ARM: S3C24XX: Remove unused GPIO definitions for port J
[linux-2.6/libata-dev.git] / mm / hugetlb.c
blobe198831276a3eab77b4a89fc0e1457a5a45d025d
1 /*
2 * Generic hugetlb support.
3 * (C) William Irwin, April 2004
4 */
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/module.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/cpuset.h>
17 #include <linux/mutex.h>
18 #include <linux/bootmem.h>
19 #include <linux/sysfs.h>
20 #include <linux/slab.h>
21 #include <linux/rmap.h>
22 #include <linux/swap.h>
23 #include <linux/swapops.h>
25 #include <asm/page.h>
26 #include <asm/pgtable.h>
27 #include <linux/io.h>
29 #include <linux/hugetlb.h>
30 #include <linux/node.h>
31 #include "internal.h"
33 const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
34 static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
35 unsigned long hugepages_treat_as_movable;
37 static int max_hstate;
38 unsigned int default_hstate_idx;
39 struct hstate hstates[HUGE_MAX_HSTATE];
41 __initdata LIST_HEAD(huge_boot_pages);
43 /* for command line parsing */
44 static struct hstate * __initdata parsed_hstate;
45 static unsigned long __initdata default_hstate_max_huge_pages;
46 static unsigned long __initdata default_hstate_size;
48 #define for_each_hstate(h) \
49 for ((h) = hstates; (h) < &hstates[max_hstate]; (h)++)
52 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
54 static DEFINE_SPINLOCK(hugetlb_lock);
56 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
58 bool free = (spool->count == 0) && (spool->used_hpages == 0);
60 spin_unlock(&spool->lock);
62 /* If no pages are used, and no other handles to the subpool
63 * remain, free the subpool the subpool remain */
64 if (free)
65 kfree(spool);
68 struct hugepage_subpool *hugepage_new_subpool(long nr_blocks)
70 struct hugepage_subpool *spool;
72 spool = kmalloc(sizeof(*spool), GFP_KERNEL);
73 if (!spool)
74 return NULL;
76 spin_lock_init(&spool->lock);
77 spool->count = 1;
78 spool->max_hpages = nr_blocks;
79 spool->used_hpages = 0;
81 return spool;
84 void hugepage_put_subpool(struct hugepage_subpool *spool)
86 spin_lock(&spool->lock);
87 BUG_ON(!spool->count);
88 spool->count--;
89 unlock_or_release_subpool(spool);
92 static int hugepage_subpool_get_pages(struct hugepage_subpool *spool,
93 long delta)
95 int ret = 0;
97 if (!spool)
98 return 0;
100 spin_lock(&spool->lock);
101 if ((spool->used_hpages + delta) <= spool->max_hpages) {
102 spool->used_hpages += delta;
103 } else {
104 ret = -ENOMEM;
106 spin_unlock(&spool->lock);
108 return ret;
111 static void hugepage_subpool_put_pages(struct hugepage_subpool *spool,
112 long delta)
114 if (!spool)
115 return;
117 spin_lock(&spool->lock);
118 spool->used_hpages -= delta;
119 /* If hugetlbfs_put_super couldn't free spool due to
120 * an outstanding quota reference, free it now. */
121 unlock_or_release_subpool(spool);
124 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
126 return HUGETLBFS_SB(inode->i_sb)->spool;
129 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
131 return subpool_inode(vma->vm_file->f_dentry->d_inode);
135 * Region tracking -- allows tracking of reservations and instantiated pages
136 * across the pages in a mapping.
138 * The region data structures are protected by a combination of the mmap_sem
139 * and the hugetlb_instantion_mutex. To access or modify a region the caller
140 * must either hold the mmap_sem for write, or the mmap_sem for read and
141 * the hugetlb_instantiation mutex:
143 * down_write(&mm->mmap_sem);
144 * or
145 * down_read(&mm->mmap_sem);
146 * mutex_lock(&hugetlb_instantiation_mutex);
148 struct file_region {
149 struct list_head link;
150 long from;
151 long to;
154 static long region_add(struct list_head *head, long f, long t)
156 struct file_region *rg, *nrg, *trg;
158 /* Locate the region we are either in or before. */
159 list_for_each_entry(rg, head, link)
160 if (f <= rg->to)
161 break;
163 /* Round our left edge to the current segment if it encloses us. */
164 if (f > rg->from)
165 f = rg->from;
167 /* Check for and consume any regions we now overlap with. */
168 nrg = rg;
169 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
170 if (&rg->link == head)
171 break;
172 if (rg->from > t)
173 break;
175 /* If this area reaches higher then extend our area to
176 * include it completely. If this is not the first area
177 * which we intend to reuse, free it. */
178 if (rg->to > t)
179 t = rg->to;
180 if (rg != nrg) {
181 list_del(&rg->link);
182 kfree(rg);
185 nrg->from = f;
186 nrg->to = t;
187 return 0;
190 static long region_chg(struct list_head *head, long f, long t)
192 struct file_region *rg, *nrg;
193 long chg = 0;
195 /* Locate the region we are before or in. */
196 list_for_each_entry(rg, head, link)
197 if (f <= rg->to)
198 break;
200 /* If we are below the current region then a new region is required.
201 * Subtle, allocate a new region at the position but make it zero
202 * size such that we can guarantee to record the reservation. */
203 if (&rg->link == head || t < rg->from) {
204 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
205 if (!nrg)
206 return -ENOMEM;
207 nrg->from = f;
208 nrg->to = f;
209 INIT_LIST_HEAD(&nrg->link);
210 list_add(&nrg->link, rg->link.prev);
212 return t - f;
215 /* Round our left edge to the current segment if it encloses us. */
216 if (f > rg->from)
217 f = rg->from;
218 chg = t - f;
220 /* Check for and consume any regions we now overlap with. */
221 list_for_each_entry(rg, rg->link.prev, link) {
222 if (&rg->link == head)
223 break;
224 if (rg->from > t)
225 return chg;
227 /* We overlap with this area, if it extends further than
228 * us then we must extend ourselves. Account for its
229 * existing reservation. */
230 if (rg->to > t) {
231 chg += rg->to - t;
232 t = rg->to;
234 chg -= rg->to - rg->from;
236 return chg;
239 static long region_truncate(struct list_head *head, long end)
241 struct file_region *rg, *trg;
242 long chg = 0;
244 /* Locate the region we are either in or before. */
245 list_for_each_entry(rg, head, link)
246 if (end <= rg->to)
247 break;
248 if (&rg->link == head)
249 return 0;
251 /* If we are in the middle of a region then adjust it. */
252 if (end > rg->from) {
253 chg = rg->to - end;
254 rg->to = end;
255 rg = list_entry(rg->link.next, typeof(*rg), link);
258 /* Drop any remaining regions. */
259 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
260 if (&rg->link == head)
261 break;
262 chg += rg->to - rg->from;
263 list_del(&rg->link);
264 kfree(rg);
266 return chg;
269 static long region_count(struct list_head *head, long f, long t)
271 struct file_region *rg;
272 long chg = 0;
274 /* Locate each segment we overlap with, and count that overlap. */
275 list_for_each_entry(rg, head, link) {
276 long seg_from;
277 long seg_to;
279 if (rg->to <= f)
280 continue;
281 if (rg->from >= t)
282 break;
284 seg_from = max(rg->from, f);
285 seg_to = min(rg->to, t);
287 chg += seg_to - seg_from;
290 return chg;
294 * Convert the address within this vma to the page offset within
295 * the mapping, in pagecache page units; huge pages here.
297 static pgoff_t vma_hugecache_offset(struct hstate *h,
298 struct vm_area_struct *vma, unsigned long address)
300 return ((address - vma->vm_start) >> huge_page_shift(h)) +
301 (vma->vm_pgoff >> huge_page_order(h));
304 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
305 unsigned long address)
307 return vma_hugecache_offset(hstate_vma(vma), vma, address);
311 * Return the size of the pages allocated when backing a VMA. In the majority
312 * cases this will be same size as used by the page table entries.
314 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
316 struct hstate *hstate;
318 if (!is_vm_hugetlb_page(vma))
319 return PAGE_SIZE;
321 hstate = hstate_vma(vma);
323 return 1UL << (hstate->order + PAGE_SHIFT);
325 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
328 * Return the page size being used by the MMU to back a VMA. In the majority
329 * of cases, the page size used by the kernel matches the MMU size. On
330 * architectures where it differs, an architecture-specific version of this
331 * function is required.
333 #ifndef vma_mmu_pagesize
334 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
336 return vma_kernel_pagesize(vma);
338 #endif
341 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
342 * bits of the reservation map pointer, which are always clear due to
343 * alignment.
345 #define HPAGE_RESV_OWNER (1UL << 0)
346 #define HPAGE_RESV_UNMAPPED (1UL << 1)
347 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
350 * These helpers are used to track how many pages are reserved for
351 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
352 * is guaranteed to have their future faults succeed.
354 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
355 * the reserve counters are updated with the hugetlb_lock held. It is safe
356 * to reset the VMA at fork() time as it is not in use yet and there is no
357 * chance of the global counters getting corrupted as a result of the values.
359 * The private mapping reservation is represented in a subtly different
360 * manner to a shared mapping. A shared mapping has a region map associated
361 * with the underlying file, this region map represents the backing file
362 * pages which have ever had a reservation assigned which this persists even
363 * after the page is instantiated. A private mapping has a region map
364 * associated with the original mmap which is attached to all VMAs which
365 * reference it, this region map represents those offsets which have consumed
366 * reservation ie. where pages have been instantiated.
368 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
370 return (unsigned long)vma->vm_private_data;
373 static void set_vma_private_data(struct vm_area_struct *vma,
374 unsigned long value)
376 vma->vm_private_data = (void *)value;
379 struct resv_map {
380 struct kref refs;
381 struct list_head regions;
384 static struct resv_map *resv_map_alloc(void)
386 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
387 if (!resv_map)
388 return NULL;
390 kref_init(&resv_map->refs);
391 INIT_LIST_HEAD(&resv_map->regions);
393 return resv_map;
396 static void resv_map_release(struct kref *ref)
398 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
400 /* Clear out any active regions before we release the map. */
401 region_truncate(&resv_map->regions, 0);
402 kfree(resv_map);
405 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
407 VM_BUG_ON(!is_vm_hugetlb_page(vma));
408 if (!(vma->vm_flags & VM_MAYSHARE))
409 return (struct resv_map *)(get_vma_private_data(vma) &
410 ~HPAGE_RESV_MASK);
411 return NULL;
414 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
416 VM_BUG_ON(!is_vm_hugetlb_page(vma));
417 VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
419 set_vma_private_data(vma, (get_vma_private_data(vma) &
420 HPAGE_RESV_MASK) | (unsigned long)map);
423 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
425 VM_BUG_ON(!is_vm_hugetlb_page(vma));
426 VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
428 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
431 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
433 VM_BUG_ON(!is_vm_hugetlb_page(vma));
435 return (get_vma_private_data(vma) & flag) != 0;
438 /* Decrement the reserved pages in the hugepage pool by one */
439 static void decrement_hugepage_resv_vma(struct hstate *h,
440 struct vm_area_struct *vma)
442 if (vma->vm_flags & VM_NORESERVE)
443 return;
445 if (vma->vm_flags & VM_MAYSHARE) {
446 /* Shared mappings always use reserves */
447 h->resv_huge_pages--;
448 } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
450 * Only the process that called mmap() has reserves for
451 * private mappings.
453 h->resv_huge_pages--;
457 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
458 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
460 VM_BUG_ON(!is_vm_hugetlb_page(vma));
461 if (!(vma->vm_flags & VM_MAYSHARE))
462 vma->vm_private_data = (void *)0;
465 /* Returns true if the VMA has associated reserve pages */
466 static int vma_has_reserves(struct vm_area_struct *vma)
468 if (vma->vm_flags & VM_MAYSHARE)
469 return 1;
470 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
471 return 1;
472 return 0;
475 static void copy_gigantic_page(struct page *dst, struct page *src)
477 int i;
478 struct hstate *h = page_hstate(src);
479 struct page *dst_base = dst;
480 struct page *src_base = src;
482 for (i = 0; i < pages_per_huge_page(h); ) {
483 cond_resched();
484 copy_highpage(dst, src);
486 i++;
487 dst = mem_map_next(dst, dst_base, i);
488 src = mem_map_next(src, src_base, i);
492 void copy_huge_page(struct page *dst, struct page *src)
494 int i;
495 struct hstate *h = page_hstate(src);
497 if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) {
498 copy_gigantic_page(dst, src);
499 return;
502 might_sleep();
503 for (i = 0; i < pages_per_huge_page(h); i++) {
504 cond_resched();
505 copy_highpage(dst + i, src + i);
509 static void enqueue_huge_page(struct hstate *h, struct page *page)
511 int nid = page_to_nid(page);
512 list_add(&page->lru, &h->hugepage_freelists[nid]);
513 h->free_huge_pages++;
514 h->free_huge_pages_node[nid]++;
517 static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
519 struct page *page;
521 if (list_empty(&h->hugepage_freelists[nid]))
522 return NULL;
523 page = list_entry(h->hugepage_freelists[nid].next, struct page, lru);
524 list_del(&page->lru);
525 set_page_refcounted(page);
526 h->free_huge_pages--;
527 h->free_huge_pages_node[nid]--;
528 return page;
531 static struct page *dequeue_huge_page_vma(struct hstate *h,
532 struct vm_area_struct *vma,
533 unsigned long address, int avoid_reserve)
535 struct page *page = NULL;
536 struct mempolicy *mpol;
537 nodemask_t *nodemask;
538 struct zonelist *zonelist;
539 struct zone *zone;
540 struct zoneref *z;
541 unsigned int cpuset_mems_cookie;
543 retry_cpuset:
544 cpuset_mems_cookie = get_mems_allowed();
545 zonelist = huge_zonelist(vma, address,
546 htlb_alloc_mask, &mpol, &nodemask);
548 * A child process with MAP_PRIVATE mappings created by their parent
549 * have no page reserves. This check ensures that reservations are
550 * not "stolen". The child may still get SIGKILLed
552 if (!vma_has_reserves(vma) &&
553 h->free_huge_pages - h->resv_huge_pages == 0)
554 goto err;
556 /* If reserves cannot be used, ensure enough pages are in the pool */
557 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
558 goto err;
560 for_each_zone_zonelist_nodemask(zone, z, zonelist,
561 MAX_NR_ZONES - 1, nodemask) {
562 if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask)) {
563 page = dequeue_huge_page_node(h, zone_to_nid(zone));
564 if (page) {
565 if (!avoid_reserve)
566 decrement_hugepage_resv_vma(h, vma);
567 break;
572 mpol_cond_put(mpol);
573 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
574 goto retry_cpuset;
575 return page;
577 err:
578 mpol_cond_put(mpol);
579 return NULL;
582 static void update_and_free_page(struct hstate *h, struct page *page)
584 int i;
586 VM_BUG_ON(h->order >= MAX_ORDER);
588 h->nr_huge_pages--;
589 h->nr_huge_pages_node[page_to_nid(page)]--;
590 for (i = 0; i < pages_per_huge_page(h); i++) {
591 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
592 1 << PG_referenced | 1 << PG_dirty |
593 1 << PG_active | 1 << PG_reserved |
594 1 << PG_private | 1 << PG_writeback);
596 set_compound_page_dtor(page, NULL);
597 set_page_refcounted(page);
598 arch_release_hugepage(page);
599 __free_pages(page, huge_page_order(h));
602 struct hstate *size_to_hstate(unsigned long size)
604 struct hstate *h;
606 for_each_hstate(h) {
607 if (huge_page_size(h) == size)
608 return h;
610 return NULL;
613 static void free_huge_page(struct page *page)
616 * Can't pass hstate in here because it is called from the
617 * compound page destructor.
619 struct hstate *h = page_hstate(page);
620 int nid = page_to_nid(page);
621 struct hugepage_subpool *spool =
622 (struct hugepage_subpool *)page_private(page);
624 set_page_private(page, 0);
625 page->mapping = NULL;
626 BUG_ON(page_count(page));
627 BUG_ON(page_mapcount(page));
628 INIT_LIST_HEAD(&page->lru);
630 spin_lock(&hugetlb_lock);
631 if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
632 update_and_free_page(h, page);
633 h->surplus_huge_pages--;
634 h->surplus_huge_pages_node[nid]--;
635 } else {
636 enqueue_huge_page(h, page);
638 spin_unlock(&hugetlb_lock);
639 hugepage_subpool_put_pages(spool, 1);
642 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
644 set_compound_page_dtor(page, free_huge_page);
645 spin_lock(&hugetlb_lock);
646 h->nr_huge_pages++;
647 h->nr_huge_pages_node[nid]++;
648 spin_unlock(&hugetlb_lock);
649 put_page(page); /* free it into the hugepage allocator */
652 static void prep_compound_gigantic_page(struct page *page, unsigned long order)
654 int i;
655 int nr_pages = 1 << order;
656 struct page *p = page + 1;
658 /* we rely on prep_new_huge_page to set the destructor */
659 set_compound_order(page, order);
660 __SetPageHead(page);
661 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
662 __SetPageTail(p);
663 set_page_count(p, 0);
664 p->first_page = page;
668 int PageHuge(struct page *page)
670 compound_page_dtor *dtor;
672 if (!PageCompound(page))
673 return 0;
675 page = compound_head(page);
676 dtor = get_compound_page_dtor(page);
678 return dtor == free_huge_page;
680 EXPORT_SYMBOL_GPL(PageHuge);
682 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
684 struct page *page;
686 if (h->order >= MAX_ORDER)
687 return NULL;
689 page = alloc_pages_exact_node(nid,
690 htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
691 __GFP_REPEAT|__GFP_NOWARN,
692 huge_page_order(h));
693 if (page) {
694 if (arch_prepare_hugepage(page)) {
695 __free_pages(page, huge_page_order(h));
696 return NULL;
698 prep_new_huge_page(h, page, nid);
701 return page;
705 * common helper functions for hstate_next_node_to_{alloc|free}.
706 * We may have allocated or freed a huge page based on a different
707 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
708 * be outside of *nodes_allowed. Ensure that we use an allowed
709 * node for alloc or free.
711 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
713 nid = next_node(nid, *nodes_allowed);
714 if (nid == MAX_NUMNODES)
715 nid = first_node(*nodes_allowed);
716 VM_BUG_ON(nid >= MAX_NUMNODES);
718 return nid;
721 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
723 if (!node_isset(nid, *nodes_allowed))
724 nid = next_node_allowed(nid, nodes_allowed);
725 return nid;
729 * returns the previously saved node ["this node"] from which to
730 * allocate a persistent huge page for the pool and advance the
731 * next node from which to allocate, handling wrap at end of node
732 * mask.
734 static int hstate_next_node_to_alloc(struct hstate *h,
735 nodemask_t *nodes_allowed)
737 int nid;
739 VM_BUG_ON(!nodes_allowed);
741 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
742 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
744 return nid;
747 static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
749 struct page *page;
750 int start_nid;
751 int next_nid;
752 int ret = 0;
754 start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
755 next_nid = start_nid;
757 do {
758 page = alloc_fresh_huge_page_node(h, next_nid);
759 if (page) {
760 ret = 1;
761 break;
763 next_nid = hstate_next_node_to_alloc(h, nodes_allowed);
764 } while (next_nid != start_nid);
766 if (ret)
767 count_vm_event(HTLB_BUDDY_PGALLOC);
768 else
769 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
771 return ret;
775 * helper for free_pool_huge_page() - return the previously saved
776 * node ["this node"] from which to free a huge page. Advance the
777 * next node id whether or not we find a free huge page to free so
778 * that the next attempt to free addresses the next node.
780 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
782 int nid;
784 VM_BUG_ON(!nodes_allowed);
786 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
787 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
789 return nid;
793 * Free huge page from pool from next node to free.
794 * Attempt to keep persistent huge pages more or less
795 * balanced over allowed nodes.
796 * Called with hugetlb_lock locked.
798 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
799 bool acct_surplus)
801 int start_nid;
802 int next_nid;
803 int ret = 0;
805 start_nid = hstate_next_node_to_free(h, nodes_allowed);
806 next_nid = start_nid;
808 do {
810 * If we're returning unused surplus pages, only examine
811 * nodes with surplus pages.
813 if ((!acct_surplus || h->surplus_huge_pages_node[next_nid]) &&
814 !list_empty(&h->hugepage_freelists[next_nid])) {
815 struct page *page =
816 list_entry(h->hugepage_freelists[next_nid].next,
817 struct page, lru);
818 list_del(&page->lru);
819 h->free_huge_pages--;
820 h->free_huge_pages_node[next_nid]--;
821 if (acct_surplus) {
822 h->surplus_huge_pages--;
823 h->surplus_huge_pages_node[next_nid]--;
825 update_and_free_page(h, page);
826 ret = 1;
827 break;
829 next_nid = hstate_next_node_to_free(h, nodes_allowed);
830 } while (next_nid != start_nid);
832 return ret;
835 static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
837 struct page *page;
838 unsigned int r_nid;
840 if (h->order >= MAX_ORDER)
841 return NULL;
844 * Assume we will successfully allocate the surplus page to
845 * prevent racing processes from causing the surplus to exceed
846 * overcommit
848 * This however introduces a different race, where a process B
849 * tries to grow the static hugepage pool while alloc_pages() is
850 * called by process A. B will only examine the per-node
851 * counters in determining if surplus huge pages can be
852 * converted to normal huge pages in adjust_pool_surplus(). A
853 * won't be able to increment the per-node counter, until the
854 * lock is dropped by B, but B doesn't drop hugetlb_lock until
855 * no more huge pages can be converted from surplus to normal
856 * state (and doesn't try to convert again). Thus, we have a
857 * case where a surplus huge page exists, the pool is grown, and
858 * the surplus huge page still exists after, even though it
859 * should just have been converted to a normal huge page. This
860 * does not leak memory, though, as the hugepage will be freed
861 * once it is out of use. It also does not allow the counters to
862 * go out of whack in adjust_pool_surplus() as we don't modify
863 * the node values until we've gotten the hugepage and only the
864 * per-node value is checked there.
866 spin_lock(&hugetlb_lock);
867 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
868 spin_unlock(&hugetlb_lock);
869 return NULL;
870 } else {
871 h->nr_huge_pages++;
872 h->surplus_huge_pages++;
874 spin_unlock(&hugetlb_lock);
876 if (nid == NUMA_NO_NODE)
877 page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
878 __GFP_REPEAT|__GFP_NOWARN,
879 huge_page_order(h));
880 else
881 page = alloc_pages_exact_node(nid,
882 htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
883 __GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
885 if (page && arch_prepare_hugepage(page)) {
886 __free_pages(page, huge_page_order(h));
887 page = NULL;
890 spin_lock(&hugetlb_lock);
891 if (page) {
892 r_nid = page_to_nid(page);
893 set_compound_page_dtor(page, free_huge_page);
895 * We incremented the global counters already
897 h->nr_huge_pages_node[r_nid]++;
898 h->surplus_huge_pages_node[r_nid]++;
899 __count_vm_event(HTLB_BUDDY_PGALLOC);
900 } else {
901 h->nr_huge_pages--;
902 h->surplus_huge_pages--;
903 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
905 spin_unlock(&hugetlb_lock);
907 return page;
911 * This allocation function is useful in the context where vma is irrelevant.
912 * E.g. soft-offlining uses this function because it only cares physical
913 * address of error page.
915 struct page *alloc_huge_page_node(struct hstate *h, int nid)
917 struct page *page;
919 spin_lock(&hugetlb_lock);
920 page = dequeue_huge_page_node(h, nid);
921 spin_unlock(&hugetlb_lock);
923 if (!page)
924 page = alloc_buddy_huge_page(h, nid);
926 return page;
930 * Increase the hugetlb pool such that it can accommodate a reservation
931 * of size 'delta'.
933 static int gather_surplus_pages(struct hstate *h, int delta)
935 struct list_head surplus_list;
936 struct page *page, *tmp;
937 int ret, i;
938 int needed, allocated;
939 bool alloc_ok = true;
941 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
942 if (needed <= 0) {
943 h->resv_huge_pages += delta;
944 return 0;
947 allocated = 0;
948 INIT_LIST_HEAD(&surplus_list);
950 ret = -ENOMEM;
951 retry:
952 spin_unlock(&hugetlb_lock);
953 for (i = 0; i < needed; i++) {
954 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
955 if (!page) {
956 alloc_ok = false;
957 break;
959 list_add(&page->lru, &surplus_list);
961 allocated += i;
964 * After retaking hugetlb_lock, we need to recalculate 'needed'
965 * because either resv_huge_pages or free_huge_pages may have changed.
967 spin_lock(&hugetlb_lock);
968 needed = (h->resv_huge_pages + delta) -
969 (h->free_huge_pages + allocated);
970 if (needed > 0) {
971 if (alloc_ok)
972 goto retry;
974 * We were not able to allocate enough pages to
975 * satisfy the entire reservation so we free what
976 * we've allocated so far.
978 goto free;
981 * The surplus_list now contains _at_least_ the number of extra pages
982 * needed to accommodate the reservation. Add the appropriate number
983 * of pages to the hugetlb pool and free the extras back to the buddy
984 * allocator. Commit the entire reservation here to prevent another
985 * process from stealing the pages as they are added to the pool but
986 * before they are reserved.
988 needed += allocated;
989 h->resv_huge_pages += delta;
990 ret = 0;
992 /* Free the needed pages to the hugetlb pool */
993 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
994 if ((--needed) < 0)
995 break;
996 list_del(&page->lru);
998 * This page is now managed by the hugetlb allocator and has
999 * no users -- drop the buddy allocator's reference.
1001 put_page_testzero(page);
1002 VM_BUG_ON(page_count(page));
1003 enqueue_huge_page(h, page);
1005 free:
1006 spin_unlock(&hugetlb_lock);
1008 /* Free unnecessary surplus pages to the buddy allocator */
1009 if (!list_empty(&surplus_list)) {
1010 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1011 list_del(&page->lru);
1012 put_page(page);
1015 spin_lock(&hugetlb_lock);
1017 return ret;
1021 * When releasing a hugetlb pool reservation, any surplus pages that were
1022 * allocated to satisfy the reservation must be explicitly freed if they were
1023 * never used.
1024 * Called with hugetlb_lock held.
1026 static void return_unused_surplus_pages(struct hstate *h,
1027 unsigned long unused_resv_pages)
1029 unsigned long nr_pages;
1031 /* Uncommit the reservation */
1032 h->resv_huge_pages -= unused_resv_pages;
1034 /* Cannot return gigantic pages currently */
1035 if (h->order >= MAX_ORDER)
1036 return;
1038 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1041 * We want to release as many surplus pages as possible, spread
1042 * evenly across all nodes with memory. Iterate across these nodes
1043 * until we can no longer free unreserved surplus pages. This occurs
1044 * when the nodes with surplus pages have no free pages.
1045 * free_pool_huge_page() will balance the the freed pages across the
1046 * on-line nodes with memory and will handle the hstate accounting.
1048 while (nr_pages--) {
1049 if (!free_pool_huge_page(h, &node_states[N_HIGH_MEMORY], 1))
1050 break;
1055 * Determine if the huge page at addr within the vma has an associated
1056 * reservation. Where it does not we will need to logically increase
1057 * reservation and actually increase subpool usage before an allocation
1058 * can occur. Where any new reservation would be required the
1059 * reservation change is prepared, but not committed. Once the page
1060 * has been allocated from the subpool and instantiated the change should
1061 * be committed via vma_commit_reservation. No action is required on
1062 * failure.
1064 static long vma_needs_reservation(struct hstate *h,
1065 struct vm_area_struct *vma, unsigned long addr)
1067 struct address_space *mapping = vma->vm_file->f_mapping;
1068 struct inode *inode = mapping->host;
1070 if (vma->vm_flags & VM_MAYSHARE) {
1071 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1072 return region_chg(&inode->i_mapping->private_list,
1073 idx, idx + 1);
1075 } else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1076 return 1;
1078 } else {
1079 long err;
1080 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1081 struct resv_map *reservations = vma_resv_map(vma);
1083 err = region_chg(&reservations->regions, idx, idx + 1);
1084 if (err < 0)
1085 return err;
1086 return 0;
1089 static void vma_commit_reservation(struct hstate *h,
1090 struct vm_area_struct *vma, unsigned long addr)
1092 struct address_space *mapping = vma->vm_file->f_mapping;
1093 struct inode *inode = mapping->host;
1095 if (vma->vm_flags & VM_MAYSHARE) {
1096 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1097 region_add(&inode->i_mapping->private_list, idx, idx + 1);
1099 } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1100 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1101 struct resv_map *reservations = vma_resv_map(vma);
1103 /* Mark this page used in the map. */
1104 region_add(&reservations->regions, idx, idx + 1);
1108 static struct page *alloc_huge_page(struct vm_area_struct *vma,
1109 unsigned long addr, int avoid_reserve)
1111 struct hugepage_subpool *spool = subpool_vma(vma);
1112 struct hstate *h = hstate_vma(vma);
1113 struct page *page;
1114 long chg;
1117 * Processes that did not create the mapping will have no
1118 * reserves and will not have accounted against subpool
1119 * limit. Check that the subpool limit can be made before
1120 * satisfying the allocation MAP_NORESERVE mappings may also
1121 * need pages and subpool limit allocated allocated if no reserve
1122 * mapping overlaps.
1124 chg = vma_needs_reservation(h, vma, addr);
1125 if (chg < 0)
1126 return ERR_PTR(-VM_FAULT_OOM);
1127 if (chg)
1128 if (hugepage_subpool_get_pages(spool, chg))
1129 return ERR_PTR(-VM_FAULT_SIGBUS);
1131 spin_lock(&hugetlb_lock);
1132 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve);
1133 spin_unlock(&hugetlb_lock);
1135 if (!page) {
1136 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1137 if (!page) {
1138 hugepage_subpool_put_pages(spool, chg);
1139 return ERR_PTR(-VM_FAULT_SIGBUS);
1143 set_page_private(page, (unsigned long)spool);
1145 vma_commit_reservation(h, vma, addr);
1147 return page;
1150 int __weak alloc_bootmem_huge_page(struct hstate *h)
1152 struct huge_bootmem_page *m;
1153 int nr_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
1155 while (nr_nodes) {
1156 void *addr;
1158 addr = __alloc_bootmem_node_nopanic(
1159 NODE_DATA(hstate_next_node_to_alloc(h,
1160 &node_states[N_HIGH_MEMORY])),
1161 huge_page_size(h), huge_page_size(h), 0);
1163 if (addr) {
1165 * Use the beginning of the huge page to store the
1166 * huge_bootmem_page struct (until gather_bootmem
1167 * puts them into the mem_map).
1169 m = addr;
1170 goto found;
1172 nr_nodes--;
1174 return 0;
1176 found:
1177 BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
1178 /* Put them into a private list first because mem_map is not up yet */
1179 list_add(&m->list, &huge_boot_pages);
1180 m->hstate = h;
1181 return 1;
1184 static void prep_compound_huge_page(struct page *page, int order)
1186 if (unlikely(order > (MAX_ORDER - 1)))
1187 prep_compound_gigantic_page(page, order);
1188 else
1189 prep_compound_page(page, order);
1192 /* Put bootmem huge pages into the standard lists after mem_map is up */
1193 static void __init gather_bootmem_prealloc(void)
1195 struct huge_bootmem_page *m;
1197 list_for_each_entry(m, &huge_boot_pages, list) {
1198 struct hstate *h = m->hstate;
1199 struct page *page;
1201 #ifdef CONFIG_HIGHMEM
1202 page = pfn_to_page(m->phys >> PAGE_SHIFT);
1203 free_bootmem_late((unsigned long)m,
1204 sizeof(struct huge_bootmem_page));
1205 #else
1206 page = virt_to_page(m);
1207 #endif
1208 __ClearPageReserved(page);
1209 WARN_ON(page_count(page) != 1);
1210 prep_compound_huge_page(page, h->order);
1211 prep_new_huge_page(h, page, page_to_nid(page));
1213 * If we had gigantic hugepages allocated at boot time, we need
1214 * to restore the 'stolen' pages to totalram_pages in order to
1215 * fix confusing memory reports from free(1) and another
1216 * side-effects, like CommitLimit going negative.
1218 if (h->order > (MAX_ORDER - 1))
1219 totalram_pages += 1 << h->order;
1223 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1225 unsigned long i;
1227 for (i = 0; i < h->max_huge_pages; ++i) {
1228 if (h->order >= MAX_ORDER) {
1229 if (!alloc_bootmem_huge_page(h))
1230 break;
1231 } else if (!alloc_fresh_huge_page(h,
1232 &node_states[N_HIGH_MEMORY]))
1233 break;
1235 h->max_huge_pages = i;
1238 static void __init hugetlb_init_hstates(void)
1240 struct hstate *h;
1242 for_each_hstate(h) {
1243 /* oversize hugepages were init'ed in early boot */
1244 if (h->order < MAX_ORDER)
1245 hugetlb_hstate_alloc_pages(h);
1249 static char * __init memfmt(char *buf, unsigned long n)
1251 if (n >= (1UL << 30))
1252 sprintf(buf, "%lu GB", n >> 30);
1253 else if (n >= (1UL << 20))
1254 sprintf(buf, "%lu MB", n >> 20);
1255 else
1256 sprintf(buf, "%lu KB", n >> 10);
1257 return buf;
1260 static void __init report_hugepages(void)
1262 struct hstate *h;
1264 for_each_hstate(h) {
1265 char buf[32];
1266 printk(KERN_INFO "HugeTLB registered %s page size, "
1267 "pre-allocated %ld pages\n",
1268 memfmt(buf, huge_page_size(h)),
1269 h->free_huge_pages);
1273 #ifdef CONFIG_HIGHMEM
1274 static void try_to_free_low(struct hstate *h, unsigned long count,
1275 nodemask_t *nodes_allowed)
1277 int i;
1279 if (h->order >= MAX_ORDER)
1280 return;
1282 for_each_node_mask(i, *nodes_allowed) {
1283 struct page *page, *next;
1284 struct list_head *freel = &h->hugepage_freelists[i];
1285 list_for_each_entry_safe(page, next, freel, lru) {
1286 if (count >= h->nr_huge_pages)
1287 return;
1288 if (PageHighMem(page))
1289 continue;
1290 list_del(&page->lru);
1291 update_and_free_page(h, page);
1292 h->free_huge_pages--;
1293 h->free_huge_pages_node[page_to_nid(page)]--;
1297 #else
1298 static inline void try_to_free_low(struct hstate *h, unsigned long count,
1299 nodemask_t *nodes_allowed)
1302 #endif
1305 * Increment or decrement surplus_huge_pages. Keep node-specific counters
1306 * balanced by operating on them in a round-robin fashion.
1307 * Returns 1 if an adjustment was made.
1309 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
1310 int delta)
1312 int start_nid, next_nid;
1313 int ret = 0;
1315 VM_BUG_ON(delta != -1 && delta != 1);
1317 if (delta < 0)
1318 start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
1319 else
1320 start_nid = hstate_next_node_to_free(h, nodes_allowed);
1321 next_nid = start_nid;
1323 do {
1324 int nid = next_nid;
1325 if (delta < 0) {
1327 * To shrink on this node, there must be a surplus page
1329 if (!h->surplus_huge_pages_node[nid]) {
1330 next_nid = hstate_next_node_to_alloc(h,
1331 nodes_allowed);
1332 continue;
1335 if (delta > 0) {
1337 * Surplus cannot exceed the total number of pages
1339 if (h->surplus_huge_pages_node[nid] >=
1340 h->nr_huge_pages_node[nid]) {
1341 next_nid = hstate_next_node_to_free(h,
1342 nodes_allowed);
1343 continue;
1347 h->surplus_huge_pages += delta;
1348 h->surplus_huge_pages_node[nid] += delta;
1349 ret = 1;
1350 break;
1351 } while (next_nid != start_nid);
1353 return ret;
1356 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1357 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
1358 nodemask_t *nodes_allowed)
1360 unsigned long min_count, ret;
1362 if (h->order >= MAX_ORDER)
1363 return h->max_huge_pages;
1366 * Increase the pool size
1367 * First take pages out of surplus state. Then make up the
1368 * remaining difference by allocating fresh huge pages.
1370 * We might race with alloc_buddy_huge_page() here and be unable
1371 * to convert a surplus huge page to a normal huge page. That is
1372 * not critical, though, it just means the overall size of the
1373 * pool might be one hugepage larger than it needs to be, but
1374 * within all the constraints specified by the sysctls.
1376 spin_lock(&hugetlb_lock);
1377 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1378 if (!adjust_pool_surplus(h, nodes_allowed, -1))
1379 break;
1382 while (count > persistent_huge_pages(h)) {
1384 * If this allocation races such that we no longer need the
1385 * page, free_huge_page will handle it by freeing the page
1386 * and reducing the surplus.
1388 spin_unlock(&hugetlb_lock);
1389 ret = alloc_fresh_huge_page(h, nodes_allowed);
1390 spin_lock(&hugetlb_lock);
1391 if (!ret)
1392 goto out;
1394 /* Bail for signals. Probably ctrl-c from user */
1395 if (signal_pending(current))
1396 goto out;
1400 * Decrease the pool size
1401 * First return free pages to the buddy allocator (being careful
1402 * to keep enough around to satisfy reservations). Then place
1403 * pages into surplus state as needed so the pool will shrink
1404 * to the desired size as pages become free.
1406 * By placing pages into the surplus state independent of the
1407 * overcommit value, we are allowing the surplus pool size to
1408 * exceed overcommit. There are few sane options here. Since
1409 * alloc_buddy_huge_page() is checking the global counter,
1410 * though, we'll note that we're not allowed to exceed surplus
1411 * and won't grow the pool anywhere else. Not until one of the
1412 * sysctls are changed, or the surplus pages go out of use.
1414 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1415 min_count = max(count, min_count);
1416 try_to_free_low(h, min_count, nodes_allowed);
1417 while (min_count < persistent_huge_pages(h)) {
1418 if (!free_pool_huge_page(h, nodes_allowed, 0))
1419 break;
1421 while (count < persistent_huge_pages(h)) {
1422 if (!adjust_pool_surplus(h, nodes_allowed, 1))
1423 break;
1425 out:
1426 ret = persistent_huge_pages(h);
1427 spin_unlock(&hugetlb_lock);
1428 return ret;
1431 #define HSTATE_ATTR_RO(_name) \
1432 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1434 #define HSTATE_ATTR(_name) \
1435 static struct kobj_attribute _name##_attr = \
1436 __ATTR(_name, 0644, _name##_show, _name##_store)
1438 static struct kobject *hugepages_kobj;
1439 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1441 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
1443 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
1445 int i;
1447 for (i = 0; i < HUGE_MAX_HSTATE; i++)
1448 if (hstate_kobjs[i] == kobj) {
1449 if (nidp)
1450 *nidp = NUMA_NO_NODE;
1451 return &hstates[i];
1454 return kobj_to_node_hstate(kobj, nidp);
1457 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
1458 struct kobj_attribute *attr, char *buf)
1460 struct hstate *h;
1461 unsigned long nr_huge_pages;
1462 int nid;
1464 h = kobj_to_hstate(kobj, &nid);
1465 if (nid == NUMA_NO_NODE)
1466 nr_huge_pages = h->nr_huge_pages;
1467 else
1468 nr_huge_pages = h->nr_huge_pages_node[nid];
1470 return sprintf(buf, "%lu\n", nr_huge_pages);
1473 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
1474 struct kobject *kobj, struct kobj_attribute *attr,
1475 const char *buf, size_t len)
1477 int err;
1478 int nid;
1479 unsigned long count;
1480 struct hstate *h;
1481 NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
1483 err = strict_strtoul(buf, 10, &count);
1484 if (err)
1485 goto out;
1487 h = kobj_to_hstate(kobj, &nid);
1488 if (h->order >= MAX_ORDER) {
1489 err = -EINVAL;
1490 goto out;
1493 if (nid == NUMA_NO_NODE) {
1495 * global hstate attribute
1497 if (!(obey_mempolicy &&
1498 init_nodemask_of_mempolicy(nodes_allowed))) {
1499 NODEMASK_FREE(nodes_allowed);
1500 nodes_allowed = &node_states[N_HIGH_MEMORY];
1502 } else if (nodes_allowed) {
1504 * per node hstate attribute: adjust count to global,
1505 * but restrict alloc/free to the specified node.
1507 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
1508 init_nodemask_of_node(nodes_allowed, nid);
1509 } else
1510 nodes_allowed = &node_states[N_HIGH_MEMORY];
1512 h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
1514 if (nodes_allowed != &node_states[N_HIGH_MEMORY])
1515 NODEMASK_FREE(nodes_allowed);
1517 return len;
1518 out:
1519 NODEMASK_FREE(nodes_allowed);
1520 return err;
1523 static ssize_t nr_hugepages_show(struct kobject *kobj,
1524 struct kobj_attribute *attr, char *buf)
1526 return nr_hugepages_show_common(kobj, attr, buf);
1529 static ssize_t nr_hugepages_store(struct kobject *kobj,
1530 struct kobj_attribute *attr, const char *buf, size_t len)
1532 return nr_hugepages_store_common(false, kobj, attr, buf, len);
1534 HSTATE_ATTR(nr_hugepages);
1536 #ifdef CONFIG_NUMA
1539 * hstate attribute for optionally mempolicy-based constraint on persistent
1540 * huge page alloc/free.
1542 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
1543 struct kobj_attribute *attr, char *buf)
1545 return nr_hugepages_show_common(kobj, attr, buf);
1548 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
1549 struct kobj_attribute *attr, const char *buf, size_t len)
1551 return nr_hugepages_store_common(true, kobj, attr, buf, len);
1553 HSTATE_ATTR(nr_hugepages_mempolicy);
1554 #endif
1557 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1558 struct kobj_attribute *attr, char *buf)
1560 struct hstate *h = kobj_to_hstate(kobj, NULL);
1561 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1564 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1565 struct kobj_attribute *attr, const char *buf, size_t count)
1567 int err;
1568 unsigned long input;
1569 struct hstate *h = kobj_to_hstate(kobj, NULL);
1571 if (h->order >= MAX_ORDER)
1572 return -EINVAL;
1574 err = strict_strtoul(buf, 10, &input);
1575 if (err)
1576 return err;
1578 spin_lock(&hugetlb_lock);
1579 h->nr_overcommit_huge_pages = input;
1580 spin_unlock(&hugetlb_lock);
1582 return count;
1584 HSTATE_ATTR(nr_overcommit_hugepages);
1586 static ssize_t free_hugepages_show(struct kobject *kobj,
1587 struct kobj_attribute *attr, char *buf)
1589 struct hstate *h;
1590 unsigned long free_huge_pages;
1591 int nid;
1593 h = kobj_to_hstate(kobj, &nid);
1594 if (nid == NUMA_NO_NODE)
1595 free_huge_pages = h->free_huge_pages;
1596 else
1597 free_huge_pages = h->free_huge_pages_node[nid];
1599 return sprintf(buf, "%lu\n", free_huge_pages);
1601 HSTATE_ATTR_RO(free_hugepages);
1603 static ssize_t resv_hugepages_show(struct kobject *kobj,
1604 struct kobj_attribute *attr, char *buf)
1606 struct hstate *h = kobj_to_hstate(kobj, NULL);
1607 return sprintf(buf, "%lu\n", h->resv_huge_pages);
1609 HSTATE_ATTR_RO(resv_hugepages);
1611 static ssize_t surplus_hugepages_show(struct kobject *kobj,
1612 struct kobj_attribute *attr, char *buf)
1614 struct hstate *h;
1615 unsigned long surplus_huge_pages;
1616 int nid;
1618 h = kobj_to_hstate(kobj, &nid);
1619 if (nid == NUMA_NO_NODE)
1620 surplus_huge_pages = h->surplus_huge_pages;
1621 else
1622 surplus_huge_pages = h->surplus_huge_pages_node[nid];
1624 return sprintf(buf, "%lu\n", surplus_huge_pages);
1626 HSTATE_ATTR_RO(surplus_hugepages);
1628 static struct attribute *hstate_attrs[] = {
1629 &nr_hugepages_attr.attr,
1630 &nr_overcommit_hugepages_attr.attr,
1631 &free_hugepages_attr.attr,
1632 &resv_hugepages_attr.attr,
1633 &surplus_hugepages_attr.attr,
1634 #ifdef CONFIG_NUMA
1635 &nr_hugepages_mempolicy_attr.attr,
1636 #endif
1637 NULL,
1640 static struct attribute_group hstate_attr_group = {
1641 .attrs = hstate_attrs,
1644 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
1645 struct kobject **hstate_kobjs,
1646 struct attribute_group *hstate_attr_group)
1648 int retval;
1649 int hi = h - hstates;
1651 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
1652 if (!hstate_kobjs[hi])
1653 return -ENOMEM;
1655 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
1656 if (retval)
1657 kobject_put(hstate_kobjs[hi]);
1659 return retval;
1662 static void __init hugetlb_sysfs_init(void)
1664 struct hstate *h;
1665 int err;
1667 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
1668 if (!hugepages_kobj)
1669 return;
1671 for_each_hstate(h) {
1672 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
1673 hstate_kobjs, &hstate_attr_group);
1674 if (err)
1675 printk(KERN_ERR "Hugetlb: Unable to add hstate %s",
1676 h->name);
1680 #ifdef CONFIG_NUMA
1683 * node_hstate/s - associate per node hstate attributes, via their kobjects,
1684 * with node devices in node_devices[] using a parallel array. The array
1685 * index of a node device or _hstate == node id.
1686 * This is here to avoid any static dependency of the node device driver, in
1687 * the base kernel, on the hugetlb module.
1689 struct node_hstate {
1690 struct kobject *hugepages_kobj;
1691 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1693 struct node_hstate node_hstates[MAX_NUMNODES];
1696 * A subset of global hstate attributes for node devices
1698 static struct attribute *per_node_hstate_attrs[] = {
1699 &nr_hugepages_attr.attr,
1700 &free_hugepages_attr.attr,
1701 &surplus_hugepages_attr.attr,
1702 NULL,
1705 static struct attribute_group per_node_hstate_attr_group = {
1706 .attrs = per_node_hstate_attrs,
1710 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
1711 * Returns node id via non-NULL nidp.
1713 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1715 int nid;
1717 for (nid = 0; nid < nr_node_ids; nid++) {
1718 struct node_hstate *nhs = &node_hstates[nid];
1719 int i;
1720 for (i = 0; i < HUGE_MAX_HSTATE; i++)
1721 if (nhs->hstate_kobjs[i] == kobj) {
1722 if (nidp)
1723 *nidp = nid;
1724 return &hstates[i];
1728 BUG();
1729 return NULL;
1733 * Unregister hstate attributes from a single node device.
1734 * No-op if no hstate attributes attached.
1736 void hugetlb_unregister_node(struct node *node)
1738 struct hstate *h;
1739 struct node_hstate *nhs = &node_hstates[node->dev.id];
1741 if (!nhs->hugepages_kobj)
1742 return; /* no hstate attributes */
1744 for_each_hstate(h)
1745 if (nhs->hstate_kobjs[h - hstates]) {
1746 kobject_put(nhs->hstate_kobjs[h - hstates]);
1747 nhs->hstate_kobjs[h - hstates] = NULL;
1750 kobject_put(nhs->hugepages_kobj);
1751 nhs->hugepages_kobj = NULL;
1755 * hugetlb module exit: unregister hstate attributes from node devices
1756 * that have them.
1758 static void hugetlb_unregister_all_nodes(void)
1760 int nid;
1763 * disable node device registrations.
1765 register_hugetlbfs_with_node(NULL, NULL);
1768 * remove hstate attributes from any nodes that have them.
1770 for (nid = 0; nid < nr_node_ids; nid++)
1771 hugetlb_unregister_node(&node_devices[nid]);
1775 * Register hstate attributes for a single node device.
1776 * No-op if attributes already registered.
1778 void hugetlb_register_node(struct node *node)
1780 struct hstate *h;
1781 struct node_hstate *nhs = &node_hstates[node->dev.id];
1782 int err;
1784 if (nhs->hugepages_kobj)
1785 return; /* already allocated */
1787 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
1788 &node->dev.kobj);
1789 if (!nhs->hugepages_kobj)
1790 return;
1792 for_each_hstate(h) {
1793 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
1794 nhs->hstate_kobjs,
1795 &per_node_hstate_attr_group);
1796 if (err) {
1797 printk(KERN_ERR "Hugetlb: Unable to add hstate %s"
1798 " for node %d\n",
1799 h->name, node->dev.id);
1800 hugetlb_unregister_node(node);
1801 break;
1807 * hugetlb init time: register hstate attributes for all registered node
1808 * devices of nodes that have memory. All on-line nodes should have
1809 * registered their associated device by this time.
1811 static void hugetlb_register_all_nodes(void)
1813 int nid;
1815 for_each_node_state(nid, N_HIGH_MEMORY) {
1816 struct node *node = &node_devices[nid];
1817 if (node->dev.id == nid)
1818 hugetlb_register_node(node);
1822 * Let the node device driver know we're here so it can
1823 * [un]register hstate attributes on node hotplug.
1825 register_hugetlbfs_with_node(hugetlb_register_node,
1826 hugetlb_unregister_node);
1828 #else /* !CONFIG_NUMA */
1830 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1832 BUG();
1833 if (nidp)
1834 *nidp = -1;
1835 return NULL;
1838 static void hugetlb_unregister_all_nodes(void) { }
1840 static void hugetlb_register_all_nodes(void) { }
1842 #endif
1844 static void __exit hugetlb_exit(void)
1846 struct hstate *h;
1848 hugetlb_unregister_all_nodes();
1850 for_each_hstate(h) {
1851 kobject_put(hstate_kobjs[h - hstates]);
1854 kobject_put(hugepages_kobj);
1856 module_exit(hugetlb_exit);
1858 static int __init hugetlb_init(void)
1860 /* Some platform decide whether they support huge pages at boot
1861 * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
1862 * there is no such support
1864 if (HPAGE_SHIFT == 0)
1865 return 0;
1867 if (!size_to_hstate(default_hstate_size)) {
1868 default_hstate_size = HPAGE_SIZE;
1869 if (!size_to_hstate(default_hstate_size))
1870 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
1872 default_hstate_idx = size_to_hstate(default_hstate_size) - hstates;
1873 if (default_hstate_max_huge_pages)
1874 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
1876 hugetlb_init_hstates();
1878 gather_bootmem_prealloc();
1880 report_hugepages();
1882 hugetlb_sysfs_init();
1884 hugetlb_register_all_nodes();
1886 return 0;
1888 module_init(hugetlb_init);
1890 /* Should be called on processing a hugepagesz=... option */
1891 void __init hugetlb_add_hstate(unsigned order)
1893 struct hstate *h;
1894 unsigned long i;
1896 if (size_to_hstate(PAGE_SIZE << order)) {
1897 printk(KERN_WARNING "hugepagesz= specified twice, ignoring\n");
1898 return;
1900 BUG_ON(max_hstate >= HUGE_MAX_HSTATE);
1901 BUG_ON(order == 0);
1902 h = &hstates[max_hstate++];
1903 h->order = order;
1904 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
1905 h->nr_huge_pages = 0;
1906 h->free_huge_pages = 0;
1907 for (i = 0; i < MAX_NUMNODES; ++i)
1908 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
1909 h->next_nid_to_alloc = first_node(node_states[N_HIGH_MEMORY]);
1910 h->next_nid_to_free = first_node(node_states[N_HIGH_MEMORY]);
1911 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
1912 huge_page_size(h)/1024);
1914 parsed_hstate = h;
1917 static int __init hugetlb_nrpages_setup(char *s)
1919 unsigned long *mhp;
1920 static unsigned long *last_mhp;
1923 * !max_hstate means we haven't parsed a hugepagesz= parameter yet,
1924 * so this hugepages= parameter goes to the "default hstate".
1926 if (!max_hstate)
1927 mhp = &default_hstate_max_huge_pages;
1928 else
1929 mhp = &parsed_hstate->max_huge_pages;
1931 if (mhp == last_mhp) {
1932 printk(KERN_WARNING "hugepages= specified twice without "
1933 "interleaving hugepagesz=, ignoring\n");
1934 return 1;
1937 if (sscanf(s, "%lu", mhp) <= 0)
1938 *mhp = 0;
1941 * Global state is always initialized later in hugetlb_init.
1942 * But we need to allocate >= MAX_ORDER hstates here early to still
1943 * use the bootmem allocator.
1945 if (max_hstate && parsed_hstate->order >= MAX_ORDER)
1946 hugetlb_hstate_alloc_pages(parsed_hstate);
1948 last_mhp = mhp;
1950 return 1;
1952 __setup("hugepages=", hugetlb_nrpages_setup);
1954 static int __init hugetlb_default_setup(char *s)
1956 default_hstate_size = memparse(s, &s);
1957 return 1;
1959 __setup("default_hugepagesz=", hugetlb_default_setup);
1961 static unsigned int cpuset_mems_nr(unsigned int *array)
1963 int node;
1964 unsigned int nr = 0;
1966 for_each_node_mask(node, cpuset_current_mems_allowed)
1967 nr += array[node];
1969 return nr;
1972 #ifdef CONFIG_SYSCTL
1973 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
1974 struct ctl_table *table, int write,
1975 void __user *buffer, size_t *length, loff_t *ppos)
1977 struct hstate *h = &default_hstate;
1978 unsigned long tmp;
1979 int ret;
1981 tmp = h->max_huge_pages;
1983 if (write && h->order >= MAX_ORDER)
1984 return -EINVAL;
1986 table->data = &tmp;
1987 table->maxlen = sizeof(unsigned long);
1988 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
1989 if (ret)
1990 goto out;
1992 if (write) {
1993 NODEMASK_ALLOC(nodemask_t, nodes_allowed,
1994 GFP_KERNEL | __GFP_NORETRY);
1995 if (!(obey_mempolicy &&
1996 init_nodemask_of_mempolicy(nodes_allowed))) {
1997 NODEMASK_FREE(nodes_allowed);
1998 nodes_allowed = &node_states[N_HIGH_MEMORY];
2000 h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed);
2002 if (nodes_allowed != &node_states[N_HIGH_MEMORY])
2003 NODEMASK_FREE(nodes_allowed);
2005 out:
2006 return ret;
2009 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2010 void __user *buffer, size_t *length, loff_t *ppos)
2013 return hugetlb_sysctl_handler_common(false, table, write,
2014 buffer, length, ppos);
2017 #ifdef CONFIG_NUMA
2018 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2019 void __user *buffer, size_t *length, loff_t *ppos)
2021 return hugetlb_sysctl_handler_common(true, table, write,
2022 buffer, length, ppos);
2024 #endif /* CONFIG_NUMA */
2026 int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
2027 void __user *buffer,
2028 size_t *length, loff_t *ppos)
2030 proc_dointvec(table, write, buffer, length, ppos);
2031 if (hugepages_treat_as_movable)
2032 htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
2033 else
2034 htlb_alloc_mask = GFP_HIGHUSER;
2035 return 0;
2038 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2039 void __user *buffer,
2040 size_t *length, loff_t *ppos)
2042 struct hstate *h = &default_hstate;
2043 unsigned long tmp;
2044 int ret;
2046 tmp = h->nr_overcommit_huge_pages;
2048 if (write && h->order >= MAX_ORDER)
2049 return -EINVAL;
2051 table->data = &tmp;
2052 table->maxlen = sizeof(unsigned long);
2053 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2054 if (ret)
2055 goto out;
2057 if (write) {
2058 spin_lock(&hugetlb_lock);
2059 h->nr_overcommit_huge_pages = tmp;
2060 spin_unlock(&hugetlb_lock);
2062 out:
2063 return ret;
2066 #endif /* CONFIG_SYSCTL */
2068 void hugetlb_report_meminfo(struct seq_file *m)
2070 struct hstate *h = &default_hstate;
2071 seq_printf(m,
2072 "HugePages_Total: %5lu\n"
2073 "HugePages_Free: %5lu\n"
2074 "HugePages_Rsvd: %5lu\n"
2075 "HugePages_Surp: %5lu\n"
2076 "Hugepagesize: %8lu kB\n",
2077 h->nr_huge_pages,
2078 h->free_huge_pages,
2079 h->resv_huge_pages,
2080 h->surplus_huge_pages,
2081 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2084 int hugetlb_report_node_meminfo(int nid, char *buf)
2086 struct hstate *h = &default_hstate;
2087 return sprintf(buf,
2088 "Node %d HugePages_Total: %5u\n"
2089 "Node %d HugePages_Free: %5u\n"
2090 "Node %d HugePages_Surp: %5u\n",
2091 nid, h->nr_huge_pages_node[nid],
2092 nid, h->free_huge_pages_node[nid],
2093 nid, h->surplus_huge_pages_node[nid]);
2096 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2097 unsigned long hugetlb_total_pages(void)
2099 struct hstate *h = &default_hstate;
2100 return h->nr_huge_pages * pages_per_huge_page(h);
2103 static int hugetlb_acct_memory(struct hstate *h, long delta)
2105 int ret = -ENOMEM;
2107 spin_lock(&hugetlb_lock);
2109 * When cpuset is configured, it breaks the strict hugetlb page
2110 * reservation as the accounting is done on a global variable. Such
2111 * reservation is completely rubbish in the presence of cpuset because
2112 * the reservation is not checked against page availability for the
2113 * current cpuset. Application can still potentially OOM'ed by kernel
2114 * with lack of free htlb page in cpuset that the task is in.
2115 * Attempt to enforce strict accounting with cpuset is almost
2116 * impossible (or too ugly) because cpuset is too fluid that
2117 * task or memory node can be dynamically moved between cpusets.
2119 * The change of semantics for shared hugetlb mapping with cpuset is
2120 * undesirable. However, in order to preserve some of the semantics,
2121 * we fall back to check against current free page availability as
2122 * a best attempt and hopefully to minimize the impact of changing
2123 * semantics that cpuset has.
2125 if (delta > 0) {
2126 if (gather_surplus_pages(h, delta) < 0)
2127 goto out;
2129 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2130 return_unused_surplus_pages(h, delta);
2131 goto out;
2135 ret = 0;
2136 if (delta < 0)
2137 return_unused_surplus_pages(h, (unsigned long) -delta);
2139 out:
2140 spin_unlock(&hugetlb_lock);
2141 return ret;
2144 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2146 struct resv_map *reservations = vma_resv_map(vma);
2149 * This new VMA should share its siblings reservation map if present.
2150 * The VMA will only ever have a valid reservation map pointer where
2151 * it is being copied for another still existing VMA. As that VMA
2152 * has a reference to the reservation map it cannot disappear until
2153 * after this open call completes. It is therefore safe to take a
2154 * new reference here without additional locking.
2156 if (reservations)
2157 kref_get(&reservations->refs);
2160 static void resv_map_put(struct vm_area_struct *vma)
2162 struct resv_map *reservations = vma_resv_map(vma);
2164 if (!reservations)
2165 return;
2166 kref_put(&reservations->refs, resv_map_release);
2169 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2171 struct hstate *h = hstate_vma(vma);
2172 struct resv_map *reservations = vma_resv_map(vma);
2173 struct hugepage_subpool *spool = subpool_vma(vma);
2174 unsigned long reserve;
2175 unsigned long start;
2176 unsigned long end;
2178 if (reservations) {
2179 start = vma_hugecache_offset(h, vma, vma->vm_start);
2180 end = vma_hugecache_offset(h, vma, vma->vm_end);
2182 reserve = (end - start) -
2183 region_count(&reservations->regions, start, end);
2185 resv_map_put(vma);
2187 if (reserve) {
2188 hugetlb_acct_memory(h, -reserve);
2189 hugepage_subpool_put_pages(spool, reserve);
2195 * We cannot handle pagefaults against hugetlb pages at all. They cause
2196 * handle_mm_fault() to try to instantiate regular-sized pages in the
2197 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
2198 * this far.
2200 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2202 BUG();
2203 return 0;
2206 const struct vm_operations_struct hugetlb_vm_ops = {
2207 .fault = hugetlb_vm_op_fault,
2208 .open = hugetlb_vm_op_open,
2209 .close = hugetlb_vm_op_close,
2212 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
2213 int writable)
2215 pte_t entry;
2217 if (writable) {
2218 entry =
2219 pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
2220 } else {
2221 entry = huge_pte_wrprotect(mk_pte(page, vma->vm_page_prot));
2223 entry = pte_mkyoung(entry);
2224 entry = pte_mkhuge(entry);
2225 entry = arch_make_huge_pte(entry, vma, page, writable);
2227 return entry;
2230 static void set_huge_ptep_writable(struct vm_area_struct *vma,
2231 unsigned long address, pte_t *ptep)
2233 pte_t entry;
2235 entry = pte_mkwrite(pte_mkdirty(huge_ptep_get(ptep)));
2236 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
2237 update_mmu_cache(vma, address, ptep);
2241 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
2242 struct vm_area_struct *vma)
2244 pte_t *src_pte, *dst_pte, entry;
2245 struct page *ptepage;
2246 unsigned long addr;
2247 int cow;
2248 struct hstate *h = hstate_vma(vma);
2249 unsigned long sz = huge_page_size(h);
2251 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
2253 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
2254 src_pte = huge_pte_offset(src, addr);
2255 if (!src_pte)
2256 continue;
2257 dst_pte = huge_pte_alloc(dst, addr, sz);
2258 if (!dst_pte)
2259 goto nomem;
2261 /* If the pagetables are shared don't copy or take references */
2262 if (dst_pte == src_pte)
2263 continue;
2265 spin_lock(&dst->page_table_lock);
2266 spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
2267 if (!huge_pte_none(huge_ptep_get(src_pte))) {
2268 if (cow)
2269 huge_ptep_set_wrprotect(src, addr, src_pte);
2270 entry = huge_ptep_get(src_pte);
2271 ptepage = pte_page(entry);
2272 get_page(ptepage);
2273 page_dup_rmap(ptepage);
2274 set_huge_pte_at(dst, addr, dst_pte, entry);
2276 spin_unlock(&src->page_table_lock);
2277 spin_unlock(&dst->page_table_lock);
2279 return 0;
2281 nomem:
2282 return -ENOMEM;
2285 static int is_hugetlb_entry_migration(pte_t pte)
2287 swp_entry_t swp;
2289 if (huge_pte_none(pte) || pte_present(pte))
2290 return 0;
2291 swp = pte_to_swp_entry(pte);
2292 if (non_swap_entry(swp) && is_migration_entry(swp))
2293 return 1;
2294 else
2295 return 0;
2298 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
2300 swp_entry_t swp;
2302 if (huge_pte_none(pte) || pte_present(pte))
2303 return 0;
2304 swp = pte_to_swp_entry(pte);
2305 if (non_swap_entry(swp) && is_hwpoison_entry(swp))
2306 return 1;
2307 else
2308 return 0;
2311 void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2312 unsigned long end, struct page *ref_page)
2314 struct mm_struct *mm = vma->vm_mm;
2315 unsigned long address;
2316 pte_t *ptep;
2317 pte_t pte;
2318 struct page *page;
2319 struct page *tmp;
2320 struct hstate *h = hstate_vma(vma);
2321 unsigned long sz = huge_page_size(h);
2324 * A page gathering list, protected by per file i_mmap_mutex. The
2325 * lock is used to avoid list corruption from multiple unmapping
2326 * of the same page since we are using page->lru.
2328 LIST_HEAD(page_list);
2330 WARN_ON(!is_vm_hugetlb_page(vma));
2331 BUG_ON(start & ~huge_page_mask(h));
2332 BUG_ON(end & ~huge_page_mask(h));
2334 mmu_notifier_invalidate_range_start(mm, start, end);
2335 spin_lock(&mm->page_table_lock);
2336 for (address = start; address < end; address += sz) {
2337 ptep = huge_pte_offset(mm, address);
2338 if (!ptep)
2339 continue;
2341 if (huge_pmd_unshare(mm, &address, ptep))
2342 continue;
2344 pte = huge_ptep_get(ptep);
2345 if (huge_pte_none(pte))
2346 continue;
2349 * HWPoisoned hugepage is already unmapped and dropped reference
2351 if (unlikely(is_hugetlb_entry_hwpoisoned(pte)))
2352 continue;
2354 page = pte_page(pte);
2356 * If a reference page is supplied, it is because a specific
2357 * page is being unmapped, not a range. Ensure the page we
2358 * are about to unmap is the actual page of interest.
2360 if (ref_page) {
2361 if (page != ref_page)
2362 continue;
2365 * Mark the VMA as having unmapped its page so that
2366 * future faults in this VMA will fail rather than
2367 * looking like data was lost
2369 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
2372 pte = huge_ptep_get_and_clear(mm, address, ptep);
2373 if (pte_dirty(pte))
2374 set_page_dirty(page);
2375 list_add(&page->lru, &page_list);
2377 /* Bail out after unmapping reference page if supplied */
2378 if (ref_page)
2379 break;
2381 flush_tlb_range(vma, start, end);
2382 spin_unlock(&mm->page_table_lock);
2383 mmu_notifier_invalidate_range_end(mm, start, end);
2384 list_for_each_entry_safe(page, tmp, &page_list, lru) {
2385 page_remove_rmap(page);
2386 list_del(&page->lru);
2387 put_page(page);
2391 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2392 unsigned long end, struct page *ref_page)
2394 mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
2395 __unmap_hugepage_range(vma, start, end, ref_page);
2396 mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
2400 * This is called when the original mapper is failing to COW a MAP_PRIVATE
2401 * mappping it owns the reserve page for. The intention is to unmap the page
2402 * from other VMAs and let the children be SIGKILLed if they are faulting the
2403 * same region.
2405 static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
2406 struct page *page, unsigned long address)
2408 struct hstate *h = hstate_vma(vma);
2409 struct vm_area_struct *iter_vma;
2410 struct address_space *mapping;
2411 struct prio_tree_iter iter;
2412 pgoff_t pgoff;
2415 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
2416 * from page cache lookup which is in HPAGE_SIZE units.
2418 address = address & huge_page_mask(h);
2419 pgoff = vma_hugecache_offset(h, vma, address);
2420 mapping = vma->vm_file->f_dentry->d_inode->i_mapping;
2423 * Take the mapping lock for the duration of the table walk. As
2424 * this mapping should be shared between all the VMAs,
2425 * __unmap_hugepage_range() is called as the lock is already held
2427 mutex_lock(&mapping->i_mmap_mutex);
2428 vma_prio_tree_foreach(iter_vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
2429 /* Do not unmap the current VMA */
2430 if (iter_vma == vma)
2431 continue;
2434 * Unmap the page from other VMAs without their own reserves.
2435 * They get marked to be SIGKILLed if they fault in these
2436 * areas. This is because a future no-page fault on this VMA
2437 * could insert a zeroed page instead of the data existing
2438 * from the time of fork. This would look like data corruption
2440 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
2441 __unmap_hugepage_range(iter_vma,
2442 address, address + huge_page_size(h),
2443 page);
2445 mutex_unlock(&mapping->i_mmap_mutex);
2447 return 1;
2451 * Hugetlb_cow() should be called with page lock of the original hugepage held.
2452 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
2453 * cannot race with other handlers or page migration.
2454 * Keep the pte_same checks anyway to make transition from the mutex easier.
2456 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
2457 unsigned long address, pte_t *ptep, pte_t pte,
2458 struct page *pagecache_page)
2460 struct hstate *h = hstate_vma(vma);
2461 struct page *old_page, *new_page;
2462 int avoidcopy;
2463 int outside_reserve = 0;
2465 old_page = pte_page(pte);
2467 retry_avoidcopy:
2468 /* If no-one else is actually using this page, avoid the copy
2469 * and just make the page writable */
2470 avoidcopy = (page_mapcount(old_page) == 1);
2471 if (avoidcopy) {
2472 if (PageAnon(old_page))
2473 page_move_anon_rmap(old_page, vma, address);
2474 set_huge_ptep_writable(vma, address, ptep);
2475 return 0;
2479 * If the process that created a MAP_PRIVATE mapping is about to
2480 * perform a COW due to a shared page count, attempt to satisfy
2481 * the allocation without using the existing reserves. The pagecache
2482 * page is used to determine if the reserve at this address was
2483 * consumed or not. If reserves were used, a partial faulted mapping
2484 * at the time of fork() could consume its reserves on COW instead
2485 * of the full address range.
2487 if (!(vma->vm_flags & VM_MAYSHARE) &&
2488 is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
2489 old_page != pagecache_page)
2490 outside_reserve = 1;
2492 page_cache_get(old_page);
2494 /* Drop page_table_lock as buddy allocator may be called */
2495 spin_unlock(&mm->page_table_lock);
2496 new_page = alloc_huge_page(vma, address, outside_reserve);
2498 if (IS_ERR(new_page)) {
2499 page_cache_release(old_page);
2502 * If a process owning a MAP_PRIVATE mapping fails to COW,
2503 * it is due to references held by a child and an insufficient
2504 * huge page pool. To guarantee the original mappers
2505 * reliability, unmap the page from child processes. The child
2506 * may get SIGKILLed if it later faults.
2508 if (outside_reserve) {
2509 BUG_ON(huge_pte_none(pte));
2510 if (unmap_ref_private(mm, vma, old_page, address)) {
2511 BUG_ON(huge_pte_none(pte));
2512 spin_lock(&mm->page_table_lock);
2513 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2514 if (likely(pte_same(huge_ptep_get(ptep), pte)))
2515 goto retry_avoidcopy;
2517 * race occurs while re-acquiring page_table_lock, and
2518 * our job is done.
2520 return 0;
2522 WARN_ON_ONCE(1);
2525 /* Caller expects lock to be held */
2526 spin_lock(&mm->page_table_lock);
2527 return -PTR_ERR(new_page);
2531 * When the original hugepage is shared one, it does not have
2532 * anon_vma prepared.
2534 if (unlikely(anon_vma_prepare(vma))) {
2535 page_cache_release(new_page);
2536 page_cache_release(old_page);
2537 /* Caller expects lock to be held */
2538 spin_lock(&mm->page_table_lock);
2539 return VM_FAULT_OOM;
2542 copy_user_huge_page(new_page, old_page, address, vma,
2543 pages_per_huge_page(h));
2544 __SetPageUptodate(new_page);
2547 * Retake the page_table_lock to check for racing updates
2548 * before the page tables are altered
2550 spin_lock(&mm->page_table_lock);
2551 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2552 if (likely(pte_same(huge_ptep_get(ptep), pte))) {
2553 /* Break COW */
2554 mmu_notifier_invalidate_range_start(mm,
2555 address & huge_page_mask(h),
2556 (address & huge_page_mask(h)) + huge_page_size(h));
2557 huge_ptep_clear_flush(vma, address, ptep);
2558 set_huge_pte_at(mm, address, ptep,
2559 make_huge_pte(vma, new_page, 1));
2560 page_remove_rmap(old_page);
2561 hugepage_add_new_anon_rmap(new_page, vma, address);
2562 /* Make the old page be freed below */
2563 new_page = old_page;
2564 mmu_notifier_invalidate_range_end(mm,
2565 address & huge_page_mask(h),
2566 (address & huge_page_mask(h)) + huge_page_size(h));
2568 page_cache_release(new_page);
2569 page_cache_release(old_page);
2570 return 0;
2573 /* Return the pagecache page at a given address within a VMA */
2574 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
2575 struct vm_area_struct *vma, unsigned long address)
2577 struct address_space *mapping;
2578 pgoff_t idx;
2580 mapping = vma->vm_file->f_mapping;
2581 idx = vma_hugecache_offset(h, vma, address);
2583 return find_lock_page(mapping, idx);
2587 * Return whether there is a pagecache page to back given address within VMA.
2588 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
2590 static bool hugetlbfs_pagecache_present(struct hstate *h,
2591 struct vm_area_struct *vma, unsigned long address)
2593 struct address_space *mapping;
2594 pgoff_t idx;
2595 struct page *page;
2597 mapping = vma->vm_file->f_mapping;
2598 idx = vma_hugecache_offset(h, vma, address);
2600 page = find_get_page(mapping, idx);
2601 if (page)
2602 put_page(page);
2603 return page != NULL;
2606 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
2607 unsigned long address, pte_t *ptep, unsigned int flags)
2609 struct hstate *h = hstate_vma(vma);
2610 int ret = VM_FAULT_SIGBUS;
2611 int anon_rmap = 0;
2612 pgoff_t idx;
2613 unsigned long size;
2614 struct page *page;
2615 struct address_space *mapping;
2616 pte_t new_pte;
2619 * Currently, we are forced to kill the process in the event the
2620 * original mapper has unmapped pages from the child due to a failed
2621 * COW. Warn that such a situation has occurred as it may not be obvious
2623 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
2624 printk(KERN_WARNING
2625 "PID %d killed due to inadequate hugepage pool\n",
2626 current->pid);
2627 return ret;
2630 mapping = vma->vm_file->f_mapping;
2631 idx = vma_hugecache_offset(h, vma, address);
2634 * Use page lock to guard against racing truncation
2635 * before we get page_table_lock.
2637 retry:
2638 page = find_lock_page(mapping, idx);
2639 if (!page) {
2640 size = i_size_read(mapping->host) >> huge_page_shift(h);
2641 if (idx >= size)
2642 goto out;
2643 page = alloc_huge_page(vma, address, 0);
2644 if (IS_ERR(page)) {
2645 ret = -PTR_ERR(page);
2646 goto out;
2648 clear_huge_page(page, address, pages_per_huge_page(h));
2649 __SetPageUptodate(page);
2651 if (vma->vm_flags & VM_MAYSHARE) {
2652 int err;
2653 struct inode *inode = mapping->host;
2655 err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
2656 if (err) {
2657 put_page(page);
2658 if (err == -EEXIST)
2659 goto retry;
2660 goto out;
2663 spin_lock(&inode->i_lock);
2664 inode->i_blocks += blocks_per_huge_page(h);
2665 spin_unlock(&inode->i_lock);
2666 } else {
2667 lock_page(page);
2668 if (unlikely(anon_vma_prepare(vma))) {
2669 ret = VM_FAULT_OOM;
2670 goto backout_unlocked;
2672 anon_rmap = 1;
2674 } else {
2676 * If memory error occurs between mmap() and fault, some process
2677 * don't have hwpoisoned swap entry for errored virtual address.
2678 * So we need to block hugepage fault by PG_hwpoison bit check.
2680 if (unlikely(PageHWPoison(page))) {
2681 ret = VM_FAULT_HWPOISON |
2682 VM_FAULT_SET_HINDEX(h - hstates);
2683 goto backout_unlocked;
2688 * If we are going to COW a private mapping later, we examine the
2689 * pending reservations for this page now. This will ensure that
2690 * any allocations necessary to record that reservation occur outside
2691 * the spinlock.
2693 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2694 if (vma_needs_reservation(h, vma, address) < 0) {
2695 ret = VM_FAULT_OOM;
2696 goto backout_unlocked;
2699 spin_lock(&mm->page_table_lock);
2700 size = i_size_read(mapping->host) >> huge_page_shift(h);
2701 if (idx >= size)
2702 goto backout;
2704 ret = 0;
2705 if (!huge_pte_none(huge_ptep_get(ptep)))
2706 goto backout;
2708 if (anon_rmap)
2709 hugepage_add_new_anon_rmap(page, vma, address);
2710 else
2711 page_dup_rmap(page);
2712 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
2713 && (vma->vm_flags & VM_SHARED)));
2714 set_huge_pte_at(mm, address, ptep, new_pte);
2716 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
2717 /* Optimization, do the COW without a second fault */
2718 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
2721 spin_unlock(&mm->page_table_lock);
2722 unlock_page(page);
2723 out:
2724 return ret;
2726 backout:
2727 spin_unlock(&mm->page_table_lock);
2728 backout_unlocked:
2729 unlock_page(page);
2730 put_page(page);
2731 goto out;
2734 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2735 unsigned long address, unsigned int flags)
2737 pte_t *ptep;
2738 pte_t entry;
2739 int ret;
2740 struct page *page = NULL;
2741 struct page *pagecache_page = NULL;
2742 static DEFINE_MUTEX(hugetlb_instantiation_mutex);
2743 struct hstate *h = hstate_vma(vma);
2745 address &= huge_page_mask(h);
2747 ptep = huge_pte_offset(mm, address);
2748 if (ptep) {
2749 entry = huge_ptep_get(ptep);
2750 if (unlikely(is_hugetlb_entry_migration(entry))) {
2751 migration_entry_wait(mm, (pmd_t *)ptep, address);
2752 return 0;
2753 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
2754 return VM_FAULT_HWPOISON_LARGE |
2755 VM_FAULT_SET_HINDEX(h - hstates);
2758 ptep = huge_pte_alloc(mm, address, huge_page_size(h));
2759 if (!ptep)
2760 return VM_FAULT_OOM;
2763 * Serialize hugepage allocation and instantiation, so that we don't
2764 * get spurious allocation failures if two CPUs race to instantiate
2765 * the same page in the page cache.
2767 mutex_lock(&hugetlb_instantiation_mutex);
2768 entry = huge_ptep_get(ptep);
2769 if (huge_pte_none(entry)) {
2770 ret = hugetlb_no_page(mm, vma, address, ptep, flags);
2771 goto out_mutex;
2774 ret = 0;
2777 * If we are going to COW the mapping later, we examine the pending
2778 * reservations for this page now. This will ensure that any
2779 * allocations necessary to record that reservation occur outside the
2780 * spinlock. For private mappings, we also lookup the pagecache
2781 * page now as it is used to determine if a reservation has been
2782 * consumed.
2784 if ((flags & FAULT_FLAG_WRITE) && !pte_write(entry)) {
2785 if (vma_needs_reservation(h, vma, address) < 0) {
2786 ret = VM_FAULT_OOM;
2787 goto out_mutex;
2790 if (!(vma->vm_flags & VM_MAYSHARE))
2791 pagecache_page = hugetlbfs_pagecache_page(h,
2792 vma, address);
2796 * hugetlb_cow() requires page locks of pte_page(entry) and
2797 * pagecache_page, so here we need take the former one
2798 * when page != pagecache_page or !pagecache_page.
2799 * Note that locking order is always pagecache_page -> page,
2800 * so no worry about deadlock.
2802 page = pte_page(entry);
2803 get_page(page);
2804 if (page != pagecache_page)
2805 lock_page(page);
2807 spin_lock(&mm->page_table_lock);
2808 /* Check for a racing update before calling hugetlb_cow */
2809 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
2810 goto out_page_table_lock;
2813 if (flags & FAULT_FLAG_WRITE) {
2814 if (!pte_write(entry)) {
2815 ret = hugetlb_cow(mm, vma, address, ptep, entry,
2816 pagecache_page);
2817 goto out_page_table_lock;
2819 entry = pte_mkdirty(entry);
2821 entry = pte_mkyoung(entry);
2822 if (huge_ptep_set_access_flags(vma, address, ptep, entry,
2823 flags & FAULT_FLAG_WRITE))
2824 update_mmu_cache(vma, address, ptep);
2826 out_page_table_lock:
2827 spin_unlock(&mm->page_table_lock);
2829 if (pagecache_page) {
2830 unlock_page(pagecache_page);
2831 put_page(pagecache_page);
2833 if (page != pagecache_page)
2834 unlock_page(page);
2835 put_page(page);
2837 out_mutex:
2838 mutex_unlock(&hugetlb_instantiation_mutex);
2840 return ret;
2843 /* Can be overriden by architectures */
2844 __attribute__((weak)) struct page *
2845 follow_huge_pud(struct mm_struct *mm, unsigned long address,
2846 pud_t *pud, int write)
2848 BUG();
2849 return NULL;
2852 int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
2853 struct page **pages, struct vm_area_struct **vmas,
2854 unsigned long *position, int *length, int i,
2855 unsigned int flags)
2857 unsigned long pfn_offset;
2858 unsigned long vaddr = *position;
2859 int remainder = *length;
2860 struct hstate *h = hstate_vma(vma);
2862 spin_lock(&mm->page_table_lock);
2863 while (vaddr < vma->vm_end && remainder) {
2864 pte_t *pte;
2865 int absent;
2866 struct page *page;
2869 * Some archs (sparc64, sh*) have multiple pte_ts to
2870 * each hugepage. We have to make sure we get the
2871 * first, for the page indexing below to work.
2873 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
2874 absent = !pte || huge_pte_none(huge_ptep_get(pte));
2877 * When coredumping, it suits get_dump_page if we just return
2878 * an error where there's an empty slot with no huge pagecache
2879 * to back it. This way, we avoid allocating a hugepage, and
2880 * the sparse dumpfile avoids allocating disk blocks, but its
2881 * huge holes still show up with zeroes where they need to be.
2883 if (absent && (flags & FOLL_DUMP) &&
2884 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
2885 remainder = 0;
2886 break;
2889 if (absent ||
2890 ((flags & FOLL_WRITE) && !pte_write(huge_ptep_get(pte)))) {
2891 int ret;
2893 spin_unlock(&mm->page_table_lock);
2894 ret = hugetlb_fault(mm, vma, vaddr,
2895 (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
2896 spin_lock(&mm->page_table_lock);
2897 if (!(ret & VM_FAULT_ERROR))
2898 continue;
2900 remainder = 0;
2901 break;
2904 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
2905 page = pte_page(huge_ptep_get(pte));
2906 same_page:
2907 if (pages) {
2908 pages[i] = mem_map_offset(page, pfn_offset);
2909 get_page(pages[i]);
2912 if (vmas)
2913 vmas[i] = vma;
2915 vaddr += PAGE_SIZE;
2916 ++pfn_offset;
2917 --remainder;
2918 ++i;
2919 if (vaddr < vma->vm_end && remainder &&
2920 pfn_offset < pages_per_huge_page(h)) {
2922 * We use pfn_offset to avoid touching the pageframes
2923 * of this compound page.
2925 goto same_page;
2928 spin_unlock(&mm->page_table_lock);
2929 *length = remainder;
2930 *position = vaddr;
2932 return i ? i : -EFAULT;
2935 void hugetlb_change_protection(struct vm_area_struct *vma,
2936 unsigned long address, unsigned long end, pgprot_t newprot)
2938 struct mm_struct *mm = vma->vm_mm;
2939 unsigned long start = address;
2940 pte_t *ptep;
2941 pte_t pte;
2942 struct hstate *h = hstate_vma(vma);
2944 BUG_ON(address >= end);
2945 flush_cache_range(vma, address, end);
2947 mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
2948 spin_lock(&mm->page_table_lock);
2949 for (; address < end; address += huge_page_size(h)) {
2950 ptep = huge_pte_offset(mm, address);
2951 if (!ptep)
2952 continue;
2953 if (huge_pmd_unshare(mm, &address, ptep))
2954 continue;
2955 if (!huge_pte_none(huge_ptep_get(ptep))) {
2956 pte = huge_ptep_get_and_clear(mm, address, ptep);
2957 pte = pte_mkhuge(pte_modify(pte, newprot));
2958 set_huge_pte_at(mm, address, ptep, pte);
2961 spin_unlock(&mm->page_table_lock);
2962 mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
2964 flush_tlb_range(vma, start, end);
2967 int hugetlb_reserve_pages(struct inode *inode,
2968 long from, long to,
2969 struct vm_area_struct *vma,
2970 vm_flags_t vm_flags)
2972 long ret, chg;
2973 struct hstate *h = hstate_inode(inode);
2974 struct hugepage_subpool *spool = subpool_inode(inode);
2977 * Only apply hugepage reservation if asked. At fault time, an
2978 * attempt will be made for VM_NORESERVE to allocate a page
2979 * without using reserves
2981 if (vm_flags & VM_NORESERVE)
2982 return 0;
2985 * Shared mappings base their reservation on the number of pages that
2986 * are already allocated on behalf of the file. Private mappings need
2987 * to reserve the full area even if read-only as mprotect() may be
2988 * called to make the mapping read-write. Assume !vma is a shm mapping
2990 if (!vma || vma->vm_flags & VM_MAYSHARE)
2991 chg = region_chg(&inode->i_mapping->private_list, from, to);
2992 else {
2993 struct resv_map *resv_map = resv_map_alloc();
2994 if (!resv_map)
2995 return -ENOMEM;
2997 chg = to - from;
2999 set_vma_resv_map(vma, resv_map);
3000 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
3003 if (chg < 0) {
3004 ret = chg;
3005 goto out_err;
3008 /* There must be enough pages in the subpool for the mapping */
3009 if (hugepage_subpool_get_pages(spool, chg)) {
3010 ret = -ENOSPC;
3011 goto out_err;
3015 * Check enough hugepages are available for the reservation.
3016 * Hand the pages back to the subpool if there are not
3018 ret = hugetlb_acct_memory(h, chg);
3019 if (ret < 0) {
3020 hugepage_subpool_put_pages(spool, chg);
3021 goto out_err;
3025 * Account for the reservations made. Shared mappings record regions
3026 * that have reservations as they are shared by multiple VMAs.
3027 * When the last VMA disappears, the region map says how much
3028 * the reservation was and the page cache tells how much of
3029 * the reservation was consumed. Private mappings are per-VMA and
3030 * only the consumed reservations are tracked. When the VMA
3031 * disappears, the original reservation is the VMA size and the
3032 * consumed reservations are stored in the map. Hence, nothing
3033 * else has to be done for private mappings here
3035 if (!vma || vma->vm_flags & VM_MAYSHARE)
3036 region_add(&inode->i_mapping->private_list, from, to);
3037 return 0;
3038 out_err:
3039 if (vma)
3040 resv_map_put(vma);
3041 return ret;
3044 void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
3046 struct hstate *h = hstate_inode(inode);
3047 long chg = region_truncate(&inode->i_mapping->private_list, offset);
3048 struct hugepage_subpool *spool = subpool_inode(inode);
3050 spin_lock(&inode->i_lock);
3051 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
3052 spin_unlock(&inode->i_lock);
3054 hugepage_subpool_put_pages(spool, (chg - freed));
3055 hugetlb_acct_memory(h, -(chg - freed));
3058 #ifdef CONFIG_MEMORY_FAILURE
3060 /* Should be called in hugetlb_lock */
3061 static int is_hugepage_on_freelist(struct page *hpage)
3063 struct page *page;
3064 struct page *tmp;
3065 struct hstate *h = page_hstate(hpage);
3066 int nid = page_to_nid(hpage);
3068 list_for_each_entry_safe(page, tmp, &h->hugepage_freelists[nid], lru)
3069 if (page == hpage)
3070 return 1;
3071 return 0;
3075 * This function is called from memory failure code.
3076 * Assume the caller holds page lock of the head page.
3078 int dequeue_hwpoisoned_huge_page(struct page *hpage)
3080 struct hstate *h = page_hstate(hpage);
3081 int nid = page_to_nid(hpage);
3082 int ret = -EBUSY;
3084 spin_lock(&hugetlb_lock);
3085 if (is_hugepage_on_freelist(hpage)) {
3086 list_del(&hpage->lru);
3087 set_page_refcounted(hpage);
3088 h->free_huge_pages--;
3089 h->free_huge_pages_node[nid]--;
3090 ret = 0;
3092 spin_unlock(&hugetlb_lock);
3093 return ret;
3095 #endif