[PATCH] x86_64: Fix apicid versus cpu# confusion.
[linux-2.6/libata-dev.git] / arch / x86_64 / kernel / smpboot.c
blobb15761ff41010f607e642c6df9621d0d92d31e2d
1 /*
2 * x86 SMP booting functions
4 * (c) 1995 Alan Cox, Building #3 <alan@redhat.com>
5 * (c) 1998, 1999, 2000 Ingo Molnar <mingo@redhat.com>
6 * Copyright 2001 Andi Kleen, SuSE Labs.
8 * Much of the core SMP work is based on previous work by Thomas Radke, to
9 * whom a great many thanks are extended.
11 * Thanks to Intel for making available several different Pentium,
12 * Pentium Pro and Pentium-II/Xeon MP machines.
13 * Original development of Linux SMP code supported by Caldera.
15 * This code is released under the GNU General Public License version 2
17 * Fixes
18 * Felix Koop : NR_CPUS used properly
19 * Jose Renau : Handle single CPU case.
20 * Alan Cox : By repeated request 8) - Total BogoMIP report.
21 * Greg Wright : Fix for kernel stacks panic.
22 * Erich Boleyn : MP v1.4 and additional changes.
23 * Matthias Sattler : Changes for 2.1 kernel map.
24 * Michel Lespinasse : Changes for 2.1 kernel map.
25 * Michael Chastain : Change trampoline.S to gnu as.
26 * Alan Cox : Dumb bug: 'B' step PPro's are fine
27 * Ingo Molnar : Added APIC timers, based on code
28 * from Jose Renau
29 * Ingo Molnar : various cleanups and rewrites
30 * Tigran Aivazian : fixed "0.00 in /proc/uptime on SMP" bug.
31 * Maciej W. Rozycki : Bits for genuine 82489DX APICs
32 * Andi Kleen : Changed for SMP boot into long mode.
33 * Rusty Russell : Hacked into shape for new "hotplug" boot process.
34 * Andi Kleen : Converted to new state machine.
35 * Various cleanups.
36 * Probably mostly hotplug CPU ready now.
37 * Ashok Raj : CPU hotplug support
41 #include <linux/config.h>
42 #include <linux/init.h>
44 #include <linux/mm.h>
45 #include <linux/kernel_stat.h>
46 #include <linux/smp_lock.h>
47 #include <linux/irq.h>
48 #include <linux/bootmem.h>
49 #include <linux/thread_info.h>
50 #include <linux/module.h>
52 #include <linux/delay.h>
53 #include <linux/mc146818rtc.h>
54 #include <asm/mtrr.h>
55 #include <asm/pgalloc.h>
56 #include <asm/desc.h>
57 #include <asm/kdebug.h>
58 #include <asm/tlbflush.h>
59 #include <asm/proto.h>
60 #include <asm/nmi.h>
62 /* Number of siblings per CPU package */
63 int smp_num_siblings = 1;
64 /* Package ID of each logical CPU */
65 u8 phys_proc_id[NR_CPUS] = { [0 ... NR_CPUS-1] = BAD_APICID };
66 u8 cpu_core_id[NR_CPUS] = { [0 ... NR_CPUS-1] = BAD_APICID };
67 EXPORT_SYMBOL(phys_proc_id);
68 EXPORT_SYMBOL(cpu_core_id);
70 /* Bitmask of currently online CPUs */
71 cpumask_t cpu_online_map;
73 EXPORT_SYMBOL(cpu_online_map);
76 * Private maps to synchronize booting between AP and BP.
77 * Probably not needed anymore, but it makes for easier debugging. -AK
79 cpumask_t cpu_callin_map;
80 cpumask_t cpu_callout_map;
82 cpumask_t cpu_possible_map;
83 EXPORT_SYMBOL(cpu_possible_map);
85 /* Per CPU bogomips and other parameters */
86 struct cpuinfo_x86 cpu_data[NR_CPUS] __cacheline_aligned;
88 /* Set when the idlers are all forked */
89 int smp_threads_ready;
91 cpumask_t cpu_sibling_map[NR_CPUS] __cacheline_aligned;
92 cpumask_t cpu_core_map[NR_CPUS] __cacheline_aligned;
93 EXPORT_SYMBOL(cpu_core_map);
96 * Trampoline 80x86 program as an array.
99 extern unsigned char trampoline_data[];
100 extern unsigned char trampoline_end[];
102 /* State of each CPU */
103 DEFINE_PER_CPU(int, cpu_state) = { 0 };
106 * Store all idle threads, this can be reused instead of creating
107 * a new thread. Also avoids complicated thread destroy functionality
108 * for idle threads.
110 struct task_struct *idle_thread_array[NR_CPUS] __cpuinitdata ;
112 #define get_idle_for_cpu(x) (idle_thread_array[(x)])
113 #define set_idle_for_cpu(x,p) (idle_thread_array[(x)] = (p))
116 * Currently trivial. Write the real->protected mode
117 * bootstrap into the page concerned. The caller
118 * has made sure it's suitably aligned.
121 static unsigned long __cpuinit setup_trampoline(void)
123 void *tramp = __va(SMP_TRAMPOLINE_BASE);
124 memcpy(tramp, trampoline_data, trampoline_end - trampoline_data);
125 return virt_to_phys(tramp);
129 * The bootstrap kernel entry code has set these up. Save them for
130 * a given CPU
133 static void __cpuinit smp_store_cpu_info(int id)
135 struct cpuinfo_x86 *c = cpu_data + id;
137 *c = boot_cpu_data;
138 identify_cpu(c);
139 print_cpu_info(c);
143 * New Funky TSC sync algorithm borrowed from IA64.
144 * Main advantage is that it doesn't reset the TSCs fully and
145 * in general looks more robust and it works better than my earlier
146 * attempts. I believe it was written by David Mosberger. Some minor
147 * adjustments for x86-64 by me -AK
149 * Original comment reproduced below.
151 * Synchronize TSC of the current (slave) CPU with the TSC of the
152 * MASTER CPU (normally the time-keeper CPU). We use a closed loop to
153 * eliminate the possibility of unaccounted-for errors (such as
154 * getting a machine check in the middle of a calibration step). The
155 * basic idea is for the slave to ask the master what itc value it has
156 * and to read its own itc before and after the master responds. Each
157 * iteration gives us three timestamps:
159 * slave master
161 * t0 ---\
162 * ---\
163 * --->
164 * tm
165 * /---
166 * /---
167 * t1 <---
170 * The goal is to adjust the slave's TSC such that tm falls exactly
171 * half-way between t0 and t1. If we achieve this, the clocks are
172 * synchronized provided the interconnect between the slave and the
173 * master is symmetric. Even if the interconnect were asymmetric, we
174 * would still know that the synchronization error is smaller than the
175 * roundtrip latency (t0 - t1).
177 * When the interconnect is quiet and symmetric, this lets us
178 * synchronize the TSC to within one or two cycles. However, we can
179 * only *guarantee* that the synchronization is accurate to within a
180 * round-trip time, which is typically in the range of several hundred
181 * cycles (e.g., ~500 cycles). In practice, this means that the TSCs
182 * are usually almost perfectly synchronized, but we shouldn't assume
183 * that the accuracy is much better than half a micro second or so.
185 * [there are other errors like the latency of RDTSC and of the
186 * WRMSR. These can also account to hundreds of cycles. So it's
187 * probably worse. It claims 153 cycles error on a dual Opteron,
188 * but I suspect the numbers are actually somewhat worse -AK]
191 #define MASTER 0
192 #define SLAVE (SMP_CACHE_BYTES/8)
194 /* Intentionally don't use cpu_relax() while TSC synchronization
195 because we don't want to go into funky power save modi or cause
196 hypervisors to schedule us away. Going to sleep would likely affect
197 latency and low latency is the primary objective here. -AK */
198 #define no_cpu_relax() barrier()
200 static __cpuinitdata DEFINE_SPINLOCK(tsc_sync_lock);
201 static volatile __cpuinitdata unsigned long go[SLAVE + 1];
202 static int notscsync __cpuinitdata;
204 #undef DEBUG_TSC_SYNC
206 #define NUM_ROUNDS 64 /* magic value */
207 #define NUM_ITERS 5 /* likewise */
209 /* Callback on boot CPU */
210 static __cpuinit void sync_master(void *arg)
212 unsigned long flags, i;
214 go[MASTER] = 0;
216 local_irq_save(flags);
218 for (i = 0; i < NUM_ROUNDS*NUM_ITERS; ++i) {
219 while (!go[MASTER])
220 no_cpu_relax();
221 go[MASTER] = 0;
222 rdtscll(go[SLAVE]);
225 local_irq_restore(flags);
229 * Return the number of cycles by which our tsc differs from the tsc
230 * on the master (time-keeper) CPU. A positive number indicates our
231 * tsc is ahead of the master, negative that it is behind.
233 static inline long
234 get_delta(long *rt, long *master)
236 unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0;
237 unsigned long tcenter, t0, t1, tm;
238 int i;
240 for (i = 0; i < NUM_ITERS; ++i) {
241 rdtscll(t0);
242 go[MASTER] = 1;
243 while (!(tm = go[SLAVE]))
244 no_cpu_relax();
245 go[SLAVE] = 0;
246 rdtscll(t1);
248 if (t1 - t0 < best_t1 - best_t0)
249 best_t0 = t0, best_t1 = t1, best_tm = tm;
252 *rt = best_t1 - best_t0;
253 *master = best_tm - best_t0;
255 /* average best_t0 and best_t1 without overflow: */
256 tcenter = (best_t0/2 + best_t1/2);
257 if (best_t0 % 2 + best_t1 % 2 == 2)
258 ++tcenter;
259 return tcenter - best_tm;
262 static __cpuinit void sync_tsc(unsigned int master)
264 int i, done = 0;
265 long delta, adj, adjust_latency = 0;
266 unsigned long flags, rt, master_time_stamp, bound;
267 #ifdef DEBUG_TSC_SYNC
268 static struct syncdebug {
269 long rt; /* roundtrip time */
270 long master; /* master's timestamp */
271 long diff; /* difference between midpoint and master's timestamp */
272 long lat; /* estimate of tsc adjustment latency */
273 } t[NUM_ROUNDS] __cpuinitdata;
274 #endif
276 printk(KERN_INFO "CPU %d: Syncing TSC to CPU %u.\n",
277 smp_processor_id(), master);
279 go[MASTER] = 1;
281 /* It is dangerous to broadcast IPI as cpus are coming up,
282 * as they may not be ready to accept them. So since
283 * we only need to send the ipi to the boot cpu direct
284 * the message, and avoid the race.
286 smp_call_function_single(master, sync_master, NULL, 1, 0);
288 while (go[MASTER]) /* wait for master to be ready */
289 no_cpu_relax();
291 spin_lock_irqsave(&tsc_sync_lock, flags);
293 for (i = 0; i < NUM_ROUNDS; ++i) {
294 delta = get_delta(&rt, &master_time_stamp);
295 if (delta == 0) {
296 done = 1; /* let's lock on to this... */
297 bound = rt;
300 if (!done) {
301 unsigned long t;
302 if (i > 0) {
303 adjust_latency += -delta;
304 adj = -delta + adjust_latency/4;
305 } else
306 adj = -delta;
308 rdtscll(t);
309 wrmsrl(MSR_IA32_TSC, t + adj);
311 #ifdef DEBUG_TSC_SYNC
312 t[i].rt = rt;
313 t[i].master = master_time_stamp;
314 t[i].diff = delta;
315 t[i].lat = adjust_latency/4;
316 #endif
319 spin_unlock_irqrestore(&tsc_sync_lock, flags);
321 #ifdef DEBUG_TSC_SYNC
322 for (i = 0; i < NUM_ROUNDS; ++i)
323 printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
324 t[i].rt, t[i].master, t[i].diff, t[i].lat);
325 #endif
327 printk(KERN_INFO
328 "CPU %d: synchronized TSC with CPU %u (last diff %ld cycles, "
329 "maxerr %lu cycles)\n",
330 smp_processor_id(), master, delta, rt);
333 static void __cpuinit tsc_sync_wait(void)
335 if (notscsync || !cpu_has_tsc)
336 return;
337 sync_tsc(0);
340 static __init int notscsync_setup(char *s)
342 notscsync = 1;
343 return 0;
345 __setup("notscsync", notscsync_setup);
347 static atomic_t init_deasserted __cpuinitdata;
350 * Report back to the Boot Processor.
351 * Running on AP.
353 void __cpuinit smp_callin(void)
355 int cpuid, phys_id;
356 unsigned long timeout;
359 * If waken up by an INIT in an 82489DX configuration
360 * we may get here before an INIT-deassert IPI reaches
361 * our local APIC. We have to wait for the IPI or we'll
362 * lock up on an APIC access.
364 while (!atomic_read(&init_deasserted))
365 cpu_relax();
368 * (This works even if the APIC is not enabled.)
370 phys_id = GET_APIC_ID(apic_read(APIC_ID));
371 cpuid = smp_processor_id();
372 if (cpu_isset(cpuid, cpu_callin_map)) {
373 panic("smp_callin: phys CPU#%d, CPU#%d already present??\n",
374 phys_id, cpuid);
376 Dprintk("CPU#%d (phys ID: %d) waiting for CALLOUT\n", cpuid, phys_id);
379 * STARTUP IPIs are fragile beasts as they might sometimes
380 * trigger some glue motherboard logic. Complete APIC bus
381 * silence for 1 second, this overestimates the time the
382 * boot CPU is spending to send the up to 2 STARTUP IPIs
383 * by a factor of two. This should be enough.
387 * Waiting 2s total for startup (udelay is not yet working)
389 timeout = jiffies + 2*HZ;
390 while (time_before(jiffies, timeout)) {
392 * Has the boot CPU finished it's STARTUP sequence?
394 if (cpu_isset(cpuid, cpu_callout_map))
395 break;
396 cpu_relax();
399 if (!time_before(jiffies, timeout)) {
400 panic("smp_callin: CPU%d started up but did not get a callout!\n",
401 cpuid);
405 * the boot CPU has finished the init stage and is spinning
406 * on callin_map until we finish. We are free to set up this
407 * CPU, first the APIC. (this is probably redundant on most
408 * boards)
411 Dprintk("CALLIN, before setup_local_APIC().\n");
412 setup_local_APIC();
415 * Get our bogomips.
417 calibrate_delay();
418 Dprintk("Stack at about %p\n",&cpuid);
420 disable_APIC_timer();
423 * Save our processor parameters
425 smp_store_cpu_info(cpuid);
428 * Allow the master to continue.
430 cpu_set(cpuid, cpu_callin_map);
433 static inline void set_cpu_sibling_map(int cpu)
435 int i;
437 if (smp_num_siblings > 1) {
438 for_each_cpu(i) {
439 if (cpu_core_id[cpu] == cpu_core_id[i]) {
440 cpu_set(i, cpu_sibling_map[cpu]);
441 cpu_set(cpu, cpu_sibling_map[i]);
444 } else {
445 cpu_set(cpu, cpu_sibling_map[cpu]);
448 if (current_cpu_data.x86_num_cores > 1) {
449 for_each_cpu(i) {
450 if (phys_proc_id[cpu] == phys_proc_id[i]) {
451 cpu_set(i, cpu_core_map[cpu]);
452 cpu_set(cpu, cpu_core_map[i]);
455 } else {
456 cpu_core_map[cpu] = cpu_sibling_map[cpu];
461 * Setup code on secondary processor (after comming out of the trampoline)
463 void __cpuinit start_secondary(void)
466 * Dont put anything before smp_callin(), SMP
467 * booting is too fragile that we want to limit the
468 * things done here to the most necessary things.
470 cpu_init();
471 smp_callin();
473 /* otherwise gcc will move up the smp_processor_id before the cpu_init */
474 barrier();
476 Dprintk("cpu %d: setting up apic clock\n", smp_processor_id());
477 setup_secondary_APIC_clock();
479 Dprintk("cpu %d: enabling apic timer\n", smp_processor_id());
481 if (nmi_watchdog == NMI_IO_APIC) {
482 disable_8259A_irq(0);
483 enable_NMI_through_LVT0(NULL);
484 enable_8259A_irq(0);
487 enable_APIC_timer();
490 * The sibling maps must be set before turing the online map on for
491 * this cpu
493 set_cpu_sibling_map(smp_processor_id());
496 * We need to hold call_lock, so there is no inconsistency
497 * between the time smp_call_function() determines number of
498 * IPI receipients, and the time when the determination is made
499 * for which cpus receive the IPI in genapic_flat.c. Holding this
500 * lock helps us to not include this cpu in a currently in progress
501 * smp_call_function().
503 lock_ipi_call_lock();
506 * Allow the master to continue.
508 cpu_set(smp_processor_id(), cpu_online_map);
509 per_cpu(cpu_state, smp_processor_id()) = CPU_ONLINE;
510 unlock_ipi_call_lock();
512 mb();
514 /* Wait for TSC sync to not schedule things before.
515 We still process interrupts, which could see an inconsistent
516 time in that window unfortunately. */
517 tsc_sync_wait();
519 cpu_idle();
522 extern volatile unsigned long init_rsp;
523 extern void (*initial_code)(void);
525 #ifdef APIC_DEBUG
526 static void inquire_remote_apic(int apicid)
528 unsigned i, regs[] = { APIC_ID >> 4, APIC_LVR >> 4, APIC_SPIV >> 4 };
529 char *names[] = { "ID", "VERSION", "SPIV" };
530 int timeout, status;
532 printk(KERN_INFO "Inquiring remote APIC #%d...\n", apicid);
534 for (i = 0; i < sizeof(regs) / sizeof(*regs); i++) {
535 printk("... APIC #%d %s: ", apicid, names[i]);
538 * Wait for idle.
540 apic_wait_icr_idle();
542 apic_write_around(APIC_ICR2, SET_APIC_DEST_FIELD(apicid));
543 apic_write_around(APIC_ICR, APIC_DM_REMRD | regs[i]);
545 timeout = 0;
546 do {
547 udelay(100);
548 status = apic_read(APIC_ICR) & APIC_ICR_RR_MASK;
549 } while (status == APIC_ICR_RR_INPROG && timeout++ < 1000);
551 switch (status) {
552 case APIC_ICR_RR_VALID:
553 status = apic_read(APIC_RRR);
554 printk("%08x\n", status);
555 break;
556 default:
557 printk("failed\n");
561 #endif
564 * Kick the secondary to wake up.
566 static int __cpuinit wakeup_secondary_via_INIT(int phys_apicid, unsigned int start_rip)
568 unsigned long send_status = 0, accept_status = 0;
569 int maxlvt, timeout, num_starts, j;
571 Dprintk("Asserting INIT.\n");
574 * Turn INIT on target chip
576 apic_write_around(APIC_ICR2, SET_APIC_DEST_FIELD(phys_apicid));
579 * Send IPI
581 apic_write_around(APIC_ICR, APIC_INT_LEVELTRIG | APIC_INT_ASSERT
582 | APIC_DM_INIT);
584 Dprintk("Waiting for send to finish...\n");
585 timeout = 0;
586 do {
587 Dprintk("+");
588 udelay(100);
589 send_status = apic_read(APIC_ICR) & APIC_ICR_BUSY;
590 } while (send_status && (timeout++ < 1000));
592 mdelay(10);
594 Dprintk("Deasserting INIT.\n");
596 /* Target chip */
597 apic_write_around(APIC_ICR2, SET_APIC_DEST_FIELD(phys_apicid));
599 /* Send IPI */
600 apic_write_around(APIC_ICR, APIC_INT_LEVELTRIG | APIC_DM_INIT);
602 Dprintk("Waiting for send to finish...\n");
603 timeout = 0;
604 do {
605 Dprintk("+");
606 udelay(100);
607 send_status = apic_read(APIC_ICR) & APIC_ICR_BUSY;
608 } while (send_status && (timeout++ < 1000));
610 atomic_set(&init_deasserted, 1);
613 * Should we send STARTUP IPIs ?
615 * Determine this based on the APIC version.
616 * If we don't have an integrated APIC, don't send the STARTUP IPIs.
618 if (APIC_INTEGRATED(apic_version[phys_apicid]))
619 num_starts = 2;
620 else
621 num_starts = 0;
624 * Run STARTUP IPI loop.
626 Dprintk("#startup loops: %d.\n", num_starts);
628 maxlvt = get_maxlvt();
630 for (j = 1; j <= num_starts; j++) {
631 Dprintk("Sending STARTUP #%d.\n",j);
632 apic_read_around(APIC_SPIV);
633 apic_write(APIC_ESR, 0);
634 apic_read(APIC_ESR);
635 Dprintk("After apic_write.\n");
638 * STARTUP IPI
641 /* Target chip */
642 apic_write_around(APIC_ICR2, SET_APIC_DEST_FIELD(phys_apicid));
644 /* Boot on the stack */
645 /* Kick the second */
646 apic_write_around(APIC_ICR, APIC_DM_STARTUP
647 | (start_rip >> 12));
650 * Give the other CPU some time to accept the IPI.
652 udelay(300);
654 Dprintk("Startup point 1.\n");
656 Dprintk("Waiting for send to finish...\n");
657 timeout = 0;
658 do {
659 Dprintk("+");
660 udelay(100);
661 send_status = apic_read(APIC_ICR) & APIC_ICR_BUSY;
662 } while (send_status && (timeout++ < 1000));
665 * Give the other CPU some time to accept the IPI.
667 udelay(200);
669 * Due to the Pentium erratum 3AP.
671 if (maxlvt > 3) {
672 apic_read_around(APIC_SPIV);
673 apic_write(APIC_ESR, 0);
675 accept_status = (apic_read(APIC_ESR) & 0xEF);
676 if (send_status || accept_status)
677 break;
679 Dprintk("After Startup.\n");
681 if (send_status)
682 printk(KERN_ERR "APIC never delivered???\n");
683 if (accept_status)
684 printk(KERN_ERR "APIC delivery error (%lx).\n", accept_status);
686 return (send_status | accept_status);
689 struct create_idle {
690 struct task_struct *idle;
691 struct completion done;
692 int cpu;
695 void do_fork_idle(void *_c_idle)
697 struct create_idle *c_idle = _c_idle;
699 c_idle->idle = fork_idle(c_idle->cpu);
700 complete(&c_idle->done);
704 * Boot one CPU.
706 static int __cpuinit do_boot_cpu(int cpu, int apicid)
708 unsigned long boot_error;
709 int timeout;
710 unsigned long start_rip;
711 struct create_idle c_idle = {
712 .cpu = cpu,
713 .done = COMPLETION_INITIALIZER(c_idle.done),
715 DECLARE_WORK(work, do_fork_idle, &c_idle);
717 c_idle.idle = get_idle_for_cpu(cpu);
719 if (c_idle.idle) {
720 c_idle.idle->thread.rsp = (unsigned long) (((struct pt_regs *)
721 (THREAD_SIZE + (unsigned long) c_idle.idle->thread_info)) - 1);
722 init_idle(c_idle.idle, cpu);
723 goto do_rest;
727 * During cold boot process, keventd thread is not spun up yet.
728 * When we do cpu hot-add, we create idle threads on the fly, we should
729 * not acquire any attributes from the calling context. Hence the clean
730 * way to create kernel_threads() is to do that from keventd().
731 * We do the current_is_keventd() due to the fact that ACPI notifier
732 * was also queuing to keventd() and when the caller is already running
733 * in context of keventd(), we would end up with locking up the keventd
734 * thread.
736 if (!keventd_up() || current_is_keventd())
737 work.func(work.data);
738 else {
739 schedule_work(&work);
740 wait_for_completion(&c_idle.done);
743 if (IS_ERR(c_idle.idle)) {
744 printk("failed fork for CPU %d\n", cpu);
745 return PTR_ERR(c_idle.idle);
748 set_idle_for_cpu(cpu, c_idle.idle);
750 do_rest:
752 cpu_pda[cpu].pcurrent = c_idle.idle;
754 start_rip = setup_trampoline();
756 init_rsp = c_idle.idle->thread.rsp;
757 per_cpu(init_tss,cpu).rsp0 = init_rsp;
758 initial_code = start_secondary;
759 clear_ti_thread_flag(c_idle.idle->thread_info, TIF_FORK);
761 printk(KERN_INFO "Booting processor %d/%d APIC 0x%x\n", cpu,
762 cpus_weight(cpu_present_map),
763 apicid);
766 * This grunge runs the startup process for
767 * the targeted processor.
770 atomic_set(&init_deasserted, 0);
772 Dprintk("Setting warm reset code and vector.\n");
774 CMOS_WRITE(0xa, 0xf);
775 local_flush_tlb();
776 Dprintk("1.\n");
777 *((volatile unsigned short *) phys_to_virt(0x469)) = start_rip >> 4;
778 Dprintk("2.\n");
779 *((volatile unsigned short *) phys_to_virt(0x467)) = start_rip & 0xf;
780 Dprintk("3.\n");
783 * Be paranoid about clearing APIC errors.
785 if (APIC_INTEGRATED(apic_version[apicid])) {
786 apic_read_around(APIC_SPIV);
787 apic_write(APIC_ESR, 0);
788 apic_read(APIC_ESR);
792 * Status is now clean
794 boot_error = 0;
797 * Starting actual IPI sequence...
799 boot_error = wakeup_secondary_via_INIT(apicid, start_rip);
801 if (!boot_error) {
803 * allow APs to start initializing.
805 Dprintk("Before Callout %d.\n", cpu);
806 cpu_set(cpu, cpu_callout_map);
807 Dprintk("After Callout %d.\n", cpu);
810 * Wait 5s total for a response
812 for (timeout = 0; timeout < 50000; timeout++) {
813 if (cpu_isset(cpu, cpu_callin_map))
814 break; /* It has booted */
815 udelay(100);
818 if (cpu_isset(cpu, cpu_callin_map)) {
819 /* number CPUs logically, starting from 1 (BSP is 0) */
820 Dprintk("CPU has booted.\n");
821 } else {
822 boot_error = 1;
823 if (*((volatile unsigned char *)phys_to_virt(SMP_TRAMPOLINE_BASE))
824 == 0xA5)
825 /* trampoline started but...? */
826 printk("Stuck ??\n");
827 else
828 /* trampoline code not run */
829 printk("Not responding.\n");
830 #ifdef APIC_DEBUG
831 inquire_remote_apic(apicid);
832 #endif
835 if (boot_error) {
836 cpu_clear(cpu, cpu_callout_map); /* was set here (do_boot_cpu()) */
837 clear_bit(cpu, &cpu_initialized); /* was set by cpu_init() */
838 cpu_clear(cpu, cpu_present_map);
839 cpu_clear(cpu, cpu_possible_map);
840 x86_cpu_to_apicid[cpu] = BAD_APICID;
841 x86_cpu_to_log_apicid[cpu] = BAD_APICID;
842 return -EIO;
845 return 0;
848 cycles_t cacheflush_time;
849 unsigned long cache_decay_ticks;
852 * Cleanup possible dangling ends...
854 static __cpuinit void smp_cleanup_boot(void)
857 * Paranoid: Set warm reset code and vector here back
858 * to default values.
860 CMOS_WRITE(0, 0xf);
863 * Reset trampoline flag
865 *((volatile int *) phys_to_virt(0x467)) = 0;
867 #ifndef CONFIG_HOTPLUG_CPU
869 * Free pages reserved for SMP bootup.
870 * When you add hotplug CPU support later remove this
871 * Note there is more work to be done for later CPU bootup.
874 free_page((unsigned long) __va(PAGE_SIZE));
875 free_page((unsigned long) __va(SMP_TRAMPOLINE_BASE));
876 #endif
880 * Fall back to non SMP mode after errors.
882 * RED-PEN audit/test this more. I bet there is more state messed up here.
884 static __init void disable_smp(void)
886 cpu_present_map = cpumask_of_cpu(0);
887 cpu_possible_map = cpumask_of_cpu(0);
888 if (smp_found_config)
889 phys_cpu_present_map = physid_mask_of_physid(boot_cpu_id);
890 else
891 phys_cpu_present_map = physid_mask_of_physid(0);
892 cpu_set(0, cpu_sibling_map[0]);
893 cpu_set(0, cpu_core_map[0]);
897 * Handle user cpus=... parameter.
899 static __init void enforce_max_cpus(unsigned max_cpus)
901 int i, k;
902 k = 0;
903 for (i = 0; i < NR_CPUS; i++) {
904 if (!cpu_possible(i))
905 continue;
906 if (++k > max_cpus) {
907 cpu_clear(i, cpu_possible_map);
908 cpu_clear(i, cpu_present_map);
913 #ifdef CONFIG_HOTPLUG_CPU
915 * cpu_possible_map should be static, it cannot change as cpu's
916 * are onlined, or offlined. The reason is per-cpu data-structures
917 * are allocated by some modules at init time, and dont expect to
918 * do this dynamically on cpu arrival/departure.
919 * cpu_present_map on the other hand can change dynamically.
920 * In case when cpu_hotplug is not compiled, then we resort to current
921 * behaviour, which is cpu_possible == cpu_present.
922 * If cpu-hotplug is supported, then we need to preallocate for all
923 * those NR_CPUS, hence cpu_possible_map represents entire NR_CPUS range.
924 * - Ashok Raj
926 static void prefill_possible_map(void)
928 int i;
929 for (i = 0; i < NR_CPUS; i++)
930 cpu_set(i, cpu_possible_map);
932 #endif
935 * Various sanity checks.
937 static int __init smp_sanity_check(unsigned max_cpus)
939 if (!physid_isset(hard_smp_processor_id(), phys_cpu_present_map)) {
940 printk("weird, boot CPU (#%d) not listed by the BIOS.\n",
941 hard_smp_processor_id());
942 physid_set(hard_smp_processor_id(), phys_cpu_present_map);
946 * If we couldn't find an SMP configuration at boot time,
947 * get out of here now!
949 if (!smp_found_config) {
950 printk(KERN_NOTICE "SMP motherboard not detected.\n");
951 disable_smp();
952 if (APIC_init_uniprocessor())
953 printk(KERN_NOTICE "Local APIC not detected."
954 " Using dummy APIC emulation.\n");
955 return -1;
959 * Should not be necessary because the MP table should list the boot
960 * CPU too, but we do it for the sake of robustness anyway.
962 if (!physid_isset(boot_cpu_id, phys_cpu_present_map)) {
963 printk(KERN_NOTICE "weird, boot CPU (#%d) not listed by the BIOS.\n",
964 boot_cpu_id);
965 physid_set(hard_smp_processor_id(), phys_cpu_present_map);
969 * If we couldn't find a local APIC, then get out of here now!
971 if (APIC_INTEGRATED(apic_version[boot_cpu_id]) && !cpu_has_apic) {
972 printk(KERN_ERR "BIOS bug, local APIC #%d not detected!...\n",
973 boot_cpu_id);
974 printk(KERN_ERR "... forcing use of dummy APIC emulation. (tell your hw vendor)\n");
975 nr_ioapics = 0;
976 return -1;
980 * If SMP should be disabled, then really disable it!
982 if (!max_cpus) {
983 printk(KERN_INFO "SMP mode deactivated, forcing use of dummy APIC emulation.\n");
984 nr_ioapics = 0;
985 return -1;
988 return 0;
992 * Prepare for SMP bootup. The MP table or ACPI has been read
993 * earlier. Just do some sanity checking here and enable APIC mode.
995 void __init smp_prepare_cpus(unsigned int max_cpus)
997 nmi_watchdog_default();
998 current_cpu_data = boot_cpu_data;
999 current_thread_info()->cpu = 0; /* needed? */
1001 enforce_max_cpus(max_cpus);
1003 #ifdef CONFIG_HOTPLUG_CPU
1004 prefill_possible_map();
1005 #endif
1007 if (smp_sanity_check(max_cpus) < 0) {
1008 printk(KERN_INFO "SMP disabled\n");
1009 disable_smp();
1010 return;
1015 * Switch from PIC to APIC mode.
1017 connect_bsp_APIC();
1018 setup_local_APIC();
1020 if (GET_APIC_ID(apic_read(APIC_ID)) != boot_cpu_id) {
1021 panic("Boot APIC ID in local APIC unexpected (%d vs %d)",
1022 GET_APIC_ID(apic_read(APIC_ID)), boot_cpu_id);
1023 /* Or can we switch back to PIC here? */
1027 * Now start the IO-APICs
1029 if (!skip_ioapic_setup && nr_ioapics)
1030 setup_IO_APIC();
1031 else
1032 nr_ioapics = 0;
1035 * Set up local APIC timer on boot CPU.
1038 setup_boot_APIC_clock();
1042 * Early setup to make printk work.
1044 void __init smp_prepare_boot_cpu(void)
1046 int me = smp_processor_id();
1047 cpu_set(me, cpu_online_map);
1048 cpu_set(me, cpu_callout_map);
1049 cpu_set(0, cpu_sibling_map[0]);
1050 cpu_set(0, cpu_core_map[0]);
1051 per_cpu(cpu_state, me) = CPU_ONLINE;
1055 * Entry point to boot a CPU.
1057 int __cpuinit __cpu_up(unsigned int cpu)
1059 int err;
1060 int apicid = cpu_present_to_apicid(cpu);
1062 WARN_ON(irqs_disabled());
1064 Dprintk("++++++++++++++++++++=_---CPU UP %u\n", cpu);
1066 if (apicid == BAD_APICID || apicid == boot_cpu_id ||
1067 !physid_isset(apicid, phys_cpu_present_map)) {
1068 printk("__cpu_up: bad cpu %d\n", cpu);
1069 return -EINVAL;
1073 * Already booted CPU?
1075 if (cpu_isset(cpu, cpu_callin_map)) {
1076 Dprintk("do_boot_cpu %d Already started\n", cpu);
1077 return -ENOSYS;
1080 per_cpu(cpu_state, cpu) = CPU_UP_PREPARE;
1081 /* Boot it! */
1082 err = do_boot_cpu(cpu, apicid);
1083 if (err < 0) {
1084 Dprintk("do_boot_cpu failed %d\n", err);
1085 return err;
1088 /* Unleash the CPU! */
1089 Dprintk("waiting for cpu %d\n", cpu);
1091 while (!cpu_isset(cpu, cpu_online_map))
1092 cpu_relax();
1093 err = 0;
1095 return err;
1099 * Finish the SMP boot.
1101 void __init smp_cpus_done(unsigned int max_cpus)
1103 #ifndef CONFIG_HOTPLUG_CPU
1104 zap_low_mappings();
1105 #endif
1106 smp_cleanup_boot();
1108 #ifdef CONFIG_X86_IO_APIC
1109 setup_ioapic_dest();
1110 #endif
1112 time_init_gtod();
1114 check_nmi_watchdog();
1117 #ifdef CONFIG_HOTPLUG_CPU
1119 static void remove_siblinginfo(int cpu)
1121 int sibling;
1123 for_each_cpu_mask(sibling, cpu_sibling_map[cpu])
1124 cpu_clear(cpu, cpu_sibling_map[sibling]);
1125 for_each_cpu_mask(sibling, cpu_core_map[cpu])
1126 cpu_clear(cpu, cpu_core_map[sibling]);
1127 cpus_clear(cpu_sibling_map[cpu]);
1128 cpus_clear(cpu_core_map[cpu]);
1129 phys_proc_id[cpu] = BAD_APICID;
1130 cpu_core_id[cpu] = BAD_APICID;
1133 void remove_cpu_from_maps(void)
1135 int cpu = smp_processor_id();
1137 cpu_clear(cpu, cpu_callout_map);
1138 cpu_clear(cpu, cpu_callin_map);
1139 clear_bit(cpu, &cpu_initialized); /* was set by cpu_init() */
1142 int __cpu_disable(void)
1144 int cpu = smp_processor_id();
1147 * Perhaps use cpufreq to drop frequency, but that could go
1148 * into generic code.
1150 * We won't take down the boot processor on i386 due to some
1151 * interrupts only being able to be serviced by the BSP.
1152 * Especially so if we're not using an IOAPIC -zwane
1154 if (cpu == 0)
1155 return -EBUSY;
1157 disable_APIC_timer();
1160 * HACK:
1161 * Allow any queued timer interrupts to get serviced
1162 * This is only a temporary solution until we cleanup
1163 * fixup_irqs as we do for IA64.
1165 local_irq_enable();
1166 mdelay(1);
1168 local_irq_disable();
1169 remove_siblinginfo(cpu);
1171 /* It's now safe to remove this processor from the online map */
1172 cpu_clear(cpu, cpu_online_map);
1173 remove_cpu_from_maps();
1174 fixup_irqs(cpu_online_map);
1175 return 0;
1178 void __cpu_die(unsigned int cpu)
1180 /* We don't do anything here: idle task is faking death itself. */
1181 unsigned int i;
1183 for (i = 0; i < 10; i++) {
1184 /* They ack this in play_dead by setting CPU_DEAD */
1185 if (per_cpu(cpu_state, cpu) == CPU_DEAD) {
1186 printk ("CPU %d is now offline\n", cpu);
1187 return;
1189 msleep(100);
1191 printk(KERN_ERR "CPU %u didn't die...\n", cpu);
1194 #else /* ... !CONFIG_HOTPLUG_CPU */
1196 int __cpu_disable(void)
1198 return -ENOSYS;
1201 void __cpu_die(unsigned int cpu)
1203 /* We said "no" in __cpu_disable */
1204 BUG();
1206 #endif /* CONFIG_HOTPLUG_CPU */