workqueue: reorganize try_to_grab_pending() and __cancel_timer_work()
[linux-2.6/libata-dev.git] / fs / btrfs / ctree.c
blob9d7621f271ff1e5b3f2b57931d96dad265678d7d
1 /*
2 * Copyright (C) 2007,2008 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include <linux/rbtree.h>
22 #include "ctree.h"
23 #include "disk-io.h"
24 #include "transaction.h"
25 #include "print-tree.h"
26 #include "locking.h"
28 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
29 *root, struct btrfs_path *path, int level);
30 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
31 *root, struct btrfs_key *ins_key,
32 struct btrfs_path *path, int data_size, int extend);
33 static int push_node_left(struct btrfs_trans_handle *trans,
34 struct btrfs_root *root, struct extent_buffer *dst,
35 struct extent_buffer *src, int empty);
36 static int balance_node_right(struct btrfs_trans_handle *trans,
37 struct btrfs_root *root,
38 struct extent_buffer *dst_buf,
39 struct extent_buffer *src_buf);
40 static void del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
41 struct btrfs_path *path, int level, int slot,
42 int tree_mod_log);
43 static void tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
44 struct extent_buffer *eb);
45 struct extent_buffer *read_old_tree_block(struct btrfs_root *root, u64 bytenr,
46 u32 blocksize, u64 parent_transid,
47 u64 time_seq);
48 struct extent_buffer *btrfs_find_old_tree_block(struct btrfs_root *root,
49 u64 bytenr, u32 blocksize,
50 u64 time_seq);
52 struct btrfs_path *btrfs_alloc_path(void)
54 struct btrfs_path *path;
55 path = kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
56 return path;
60 * set all locked nodes in the path to blocking locks. This should
61 * be done before scheduling
63 noinline void btrfs_set_path_blocking(struct btrfs_path *p)
65 int i;
66 for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
67 if (!p->nodes[i] || !p->locks[i])
68 continue;
69 btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]);
70 if (p->locks[i] == BTRFS_READ_LOCK)
71 p->locks[i] = BTRFS_READ_LOCK_BLOCKING;
72 else if (p->locks[i] == BTRFS_WRITE_LOCK)
73 p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING;
78 * reset all the locked nodes in the patch to spinning locks.
80 * held is used to keep lockdep happy, when lockdep is enabled
81 * we set held to a blocking lock before we go around and
82 * retake all the spinlocks in the path. You can safely use NULL
83 * for held
85 noinline void btrfs_clear_path_blocking(struct btrfs_path *p,
86 struct extent_buffer *held, int held_rw)
88 int i;
90 #ifdef CONFIG_DEBUG_LOCK_ALLOC
91 /* lockdep really cares that we take all of these spinlocks
92 * in the right order. If any of the locks in the path are not
93 * currently blocking, it is going to complain. So, make really
94 * really sure by forcing the path to blocking before we clear
95 * the path blocking.
97 if (held) {
98 btrfs_set_lock_blocking_rw(held, held_rw);
99 if (held_rw == BTRFS_WRITE_LOCK)
100 held_rw = BTRFS_WRITE_LOCK_BLOCKING;
101 else if (held_rw == BTRFS_READ_LOCK)
102 held_rw = BTRFS_READ_LOCK_BLOCKING;
104 btrfs_set_path_blocking(p);
105 #endif
107 for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) {
108 if (p->nodes[i] && p->locks[i]) {
109 btrfs_clear_lock_blocking_rw(p->nodes[i], p->locks[i]);
110 if (p->locks[i] == BTRFS_WRITE_LOCK_BLOCKING)
111 p->locks[i] = BTRFS_WRITE_LOCK;
112 else if (p->locks[i] == BTRFS_READ_LOCK_BLOCKING)
113 p->locks[i] = BTRFS_READ_LOCK;
117 #ifdef CONFIG_DEBUG_LOCK_ALLOC
118 if (held)
119 btrfs_clear_lock_blocking_rw(held, held_rw);
120 #endif
123 /* this also releases the path */
124 void btrfs_free_path(struct btrfs_path *p)
126 if (!p)
127 return;
128 btrfs_release_path(p);
129 kmem_cache_free(btrfs_path_cachep, p);
133 * path release drops references on the extent buffers in the path
134 * and it drops any locks held by this path
136 * It is safe to call this on paths that no locks or extent buffers held.
138 noinline void btrfs_release_path(struct btrfs_path *p)
140 int i;
142 for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
143 p->slots[i] = 0;
144 if (!p->nodes[i])
145 continue;
146 if (p->locks[i]) {
147 btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
148 p->locks[i] = 0;
150 free_extent_buffer(p->nodes[i]);
151 p->nodes[i] = NULL;
156 * safely gets a reference on the root node of a tree. A lock
157 * is not taken, so a concurrent writer may put a different node
158 * at the root of the tree. See btrfs_lock_root_node for the
159 * looping required.
161 * The extent buffer returned by this has a reference taken, so
162 * it won't disappear. It may stop being the root of the tree
163 * at any time because there are no locks held.
165 struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
167 struct extent_buffer *eb;
169 while (1) {
170 rcu_read_lock();
171 eb = rcu_dereference(root->node);
174 * RCU really hurts here, we could free up the root node because
175 * it was cow'ed but we may not get the new root node yet so do
176 * the inc_not_zero dance and if it doesn't work then
177 * synchronize_rcu and try again.
179 if (atomic_inc_not_zero(&eb->refs)) {
180 rcu_read_unlock();
181 break;
183 rcu_read_unlock();
184 synchronize_rcu();
186 return eb;
189 /* loop around taking references on and locking the root node of the
190 * tree until you end up with a lock on the root. A locked buffer
191 * is returned, with a reference held.
193 struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
195 struct extent_buffer *eb;
197 while (1) {
198 eb = btrfs_root_node(root);
199 btrfs_tree_lock(eb);
200 if (eb == root->node)
201 break;
202 btrfs_tree_unlock(eb);
203 free_extent_buffer(eb);
205 return eb;
208 /* loop around taking references on and locking the root node of the
209 * tree until you end up with a lock on the root. A locked buffer
210 * is returned, with a reference held.
212 struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
214 struct extent_buffer *eb;
216 while (1) {
217 eb = btrfs_root_node(root);
218 btrfs_tree_read_lock(eb);
219 if (eb == root->node)
220 break;
221 btrfs_tree_read_unlock(eb);
222 free_extent_buffer(eb);
224 return eb;
227 /* cowonly root (everything not a reference counted cow subvolume), just get
228 * put onto a simple dirty list. transaction.c walks this to make sure they
229 * get properly updated on disk.
231 static void add_root_to_dirty_list(struct btrfs_root *root)
233 spin_lock(&root->fs_info->trans_lock);
234 if (root->track_dirty && list_empty(&root->dirty_list)) {
235 list_add(&root->dirty_list,
236 &root->fs_info->dirty_cowonly_roots);
238 spin_unlock(&root->fs_info->trans_lock);
242 * used by snapshot creation to make a copy of a root for a tree with
243 * a given objectid. The buffer with the new root node is returned in
244 * cow_ret, and this func returns zero on success or a negative error code.
246 int btrfs_copy_root(struct btrfs_trans_handle *trans,
247 struct btrfs_root *root,
248 struct extent_buffer *buf,
249 struct extent_buffer **cow_ret, u64 new_root_objectid)
251 struct extent_buffer *cow;
252 int ret = 0;
253 int level;
254 struct btrfs_disk_key disk_key;
256 WARN_ON(root->ref_cows && trans->transid !=
257 root->fs_info->running_transaction->transid);
258 WARN_ON(root->ref_cows && trans->transid != root->last_trans);
260 level = btrfs_header_level(buf);
261 if (level == 0)
262 btrfs_item_key(buf, &disk_key, 0);
263 else
264 btrfs_node_key(buf, &disk_key, 0);
266 cow = btrfs_alloc_free_block(trans, root, buf->len, 0,
267 new_root_objectid, &disk_key, level,
268 buf->start, 0);
269 if (IS_ERR(cow))
270 return PTR_ERR(cow);
272 copy_extent_buffer(cow, buf, 0, 0, cow->len);
273 btrfs_set_header_bytenr(cow, cow->start);
274 btrfs_set_header_generation(cow, trans->transid);
275 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
276 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
277 BTRFS_HEADER_FLAG_RELOC);
278 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
279 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
280 else
281 btrfs_set_header_owner(cow, new_root_objectid);
283 write_extent_buffer(cow, root->fs_info->fsid,
284 (unsigned long)btrfs_header_fsid(cow),
285 BTRFS_FSID_SIZE);
287 WARN_ON(btrfs_header_generation(buf) > trans->transid);
288 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
289 ret = btrfs_inc_ref(trans, root, cow, 1, 1);
290 else
291 ret = btrfs_inc_ref(trans, root, cow, 0, 1);
293 if (ret)
294 return ret;
296 btrfs_mark_buffer_dirty(cow);
297 *cow_ret = cow;
298 return 0;
301 enum mod_log_op {
302 MOD_LOG_KEY_REPLACE,
303 MOD_LOG_KEY_ADD,
304 MOD_LOG_KEY_REMOVE,
305 MOD_LOG_KEY_REMOVE_WHILE_FREEING,
306 MOD_LOG_KEY_REMOVE_WHILE_MOVING,
307 MOD_LOG_MOVE_KEYS,
308 MOD_LOG_ROOT_REPLACE,
311 struct tree_mod_move {
312 int dst_slot;
313 int nr_items;
316 struct tree_mod_root {
317 u64 logical;
318 u8 level;
321 struct tree_mod_elem {
322 struct rb_node node;
323 u64 index; /* shifted logical */
324 u64 seq;
325 enum mod_log_op op;
327 /* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */
328 int slot;
330 /* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */
331 u64 generation;
333 /* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */
334 struct btrfs_disk_key key;
335 u64 blockptr;
337 /* this is used for op == MOD_LOG_MOVE_KEYS */
338 struct tree_mod_move move;
340 /* this is used for op == MOD_LOG_ROOT_REPLACE */
341 struct tree_mod_root old_root;
344 static inline void tree_mod_log_read_lock(struct btrfs_fs_info *fs_info)
346 read_lock(&fs_info->tree_mod_log_lock);
349 static inline void tree_mod_log_read_unlock(struct btrfs_fs_info *fs_info)
351 read_unlock(&fs_info->tree_mod_log_lock);
354 static inline void tree_mod_log_write_lock(struct btrfs_fs_info *fs_info)
356 write_lock(&fs_info->tree_mod_log_lock);
359 static inline void tree_mod_log_write_unlock(struct btrfs_fs_info *fs_info)
361 write_unlock(&fs_info->tree_mod_log_lock);
365 * This adds a new blocker to the tree mod log's blocker list if the @elem
366 * passed does not already have a sequence number set. So when a caller expects
367 * to record tree modifications, it should ensure to set elem->seq to zero
368 * before calling btrfs_get_tree_mod_seq.
369 * Returns a fresh, unused tree log modification sequence number, even if no new
370 * blocker was added.
372 u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
373 struct seq_list *elem)
375 u64 seq;
377 tree_mod_log_write_lock(fs_info);
378 spin_lock(&fs_info->tree_mod_seq_lock);
379 if (!elem->seq) {
380 elem->seq = btrfs_inc_tree_mod_seq(fs_info);
381 list_add_tail(&elem->list, &fs_info->tree_mod_seq_list);
383 seq = btrfs_inc_tree_mod_seq(fs_info);
384 spin_unlock(&fs_info->tree_mod_seq_lock);
385 tree_mod_log_write_unlock(fs_info);
387 return seq;
390 void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
391 struct seq_list *elem)
393 struct rb_root *tm_root;
394 struct rb_node *node;
395 struct rb_node *next;
396 struct seq_list *cur_elem;
397 struct tree_mod_elem *tm;
398 u64 min_seq = (u64)-1;
399 u64 seq_putting = elem->seq;
401 if (!seq_putting)
402 return;
404 spin_lock(&fs_info->tree_mod_seq_lock);
405 list_del(&elem->list);
406 elem->seq = 0;
408 list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) {
409 if (cur_elem->seq < min_seq) {
410 if (seq_putting > cur_elem->seq) {
412 * blocker with lower sequence number exists, we
413 * cannot remove anything from the log
415 spin_unlock(&fs_info->tree_mod_seq_lock);
416 return;
418 min_seq = cur_elem->seq;
421 spin_unlock(&fs_info->tree_mod_seq_lock);
424 * we removed the lowest blocker from the blocker list, so there may be
425 * more processible delayed refs.
427 wake_up(&fs_info->tree_mod_seq_wait);
430 * anything that's lower than the lowest existing (read: blocked)
431 * sequence number can be removed from the tree.
433 tree_mod_log_write_lock(fs_info);
434 tm_root = &fs_info->tree_mod_log;
435 for (node = rb_first(tm_root); node; node = next) {
436 next = rb_next(node);
437 tm = container_of(node, struct tree_mod_elem, node);
438 if (tm->seq > min_seq)
439 continue;
440 rb_erase(node, tm_root);
441 kfree(tm);
443 tree_mod_log_write_unlock(fs_info);
447 * key order of the log:
448 * index -> sequence
450 * the index is the shifted logical of the *new* root node for root replace
451 * operations, or the shifted logical of the affected block for all other
452 * operations.
454 static noinline int
455 __tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm)
457 struct rb_root *tm_root;
458 struct rb_node **new;
459 struct rb_node *parent = NULL;
460 struct tree_mod_elem *cur;
462 BUG_ON(!tm || !tm->seq);
464 tm_root = &fs_info->tree_mod_log;
465 new = &tm_root->rb_node;
466 while (*new) {
467 cur = container_of(*new, struct tree_mod_elem, node);
468 parent = *new;
469 if (cur->index < tm->index)
470 new = &((*new)->rb_left);
471 else if (cur->index > tm->index)
472 new = &((*new)->rb_right);
473 else if (cur->seq < tm->seq)
474 new = &((*new)->rb_left);
475 else if (cur->seq > tm->seq)
476 new = &((*new)->rb_right);
477 else {
478 kfree(tm);
479 return -EEXIST;
483 rb_link_node(&tm->node, parent, new);
484 rb_insert_color(&tm->node, tm_root);
485 return 0;
489 * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it
490 * returns zero with the tree_mod_log_lock acquired. The caller must hold
491 * this until all tree mod log insertions are recorded in the rb tree and then
492 * call tree_mod_log_write_unlock() to release.
494 static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info,
495 struct extent_buffer *eb) {
496 smp_mb();
497 if (list_empty(&(fs_info)->tree_mod_seq_list))
498 return 1;
499 if (eb && btrfs_header_level(eb) == 0)
500 return 1;
502 tree_mod_log_write_lock(fs_info);
503 if (list_empty(&fs_info->tree_mod_seq_list)) {
505 * someone emptied the list while we were waiting for the lock.
506 * we must not add to the list when no blocker exists.
508 tree_mod_log_write_unlock(fs_info);
509 return 1;
512 return 0;
516 * This allocates memory and gets a tree modification sequence number.
518 * Returns <0 on error.
519 * Returns >0 (the added sequence number) on success.
521 static inline int tree_mod_alloc(struct btrfs_fs_info *fs_info, gfp_t flags,
522 struct tree_mod_elem **tm_ret)
524 struct tree_mod_elem *tm;
527 * once we switch from spin locks to something different, we should
528 * honor the flags parameter here.
530 tm = *tm_ret = kzalloc(sizeof(*tm), GFP_ATOMIC);
531 if (!tm)
532 return -ENOMEM;
534 tm->seq = btrfs_inc_tree_mod_seq(fs_info);
535 return tm->seq;
538 static inline int
539 __tree_mod_log_insert_key(struct btrfs_fs_info *fs_info,
540 struct extent_buffer *eb, int slot,
541 enum mod_log_op op, gfp_t flags)
543 int ret;
544 struct tree_mod_elem *tm;
546 ret = tree_mod_alloc(fs_info, flags, &tm);
547 if (ret < 0)
548 return ret;
550 tm->index = eb->start >> PAGE_CACHE_SHIFT;
551 if (op != MOD_LOG_KEY_ADD) {
552 btrfs_node_key(eb, &tm->key, slot);
553 tm->blockptr = btrfs_node_blockptr(eb, slot);
555 tm->op = op;
556 tm->slot = slot;
557 tm->generation = btrfs_node_ptr_generation(eb, slot);
559 return __tree_mod_log_insert(fs_info, tm);
562 static noinline int
563 tree_mod_log_insert_key_mask(struct btrfs_fs_info *fs_info,
564 struct extent_buffer *eb, int slot,
565 enum mod_log_op op, gfp_t flags)
567 int ret;
569 if (tree_mod_dont_log(fs_info, eb))
570 return 0;
572 ret = __tree_mod_log_insert_key(fs_info, eb, slot, op, flags);
574 tree_mod_log_write_unlock(fs_info);
575 return ret;
578 static noinline int
579 tree_mod_log_insert_key(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
580 int slot, enum mod_log_op op)
582 return tree_mod_log_insert_key_mask(fs_info, eb, slot, op, GFP_NOFS);
585 static noinline int
586 tree_mod_log_insert_key_locked(struct btrfs_fs_info *fs_info,
587 struct extent_buffer *eb, int slot,
588 enum mod_log_op op)
590 return __tree_mod_log_insert_key(fs_info, eb, slot, op, GFP_NOFS);
593 static noinline int
594 tree_mod_log_insert_move(struct btrfs_fs_info *fs_info,
595 struct extent_buffer *eb, int dst_slot, int src_slot,
596 int nr_items, gfp_t flags)
598 struct tree_mod_elem *tm;
599 int ret;
600 int i;
602 if (tree_mod_dont_log(fs_info, eb))
603 return 0;
605 for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
606 ret = tree_mod_log_insert_key_locked(fs_info, eb, i + dst_slot,
607 MOD_LOG_KEY_REMOVE_WHILE_MOVING);
608 BUG_ON(ret < 0);
611 ret = tree_mod_alloc(fs_info, flags, &tm);
612 if (ret < 0)
613 goto out;
615 tm->index = eb->start >> PAGE_CACHE_SHIFT;
616 tm->slot = src_slot;
617 tm->move.dst_slot = dst_slot;
618 tm->move.nr_items = nr_items;
619 tm->op = MOD_LOG_MOVE_KEYS;
621 ret = __tree_mod_log_insert(fs_info, tm);
622 out:
623 tree_mod_log_write_unlock(fs_info);
624 return ret;
627 static inline void
628 __tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, struct extent_buffer *eb)
630 int i;
631 u32 nritems;
632 int ret;
634 nritems = btrfs_header_nritems(eb);
635 for (i = nritems - 1; i >= 0; i--) {
636 ret = tree_mod_log_insert_key_locked(fs_info, eb, i,
637 MOD_LOG_KEY_REMOVE_WHILE_FREEING);
638 BUG_ON(ret < 0);
642 static noinline int
643 tree_mod_log_insert_root(struct btrfs_fs_info *fs_info,
644 struct extent_buffer *old_root,
645 struct extent_buffer *new_root, gfp_t flags)
647 struct tree_mod_elem *tm;
648 int ret;
650 if (tree_mod_dont_log(fs_info, NULL))
651 return 0;
653 __tree_mod_log_free_eb(fs_info, old_root);
655 ret = tree_mod_alloc(fs_info, flags, &tm);
656 if (ret < 0)
657 goto out;
659 tm->index = new_root->start >> PAGE_CACHE_SHIFT;
660 tm->old_root.logical = old_root->start;
661 tm->old_root.level = btrfs_header_level(old_root);
662 tm->generation = btrfs_header_generation(old_root);
663 tm->op = MOD_LOG_ROOT_REPLACE;
665 ret = __tree_mod_log_insert(fs_info, tm);
666 out:
667 tree_mod_log_write_unlock(fs_info);
668 return ret;
671 static struct tree_mod_elem *
672 __tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq,
673 int smallest)
675 struct rb_root *tm_root;
676 struct rb_node *node;
677 struct tree_mod_elem *cur = NULL;
678 struct tree_mod_elem *found = NULL;
679 u64 index = start >> PAGE_CACHE_SHIFT;
681 tree_mod_log_read_lock(fs_info);
682 tm_root = &fs_info->tree_mod_log;
683 node = tm_root->rb_node;
684 while (node) {
685 cur = container_of(node, struct tree_mod_elem, node);
686 if (cur->index < index) {
687 node = node->rb_left;
688 } else if (cur->index > index) {
689 node = node->rb_right;
690 } else if (cur->seq < min_seq) {
691 node = node->rb_left;
692 } else if (!smallest) {
693 /* we want the node with the highest seq */
694 if (found)
695 BUG_ON(found->seq > cur->seq);
696 found = cur;
697 node = node->rb_left;
698 } else if (cur->seq > min_seq) {
699 /* we want the node with the smallest seq */
700 if (found)
701 BUG_ON(found->seq < cur->seq);
702 found = cur;
703 node = node->rb_right;
704 } else {
705 found = cur;
706 break;
709 tree_mod_log_read_unlock(fs_info);
711 return found;
715 * this returns the element from the log with the smallest time sequence
716 * value that's in the log (the oldest log item). any element with a time
717 * sequence lower than min_seq will be ignored.
719 static struct tree_mod_elem *
720 tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start,
721 u64 min_seq)
723 return __tree_mod_log_search(fs_info, start, min_seq, 1);
727 * this returns the element from the log with the largest time sequence
728 * value that's in the log (the most recent log item). any element with
729 * a time sequence lower than min_seq will be ignored.
731 static struct tree_mod_elem *
732 tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq)
734 return __tree_mod_log_search(fs_info, start, min_seq, 0);
737 static noinline void
738 tree_mod_log_eb_copy(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
739 struct extent_buffer *src, unsigned long dst_offset,
740 unsigned long src_offset, int nr_items)
742 int ret;
743 int i;
745 if (tree_mod_dont_log(fs_info, NULL))
746 return;
748 if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0) {
749 tree_mod_log_write_unlock(fs_info);
750 return;
753 for (i = 0; i < nr_items; i++) {
754 ret = tree_mod_log_insert_key_locked(fs_info, src,
755 i + src_offset,
756 MOD_LOG_KEY_REMOVE);
757 BUG_ON(ret < 0);
758 ret = tree_mod_log_insert_key_locked(fs_info, dst,
759 i + dst_offset,
760 MOD_LOG_KEY_ADD);
761 BUG_ON(ret < 0);
764 tree_mod_log_write_unlock(fs_info);
767 static inline void
768 tree_mod_log_eb_move(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
769 int dst_offset, int src_offset, int nr_items)
771 int ret;
772 ret = tree_mod_log_insert_move(fs_info, dst, dst_offset, src_offset,
773 nr_items, GFP_NOFS);
774 BUG_ON(ret < 0);
777 static noinline void
778 tree_mod_log_set_node_key(struct btrfs_fs_info *fs_info,
779 struct extent_buffer *eb,
780 struct btrfs_disk_key *disk_key, int slot, int atomic)
782 int ret;
784 ret = tree_mod_log_insert_key_mask(fs_info, eb, slot,
785 MOD_LOG_KEY_REPLACE,
786 atomic ? GFP_ATOMIC : GFP_NOFS);
787 BUG_ON(ret < 0);
790 static noinline void
791 tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, struct extent_buffer *eb)
793 if (tree_mod_dont_log(fs_info, eb))
794 return;
796 __tree_mod_log_free_eb(fs_info, eb);
798 tree_mod_log_write_unlock(fs_info);
801 static noinline void
802 tree_mod_log_set_root_pointer(struct btrfs_root *root,
803 struct extent_buffer *new_root_node)
805 int ret;
806 ret = tree_mod_log_insert_root(root->fs_info, root->node,
807 new_root_node, GFP_NOFS);
808 BUG_ON(ret < 0);
812 * check if the tree block can be shared by multiple trees
814 int btrfs_block_can_be_shared(struct btrfs_root *root,
815 struct extent_buffer *buf)
818 * Tree blocks not in refernece counted trees and tree roots
819 * are never shared. If a block was allocated after the last
820 * snapshot and the block was not allocated by tree relocation,
821 * we know the block is not shared.
823 if (root->ref_cows &&
824 buf != root->node && buf != root->commit_root &&
825 (btrfs_header_generation(buf) <=
826 btrfs_root_last_snapshot(&root->root_item) ||
827 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
828 return 1;
829 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
830 if (root->ref_cows &&
831 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
832 return 1;
833 #endif
834 return 0;
837 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
838 struct btrfs_root *root,
839 struct extent_buffer *buf,
840 struct extent_buffer *cow,
841 int *last_ref)
843 u64 refs;
844 u64 owner;
845 u64 flags;
846 u64 new_flags = 0;
847 int ret;
850 * Backrefs update rules:
852 * Always use full backrefs for extent pointers in tree block
853 * allocated by tree relocation.
855 * If a shared tree block is no longer referenced by its owner
856 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
857 * use full backrefs for extent pointers in tree block.
859 * If a tree block is been relocating
860 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
861 * use full backrefs for extent pointers in tree block.
862 * The reason for this is some operations (such as drop tree)
863 * are only allowed for blocks use full backrefs.
866 if (btrfs_block_can_be_shared(root, buf)) {
867 ret = btrfs_lookup_extent_info(trans, root, buf->start,
868 buf->len, &refs, &flags);
869 if (ret)
870 return ret;
871 if (refs == 0) {
872 ret = -EROFS;
873 btrfs_std_error(root->fs_info, ret);
874 return ret;
876 } else {
877 refs = 1;
878 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
879 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
880 flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
881 else
882 flags = 0;
885 owner = btrfs_header_owner(buf);
886 BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
887 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
889 if (refs > 1) {
890 if ((owner == root->root_key.objectid ||
891 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
892 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
893 ret = btrfs_inc_ref(trans, root, buf, 1, 1);
894 BUG_ON(ret); /* -ENOMEM */
896 if (root->root_key.objectid ==
897 BTRFS_TREE_RELOC_OBJECTID) {
898 ret = btrfs_dec_ref(trans, root, buf, 0, 1);
899 BUG_ON(ret); /* -ENOMEM */
900 ret = btrfs_inc_ref(trans, root, cow, 1, 1);
901 BUG_ON(ret); /* -ENOMEM */
903 new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
904 } else {
906 if (root->root_key.objectid ==
907 BTRFS_TREE_RELOC_OBJECTID)
908 ret = btrfs_inc_ref(trans, root, cow, 1, 1);
909 else
910 ret = btrfs_inc_ref(trans, root, cow, 0, 1);
911 BUG_ON(ret); /* -ENOMEM */
913 if (new_flags != 0) {
914 ret = btrfs_set_disk_extent_flags(trans, root,
915 buf->start,
916 buf->len,
917 new_flags, 0);
918 if (ret)
919 return ret;
921 } else {
922 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
923 if (root->root_key.objectid ==
924 BTRFS_TREE_RELOC_OBJECTID)
925 ret = btrfs_inc_ref(trans, root, cow, 1, 1);
926 else
927 ret = btrfs_inc_ref(trans, root, cow, 0, 1);
928 BUG_ON(ret); /* -ENOMEM */
929 ret = btrfs_dec_ref(trans, root, buf, 1, 1);
930 BUG_ON(ret); /* -ENOMEM */
933 * don't log freeing in case we're freeing the root node, this
934 * is done by tree_mod_log_set_root_pointer later
936 if (buf != root->node && btrfs_header_level(buf) != 0)
937 tree_mod_log_free_eb(root->fs_info, buf);
938 clean_tree_block(trans, root, buf);
939 *last_ref = 1;
941 return 0;
945 * does the dirty work in cow of a single block. The parent block (if
946 * supplied) is updated to point to the new cow copy. The new buffer is marked
947 * dirty and returned locked. If you modify the block it needs to be marked
948 * dirty again.
950 * search_start -- an allocation hint for the new block
952 * empty_size -- a hint that you plan on doing more cow. This is the size in
953 * bytes the allocator should try to find free next to the block it returns.
954 * This is just a hint and may be ignored by the allocator.
956 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
957 struct btrfs_root *root,
958 struct extent_buffer *buf,
959 struct extent_buffer *parent, int parent_slot,
960 struct extent_buffer **cow_ret,
961 u64 search_start, u64 empty_size)
963 struct btrfs_disk_key disk_key;
964 struct extent_buffer *cow;
965 int level, ret;
966 int last_ref = 0;
967 int unlock_orig = 0;
968 u64 parent_start;
970 if (*cow_ret == buf)
971 unlock_orig = 1;
973 btrfs_assert_tree_locked(buf);
975 WARN_ON(root->ref_cows && trans->transid !=
976 root->fs_info->running_transaction->transid);
977 WARN_ON(root->ref_cows && trans->transid != root->last_trans);
979 level = btrfs_header_level(buf);
981 if (level == 0)
982 btrfs_item_key(buf, &disk_key, 0);
983 else
984 btrfs_node_key(buf, &disk_key, 0);
986 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
987 if (parent)
988 parent_start = parent->start;
989 else
990 parent_start = 0;
991 } else
992 parent_start = 0;
994 cow = btrfs_alloc_free_block(trans, root, buf->len, parent_start,
995 root->root_key.objectid, &disk_key,
996 level, search_start, empty_size);
997 if (IS_ERR(cow))
998 return PTR_ERR(cow);
1000 /* cow is set to blocking by btrfs_init_new_buffer */
1002 copy_extent_buffer(cow, buf, 0, 0, cow->len);
1003 btrfs_set_header_bytenr(cow, cow->start);
1004 btrfs_set_header_generation(cow, trans->transid);
1005 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
1006 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
1007 BTRFS_HEADER_FLAG_RELOC);
1008 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1009 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
1010 else
1011 btrfs_set_header_owner(cow, root->root_key.objectid);
1013 write_extent_buffer(cow, root->fs_info->fsid,
1014 (unsigned long)btrfs_header_fsid(cow),
1015 BTRFS_FSID_SIZE);
1017 ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
1018 if (ret) {
1019 btrfs_abort_transaction(trans, root, ret);
1020 return ret;
1023 if (root->ref_cows)
1024 btrfs_reloc_cow_block(trans, root, buf, cow);
1026 if (buf == root->node) {
1027 WARN_ON(parent && parent != buf);
1028 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1029 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1030 parent_start = buf->start;
1031 else
1032 parent_start = 0;
1034 extent_buffer_get(cow);
1035 tree_mod_log_set_root_pointer(root, cow);
1036 rcu_assign_pointer(root->node, cow);
1038 btrfs_free_tree_block(trans, root, buf, parent_start,
1039 last_ref);
1040 free_extent_buffer(buf);
1041 add_root_to_dirty_list(root);
1042 } else {
1043 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1044 parent_start = parent->start;
1045 else
1046 parent_start = 0;
1048 WARN_ON(trans->transid != btrfs_header_generation(parent));
1049 tree_mod_log_insert_key(root->fs_info, parent, parent_slot,
1050 MOD_LOG_KEY_REPLACE);
1051 btrfs_set_node_blockptr(parent, parent_slot,
1052 cow->start);
1053 btrfs_set_node_ptr_generation(parent, parent_slot,
1054 trans->transid);
1055 btrfs_mark_buffer_dirty(parent);
1056 btrfs_free_tree_block(trans, root, buf, parent_start,
1057 last_ref);
1059 if (unlock_orig)
1060 btrfs_tree_unlock(buf);
1061 free_extent_buffer_stale(buf);
1062 btrfs_mark_buffer_dirty(cow);
1063 *cow_ret = cow;
1064 return 0;
1068 * returns the logical address of the oldest predecessor of the given root.
1069 * entries older than time_seq are ignored.
1071 static struct tree_mod_elem *
1072 __tree_mod_log_oldest_root(struct btrfs_fs_info *fs_info,
1073 struct btrfs_root *root, u64 time_seq)
1075 struct tree_mod_elem *tm;
1076 struct tree_mod_elem *found = NULL;
1077 u64 root_logical = root->node->start;
1078 int looped = 0;
1080 if (!time_seq)
1081 return 0;
1084 * the very last operation that's logged for a root is the replacement
1085 * operation (if it is replaced at all). this has the index of the *new*
1086 * root, making it the very first operation that's logged for this root.
1088 while (1) {
1089 tm = tree_mod_log_search_oldest(fs_info, root_logical,
1090 time_seq);
1091 if (!looped && !tm)
1092 return 0;
1094 * if there are no tree operation for the oldest root, we simply
1095 * return it. this should only happen if that (old) root is at
1096 * level 0.
1098 if (!tm)
1099 break;
1102 * if there's an operation that's not a root replacement, we
1103 * found the oldest version of our root. normally, we'll find a
1104 * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
1106 if (tm->op != MOD_LOG_ROOT_REPLACE)
1107 break;
1109 found = tm;
1110 root_logical = tm->old_root.logical;
1111 BUG_ON(root_logical == root->node->start);
1112 looped = 1;
1115 /* if there's no old root to return, return what we found instead */
1116 if (!found)
1117 found = tm;
1119 return found;
1123 * tm is a pointer to the first operation to rewind within eb. then, all
1124 * previous operations will be rewinded (until we reach something older than
1125 * time_seq).
1127 static void
1128 __tree_mod_log_rewind(struct extent_buffer *eb, u64 time_seq,
1129 struct tree_mod_elem *first_tm)
1131 u32 n;
1132 struct rb_node *next;
1133 struct tree_mod_elem *tm = first_tm;
1134 unsigned long o_dst;
1135 unsigned long o_src;
1136 unsigned long p_size = sizeof(struct btrfs_key_ptr);
1138 n = btrfs_header_nritems(eb);
1139 while (tm && tm->seq >= time_seq) {
1141 * all the operations are recorded with the operator used for
1142 * the modification. as we're going backwards, we do the
1143 * opposite of each operation here.
1145 switch (tm->op) {
1146 case MOD_LOG_KEY_REMOVE_WHILE_FREEING:
1147 BUG_ON(tm->slot < n);
1148 case MOD_LOG_KEY_REMOVE_WHILE_MOVING:
1149 case MOD_LOG_KEY_REMOVE:
1150 btrfs_set_node_key(eb, &tm->key, tm->slot);
1151 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1152 btrfs_set_node_ptr_generation(eb, tm->slot,
1153 tm->generation);
1154 n++;
1155 break;
1156 case MOD_LOG_KEY_REPLACE:
1157 BUG_ON(tm->slot >= n);
1158 btrfs_set_node_key(eb, &tm->key, tm->slot);
1159 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1160 btrfs_set_node_ptr_generation(eb, tm->slot,
1161 tm->generation);
1162 break;
1163 case MOD_LOG_KEY_ADD:
1164 /* if a move operation is needed it's in the log */
1165 n--;
1166 break;
1167 case MOD_LOG_MOVE_KEYS:
1168 o_dst = btrfs_node_key_ptr_offset(tm->slot);
1169 o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot);
1170 memmove_extent_buffer(eb, o_dst, o_src,
1171 tm->move.nr_items * p_size);
1172 break;
1173 case MOD_LOG_ROOT_REPLACE:
1175 * this operation is special. for roots, this must be
1176 * handled explicitly before rewinding.
1177 * for non-roots, this operation may exist if the node
1178 * was a root: root A -> child B; then A gets empty and
1179 * B is promoted to the new root. in the mod log, we'll
1180 * have a root-replace operation for B, a tree block
1181 * that is no root. we simply ignore that operation.
1183 break;
1185 next = rb_next(&tm->node);
1186 if (!next)
1187 break;
1188 tm = container_of(next, struct tree_mod_elem, node);
1189 if (tm->index != first_tm->index)
1190 break;
1192 btrfs_set_header_nritems(eb, n);
1195 static struct extent_buffer *
1196 tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
1197 u64 time_seq)
1199 struct extent_buffer *eb_rewin;
1200 struct tree_mod_elem *tm;
1202 if (!time_seq)
1203 return eb;
1205 if (btrfs_header_level(eb) == 0)
1206 return eb;
1208 tm = tree_mod_log_search(fs_info, eb->start, time_seq);
1209 if (!tm)
1210 return eb;
1212 if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1213 BUG_ON(tm->slot != 0);
1214 eb_rewin = alloc_dummy_extent_buffer(eb->start,
1215 fs_info->tree_root->nodesize);
1216 BUG_ON(!eb_rewin);
1217 btrfs_set_header_bytenr(eb_rewin, eb->start);
1218 btrfs_set_header_backref_rev(eb_rewin,
1219 btrfs_header_backref_rev(eb));
1220 btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb));
1221 btrfs_set_header_level(eb_rewin, btrfs_header_level(eb));
1222 } else {
1223 eb_rewin = btrfs_clone_extent_buffer(eb);
1224 BUG_ON(!eb_rewin);
1227 extent_buffer_get(eb_rewin);
1228 free_extent_buffer(eb);
1230 __tree_mod_log_rewind(eb_rewin, time_seq, tm);
1232 return eb_rewin;
1236 * get_old_root() rewinds the state of @root's root node to the given @time_seq
1237 * value. If there are no changes, the current root->root_node is returned. If
1238 * anything changed in between, there's a fresh buffer allocated on which the
1239 * rewind operations are done. In any case, the returned buffer is read locked.
1240 * Returns NULL on error (with no locks held).
1242 static inline struct extent_buffer *
1243 get_old_root(struct btrfs_root *root, u64 time_seq)
1245 struct tree_mod_elem *tm;
1246 struct extent_buffer *eb;
1247 struct tree_mod_root *old_root = NULL;
1248 u64 old_generation = 0;
1249 u64 logical;
1251 eb = btrfs_read_lock_root_node(root);
1252 tm = __tree_mod_log_oldest_root(root->fs_info, root, time_seq);
1253 if (!tm)
1254 return root->node;
1256 if (tm->op == MOD_LOG_ROOT_REPLACE) {
1257 old_root = &tm->old_root;
1258 old_generation = tm->generation;
1259 logical = old_root->logical;
1260 } else {
1261 logical = root->node->start;
1264 tm = tree_mod_log_search(root->fs_info, logical, time_seq);
1265 if (old_root)
1266 eb = alloc_dummy_extent_buffer(logical, root->nodesize);
1267 else
1268 eb = btrfs_clone_extent_buffer(root->node);
1269 btrfs_tree_read_unlock(root->node);
1270 free_extent_buffer(root->node);
1271 if (!eb)
1272 return NULL;
1273 btrfs_tree_read_lock(eb);
1274 if (old_root) {
1275 btrfs_set_header_bytenr(eb, eb->start);
1276 btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV);
1277 btrfs_set_header_owner(eb, root->root_key.objectid);
1278 btrfs_set_header_level(eb, old_root->level);
1279 btrfs_set_header_generation(eb, old_generation);
1281 if (tm)
1282 __tree_mod_log_rewind(eb, time_seq, tm);
1283 else
1284 WARN_ON(btrfs_header_level(eb) != 0);
1285 extent_buffer_get(eb);
1287 return eb;
1290 static inline int should_cow_block(struct btrfs_trans_handle *trans,
1291 struct btrfs_root *root,
1292 struct extent_buffer *buf)
1294 /* ensure we can see the force_cow */
1295 smp_rmb();
1298 * We do not need to cow a block if
1299 * 1) this block is not created or changed in this transaction;
1300 * 2) this block does not belong to TREE_RELOC tree;
1301 * 3) the root is not forced COW.
1303 * What is forced COW:
1304 * when we create snapshot during commiting the transaction,
1305 * after we've finished coping src root, we must COW the shared
1306 * block to ensure the metadata consistency.
1308 if (btrfs_header_generation(buf) == trans->transid &&
1309 !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
1310 !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1311 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
1312 !root->force_cow)
1313 return 0;
1314 return 1;
1318 * cows a single block, see __btrfs_cow_block for the real work.
1319 * This version of it has extra checks so that a block isn't cow'd more than
1320 * once per transaction, as long as it hasn't been written yet
1322 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
1323 struct btrfs_root *root, struct extent_buffer *buf,
1324 struct extent_buffer *parent, int parent_slot,
1325 struct extent_buffer **cow_ret)
1327 u64 search_start;
1328 int ret;
1330 if (trans->transaction != root->fs_info->running_transaction) {
1331 printk(KERN_CRIT "trans %llu running %llu\n",
1332 (unsigned long long)trans->transid,
1333 (unsigned long long)
1334 root->fs_info->running_transaction->transid);
1335 WARN_ON(1);
1337 if (trans->transid != root->fs_info->generation) {
1338 printk(KERN_CRIT "trans %llu running %llu\n",
1339 (unsigned long long)trans->transid,
1340 (unsigned long long)root->fs_info->generation);
1341 WARN_ON(1);
1344 if (!should_cow_block(trans, root, buf)) {
1345 *cow_ret = buf;
1346 return 0;
1349 search_start = buf->start & ~((u64)(1024 * 1024 * 1024) - 1);
1351 if (parent)
1352 btrfs_set_lock_blocking(parent);
1353 btrfs_set_lock_blocking(buf);
1355 ret = __btrfs_cow_block(trans, root, buf, parent,
1356 parent_slot, cow_ret, search_start, 0);
1358 trace_btrfs_cow_block(root, buf, *cow_ret);
1360 return ret;
1364 * helper function for defrag to decide if two blocks pointed to by a
1365 * node are actually close by
1367 static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
1369 if (blocknr < other && other - (blocknr + blocksize) < 32768)
1370 return 1;
1371 if (blocknr > other && blocknr - (other + blocksize) < 32768)
1372 return 1;
1373 return 0;
1377 * compare two keys in a memcmp fashion
1379 static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
1381 struct btrfs_key k1;
1383 btrfs_disk_key_to_cpu(&k1, disk);
1385 return btrfs_comp_cpu_keys(&k1, k2);
1389 * same as comp_keys only with two btrfs_key's
1391 int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2)
1393 if (k1->objectid > k2->objectid)
1394 return 1;
1395 if (k1->objectid < k2->objectid)
1396 return -1;
1397 if (k1->type > k2->type)
1398 return 1;
1399 if (k1->type < k2->type)
1400 return -1;
1401 if (k1->offset > k2->offset)
1402 return 1;
1403 if (k1->offset < k2->offset)
1404 return -1;
1405 return 0;
1409 * this is used by the defrag code to go through all the
1410 * leaves pointed to by a node and reallocate them so that
1411 * disk order is close to key order
1413 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
1414 struct btrfs_root *root, struct extent_buffer *parent,
1415 int start_slot, int cache_only, u64 *last_ret,
1416 struct btrfs_key *progress)
1418 struct extent_buffer *cur;
1419 u64 blocknr;
1420 u64 gen;
1421 u64 search_start = *last_ret;
1422 u64 last_block = 0;
1423 u64 other;
1424 u32 parent_nritems;
1425 int end_slot;
1426 int i;
1427 int err = 0;
1428 int parent_level;
1429 int uptodate;
1430 u32 blocksize;
1431 int progress_passed = 0;
1432 struct btrfs_disk_key disk_key;
1434 parent_level = btrfs_header_level(parent);
1435 if (cache_only && parent_level != 1)
1436 return 0;
1438 if (trans->transaction != root->fs_info->running_transaction)
1439 WARN_ON(1);
1440 if (trans->transid != root->fs_info->generation)
1441 WARN_ON(1);
1443 parent_nritems = btrfs_header_nritems(parent);
1444 blocksize = btrfs_level_size(root, parent_level - 1);
1445 end_slot = parent_nritems;
1447 if (parent_nritems == 1)
1448 return 0;
1450 btrfs_set_lock_blocking(parent);
1452 for (i = start_slot; i < end_slot; i++) {
1453 int close = 1;
1455 btrfs_node_key(parent, &disk_key, i);
1456 if (!progress_passed && comp_keys(&disk_key, progress) < 0)
1457 continue;
1459 progress_passed = 1;
1460 blocknr = btrfs_node_blockptr(parent, i);
1461 gen = btrfs_node_ptr_generation(parent, i);
1462 if (last_block == 0)
1463 last_block = blocknr;
1465 if (i > 0) {
1466 other = btrfs_node_blockptr(parent, i - 1);
1467 close = close_blocks(blocknr, other, blocksize);
1469 if (!close && i < end_slot - 2) {
1470 other = btrfs_node_blockptr(parent, i + 1);
1471 close = close_blocks(blocknr, other, blocksize);
1473 if (close) {
1474 last_block = blocknr;
1475 continue;
1478 cur = btrfs_find_tree_block(root, blocknr, blocksize);
1479 if (cur)
1480 uptodate = btrfs_buffer_uptodate(cur, gen, 0);
1481 else
1482 uptodate = 0;
1483 if (!cur || !uptodate) {
1484 if (cache_only) {
1485 free_extent_buffer(cur);
1486 continue;
1488 if (!cur) {
1489 cur = read_tree_block(root, blocknr,
1490 blocksize, gen);
1491 if (!cur)
1492 return -EIO;
1493 } else if (!uptodate) {
1494 err = btrfs_read_buffer(cur, gen);
1495 if (err) {
1496 free_extent_buffer(cur);
1497 return err;
1501 if (search_start == 0)
1502 search_start = last_block;
1504 btrfs_tree_lock(cur);
1505 btrfs_set_lock_blocking(cur);
1506 err = __btrfs_cow_block(trans, root, cur, parent, i,
1507 &cur, search_start,
1508 min(16 * blocksize,
1509 (end_slot - i) * blocksize));
1510 if (err) {
1511 btrfs_tree_unlock(cur);
1512 free_extent_buffer(cur);
1513 break;
1515 search_start = cur->start;
1516 last_block = cur->start;
1517 *last_ret = search_start;
1518 btrfs_tree_unlock(cur);
1519 free_extent_buffer(cur);
1521 return err;
1525 * The leaf data grows from end-to-front in the node.
1526 * this returns the address of the start of the last item,
1527 * which is the stop of the leaf data stack
1529 static inline unsigned int leaf_data_end(struct btrfs_root *root,
1530 struct extent_buffer *leaf)
1532 u32 nr = btrfs_header_nritems(leaf);
1533 if (nr == 0)
1534 return BTRFS_LEAF_DATA_SIZE(root);
1535 return btrfs_item_offset_nr(leaf, nr - 1);
1540 * search for key in the extent_buffer. The items start at offset p,
1541 * and they are item_size apart. There are 'max' items in p.
1543 * the slot in the array is returned via slot, and it points to
1544 * the place where you would insert key if it is not found in
1545 * the array.
1547 * slot may point to max if the key is bigger than all of the keys
1549 static noinline int generic_bin_search(struct extent_buffer *eb,
1550 unsigned long p,
1551 int item_size, struct btrfs_key *key,
1552 int max, int *slot)
1554 int low = 0;
1555 int high = max;
1556 int mid;
1557 int ret;
1558 struct btrfs_disk_key *tmp = NULL;
1559 struct btrfs_disk_key unaligned;
1560 unsigned long offset;
1561 char *kaddr = NULL;
1562 unsigned long map_start = 0;
1563 unsigned long map_len = 0;
1564 int err;
1566 while (low < high) {
1567 mid = (low + high) / 2;
1568 offset = p + mid * item_size;
1570 if (!kaddr || offset < map_start ||
1571 (offset + sizeof(struct btrfs_disk_key)) >
1572 map_start + map_len) {
1574 err = map_private_extent_buffer(eb, offset,
1575 sizeof(struct btrfs_disk_key),
1576 &kaddr, &map_start, &map_len);
1578 if (!err) {
1579 tmp = (struct btrfs_disk_key *)(kaddr + offset -
1580 map_start);
1581 } else {
1582 read_extent_buffer(eb, &unaligned,
1583 offset, sizeof(unaligned));
1584 tmp = &unaligned;
1587 } else {
1588 tmp = (struct btrfs_disk_key *)(kaddr + offset -
1589 map_start);
1591 ret = comp_keys(tmp, key);
1593 if (ret < 0)
1594 low = mid + 1;
1595 else if (ret > 0)
1596 high = mid;
1597 else {
1598 *slot = mid;
1599 return 0;
1602 *slot = low;
1603 return 1;
1607 * simple bin_search frontend that does the right thing for
1608 * leaves vs nodes
1610 static int bin_search(struct extent_buffer *eb, struct btrfs_key *key,
1611 int level, int *slot)
1613 if (level == 0)
1614 return generic_bin_search(eb,
1615 offsetof(struct btrfs_leaf, items),
1616 sizeof(struct btrfs_item),
1617 key, btrfs_header_nritems(eb),
1618 slot);
1619 else
1620 return generic_bin_search(eb,
1621 offsetof(struct btrfs_node, ptrs),
1622 sizeof(struct btrfs_key_ptr),
1623 key, btrfs_header_nritems(eb),
1624 slot);
1627 int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key,
1628 int level, int *slot)
1630 return bin_search(eb, key, level, slot);
1633 static void root_add_used(struct btrfs_root *root, u32 size)
1635 spin_lock(&root->accounting_lock);
1636 btrfs_set_root_used(&root->root_item,
1637 btrfs_root_used(&root->root_item) + size);
1638 spin_unlock(&root->accounting_lock);
1641 static void root_sub_used(struct btrfs_root *root, u32 size)
1643 spin_lock(&root->accounting_lock);
1644 btrfs_set_root_used(&root->root_item,
1645 btrfs_root_used(&root->root_item) - size);
1646 spin_unlock(&root->accounting_lock);
1649 /* given a node and slot number, this reads the blocks it points to. The
1650 * extent buffer is returned with a reference taken (but unlocked).
1651 * NULL is returned on error.
1653 static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root,
1654 struct extent_buffer *parent, int slot)
1656 int level = btrfs_header_level(parent);
1657 if (slot < 0)
1658 return NULL;
1659 if (slot >= btrfs_header_nritems(parent))
1660 return NULL;
1662 BUG_ON(level == 0);
1664 return read_tree_block(root, btrfs_node_blockptr(parent, slot),
1665 btrfs_level_size(root, level - 1),
1666 btrfs_node_ptr_generation(parent, slot));
1670 * node level balancing, used to make sure nodes are in proper order for
1671 * item deletion. We balance from the top down, so we have to make sure
1672 * that a deletion won't leave an node completely empty later on.
1674 static noinline int balance_level(struct btrfs_trans_handle *trans,
1675 struct btrfs_root *root,
1676 struct btrfs_path *path, int level)
1678 struct extent_buffer *right = NULL;
1679 struct extent_buffer *mid;
1680 struct extent_buffer *left = NULL;
1681 struct extent_buffer *parent = NULL;
1682 int ret = 0;
1683 int wret;
1684 int pslot;
1685 int orig_slot = path->slots[level];
1686 u64 orig_ptr;
1688 if (level == 0)
1689 return 0;
1691 mid = path->nodes[level];
1693 WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
1694 path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
1695 WARN_ON(btrfs_header_generation(mid) != trans->transid);
1697 orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1699 if (level < BTRFS_MAX_LEVEL - 1) {
1700 parent = path->nodes[level + 1];
1701 pslot = path->slots[level + 1];
1705 * deal with the case where there is only one pointer in the root
1706 * by promoting the node below to a root
1708 if (!parent) {
1709 struct extent_buffer *child;
1711 if (btrfs_header_nritems(mid) != 1)
1712 return 0;
1714 /* promote the child to a root */
1715 child = read_node_slot(root, mid, 0);
1716 if (!child) {
1717 ret = -EROFS;
1718 btrfs_std_error(root->fs_info, ret);
1719 goto enospc;
1722 btrfs_tree_lock(child);
1723 btrfs_set_lock_blocking(child);
1724 ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
1725 if (ret) {
1726 btrfs_tree_unlock(child);
1727 free_extent_buffer(child);
1728 goto enospc;
1731 tree_mod_log_set_root_pointer(root, child);
1732 rcu_assign_pointer(root->node, child);
1734 add_root_to_dirty_list(root);
1735 btrfs_tree_unlock(child);
1737 path->locks[level] = 0;
1738 path->nodes[level] = NULL;
1739 clean_tree_block(trans, root, mid);
1740 btrfs_tree_unlock(mid);
1741 /* once for the path */
1742 free_extent_buffer(mid);
1744 root_sub_used(root, mid->len);
1745 btrfs_free_tree_block(trans, root, mid, 0, 1);
1746 /* once for the root ptr */
1747 free_extent_buffer_stale(mid);
1748 return 0;
1750 if (btrfs_header_nritems(mid) >
1751 BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
1752 return 0;
1754 left = read_node_slot(root, parent, pslot - 1);
1755 if (left) {
1756 btrfs_tree_lock(left);
1757 btrfs_set_lock_blocking(left);
1758 wret = btrfs_cow_block(trans, root, left,
1759 parent, pslot - 1, &left);
1760 if (wret) {
1761 ret = wret;
1762 goto enospc;
1765 right = read_node_slot(root, parent, pslot + 1);
1766 if (right) {
1767 btrfs_tree_lock(right);
1768 btrfs_set_lock_blocking(right);
1769 wret = btrfs_cow_block(trans, root, right,
1770 parent, pslot + 1, &right);
1771 if (wret) {
1772 ret = wret;
1773 goto enospc;
1777 /* first, try to make some room in the middle buffer */
1778 if (left) {
1779 orig_slot += btrfs_header_nritems(left);
1780 wret = push_node_left(trans, root, left, mid, 1);
1781 if (wret < 0)
1782 ret = wret;
1786 * then try to empty the right most buffer into the middle
1788 if (right) {
1789 wret = push_node_left(trans, root, mid, right, 1);
1790 if (wret < 0 && wret != -ENOSPC)
1791 ret = wret;
1792 if (btrfs_header_nritems(right) == 0) {
1793 clean_tree_block(trans, root, right);
1794 btrfs_tree_unlock(right);
1795 del_ptr(trans, root, path, level + 1, pslot + 1, 1);
1796 root_sub_used(root, right->len);
1797 btrfs_free_tree_block(trans, root, right, 0, 1);
1798 free_extent_buffer_stale(right);
1799 right = NULL;
1800 } else {
1801 struct btrfs_disk_key right_key;
1802 btrfs_node_key(right, &right_key, 0);
1803 tree_mod_log_set_node_key(root->fs_info, parent,
1804 &right_key, pslot + 1, 0);
1805 btrfs_set_node_key(parent, &right_key, pslot + 1);
1806 btrfs_mark_buffer_dirty(parent);
1809 if (btrfs_header_nritems(mid) == 1) {
1811 * we're not allowed to leave a node with one item in the
1812 * tree during a delete. A deletion from lower in the tree
1813 * could try to delete the only pointer in this node.
1814 * So, pull some keys from the left.
1815 * There has to be a left pointer at this point because
1816 * otherwise we would have pulled some pointers from the
1817 * right
1819 if (!left) {
1820 ret = -EROFS;
1821 btrfs_std_error(root->fs_info, ret);
1822 goto enospc;
1824 wret = balance_node_right(trans, root, mid, left);
1825 if (wret < 0) {
1826 ret = wret;
1827 goto enospc;
1829 if (wret == 1) {
1830 wret = push_node_left(trans, root, left, mid, 1);
1831 if (wret < 0)
1832 ret = wret;
1834 BUG_ON(wret == 1);
1836 if (btrfs_header_nritems(mid) == 0) {
1837 clean_tree_block(trans, root, mid);
1838 btrfs_tree_unlock(mid);
1839 del_ptr(trans, root, path, level + 1, pslot, 1);
1840 root_sub_used(root, mid->len);
1841 btrfs_free_tree_block(trans, root, mid, 0, 1);
1842 free_extent_buffer_stale(mid);
1843 mid = NULL;
1844 } else {
1845 /* update the parent key to reflect our changes */
1846 struct btrfs_disk_key mid_key;
1847 btrfs_node_key(mid, &mid_key, 0);
1848 tree_mod_log_set_node_key(root->fs_info, parent, &mid_key,
1849 pslot, 0);
1850 btrfs_set_node_key(parent, &mid_key, pslot);
1851 btrfs_mark_buffer_dirty(parent);
1854 /* update the path */
1855 if (left) {
1856 if (btrfs_header_nritems(left) > orig_slot) {
1857 extent_buffer_get(left);
1858 /* left was locked after cow */
1859 path->nodes[level] = left;
1860 path->slots[level + 1] -= 1;
1861 path->slots[level] = orig_slot;
1862 if (mid) {
1863 btrfs_tree_unlock(mid);
1864 free_extent_buffer(mid);
1866 } else {
1867 orig_slot -= btrfs_header_nritems(left);
1868 path->slots[level] = orig_slot;
1871 /* double check we haven't messed things up */
1872 if (orig_ptr !=
1873 btrfs_node_blockptr(path->nodes[level], path->slots[level]))
1874 BUG();
1875 enospc:
1876 if (right) {
1877 btrfs_tree_unlock(right);
1878 free_extent_buffer(right);
1880 if (left) {
1881 if (path->nodes[level] != left)
1882 btrfs_tree_unlock(left);
1883 free_extent_buffer(left);
1885 return ret;
1888 /* Node balancing for insertion. Here we only split or push nodes around
1889 * when they are completely full. This is also done top down, so we
1890 * have to be pessimistic.
1892 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
1893 struct btrfs_root *root,
1894 struct btrfs_path *path, int level)
1896 struct extent_buffer *right = NULL;
1897 struct extent_buffer *mid;
1898 struct extent_buffer *left = NULL;
1899 struct extent_buffer *parent = NULL;
1900 int ret = 0;
1901 int wret;
1902 int pslot;
1903 int orig_slot = path->slots[level];
1905 if (level == 0)
1906 return 1;
1908 mid = path->nodes[level];
1909 WARN_ON(btrfs_header_generation(mid) != trans->transid);
1911 if (level < BTRFS_MAX_LEVEL - 1) {
1912 parent = path->nodes[level + 1];
1913 pslot = path->slots[level + 1];
1916 if (!parent)
1917 return 1;
1919 left = read_node_slot(root, parent, pslot - 1);
1921 /* first, try to make some room in the middle buffer */
1922 if (left) {
1923 u32 left_nr;
1925 btrfs_tree_lock(left);
1926 btrfs_set_lock_blocking(left);
1928 left_nr = btrfs_header_nritems(left);
1929 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
1930 wret = 1;
1931 } else {
1932 ret = btrfs_cow_block(trans, root, left, parent,
1933 pslot - 1, &left);
1934 if (ret)
1935 wret = 1;
1936 else {
1937 wret = push_node_left(trans, root,
1938 left, mid, 0);
1941 if (wret < 0)
1942 ret = wret;
1943 if (wret == 0) {
1944 struct btrfs_disk_key disk_key;
1945 orig_slot += left_nr;
1946 btrfs_node_key(mid, &disk_key, 0);
1947 tree_mod_log_set_node_key(root->fs_info, parent,
1948 &disk_key, pslot, 0);
1949 btrfs_set_node_key(parent, &disk_key, pslot);
1950 btrfs_mark_buffer_dirty(parent);
1951 if (btrfs_header_nritems(left) > orig_slot) {
1952 path->nodes[level] = left;
1953 path->slots[level + 1] -= 1;
1954 path->slots[level] = orig_slot;
1955 btrfs_tree_unlock(mid);
1956 free_extent_buffer(mid);
1957 } else {
1958 orig_slot -=
1959 btrfs_header_nritems(left);
1960 path->slots[level] = orig_slot;
1961 btrfs_tree_unlock(left);
1962 free_extent_buffer(left);
1964 return 0;
1966 btrfs_tree_unlock(left);
1967 free_extent_buffer(left);
1969 right = read_node_slot(root, parent, pslot + 1);
1972 * then try to empty the right most buffer into the middle
1974 if (right) {
1975 u32 right_nr;
1977 btrfs_tree_lock(right);
1978 btrfs_set_lock_blocking(right);
1980 right_nr = btrfs_header_nritems(right);
1981 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
1982 wret = 1;
1983 } else {
1984 ret = btrfs_cow_block(trans, root, right,
1985 parent, pslot + 1,
1986 &right);
1987 if (ret)
1988 wret = 1;
1989 else {
1990 wret = balance_node_right(trans, root,
1991 right, mid);
1994 if (wret < 0)
1995 ret = wret;
1996 if (wret == 0) {
1997 struct btrfs_disk_key disk_key;
1999 btrfs_node_key(right, &disk_key, 0);
2000 tree_mod_log_set_node_key(root->fs_info, parent,
2001 &disk_key, pslot + 1, 0);
2002 btrfs_set_node_key(parent, &disk_key, pslot + 1);
2003 btrfs_mark_buffer_dirty(parent);
2005 if (btrfs_header_nritems(mid) <= orig_slot) {
2006 path->nodes[level] = right;
2007 path->slots[level + 1] += 1;
2008 path->slots[level] = orig_slot -
2009 btrfs_header_nritems(mid);
2010 btrfs_tree_unlock(mid);
2011 free_extent_buffer(mid);
2012 } else {
2013 btrfs_tree_unlock(right);
2014 free_extent_buffer(right);
2016 return 0;
2018 btrfs_tree_unlock(right);
2019 free_extent_buffer(right);
2021 return 1;
2025 * readahead one full node of leaves, finding things that are close
2026 * to the block in 'slot', and triggering ra on them.
2028 static void reada_for_search(struct btrfs_root *root,
2029 struct btrfs_path *path,
2030 int level, int slot, u64 objectid)
2032 struct extent_buffer *node;
2033 struct btrfs_disk_key disk_key;
2034 u32 nritems;
2035 u64 search;
2036 u64 target;
2037 u64 nread = 0;
2038 u64 gen;
2039 int direction = path->reada;
2040 struct extent_buffer *eb;
2041 u32 nr;
2042 u32 blocksize;
2043 u32 nscan = 0;
2045 if (level != 1)
2046 return;
2048 if (!path->nodes[level])
2049 return;
2051 node = path->nodes[level];
2053 search = btrfs_node_blockptr(node, slot);
2054 blocksize = btrfs_level_size(root, level - 1);
2055 eb = btrfs_find_tree_block(root, search, blocksize);
2056 if (eb) {
2057 free_extent_buffer(eb);
2058 return;
2061 target = search;
2063 nritems = btrfs_header_nritems(node);
2064 nr = slot;
2066 while (1) {
2067 if (direction < 0) {
2068 if (nr == 0)
2069 break;
2070 nr--;
2071 } else if (direction > 0) {
2072 nr++;
2073 if (nr >= nritems)
2074 break;
2076 if (path->reada < 0 && objectid) {
2077 btrfs_node_key(node, &disk_key, nr);
2078 if (btrfs_disk_key_objectid(&disk_key) != objectid)
2079 break;
2081 search = btrfs_node_blockptr(node, nr);
2082 if ((search <= target && target - search <= 65536) ||
2083 (search > target && search - target <= 65536)) {
2084 gen = btrfs_node_ptr_generation(node, nr);
2085 readahead_tree_block(root, search, blocksize, gen);
2086 nread += blocksize;
2088 nscan++;
2089 if ((nread > 65536 || nscan > 32))
2090 break;
2095 * returns -EAGAIN if it had to drop the path, or zero if everything was in
2096 * cache
2098 static noinline int reada_for_balance(struct btrfs_root *root,
2099 struct btrfs_path *path, int level)
2101 int slot;
2102 int nritems;
2103 struct extent_buffer *parent;
2104 struct extent_buffer *eb;
2105 u64 gen;
2106 u64 block1 = 0;
2107 u64 block2 = 0;
2108 int ret = 0;
2109 int blocksize;
2111 parent = path->nodes[level + 1];
2112 if (!parent)
2113 return 0;
2115 nritems = btrfs_header_nritems(parent);
2116 slot = path->slots[level + 1];
2117 blocksize = btrfs_level_size(root, level);
2119 if (slot > 0) {
2120 block1 = btrfs_node_blockptr(parent, slot - 1);
2121 gen = btrfs_node_ptr_generation(parent, slot - 1);
2122 eb = btrfs_find_tree_block(root, block1, blocksize);
2124 * if we get -eagain from btrfs_buffer_uptodate, we
2125 * don't want to return eagain here. That will loop
2126 * forever
2128 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2129 block1 = 0;
2130 free_extent_buffer(eb);
2132 if (slot + 1 < nritems) {
2133 block2 = btrfs_node_blockptr(parent, slot + 1);
2134 gen = btrfs_node_ptr_generation(parent, slot + 1);
2135 eb = btrfs_find_tree_block(root, block2, blocksize);
2136 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2137 block2 = 0;
2138 free_extent_buffer(eb);
2140 if (block1 || block2) {
2141 ret = -EAGAIN;
2143 /* release the whole path */
2144 btrfs_release_path(path);
2146 /* read the blocks */
2147 if (block1)
2148 readahead_tree_block(root, block1, blocksize, 0);
2149 if (block2)
2150 readahead_tree_block(root, block2, blocksize, 0);
2152 if (block1) {
2153 eb = read_tree_block(root, block1, blocksize, 0);
2154 free_extent_buffer(eb);
2156 if (block2) {
2157 eb = read_tree_block(root, block2, blocksize, 0);
2158 free_extent_buffer(eb);
2161 return ret;
2166 * when we walk down the tree, it is usually safe to unlock the higher layers
2167 * in the tree. The exceptions are when our path goes through slot 0, because
2168 * operations on the tree might require changing key pointers higher up in the
2169 * tree.
2171 * callers might also have set path->keep_locks, which tells this code to keep
2172 * the lock if the path points to the last slot in the block. This is part of
2173 * walking through the tree, and selecting the next slot in the higher block.
2175 * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so
2176 * if lowest_unlock is 1, level 0 won't be unlocked
2178 static noinline void unlock_up(struct btrfs_path *path, int level,
2179 int lowest_unlock, int min_write_lock_level,
2180 int *write_lock_level)
2182 int i;
2183 int skip_level = level;
2184 int no_skips = 0;
2185 struct extent_buffer *t;
2187 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2188 if (!path->nodes[i])
2189 break;
2190 if (!path->locks[i])
2191 break;
2192 if (!no_skips && path->slots[i] == 0) {
2193 skip_level = i + 1;
2194 continue;
2196 if (!no_skips && path->keep_locks) {
2197 u32 nritems;
2198 t = path->nodes[i];
2199 nritems = btrfs_header_nritems(t);
2200 if (nritems < 1 || path->slots[i] >= nritems - 1) {
2201 skip_level = i + 1;
2202 continue;
2205 if (skip_level < i && i >= lowest_unlock)
2206 no_skips = 1;
2208 t = path->nodes[i];
2209 if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
2210 btrfs_tree_unlock_rw(t, path->locks[i]);
2211 path->locks[i] = 0;
2212 if (write_lock_level &&
2213 i > min_write_lock_level &&
2214 i <= *write_lock_level) {
2215 *write_lock_level = i - 1;
2222 * This releases any locks held in the path starting at level and
2223 * going all the way up to the root.
2225 * btrfs_search_slot will keep the lock held on higher nodes in a few
2226 * corner cases, such as COW of the block at slot zero in the node. This
2227 * ignores those rules, and it should only be called when there are no
2228 * more updates to be done higher up in the tree.
2230 noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
2232 int i;
2234 if (path->keep_locks)
2235 return;
2237 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2238 if (!path->nodes[i])
2239 continue;
2240 if (!path->locks[i])
2241 continue;
2242 btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
2243 path->locks[i] = 0;
2248 * helper function for btrfs_search_slot. The goal is to find a block
2249 * in cache without setting the path to blocking. If we find the block
2250 * we return zero and the path is unchanged.
2252 * If we can't find the block, we set the path blocking and do some
2253 * reada. -EAGAIN is returned and the search must be repeated.
2255 static int
2256 read_block_for_search(struct btrfs_trans_handle *trans,
2257 struct btrfs_root *root, struct btrfs_path *p,
2258 struct extent_buffer **eb_ret, int level, int slot,
2259 struct btrfs_key *key, u64 time_seq)
2261 u64 blocknr;
2262 u64 gen;
2263 u32 blocksize;
2264 struct extent_buffer *b = *eb_ret;
2265 struct extent_buffer *tmp;
2266 int ret;
2268 blocknr = btrfs_node_blockptr(b, slot);
2269 gen = btrfs_node_ptr_generation(b, slot);
2270 blocksize = btrfs_level_size(root, level - 1);
2272 tmp = btrfs_find_tree_block(root, blocknr, blocksize);
2273 if (tmp) {
2274 /* first we do an atomic uptodate check */
2275 if (btrfs_buffer_uptodate(tmp, 0, 1) > 0) {
2276 if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
2278 * we found an up to date block without
2279 * sleeping, return
2280 * right away
2282 *eb_ret = tmp;
2283 return 0;
2285 /* the pages were up to date, but we failed
2286 * the generation number check. Do a full
2287 * read for the generation number that is correct.
2288 * We must do this without dropping locks so
2289 * we can trust our generation number
2291 free_extent_buffer(tmp);
2292 btrfs_set_path_blocking(p);
2294 /* now we're allowed to do a blocking uptodate check */
2295 tmp = read_tree_block(root, blocknr, blocksize, gen);
2296 if (tmp && btrfs_buffer_uptodate(tmp, gen, 0) > 0) {
2297 *eb_ret = tmp;
2298 return 0;
2300 free_extent_buffer(tmp);
2301 btrfs_release_path(p);
2302 return -EIO;
2307 * reduce lock contention at high levels
2308 * of the btree by dropping locks before
2309 * we read. Don't release the lock on the current
2310 * level because we need to walk this node to figure
2311 * out which blocks to read.
2313 btrfs_unlock_up_safe(p, level + 1);
2314 btrfs_set_path_blocking(p);
2316 free_extent_buffer(tmp);
2317 if (p->reada)
2318 reada_for_search(root, p, level, slot, key->objectid);
2320 btrfs_release_path(p);
2322 ret = -EAGAIN;
2323 tmp = read_tree_block(root, blocknr, blocksize, 0);
2324 if (tmp) {
2326 * If the read above didn't mark this buffer up to date,
2327 * it will never end up being up to date. Set ret to EIO now
2328 * and give up so that our caller doesn't loop forever
2329 * on our EAGAINs.
2331 if (!btrfs_buffer_uptodate(tmp, 0, 0))
2332 ret = -EIO;
2333 free_extent_buffer(tmp);
2335 return ret;
2339 * helper function for btrfs_search_slot. This does all of the checks
2340 * for node-level blocks and does any balancing required based on
2341 * the ins_len.
2343 * If no extra work was required, zero is returned. If we had to
2344 * drop the path, -EAGAIN is returned and btrfs_search_slot must
2345 * start over
2347 static int
2348 setup_nodes_for_search(struct btrfs_trans_handle *trans,
2349 struct btrfs_root *root, struct btrfs_path *p,
2350 struct extent_buffer *b, int level, int ins_len,
2351 int *write_lock_level)
2353 int ret;
2354 if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
2355 BTRFS_NODEPTRS_PER_BLOCK(root) - 3) {
2356 int sret;
2358 if (*write_lock_level < level + 1) {
2359 *write_lock_level = level + 1;
2360 btrfs_release_path(p);
2361 goto again;
2364 sret = reada_for_balance(root, p, level);
2365 if (sret)
2366 goto again;
2368 btrfs_set_path_blocking(p);
2369 sret = split_node(trans, root, p, level);
2370 btrfs_clear_path_blocking(p, NULL, 0);
2372 BUG_ON(sret > 0);
2373 if (sret) {
2374 ret = sret;
2375 goto done;
2377 b = p->nodes[level];
2378 } else if (ins_len < 0 && btrfs_header_nritems(b) <
2379 BTRFS_NODEPTRS_PER_BLOCK(root) / 2) {
2380 int sret;
2382 if (*write_lock_level < level + 1) {
2383 *write_lock_level = level + 1;
2384 btrfs_release_path(p);
2385 goto again;
2388 sret = reada_for_balance(root, p, level);
2389 if (sret)
2390 goto again;
2392 btrfs_set_path_blocking(p);
2393 sret = balance_level(trans, root, p, level);
2394 btrfs_clear_path_blocking(p, NULL, 0);
2396 if (sret) {
2397 ret = sret;
2398 goto done;
2400 b = p->nodes[level];
2401 if (!b) {
2402 btrfs_release_path(p);
2403 goto again;
2405 BUG_ON(btrfs_header_nritems(b) == 1);
2407 return 0;
2409 again:
2410 ret = -EAGAIN;
2411 done:
2412 return ret;
2416 * look for key in the tree. path is filled in with nodes along the way
2417 * if key is found, we return zero and you can find the item in the leaf
2418 * level of the path (level 0)
2420 * If the key isn't found, the path points to the slot where it should
2421 * be inserted, and 1 is returned. If there are other errors during the
2422 * search a negative error number is returned.
2424 * if ins_len > 0, nodes and leaves will be split as we walk down the
2425 * tree. if ins_len < 0, nodes will be merged as we walk down the tree (if
2426 * possible)
2428 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
2429 *root, struct btrfs_key *key, struct btrfs_path *p, int
2430 ins_len, int cow)
2432 struct extent_buffer *b;
2433 int slot;
2434 int ret;
2435 int err;
2436 int level;
2437 int lowest_unlock = 1;
2438 int root_lock;
2439 /* everything at write_lock_level or lower must be write locked */
2440 int write_lock_level = 0;
2441 u8 lowest_level = 0;
2442 int min_write_lock_level;
2444 lowest_level = p->lowest_level;
2445 WARN_ON(lowest_level && ins_len > 0);
2446 WARN_ON(p->nodes[0] != NULL);
2448 if (ins_len < 0) {
2449 lowest_unlock = 2;
2451 /* when we are removing items, we might have to go up to level
2452 * two as we update tree pointers Make sure we keep write
2453 * for those levels as well
2455 write_lock_level = 2;
2456 } else if (ins_len > 0) {
2458 * for inserting items, make sure we have a write lock on
2459 * level 1 so we can update keys
2461 write_lock_level = 1;
2464 if (!cow)
2465 write_lock_level = -1;
2467 if (cow && (p->keep_locks || p->lowest_level))
2468 write_lock_level = BTRFS_MAX_LEVEL;
2470 min_write_lock_level = write_lock_level;
2472 again:
2474 * we try very hard to do read locks on the root
2476 root_lock = BTRFS_READ_LOCK;
2477 level = 0;
2478 if (p->search_commit_root) {
2480 * the commit roots are read only
2481 * so we always do read locks
2483 b = root->commit_root;
2484 extent_buffer_get(b);
2485 level = btrfs_header_level(b);
2486 if (!p->skip_locking)
2487 btrfs_tree_read_lock(b);
2488 } else {
2489 if (p->skip_locking) {
2490 b = btrfs_root_node(root);
2491 level = btrfs_header_level(b);
2492 } else {
2493 /* we don't know the level of the root node
2494 * until we actually have it read locked
2496 b = btrfs_read_lock_root_node(root);
2497 level = btrfs_header_level(b);
2498 if (level <= write_lock_level) {
2499 /* whoops, must trade for write lock */
2500 btrfs_tree_read_unlock(b);
2501 free_extent_buffer(b);
2502 b = btrfs_lock_root_node(root);
2503 root_lock = BTRFS_WRITE_LOCK;
2505 /* the level might have changed, check again */
2506 level = btrfs_header_level(b);
2510 p->nodes[level] = b;
2511 if (!p->skip_locking)
2512 p->locks[level] = root_lock;
2514 while (b) {
2515 level = btrfs_header_level(b);
2518 * setup the path here so we can release it under lock
2519 * contention with the cow code
2521 if (cow) {
2523 * if we don't really need to cow this block
2524 * then we don't want to set the path blocking,
2525 * so we test it here
2527 if (!should_cow_block(trans, root, b))
2528 goto cow_done;
2530 btrfs_set_path_blocking(p);
2533 * must have write locks on this node and the
2534 * parent
2536 if (level + 1 > write_lock_level) {
2537 write_lock_level = level + 1;
2538 btrfs_release_path(p);
2539 goto again;
2542 err = btrfs_cow_block(trans, root, b,
2543 p->nodes[level + 1],
2544 p->slots[level + 1], &b);
2545 if (err) {
2546 ret = err;
2547 goto done;
2550 cow_done:
2551 BUG_ON(!cow && ins_len);
2553 p->nodes[level] = b;
2554 btrfs_clear_path_blocking(p, NULL, 0);
2557 * we have a lock on b and as long as we aren't changing
2558 * the tree, there is no way to for the items in b to change.
2559 * It is safe to drop the lock on our parent before we
2560 * go through the expensive btree search on b.
2562 * If cow is true, then we might be changing slot zero,
2563 * which may require changing the parent. So, we can't
2564 * drop the lock until after we know which slot we're
2565 * operating on.
2567 if (!cow)
2568 btrfs_unlock_up_safe(p, level + 1);
2570 ret = bin_search(b, key, level, &slot);
2572 if (level != 0) {
2573 int dec = 0;
2574 if (ret && slot > 0) {
2575 dec = 1;
2576 slot -= 1;
2578 p->slots[level] = slot;
2579 err = setup_nodes_for_search(trans, root, p, b, level,
2580 ins_len, &write_lock_level);
2581 if (err == -EAGAIN)
2582 goto again;
2583 if (err) {
2584 ret = err;
2585 goto done;
2587 b = p->nodes[level];
2588 slot = p->slots[level];
2591 * slot 0 is special, if we change the key
2592 * we have to update the parent pointer
2593 * which means we must have a write lock
2594 * on the parent
2596 if (slot == 0 && cow &&
2597 write_lock_level < level + 1) {
2598 write_lock_level = level + 1;
2599 btrfs_release_path(p);
2600 goto again;
2603 unlock_up(p, level, lowest_unlock,
2604 min_write_lock_level, &write_lock_level);
2606 if (level == lowest_level) {
2607 if (dec)
2608 p->slots[level]++;
2609 goto done;
2612 err = read_block_for_search(trans, root, p,
2613 &b, level, slot, key, 0);
2614 if (err == -EAGAIN)
2615 goto again;
2616 if (err) {
2617 ret = err;
2618 goto done;
2621 if (!p->skip_locking) {
2622 level = btrfs_header_level(b);
2623 if (level <= write_lock_level) {
2624 err = btrfs_try_tree_write_lock(b);
2625 if (!err) {
2626 btrfs_set_path_blocking(p);
2627 btrfs_tree_lock(b);
2628 btrfs_clear_path_blocking(p, b,
2629 BTRFS_WRITE_LOCK);
2631 p->locks[level] = BTRFS_WRITE_LOCK;
2632 } else {
2633 err = btrfs_try_tree_read_lock(b);
2634 if (!err) {
2635 btrfs_set_path_blocking(p);
2636 btrfs_tree_read_lock(b);
2637 btrfs_clear_path_blocking(p, b,
2638 BTRFS_READ_LOCK);
2640 p->locks[level] = BTRFS_READ_LOCK;
2642 p->nodes[level] = b;
2644 } else {
2645 p->slots[level] = slot;
2646 if (ins_len > 0 &&
2647 btrfs_leaf_free_space(root, b) < ins_len) {
2648 if (write_lock_level < 1) {
2649 write_lock_level = 1;
2650 btrfs_release_path(p);
2651 goto again;
2654 btrfs_set_path_blocking(p);
2655 err = split_leaf(trans, root, key,
2656 p, ins_len, ret == 0);
2657 btrfs_clear_path_blocking(p, NULL, 0);
2659 BUG_ON(err > 0);
2660 if (err) {
2661 ret = err;
2662 goto done;
2665 if (!p->search_for_split)
2666 unlock_up(p, level, lowest_unlock,
2667 min_write_lock_level, &write_lock_level);
2668 goto done;
2671 ret = 1;
2672 done:
2674 * we don't really know what they plan on doing with the path
2675 * from here on, so for now just mark it as blocking
2677 if (!p->leave_spinning)
2678 btrfs_set_path_blocking(p);
2679 if (ret < 0)
2680 btrfs_release_path(p);
2681 return ret;
2685 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2686 * current state of the tree together with the operations recorded in the tree
2687 * modification log to search for the key in a previous version of this tree, as
2688 * denoted by the time_seq parameter.
2690 * Naturally, there is no support for insert, delete or cow operations.
2692 * The resulting path and return value will be set up as if we called
2693 * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2695 int btrfs_search_old_slot(struct btrfs_root *root, struct btrfs_key *key,
2696 struct btrfs_path *p, u64 time_seq)
2698 struct extent_buffer *b;
2699 int slot;
2700 int ret;
2701 int err;
2702 int level;
2703 int lowest_unlock = 1;
2704 u8 lowest_level = 0;
2706 lowest_level = p->lowest_level;
2707 WARN_ON(p->nodes[0] != NULL);
2709 if (p->search_commit_root) {
2710 BUG_ON(time_seq);
2711 return btrfs_search_slot(NULL, root, key, p, 0, 0);
2714 again:
2715 b = get_old_root(root, time_seq);
2716 level = btrfs_header_level(b);
2717 p->locks[level] = BTRFS_READ_LOCK;
2719 while (b) {
2720 level = btrfs_header_level(b);
2721 p->nodes[level] = b;
2722 btrfs_clear_path_blocking(p, NULL, 0);
2725 * we have a lock on b and as long as we aren't changing
2726 * the tree, there is no way to for the items in b to change.
2727 * It is safe to drop the lock on our parent before we
2728 * go through the expensive btree search on b.
2730 btrfs_unlock_up_safe(p, level + 1);
2732 ret = bin_search(b, key, level, &slot);
2734 if (level != 0) {
2735 int dec = 0;
2736 if (ret && slot > 0) {
2737 dec = 1;
2738 slot -= 1;
2740 p->slots[level] = slot;
2741 unlock_up(p, level, lowest_unlock, 0, NULL);
2743 if (level == lowest_level) {
2744 if (dec)
2745 p->slots[level]++;
2746 goto done;
2749 err = read_block_for_search(NULL, root, p, &b, level,
2750 slot, key, time_seq);
2751 if (err == -EAGAIN)
2752 goto again;
2753 if (err) {
2754 ret = err;
2755 goto done;
2758 level = btrfs_header_level(b);
2759 err = btrfs_try_tree_read_lock(b);
2760 if (!err) {
2761 btrfs_set_path_blocking(p);
2762 btrfs_tree_read_lock(b);
2763 btrfs_clear_path_blocking(p, b,
2764 BTRFS_READ_LOCK);
2766 p->locks[level] = BTRFS_READ_LOCK;
2767 p->nodes[level] = b;
2768 b = tree_mod_log_rewind(root->fs_info, b, time_seq);
2769 if (b != p->nodes[level]) {
2770 btrfs_tree_unlock_rw(p->nodes[level],
2771 p->locks[level]);
2772 p->locks[level] = 0;
2773 p->nodes[level] = b;
2775 } else {
2776 p->slots[level] = slot;
2777 unlock_up(p, level, lowest_unlock, 0, NULL);
2778 goto done;
2781 ret = 1;
2782 done:
2783 if (!p->leave_spinning)
2784 btrfs_set_path_blocking(p);
2785 if (ret < 0)
2786 btrfs_release_path(p);
2788 return ret;
2792 * helper to use instead of search slot if no exact match is needed but
2793 * instead the next or previous item should be returned.
2794 * When find_higher is true, the next higher item is returned, the next lower
2795 * otherwise.
2796 * When return_any and find_higher are both true, and no higher item is found,
2797 * return the next lower instead.
2798 * When return_any is true and find_higher is false, and no lower item is found,
2799 * return the next higher instead.
2800 * It returns 0 if any item is found, 1 if none is found (tree empty), and
2801 * < 0 on error
2803 int btrfs_search_slot_for_read(struct btrfs_root *root,
2804 struct btrfs_key *key, struct btrfs_path *p,
2805 int find_higher, int return_any)
2807 int ret;
2808 struct extent_buffer *leaf;
2810 again:
2811 ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
2812 if (ret <= 0)
2813 return ret;
2815 * a return value of 1 means the path is at the position where the
2816 * item should be inserted. Normally this is the next bigger item,
2817 * but in case the previous item is the last in a leaf, path points
2818 * to the first free slot in the previous leaf, i.e. at an invalid
2819 * item.
2821 leaf = p->nodes[0];
2823 if (find_higher) {
2824 if (p->slots[0] >= btrfs_header_nritems(leaf)) {
2825 ret = btrfs_next_leaf(root, p);
2826 if (ret <= 0)
2827 return ret;
2828 if (!return_any)
2829 return 1;
2831 * no higher item found, return the next
2832 * lower instead
2834 return_any = 0;
2835 find_higher = 0;
2836 btrfs_release_path(p);
2837 goto again;
2839 } else {
2840 if (p->slots[0] == 0) {
2841 ret = btrfs_prev_leaf(root, p);
2842 if (ret < 0)
2843 return ret;
2844 if (!ret) {
2845 p->slots[0] = btrfs_header_nritems(leaf) - 1;
2846 return 0;
2848 if (!return_any)
2849 return 1;
2851 * no lower item found, return the next
2852 * higher instead
2854 return_any = 0;
2855 find_higher = 1;
2856 btrfs_release_path(p);
2857 goto again;
2858 } else {
2859 --p->slots[0];
2862 return 0;
2866 * adjust the pointers going up the tree, starting at level
2867 * making sure the right key of each node is points to 'key'.
2868 * This is used after shifting pointers to the left, so it stops
2869 * fixing up pointers when a given leaf/node is not in slot 0 of the
2870 * higher levels
2873 static void fixup_low_keys(struct btrfs_trans_handle *trans,
2874 struct btrfs_root *root, struct btrfs_path *path,
2875 struct btrfs_disk_key *key, int level)
2877 int i;
2878 struct extent_buffer *t;
2880 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2881 int tslot = path->slots[i];
2882 if (!path->nodes[i])
2883 break;
2884 t = path->nodes[i];
2885 tree_mod_log_set_node_key(root->fs_info, t, key, tslot, 1);
2886 btrfs_set_node_key(t, key, tslot);
2887 btrfs_mark_buffer_dirty(path->nodes[i]);
2888 if (tslot != 0)
2889 break;
2894 * update item key.
2896 * This function isn't completely safe. It's the caller's responsibility
2897 * that the new key won't break the order
2899 void btrfs_set_item_key_safe(struct btrfs_trans_handle *trans,
2900 struct btrfs_root *root, struct btrfs_path *path,
2901 struct btrfs_key *new_key)
2903 struct btrfs_disk_key disk_key;
2904 struct extent_buffer *eb;
2905 int slot;
2907 eb = path->nodes[0];
2908 slot = path->slots[0];
2909 if (slot > 0) {
2910 btrfs_item_key(eb, &disk_key, slot - 1);
2911 BUG_ON(comp_keys(&disk_key, new_key) >= 0);
2913 if (slot < btrfs_header_nritems(eb) - 1) {
2914 btrfs_item_key(eb, &disk_key, slot + 1);
2915 BUG_ON(comp_keys(&disk_key, new_key) <= 0);
2918 btrfs_cpu_key_to_disk(&disk_key, new_key);
2919 btrfs_set_item_key(eb, &disk_key, slot);
2920 btrfs_mark_buffer_dirty(eb);
2921 if (slot == 0)
2922 fixup_low_keys(trans, root, path, &disk_key, 1);
2926 * try to push data from one node into the next node left in the
2927 * tree.
2929 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
2930 * error, and > 0 if there was no room in the left hand block.
2932 static int push_node_left(struct btrfs_trans_handle *trans,
2933 struct btrfs_root *root, struct extent_buffer *dst,
2934 struct extent_buffer *src, int empty)
2936 int push_items = 0;
2937 int src_nritems;
2938 int dst_nritems;
2939 int ret = 0;
2941 src_nritems = btrfs_header_nritems(src);
2942 dst_nritems = btrfs_header_nritems(dst);
2943 push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
2944 WARN_ON(btrfs_header_generation(src) != trans->transid);
2945 WARN_ON(btrfs_header_generation(dst) != trans->transid);
2947 if (!empty && src_nritems <= 8)
2948 return 1;
2950 if (push_items <= 0)
2951 return 1;
2953 if (empty) {
2954 push_items = min(src_nritems, push_items);
2955 if (push_items < src_nritems) {
2956 /* leave at least 8 pointers in the node if
2957 * we aren't going to empty it
2959 if (src_nritems - push_items < 8) {
2960 if (push_items <= 8)
2961 return 1;
2962 push_items -= 8;
2965 } else
2966 push_items = min(src_nritems - 8, push_items);
2968 tree_mod_log_eb_copy(root->fs_info, dst, src, dst_nritems, 0,
2969 push_items);
2970 copy_extent_buffer(dst, src,
2971 btrfs_node_key_ptr_offset(dst_nritems),
2972 btrfs_node_key_ptr_offset(0),
2973 push_items * sizeof(struct btrfs_key_ptr));
2975 if (push_items < src_nritems) {
2976 tree_mod_log_eb_move(root->fs_info, src, 0, push_items,
2977 src_nritems - push_items);
2978 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
2979 btrfs_node_key_ptr_offset(push_items),
2980 (src_nritems - push_items) *
2981 sizeof(struct btrfs_key_ptr));
2983 btrfs_set_header_nritems(src, src_nritems - push_items);
2984 btrfs_set_header_nritems(dst, dst_nritems + push_items);
2985 btrfs_mark_buffer_dirty(src);
2986 btrfs_mark_buffer_dirty(dst);
2988 return ret;
2992 * try to push data from one node into the next node right in the
2993 * tree.
2995 * returns 0 if some ptrs were pushed, < 0 if there was some horrible
2996 * error, and > 0 if there was no room in the right hand block.
2998 * this will only push up to 1/2 the contents of the left node over
3000 static int balance_node_right(struct btrfs_trans_handle *trans,
3001 struct btrfs_root *root,
3002 struct extent_buffer *dst,
3003 struct extent_buffer *src)
3005 int push_items = 0;
3006 int max_push;
3007 int src_nritems;
3008 int dst_nritems;
3009 int ret = 0;
3011 WARN_ON(btrfs_header_generation(src) != trans->transid);
3012 WARN_ON(btrfs_header_generation(dst) != trans->transid);
3014 src_nritems = btrfs_header_nritems(src);
3015 dst_nritems = btrfs_header_nritems(dst);
3016 push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
3017 if (push_items <= 0)
3018 return 1;
3020 if (src_nritems < 4)
3021 return 1;
3023 max_push = src_nritems / 2 + 1;
3024 /* don't try to empty the node */
3025 if (max_push >= src_nritems)
3026 return 1;
3028 if (max_push < push_items)
3029 push_items = max_push;
3031 tree_mod_log_eb_move(root->fs_info, dst, push_items, 0, dst_nritems);
3032 memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
3033 btrfs_node_key_ptr_offset(0),
3034 (dst_nritems) *
3035 sizeof(struct btrfs_key_ptr));
3037 tree_mod_log_eb_copy(root->fs_info, dst, src, 0,
3038 src_nritems - push_items, push_items);
3039 copy_extent_buffer(dst, src,
3040 btrfs_node_key_ptr_offset(0),
3041 btrfs_node_key_ptr_offset(src_nritems - push_items),
3042 push_items * sizeof(struct btrfs_key_ptr));
3044 btrfs_set_header_nritems(src, src_nritems - push_items);
3045 btrfs_set_header_nritems(dst, dst_nritems + push_items);
3047 btrfs_mark_buffer_dirty(src);
3048 btrfs_mark_buffer_dirty(dst);
3050 return ret;
3054 * helper function to insert a new root level in the tree.
3055 * A new node is allocated, and a single item is inserted to
3056 * point to the existing root
3058 * returns zero on success or < 0 on failure.
3060 static noinline int insert_new_root(struct btrfs_trans_handle *trans,
3061 struct btrfs_root *root,
3062 struct btrfs_path *path, int level)
3064 u64 lower_gen;
3065 struct extent_buffer *lower;
3066 struct extent_buffer *c;
3067 struct extent_buffer *old;
3068 struct btrfs_disk_key lower_key;
3070 BUG_ON(path->nodes[level]);
3071 BUG_ON(path->nodes[level-1] != root->node);
3073 lower = path->nodes[level-1];
3074 if (level == 1)
3075 btrfs_item_key(lower, &lower_key, 0);
3076 else
3077 btrfs_node_key(lower, &lower_key, 0);
3079 c = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
3080 root->root_key.objectid, &lower_key,
3081 level, root->node->start, 0);
3082 if (IS_ERR(c))
3083 return PTR_ERR(c);
3085 root_add_used(root, root->nodesize);
3087 memset_extent_buffer(c, 0, 0, sizeof(struct btrfs_header));
3088 btrfs_set_header_nritems(c, 1);
3089 btrfs_set_header_level(c, level);
3090 btrfs_set_header_bytenr(c, c->start);
3091 btrfs_set_header_generation(c, trans->transid);
3092 btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV);
3093 btrfs_set_header_owner(c, root->root_key.objectid);
3095 write_extent_buffer(c, root->fs_info->fsid,
3096 (unsigned long)btrfs_header_fsid(c),
3097 BTRFS_FSID_SIZE);
3099 write_extent_buffer(c, root->fs_info->chunk_tree_uuid,
3100 (unsigned long)btrfs_header_chunk_tree_uuid(c),
3101 BTRFS_UUID_SIZE);
3103 btrfs_set_node_key(c, &lower_key, 0);
3104 btrfs_set_node_blockptr(c, 0, lower->start);
3105 lower_gen = btrfs_header_generation(lower);
3106 WARN_ON(lower_gen != trans->transid);
3108 btrfs_set_node_ptr_generation(c, 0, lower_gen);
3110 btrfs_mark_buffer_dirty(c);
3112 old = root->node;
3113 tree_mod_log_set_root_pointer(root, c);
3114 rcu_assign_pointer(root->node, c);
3116 /* the super has an extra ref to root->node */
3117 free_extent_buffer(old);
3119 add_root_to_dirty_list(root);
3120 extent_buffer_get(c);
3121 path->nodes[level] = c;
3122 path->locks[level] = BTRFS_WRITE_LOCK;
3123 path->slots[level] = 0;
3124 return 0;
3128 * worker function to insert a single pointer in a node.
3129 * the node should have enough room for the pointer already
3131 * slot and level indicate where you want the key to go, and
3132 * blocknr is the block the key points to.
3134 static void insert_ptr(struct btrfs_trans_handle *trans,
3135 struct btrfs_root *root, struct btrfs_path *path,
3136 struct btrfs_disk_key *key, u64 bytenr,
3137 int slot, int level)
3139 struct extent_buffer *lower;
3140 int nritems;
3141 int ret;
3143 BUG_ON(!path->nodes[level]);
3144 btrfs_assert_tree_locked(path->nodes[level]);
3145 lower = path->nodes[level];
3146 nritems = btrfs_header_nritems(lower);
3147 BUG_ON(slot > nritems);
3148 BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(root));
3149 if (slot != nritems) {
3150 if (level)
3151 tree_mod_log_eb_move(root->fs_info, lower, slot + 1,
3152 slot, nritems - slot);
3153 memmove_extent_buffer(lower,
3154 btrfs_node_key_ptr_offset(slot + 1),
3155 btrfs_node_key_ptr_offset(slot),
3156 (nritems - slot) * sizeof(struct btrfs_key_ptr));
3158 if (level) {
3159 ret = tree_mod_log_insert_key(root->fs_info, lower, slot,
3160 MOD_LOG_KEY_ADD);
3161 BUG_ON(ret < 0);
3163 btrfs_set_node_key(lower, key, slot);
3164 btrfs_set_node_blockptr(lower, slot, bytenr);
3165 WARN_ON(trans->transid == 0);
3166 btrfs_set_node_ptr_generation(lower, slot, trans->transid);
3167 btrfs_set_header_nritems(lower, nritems + 1);
3168 btrfs_mark_buffer_dirty(lower);
3172 * split the node at the specified level in path in two.
3173 * The path is corrected to point to the appropriate node after the split
3175 * Before splitting this tries to make some room in the node by pushing
3176 * left and right, if either one works, it returns right away.
3178 * returns 0 on success and < 0 on failure
3180 static noinline int split_node(struct btrfs_trans_handle *trans,
3181 struct btrfs_root *root,
3182 struct btrfs_path *path, int level)
3184 struct extent_buffer *c;
3185 struct extent_buffer *split;
3186 struct btrfs_disk_key disk_key;
3187 int mid;
3188 int ret;
3189 u32 c_nritems;
3191 c = path->nodes[level];
3192 WARN_ON(btrfs_header_generation(c) != trans->transid);
3193 if (c == root->node) {
3194 /* trying to split the root, lets make a new one */
3195 ret = insert_new_root(trans, root, path, level + 1);
3196 if (ret)
3197 return ret;
3198 } else {
3199 ret = push_nodes_for_insert(trans, root, path, level);
3200 c = path->nodes[level];
3201 if (!ret && btrfs_header_nritems(c) <
3202 BTRFS_NODEPTRS_PER_BLOCK(root) - 3)
3203 return 0;
3204 if (ret < 0)
3205 return ret;
3208 c_nritems = btrfs_header_nritems(c);
3209 mid = (c_nritems + 1) / 2;
3210 btrfs_node_key(c, &disk_key, mid);
3212 split = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
3213 root->root_key.objectid,
3214 &disk_key, level, c->start, 0);
3215 if (IS_ERR(split))
3216 return PTR_ERR(split);
3218 root_add_used(root, root->nodesize);
3220 memset_extent_buffer(split, 0, 0, sizeof(struct btrfs_header));
3221 btrfs_set_header_level(split, btrfs_header_level(c));
3222 btrfs_set_header_bytenr(split, split->start);
3223 btrfs_set_header_generation(split, trans->transid);
3224 btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV);
3225 btrfs_set_header_owner(split, root->root_key.objectid);
3226 write_extent_buffer(split, root->fs_info->fsid,
3227 (unsigned long)btrfs_header_fsid(split),
3228 BTRFS_FSID_SIZE);
3229 write_extent_buffer(split, root->fs_info->chunk_tree_uuid,
3230 (unsigned long)btrfs_header_chunk_tree_uuid(split),
3231 BTRFS_UUID_SIZE);
3233 tree_mod_log_eb_copy(root->fs_info, split, c, 0, mid, c_nritems - mid);
3234 copy_extent_buffer(split, c,
3235 btrfs_node_key_ptr_offset(0),
3236 btrfs_node_key_ptr_offset(mid),
3237 (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
3238 btrfs_set_header_nritems(split, c_nritems - mid);
3239 btrfs_set_header_nritems(c, mid);
3240 ret = 0;
3242 btrfs_mark_buffer_dirty(c);
3243 btrfs_mark_buffer_dirty(split);
3245 insert_ptr(trans, root, path, &disk_key, split->start,
3246 path->slots[level + 1] + 1, level + 1);
3248 if (path->slots[level] >= mid) {
3249 path->slots[level] -= mid;
3250 btrfs_tree_unlock(c);
3251 free_extent_buffer(c);
3252 path->nodes[level] = split;
3253 path->slots[level + 1] += 1;
3254 } else {
3255 btrfs_tree_unlock(split);
3256 free_extent_buffer(split);
3258 return ret;
3262 * how many bytes are required to store the items in a leaf. start
3263 * and nr indicate which items in the leaf to check. This totals up the
3264 * space used both by the item structs and the item data
3266 static int leaf_space_used(struct extent_buffer *l, int start, int nr)
3268 int data_len;
3269 int nritems = btrfs_header_nritems(l);
3270 int end = min(nritems, start + nr) - 1;
3272 if (!nr)
3273 return 0;
3274 data_len = btrfs_item_end_nr(l, start);
3275 data_len = data_len - btrfs_item_offset_nr(l, end);
3276 data_len += sizeof(struct btrfs_item) * nr;
3277 WARN_ON(data_len < 0);
3278 return data_len;
3282 * The space between the end of the leaf items and
3283 * the start of the leaf data. IOW, how much room
3284 * the leaf has left for both items and data
3286 noinline int btrfs_leaf_free_space(struct btrfs_root *root,
3287 struct extent_buffer *leaf)
3289 int nritems = btrfs_header_nritems(leaf);
3290 int ret;
3291 ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
3292 if (ret < 0) {
3293 printk(KERN_CRIT "leaf free space ret %d, leaf data size %lu, "
3294 "used %d nritems %d\n",
3295 ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root),
3296 leaf_space_used(leaf, 0, nritems), nritems);
3298 return ret;
3302 * min slot controls the lowest index we're willing to push to the
3303 * right. We'll push up to and including min_slot, but no lower
3305 static noinline int __push_leaf_right(struct btrfs_trans_handle *trans,
3306 struct btrfs_root *root,
3307 struct btrfs_path *path,
3308 int data_size, int empty,
3309 struct extent_buffer *right,
3310 int free_space, u32 left_nritems,
3311 u32 min_slot)
3313 struct extent_buffer *left = path->nodes[0];
3314 struct extent_buffer *upper = path->nodes[1];
3315 struct btrfs_map_token token;
3316 struct btrfs_disk_key disk_key;
3317 int slot;
3318 u32 i;
3319 int push_space = 0;
3320 int push_items = 0;
3321 struct btrfs_item *item;
3322 u32 nr;
3323 u32 right_nritems;
3324 u32 data_end;
3325 u32 this_item_size;
3327 btrfs_init_map_token(&token);
3329 if (empty)
3330 nr = 0;
3331 else
3332 nr = max_t(u32, 1, min_slot);
3334 if (path->slots[0] >= left_nritems)
3335 push_space += data_size;
3337 slot = path->slots[1];
3338 i = left_nritems - 1;
3339 while (i >= nr) {
3340 item = btrfs_item_nr(left, i);
3342 if (!empty && push_items > 0) {
3343 if (path->slots[0] > i)
3344 break;
3345 if (path->slots[0] == i) {
3346 int space = btrfs_leaf_free_space(root, left);
3347 if (space + push_space * 2 > free_space)
3348 break;
3352 if (path->slots[0] == i)
3353 push_space += data_size;
3355 this_item_size = btrfs_item_size(left, item);
3356 if (this_item_size + sizeof(*item) + push_space > free_space)
3357 break;
3359 push_items++;
3360 push_space += this_item_size + sizeof(*item);
3361 if (i == 0)
3362 break;
3363 i--;
3366 if (push_items == 0)
3367 goto out_unlock;
3369 if (!empty && push_items == left_nritems)
3370 WARN_ON(1);
3372 /* push left to right */
3373 right_nritems = btrfs_header_nritems(right);
3375 push_space = btrfs_item_end_nr(left, left_nritems - push_items);
3376 push_space -= leaf_data_end(root, left);
3378 /* make room in the right data area */
3379 data_end = leaf_data_end(root, right);
3380 memmove_extent_buffer(right,
3381 btrfs_leaf_data(right) + data_end - push_space,
3382 btrfs_leaf_data(right) + data_end,
3383 BTRFS_LEAF_DATA_SIZE(root) - data_end);
3385 /* copy from the left data area */
3386 copy_extent_buffer(right, left, btrfs_leaf_data(right) +
3387 BTRFS_LEAF_DATA_SIZE(root) - push_space,
3388 btrfs_leaf_data(left) + leaf_data_end(root, left),
3389 push_space);
3391 memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
3392 btrfs_item_nr_offset(0),
3393 right_nritems * sizeof(struct btrfs_item));
3395 /* copy the items from left to right */
3396 copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
3397 btrfs_item_nr_offset(left_nritems - push_items),
3398 push_items * sizeof(struct btrfs_item));
3400 /* update the item pointers */
3401 right_nritems += push_items;
3402 btrfs_set_header_nritems(right, right_nritems);
3403 push_space = BTRFS_LEAF_DATA_SIZE(root);
3404 for (i = 0; i < right_nritems; i++) {
3405 item = btrfs_item_nr(right, i);
3406 push_space -= btrfs_token_item_size(right, item, &token);
3407 btrfs_set_token_item_offset(right, item, push_space, &token);
3410 left_nritems -= push_items;
3411 btrfs_set_header_nritems(left, left_nritems);
3413 if (left_nritems)
3414 btrfs_mark_buffer_dirty(left);
3415 else
3416 clean_tree_block(trans, root, left);
3418 btrfs_mark_buffer_dirty(right);
3420 btrfs_item_key(right, &disk_key, 0);
3421 btrfs_set_node_key(upper, &disk_key, slot + 1);
3422 btrfs_mark_buffer_dirty(upper);
3424 /* then fixup the leaf pointer in the path */
3425 if (path->slots[0] >= left_nritems) {
3426 path->slots[0] -= left_nritems;
3427 if (btrfs_header_nritems(path->nodes[0]) == 0)
3428 clean_tree_block(trans, root, path->nodes[0]);
3429 btrfs_tree_unlock(path->nodes[0]);
3430 free_extent_buffer(path->nodes[0]);
3431 path->nodes[0] = right;
3432 path->slots[1] += 1;
3433 } else {
3434 btrfs_tree_unlock(right);
3435 free_extent_buffer(right);
3437 return 0;
3439 out_unlock:
3440 btrfs_tree_unlock(right);
3441 free_extent_buffer(right);
3442 return 1;
3446 * push some data in the path leaf to the right, trying to free up at
3447 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3449 * returns 1 if the push failed because the other node didn't have enough
3450 * room, 0 if everything worked out and < 0 if there were major errors.
3452 * this will push starting from min_slot to the end of the leaf. It won't
3453 * push any slot lower than min_slot
3455 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
3456 *root, struct btrfs_path *path,
3457 int min_data_size, int data_size,
3458 int empty, u32 min_slot)
3460 struct extent_buffer *left = path->nodes[0];
3461 struct extent_buffer *right;
3462 struct extent_buffer *upper;
3463 int slot;
3464 int free_space;
3465 u32 left_nritems;
3466 int ret;
3468 if (!path->nodes[1])
3469 return 1;
3471 slot = path->slots[1];
3472 upper = path->nodes[1];
3473 if (slot >= btrfs_header_nritems(upper) - 1)
3474 return 1;
3476 btrfs_assert_tree_locked(path->nodes[1]);
3478 right = read_node_slot(root, upper, slot + 1);
3479 if (right == NULL)
3480 return 1;
3482 btrfs_tree_lock(right);
3483 btrfs_set_lock_blocking(right);
3485 free_space = btrfs_leaf_free_space(root, right);
3486 if (free_space < data_size)
3487 goto out_unlock;
3489 /* cow and double check */
3490 ret = btrfs_cow_block(trans, root, right, upper,
3491 slot + 1, &right);
3492 if (ret)
3493 goto out_unlock;
3495 free_space = btrfs_leaf_free_space(root, right);
3496 if (free_space < data_size)
3497 goto out_unlock;
3499 left_nritems = btrfs_header_nritems(left);
3500 if (left_nritems == 0)
3501 goto out_unlock;
3503 return __push_leaf_right(trans, root, path, min_data_size, empty,
3504 right, free_space, left_nritems, min_slot);
3505 out_unlock:
3506 btrfs_tree_unlock(right);
3507 free_extent_buffer(right);
3508 return 1;
3512 * push some data in the path leaf to the left, trying to free up at
3513 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3515 * max_slot can put a limit on how far into the leaf we'll push items. The
3516 * item at 'max_slot' won't be touched. Use (u32)-1 to make us do all the
3517 * items
3519 static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
3520 struct btrfs_root *root,
3521 struct btrfs_path *path, int data_size,
3522 int empty, struct extent_buffer *left,
3523 int free_space, u32 right_nritems,
3524 u32 max_slot)
3526 struct btrfs_disk_key disk_key;
3527 struct extent_buffer *right = path->nodes[0];
3528 int i;
3529 int push_space = 0;
3530 int push_items = 0;
3531 struct btrfs_item *item;
3532 u32 old_left_nritems;
3533 u32 nr;
3534 int ret = 0;
3535 u32 this_item_size;
3536 u32 old_left_item_size;
3537 struct btrfs_map_token token;
3539 btrfs_init_map_token(&token);
3541 if (empty)
3542 nr = min(right_nritems, max_slot);
3543 else
3544 nr = min(right_nritems - 1, max_slot);
3546 for (i = 0; i < nr; i++) {
3547 item = btrfs_item_nr(right, i);
3549 if (!empty && push_items > 0) {
3550 if (path->slots[0] < i)
3551 break;
3552 if (path->slots[0] == i) {
3553 int space = btrfs_leaf_free_space(root, right);
3554 if (space + push_space * 2 > free_space)
3555 break;
3559 if (path->slots[0] == i)
3560 push_space += data_size;
3562 this_item_size = btrfs_item_size(right, item);
3563 if (this_item_size + sizeof(*item) + push_space > free_space)
3564 break;
3566 push_items++;
3567 push_space += this_item_size + sizeof(*item);
3570 if (push_items == 0) {
3571 ret = 1;
3572 goto out;
3574 if (!empty && push_items == btrfs_header_nritems(right))
3575 WARN_ON(1);
3577 /* push data from right to left */
3578 copy_extent_buffer(left, right,
3579 btrfs_item_nr_offset(btrfs_header_nritems(left)),
3580 btrfs_item_nr_offset(0),
3581 push_items * sizeof(struct btrfs_item));
3583 push_space = BTRFS_LEAF_DATA_SIZE(root) -
3584 btrfs_item_offset_nr(right, push_items - 1);
3586 copy_extent_buffer(left, right, btrfs_leaf_data(left) +
3587 leaf_data_end(root, left) - push_space,
3588 btrfs_leaf_data(right) +
3589 btrfs_item_offset_nr(right, push_items - 1),
3590 push_space);
3591 old_left_nritems = btrfs_header_nritems(left);
3592 BUG_ON(old_left_nritems <= 0);
3594 old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
3595 for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
3596 u32 ioff;
3598 item = btrfs_item_nr(left, i);
3600 ioff = btrfs_token_item_offset(left, item, &token);
3601 btrfs_set_token_item_offset(left, item,
3602 ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size),
3603 &token);
3605 btrfs_set_header_nritems(left, old_left_nritems + push_items);
3607 /* fixup right node */
3608 if (push_items > right_nritems) {
3609 printk(KERN_CRIT "push items %d nr %u\n", push_items,
3610 right_nritems);
3611 WARN_ON(1);
3614 if (push_items < right_nritems) {
3615 push_space = btrfs_item_offset_nr(right, push_items - 1) -
3616 leaf_data_end(root, right);
3617 memmove_extent_buffer(right, btrfs_leaf_data(right) +
3618 BTRFS_LEAF_DATA_SIZE(root) - push_space,
3619 btrfs_leaf_data(right) +
3620 leaf_data_end(root, right), push_space);
3622 memmove_extent_buffer(right, btrfs_item_nr_offset(0),
3623 btrfs_item_nr_offset(push_items),
3624 (btrfs_header_nritems(right) - push_items) *
3625 sizeof(struct btrfs_item));
3627 right_nritems -= push_items;
3628 btrfs_set_header_nritems(right, right_nritems);
3629 push_space = BTRFS_LEAF_DATA_SIZE(root);
3630 for (i = 0; i < right_nritems; i++) {
3631 item = btrfs_item_nr(right, i);
3633 push_space = push_space - btrfs_token_item_size(right,
3634 item, &token);
3635 btrfs_set_token_item_offset(right, item, push_space, &token);
3638 btrfs_mark_buffer_dirty(left);
3639 if (right_nritems)
3640 btrfs_mark_buffer_dirty(right);
3641 else
3642 clean_tree_block(trans, root, right);
3644 btrfs_item_key(right, &disk_key, 0);
3645 fixup_low_keys(trans, root, path, &disk_key, 1);
3647 /* then fixup the leaf pointer in the path */
3648 if (path->slots[0] < push_items) {
3649 path->slots[0] += old_left_nritems;
3650 btrfs_tree_unlock(path->nodes[0]);
3651 free_extent_buffer(path->nodes[0]);
3652 path->nodes[0] = left;
3653 path->slots[1] -= 1;
3654 } else {
3655 btrfs_tree_unlock(left);
3656 free_extent_buffer(left);
3657 path->slots[0] -= push_items;
3659 BUG_ON(path->slots[0] < 0);
3660 return ret;
3661 out:
3662 btrfs_tree_unlock(left);
3663 free_extent_buffer(left);
3664 return ret;
3668 * push some data in the path leaf to the left, trying to free up at
3669 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3671 * max_slot can put a limit on how far into the leaf we'll push items. The
3672 * item at 'max_slot' won't be touched. Use (u32)-1 to make us push all the
3673 * items
3675 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
3676 *root, struct btrfs_path *path, int min_data_size,
3677 int data_size, int empty, u32 max_slot)
3679 struct extent_buffer *right = path->nodes[0];
3680 struct extent_buffer *left;
3681 int slot;
3682 int free_space;
3683 u32 right_nritems;
3684 int ret = 0;
3686 slot = path->slots[1];
3687 if (slot == 0)
3688 return 1;
3689 if (!path->nodes[1])
3690 return 1;
3692 right_nritems = btrfs_header_nritems(right);
3693 if (right_nritems == 0)
3694 return 1;
3696 btrfs_assert_tree_locked(path->nodes[1]);
3698 left = read_node_slot(root, path->nodes[1], slot - 1);
3699 if (left == NULL)
3700 return 1;
3702 btrfs_tree_lock(left);
3703 btrfs_set_lock_blocking(left);
3705 free_space = btrfs_leaf_free_space(root, left);
3706 if (free_space < data_size) {
3707 ret = 1;
3708 goto out;
3711 /* cow and double check */
3712 ret = btrfs_cow_block(trans, root, left,
3713 path->nodes[1], slot - 1, &left);
3714 if (ret) {
3715 /* we hit -ENOSPC, but it isn't fatal here */
3716 if (ret == -ENOSPC)
3717 ret = 1;
3718 goto out;
3721 free_space = btrfs_leaf_free_space(root, left);
3722 if (free_space < data_size) {
3723 ret = 1;
3724 goto out;
3727 return __push_leaf_left(trans, root, path, min_data_size,
3728 empty, left, free_space, right_nritems,
3729 max_slot);
3730 out:
3731 btrfs_tree_unlock(left);
3732 free_extent_buffer(left);
3733 return ret;
3737 * split the path's leaf in two, making sure there is at least data_size
3738 * available for the resulting leaf level of the path.
3740 static noinline void copy_for_split(struct btrfs_trans_handle *trans,
3741 struct btrfs_root *root,
3742 struct btrfs_path *path,
3743 struct extent_buffer *l,
3744 struct extent_buffer *right,
3745 int slot, int mid, int nritems)
3747 int data_copy_size;
3748 int rt_data_off;
3749 int i;
3750 struct btrfs_disk_key disk_key;
3751 struct btrfs_map_token token;
3753 btrfs_init_map_token(&token);
3755 nritems = nritems - mid;
3756 btrfs_set_header_nritems(right, nritems);
3757 data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l);
3759 copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
3760 btrfs_item_nr_offset(mid),
3761 nritems * sizeof(struct btrfs_item));
3763 copy_extent_buffer(right, l,
3764 btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
3765 data_copy_size, btrfs_leaf_data(l) +
3766 leaf_data_end(root, l), data_copy_size);
3768 rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
3769 btrfs_item_end_nr(l, mid);
3771 for (i = 0; i < nritems; i++) {
3772 struct btrfs_item *item = btrfs_item_nr(right, i);
3773 u32 ioff;
3775 ioff = btrfs_token_item_offset(right, item, &token);
3776 btrfs_set_token_item_offset(right, item,
3777 ioff + rt_data_off, &token);
3780 btrfs_set_header_nritems(l, mid);
3781 btrfs_item_key(right, &disk_key, 0);
3782 insert_ptr(trans, root, path, &disk_key, right->start,
3783 path->slots[1] + 1, 1);
3785 btrfs_mark_buffer_dirty(right);
3786 btrfs_mark_buffer_dirty(l);
3787 BUG_ON(path->slots[0] != slot);
3789 if (mid <= slot) {
3790 btrfs_tree_unlock(path->nodes[0]);
3791 free_extent_buffer(path->nodes[0]);
3792 path->nodes[0] = right;
3793 path->slots[0] -= mid;
3794 path->slots[1] += 1;
3795 } else {
3796 btrfs_tree_unlock(right);
3797 free_extent_buffer(right);
3800 BUG_ON(path->slots[0] < 0);
3804 * double splits happen when we need to insert a big item in the middle
3805 * of a leaf. A double split can leave us with 3 mostly empty leaves:
3806 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
3807 * A B C
3809 * We avoid this by trying to push the items on either side of our target
3810 * into the adjacent leaves. If all goes well we can avoid the double split
3811 * completely.
3813 static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
3814 struct btrfs_root *root,
3815 struct btrfs_path *path,
3816 int data_size)
3818 int ret;
3819 int progress = 0;
3820 int slot;
3821 u32 nritems;
3823 slot = path->slots[0];
3826 * try to push all the items after our slot into the
3827 * right leaf
3829 ret = push_leaf_right(trans, root, path, 1, data_size, 0, slot);
3830 if (ret < 0)
3831 return ret;
3833 if (ret == 0)
3834 progress++;
3836 nritems = btrfs_header_nritems(path->nodes[0]);
3838 * our goal is to get our slot at the start or end of a leaf. If
3839 * we've done so we're done
3841 if (path->slots[0] == 0 || path->slots[0] == nritems)
3842 return 0;
3844 if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
3845 return 0;
3847 /* try to push all the items before our slot into the next leaf */
3848 slot = path->slots[0];
3849 ret = push_leaf_left(trans, root, path, 1, data_size, 0, slot);
3850 if (ret < 0)
3851 return ret;
3853 if (ret == 0)
3854 progress++;
3856 if (progress)
3857 return 0;
3858 return 1;
3862 * split the path's leaf in two, making sure there is at least data_size
3863 * available for the resulting leaf level of the path.
3865 * returns 0 if all went well and < 0 on failure.
3867 static noinline int split_leaf(struct btrfs_trans_handle *trans,
3868 struct btrfs_root *root,
3869 struct btrfs_key *ins_key,
3870 struct btrfs_path *path, int data_size,
3871 int extend)
3873 struct btrfs_disk_key disk_key;
3874 struct extent_buffer *l;
3875 u32 nritems;
3876 int mid;
3877 int slot;
3878 struct extent_buffer *right;
3879 int ret = 0;
3880 int wret;
3881 int split;
3882 int num_doubles = 0;
3883 int tried_avoid_double = 0;
3885 l = path->nodes[0];
3886 slot = path->slots[0];
3887 if (extend && data_size + btrfs_item_size_nr(l, slot) +
3888 sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(root))
3889 return -EOVERFLOW;
3891 /* first try to make some room by pushing left and right */
3892 if (data_size) {
3893 wret = push_leaf_right(trans, root, path, data_size,
3894 data_size, 0, 0);
3895 if (wret < 0)
3896 return wret;
3897 if (wret) {
3898 wret = push_leaf_left(trans, root, path, data_size,
3899 data_size, 0, (u32)-1);
3900 if (wret < 0)
3901 return wret;
3903 l = path->nodes[0];
3905 /* did the pushes work? */
3906 if (btrfs_leaf_free_space(root, l) >= data_size)
3907 return 0;
3910 if (!path->nodes[1]) {
3911 ret = insert_new_root(trans, root, path, 1);
3912 if (ret)
3913 return ret;
3915 again:
3916 split = 1;
3917 l = path->nodes[0];
3918 slot = path->slots[0];
3919 nritems = btrfs_header_nritems(l);
3920 mid = (nritems + 1) / 2;
3922 if (mid <= slot) {
3923 if (nritems == 1 ||
3924 leaf_space_used(l, mid, nritems - mid) + data_size >
3925 BTRFS_LEAF_DATA_SIZE(root)) {
3926 if (slot >= nritems) {
3927 split = 0;
3928 } else {
3929 mid = slot;
3930 if (mid != nritems &&
3931 leaf_space_used(l, mid, nritems - mid) +
3932 data_size > BTRFS_LEAF_DATA_SIZE(root)) {
3933 if (data_size && !tried_avoid_double)
3934 goto push_for_double;
3935 split = 2;
3939 } else {
3940 if (leaf_space_used(l, 0, mid) + data_size >
3941 BTRFS_LEAF_DATA_SIZE(root)) {
3942 if (!extend && data_size && slot == 0) {
3943 split = 0;
3944 } else if ((extend || !data_size) && slot == 0) {
3945 mid = 1;
3946 } else {
3947 mid = slot;
3948 if (mid != nritems &&
3949 leaf_space_used(l, mid, nritems - mid) +
3950 data_size > BTRFS_LEAF_DATA_SIZE(root)) {
3951 if (data_size && !tried_avoid_double)
3952 goto push_for_double;
3953 split = 2 ;
3959 if (split == 0)
3960 btrfs_cpu_key_to_disk(&disk_key, ins_key);
3961 else
3962 btrfs_item_key(l, &disk_key, mid);
3964 right = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
3965 root->root_key.objectid,
3966 &disk_key, 0, l->start, 0);
3967 if (IS_ERR(right))
3968 return PTR_ERR(right);
3970 root_add_used(root, root->leafsize);
3972 memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header));
3973 btrfs_set_header_bytenr(right, right->start);
3974 btrfs_set_header_generation(right, trans->transid);
3975 btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV);
3976 btrfs_set_header_owner(right, root->root_key.objectid);
3977 btrfs_set_header_level(right, 0);
3978 write_extent_buffer(right, root->fs_info->fsid,
3979 (unsigned long)btrfs_header_fsid(right),
3980 BTRFS_FSID_SIZE);
3982 write_extent_buffer(right, root->fs_info->chunk_tree_uuid,
3983 (unsigned long)btrfs_header_chunk_tree_uuid(right),
3984 BTRFS_UUID_SIZE);
3986 if (split == 0) {
3987 if (mid <= slot) {
3988 btrfs_set_header_nritems(right, 0);
3989 insert_ptr(trans, root, path, &disk_key, right->start,
3990 path->slots[1] + 1, 1);
3991 btrfs_tree_unlock(path->nodes[0]);
3992 free_extent_buffer(path->nodes[0]);
3993 path->nodes[0] = right;
3994 path->slots[0] = 0;
3995 path->slots[1] += 1;
3996 } else {
3997 btrfs_set_header_nritems(right, 0);
3998 insert_ptr(trans, root, path, &disk_key, right->start,
3999 path->slots[1], 1);
4000 btrfs_tree_unlock(path->nodes[0]);
4001 free_extent_buffer(path->nodes[0]);
4002 path->nodes[0] = right;
4003 path->slots[0] = 0;
4004 if (path->slots[1] == 0)
4005 fixup_low_keys(trans, root, path,
4006 &disk_key, 1);
4008 btrfs_mark_buffer_dirty(right);
4009 return ret;
4012 copy_for_split(trans, root, path, l, right, slot, mid, nritems);
4014 if (split == 2) {
4015 BUG_ON(num_doubles != 0);
4016 num_doubles++;
4017 goto again;
4020 return 0;
4022 push_for_double:
4023 push_for_double_split(trans, root, path, data_size);
4024 tried_avoid_double = 1;
4025 if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
4026 return 0;
4027 goto again;
4030 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
4031 struct btrfs_root *root,
4032 struct btrfs_path *path, int ins_len)
4034 struct btrfs_key key;
4035 struct extent_buffer *leaf;
4036 struct btrfs_file_extent_item *fi;
4037 u64 extent_len = 0;
4038 u32 item_size;
4039 int ret;
4041 leaf = path->nodes[0];
4042 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4044 BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
4045 key.type != BTRFS_EXTENT_CSUM_KEY);
4047 if (btrfs_leaf_free_space(root, leaf) >= ins_len)
4048 return 0;
4050 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4051 if (key.type == BTRFS_EXTENT_DATA_KEY) {
4052 fi = btrfs_item_ptr(leaf, path->slots[0],
4053 struct btrfs_file_extent_item);
4054 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
4056 btrfs_release_path(path);
4058 path->keep_locks = 1;
4059 path->search_for_split = 1;
4060 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
4061 path->search_for_split = 0;
4062 if (ret < 0)
4063 goto err;
4065 ret = -EAGAIN;
4066 leaf = path->nodes[0];
4067 /* if our item isn't there or got smaller, return now */
4068 if (ret > 0 || item_size != btrfs_item_size_nr(leaf, path->slots[0]))
4069 goto err;
4071 /* the leaf has changed, it now has room. return now */
4072 if (btrfs_leaf_free_space(root, path->nodes[0]) >= ins_len)
4073 goto err;
4075 if (key.type == BTRFS_EXTENT_DATA_KEY) {
4076 fi = btrfs_item_ptr(leaf, path->slots[0],
4077 struct btrfs_file_extent_item);
4078 if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
4079 goto err;
4082 btrfs_set_path_blocking(path);
4083 ret = split_leaf(trans, root, &key, path, ins_len, 1);
4084 if (ret)
4085 goto err;
4087 path->keep_locks = 0;
4088 btrfs_unlock_up_safe(path, 1);
4089 return 0;
4090 err:
4091 path->keep_locks = 0;
4092 return ret;
4095 static noinline int split_item(struct btrfs_trans_handle *trans,
4096 struct btrfs_root *root,
4097 struct btrfs_path *path,
4098 struct btrfs_key *new_key,
4099 unsigned long split_offset)
4101 struct extent_buffer *leaf;
4102 struct btrfs_item *item;
4103 struct btrfs_item *new_item;
4104 int slot;
4105 char *buf;
4106 u32 nritems;
4107 u32 item_size;
4108 u32 orig_offset;
4109 struct btrfs_disk_key disk_key;
4111 leaf = path->nodes[0];
4112 BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item));
4114 btrfs_set_path_blocking(path);
4116 item = btrfs_item_nr(leaf, path->slots[0]);
4117 orig_offset = btrfs_item_offset(leaf, item);
4118 item_size = btrfs_item_size(leaf, item);
4120 buf = kmalloc(item_size, GFP_NOFS);
4121 if (!buf)
4122 return -ENOMEM;
4124 read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
4125 path->slots[0]), item_size);
4127 slot = path->slots[0] + 1;
4128 nritems = btrfs_header_nritems(leaf);
4129 if (slot != nritems) {
4130 /* shift the items */
4131 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
4132 btrfs_item_nr_offset(slot),
4133 (nritems - slot) * sizeof(struct btrfs_item));
4136 btrfs_cpu_key_to_disk(&disk_key, new_key);
4137 btrfs_set_item_key(leaf, &disk_key, slot);
4139 new_item = btrfs_item_nr(leaf, slot);
4141 btrfs_set_item_offset(leaf, new_item, orig_offset);
4142 btrfs_set_item_size(leaf, new_item, item_size - split_offset);
4144 btrfs_set_item_offset(leaf, item,
4145 orig_offset + item_size - split_offset);
4146 btrfs_set_item_size(leaf, item, split_offset);
4148 btrfs_set_header_nritems(leaf, nritems + 1);
4150 /* write the data for the start of the original item */
4151 write_extent_buffer(leaf, buf,
4152 btrfs_item_ptr_offset(leaf, path->slots[0]),
4153 split_offset);
4155 /* write the data for the new item */
4156 write_extent_buffer(leaf, buf + split_offset,
4157 btrfs_item_ptr_offset(leaf, slot),
4158 item_size - split_offset);
4159 btrfs_mark_buffer_dirty(leaf);
4161 BUG_ON(btrfs_leaf_free_space(root, leaf) < 0);
4162 kfree(buf);
4163 return 0;
4167 * This function splits a single item into two items,
4168 * giving 'new_key' to the new item and splitting the
4169 * old one at split_offset (from the start of the item).
4171 * The path may be released by this operation. After
4172 * the split, the path is pointing to the old item. The
4173 * new item is going to be in the same node as the old one.
4175 * Note, the item being split must be smaller enough to live alone on
4176 * a tree block with room for one extra struct btrfs_item
4178 * This allows us to split the item in place, keeping a lock on the
4179 * leaf the entire time.
4181 int btrfs_split_item(struct btrfs_trans_handle *trans,
4182 struct btrfs_root *root,
4183 struct btrfs_path *path,
4184 struct btrfs_key *new_key,
4185 unsigned long split_offset)
4187 int ret;
4188 ret = setup_leaf_for_split(trans, root, path,
4189 sizeof(struct btrfs_item));
4190 if (ret)
4191 return ret;
4193 ret = split_item(trans, root, path, new_key, split_offset);
4194 return ret;
4198 * This function duplicate a item, giving 'new_key' to the new item.
4199 * It guarantees both items live in the same tree leaf and the new item
4200 * is contiguous with the original item.
4202 * This allows us to split file extent in place, keeping a lock on the
4203 * leaf the entire time.
4205 int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4206 struct btrfs_root *root,
4207 struct btrfs_path *path,
4208 struct btrfs_key *new_key)
4210 struct extent_buffer *leaf;
4211 int ret;
4212 u32 item_size;
4214 leaf = path->nodes[0];
4215 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4216 ret = setup_leaf_for_split(trans, root, path,
4217 item_size + sizeof(struct btrfs_item));
4218 if (ret)
4219 return ret;
4221 path->slots[0]++;
4222 setup_items_for_insert(trans, root, path, new_key, &item_size,
4223 item_size, item_size +
4224 sizeof(struct btrfs_item), 1);
4225 leaf = path->nodes[0];
4226 memcpy_extent_buffer(leaf,
4227 btrfs_item_ptr_offset(leaf, path->slots[0]),
4228 btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4229 item_size);
4230 return 0;
4234 * make the item pointed to by the path smaller. new_size indicates
4235 * how small to make it, and from_end tells us if we just chop bytes
4236 * off the end of the item or if we shift the item to chop bytes off
4237 * the front.
4239 void btrfs_truncate_item(struct btrfs_trans_handle *trans,
4240 struct btrfs_root *root,
4241 struct btrfs_path *path,
4242 u32 new_size, int from_end)
4244 int slot;
4245 struct extent_buffer *leaf;
4246 struct btrfs_item *item;
4247 u32 nritems;
4248 unsigned int data_end;
4249 unsigned int old_data_start;
4250 unsigned int old_size;
4251 unsigned int size_diff;
4252 int i;
4253 struct btrfs_map_token token;
4255 btrfs_init_map_token(&token);
4257 leaf = path->nodes[0];
4258 slot = path->slots[0];
4260 old_size = btrfs_item_size_nr(leaf, slot);
4261 if (old_size == new_size)
4262 return;
4264 nritems = btrfs_header_nritems(leaf);
4265 data_end = leaf_data_end(root, leaf);
4267 old_data_start = btrfs_item_offset_nr(leaf, slot);
4269 size_diff = old_size - new_size;
4271 BUG_ON(slot < 0);
4272 BUG_ON(slot >= nritems);
4275 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4277 /* first correct the data pointers */
4278 for (i = slot; i < nritems; i++) {
4279 u32 ioff;
4280 item = btrfs_item_nr(leaf, i);
4282 ioff = btrfs_token_item_offset(leaf, item, &token);
4283 btrfs_set_token_item_offset(leaf, item,
4284 ioff + size_diff, &token);
4287 /* shift the data */
4288 if (from_end) {
4289 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4290 data_end + size_diff, btrfs_leaf_data(leaf) +
4291 data_end, old_data_start + new_size - data_end);
4292 } else {
4293 struct btrfs_disk_key disk_key;
4294 u64 offset;
4296 btrfs_item_key(leaf, &disk_key, slot);
4298 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
4299 unsigned long ptr;
4300 struct btrfs_file_extent_item *fi;
4302 fi = btrfs_item_ptr(leaf, slot,
4303 struct btrfs_file_extent_item);
4304 fi = (struct btrfs_file_extent_item *)(
4305 (unsigned long)fi - size_diff);
4307 if (btrfs_file_extent_type(leaf, fi) ==
4308 BTRFS_FILE_EXTENT_INLINE) {
4309 ptr = btrfs_item_ptr_offset(leaf, slot);
4310 memmove_extent_buffer(leaf, ptr,
4311 (unsigned long)fi,
4312 offsetof(struct btrfs_file_extent_item,
4313 disk_bytenr));
4317 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4318 data_end + size_diff, btrfs_leaf_data(leaf) +
4319 data_end, old_data_start - data_end);
4321 offset = btrfs_disk_key_offset(&disk_key);
4322 btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
4323 btrfs_set_item_key(leaf, &disk_key, slot);
4324 if (slot == 0)
4325 fixup_low_keys(trans, root, path, &disk_key, 1);
4328 item = btrfs_item_nr(leaf, slot);
4329 btrfs_set_item_size(leaf, item, new_size);
4330 btrfs_mark_buffer_dirty(leaf);
4332 if (btrfs_leaf_free_space(root, leaf) < 0) {
4333 btrfs_print_leaf(root, leaf);
4334 BUG();
4339 * make the item pointed to by the path bigger, data_size is the new size.
4341 void btrfs_extend_item(struct btrfs_trans_handle *trans,
4342 struct btrfs_root *root, struct btrfs_path *path,
4343 u32 data_size)
4345 int slot;
4346 struct extent_buffer *leaf;
4347 struct btrfs_item *item;
4348 u32 nritems;
4349 unsigned int data_end;
4350 unsigned int old_data;
4351 unsigned int old_size;
4352 int i;
4353 struct btrfs_map_token token;
4355 btrfs_init_map_token(&token);
4357 leaf = path->nodes[0];
4359 nritems = btrfs_header_nritems(leaf);
4360 data_end = leaf_data_end(root, leaf);
4362 if (btrfs_leaf_free_space(root, leaf) < data_size) {
4363 btrfs_print_leaf(root, leaf);
4364 BUG();
4366 slot = path->slots[0];
4367 old_data = btrfs_item_end_nr(leaf, slot);
4369 BUG_ON(slot < 0);
4370 if (slot >= nritems) {
4371 btrfs_print_leaf(root, leaf);
4372 printk(KERN_CRIT "slot %d too large, nritems %d\n",
4373 slot, nritems);
4374 BUG_ON(1);
4378 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4380 /* first correct the data pointers */
4381 for (i = slot; i < nritems; i++) {
4382 u32 ioff;
4383 item = btrfs_item_nr(leaf, i);
4385 ioff = btrfs_token_item_offset(leaf, item, &token);
4386 btrfs_set_token_item_offset(leaf, item,
4387 ioff - data_size, &token);
4390 /* shift the data */
4391 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4392 data_end - data_size, btrfs_leaf_data(leaf) +
4393 data_end, old_data - data_end);
4395 data_end = old_data;
4396 old_size = btrfs_item_size_nr(leaf, slot);
4397 item = btrfs_item_nr(leaf, slot);
4398 btrfs_set_item_size(leaf, item, old_size + data_size);
4399 btrfs_mark_buffer_dirty(leaf);
4401 if (btrfs_leaf_free_space(root, leaf) < 0) {
4402 btrfs_print_leaf(root, leaf);
4403 BUG();
4408 * Given a key and some data, insert items into the tree.
4409 * This does all the path init required, making room in the tree if needed.
4410 * Returns the number of keys that were inserted.
4412 int btrfs_insert_some_items(struct btrfs_trans_handle *trans,
4413 struct btrfs_root *root,
4414 struct btrfs_path *path,
4415 struct btrfs_key *cpu_key, u32 *data_size,
4416 int nr)
4418 struct extent_buffer *leaf;
4419 struct btrfs_item *item;
4420 int ret = 0;
4421 int slot;
4422 int i;
4423 u32 nritems;
4424 u32 total_data = 0;
4425 u32 total_size = 0;
4426 unsigned int data_end;
4427 struct btrfs_disk_key disk_key;
4428 struct btrfs_key found_key;
4429 struct btrfs_map_token token;
4431 btrfs_init_map_token(&token);
4433 for (i = 0; i < nr; i++) {
4434 if (total_size + data_size[i] + sizeof(struct btrfs_item) >
4435 BTRFS_LEAF_DATA_SIZE(root)) {
4436 break;
4437 nr = i;
4439 total_data += data_size[i];
4440 total_size += data_size[i] + sizeof(struct btrfs_item);
4442 BUG_ON(nr == 0);
4444 ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
4445 if (ret == 0)
4446 return -EEXIST;
4447 if (ret < 0)
4448 goto out;
4450 leaf = path->nodes[0];
4452 nritems = btrfs_header_nritems(leaf);
4453 data_end = leaf_data_end(root, leaf);
4455 if (btrfs_leaf_free_space(root, leaf) < total_size) {
4456 for (i = nr; i >= 0; i--) {
4457 total_data -= data_size[i];
4458 total_size -= data_size[i] + sizeof(struct btrfs_item);
4459 if (total_size < btrfs_leaf_free_space(root, leaf))
4460 break;
4462 nr = i;
4465 slot = path->slots[0];
4466 BUG_ON(slot < 0);
4468 if (slot != nritems) {
4469 unsigned int old_data = btrfs_item_end_nr(leaf, slot);
4471 item = btrfs_item_nr(leaf, slot);
4472 btrfs_item_key_to_cpu(leaf, &found_key, slot);
4474 /* figure out how many keys we can insert in here */
4475 total_data = data_size[0];
4476 for (i = 1; i < nr; i++) {
4477 if (btrfs_comp_cpu_keys(&found_key, cpu_key + i) <= 0)
4478 break;
4479 total_data += data_size[i];
4481 nr = i;
4483 if (old_data < data_end) {
4484 btrfs_print_leaf(root, leaf);
4485 printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
4486 slot, old_data, data_end);
4487 BUG_ON(1);
4490 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4492 /* first correct the data pointers */
4493 for (i = slot; i < nritems; i++) {
4494 u32 ioff;
4496 item = btrfs_item_nr(leaf, i);
4497 ioff = btrfs_token_item_offset(leaf, item, &token);
4498 btrfs_set_token_item_offset(leaf, item,
4499 ioff - total_data, &token);
4501 /* shift the items */
4502 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
4503 btrfs_item_nr_offset(slot),
4504 (nritems - slot) * sizeof(struct btrfs_item));
4506 /* shift the data */
4507 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4508 data_end - total_data, btrfs_leaf_data(leaf) +
4509 data_end, old_data - data_end);
4510 data_end = old_data;
4511 } else {
4513 * this sucks but it has to be done, if we are inserting at
4514 * the end of the leaf only insert 1 of the items, since we
4515 * have no way of knowing whats on the next leaf and we'd have
4516 * to drop our current locks to figure it out
4518 nr = 1;
4521 /* setup the item for the new data */
4522 for (i = 0; i < nr; i++) {
4523 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
4524 btrfs_set_item_key(leaf, &disk_key, slot + i);
4525 item = btrfs_item_nr(leaf, slot + i);
4526 btrfs_set_token_item_offset(leaf, item,
4527 data_end - data_size[i], &token);
4528 data_end -= data_size[i];
4529 btrfs_set_token_item_size(leaf, item, data_size[i], &token);
4531 btrfs_set_header_nritems(leaf, nritems + nr);
4532 btrfs_mark_buffer_dirty(leaf);
4534 ret = 0;
4535 if (slot == 0) {
4536 btrfs_cpu_key_to_disk(&disk_key, cpu_key);
4537 fixup_low_keys(trans, root, path, &disk_key, 1);
4540 if (btrfs_leaf_free_space(root, leaf) < 0) {
4541 btrfs_print_leaf(root, leaf);
4542 BUG();
4544 out:
4545 if (!ret)
4546 ret = nr;
4547 return ret;
4551 * this is a helper for btrfs_insert_empty_items, the main goal here is
4552 * to save stack depth by doing the bulk of the work in a function
4553 * that doesn't call btrfs_search_slot
4555 void setup_items_for_insert(struct btrfs_trans_handle *trans,
4556 struct btrfs_root *root, struct btrfs_path *path,
4557 struct btrfs_key *cpu_key, u32 *data_size,
4558 u32 total_data, u32 total_size, int nr)
4560 struct btrfs_item *item;
4561 int i;
4562 u32 nritems;
4563 unsigned int data_end;
4564 struct btrfs_disk_key disk_key;
4565 struct extent_buffer *leaf;
4566 int slot;
4567 struct btrfs_map_token token;
4569 btrfs_init_map_token(&token);
4571 leaf = path->nodes[0];
4572 slot = path->slots[0];
4574 nritems = btrfs_header_nritems(leaf);
4575 data_end = leaf_data_end(root, leaf);
4577 if (btrfs_leaf_free_space(root, leaf) < total_size) {
4578 btrfs_print_leaf(root, leaf);
4579 printk(KERN_CRIT "not enough freespace need %u have %d\n",
4580 total_size, btrfs_leaf_free_space(root, leaf));
4581 BUG();
4584 if (slot != nritems) {
4585 unsigned int old_data = btrfs_item_end_nr(leaf, slot);
4587 if (old_data < data_end) {
4588 btrfs_print_leaf(root, leaf);
4589 printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
4590 slot, old_data, data_end);
4591 BUG_ON(1);
4594 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4596 /* first correct the data pointers */
4597 for (i = slot; i < nritems; i++) {
4598 u32 ioff;
4600 item = btrfs_item_nr(leaf, i);
4601 ioff = btrfs_token_item_offset(leaf, item, &token);
4602 btrfs_set_token_item_offset(leaf, item,
4603 ioff - total_data, &token);
4605 /* shift the items */
4606 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
4607 btrfs_item_nr_offset(slot),
4608 (nritems - slot) * sizeof(struct btrfs_item));
4610 /* shift the data */
4611 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4612 data_end - total_data, btrfs_leaf_data(leaf) +
4613 data_end, old_data - data_end);
4614 data_end = old_data;
4617 /* setup the item for the new data */
4618 for (i = 0; i < nr; i++) {
4619 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
4620 btrfs_set_item_key(leaf, &disk_key, slot + i);
4621 item = btrfs_item_nr(leaf, slot + i);
4622 btrfs_set_token_item_offset(leaf, item,
4623 data_end - data_size[i], &token);
4624 data_end -= data_size[i];
4625 btrfs_set_token_item_size(leaf, item, data_size[i], &token);
4628 btrfs_set_header_nritems(leaf, nritems + nr);
4630 if (slot == 0) {
4631 btrfs_cpu_key_to_disk(&disk_key, cpu_key);
4632 fixup_low_keys(trans, root, path, &disk_key, 1);
4634 btrfs_unlock_up_safe(path, 1);
4635 btrfs_mark_buffer_dirty(leaf);
4637 if (btrfs_leaf_free_space(root, leaf) < 0) {
4638 btrfs_print_leaf(root, leaf);
4639 BUG();
4644 * Given a key and some data, insert items into the tree.
4645 * This does all the path init required, making room in the tree if needed.
4647 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
4648 struct btrfs_root *root,
4649 struct btrfs_path *path,
4650 struct btrfs_key *cpu_key, u32 *data_size,
4651 int nr)
4653 int ret = 0;
4654 int slot;
4655 int i;
4656 u32 total_size = 0;
4657 u32 total_data = 0;
4659 for (i = 0; i < nr; i++)
4660 total_data += data_size[i];
4662 total_size = total_data + (nr * sizeof(struct btrfs_item));
4663 ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
4664 if (ret == 0)
4665 return -EEXIST;
4666 if (ret < 0)
4667 return ret;
4669 slot = path->slots[0];
4670 BUG_ON(slot < 0);
4672 setup_items_for_insert(trans, root, path, cpu_key, data_size,
4673 total_data, total_size, nr);
4674 return 0;
4678 * Given a key and some data, insert an item into the tree.
4679 * This does all the path init required, making room in the tree if needed.
4681 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
4682 *root, struct btrfs_key *cpu_key, void *data, u32
4683 data_size)
4685 int ret = 0;
4686 struct btrfs_path *path;
4687 struct extent_buffer *leaf;
4688 unsigned long ptr;
4690 path = btrfs_alloc_path();
4691 if (!path)
4692 return -ENOMEM;
4693 ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
4694 if (!ret) {
4695 leaf = path->nodes[0];
4696 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4697 write_extent_buffer(leaf, data, ptr, data_size);
4698 btrfs_mark_buffer_dirty(leaf);
4700 btrfs_free_path(path);
4701 return ret;
4705 * delete the pointer from a given node.
4707 * the tree should have been previously balanced so the deletion does not
4708 * empty a node.
4710 static void del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4711 struct btrfs_path *path, int level, int slot,
4712 int tree_mod_log)
4714 struct extent_buffer *parent = path->nodes[level];
4715 u32 nritems;
4716 int ret;
4718 nritems = btrfs_header_nritems(parent);
4719 if (slot != nritems - 1) {
4720 if (tree_mod_log && level)
4721 tree_mod_log_eb_move(root->fs_info, parent, slot,
4722 slot + 1, nritems - slot - 1);
4723 memmove_extent_buffer(parent,
4724 btrfs_node_key_ptr_offset(slot),
4725 btrfs_node_key_ptr_offset(slot + 1),
4726 sizeof(struct btrfs_key_ptr) *
4727 (nritems - slot - 1));
4728 } else if (tree_mod_log && level) {
4729 ret = tree_mod_log_insert_key(root->fs_info, parent, slot,
4730 MOD_LOG_KEY_REMOVE);
4731 BUG_ON(ret < 0);
4734 nritems--;
4735 btrfs_set_header_nritems(parent, nritems);
4736 if (nritems == 0 && parent == root->node) {
4737 BUG_ON(btrfs_header_level(root->node) != 1);
4738 /* just turn the root into a leaf and break */
4739 btrfs_set_header_level(root->node, 0);
4740 } else if (slot == 0) {
4741 struct btrfs_disk_key disk_key;
4743 btrfs_node_key(parent, &disk_key, 0);
4744 fixup_low_keys(trans, root, path, &disk_key, level + 1);
4746 btrfs_mark_buffer_dirty(parent);
4750 * a helper function to delete the leaf pointed to by path->slots[1] and
4751 * path->nodes[1].
4753 * This deletes the pointer in path->nodes[1] and frees the leaf
4754 * block extent. zero is returned if it all worked out, < 0 otherwise.
4756 * The path must have already been setup for deleting the leaf, including
4757 * all the proper balancing. path->nodes[1] must be locked.
4759 static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
4760 struct btrfs_root *root,
4761 struct btrfs_path *path,
4762 struct extent_buffer *leaf)
4764 WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4765 del_ptr(trans, root, path, 1, path->slots[1], 1);
4768 * btrfs_free_extent is expensive, we want to make sure we
4769 * aren't holding any locks when we call it
4771 btrfs_unlock_up_safe(path, 0);
4773 root_sub_used(root, leaf->len);
4775 extent_buffer_get(leaf);
4776 btrfs_free_tree_block(trans, root, leaf, 0, 1);
4777 free_extent_buffer_stale(leaf);
4780 * delete the item at the leaf level in path. If that empties
4781 * the leaf, remove it from the tree
4783 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4784 struct btrfs_path *path, int slot, int nr)
4786 struct extent_buffer *leaf;
4787 struct btrfs_item *item;
4788 int last_off;
4789 int dsize = 0;
4790 int ret = 0;
4791 int wret;
4792 int i;
4793 u32 nritems;
4794 struct btrfs_map_token token;
4796 btrfs_init_map_token(&token);
4798 leaf = path->nodes[0];
4799 last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
4801 for (i = 0; i < nr; i++)
4802 dsize += btrfs_item_size_nr(leaf, slot + i);
4804 nritems = btrfs_header_nritems(leaf);
4806 if (slot + nr != nritems) {
4807 int data_end = leaf_data_end(root, leaf);
4809 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4810 data_end + dsize,
4811 btrfs_leaf_data(leaf) + data_end,
4812 last_off - data_end);
4814 for (i = slot + nr; i < nritems; i++) {
4815 u32 ioff;
4817 item = btrfs_item_nr(leaf, i);
4818 ioff = btrfs_token_item_offset(leaf, item, &token);
4819 btrfs_set_token_item_offset(leaf, item,
4820 ioff + dsize, &token);
4823 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
4824 btrfs_item_nr_offset(slot + nr),
4825 sizeof(struct btrfs_item) *
4826 (nritems - slot - nr));
4828 btrfs_set_header_nritems(leaf, nritems - nr);
4829 nritems -= nr;
4831 /* delete the leaf if we've emptied it */
4832 if (nritems == 0) {
4833 if (leaf == root->node) {
4834 btrfs_set_header_level(leaf, 0);
4835 } else {
4836 btrfs_set_path_blocking(path);
4837 clean_tree_block(trans, root, leaf);
4838 btrfs_del_leaf(trans, root, path, leaf);
4840 } else {
4841 int used = leaf_space_used(leaf, 0, nritems);
4842 if (slot == 0) {
4843 struct btrfs_disk_key disk_key;
4845 btrfs_item_key(leaf, &disk_key, 0);
4846 fixup_low_keys(trans, root, path, &disk_key, 1);
4849 /* delete the leaf if it is mostly empty */
4850 if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) {
4851 /* push_leaf_left fixes the path.
4852 * make sure the path still points to our leaf
4853 * for possible call to del_ptr below
4855 slot = path->slots[1];
4856 extent_buffer_get(leaf);
4858 btrfs_set_path_blocking(path);
4859 wret = push_leaf_left(trans, root, path, 1, 1,
4860 1, (u32)-1);
4861 if (wret < 0 && wret != -ENOSPC)
4862 ret = wret;
4864 if (path->nodes[0] == leaf &&
4865 btrfs_header_nritems(leaf)) {
4866 wret = push_leaf_right(trans, root, path, 1,
4867 1, 1, 0);
4868 if (wret < 0 && wret != -ENOSPC)
4869 ret = wret;
4872 if (btrfs_header_nritems(leaf) == 0) {
4873 path->slots[1] = slot;
4874 btrfs_del_leaf(trans, root, path, leaf);
4875 free_extent_buffer(leaf);
4876 ret = 0;
4877 } else {
4878 /* if we're still in the path, make sure
4879 * we're dirty. Otherwise, one of the
4880 * push_leaf functions must have already
4881 * dirtied this buffer
4883 if (path->nodes[0] == leaf)
4884 btrfs_mark_buffer_dirty(leaf);
4885 free_extent_buffer(leaf);
4887 } else {
4888 btrfs_mark_buffer_dirty(leaf);
4891 return ret;
4895 * search the tree again to find a leaf with lesser keys
4896 * returns 0 if it found something or 1 if there are no lesser leaves.
4897 * returns < 0 on io errors.
4899 * This may release the path, and so you may lose any locks held at the
4900 * time you call it.
4902 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
4904 struct btrfs_key key;
4905 struct btrfs_disk_key found_key;
4906 int ret;
4908 btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
4910 if (key.offset > 0)
4911 key.offset--;
4912 else if (key.type > 0)
4913 key.type--;
4914 else if (key.objectid > 0)
4915 key.objectid--;
4916 else
4917 return 1;
4919 btrfs_release_path(path);
4920 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4921 if (ret < 0)
4922 return ret;
4923 btrfs_item_key(path->nodes[0], &found_key, 0);
4924 ret = comp_keys(&found_key, &key);
4925 if (ret < 0)
4926 return 0;
4927 return 1;
4931 * A helper function to walk down the tree starting at min_key, and looking
4932 * for nodes or leaves that are either in cache or have a minimum
4933 * transaction id. This is used by the btree defrag code, and tree logging
4935 * This does not cow, but it does stuff the starting key it finds back
4936 * into min_key, so you can call btrfs_search_slot with cow=1 on the
4937 * key and get a writable path.
4939 * This does lock as it descends, and path->keep_locks should be set
4940 * to 1 by the caller.
4942 * This honors path->lowest_level to prevent descent past a given level
4943 * of the tree.
4945 * min_trans indicates the oldest transaction that you are interested
4946 * in walking through. Any nodes or leaves older than min_trans are
4947 * skipped over (without reading them).
4949 * returns zero if something useful was found, < 0 on error and 1 if there
4950 * was nothing in the tree that matched the search criteria.
4952 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
4953 struct btrfs_key *max_key,
4954 struct btrfs_path *path, int cache_only,
4955 u64 min_trans)
4957 struct extent_buffer *cur;
4958 struct btrfs_key found_key;
4959 int slot;
4960 int sret;
4961 u32 nritems;
4962 int level;
4963 int ret = 1;
4965 WARN_ON(!path->keep_locks);
4966 again:
4967 cur = btrfs_read_lock_root_node(root);
4968 level = btrfs_header_level(cur);
4969 WARN_ON(path->nodes[level]);
4970 path->nodes[level] = cur;
4971 path->locks[level] = BTRFS_READ_LOCK;
4973 if (btrfs_header_generation(cur) < min_trans) {
4974 ret = 1;
4975 goto out;
4977 while (1) {
4978 nritems = btrfs_header_nritems(cur);
4979 level = btrfs_header_level(cur);
4980 sret = bin_search(cur, min_key, level, &slot);
4982 /* at the lowest level, we're done, setup the path and exit */
4983 if (level == path->lowest_level) {
4984 if (slot >= nritems)
4985 goto find_next_key;
4986 ret = 0;
4987 path->slots[level] = slot;
4988 btrfs_item_key_to_cpu(cur, &found_key, slot);
4989 goto out;
4991 if (sret && slot > 0)
4992 slot--;
4994 * check this node pointer against the cache_only and
4995 * min_trans parameters. If it isn't in cache or is too
4996 * old, skip to the next one.
4998 while (slot < nritems) {
4999 u64 blockptr;
5000 u64 gen;
5001 struct extent_buffer *tmp;
5002 struct btrfs_disk_key disk_key;
5004 blockptr = btrfs_node_blockptr(cur, slot);
5005 gen = btrfs_node_ptr_generation(cur, slot);
5006 if (gen < min_trans) {
5007 slot++;
5008 continue;
5010 if (!cache_only)
5011 break;
5013 if (max_key) {
5014 btrfs_node_key(cur, &disk_key, slot);
5015 if (comp_keys(&disk_key, max_key) >= 0) {
5016 ret = 1;
5017 goto out;
5021 tmp = btrfs_find_tree_block(root, blockptr,
5022 btrfs_level_size(root, level - 1));
5024 if (tmp && btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
5025 free_extent_buffer(tmp);
5026 break;
5028 if (tmp)
5029 free_extent_buffer(tmp);
5030 slot++;
5032 find_next_key:
5034 * we didn't find a candidate key in this node, walk forward
5035 * and find another one
5037 if (slot >= nritems) {
5038 path->slots[level] = slot;
5039 btrfs_set_path_blocking(path);
5040 sret = btrfs_find_next_key(root, path, min_key, level,
5041 cache_only, min_trans);
5042 if (sret == 0) {
5043 btrfs_release_path(path);
5044 goto again;
5045 } else {
5046 goto out;
5049 /* save our key for returning back */
5050 btrfs_node_key_to_cpu(cur, &found_key, slot);
5051 path->slots[level] = slot;
5052 if (level == path->lowest_level) {
5053 ret = 0;
5054 unlock_up(path, level, 1, 0, NULL);
5055 goto out;
5057 btrfs_set_path_blocking(path);
5058 cur = read_node_slot(root, cur, slot);
5059 BUG_ON(!cur); /* -ENOMEM */
5061 btrfs_tree_read_lock(cur);
5063 path->locks[level - 1] = BTRFS_READ_LOCK;
5064 path->nodes[level - 1] = cur;
5065 unlock_up(path, level, 1, 0, NULL);
5066 btrfs_clear_path_blocking(path, NULL, 0);
5068 out:
5069 if (ret == 0)
5070 memcpy(min_key, &found_key, sizeof(found_key));
5071 btrfs_set_path_blocking(path);
5072 return ret;
5075 static void tree_move_down(struct btrfs_root *root,
5076 struct btrfs_path *path,
5077 int *level, int root_level)
5079 path->nodes[*level - 1] = read_node_slot(root, path->nodes[*level],
5080 path->slots[*level]);
5081 path->slots[*level - 1] = 0;
5082 (*level)--;
5085 static int tree_move_next_or_upnext(struct btrfs_root *root,
5086 struct btrfs_path *path,
5087 int *level, int root_level)
5089 int ret = 0;
5090 int nritems;
5091 nritems = btrfs_header_nritems(path->nodes[*level]);
5093 path->slots[*level]++;
5095 while (path->slots[*level] == nritems) {
5096 if (*level == root_level)
5097 return -1;
5099 /* move upnext */
5100 path->slots[*level] = 0;
5101 free_extent_buffer(path->nodes[*level]);
5102 path->nodes[*level] = NULL;
5103 (*level)++;
5104 path->slots[*level]++;
5106 nritems = btrfs_header_nritems(path->nodes[*level]);
5107 ret = 1;
5109 return ret;
5113 * Returns 1 if it had to move up and next. 0 is returned if it moved only next
5114 * or down.
5116 static int tree_advance(struct btrfs_root *root,
5117 struct btrfs_path *path,
5118 int *level, int root_level,
5119 int allow_down,
5120 struct btrfs_key *key)
5122 int ret;
5124 if (*level == 0 || !allow_down) {
5125 ret = tree_move_next_or_upnext(root, path, level, root_level);
5126 } else {
5127 tree_move_down(root, path, level, root_level);
5128 ret = 0;
5130 if (ret >= 0) {
5131 if (*level == 0)
5132 btrfs_item_key_to_cpu(path->nodes[*level], key,
5133 path->slots[*level]);
5134 else
5135 btrfs_node_key_to_cpu(path->nodes[*level], key,
5136 path->slots[*level]);
5138 return ret;
5141 static int tree_compare_item(struct btrfs_root *left_root,
5142 struct btrfs_path *left_path,
5143 struct btrfs_path *right_path,
5144 char *tmp_buf)
5146 int cmp;
5147 int len1, len2;
5148 unsigned long off1, off2;
5150 len1 = btrfs_item_size_nr(left_path->nodes[0], left_path->slots[0]);
5151 len2 = btrfs_item_size_nr(right_path->nodes[0], right_path->slots[0]);
5152 if (len1 != len2)
5153 return 1;
5155 off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]);
5156 off2 = btrfs_item_ptr_offset(right_path->nodes[0],
5157 right_path->slots[0]);
5159 read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1);
5161 cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1);
5162 if (cmp)
5163 return 1;
5164 return 0;
5167 #define ADVANCE 1
5168 #define ADVANCE_ONLY_NEXT -1
5171 * This function compares two trees and calls the provided callback for
5172 * every changed/new/deleted item it finds.
5173 * If shared tree blocks are encountered, whole subtrees are skipped, making
5174 * the compare pretty fast on snapshotted subvolumes.
5176 * This currently works on commit roots only. As commit roots are read only,
5177 * we don't do any locking. The commit roots are protected with transactions.
5178 * Transactions are ended and rejoined when a commit is tried in between.
5180 * This function checks for modifications done to the trees while comparing.
5181 * If it detects a change, it aborts immediately.
5183 int btrfs_compare_trees(struct btrfs_root *left_root,
5184 struct btrfs_root *right_root,
5185 btrfs_changed_cb_t changed_cb, void *ctx)
5187 int ret;
5188 int cmp;
5189 struct btrfs_trans_handle *trans = NULL;
5190 struct btrfs_path *left_path = NULL;
5191 struct btrfs_path *right_path = NULL;
5192 struct btrfs_key left_key;
5193 struct btrfs_key right_key;
5194 char *tmp_buf = NULL;
5195 int left_root_level;
5196 int right_root_level;
5197 int left_level;
5198 int right_level;
5199 int left_end_reached;
5200 int right_end_reached;
5201 int advance_left;
5202 int advance_right;
5203 u64 left_blockptr;
5204 u64 right_blockptr;
5205 u64 left_start_ctransid;
5206 u64 right_start_ctransid;
5207 u64 ctransid;
5209 left_path = btrfs_alloc_path();
5210 if (!left_path) {
5211 ret = -ENOMEM;
5212 goto out;
5214 right_path = btrfs_alloc_path();
5215 if (!right_path) {
5216 ret = -ENOMEM;
5217 goto out;
5220 tmp_buf = kmalloc(left_root->leafsize, GFP_NOFS);
5221 if (!tmp_buf) {
5222 ret = -ENOMEM;
5223 goto out;
5226 left_path->search_commit_root = 1;
5227 left_path->skip_locking = 1;
5228 right_path->search_commit_root = 1;
5229 right_path->skip_locking = 1;
5231 spin_lock(&left_root->root_times_lock);
5232 left_start_ctransid = btrfs_root_ctransid(&left_root->root_item);
5233 spin_unlock(&left_root->root_times_lock);
5235 spin_lock(&right_root->root_times_lock);
5236 right_start_ctransid = btrfs_root_ctransid(&right_root->root_item);
5237 spin_unlock(&right_root->root_times_lock);
5239 trans = btrfs_join_transaction(left_root);
5240 if (IS_ERR(trans)) {
5241 ret = PTR_ERR(trans);
5242 trans = NULL;
5243 goto out;
5247 * Strategy: Go to the first items of both trees. Then do
5249 * If both trees are at level 0
5250 * Compare keys of current items
5251 * If left < right treat left item as new, advance left tree
5252 * and repeat
5253 * If left > right treat right item as deleted, advance right tree
5254 * and repeat
5255 * If left == right do deep compare of items, treat as changed if
5256 * needed, advance both trees and repeat
5257 * If both trees are at the same level but not at level 0
5258 * Compare keys of current nodes/leafs
5259 * If left < right advance left tree and repeat
5260 * If left > right advance right tree and repeat
5261 * If left == right compare blockptrs of the next nodes/leafs
5262 * If they match advance both trees but stay at the same level
5263 * and repeat
5264 * If they don't match advance both trees while allowing to go
5265 * deeper and repeat
5266 * If tree levels are different
5267 * Advance the tree that needs it and repeat
5269 * Advancing a tree means:
5270 * If we are at level 0, try to go to the next slot. If that's not
5271 * possible, go one level up and repeat. Stop when we found a level
5272 * where we could go to the next slot. We may at this point be on a
5273 * node or a leaf.
5275 * If we are not at level 0 and not on shared tree blocks, go one
5276 * level deeper.
5278 * If we are not at level 0 and on shared tree blocks, go one slot to
5279 * the right if possible or go up and right.
5282 left_level = btrfs_header_level(left_root->commit_root);
5283 left_root_level = left_level;
5284 left_path->nodes[left_level] = left_root->commit_root;
5285 extent_buffer_get(left_path->nodes[left_level]);
5287 right_level = btrfs_header_level(right_root->commit_root);
5288 right_root_level = right_level;
5289 right_path->nodes[right_level] = right_root->commit_root;
5290 extent_buffer_get(right_path->nodes[right_level]);
5292 if (left_level == 0)
5293 btrfs_item_key_to_cpu(left_path->nodes[left_level],
5294 &left_key, left_path->slots[left_level]);
5295 else
5296 btrfs_node_key_to_cpu(left_path->nodes[left_level],
5297 &left_key, left_path->slots[left_level]);
5298 if (right_level == 0)
5299 btrfs_item_key_to_cpu(right_path->nodes[right_level],
5300 &right_key, right_path->slots[right_level]);
5301 else
5302 btrfs_node_key_to_cpu(right_path->nodes[right_level],
5303 &right_key, right_path->slots[right_level]);
5305 left_end_reached = right_end_reached = 0;
5306 advance_left = advance_right = 0;
5308 while (1) {
5310 * We need to make sure the transaction does not get committed
5311 * while we do anything on commit roots. This means, we need to
5312 * join and leave transactions for every item that we process.
5314 if (trans && btrfs_should_end_transaction(trans, left_root)) {
5315 btrfs_release_path(left_path);
5316 btrfs_release_path(right_path);
5318 ret = btrfs_end_transaction(trans, left_root);
5319 trans = NULL;
5320 if (ret < 0)
5321 goto out;
5323 /* now rejoin the transaction */
5324 if (!trans) {
5325 trans = btrfs_join_transaction(left_root);
5326 if (IS_ERR(trans)) {
5327 ret = PTR_ERR(trans);
5328 trans = NULL;
5329 goto out;
5332 spin_lock(&left_root->root_times_lock);
5333 ctransid = btrfs_root_ctransid(&left_root->root_item);
5334 spin_unlock(&left_root->root_times_lock);
5335 if (ctransid != left_start_ctransid)
5336 left_start_ctransid = 0;
5338 spin_lock(&right_root->root_times_lock);
5339 ctransid = btrfs_root_ctransid(&right_root->root_item);
5340 spin_unlock(&right_root->root_times_lock);
5341 if (ctransid != right_start_ctransid)
5342 right_start_ctransid = 0;
5344 if (!left_start_ctransid || !right_start_ctransid) {
5345 WARN(1, KERN_WARNING
5346 "btrfs: btrfs_compare_tree detected "
5347 "a change in one of the trees while "
5348 "iterating. This is probably a "
5349 "bug.\n");
5350 ret = -EIO;
5351 goto out;
5355 * the commit root may have changed, so start again
5356 * where we stopped
5358 left_path->lowest_level = left_level;
5359 right_path->lowest_level = right_level;
5360 ret = btrfs_search_slot(NULL, left_root,
5361 &left_key, left_path, 0, 0);
5362 if (ret < 0)
5363 goto out;
5364 ret = btrfs_search_slot(NULL, right_root,
5365 &right_key, right_path, 0, 0);
5366 if (ret < 0)
5367 goto out;
5370 if (advance_left && !left_end_reached) {
5371 ret = tree_advance(left_root, left_path, &left_level,
5372 left_root_level,
5373 advance_left != ADVANCE_ONLY_NEXT,
5374 &left_key);
5375 if (ret < 0)
5376 left_end_reached = ADVANCE;
5377 advance_left = 0;
5379 if (advance_right && !right_end_reached) {
5380 ret = tree_advance(right_root, right_path, &right_level,
5381 right_root_level,
5382 advance_right != ADVANCE_ONLY_NEXT,
5383 &right_key);
5384 if (ret < 0)
5385 right_end_reached = ADVANCE;
5386 advance_right = 0;
5389 if (left_end_reached && right_end_reached) {
5390 ret = 0;
5391 goto out;
5392 } else if (left_end_reached) {
5393 if (right_level == 0) {
5394 ret = changed_cb(left_root, right_root,
5395 left_path, right_path,
5396 &right_key,
5397 BTRFS_COMPARE_TREE_DELETED,
5398 ctx);
5399 if (ret < 0)
5400 goto out;
5402 advance_right = ADVANCE;
5403 continue;
5404 } else if (right_end_reached) {
5405 if (left_level == 0) {
5406 ret = changed_cb(left_root, right_root,
5407 left_path, right_path,
5408 &left_key,
5409 BTRFS_COMPARE_TREE_NEW,
5410 ctx);
5411 if (ret < 0)
5412 goto out;
5414 advance_left = ADVANCE;
5415 continue;
5418 if (left_level == 0 && right_level == 0) {
5419 cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5420 if (cmp < 0) {
5421 ret = changed_cb(left_root, right_root,
5422 left_path, right_path,
5423 &left_key,
5424 BTRFS_COMPARE_TREE_NEW,
5425 ctx);
5426 if (ret < 0)
5427 goto out;
5428 advance_left = ADVANCE;
5429 } else if (cmp > 0) {
5430 ret = changed_cb(left_root, right_root,
5431 left_path, right_path,
5432 &right_key,
5433 BTRFS_COMPARE_TREE_DELETED,
5434 ctx);
5435 if (ret < 0)
5436 goto out;
5437 advance_right = ADVANCE;
5438 } else {
5439 ret = tree_compare_item(left_root, left_path,
5440 right_path, tmp_buf);
5441 if (ret) {
5442 ret = changed_cb(left_root, right_root,
5443 left_path, right_path,
5444 &left_key,
5445 BTRFS_COMPARE_TREE_CHANGED,
5446 ctx);
5447 if (ret < 0)
5448 goto out;
5450 advance_left = ADVANCE;
5451 advance_right = ADVANCE;
5453 } else if (left_level == right_level) {
5454 cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5455 if (cmp < 0) {
5456 advance_left = ADVANCE;
5457 } else if (cmp > 0) {
5458 advance_right = ADVANCE;
5459 } else {
5460 left_blockptr = btrfs_node_blockptr(
5461 left_path->nodes[left_level],
5462 left_path->slots[left_level]);
5463 right_blockptr = btrfs_node_blockptr(
5464 right_path->nodes[right_level],
5465 right_path->slots[right_level]);
5466 if (left_blockptr == right_blockptr) {
5468 * As we're on a shared block, don't
5469 * allow to go deeper.
5471 advance_left = ADVANCE_ONLY_NEXT;
5472 advance_right = ADVANCE_ONLY_NEXT;
5473 } else {
5474 advance_left = ADVANCE;
5475 advance_right = ADVANCE;
5478 } else if (left_level < right_level) {
5479 advance_right = ADVANCE;
5480 } else {
5481 advance_left = ADVANCE;
5485 out:
5486 btrfs_free_path(left_path);
5487 btrfs_free_path(right_path);
5488 kfree(tmp_buf);
5490 if (trans) {
5491 if (!ret)
5492 ret = btrfs_end_transaction(trans, left_root);
5493 else
5494 btrfs_end_transaction(trans, left_root);
5497 return ret;
5501 * this is similar to btrfs_next_leaf, but does not try to preserve
5502 * and fixup the path. It looks for and returns the next key in the
5503 * tree based on the current path and the cache_only and min_trans
5504 * parameters.
5506 * 0 is returned if another key is found, < 0 if there are any errors
5507 * and 1 is returned if there are no higher keys in the tree
5509 * path->keep_locks should be set to 1 on the search made before
5510 * calling this function.
5512 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
5513 struct btrfs_key *key, int level,
5514 int cache_only, u64 min_trans)
5516 int slot;
5517 struct extent_buffer *c;
5519 WARN_ON(!path->keep_locks);
5520 while (level < BTRFS_MAX_LEVEL) {
5521 if (!path->nodes[level])
5522 return 1;
5524 slot = path->slots[level] + 1;
5525 c = path->nodes[level];
5526 next:
5527 if (slot >= btrfs_header_nritems(c)) {
5528 int ret;
5529 int orig_lowest;
5530 struct btrfs_key cur_key;
5531 if (level + 1 >= BTRFS_MAX_LEVEL ||
5532 !path->nodes[level + 1])
5533 return 1;
5535 if (path->locks[level + 1]) {
5536 level++;
5537 continue;
5540 slot = btrfs_header_nritems(c) - 1;
5541 if (level == 0)
5542 btrfs_item_key_to_cpu(c, &cur_key, slot);
5543 else
5544 btrfs_node_key_to_cpu(c, &cur_key, slot);
5546 orig_lowest = path->lowest_level;
5547 btrfs_release_path(path);
5548 path->lowest_level = level;
5549 ret = btrfs_search_slot(NULL, root, &cur_key, path,
5550 0, 0);
5551 path->lowest_level = orig_lowest;
5552 if (ret < 0)
5553 return ret;
5555 c = path->nodes[level];
5556 slot = path->slots[level];
5557 if (ret == 0)
5558 slot++;
5559 goto next;
5562 if (level == 0)
5563 btrfs_item_key_to_cpu(c, key, slot);
5564 else {
5565 u64 blockptr = btrfs_node_blockptr(c, slot);
5566 u64 gen = btrfs_node_ptr_generation(c, slot);
5568 if (cache_only) {
5569 struct extent_buffer *cur;
5570 cur = btrfs_find_tree_block(root, blockptr,
5571 btrfs_level_size(root, level - 1));
5572 if (!cur ||
5573 btrfs_buffer_uptodate(cur, gen, 1) <= 0) {
5574 slot++;
5575 if (cur)
5576 free_extent_buffer(cur);
5577 goto next;
5579 free_extent_buffer(cur);
5581 if (gen < min_trans) {
5582 slot++;
5583 goto next;
5585 btrfs_node_key_to_cpu(c, key, slot);
5587 return 0;
5589 return 1;
5593 * search the tree again to find a leaf with greater keys
5594 * returns 0 if it found something or 1 if there are no greater leaves.
5595 * returns < 0 on io errors.
5597 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
5599 return btrfs_next_old_leaf(root, path, 0);
5602 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
5603 u64 time_seq)
5605 int slot;
5606 int level;
5607 struct extent_buffer *c;
5608 struct extent_buffer *next;
5609 struct btrfs_key key;
5610 u32 nritems;
5611 int ret;
5612 int old_spinning = path->leave_spinning;
5613 int next_rw_lock = 0;
5615 nritems = btrfs_header_nritems(path->nodes[0]);
5616 if (nritems == 0)
5617 return 1;
5619 btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
5620 again:
5621 level = 1;
5622 next = NULL;
5623 next_rw_lock = 0;
5624 btrfs_release_path(path);
5626 path->keep_locks = 1;
5627 path->leave_spinning = 1;
5629 if (time_seq)
5630 ret = btrfs_search_old_slot(root, &key, path, time_seq);
5631 else
5632 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5633 path->keep_locks = 0;
5635 if (ret < 0)
5636 return ret;
5638 nritems = btrfs_header_nritems(path->nodes[0]);
5640 * by releasing the path above we dropped all our locks. A balance
5641 * could have added more items next to the key that used to be
5642 * at the very end of the block. So, check again here and
5643 * advance the path if there are now more items available.
5645 if (nritems > 0 && path->slots[0] < nritems - 1) {
5646 if (ret == 0)
5647 path->slots[0]++;
5648 ret = 0;
5649 goto done;
5652 while (level < BTRFS_MAX_LEVEL) {
5653 if (!path->nodes[level]) {
5654 ret = 1;
5655 goto done;
5658 slot = path->slots[level] + 1;
5659 c = path->nodes[level];
5660 if (slot >= btrfs_header_nritems(c)) {
5661 level++;
5662 if (level == BTRFS_MAX_LEVEL) {
5663 ret = 1;
5664 goto done;
5666 continue;
5669 if (next) {
5670 btrfs_tree_unlock_rw(next, next_rw_lock);
5671 free_extent_buffer(next);
5674 next = c;
5675 next_rw_lock = path->locks[level];
5676 ret = read_block_for_search(NULL, root, path, &next, level,
5677 slot, &key, 0);
5678 if (ret == -EAGAIN)
5679 goto again;
5681 if (ret < 0) {
5682 btrfs_release_path(path);
5683 goto done;
5686 if (!path->skip_locking) {
5687 ret = btrfs_try_tree_read_lock(next);
5688 if (!ret && time_seq) {
5690 * If we don't get the lock, we may be racing
5691 * with push_leaf_left, holding that lock while
5692 * itself waiting for the leaf we've currently
5693 * locked. To solve this situation, we give up
5694 * on our lock and cycle.
5696 free_extent_buffer(next);
5697 btrfs_release_path(path);
5698 cond_resched();
5699 goto again;
5701 if (!ret) {
5702 btrfs_set_path_blocking(path);
5703 btrfs_tree_read_lock(next);
5704 btrfs_clear_path_blocking(path, next,
5705 BTRFS_READ_LOCK);
5707 next_rw_lock = BTRFS_READ_LOCK;
5709 break;
5711 path->slots[level] = slot;
5712 while (1) {
5713 level--;
5714 c = path->nodes[level];
5715 if (path->locks[level])
5716 btrfs_tree_unlock_rw(c, path->locks[level]);
5718 free_extent_buffer(c);
5719 path->nodes[level] = next;
5720 path->slots[level] = 0;
5721 if (!path->skip_locking)
5722 path->locks[level] = next_rw_lock;
5723 if (!level)
5724 break;
5726 ret = read_block_for_search(NULL, root, path, &next, level,
5727 0, &key, 0);
5728 if (ret == -EAGAIN)
5729 goto again;
5731 if (ret < 0) {
5732 btrfs_release_path(path);
5733 goto done;
5736 if (!path->skip_locking) {
5737 ret = btrfs_try_tree_read_lock(next);
5738 if (!ret) {
5739 btrfs_set_path_blocking(path);
5740 btrfs_tree_read_lock(next);
5741 btrfs_clear_path_blocking(path, next,
5742 BTRFS_READ_LOCK);
5744 next_rw_lock = BTRFS_READ_LOCK;
5747 ret = 0;
5748 done:
5749 unlock_up(path, 0, 1, 0, NULL);
5750 path->leave_spinning = old_spinning;
5751 if (!old_spinning)
5752 btrfs_set_path_blocking(path);
5754 return ret;
5758 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
5759 * searching until it gets past min_objectid or finds an item of 'type'
5761 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5763 int btrfs_previous_item(struct btrfs_root *root,
5764 struct btrfs_path *path, u64 min_objectid,
5765 int type)
5767 struct btrfs_key found_key;
5768 struct extent_buffer *leaf;
5769 u32 nritems;
5770 int ret;
5772 while (1) {
5773 if (path->slots[0] == 0) {
5774 btrfs_set_path_blocking(path);
5775 ret = btrfs_prev_leaf(root, path);
5776 if (ret != 0)
5777 return ret;
5778 } else {
5779 path->slots[0]--;
5781 leaf = path->nodes[0];
5782 nritems = btrfs_header_nritems(leaf);
5783 if (nritems == 0)
5784 return 1;
5785 if (path->slots[0] == nritems)
5786 path->slots[0]--;
5788 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5789 if (found_key.objectid < min_objectid)
5790 break;
5791 if (found_key.type == type)
5792 return 0;
5793 if (found_key.objectid == min_objectid &&
5794 found_key.type < type)
5795 break;
5797 return 1;