaf
2418 * level of the path (level 0)
2420 * If the key isn't found, the path points to the slot where it should
2421 * be inserted, and 1 is returned. If there are other errors during the
2422 * search a negative error number is returned.
2424 * if ins_len > 0, nodes and leaves will be split as we walk down the
2425 * tree. if ins_len < 0, nodes will be merged as we walk down the tree (if
2428 int btrfs_search_slot(struct btrfs_trans_handle
*trans
, struct btrfs_root
2429 *root
, struct btrfs_key
*key
, struct btrfs_path
*p
, int
2432 struct extent_buffer
*b
;
2437 int lowest_unlock
= 1;
2439 /* everything at write_lock_level or lower must be write locked */
2440 int write_lock_level
= 0;
2441 u8 lowest_level
= 0;
2442 int min_write_lock_level
;
2444 lowest_level
= p
->lowest_level
;
2445 WARN_ON(lowest_level
&& ins_len
> 0);
2446 WARN_ON(p
->nodes
[0] != NULL
);
2451 /* when we are removing items, we might have to go up to level
2452 * two as we update tree pointers Make sure we keep write
2453 * for those levels as well
2455 write_lock_level
= 2;
2456 } else if (ins_len
> 0) {
2458 * for inserting items, make sure we have a write lock on
2459 * level 1 so we can update keys
2461 write_lock_level
= 1;
2465 write_lock_level
= -1;
2467 if (cow
&& (p
->keep_locks
|| p
->lowest_level
))
2468 write_lock_level
= BTRFS_MAX_LEVEL
;
2470 min_write_lock_level
= write_lock_level
;
2474 * we try very hard to do read locks on the root
2476 root_lock
= BTRFS_READ_LOCK
;
2478 if (p
->search_commit_root
) {
2480 * the commit roots are read only
2481 * so we always do read locks
2483 b
= root
->commit_root
;
2484 extent_buffer_get(b
);
2485 level
= btrfs_header_level(b
);
2486 if (!p
->skip_locking
)
2487 btrfs_tree_read_lock(b
);
2489 if (p
->skip_locking
) {
2490 b
= btrfs_root_node(root
);
2491 level
= btrfs_header_level(b
);
2493 /* we don't know the level of the root node
2494 * until we actually have it read locked
2496 b
= btrfs_read_lock_root_node(root
);
2497 level
= btrfs_header_level(b
);
2498 if (level
<= write_lock_level
) {
2499 /* whoops, must trade for write lock */
2500 btrfs_tree_read_unlock(b
);
2501 free_extent_buffer(b
);
2502 b
= btrfs_lock_root_node(root
);
2503 root_lock
= BTRFS_WRITE_LOCK
;
2505 /* the level might have changed, check again */
2506 level
= btrfs_header_level(b
);
2510 p
->nodes
[level
] = b
;
2511 if (!p
->skip_locking
)
2512 p
->locks
[level
] = root_lock
;
2515 level
= btrfs_header_level(b
);
2518 * setup the path here so we can release it under lock
2519 * contention with the cow code
2523 * if we don't really need to cow this block
2524 * then we don't want to set the path blocking,
2525 * so we test it here
2527 if (!should_cow_block(trans
, root
, b
))
2530 btrfs_set_path_blocking(p
);
2533 * must have write locks on this node and the
2536 if (level
+ 1 > write_lock_level
) {
2537 write_lock_level
= level
+ 1;
2538 btrfs_release_path(p
);
2542 err
= btrfs_cow_block(trans
, root
, b
,
2543 p
->nodes
[level
+ 1],
2544 p
->slots
[level
+ 1], &b
);
2551 BUG_ON(!cow
&& ins_len
);
2553 p
->nodes
[level
] = b
;
2554 btrfs_clear_path_blocking(p
, NULL
, 0);
2557 * we have a lock on b and as long as we aren't changing
2558 * the tree, there is no way to for the items in b to change.
2559 * It is safe to drop the lock on our parent before we
2560 * go through the expensive btree search on b.
2562 * If cow is true, then we might be changing slot zero,
2563 * which may require changing the parent. So, we can't
2564 * drop the lock until after we know which slot we're
2568 btrfs_unlock_up_safe(p
, level
+ 1);
2570 ret
= bin_search(b
, key
, level
, &slot
);
2574 if (ret
&& slot
> 0) {
2578 p
->slots
[level
] = slot
;
2579 err
= setup_nodes_for_search(trans
, root
, p
, b
, level
,
2580 ins_len
, &write_lock_level
);
2587 b
= p
->nodes
[level
];
2588 slot
= p
->slots
[level
];
2591 * slot 0 is special, if we change the key
2592 * we have to update the parent pointer
2593 * which means we must have a write lock
2596 if (slot
== 0 && cow
&&
2597 write_lock_level
< level
+ 1) {
2598 write_lock_level
= level
+ 1;
2599 btrfs_release_path(p
);
2603 unlock_up(p
, level
, lowest_unlock
,
2604 min_write_lock_level
, &write_lock_level
);
2606 if (level
== lowest_level
) {
2612 err
= read_block_for_search(trans
, root
, p
,
2613 &b
, level
, slot
, key
, 0);
2621 if (!p
->skip_locking
) {
2622 level
= btrfs_header_level(b
);
2623 if (level
<= write_lock_level
) {
2624 err
= btrfs_try_tree_write_lock(b
);
2626 btrfs_set_path_blocking(p
);
2628 btrfs_clear_path_blocking(p
, b
,
2631 p
->locks
[level
] = BTRFS_WRITE_LOCK
;
2633 err
= btrfs_try_tree_read_lock(b
);
2635 btrfs_set_path_blocking(p
);
2636 btrfs_tree_read_lock(b
);
2637 btrfs_clear_path_blocking(p
, b
,
2640 p
->locks
[level
] = BTRFS_READ_LOCK
;
2642 p
->nodes
[level
] = b
;
2645 p
->slots
[level
] = slot
;
2647 btrfs_leaf_free_space(root
, b
) < ins_len
) {
2648 if (write_lock_level
< 1) {
2649 write_lock_level
= 1;
2650 btrfs_release_path(p
);
2654 btrfs_set_path_blocking(p
);
2655 err
= split_leaf(trans
, root
, key
,
2656 p
, ins_len
, ret
== 0);
2657 btrfs_clear_path_blocking(p
, NULL
, 0);
2665 if (!p
->search_for_split
)
2666 unlock_up(p
, level
, lowest_unlock
,
2667 min_write_lock_level
, &write_lock_level
);
2674 * we don't really know what they plan on doing with the path
2675 * from here on, so for now just mark it as blocking
2677 if (!p
->leave_spinning
)
2678 btrfs_set_path_blocking(p
);
2680 btrfs_release_path(p
);
2685 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2686 * current state of the tree together with the operations recorded in the tree
2687 * modification log to search for the key in a previous version of this tree, as
2688 * denoted by the time_seq parameter.
2690 * Naturally, there is no support for insert, delete or cow operations.
2692 * The resulting path and return value will be set up as if we called
2693 * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2695 int btrfs_search_old_slot(struct btrfs_root
*root
, struct btrfs_key
*key
,
2696 struct btrfs_path
*p
, u64 time_seq
)
2698 struct extent_buffer
*b
;
2703 int lowest_unlock
= 1;
2704 u8 lowest_level
= 0;
2706 lowest_level
= p
->lowest_level
;
2707 WARN_ON(p
->nodes
[0] != NULL
);
2709 if (p
->search_commit_root
) {
2711 return btrfs_search_slot(NULL
, root
, key
, p
, 0, 0);
2715 b
= get_old_root(root
, time_seq
);
2716 level
= btrfs_header_level(b
);
2717 p
->locks
[level
] = BTRFS_READ_LOCK
;
2720 level
= btrfs_header_level(b
);
2721 p
->nodes
[level
] = b
;
2722 btrfs_clear_path_blocking(p
, NULL
, 0);
2725 * we have a lock on b and as long as we aren't changing
2726 * the tree, there is no way to for the items in b to change.
2727 * It is safe to drop the lock on our parent before we
2728 * go through the expensive btree search on b.
2730 btrfs_unlock_up_safe(p
, level
+ 1);
2732 ret
= bin_search(b
, key
, level
, &slot
);
2736 if (ret
&& slot
> 0) {
2740 p
->slots
[level
] = slot
;
2741 unlock_up(p
, level
, lowest_unlock
, 0, NULL
);
2743 if (level
== lowest_level
) {
2749 err
= read_block_for_search(NULL
, root
, p
, &b
, level
,
2750 slot
, key
, time_seq
);
2758 level
= btrfs_header_level(b
);
2759 err
= btrfs_try_tree_read_lock(b
);
2761 btrfs_set_path_blocking(p
);
2762 btrfs_tree_read_lock(b
);
2763 btrfs_clear_path_blocking(p
, b
,
2766 p
->locks
[level
] = BTRFS_READ_LOCK
;
2767 p
->nodes
[level
] = b
;
2768 b
= tree_mod_log_rewind(root
->fs_info
, b
, time_seq
);
2769 if (b
!= p
->nodes
[level
]) {
2770 btrfs_tree_unlock_rw(p
->nodes
[level
],
2772 p
->locks
[level
] = 0;
2773 p
->nodes
[level
] = b
;
2776 p
->slots
[level
] = slot
;
2777 unlock_up(p
, level
, lowest_unlock
, 0, NULL
);
2783 if (!p
->leave_spinning
)
2784 btrfs_set_path_blocking(p
);
2786 btrfs_release_path(p
);
2792 * helper to use instead of search slot if no exact match is needed but
2793 * instead the next or previous item should be returned.
2794 * When find_higher is true, the next higher item is returned, the next lower
2796 * When return_any and find_higher are both true, and no higher item is found,
2797 * return the next lower instead.
2798 * When return_any is true and find_higher is false, and no lower item is found,
2799 * return the next higher instead.
2800 * It returns 0 if any item is found, 1 if none is found (tree empty), and
2803 int btrfs_search_slot_for_read(struct btrfs_root
*root
,
2804 struct btrfs_key
*key
, struct btrfs_path
*p
,
2805 int find_higher
, int return_any
)
2808 struct extent_buffer
*leaf
;
2811 ret
= btrfs_search_slot(NULL
, root
, key
, p
, 0, 0);
2815 * a return value of 1 means the path is at the position where the
2816 * item should be inserted. Normally this is the next bigger item,
2817 * but in case the previous item is the last in a leaf, path points
2818 * to the first free slot in the previous leaf, i.e. at an invalid
2824 if (p
->slots
[0] >= btrfs_header_nritems(leaf
)) {
2825 ret
= btrfs_next_leaf(root
, p
);
2831 * no higher item found, return the next
2836 btrfs_release_path(p
);
2840 if (p
->slots
[0] == 0) {
2841 ret
= btrfs_prev_leaf(root
, p
);
2845 p
->slots
[0] = btrfs_header_nritems(leaf
) - 1;
2851 * no lower item found, return the next
2856 btrfs_release_path(p
);
2866 * adjust the pointers going up the tree, starting at level
2867 * making sure the right key of each node is points to 'key'.
2868 * This is used after shifting pointers to the left, so it stops
2869 * fixing up pointers when a given leaf/node is not in slot 0 of the
2873 static void fixup_low_keys(struct btrfs_trans_handle
*trans
,
2874 struct btrfs_root
*root
, struct btrfs_path
*path
,
2875 struct btrfs_disk_key
*key
, int level
)
2878 struct extent_buffer
*t
;
2880 for (i
= level
; i
< BTRFS_MAX_LEVEL
; i
++) {
2881 int tslot
= path
->slots
[i
];
2882 if (!path
->nodes
[i
])
2885 tree_mod_log_set_node_key(root
->fs_info
, t
, key
, tslot
, 1);
2886 btrfs_set_node_key(t
, key
, tslot
);
2887 btrfs_mark_buffer_dirty(path
->nodes
[i
]);
2896 * This function isn't completely safe. It's the caller's responsibility
2897 * that the new key won't break the order
2899 void btrfs_set_item_key_safe(struct btrfs_trans_handle
*trans
,
2900 struct btrfs_root
*root
, struct btrfs_path
*path
,
2901 struct btrfs_key
*new_key
)
2903 struct btrfs_disk_key disk_key
;
2904 struct extent_buffer
*eb
;
2907 eb
= path
->nodes
[0];
2908 slot
= path
->slots
[0];
2910 btrfs_item_key(eb
, &disk_key
, slot
- 1);
2911 BUG_ON(comp_keys(&disk_key
, new_key
) >= 0);
2913 if (slot
< btrfs_header_nritems(eb
) - 1) {
2914 btrfs_item_key(eb
, &disk_key
, slot
+ 1);
2915 BUG_ON(comp_keys(&disk_key
, new_key
) <= 0);
2918 btrfs_cpu_key_to_disk(&disk_key
, new_key
);
2919 btrfs_set_item_key(eb
, &disk_key
, slot
);
2920 btrfs_mark_buffer_dirty(eb
);
2922 fixup_low_keys(trans
, root
, path
, &disk_key
, 1);
2926 * try to push data from one node into the next node left in the
2929 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
2930 * error, and > 0 if there was no room in the left hand block.
2932 static int push_node_left(struct btrfs_trans_handle
*trans
,
2933 struct btrfs_root
*root
, struct extent_buffer
*dst
,
2934 struct extent_buffer
*src
, int empty
)
2941 src_nritems
= btrfs_header_nritems(src
);
2942 dst_nritems
= btrfs_header_nritems(dst
);
2943 push_items
= BTRFS_NODEPTRS_PER_BLOCK(root
) - dst_nritems
;
2944 WARN_ON(btrfs_header_generation(src
) != trans
->transid
);
2945 WARN_ON(btrfs_header_generation(dst
) != trans
->transid
);
2947 if (!empty
&& src_nritems
<= 8)
2950 if (push_items
<= 0)
2954 push_items
= min(src_nritems
, push_items
);
2955 if (push_items
< src_nritems
) {
2956 /* leave at least 8 pointers in the node if
2957 * we aren't going to empty it
2959 if (src_nritems
- push_items
< 8) {
2960 if (push_items
<= 8)
2966 push_items
= min(src_nritems
- 8, push_items
);
2968 tree_mod_log_eb_copy(root
->fs_info
, dst
, src
, dst_nritems
, 0,
2970 copy_extent_buffer(dst
, src
,
2971 btrfs_node_key_ptr_offset(dst_nritems
),
2972 btrfs_node_key_ptr_offset(0),
2973 push_items
* sizeof(struct btrfs_key_ptr
));
2975 if (push_items
< src_nritems
) {
2976 tree_mod_log_eb_move(root
->fs_info
, src
, 0, push_items
,
2977 src_nritems
- push_items
);
2978 memmove_extent_buffer(src
, btrfs_node_key_ptr_offset(0),
2979 btrfs_node_key_ptr_offset(push_items
),
2980 (src_nritems
- push_items
) *
2981 sizeof(struct btrfs_key_ptr
));
2983 btrfs_set_header_nritems(src
, src_nritems
- push_items
);
2984 btrfs_set_header_nritems(dst
, dst_nritems
+ push_items
);
2985 btrfs_mark_buffer_dirty(src
);
2986 btrfs_mark_buffer_dirty(dst
);
2992 * try to push data from one node into the next node right in the
2995 * returns 0 if some ptrs were pushed, < 0 if there was some horrible
2996 * error, and > 0 if there was no room in the right hand block.
2998 * this will only push up to 1/2 the contents of the left node over
3000 static int balance_node_right(struct btrfs_trans_handle
*trans
,
3001 struct btrfs_root
*root
,
3002 struct extent_buffer
*dst
,
3003 struct extent_buffer
*src
)
3011 WARN_ON(btrfs_header_generation(src
) != trans
->transid
);
3012 WARN_ON(btrfs_header_generation(dst
) != trans
->transid
);
3014 src_nritems
= btrfs_header_nritems(src
);
3015 dst_nritems
= btrfs_header_nritems(dst
);
3016 push_items
= BTRFS_NODEPTRS_PER_BLOCK(root
) - dst_nritems
;
3017 if (push_items
<= 0)
3020 if (src_nritems
< 4)
3023 max_push
= src_nritems
/ 2 + 1;
3024 /* don't try to empty the node */
3025 if (max_push
>= src_nritems
)
3028 if (max_push
< push_items
)
3029 push_items
= max_push
;
3031 tree_mod_log_eb_move(root
->fs_info
, dst
, push_items
, 0, dst_nritems
);
3032 memmove_extent_buffer(dst
, btrfs_node_key_ptr_offset(push_items
),
3033 btrfs_node_key_ptr_offset(0),
3035 sizeof(struct btrfs_key_ptr
));
3037 tree_mod_log_eb_copy(root
->fs_info
, dst
, src
, 0,
3038 src_nritems
- push_items
, push_items
);
3039 copy_extent_buffer(dst
, src
,
3040 btrfs_node_key_ptr_offset(0),
3041 btrfs_node_key_ptr_offset(src_nritems
- push_items
),
3042 push_items
* sizeof(struct btrfs_key_ptr
));
3044 btrfs_set_header_nritems(src
, src_nritems
- push_items
);
3045 btrfs_set_header_nritems(dst
, dst_nritems
+ push_items
);
3047 btrfs_mark_buffer_dirty(src
);
3048 btrfs_mark_buffer_dirty(dst
);
3054 * helper function to insert a new root level in the tree.
3055 * A new node is allocated, and a single item is inserted to
3056 * point to the existing root
3058 * returns zero on success or < 0 on failure.
3060 static noinline
int insert_new_root(struct btrfs_trans_handle
*trans
,
3061 struct btrfs_root
*root
,
3062 struct btrfs_path
*path
, int level
)
3065 struct extent_buffer
*lower
;
3066 struct extent_buffer
*c
;
3067 struct extent_buffer
*old
;
3068 struct btrfs_disk_key lower_key
;
3070 BUG_ON(path
->nodes
[level
]);
3071 BUG_ON(path
->nodes
[level
-1] != root
->node
);
3073 lower
= path
->nodes
[level
-1];
3075 btrfs_item_key(lower
, &lower_key
, 0);
3077 btrfs_node_key(lower
, &lower_key
, 0);
3079 c
= btrfs_alloc_free_block(trans
, root
, root
->nodesize
, 0,
3080 root
->root_key
.objectid
, &lower_key
,
3081 level
, root
->node
->start
, 0);
3085 root_add_used(root
, root
->nodesize
);
3087 memset_extent_buffer(c
, 0, 0, sizeof(struct btrfs_header
));
3088 btrfs_set_header_nritems(c
, 1);
3089 btrfs_set_header_level(c
, level
);
3090 btrfs_set_header_bytenr(c
, c
->start
);
3091 btrfs_set_header_generation(c
, trans
->transid
);
3092 btrfs_set_header_backref_rev(c
, BTRFS_MIXED_BACKREF_REV
);
3093 btrfs_set_header_owner(c
, root
->root_key
.objectid
);
3095 write_extent_buffer(c
, root
->fs_info
->fsid
,
3096 (unsigned long)btrfs_header_fsid(c
),
3099 write_extent_buffer(c
, root
->fs_info
->chunk_tree_uuid
,
3100 (unsigned long)btrfs_header_chunk_tree_uuid(c
),
3103 btrfs_set_node_key(c
, &lower_key
, 0);
3104 btrfs_set_node_blockptr(c
, 0, lower
->start
);
3105 lower_gen
= btrfs_header_generation(lower
);
3106 WARN_ON(lower_gen
!= trans
->transid
);
3108 btrfs_set_node_ptr_generation(c
, 0, lower_gen
);
3110 btrfs_mark_buffer_dirty(c
);
3113 tree_mod_log_set_root_pointer(root
, c
);
3114 rcu_assign_pointer(root
->node
, c
);
3116 /* the super has an extra ref to root->node */
3117 free_extent_buffer(old
);
3119 add_root_to_dirty_list(root
);
3120 extent_buffer_get(c
);
3121 path
->nodes
[level
] = c
;
3122 path
->locks
[level
] = BTRFS_WRITE_LOCK
;
3123 path
->slots
[level
] = 0;
3128 * worker function to insert a single pointer in a node.
3129 * the node should have enough room for the pointer already
3131 * slot and level indicate where you want the key to go, and
3132 * blocknr is the block the key points to.
3134 static void insert_ptr(struct btrfs_trans_handle
*trans
,
3135 struct btrfs_root
*root
, struct btrfs_path
*path
,
3136 struct btrfs_disk_key
*key
, u64 bytenr
,
3137 int slot
, int level
)
3139 struct extent_buffer
*lower
;
3143 BUG_ON(!path
->nodes
[level
]);
3144 btrfs_assert_tree_locked(path
->nodes
[level
]);
3145 lower
= path
->nodes
[level
];
3146 nritems
= btrfs_header_nritems(lower
);
3147 BUG_ON(slot
> nritems
);
3148 BUG_ON(nritems
== BTRFS_NODEPTRS_PER_BLOCK(root
));
3149 if (slot
!= nritems
) {
3151 tree_mod_log_eb_move(root
->fs_info
, lower
, slot
+ 1,
3152 slot
, nritems
- slot
);
3153 memmove_extent_buffer(lower
,
3154 btrfs_node_key_ptr_offset(slot
+ 1),
3155 btrfs_node_key_ptr_offset(slot
),
3156 (nritems
- slot
) * sizeof(struct btrfs_key_ptr
));
3159 ret
= tree_mod_log_insert_key(root
->fs_info
, lower
, slot
,
3163 btrfs_set_node_key(lower
, key
, slot
);
3164 btrfs_set_node_blockptr(lower
, slot
, bytenr
);
3165 WARN_ON(trans
->transid
== 0);
3166 btrfs_set_node_ptr_generation(lower
, slot
, trans
->transid
);
3167 btrfs_set_header_nritems(lower
, nritems
+ 1);
3168 btrfs_mark_buffer_dirty(lower
);
3172 * split the node at the specified level in path in two.
3173 * The path is corrected to point to the appropriate node after the split
3175 * Before splitting this tries to make some room in the node by pushing
3176 * left and right, if either one works, it returns right away.
3178 * returns 0 on success and < 0 on failure
3180 static noinline
int split_node(struct btrfs_trans_handle
*trans
,
3181 struct btrfs_root
*root
,
3182 struct btrfs_path
*path
, int level
)
3184 struct extent_buffer
*c
;
3185 struct extent_buffer
*split
;
3186 struct btrfs_disk_key disk_key
;
3191 c
= path
->nodes
[level
];
3192 WARN_ON(btrfs_header_generation(c
) != trans
->transid
);
3193 if (c
== root
->node
) {
3194 /* trying to split the root, lets make a new one */
3195 ret
= insert_new_root(trans
, root
, path
, level
+ 1);
3199 ret
= push_nodes_for_insert(trans
, root
, path
, level
);
3200 c
= path
->nodes
[level
];
3201 if (!ret
&& btrfs_header_nritems(c
) <
3202 BTRFS_NODEPTRS_PER_BLOCK(root
) - 3)
3208 c_nritems
= btrfs_header_nritems(c
);
3209 mid
= (c_nritems
+ 1) / 2;
3210 btrfs_node_key(c
, &disk_key
, mid
);
3212 split
= btrfs_alloc_free_block(trans
, root
, root
->nodesize
, 0,
3213 root
->root_key
.objectid
,
3214 &disk_key
, level
, c
->start
, 0);
3216 return PTR_ERR(split
);
3218 root_add_used(root
, root
->nodesize
);
3220 memset_extent_buffer(split
, 0, 0, sizeof(struct btrfs_header
));
3221 btrfs_set_header_level(split
, btrfs_header_level(c
));
3222 btrfs_set_header_bytenr(split
, split
->start
);
3223 btrfs_set_header_generation(split
, trans
->transid
);
3224 btrfs_set_header_backref_rev(split
, BTRFS_MIXED_BACKREF_REV
);
3225 btrfs_set_header_owner(split
, root
->root_key
.objectid
);
3226 write_extent_buffer(split
, root
->fs_info
->fsid
,
3227 (unsigned long)btrfs_header_fsid(split
),
3229 write_extent_buffer(split
, root
->fs_info
->chunk_tree_uuid
,
3230 (unsigned long)btrfs_header_chunk_tree_uuid(split
),
3233 tree_mod_log_eb_copy(root
->fs_info
, split
, c
, 0, mid
, c_nritems
- mid
);
3234 copy_extent_buffer(split
, c
,
3235 btrfs_node_key_ptr_offset(0),
3236 btrfs_node_key_ptr_offset(mid
),
3237 (c_nritems
- mid
) * sizeof(struct btrfs_key_ptr
));
3238 btrfs_set_header_nritems(split
, c_nritems
- mid
);
3239 btrfs_set_header_nritems(c
, mid
);
3242 btrfs_mark_buffer_dirty(c
);
3243 btrfs_mark_buffer_dirty(split
);
3245 insert_ptr(trans
, root
, path
, &disk_key
, split
->start
,
3246 path
->slots
[level
+ 1] + 1, level
+ 1);
3248 if (path
->slots
[level
] >= mid
) {
3249 path
->slots
[level
] -= mid
;
3250 btrfs_tree_unlock(c
);
3251 free_extent_buffer(c
);
3252 path
->nodes
[level
] = split
;
3253 path
->slots
[level
+ 1] += 1;
3255 btrfs_tree_unlock(split
);
3256 free_extent_buffer(split
);
3262 * how many bytes are required to store the items in a leaf. start
3263 * and nr indicate which items in the leaf to check. This totals up the
3264 * space used both by the item structs and the item data
3266 static int leaf_space_used(struct extent_buffer
*l
, int start
, int nr
)
3269 int nritems
= btrfs_header_nritems(l
);
3270 int end
= min(nritems
, start
+ nr
) - 1;
3274 data_len
= btrfs_item_end_nr(l
, start
);
3275 data_len
= data_len
- btrfs_item_offset_nr(l
, end
);
3276 data_len
+= sizeof(struct btrfs_item
) * nr
;
3277 WARN_ON(data_len
< 0);
3282 * The space between the end of the leaf items and
3283 * the start of the leaf data. IOW, how much room
3284 * the leaf has left for both items and data
3286 noinline
int btrfs_leaf_free_space(struct btrfs_root
*root
,
3287 struct extent_buffer
*leaf
)
3289 int nritems
= btrfs_header_nritems(leaf
);
3291 ret
= BTRFS_LEAF_DATA_SIZE(root
) - leaf_space_used(leaf
, 0, nritems
);
3293 printk(KERN_CRIT
"leaf free space ret %d, leaf data size %lu, "
3294 "used %d nritems %d\n",
3295 ret
, (unsigned long) BTRFS_LEAF_DATA_SIZE(root
),
3296 leaf_space_used(leaf
, 0, nritems
), nritems
);
3302 * min slot controls the lowest index we're willing to push to the
3303 * right. We'll push up to and including min_slot, but no lower
3305 static noinline
int __push_leaf_right(struct btrfs_trans_handle
*trans
,
3306 struct btrfs_root
*root
,
3307 struct btrfs_path
*path
,
3308 int data_size
, int empty
,
3309 struct extent_buffer
*right
,
3310 int free_space
, u32 left_nritems
,
3313 struct extent_buffer
*left
= path
->nodes
[0];
3314 struct extent_buffer
*upper
= path
->nodes
[1];
3315 struct btrfs_map_token token
;
3316 struct btrfs_disk_key disk_key
;
3321 struct btrfs_item
*item
;
3327 btrfs_init_map_token(&token
);
3332 nr
= max_t(u32
, 1, min_slot
);
3334 if (path
->slots
[0] >= left_nritems
)
3335 push_space
+= data_size
;
3337 slot
= path
->slots
[1];
3338 i
= left_nritems
- 1;
3340 item
= btrfs_item_nr(left
, i
);
3342 if (!empty
&& push_items
> 0) {
3343 if (path
->slots
[0] > i
)
3345 if (path
->slots
[0] == i
) {
3346 int space
= btrfs_leaf_free_space(root
, left
);
3347 if (space
+ push_space
* 2 > free_space
)
3352 if (path
->slots
[0] == i
)
3353 push_space
+= data_size
;
3355 this_item_size
= btrfs_item_size(left
, item
);
3356 if (this_item_size
+ sizeof(*item
) + push_space
> free_space
)
3360 push_space
+= this_item_size
+ sizeof(*item
);
3366 if (push_items
== 0)
3369 if (!empty
&& push_items
== left_nritems
)
3372 /* push left to right */
3373 right_nritems
= btrfs_header_nritems(right
);
3375 push_space
= btrfs_item_end_nr(left
, left_nritems
- push_items
);
3376 push_space
-= leaf_data_end(root
, left
);
3378 /* make room in the right data area */
3379 data_end
= leaf_data_end(root
, right
);
3380 memmove_extent_buffer(right
,
3381 btrfs_leaf_data(right
) + data_end
- push_space
,
3382 btrfs_leaf_data(right
) + data_end
,
3383 BTRFS_LEAF_DATA_SIZE(root
) - data_end
);
3385 /* copy from the left data area */
3386 copy_extent_buffer(right
, left
, btrfs_leaf_data(right
) +
3387 BTRFS_LEAF_DATA_SIZE(root
) - push_space
,
3388 btrfs_leaf_data(left
) + leaf_data_end(root
, left
),
3391 memmove_extent_buffer(right
, btrfs_item_nr_offset(push_items
),
3392 btrfs_item_nr_offset(0),
3393 right_nritems
* sizeof(struct btrfs_item
));
3395 /* copy the items from left to right */
3396 copy_extent_buffer(right
, left
, btrfs_item_nr_offset(0),
3397 btrfs_item_nr_offset(left_nritems
- push_items
),
3398 push_items
* sizeof(struct btrfs_item
));
3400 /* update the item pointers */
3401 right_nritems
+= push_items
;
3402 btrfs_set_header_nritems(right
, right_nritems
);
3403 push_space
= BTRFS_LEAF_DATA_SIZE(root
);
3404 for (i
= 0; i
< right_nritems
; i
++) {
3405 item
= btrfs_item_nr(right
, i
);
3406 push_space
-= btrfs_token_item_size(right
, item
, &token
);
3407 btrfs_set_token_item_offset(right
, item
, push_space
, &token
);
3410 left_nritems
-= push_items
;
3411 btrfs_set_header_nritems(left
, left_nritems
);
3414 btrfs_mark_buffer_dirty(left
);
3416 clean_tree_block(trans
, root
, left
);
3418 btrfs_mark_buffer_dirty(right
);
3420 btrfs_item_key(right
, &disk_key
, 0);
3421 btrfs_set_node_key(upper
, &disk_key
, slot
+ 1);
3422 btrfs_mark_buffer_dirty(upper
);
3424 /* then fixup the leaf pointer in the path */
3425 if (path
->slots
[0] >= left_nritems
) {
3426 path
->slots
[0] -= left_nritems
;
3427 if (btrfs_header_nritems(path
->nodes
[0]) == 0)
3428 clean_tree_block(trans
, root
, path
->nodes
[0]);
3429 btrfs_tree_unlock(path
->nodes
[0]);
3430 free_extent_buffer(path
->nodes
[0]);
3431 path
->nodes
[0] = right
;
3432 path
->slots
[1] += 1;
3434 btrfs_tree_unlock(right
);
3435 free_extent_buffer(right
);
3440 btrfs_tree_unlock(right
);
3441 free_extent_buffer(right
);
3446 * push some data in the path leaf to the right, trying to free up at
3447 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3449 * returns 1 if the push failed because the other node didn't have enough
3450 * room, 0 if everything worked out and < 0 if there were major errors.
3452 * this will push starting from min_slot to the end of the leaf. It won't
3453 * push any slot lower than min_slot
3455 static int push_leaf_right(struct btrfs_trans_handle
*trans
, struct btrfs_root
3456 *root
, struct btrfs_path
*path
,
3457 int min_data_size
, int data_size
,
3458 int empty
, u32 min_slot
)
3460 struct extent_buffer
*left
= path
->nodes
[0];
3461 struct extent_buffer
*right
;
3462 struct extent_buffer
*upper
;
3468 if (!path
->nodes
[1])
3471 slot
= path
->slots
[1];
3472 upper
= path
->nodes
[1];
3473 if (slot
>= btrfs_header_nritems(upper
) - 1)
3476 btrfs_assert_tree_locked(path
->nodes
[1]);
3478 right
= read_node_slot(root
, upper
, slot
+ 1);
3482 btrfs_tree_lock(right
);
3483 btrfs_set_lock_blocking(right
);
3485 free_space
= btrfs_leaf_free_space(root
, right
);
3486 if (free_space
< data_size
)
3489 /* cow and double check */
3490 ret
= btrfs_cow_block(trans
, root
, right
, upper
,
3495 free_space
= btrfs_leaf_free_space(root
, right
);
3496 if (free_space
< data_size
)
3499 left_nritems
= btrfs_header_nritems(left
);
3500 if (left_nritems
== 0)
3503 return __push_leaf_right(trans
, root
, path
, min_data_size
, empty
,
3504 right
, free_space
, left_nritems
, min_slot
);
3506 btrfs_tree_unlock(right
);
3507 free_extent_buffer(right
);
3512 * push some data in the path leaf to the left, trying to free up at
3513 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3515 * max_slot can put a limit on how far into the leaf we'll push items. The
3516 * item at 'max_slot' won't be touched. Use (u32)-1 to make us do all the
3519 static noinline
int __push_leaf_left(struct btrfs_trans_handle
*trans
,
3520 struct btrfs_root
*root
,
3521 struct btrfs_path
*path
, int data_size
,
3522 int empty
, struct extent_buffer
*left
,
3523 int free_space
, u32 right_nritems
,
3526 struct btrfs_disk_key disk_key
;
3527 struct extent_buffer
*right
= path
->nodes
[0];
3531 struct btrfs_item
*item
;
3532 u32 old_left_nritems
;
3536 u32 old_left_item_size
;
3537 struct btrfs_map_token token
;
3539 btrfs_init_map_token(&token
);
3542 nr
= min(right_nritems
, max_slot
);
3544 nr
= min(right_nritems
- 1, max_slot
);
3546 for (i
= 0; i
< nr
; i
++) {
3547 item
= btrfs_item_nr(right
, i
);
3549 if (!empty
&& push_items
> 0) {
3550 if (path
->slots
[0] < i
)
3552 if (path
->slots
[0] == i
) {
3553 int space
= btrfs_leaf_free_space(root
, right
);
3554 if (space
+ push_space
* 2 > free_space
)
3559 if (path
->slots
[0] == i
)
3560 push_space
+= data_size
;
3562 this_item_size
= btrfs_item_size(right
, item
);
3563 if (this_item_size
+ sizeof(*item
) + push_space
> free_space
)
3567 push_space
+= this_item_size
+ sizeof(*item
);
3570 if (push_items
== 0) {
3574 if (!empty
&& push_items
== btrfs_header_nritems(right
))
3577 /* push data from right to left */
3578 copy_extent_buffer(left
, right
,
3579 btrfs_item_nr_offset(btrfs_header_nritems(left
)),
3580 btrfs_item_nr_offset(0),
3581 push_items
* sizeof(struct btrfs_item
));
3583 push_space
= BTRFS_LEAF_DATA_SIZE(root
) -
3584 btrfs_item_offset_nr(right
, push_items
- 1);
3586 copy_extent_buffer(left
, right
, btrfs_leaf_data(left
) +
3587 leaf_data_end(root
, left
) - push_space
,
3588 btrfs_leaf_data(right
) +
3589 btrfs_item_offset_nr(right
, push_items
- 1),
3591 old_left_nritems
= btrfs_header_nritems(left
);
3592 BUG_ON(old_left_nritems
<= 0);
3594 old_left_item_size
= btrfs_item_offset_nr(left
, old_left_nritems
- 1);
3595 for (i
= old_left_nritems
; i
< old_left_nritems
+ push_items
; i
++) {
3598 item
= btrfs_item_nr(left
, i
);
3600 ioff
= btrfs_token_item_offset(left
, item
, &token
);
3601 btrfs_set_token_item_offset(left
, item
,
3602 ioff
- (BTRFS_LEAF_DATA_SIZE(root
) - old_left_item_size
),
3605 btrfs_set_header_nritems(left
, old_left_nritems
+ push_items
);
3607 /* fixup right node */
3608 if (push_items
> right_nritems
) {
3609 printk(KERN_CRIT
"push items %d nr %u\n", push_items
,
3614 if (push_items
< right_nritems
) {
3615 push_space
= btrfs_item_offset_nr(right
, push_items
- 1) -
3616 leaf_data_end(root
, right
);
3617 memmove_extent_buffer(right
, btrfs_leaf_data(right
) +
3618 BTRFS_LEAF_DATA_SIZE(root
) - push_space
,
3619 btrfs_leaf_data(right
) +
3620 leaf_data_end(root
, right
), push_space
);
3622 memmove_extent_buffer(right
, btrfs_item_nr_offset(0),
3623 btrfs_item_nr_offset(push_items
),
3624 (btrfs_header_nritems(right
) - push_items
) *
3625 sizeof(struct btrfs_item
));
3627 right_nritems
-= push_items
;
3628 btrfs_set_header_nritems(right
, right_nritems
);
3629 push_space
= BTRFS_LEAF_DATA_SIZE(root
);
3630 for (i
= 0; i
< right_nritems
; i
++) {
3631 item
= btrfs_item_nr(right
, i
);
3633 push_space
= push_space
- btrfs_token_item_size(right
,
3635 btrfs_set_token_item_offset(right
, item
, push_space
, &token
);
3638 btrfs_mark_buffer_dirty(left
);
3640 btrfs_mark_buffer_dirty(right
);
3642 clean_tree_block(trans
, root
, right
);
3644 btrfs_item_key(right
, &disk_key
, 0);
3645 fixup_low_keys(trans
, root
, path
, &disk_key
, 1);
3647 /* then fixup the leaf pointer in the path */
3648 if (path
->slots
[0] < push_items
) {
3649 path
->slots
[0] += old_left_nritems
;
3650 btrfs_tree_unlock(path
->nodes
[0]);
3651 free_extent_buffer(path
->nodes
[0]);
3652 path
->nodes
[0] = left
;
3653 path
->slots
[1] -= 1;
3655 btrfs_tree_unlock(left
);
3656 free_extent_buffer(left
);
3657 path
->slots
[0] -= push_items
;
3659 BUG_ON(path
->slots
[0] < 0);
3662 btrfs_tree_unlock(left
);
3663 free_extent_buffer(left
);
3668 * push some data in the path leaf to the left, trying to free up at
3669 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3671 * max_slot can put a limit on how far into the leaf we'll push items. The
3672 * item at 'max_slot' won't be touched. Use (u32)-1 to make us push all the
3675 static int push_leaf_left(struct btrfs_trans_handle
*trans
, struct btrfs_root
3676 *root
, struct btrfs_path
*path
, int min_data_size
,
3677 int data_size
, int empty
, u32 max_slot
)
3679 struct extent_buffer
*right
= path
->nodes
[0];
3680 struct extent_buffer
*left
;
3686 slot
= path
->slots
[1];
3689 if (!path
->nodes
[1])
3692 right_nritems
= btrfs_header_nritems(right
);
3693 if (right_nritems
== 0)
3696 btrfs_assert_tree_locked(path
->nodes
[1]);
3698 left
= read_node_slot(root
, path
->nodes
[1], slot
- 1);
3702 btrfs_tree_lock(left
);
3703 btrfs_set_lock_blocking(left
);
3705 free_space
= btrfs_leaf_free_space(root
, left
);
3706 if (free_space
< data_size
) {
3711 /* cow and double check */
3712 ret
= btrfs_cow_block(trans
, root
, left
,
3713 path
->nodes
[1], slot
- 1, &left
);
3715 /* we hit -ENOSPC, but it isn't fatal here */
3721 free_space
= btrfs_leaf_free_space(root
, left
);
3722 if (free_space
< data_size
) {
3727 return __push_leaf_left(trans
, root
, path
, min_data_size
,
3728 empty
, left
, free_space
, right_nritems
,
3731 btrfs_tree_unlock(left
);
3732 free_extent_buffer(left
);
3737 * split the path's leaf in two, making sure there is at least data_size
3738 * available for the resulting leaf level of the path.
3740 static noinline
void copy_for_split(struct btrfs_trans_handle
*trans
,
3741 struct btrfs_root
*root
,
3742 struct btrfs_path
*path
,
3743 struct extent_buffer
*l
,
3744 struct extent_buffer
*right
,
3745 int slot
, int mid
, int nritems
)
3750 struct btrfs_disk_key disk_key
;
3751 struct btrfs_map_token token
;
3753 btrfs_init_map_token(&token
);
3755 nritems
= nritems
- mid
;
3756 btrfs_set_header_nritems(right
, nritems
);
3757 data_copy_size
= btrfs_item_end_nr(l
, mid
) - leaf_data_end(root
, l
);
3759 copy_extent_buffer(right
, l
, btrfs_item_nr_offset(0),
3760 btrfs_item_nr_offset(mid
),
3761 nritems
* sizeof(struct btrfs_item
));
3763 copy_extent_buffer(right
, l
,
3764 btrfs_leaf_data(right
) + BTRFS_LEAF_DATA_SIZE(root
) -
3765 data_copy_size
, btrfs_leaf_data(l
) +
3766 leaf_data_end(root
, l
), data_copy_size
);
3768 rt_data_off
= BTRFS_LEAF_DATA_SIZE(root
) -
3769 btrfs_item_end_nr(l
, mid
);
3771 for (i
= 0; i
< nritems
; i
++) {
3772 struct btrfs_item
*item
= btrfs_item_nr(right
, i
);
3775 ioff
= btrfs_token_item_offset(right
, item
, &token
);
3776 btrfs_set_token_item_offset(right
, item
,
3777 ioff
+ rt_data_off
, &token
);
3780 btrfs_set_header_nritems(l
, mid
);
3781 btrfs_item_key(right
, &disk_key
, 0);
3782 insert_ptr(trans
, root
, path
, &disk_key
, right
->start
,
3783 path
->slots
[1] + 1, 1);
3785 btrfs_mark_buffer_dirty(right
);
3786 btrfs_mark_buffer_dirty(l
);
3787 BUG_ON(path
->slots
[0] != slot
);
3790 btrfs_tree_unlock(path
->nodes
[0]);
3791 free_extent_buffer(path
->nodes
[0]);
3792 path
->nodes
[0] = right
;
3793 path
->slots
[0] -= mid
;
3794 path
->slots
[1] += 1;
3796 btrfs_tree_unlock(right
);
3797 free_extent_buffer(right
);
3800 BUG_ON(path
->slots
[0] < 0);
3804 * double splits happen when we need to insert a big item in the middle
3805 * of a leaf. A double split can leave us with 3 mostly empty leaves:
3806 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
3809 * We avoid this by trying to push the items on either side of our target
3810 * into the adjacent leaves. If all goes well we can avoid the double split
3813 static noinline
int push_for_double_split(struct btrfs_trans_handle
*trans
,
3814 struct btrfs_root
*root
,
3815 struct btrfs_path
*path
,
3823 slot
= path
->slots
[0];
3826 * try to push all the items after our slot into the
3829 ret
= push_leaf_right(trans
, root
, path
, 1, data_size
, 0, slot
);
3836 nritems
= btrfs_header_nritems(path
->nodes
[0]);
3838 * our goal is to get our slot at the start or end of a leaf. If
3839 * we've done so we're done
3841 if (path
->slots
[0] == 0 || path
->slots
[0] == nritems
)
3844 if (btrfs_leaf_free_space(root
, path
->nodes
[0]) >= data_size
)
3847 /* try to push all the items before our slot into the next leaf */
3848 slot
= path
->slots
[0];
3849 ret
= push_leaf_left(trans
, root
, path
, 1, data_size
, 0, slot
);
3862 * split the path's leaf in two, making sure there is at least data_size
3863 * available for the resulting leaf level of the path.
3865 * returns 0 if all went well and < 0 on failure.
3867 static noinline
int split_leaf(struct btrfs_trans_handle
*trans
,
3868 struct btrfs_root
*root
,
3869 struct btrfs_key
*ins_key
,
3870 struct btrfs_path
*path
, int data_size
,
3873 struct btrfs_disk_key disk_key
;
3874 struct extent_buffer
*l
;
3878 struct extent_buffer
*right
;
3882 int num_doubles
= 0;
3883 int tried_avoid_double
= 0;
3886 slot
= path
->slots
[0];
3887 if (extend
&& data_size
+ btrfs_item_size_nr(l
, slot
) +
3888 sizeof(struct btrfs_item
) > BTRFS_LEAF_DATA_SIZE(root
))
3891 /* first try to make some room by pushing left and right */
3893 wret
= push_leaf_right(trans
, root
, path
, data_size
,
3898 wret
= push_leaf_left(trans
, root
, path
, data_size
,
3899 data_size
, 0, (u32
)-1);
3905 /* did the pushes work? */
3906 if (btrfs_leaf_free_space(root
, l
) >= data_size
)
3910 if (!path
->nodes
[1]) {
3911 ret
= insert_new_root(trans
, root
, path
, 1);
3918 slot
= path
->slots
[0];
3919 nritems
= btrfs_header_nritems(l
);
3920 mid
= (nritems
+ 1) / 2;
3924 leaf_space_used(l
, mid
, nritems
- mid
) + data_size
>
3925 BTRFS_LEAF_DATA_SIZE(root
)) {
3926 if (slot
>= nritems
) {
3930 if (mid
!= nritems
&&
3931 leaf_space_used(l
, mid
, nritems
- mid
) +
3932 data_size
> BTRFS_LEAF_DATA_SIZE(root
)) {
3933 if (data_size
&& !tried_avoid_double
)
3934 goto push_for_double
;
3940 if (leaf_space_used(l
, 0, mid
) + data_size
>
3941 BTRFS_LEAF_DATA_SIZE(root
)) {
3942 if (!extend
&& data_size
&& slot
== 0) {
3944 } else if ((extend
|| !data_size
) && slot
== 0) {
3948 if (mid
!= nritems
&&
3949 leaf_space_used(l
, mid
, nritems
- mid
) +
3950 data_size
> BTRFS_LEAF_DATA_SIZE(root
)) {
3951 if (data_size
&& !tried_avoid_double
)
3952 goto push_for_double
;
3960 btrfs_cpu_key_to_disk(&disk_key
, ins_key
);
3962 btrfs_item_key(l
, &disk_key
, mid
);
3964 right
= btrfs_alloc_free_block(trans
, root
, root
->leafsize
, 0,
3965 root
->root_key
.objectid
,
3966 &disk_key
, 0, l
->start
, 0);
3968 return PTR_ERR(right
);
3970 root_add_used(root
, root
->leafsize
);
3972 memset_extent_buffer(right
, 0, 0, sizeof(struct btrfs_header
));
3973 btrfs_set_header_bytenr(right
, right
->start
);
3974 btrfs_set_header_generation(right
, trans
->transid
);
3975 btrfs_set_header_backref_rev(right
, BTRFS_MIXED_BACKREF_REV
);
3976 btrfs_set_header_owner(right
, root
->root_key
.objectid
);
3977 btrfs_set_header_level(right
, 0);
3978 write_extent_buffer(right
, root
->fs_info
->fsid
,
3979 (unsigned long)btrfs_header_fsid(right
),
3982 write_extent_buffer(right
, root
->fs_info
->chunk_tree_uuid
,
3983 (unsigned long)btrfs_header_chunk_tree_uuid(right
),
3988 btrfs_set_header_nritems(right
, 0);
3989 insert_ptr(trans
, root
, path
, &disk_key
, right
->start
,
3990 path
->slots
[1] + 1, 1);
3991 btrfs_tree_unlock(path
->nodes
[0]);
3992 free_extent_buffer(path
->nodes
[0]);
3993 path
->nodes
[0] = right
;
3995 path
->slots
[1] += 1;
3997 btrfs_set_header_nritems(right
, 0);
3998 insert_ptr(trans
, root
, path
, &disk_key
, right
->start
,
4000 btrfs_tree_unlock(path
->nodes
[0]);
4001 free_extent_buffer(path
->nodes
[0]);
4002 path
->nodes
[0] = right
;
4004 if (path
->slots
[1] == 0)
4005 fixup_low_keys(trans
, root
, path
,
4008 btrfs_mark_buffer_dirty(right
);
4012 copy_for_split(trans
, root
, path
, l
, right
, slot
, mid
, nritems
);
4015 BUG_ON(num_doubles
!= 0);
4023 push_for_double_split(trans
, root
, path
, data_size
);
4024 tried_avoid_double
= 1;
4025 if (btrfs_leaf_free_space(root
, path
->nodes
[0]) >= data_size
)
4030 static noinline
int setup_leaf_for_split(struct btrfs_trans_handle
*trans
,
4031 struct btrfs_root
*root
,
4032 struct btrfs_path
*path
, int ins_len
)
4034 struct btrfs_key key
;
4035 struct extent_buffer
*leaf
;
4036 struct btrfs_file_extent_item
*fi
;
4041 leaf
= path
->nodes
[0];
4042 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
4044 BUG_ON(key
.type
!= BTRFS_EXTENT_DATA_KEY
&&
4045 key
.type
!= BTRFS_EXTENT_CSUM_KEY
);
4047 if (btrfs_leaf_free_space(root
, leaf
) >= ins_len
)
4050 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
4051 if (key
.type
== BTRFS_EXTENT_DATA_KEY
) {
4052 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
4053 struct btrfs_file_extent_item
);
4054 extent_len
= btrfs_file_extent_num_bytes(leaf
, fi
);
4056 btrfs_release_path(path
);
4058 path
->keep_locks
= 1;
4059 path
->search_for_split
= 1;
4060 ret
= btrfs_search_slot(trans
, root
, &key
, path
, 0, 1);
4061 path
->search_for_split
= 0;
4066 leaf
= path
->nodes
[0];
4067 /* if our item isn't there or got smaller, return now */
4068 if (ret
> 0 || item_size
!= btrfs_item_size_nr(leaf
, path
->slots
[0]))
4071 /* the leaf has changed, it now has room. return now */
4072 if (btrfs_leaf_free_space(root
, path
->nodes
[0]) >= ins_len
)
4075 if (key
.type
== BTRFS_EXTENT_DATA_KEY
) {
4076 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
4077 struct btrfs_file_extent_item
);
4078 if (extent_len
!= btrfs_file_extent_num_bytes(leaf
, fi
))
4082 btrfs_set_path_blocking(path
);
4083 ret
= split_leaf(trans
, root
, &key
, path
, ins_len
, 1);
4087 path
->keep_locks
= 0;
4088 btrfs_unlock_up_safe(path
, 1);
4091 path
->keep_locks
= 0;
4095 static noinline
int split_item(struct btrfs_trans_handle
*trans
,
4096 struct btrfs_root
*root
,
4097 struct btrfs_path
*path
,
4098 struct btrfs_key
*new_key
,
4099 unsigned long split_offset
)
4101 struct extent_buffer
*leaf
;
4102 struct btrfs_item
*item
;
4103 struct btrfs_item
*new_item
;
4109 struct btrfs_disk_key disk_key
;
4111 leaf
= path
->nodes
[0];
4112 BUG_ON(btrfs_leaf_free_space(root
, leaf
) < sizeof(struct btrfs_item
));
4114 btrfs_set_path_blocking(path
);
4116 item
= btrfs_item_nr(leaf
, path
->slots
[0]);
4117 orig_offset
= btrfs_item_offset(leaf
, item
);
4118 item_size
= btrfs_item_size(leaf
, item
);
4120 buf
= kmalloc(item_size
, GFP_NOFS
);
4124 read_extent_buffer(leaf
, buf
, btrfs_item_ptr_offset(leaf
,
4125 path
->slots
[0]), item_size
);
4127 slot
= path
->slots
[0] + 1;
4128 nritems
= btrfs_header_nritems(leaf
);
4129 if (slot
!= nritems
) {
4130 /* shift the items */
4131 memmove_extent_buffer(leaf
, btrfs_item_nr_offset(slot
+ 1),
4132 btrfs_item_nr_offset(slot
),
4133 (nritems
- slot
) * sizeof(struct btrfs_item
));
4136 btrfs_cpu_key_to_disk(&disk_key
, new_key
);
4137 btrfs_set_item_key(leaf
, &disk_key
, slot
);
4139 new_item
= btrfs_item_nr(leaf
, slot
);
4141 btrfs_set_item_offset(leaf
, new_item
, orig_offset
);
4142 btrfs_set_item_size(leaf
, new_item
, item_size
- split_offset
);
4144 btrfs_set_item_offset(leaf
, item
,
4145 orig_offset
+ item_size
- split_offset
);
4146 btrfs_set_item_size(leaf
, item
, split_offset
);
4148 btrfs_set_header_nritems(leaf
, nritems
+ 1);
4150 /* write the data for the start of the original item */
4151 write_extent_buffer(leaf
, buf
,
4152 btrfs_item_ptr_offset(leaf
, path
->slots
[0]),
4155 /* write the data for the new item */
4156 write_extent_buffer(leaf
, buf
+ split_offset
,
4157 btrfs_item_ptr_offset(leaf
, slot
),
4158 item_size
- split_offset
);
4159 btrfs_mark_buffer_dirty(leaf
);
4161 BUG_ON(btrfs_leaf_free_space(root
, leaf
) < 0);
4167 * This function splits a single item into two items,
4168 * giving 'new_key' to the new item and splitting the
4169 * old one at split_offset (from the start of the item).
4171 * The path may be released by this operation. After
4172 * the split, the path is pointing to the old item. The
4173 * new item is going to be in the same node as the old one.
4175 * Note, the item being split must be smaller enough to live alone on
4176 * a tree block with room for one extra struct btrfs_item
4178 * This allows us to split the item in place, keeping a lock on the
4179 * leaf the entire time.
4181 int btrfs_split_item(struct btrfs_trans_handle
*trans
,
4182 struct btrfs_root
*root
,
4183 struct btrfs_path
*path
,
4184 struct btrfs_key
*new_key
,
4185 unsigned long split_offset
)
4188 ret
= setup_leaf_for_split(trans
, root
, path
,
4189 sizeof(struct btrfs_item
));
4193 ret
= split_item(trans
, root
, path
, new_key
, split_offset
);
4198 * This function duplicate a item, giving 'new_key' to the new item.
4199 * It guarantees both items live in the same tree leaf and the new item
4200 * is contiguous with the original item.
4202 * This allows us to split file extent in place, keeping a lock on the
4203 * leaf the entire time.
4205 int btrfs_duplicate_item(struct btrfs_trans_handle
*trans
,
4206 struct btrfs_root
*root
,
4207 struct btrfs_path
*path
,
4208 struct btrfs_key
*new_key
)
4210 struct extent_buffer
*leaf
;
4214 leaf
= path
->nodes
[0];
4215 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
4216 ret
= setup_leaf_for_split(trans
, root
, path
,
4217 item_size
+ sizeof(struct btrfs_item
));
4222 setup_items_for_insert(trans
, root
, path
, new_key
, &item_size
,
4223 item_size
, item_size
+
4224 sizeof(struct btrfs_item
), 1);
4225 leaf
= path
->nodes
[0];
4226 memcpy_extent_buffer(leaf
,
4227 btrfs_item_ptr_offset(leaf
, path
->slots
[0]),
4228 btrfs_item_ptr_offset(leaf
, path
->slots
[0] - 1),
4234 * make the item pointed to by the path smaller. new_size indicates
4235 * how small to make it, and from_end tells us if we just chop bytes
4236 * off the end of the item or if we shift the item to chop bytes off
4239 void btrfs_truncate_item(struct btrfs_trans_handle
*trans
,
4240 struct btrfs_root
*root
,
4241 struct btrfs_path
*path
,
4242 u32 new_size
, int from_end
)
4245 struct extent_buffer
*leaf
;
4246 struct btrfs_item
*item
;
4248 unsigned int data_end
;
4249 unsigned int old_data_start
;
4250 unsigned int old_size
;
4251 unsigned int size_diff
;
4253 struct btrfs_map_token token
;
4255 btrfs_init_map_token(&token
);
4257 leaf
= path
->nodes
[0];
4258 slot
= path
->slots
[0];
4260 old_size
= btrfs_item_size_nr(leaf
, slot
);
4261 if (old_size
== new_size
)
4264 nritems
= btrfs_header_nritems(leaf
);
4265 data_end
= leaf_data_end(root
, leaf
);
4267 old_data_start
= btrfs_item_offset_nr(leaf
, slot
);
4269 size_diff
= old_size
- new_size
;
4272 BUG_ON(slot
>= nritems
);
4275 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4277 /* first correct the data pointers */
4278 for (i
= slot
; i
< nritems
; i
++) {
4280 item
= btrfs_item_nr(leaf
, i
);
4282 ioff
= btrfs_token_item_offset(leaf
, item
, &token
);
4283 btrfs_set_token_item_offset(leaf
, item
,
4284 ioff
+ size_diff
, &token
);
4287 /* shift the data */
4289 memmove_extent_buffer(leaf
, btrfs_leaf_data(leaf
) +
4290 data_end
+ size_diff
, btrfs_leaf_data(leaf
) +
4291 data_end
, old_data_start
+ new_size
- data_end
);
4293 struct btrfs_disk_key disk_key
;
4296 btrfs_item_key(leaf
, &disk_key
, slot
);
4298 if (btrfs_disk_key_type(&disk_key
) == BTRFS_EXTENT_DATA_KEY
) {
4300 struct btrfs_file_extent_item
*fi
;
4302 fi
= btrfs_item_ptr(leaf
, slot
,
4303 struct btrfs_file_extent_item
);
4304 fi
= (struct btrfs_file_extent_item
*)(
4305 (unsigned long)fi
- size_diff
);
4307 if (btrfs_file_extent_type(leaf
, fi
) ==
4308 BTRFS_FILE_EXTENT_INLINE
) {
4309 ptr
= btrfs_item_ptr_offset(leaf
, slot
);
4310 memmove_extent_buffer(leaf
, ptr
,
4312 offsetof(struct btrfs_file_extent_item
,
4317 memmove_extent_buffer(leaf
, btrfs_leaf_data(leaf
) +
4318 data_end
+ size_diff
, btrfs_leaf_data(leaf
) +
4319 data_end
, old_data_start
- data_end
);
4321 offset
= btrfs_disk_key_offset(&disk_key
);
4322 btrfs_set_disk_key_offset(&disk_key
, offset
+ size_diff
);
4323 btrfs_set_item_key(leaf
, &disk_key
, slot
);
4325 fixup_low_keys(trans
, root
, path
, &disk_key
, 1);
4328 item
= btrfs_item_nr(leaf
, slot
);
4329 btrfs_set_item_size(leaf
, item
, new_size
);
4330 btrfs_mark_buffer_dirty(leaf
);
4332 if (btrfs_leaf_free_space(root
, leaf
) < 0) {
4333 btrfs_print_leaf(root
, leaf
);
4339 * make the item pointed to by the path bigger, data_size is the new size.
4341 void btrfs_extend_item(struct btrfs_trans_handle
*trans
,
4342 struct btrfs_root
*root
, struct btrfs_path
*path
,
4346 struct extent_buffer
*leaf
;
4347 struct btrfs_item
*item
;
4349 unsigned int data_end
;
4350 unsigned int old_data
;
4351 unsigned int old_size
;
4353 struct btrfs_map_token token
;
4355 btrfs_init_map_token(&token
);
4357 leaf
= path
->nodes
[0];
4359 nritems
= btrfs_header_nritems(leaf
);
4360 data_end
= leaf_data_end(root
, leaf
);
4362 if (btrfs_leaf_free_space(root
, leaf
) < data_size
) {
4363 btrfs_print_leaf(root
, leaf
);
4366 slot
= path
->slots
[0];
4367 old_data
= btrfs_item_end_nr(leaf
, slot
);
4370 if (slot
>= nritems
) {
4371 btrfs_print_leaf(root
, leaf
);
4372 printk(KERN_CRIT
"slot %d too large, nritems %d\n",
4378 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4380 /* first correct the data pointers */
4381 for (i
= slot
; i
< nritems
; i
++) {
4383 item
= btrfs_item_nr(leaf
, i
);
4385 ioff
= btrfs_token_item_offset(leaf
, item
, &token
);
4386 btrfs_set_token_item_offset(leaf
, item
,
4387 ioff
- data_size
, &token
);
4390 /* shift the data */
4391 memmove_extent_buffer(leaf
, btrfs_leaf_data(leaf
) +
4392 data_end
- data_size
, btrfs_leaf_data(leaf
) +
4393 data_end
, old_data
- data_end
);
4395 data_end
= old_data
;
4396 old_size
= btrfs_item_size_nr(leaf
, slot
);
4397 item
= btrfs_item_nr(leaf
, slot
);
4398 btrfs_set_item_size(leaf
, item
, old_size
+ data_size
);
4399 btrfs_mark_buffer_dirty(leaf
);
4401 if (btrfs_leaf_free_space(root
, leaf
) < 0) {
4402 btrfs_print_leaf(root
, leaf
);
4408 * Given a key and some data, insert items into the tree.
4409 * This does all the path init required, making room in the tree if needed.
4410 * Returns the number of keys that were inserted.
4412 int btrfs_insert_some_items(struct btrfs_trans_handle
*trans
,
4413 struct btrfs_root
*root
,
4414 struct btrfs_path
*path
,
4415 struct btrfs_key
*cpu_key
, u32
*data_size
,
4418 struct extent_buffer
*leaf
;
4419 struct btrfs_item
*item
;
4426 unsigned int data_end
;
4427 struct btrfs_disk_key disk_key
;
4428 struct btrfs_key found_key
;
4429 struct btrfs_map_token token
;
4431 btrfs_init_map_token(&token
);
4433 for (i
= 0; i
< nr
; i
++) {
4434 if (total_size
+ data_size
[i
] + sizeof(struct btrfs_item
) >
4435 BTRFS_LEAF_DATA_SIZE(root
)) {
4439 total_data
+= data_size
[i
];
4440 total_size
+= data_size
[i
] + sizeof(struct btrfs_item
);
4444 ret
= btrfs_search_slot(trans
, root
, cpu_key
, path
, total_size
, 1);
4450 leaf
= path
->nodes
[0];
4452 nritems
= btrfs_header_nritems(leaf
);
4453 data_end
= leaf_data_end(root
, leaf
);
4455 if (btrfs_leaf_free_space(root
, leaf
) < total_size
) {
4456 for (i
= nr
; i
>= 0; i
--) {
4457 total_data
-= data_size
[i
];
4458 total_size
-= data_size
[i
] + sizeof(struct btrfs_item
);
4459 if (total_size
< btrfs_leaf_free_space(root
, leaf
))
4465 slot
= path
->slots
[0];
4468 if (slot
!= nritems
) {
4469 unsigned int old_data
= btrfs_item_end_nr(leaf
, slot
);
4471 item
= btrfs_item_nr(leaf
, slot
);
4472 btrfs_item_key_to_cpu(leaf
, &found_key
, slot
);
4474 /* figure out how many keys we can insert in here */
4475 total_data
= data_size
[0];
4476 for (i
= 1; i
< nr
; i
++) {
4477 if (btrfs_comp_cpu_keys(&found_key
, cpu_key
+ i
) <= 0)
4479 total_data
+= data_size
[i
];
4483 if (old_data
< data_end
) {
4484 btrfs_print_leaf(root
, leaf
);
4485 printk(KERN_CRIT
"slot %d old_data %d data_end %d\n",
4486 slot
, old_data
, data_end
);
4490 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4492 /* first correct the data pointers */
4493 for (i
= slot
; i
< nritems
; i
++) {
4496 item
= btrfs_item_nr(leaf
, i
);
4497 ioff
= btrfs_token_item_offset(leaf
, item
, &token
);
4498 btrfs_set_token_item_offset(leaf
, item
,
4499 ioff
- total_data
, &token
);
4501 /* shift the items */
4502 memmove_extent_buffer(leaf
, btrfs_item_nr_offset(slot
+ nr
),
4503 btrfs_item_nr_offset(slot
),
4504 (nritems
- slot
) * sizeof(struct btrfs_item
));
4506 /* shift the data */
4507 memmove_extent_buffer(leaf
, btrfs_leaf_data(leaf
) +
4508 data_end
- total_data
, btrfs_leaf_data(leaf
) +
4509 data_end
, old_data
- data_end
);
4510 data_end
= old_data
;
4513 * this sucks but it has to be done, if we are inserting at
4514 * the end of the leaf only insert 1 of the items, since we
4515 * have no way of knowing whats on the next leaf and we'd have
4516 * to drop our current locks to figure it out
4521 /* setup the item for the new data */
4522 for (i
= 0; i
< nr
; i
++) {
4523 btrfs_cpu_key_to_disk(&disk_key
, cpu_key
+ i
);
4524 btrfs_set_item_key(leaf
, &disk_key
, slot
+ i
);
4525 item
= btrfs_item_nr(leaf
, slot
+ i
);
4526 btrfs_set_token_item_offset(leaf
, item
,
4527 data_end
- data_size
[i
], &token
);
4528 data_end
-= data_size
[i
];
4529 btrfs_set_token_item_size(leaf
, item
, data_size
[i
], &token
);
4531 btrfs_set_header_nritems(leaf
, nritems
+ nr
);
4532 btrfs_mark_buffer_dirty(leaf
);
4536 btrfs_cpu_key_to_disk(&disk_key
, cpu_key
);
4537 fixup_low_keys(trans
, root
, path
, &disk_key
, 1);
4540 if (btrfs_leaf_free_space(root
, leaf
) < 0) {
4541 btrfs_print_leaf(root
, leaf
);
4551 * this is a helper for btrfs_insert_empty_items, the main goal here is
4552 * to save stack depth by doing the bulk of the work in a function
4553 * that doesn't call btrfs_search_slot
4555 void setup_items_for_insert(struct btrfs_trans_handle
*trans
,
4556 struct btrfs_root
*root
, struct btrfs_path
*path
,
4557 struct btrfs_key
*cpu_key
, u32
*data_size
,
4558 u32 total_data
, u32 total_size
, int nr
)
4560 struct btrfs_item
*item
;
4563 unsigned int data_end
;
4564 struct btrfs_disk_key disk_key
;
4565 struct extent_buffer
*leaf
;
4567 struct btrfs_map_token token
;
4569 btrfs_init_map_token(&token
);
4571 leaf
= path
->nodes
[0];
4572 slot
= path
->slots
[0];
4574 nritems
= btrfs_header_nritems(leaf
);
4575 data_end
= leaf_data_end(root
, leaf
);
4577 if (btrfs_leaf_free_space(root
, leaf
) < total_size
) {
4578 btrfs_print_leaf(root
, leaf
);
4579 printk(KERN_CRIT
"not enough freespace need %u have %d\n",
4580 total_size
, btrfs_leaf_free_space(root
, leaf
));
4584 if (slot
!= nritems
) {
4585 unsigned int old_data
= btrfs_item_end_nr(leaf
, slot
);
4587 if (old_data
< data_end
) {
4588 btrfs_print_leaf(root
, leaf
);
4589 printk(KERN_CRIT
"slot %d old_data %d data_end %d\n",
4590 slot
, old_data
, data_end
);
4594 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4596 /* first correct the data pointers */
4597 for (i
= slot
; i
< nritems
; i
++) {
4600 item
= btrfs_item_nr(leaf
, i
);
4601 ioff
= btrfs_token_item_offset(leaf
, item
, &token
);
4602 btrfs_set_token_item_offset(leaf
, item
,
4603 ioff
- total_data
, &token
);
4605 /* shift the items */
4606 memmove_extent_buffer(leaf
, btrfs_item_nr_offset(slot
+ nr
),
4607 btrfs_item_nr_offset(slot
),
4608 (nritems
- slot
) * sizeof(struct btrfs_item
));
4610 /* shift the data */
4611 memmove_extent_buffer(leaf
, btrfs_leaf_data(leaf
) +
4612 data_end
- total_data
, btrfs_leaf_data(leaf
) +
4613 data_end
, old_data
- data_end
);
4614 data_end
= old_data
;
4617 /* setup the item for the new data */
4618 for (i
= 0; i
< nr
; i
++) {
4619 btrfs_cpu_key_to_disk(&disk_key
, cpu_key
+ i
);
4620 btrfs_set_item_key(leaf
, &disk_key
, slot
+ i
);
4621 item
= btrfs_item_nr(leaf
, slot
+ i
);
4622 btrfs_set_token_item_offset(leaf
, item
,
4623 data_end
- data_size
[i
], &token
);
4624 data_end
-= data_size
[i
];
4625 btrfs_set_token_item_size(leaf
, item
, data_size
[i
], &token
);
4628 btrfs_set_header_nritems(leaf
, nritems
+ nr
);
4631 btrfs_cpu_key_to_disk(&disk_key
, cpu_key
);
4632 fixup_low_keys(trans
, root
, path
, &disk_key
, 1);
4634 btrfs_unlock_up_safe(path
, 1);
4635 btrfs_mark_buffer_dirty(leaf
);
4637 if (btrfs_leaf_free_space(root
, leaf
) < 0) {
4638 btrfs_print_leaf(root
, leaf
);
4644 * Given a key and some data, insert items into the tree.
4645 * This does all the path init required, making room in the tree if needed.
4647 int btrfs_insert_empty_items(struct btrfs_trans_handle
*trans
,
4648 struct btrfs_root
*root
,
4649 struct btrfs_path
*path
,
4650 struct btrfs_key
*cpu_key
, u32
*data_size
,
4659 for (i
= 0; i
< nr
; i
++)
4660 total_data
+= data_size
[i
];
4662 total_size
= total_data
+ (nr
* sizeof(struct btrfs_item
));
4663 ret
= btrfs_search_slot(trans
, root
, cpu_key
, path
, total_size
, 1);
4669 slot
= path
->slots
[0];
4672 setup_items_for_insert(trans
, root
, path
, cpu_key
, data_size
,
4673 total_data
, total_size
, nr
);
4678 * Given a key and some data, insert an item into the tree.
4679 * This does all the path init required, making room in the tree if needed.
4681 int btrfs_insert_item(struct btrfs_trans_handle
*trans
, struct btrfs_root
4682 *root
, struct btrfs_key
*cpu_key
, void *data
, u32
4686 struct btrfs_path
*path
;
4687 struct extent_buffer
*leaf
;
4690 path
= btrfs_alloc_path();
4693 ret
= btrfs_insert_empty_item(trans
, root
, path
, cpu_key
, data_size
);
4695 leaf
= path
->nodes
[0];
4696 ptr
= btrfs_item_ptr_offset(leaf
, path
->slots
[0]);
4697 write_extent_buffer(leaf
, data
, ptr
, data_size
);
4698 btrfs_mark_buffer_dirty(leaf
);
4700 btrfs_free_path(path
);
4705 * delete the pointer from a given node.
4707 * the tree should have been previously balanced so the deletion does not
4710 static void del_ptr(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
4711 struct btrfs_path
*path
, int level
, int slot
,
4714 struct extent_buffer
*parent
= path
->nodes
[level
];
4718 nritems
= btrfs_header_nritems(parent
);
4719 if (slot
!= nritems
- 1) {
4720 if (tree_mod_log
&& level
)
4721 tree_mod_log_eb_move(root
->fs_info
, parent
, slot
,
4722 slot
+ 1, nritems
- slot
- 1);
4723 memmove_extent_buffer(parent
,
4724 btrfs_node_key_ptr_offset(slot
),
4725 btrfs_node_key_ptr_offset(slot
+ 1),
4726 sizeof(struct btrfs_key_ptr
) *
4727 (nritems
- slot
- 1));
4728 } else if (tree_mod_log
&& level
) {
4729 ret
= tree_mod_log_insert_key(root
->fs_info
, parent
, slot
,
4730 MOD_LOG_KEY_REMOVE
);
4735 btrfs_set_header_nritems(parent
, nritems
);
4736 if (nritems
== 0 && parent
== root
->node
) {
4737 BUG_ON(btrfs_header_level(root
->node
) != 1);
4738 /* just turn the root into a leaf and break */
4739 btrfs_set_header_level(root
->node
, 0);
4740 } else if (slot
== 0) {
4741 struct btrfs_disk_key disk_key
;
4743 btrfs_node_key(parent
, &disk_key
, 0);
4744 fixup_low_keys(trans
, root
, path
, &disk_key
, level
+ 1);
4746 btrfs_mark_buffer_dirty(parent
);
4750 * a helper function to delete the leaf pointed to by path->slots[1] and
4753 * This deletes the pointer in path->nodes[1] and frees the leaf
4754 * block extent. zero is returned if it all worked out, < 0 otherwise.
4756 * The path must have already been setup for deleting the leaf, including
4757 * all the proper balancing. path->nodes[1] must be locked.
4759 static noinline
void btrfs_del_leaf(struct btrfs_trans_handle
*trans
,
4760 struct btrfs_root
*root
,
4761 struct btrfs_path
*path
,
4762 struct extent_buffer
*leaf
)
4764 WARN_ON(btrfs_header_generation(leaf
) != trans
->transid
);
4765 del_ptr(trans
, root
, path
, 1, path
->slots
[1], 1);
4768 * btrfs_free_extent is expensive, we want to make sure we
4769 * aren't holding any locks when we call it
4771 btrfs_unlock_up_safe(path
, 0);
4773 root_sub_used(root
, leaf
->len
);
4775 extent_buffer_get(leaf
);
4776 btrfs_free_tree_block(trans
, root
, leaf
, 0, 1);
4777 free_extent_buffer_stale(leaf
);
4780 * delete the item at the leaf level in path. If that empties
4781 * the leaf, remove it from the tree
4783 int btrfs_del_items(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
4784 struct btrfs_path
*path
, int slot
, int nr
)
4786 struct extent_buffer
*leaf
;
4787 struct btrfs_item
*item
;
4794 struct btrfs_map_token token
;
4796 btrfs_init_map_token(&token
);
4798 leaf
= path
->nodes
[0];
4799 last_off
= btrfs_item_offset_nr(leaf
, slot
+ nr
- 1);
4801 for (i
= 0; i
< nr
; i
++)
4802 dsize
+= btrfs_item_size_nr(leaf
, slot
+ i
);
4804 nritems
= btrfs_header_nritems(leaf
);
4806 if (slot
+ nr
!= nritems
) {
4807 int data_end
= leaf_data_end(root
, leaf
);
4809 memmove_extent_buffer(leaf
, btrfs_leaf_data(leaf
) +
4811 btrfs_leaf_data(leaf
) + data_end
,
4812 last_off
- data_end
);
4814 for (i
= slot
+ nr
; i
< nritems
; i
++) {
4817 item
= btrfs_item_nr(leaf
, i
);
4818 ioff
= btrfs_token_item_offset(leaf
, item
, &token
);
4819 btrfs_set_token_item_offset(leaf
, item
,
4820 ioff
+ dsize
, &token
);
4823 memmove_extent_buffer(leaf
, btrfs_item_nr_offset(slot
),
4824 btrfs_item_nr_offset(slot
+ nr
),
4825 sizeof(struct btrfs_item
) *
4826 (nritems
- slot
- nr
));
4828 btrfs_set_header_nritems(leaf
, nritems
- nr
);
4831 /* delete the leaf if we've emptied it */
4833 if (leaf
== root
->node
) {
4834 btrfs_set_header_level(leaf
, 0);
4836 btrfs_set_path_blocking(path
);
4837 clean_tree_block(trans
, root
, leaf
);
4838 btrfs_del_leaf(trans
, root
, path
, leaf
);
4841 int used
= leaf_space_used(leaf
, 0, nritems
);
4843 struct btrfs_disk_key disk_key
;
4845 btrfs_item_key(leaf
, &disk_key
, 0);
4846 fixup_low_keys(trans
, root
, path
, &disk_key
, 1);
4849 /* delete the leaf if it is mostly empty */
4850 if (used
< BTRFS_LEAF_DATA_SIZE(root
) / 3) {
4851 /* push_leaf_left fixes the path.
4852 * make sure the path still points to our leaf
4853 * for possible call to del_ptr below
4855 slot
= path
->slots
[1];
4856 extent_buffer_get(leaf
);
4858 btrfs_set_path_blocking(path
);
4859 wret
= push_leaf_left(trans
, root
, path
, 1, 1,
4861 if (wret
< 0 && wret
!= -ENOSPC
)
4864 if (path
->nodes
[0] == leaf
&&
4865 btrfs_header_nritems(leaf
)) {
4866 wret
= push_leaf_right(trans
, root
, path
, 1,
4868 if (wret
< 0 && wret
!= -ENOSPC
)
4872 if (btrfs_header_nritems(leaf
) == 0) {
4873 path
->slots
[1] = slot
;
4874 btrfs_del_leaf(trans
, root
, path
, leaf
);
4875 free_extent_buffer(leaf
);
4878 /* if we're still in the path, make sure
4879 * we're dirty. Otherwise, one of the
4880 * push_leaf functions must have already
4881 * dirtied this buffer
4883 if (path
->nodes
[0] == leaf
)
4884 btrfs_mark_buffer_dirty(leaf
);
4885 free_extent_buffer(leaf
);
4888 btrfs_mark_buffer_dirty(leaf
);
4895 * search the tree again to find a leaf with lesser keys
4896 * returns 0 if it found something or 1 if there are no lesser leaves.
4897 * returns < 0 on io errors.
4899 * This may release the path, and so you may lose any locks held at the
4902 int btrfs_prev_leaf(struct btrfs_root
*root
, struct btrfs_path
*path
)
4904 struct btrfs_key key
;
4905 struct btrfs_disk_key found_key
;
4908 btrfs_item_key_to_cpu(path
->nodes
[0], &key
, 0);
4912 else if (key
.type
> 0)
4914 else if (key
.objectid
> 0)
4919 btrfs_release_path(path
);
4920 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
4923 btrfs_item_key(path
->nodes
[0], &found_key
, 0);
4924 ret
= comp_keys(&found_key
, &key
);
4931 * A helper function to walk down the tree starting at min_key, and looking
4932 * for nodes or leaves that are either in cache or have a minimum
4933 * transaction id. This is used by the btree defrag code, and tree logging
4935 * This does not cow, but it does stuff the starting key it finds back
4936 * into min_key, so you can call btrfs_search_slot with cow=1 on the
4937 * key and get a writable path.
4939 * This does lock as it descends, and path->keep_locks should be set
4940 * to 1 by the caller.
4942 * This honors path->lowest_level to prevent descent past a given level
4945 * min_trans indicates the oldest transaction that you are interested
4946 * in walking through. Any nodes or leaves older than min_trans are
4947 * skipped over (without reading them).
4949 * returns zero if something useful was found, < 0 on error and 1 if there
4950 * was nothing in the tree that matched the search criteria.
4952 int btrfs_search_forward(struct btrfs_root
*root
, struct btrfs_key
*min_key
,
4953 struct btrfs_key
*max_key
,
4954 struct btrfs_path
*path
, int cache_only
,
4957 struct extent_buffer
*cur
;
4958 struct btrfs_key found_key
;
4965 WARN_ON(!path
->keep_locks
);
4967 cur
= btrfs_read_lock_root_node(root
);
4968 level
= btrfs_header_level(cur
);
4969 WARN_ON(path
->nodes
[level
]);
4970 path
->nodes
[level
] = cur
;
4971 path
->locks
[level
] = BTRFS_READ_LOCK
;
4973 if (btrfs_header_generation(cur
) < min_trans
) {
4978 nritems
= btrfs_header_nritems(cur
);
4979 level
= btrfs_header_level(cur
);
4980 sret
= bin_search(cur
, min_key
, level
, &slot
);
4982 /* at the lowest level, we're done, setup the path and exit */
4983 if (level
== path
->lowest_level
) {
4984 if (slot
>= nritems
)
4987 path
->slots
[level
] = slot
;
4988 btrfs_item_key_to_cpu(cur
, &found_key
, slot
);
4991 if (sret
&& slot
> 0)
4994 * check this node pointer against the cache_only and
4995 * min_trans parameters. If it isn't in cache or is too
4996 * old, skip to the next one.
4998 while (slot
< nritems
) {
5001 struct extent_buffer
*tmp
;
5002 struct btrfs_disk_key disk_key
;
5004 blockptr
= btrfs_node_blockptr(cur
, slot
);
5005 gen
= btrfs_node_ptr_generation(cur
, slot
);
5006 if (gen
< min_trans
) {
5014 btrfs_node_key(cur
, &disk_key
, slot
);
5015 if (comp_keys(&disk_key
, max_key
) >= 0) {
5021 tmp
= btrfs_find_tree_block(root
, blockptr
,
5022 btrfs_level_size(root
, level
- 1));
5024 if (tmp
&& btrfs_buffer_uptodate(tmp
, gen
, 1) > 0) {
5025 free_extent_buffer(tmp
);
5029 free_extent_buffer(tmp
);
5034 * we didn't find a candidate key in this node, walk forward
5035 * and find another one
5037 if (slot
>= nritems
) {
5038 path
->slots
[level
] = slot
;
5039 btrfs_set_path_blocking(path
);
5040 sret
= btrfs_find_next_key(root
, path
, min_key
, level
,
5041 cache_only
, min_trans
);
5043 btrfs_release_path(path
);
5049 /* save our key for returning back */
5050 btrfs_node_key_to_cpu(cur
, &found_key
, slot
);
5051 path
->slots
[level
] = slot
;
5052 if (level
== path
->lowest_level
) {
5054 unlock_up(path
, level
, 1, 0, NULL
);
5057 btrfs_set_path_blocking(path
);
5058 cur
= read_node_slot(root
, cur
, slot
);
5059 BUG_ON(!cur
); /* -ENOMEM */
5061 btrfs_tree_read_lock(cur
);
5063 path
->locks
[level
- 1] = BTRFS_READ_LOCK
;
5064 path
->nodes
[level
- 1] = cur
;
5065 unlock_up(path
, level
, 1, 0, NULL
);
5066 btrfs_clear_path_blocking(path
, NULL
, 0);
5070 memcpy(min_key
, &found_key
, sizeof(found_key
));
5071 btrfs_set_path_blocking(path
);
5075 static void tree_move_down(struct btrfs_root
*root
,
5076 struct btrfs_path
*path
,
5077 int *level
, int root_level
)
5079 path
->nodes
[*level
- 1] = read_node_slot(root
, path
->nodes
[*level
],
5080 path
->slots
[*level
]);
5081 path
->slots
[*level
- 1] = 0;
5085 static int tree_move_next_or_upnext(struct btrfs_root
*root
,
5086 struct btrfs_path
*path
,
5087 int *level
, int root_level
)
5091 nritems
= btrfs_header_nritems(path
->nodes
[*level
]);
5093 path
->slots
[*level
]++;
5095 while (path
->slots
[*level
] == nritems
) {
5096 if (*level
== root_level
)
5100 path
->slots
[*level
] = 0;
5101 free_extent_buffer(path
->nodes
[*level
]);
5102 path
->nodes
[*level
] = NULL
;
5104 path
->slots
[*level
]++;
5106 nritems
= btrfs_header_nritems(path
->nodes
[*level
]);
5113 * Returns 1 if it had to move up and next. 0 is returned if it moved only next
5116 static int tree_advance(struct btrfs_root
*root
,
5117 struct btrfs_path
*path
,
5118 int *level
, int root_level
,
5120 struct btrfs_key
*key
)
5124 if (*level
== 0 || !allow_down
) {
5125 ret
= tree_move_next_or_upnext(root
, path
, level
, root_level
);
5127 tree_move_down(root
, path
, level
, root_level
);
5132 btrfs_item_key_to_cpu(path
->nodes
[*level
], key
,
5133 path
->slots
[*level
]);
5135 btrfs_node_key_to_cpu(path
->nodes
[*level
], key
,
5136 path
->slots
[*level
]);
5141 static int tree_compare_item(struct btrfs_root
*left_root
,
5142 struct btrfs_path
*left_path
,
5143 struct btrfs_path
*right_path
,
5148 unsigned long off1
, off2
;
5150 len1
= btrfs_item_size_nr(left_path
->nodes
[0], left_path
->slots
[0]);
5151 len2
= btrfs_item_size_nr(right_path
->nodes
[0], right_path
->slots
[0]);
5155 off1
= btrfs_item_ptr_offset(left_path
->nodes
[0], left_path
->slots
[0]);
5156 off2
= btrfs_item_ptr_offset(right_path
->nodes
[0],
5157 right_path
->slots
[0]);
5159 read_extent_buffer(left_path
->nodes
[0], tmp_buf
, off1
, len1
);
5161 cmp
= memcmp_extent_buffer(right_path
->nodes
[0], tmp_buf
, off2
, len1
);
5168 #define ADVANCE_ONLY_NEXT -1
5171 * This function compares two trees and calls the provided callback for
5172 * every changed/new/deleted item it finds.
5173 * If shared tree blocks are encountered, whole subtrees are skipped, making
5174 * the compare pretty fast on snapshotted subvolumes.
5176 * This currently works on commit roots only. As commit roots are read only,
5177 * we don't do any locking. The commit roots are protected with transactions.
5178 * Transactions are ended and rejoined when a commit is tried in between.
5180 * This function checks for modifications done to the trees while comparing.
5181 * If it detects a change, it aborts immediately.
5183 int btrfs_compare_trees(struct btrfs_root
*left_root
,
5184 struct btrfs_root
*right_root
,
5185 btrfs_changed_cb_t changed_cb
, void *ctx
)
5189 struct btrfs_trans_handle
*trans
= NULL
;
5190 struct btrfs_path
*left_path
= NULL
;
5191 struct btrfs_path
*right_path
= NULL
;
5192 struct btrfs_key left_key
;
5193 struct btrfs_key right_key
;
5194 char *tmp_buf
= NULL
;
5195 int left_root_level
;
5196 int right_root_level
;
5199 int left_end_reached
;
5200 int right_end_reached
;
5205 u64 left_start_ctransid
;
5206 u64 right_start_ctransid
;
5209 left_path
= btrfs_alloc_path();
5214 right_path
= btrfs_alloc_path();
5220 tmp_buf
= kmalloc(left_root
->leafsize
, GFP_NOFS
);
5226 left_path
->search_commit_root
= 1;
5227 left_path
->skip_locking
= 1;
5228 right_path
->search_commit_root
= 1;
5229 right_path
->skip_locking
= 1;
5231 spin_lock(&left_root
->root_times_lock
);
5232 left_start_ctransid
= btrfs_root_ctransid(&left_root
->root_item
);
5233 spin_unlock(&left_root
->root_times_lock
);
5235 spin_lock(&right_root
->root_times_lock
);
5236 right_start_ctransid
= btrfs_root_ctransid(&right_root
->root_item
);
5237 spin_unlock(&right_root
->root_times_lock
);
5239 trans
= btrfs_join_transaction(left_root
);
5240 if (IS_ERR(trans
)) {
5241 ret
= PTR_ERR(trans
);
5247 * Strategy: Go to the first items of both trees. Then do
5249 * If both trees are at level 0
5250 * Compare keys of current items
5251 * If left < right treat left item as new, advance left tree
5253 * If left > right treat right item as deleted, advance right tree
5255 * If left == right do deep compare of items, treat as changed if
5256 * needed, advance both trees and repeat
5257 * If both trees are at the same level but not at level 0
5258 * Compare keys of current nodes/leafs
5259 * If left < right advance left tree and repeat
5260 * If left > right advance right tree and repeat
5261 * If left == right compare blockptrs of the next nodes/leafs
5262 * If they match advance both trees but stay at the same level
5264 * If they don't match advance both trees while allowing to go
5266 * If tree levels are different
5267 * Advance the tree that needs it and repeat
5269 * Advancing a tree means:
5270 * If we are at level 0, try to go to the next slot. If that's not
5271 * possible, go one level up and repeat. Stop when we found a level
5272 * where we could go to the next slot. We may at this point be on a
5275 * If we are not at level 0 and not on shared tree blocks, go one
5278 * If we are not at level 0 and on shared tree blocks, go one slot to
5279 * the right if possible or go up and right.
5282 left_level
= btrfs_header_level(left_root
->commit_root
);
5283 left_root_level
= left_level
;
5284 left_path
->nodes
[left_level
] = left_root
->commit_root
;
5285 extent_buffer_get(left_path
->nodes
[left_level
]);
5287 right_level
= btrfs_header_level(right_root
->commit_root
);
5288 right_root_level
= right_level
;
5289 right_path
->nodes
[right_level
] = right_root
->commit_root
;
5290 extent_buffer_get(right_path
->nodes
[right_level
]);
5292 if (left_level
== 0)
5293 btrfs_item_key_to_cpu(left_path
->nodes
[left_level
],
5294 &left_key
, left_path
->slots
[left_level
]);
5296 btrfs_node_key_to_cpu(left_path
->nodes
[left_level
],
5297 &left_key
, left_path
->slots
[left_level
]);
5298 if (right_level
== 0)
5299 btrfs_item_key_to_cpu(right_path
->nodes
[right_level
],
5300 &right_key
, right_path
->slots
[right_level
]);
5302 btrfs_node_key_to_cpu(right_path
->nodes
[right_level
],
5303 &right_key
, right_path
->slots
[right_level
]);
5305 left_end_reached
= right_end_reached
= 0;
5306 advance_left
= advance_right
= 0;
5310 * We need to make sure the transaction does not get committed
5311 * while we do anything on commit roots. This means, we need to
5312 * join and leave transactions for every item that we process.
5314 if (trans
&& btrfs_should_end_transaction(trans
, left_root
)) {
5315 btrfs_release_path(left_path
);
5316 btrfs_release_path(right_path
);
5318 ret
= btrfs_end_transaction(trans
, left_root
);
5323 /* now rejoin the transaction */
5325 trans
= btrfs_join_transaction(left_root
);
5326 if (IS_ERR(trans
)) {
5327 ret
= PTR_ERR(trans
);
5332 spin_lock(&left_root
->root_times_lock
);
5333 ctransid
= btrfs_root_ctransid(&left_root
->root_item
);
5334 spin_unlock(&left_root
->root_times_lock
);
5335 if (ctransid
!= left_start_ctransid
)
5336 left_start_ctransid
= 0;
5338 spin_lock(&right_root
->root_times_lock
);
5339 ctransid
= btrfs_root_ctransid(&right_root
->root_item
);
5340 spin_unlock(&right_root
->root_times_lock
);
5341 if (ctransid
!= right_start_ctransid
)
5342 right_start_ctransid
= 0;
5344 if (!left_start_ctransid
|| !right_start_ctransid
) {
5345 WARN(1, KERN_WARNING
5346 "btrfs: btrfs_compare_tree detected "
5347 "a change in one of the trees while "
5348 "iterating. This is probably a "
5355 * the commit root may have changed, so start again
5358 left_path
->lowest_level
= left_level
;
5359 right_path
->lowest_level
= right_level
;
5360 ret
= btrfs_search_slot(NULL
, left_root
,
5361 &left_key
, left_path
, 0, 0);
5364 ret
= btrfs_search_slot(NULL
, right_root
,
5365 &right_key
, right_path
, 0, 0);
5370 if (advance_left
&& !left_end_reached
) {
5371 ret
= tree_advance(left_root
, left_path
, &left_level
,
5373 advance_left
!= ADVANCE_ONLY_NEXT
,
5376 left_end_reached
= ADVANCE
;
5379 if (advance_right
&& !right_end_reached
) {
5380 ret
= tree_advance(right_root
, right_path
, &right_level
,
5382 advance_right
!= ADVANCE_ONLY_NEXT
,
5385 right_end_reached
= ADVANCE
;
5389 if (left_end_reached
&& right_end_reached
) {
5392 } else if (left_end_reached
) {
5393 if (right_level
== 0) {
5394 ret
= changed_cb(left_root
, right_root
,
5395 left_path
, right_path
,
5397 BTRFS_COMPARE_TREE_DELETED
,
5402 advance_right
= ADVANCE
;
5404 } else if (right_end_reached
) {
5405 if (left_level
== 0) {
5406 ret
= changed_cb(left_root
, right_root
,
5407 left_path
, right_path
,
5409 BTRFS_COMPARE_TREE_NEW
,
5414 advance_left
= ADVANCE
;
5418 if (left_level
== 0 && right_level
== 0) {
5419 cmp
= btrfs_comp_cpu_keys(&left_key
, &right_key
);
5421 ret
= changed_cb(left_root
, right_root
,
5422 left_path
, right_path
,
5424 BTRFS_COMPARE_TREE_NEW
,
5428 advance_left
= ADVANCE
;
5429 } else if (cmp
> 0) {
5430 ret
= changed_cb(left_root
, right_root
,
5431 left_path
, right_path
,
5433 BTRFS_COMPARE_TREE_DELETED
,
5437 advance_right
= ADVANCE
;
5439 ret
= tree_compare_item(left_root
, left_path
,
5440 right_path
, tmp_buf
);
5442 ret
= changed_cb(left_root
, right_root
,
5443 left_path
, right_path
,
5445 BTRFS_COMPARE_TREE_CHANGED
,
5450 advance_left
= ADVANCE
;
5451 advance_right
= ADVANCE
;
5453 } else if (left_level
== right_level
) {
5454 cmp
= btrfs_comp_cpu_keys(&left_key
, &right_key
);
5456 advance_left
= ADVANCE
;
5457 } else if (cmp
> 0) {
5458 advance_right
= ADVANCE
;
5460 left_blockptr
= btrfs_node_blockptr(
5461 left_path
->nodes
[left_level
],
5462 left_path
->slots
[left_level
]);
5463 right_blockptr
= btrfs_node_blockptr(
5464 right_path
->nodes
[right_level
],
5465 right_path
->slots
[right_level
]);
5466 if (left_blockptr
== right_blockptr
) {
5468 * As we're on a shared block, don't
5469 * allow to go deeper.
5471 advance_left
= ADVANCE_ONLY_NEXT
;
5472 advance_right
= ADVANCE_ONLY_NEXT
;
5474 advance_left
= ADVANCE
;
5475 advance_right
= ADVANCE
;
5478 } else if (left_level
< right_level
) {
5479 advance_right
= ADVANCE
;
5481 advance_left
= ADVANCE
;
5486 btrfs_free_path(left_path
);
5487 btrfs_free_path(right_path
);
5492 ret
= btrfs_end_transaction(trans
, left_root
);
5494 btrfs_end_transaction(trans
, left_root
);
5501 * this is similar to btrfs_next_leaf, but does not try to preserve
5502 * and fixup the path. It looks for and returns the next key in the
5503 * tree based on the current path and the cache_only and min_trans
5506 * 0 is returned if another key is found, < 0 if there are any errors
5507 * and 1 is returned if there are no higher keys in the tree
5509 * path->keep_locks should be set to 1 on the search made before
5510 * calling this function.
5512 int btrfs_find_next_key(struct btrfs_root
*root
, struct btrfs_path
*path
,
5513 struct btrfs_key
*key
, int level
,
5514 int cache_only
, u64 min_trans
)
5517 struct extent_buffer
*c
;
5519 WARN_ON(!path
->keep_locks
);
5520 while (level
< BTRFS_MAX_LEVEL
) {
5521 if (!path
->nodes
[level
])
5524 slot
= path
->slots
[level
] + 1;
5525 c
= path
->nodes
[level
];
5527 if (slot
>= btrfs_header_nritems(c
)) {
5530 struct btrfs_key cur_key
;
5531 if (level
+ 1 >= BTRFS_MAX_LEVEL
||
5532 !path
->nodes
[level
+ 1])
5535 if (path
->locks
[level
+ 1]) {
5540 slot
= btrfs_header_nritems(c
) - 1;
5542 btrfs_item_key_to_cpu(c
, &cur_key
, slot
);
5544 btrfs_node_key_to_cpu(c
, &cur_key
, slot
);
5546 orig_lowest
= path
->lowest_level
;
5547 btrfs_release_path(path
);
5548 path
->lowest_level
= level
;
5549 ret
= btrfs_search_slot(NULL
, root
, &cur_key
, path
,
5551 path
->lowest_level
= orig_lowest
;
5555 c
= path
->nodes
[level
];
5556 slot
= path
->slots
[level
];
5563 btrfs_item_key_to_cpu(c
, key
, slot
);
5565 u64 blockptr
= btrfs_node_blockptr(c
, slot
);
5566 u64 gen
= btrfs_node_ptr_generation(c
, slot
);
5569 struct extent_buffer
*cur
;
5570 cur
= btrfs_find_tree_block(root
, blockptr
,
5571 btrfs_level_size(root
, level
- 1));
5573 btrfs_buffer_uptodate(cur
, gen
, 1) <= 0) {
5576 free_extent_buffer(cur
);
5579 free_extent_buffer(cur
);
5581 if (gen
< min_trans
) {
5585 btrfs_node_key_to_cpu(c
, key
, slot
);
5593 * search the tree again to find a leaf with greater keys
5594 * returns 0 if it found something or 1 if there are no greater leaves.
5595 * returns < 0 on io errors.
5597 int btrfs_next_leaf(struct btrfs_root
*root
, struct btrfs_path
*path
)
5599 return btrfs_next_old_leaf(root
, path
, 0);
5602 int btrfs_next_old_leaf(struct btrfs_root
*root
, struct btrfs_path
*path
,
5607 struct extent_buffer
*c
;
5608 struct extent_buffer
*next
;
5609 struct btrfs_key key
;
5612 int old_spinning
= path
->leave_spinning
;
5613 int next_rw_lock
= 0;
5615 nritems
= btrfs_header_nritems(path
->nodes
[0]);
5619 btrfs_item_key_to_cpu(path
->nodes
[0], &key
, nritems
- 1);
5624 btrfs_release_path(path
);
5626 path
->keep_locks
= 1;
5627 path
->leave_spinning
= 1;
5630 ret
= btrfs_search_old_slot(root
, &key
, path
, time_seq
);
5632 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
5633 path
->keep_locks
= 0;
5638 nritems
= btrfs_header_nritems(path
->nodes
[0]);
5640 * by releasing the path above we dropped all our locks. A balance
5641 * could have added more items next to the key that used to be
5642 * at the very end of the block. So, check again here and
5643 * advance the path if there are now more items available.
5645 if (nritems
> 0 && path
->slots
[0] < nritems
- 1) {
5652 while (level
< BTRFS_MAX_LEVEL
) {
5653 if (!path
->nodes
[level
]) {
5658 slot
= path
->slots
[level
] + 1;
5659 c
= path
->nodes
[level
];
5660 if (slot
>= btrfs_header_nritems(c
)) {
5662 if (level
== BTRFS_MAX_LEVEL
) {
5670 btrfs_tree_unlock_rw(next
, next_rw_lock
);
5671 free_extent_buffer(next
);
5675 next_rw_lock
= path
->locks
[level
];
5676 ret
= read_block_for_search(NULL
, root
, path
, &next
, level
,
5682 btrfs_release_path(path
);
5686 if (!path
->skip_locking
) {
5687 ret
= btrfs_try_tree_read_lock(next
);
5688 if (!ret
&& time_seq
) {
5690 * If we don't get the lock, we may be racing
5691 * with push_leaf_left, holding that lock while
5692 * itself waiting for the leaf we've currently
5693 * locked. To solve this situation, we give up
5694 * on our lock and cycle.
5696 free_extent_buffer(next
);
5697 btrfs_release_path(path
);
5702 btrfs_set_path_blocking(path
);
5703 btrfs_tree_read_lock(next
);
5704 btrfs_clear_path_blocking(path
, next
,
5707 next_rw_lock
= BTRFS_READ_LOCK
;
5711 path
->slots
[level
] = slot
;
5714 c
= path
->nodes
[level
];
5715 if (path
->locks
[level
])
5716 btrfs_tree_unlock_rw(c
, path
->locks
[level
]);
5718 free_extent_buffer(c
);
5719 path
->nodes
[level
] = next
;
5720 path
->slots
[level
] = 0;
5721 if (!path
->skip_locking
)
5722 path
->locks
[level
] = next_rw_lock
;
5726 ret
= read_block_for_search(NULL
, root
, path
, &next
, level
,
5732 btrfs_release_path(path
);
5736 if (!path
->skip_locking
) {
5737 ret
= btrfs_try_tree_read_lock(next
);
5739 btrfs_set_path_blocking(path
);
5740 btrfs_tree_read_lock(next
);
5741 btrfs_clear_path_blocking(path
, next
,
5744 next_rw_lock
= BTRFS_READ_LOCK
;
5749 unlock_up(path
, 0, 1, 0, NULL
);
5750 path
->leave_spinning
= old_spinning
;
5752 btrfs_set_path_blocking(path
);
5758 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
5759 * searching until it gets past min_objectid or finds an item of 'type'
5761 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5763 int btrfs_previous_item(struct btrfs_root
*root
,
5764 struct btrfs_path
*path
, u64 min_objectid
,
5767 struct btrfs_key found_key
;
5768 struct extent_buffer
*leaf
;
5773 if (path
->slots
[0] == 0) {
5774 btrfs_set_path_blocking(path
);
5775 ret
= btrfs_prev_leaf(root
, path
);
5781 leaf
= path
->nodes
[0];
5782 nritems
= btrfs_header_nritems(leaf
);
5785 if (path
->slots
[0] == nritems
)
5788 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
5789 if (found_key
.objectid
< min_objectid
)
5791 if (found_key
.type
== type
)
5793 if (found_key
.objectid
== min_objectid
&&
5794 found_key
.type
< type
)