igb: rename nvm ops
[linux-2.6/libata-dev.git] / drivers / net / igb / e1000_mac.c
blob6682206750dcaa24ec33bd9467e489d0a1d7d0f6
1 /*******************************************************************************
3 Intel(R) Gigabit Ethernet Linux driver
4 Copyright(c) 2007 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26 *******************************************************************************/
28 #include <linux/if_ether.h>
29 #include <linux/delay.h>
30 #include <linux/pci.h>
31 #include <linux/netdevice.h>
33 #include "e1000_mac.h"
35 #include "igb.h"
37 static s32 igb_set_default_fc(struct e1000_hw *hw);
38 static s32 igb_set_fc_watermarks(struct e1000_hw *hw);
40 static s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
42 struct igb_adapter *adapter = hw->back;
43 u16 cap_offset;
45 cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
46 if (!cap_offset)
47 return -E1000_ERR_CONFIG;
49 pci_read_config_word(adapter->pdev, cap_offset + reg, value);
51 return 0;
54 /**
55 * igb_get_bus_info_pcie - Get PCIe bus information
56 * @hw: pointer to the HW structure
58 * Determines and stores the system bus information for a particular
59 * network interface. The following bus information is determined and stored:
60 * bus speed, bus width, type (PCIe), and PCIe function.
61 **/
62 s32 igb_get_bus_info_pcie(struct e1000_hw *hw)
64 struct e1000_bus_info *bus = &hw->bus;
65 s32 ret_val;
66 u32 reg;
67 u16 pcie_link_status;
69 bus->type = e1000_bus_type_pci_express;
70 bus->speed = e1000_bus_speed_2500;
72 ret_val = igb_read_pcie_cap_reg(hw,
73 PCIE_LINK_STATUS,
74 &pcie_link_status);
75 if (ret_val)
76 bus->width = e1000_bus_width_unknown;
77 else
78 bus->width = (enum e1000_bus_width)((pcie_link_status &
79 PCIE_LINK_WIDTH_MASK) >>
80 PCIE_LINK_WIDTH_SHIFT);
82 reg = rd32(E1000_STATUS);
83 bus->func = (reg & E1000_STATUS_FUNC_MASK) >> E1000_STATUS_FUNC_SHIFT;
85 return 0;
88 /**
89 * igb_clear_vfta - Clear VLAN filter table
90 * @hw: pointer to the HW structure
92 * Clears the register array which contains the VLAN filter table by
93 * setting all the values to 0.
94 **/
95 void igb_clear_vfta(struct e1000_hw *hw)
97 u32 offset;
99 for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
100 array_wr32(E1000_VFTA, offset, 0);
101 wrfl();
106 * igb_write_vfta - Write value to VLAN filter table
107 * @hw: pointer to the HW structure
108 * @offset: register offset in VLAN filter table
109 * @value: register value written to VLAN filter table
111 * Writes value at the given offset in the register array which stores
112 * the VLAN filter table.
114 void igb_write_vfta(struct e1000_hw *hw, u32 offset, u32 value)
116 array_wr32(E1000_VFTA, offset, value);
117 wrfl();
121 * igb_check_alt_mac_addr - Check for alternate MAC addr
122 * @hw: pointer to the HW structure
124 * Checks the nvm for an alternate MAC address. An alternate MAC address
125 * can be setup by pre-boot software and must be treated like a permanent
126 * address and must override the actual permanent MAC address. If an
127 * alternate MAC address is fopund it is saved in the hw struct and
128 * prgrammed into RAR0 and the cuntion returns success, otherwise the
129 * fucntion returns an error.
131 s32 igb_check_alt_mac_addr(struct e1000_hw *hw)
133 u32 i;
134 s32 ret_val = 0;
135 u16 offset, nvm_alt_mac_addr_offset, nvm_data;
136 u8 alt_mac_addr[ETH_ALEN];
138 ret_val = hw->nvm.ops.read(hw, NVM_ALT_MAC_ADDR_PTR, 1,
139 &nvm_alt_mac_addr_offset);
140 if (ret_val) {
141 hw_dbg("NVM Read Error\n");
142 goto out;
145 if (nvm_alt_mac_addr_offset == 0xFFFF) {
146 ret_val = -(E1000_NOT_IMPLEMENTED);
147 goto out;
150 if (hw->bus.func == E1000_FUNC_1)
151 nvm_alt_mac_addr_offset += ETH_ALEN/sizeof(u16);
153 for (i = 0; i < ETH_ALEN; i += 2) {
154 offset = nvm_alt_mac_addr_offset + (i >> 1);
155 ret_val = hw->nvm.ops.read(hw, offset, 1, &nvm_data);
156 if (ret_val) {
157 hw_dbg("NVM Read Error\n");
158 goto out;
161 alt_mac_addr[i] = (u8)(nvm_data & 0xFF);
162 alt_mac_addr[i + 1] = (u8)(nvm_data >> 8);
165 /* if multicast bit is set, the alternate address will not be used */
166 if (alt_mac_addr[0] & 0x01) {
167 ret_val = -(E1000_NOT_IMPLEMENTED);
168 goto out;
171 for (i = 0; i < ETH_ALEN; i++)
172 hw->mac.addr[i] = hw->mac.perm_addr[i] = alt_mac_addr[i];
174 hw->mac.ops.rar_set(hw, hw->mac.perm_addr, 0);
176 out:
177 return ret_val;
181 * igb_rar_set - Set receive address register
182 * @hw: pointer to the HW structure
183 * @addr: pointer to the receive address
184 * @index: receive address array register
186 * Sets the receive address array register at index to the address passed
187 * in by addr.
189 void igb_rar_set(struct e1000_hw *hw, u8 *addr, u32 index)
191 u32 rar_low, rar_high;
194 * HW expects these in little endian so we reverse the byte order
195 * from network order (big endian) to little endian
197 rar_low = ((u32) addr[0] |
198 ((u32) addr[1] << 8) |
199 ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
201 rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
203 if (!hw->mac.disable_av)
204 rar_high |= E1000_RAH_AV;
206 wr32(E1000_RAL(index), rar_low);
207 wr32(E1000_RAH(index), rar_high);
211 * igb_mta_set - Set multicast filter table address
212 * @hw: pointer to the HW structure
213 * @hash_value: determines the MTA register and bit to set
215 * The multicast table address is a register array of 32-bit registers.
216 * The hash_value is used to determine what register the bit is in, the
217 * current value is read, the new bit is OR'd in and the new value is
218 * written back into the register.
220 void igb_mta_set(struct e1000_hw *hw, u32 hash_value)
222 u32 hash_bit, hash_reg, mta;
225 * The MTA is a register array of 32-bit registers. It is
226 * treated like an array of (32*mta_reg_count) bits. We want to
227 * set bit BitArray[hash_value]. So we figure out what register
228 * the bit is in, read it, OR in the new bit, then write
229 * back the new value. The (hw->mac.mta_reg_count - 1) serves as a
230 * mask to bits 31:5 of the hash value which gives us the
231 * register we're modifying. The hash bit within that register
232 * is determined by the lower 5 bits of the hash value.
234 hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1);
235 hash_bit = hash_value & 0x1F;
237 mta = array_rd32(E1000_MTA, hash_reg);
239 mta |= (1 << hash_bit);
241 array_wr32(E1000_MTA, hash_reg, mta);
242 wrfl();
246 * igb_hash_mc_addr - Generate a multicast hash value
247 * @hw: pointer to the HW structure
248 * @mc_addr: pointer to a multicast address
250 * Generates a multicast address hash value which is used to determine
251 * the multicast filter table array address and new table value. See
252 * igb_mta_set()
254 u32 igb_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
256 u32 hash_value, hash_mask;
257 u8 bit_shift = 0;
259 /* Register count multiplied by bits per register */
260 hash_mask = (hw->mac.mta_reg_count * 32) - 1;
263 * For a mc_filter_type of 0, bit_shift is the number of left-shifts
264 * where 0xFF would still fall within the hash mask.
266 while (hash_mask >> bit_shift != 0xFF)
267 bit_shift++;
270 * The portion of the address that is used for the hash table
271 * is determined by the mc_filter_type setting.
272 * The algorithm is such that there is a total of 8 bits of shifting.
273 * The bit_shift for a mc_filter_type of 0 represents the number of
274 * left-shifts where the MSB of mc_addr[5] would still fall within
275 * the hash_mask. Case 0 does this exactly. Since there are a total
276 * of 8 bits of shifting, then mc_addr[4] will shift right the
277 * remaining number of bits. Thus 8 - bit_shift. The rest of the
278 * cases are a variation of this algorithm...essentially raising the
279 * number of bits to shift mc_addr[5] left, while still keeping the
280 * 8-bit shifting total.
282 * For example, given the following Destination MAC Address and an
283 * mta register count of 128 (thus a 4096-bit vector and 0xFFF mask),
284 * we can see that the bit_shift for case 0 is 4. These are the hash
285 * values resulting from each mc_filter_type...
286 * [0] [1] [2] [3] [4] [5]
287 * 01 AA 00 12 34 56
288 * LSB MSB
290 * case 0: hash_value = ((0x34 >> 4) | (0x56 << 4)) & 0xFFF = 0x563
291 * case 1: hash_value = ((0x34 >> 3) | (0x56 << 5)) & 0xFFF = 0xAC6
292 * case 2: hash_value = ((0x34 >> 2) | (0x56 << 6)) & 0xFFF = 0x163
293 * case 3: hash_value = ((0x34 >> 0) | (0x56 << 8)) & 0xFFF = 0x634
295 switch (hw->mac.mc_filter_type) {
296 default:
297 case 0:
298 break;
299 case 1:
300 bit_shift += 1;
301 break;
302 case 2:
303 bit_shift += 2;
304 break;
305 case 3:
306 bit_shift += 4;
307 break;
310 hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) |
311 (((u16) mc_addr[5]) << bit_shift)));
313 return hash_value;
317 * igb_clear_hw_cntrs_base - Clear base hardware counters
318 * @hw: pointer to the HW structure
320 * Clears the base hardware counters by reading the counter registers.
322 void igb_clear_hw_cntrs_base(struct e1000_hw *hw)
324 u32 temp;
326 temp = rd32(E1000_CRCERRS);
327 temp = rd32(E1000_SYMERRS);
328 temp = rd32(E1000_MPC);
329 temp = rd32(E1000_SCC);
330 temp = rd32(E1000_ECOL);
331 temp = rd32(E1000_MCC);
332 temp = rd32(E1000_LATECOL);
333 temp = rd32(E1000_COLC);
334 temp = rd32(E1000_DC);
335 temp = rd32(E1000_SEC);
336 temp = rd32(E1000_RLEC);
337 temp = rd32(E1000_XONRXC);
338 temp = rd32(E1000_XONTXC);
339 temp = rd32(E1000_XOFFRXC);
340 temp = rd32(E1000_XOFFTXC);
341 temp = rd32(E1000_FCRUC);
342 temp = rd32(E1000_GPRC);
343 temp = rd32(E1000_BPRC);
344 temp = rd32(E1000_MPRC);
345 temp = rd32(E1000_GPTC);
346 temp = rd32(E1000_GORCL);
347 temp = rd32(E1000_GORCH);
348 temp = rd32(E1000_GOTCL);
349 temp = rd32(E1000_GOTCH);
350 temp = rd32(E1000_RNBC);
351 temp = rd32(E1000_RUC);
352 temp = rd32(E1000_RFC);
353 temp = rd32(E1000_ROC);
354 temp = rd32(E1000_RJC);
355 temp = rd32(E1000_TORL);
356 temp = rd32(E1000_TORH);
357 temp = rd32(E1000_TOTL);
358 temp = rd32(E1000_TOTH);
359 temp = rd32(E1000_TPR);
360 temp = rd32(E1000_TPT);
361 temp = rd32(E1000_MPTC);
362 temp = rd32(E1000_BPTC);
366 * igb_check_for_copper_link - Check for link (Copper)
367 * @hw: pointer to the HW structure
369 * Checks to see of the link status of the hardware has changed. If a
370 * change in link status has been detected, then we read the PHY registers
371 * to get the current speed/duplex if link exists.
373 s32 igb_check_for_copper_link(struct e1000_hw *hw)
375 struct e1000_mac_info *mac = &hw->mac;
376 s32 ret_val;
377 bool link;
380 * We only want to go out to the PHY registers to see if Auto-Neg
381 * has completed and/or if our link status has changed. The
382 * get_link_status flag is set upon receiving a Link Status
383 * Change or Rx Sequence Error interrupt.
385 if (!mac->get_link_status) {
386 ret_val = 0;
387 goto out;
391 * First we want to see if the MII Status Register reports
392 * link. If so, then we want to get the current speed/duplex
393 * of the PHY.
395 ret_val = igb_phy_has_link(hw, 1, 0, &link);
396 if (ret_val)
397 goto out;
399 if (!link)
400 goto out; /* No link detected */
402 mac->get_link_status = false;
405 * Check if there was DownShift, must be checked
406 * immediately after link-up
408 igb_check_downshift(hw);
411 * If we are forcing speed/duplex, then we simply return since
412 * we have already determined whether we have link or not.
414 if (!mac->autoneg) {
415 ret_val = -E1000_ERR_CONFIG;
416 goto out;
420 * Auto-Neg is enabled. Auto Speed Detection takes care
421 * of MAC speed/duplex configuration. So we only need to
422 * configure Collision Distance in the MAC.
424 igb_config_collision_dist(hw);
427 * Configure Flow Control now that Auto-Neg has completed.
428 * First, we need to restore the desired flow control
429 * settings because we may have had to re-autoneg with a
430 * different link partner.
432 ret_val = igb_config_fc_after_link_up(hw);
433 if (ret_val)
434 hw_dbg("Error configuring flow control\n");
436 out:
437 return ret_val;
441 * igb_setup_link - Setup flow control and link settings
442 * @hw: pointer to the HW structure
444 * Determines which flow control settings to use, then configures flow
445 * control. Calls the appropriate media-specific link configuration
446 * function. Assuming the adapter has a valid link partner, a valid link
447 * should be established. Assumes the hardware has previously been reset
448 * and the transmitter and receiver are not enabled.
450 s32 igb_setup_link(struct e1000_hw *hw)
452 s32 ret_val = 0;
455 * In the case of the phy reset being blocked, we already have a link.
456 * We do not need to set it up again.
458 if (igb_check_reset_block(hw))
459 goto out;
461 ret_val = igb_set_default_fc(hw);
462 if (ret_val)
463 goto out;
466 * We want to save off the original Flow Control configuration just
467 * in case we get disconnected and then reconnected into a different
468 * hub or switch with different Flow Control capabilities.
470 hw->fc.original_type = hw->fc.type;
472 hw_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.type);
474 /* Call the necessary media_type subroutine to configure the link. */
475 ret_val = hw->mac.ops.setup_physical_interface(hw);
476 if (ret_val)
477 goto out;
480 * Initialize the flow control address, type, and PAUSE timer
481 * registers to their default values. This is done even if flow
482 * control is disabled, because it does not hurt anything to
483 * initialize these registers.
485 hw_dbg("Initializing the Flow Control address, type and timer regs\n");
486 wr32(E1000_FCT, FLOW_CONTROL_TYPE);
487 wr32(E1000_FCAH, FLOW_CONTROL_ADDRESS_HIGH);
488 wr32(E1000_FCAL, FLOW_CONTROL_ADDRESS_LOW);
490 wr32(E1000_FCTTV, hw->fc.pause_time);
492 ret_val = igb_set_fc_watermarks(hw);
494 out:
495 return ret_val;
499 * igb_config_collision_dist - Configure collision distance
500 * @hw: pointer to the HW structure
502 * Configures the collision distance to the default value and is used
503 * during link setup. Currently no func pointer exists and all
504 * implementations are handled in the generic version of this function.
506 void igb_config_collision_dist(struct e1000_hw *hw)
508 u32 tctl;
510 tctl = rd32(E1000_TCTL);
512 tctl &= ~E1000_TCTL_COLD;
513 tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT;
515 wr32(E1000_TCTL, tctl);
516 wrfl();
520 * igb_set_fc_watermarks - Set flow control high/low watermarks
521 * @hw: pointer to the HW structure
523 * Sets the flow control high/low threshold (watermark) registers. If
524 * flow control XON frame transmission is enabled, then set XON frame
525 * tansmission as well.
527 static s32 igb_set_fc_watermarks(struct e1000_hw *hw)
529 s32 ret_val = 0;
530 u32 fcrtl = 0, fcrth = 0;
533 * Set the flow control receive threshold registers. Normally,
534 * these registers will be set to a default threshold that may be
535 * adjusted later by the driver's runtime code. However, if the
536 * ability to transmit pause frames is not enabled, then these
537 * registers will be set to 0.
539 if (hw->fc.type & e1000_fc_tx_pause) {
541 * We need to set up the Receive Threshold high and low water
542 * marks as well as (optionally) enabling the transmission of
543 * XON frames.
545 fcrtl = hw->fc.low_water;
546 if (hw->fc.send_xon)
547 fcrtl |= E1000_FCRTL_XONE;
549 fcrth = hw->fc.high_water;
551 wr32(E1000_FCRTL, fcrtl);
552 wr32(E1000_FCRTH, fcrth);
554 return ret_val;
558 * igb_set_default_fc - Set flow control default values
559 * @hw: pointer to the HW structure
561 * Read the EEPROM for the default values for flow control and store the
562 * values.
564 static s32 igb_set_default_fc(struct e1000_hw *hw)
566 s32 ret_val = 0;
567 u16 nvm_data;
570 * Read and store word 0x0F of the EEPROM. This word contains bits
571 * that determine the hardware's default PAUSE (flow control) mode,
572 * a bit that determines whether the HW defaults to enabling or
573 * disabling auto-negotiation, and the direction of the
574 * SW defined pins. If there is no SW over-ride of the flow
575 * control setting, then the variable hw->fc will
576 * be initialized based on a value in the EEPROM.
578 ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL2_REG, 1, &nvm_data);
580 if (ret_val) {
581 hw_dbg("NVM Read Error\n");
582 goto out;
585 if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == 0)
586 hw->fc.type = e1000_fc_none;
587 else if ((nvm_data & NVM_WORD0F_PAUSE_MASK) ==
588 NVM_WORD0F_ASM_DIR)
589 hw->fc.type = e1000_fc_tx_pause;
590 else
591 hw->fc.type = e1000_fc_full;
593 out:
594 return ret_val;
598 * igb_force_mac_fc - Force the MAC's flow control settings
599 * @hw: pointer to the HW structure
601 * Force the MAC's flow control settings. Sets the TFCE and RFCE bits in the
602 * device control register to reflect the adapter settings. TFCE and RFCE
603 * need to be explicitly set by software when a copper PHY is used because
604 * autonegotiation is managed by the PHY rather than the MAC. Software must
605 * also configure these bits when link is forced on a fiber connection.
607 s32 igb_force_mac_fc(struct e1000_hw *hw)
609 u32 ctrl;
610 s32 ret_val = 0;
612 ctrl = rd32(E1000_CTRL);
615 * Because we didn't get link via the internal auto-negotiation
616 * mechanism (we either forced link or we got link via PHY
617 * auto-neg), we have to manually enable/disable transmit an
618 * receive flow control.
620 * The "Case" statement below enables/disable flow control
621 * according to the "hw->fc.type" parameter.
623 * The possible values of the "fc" parameter are:
624 * 0: Flow control is completely disabled
625 * 1: Rx flow control is enabled (we can receive pause
626 * frames but not send pause frames).
627 * 2: Tx flow control is enabled (we can send pause frames
628 * frames but we do not receive pause frames).
629 * 3: Both Rx and TX flow control (symmetric) is enabled.
630 * other: No other values should be possible at this point.
632 hw_dbg("hw->fc.type = %u\n", hw->fc.type);
634 switch (hw->fc.type) {
635 case e1000_fc_none:
636 ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
637 break;
638 case e1000_fc_rx_pause:
639 ctrl &= (~E1000_CTRL_TFCE);
640 ctrl |= E1000_CTRL_RFCE;
641 break;
642 case e1000_fc_tx_pause:
643 ctrl &= (~E1000_CTRL_RFCE);
644 ctrl |= E1000_CTRL_TFCE;
645 break;
646 case e1000_fc_full:
647 ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
648 break;
649 default:
650 hw_dbg("Flow control param set incorrectly\n");
651 ret_val = -E1000_ERR_CONFIG;
652 goto out;
655 wr32(E1000_CTRL, ctrl);
657 out:
658 return ret_val;
662 * igb_config_fc_after_link_up - Configures flow control after link
663 * @hw: pointer to the HW structure
665 * Checks the status of auto-negotiation after link up to ensure that the
666 * speed and duplex were not forced. If the link needed to be forced, then
667 * flow control needs to be forced also. If auto-negotiation is enabled
668 * and did not fail, then we configure flow control based on our link
669 * partner.
671 s32 igb_config_fc_after_link_up(struct e1000_hw *hw)
673 struct e1000_mac_info *mac = &hw->mac;
674 s32 ret_val = 0;
675 u16 mii_status_reg, mii_nway_adv_reg, mii_nway_lp_ability_reg;
676 u16 speed, duplex;
679 * Check for the case where we have fiber media and auto-neg failed
680 * so we had to force link. In this case, we need to force the
681 * configuration of the MAC to match the "fc" parameter.
683 if (mac->autoneg_failed) {
684 if (hw->phy.media_type == e1000_media_type_fiber ||
685 hw->phy.media_type == e1000_media_type_internal_serdes)
686 ret_val = igb_force_mac_fc(hw);
687 } else {
688 if (hw->phy.media_type == e1000_media_type_copper)
689 ret_val = igb_force_mac_fc(hw);
692 if (ret_val) {
693 hw_dbg("Error forcing flow control settings\n");
694 goto out;
698 * Check for the case where we have copper media and auto-neg is
699 * enabled. In this case, we need to check and see if Auto-Neg
700 * has completed, and if so, how the PHY and link partner has
701 * flow control configured.
703 if ((hw->phy.media_type == e1000_media_type_copper) && mac->autoneg) {
705 * Read the MII Status Register and check to see if AutoNeg
706 * has completed. We read this twice because this reg has
707 * some "sticky" (latched) bits.
709 ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS,
710 &mii_status_reg);
711 if (ret_val)
712 goto out;
713 ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS,
714 &mii_status_reg);
715 if (ret_val)
716 goto out;
718 if (!(mii_status_reg & MII_SR_AUTONEG_COMPLETE)) {
719 hw_dbg("Copper PHY and Auto Neg "
720 "has not completed.\n");
721 goto out;
725 * The AutoNeg process has completed, so we now need to
726 * read both the Auto Negotiation Advertisement
727 * Register (Address 4) and the Auto_Negotiation Base
728 * Page Ability Register (Address 5) to determine how
729 * flow control was negotiated.
731 ret_val = hw->phy.ops.read_reg(hw, PHY_AUTONEG_ADV,
732 &mii_nway_adv_reg);
733 if (ret_val)
734 goto out;
735 ret_val = hw->phy.ops.read_reg(hw, PHY_LP_ABILITY,
736 &mii_nway_lp_ability_reg);
737 if (ret_val)
738 goto out;
741 * Two bits in the Auto Negotiation Advertisement Register
742 * (Address 4) and two bits in the Auto Negotiation Base
743 * Page Ability Register (Address 5) determine flow control
744 * for both the PHY and the link partner. The following
745 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
746 * 1999, describes these PAUSE resolution bits and how flow
747 * control is determined based upon these settings.
748 * NOTE: DC = Don't Care
750 * LOCAL DEVICE | LINK PARTNER
751 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
752 *-------|---------|-------|---------|--------------------
753 * 0 | 0 | DC | DC | e1000_fc_none
754 * 0 | 1 | 0 | DC | e1000_fc_none
755 * 0 | 1 | 1 | 0 | e1000_fc_none
756 * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
757 * 1 | 0 | 0 | DC | e1000_fc_none
758 * 1 | DC | 1 | DC | e1000_fc_full
759 * 1 | 1 | 0 | 0 | e1000_fc_none
760 * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
762 * Are both PAUSE bits set to 1? If so, this implies
763 * Symmetric Flow Control is enabled at both ends. The
764 * ASM_DIR bits are irrelevant per the spec.
766 * For Symmetric Flow Control:
768 * LOCAL DEVICE | LINK PARTNER
769 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
770 *-------|---------|-------|---------|--------------------
771 * 1 | DC | 1 | DC | E1000_fc_full
774 if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
775 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
777 * Now we need to check if the user selected RX ONLY
778 * of pause frames. In this case, we had to advertise
779 * FULL flow control because we could not advertise RX
780 * ONLY. Hence, we must now check to see if we need to
781 * turn OFF the TRANSMISSION of PAUSE frames.
783 if (hw->fc.original_type == e1000_fc_full) {
784 hw->fc.type = e1000_fc_full;
785 hw_dbg("Flow Control = FULL.\r\n");
786 } else {
787 hw->fc.type = e1000_fc_rx_pause;
788 hw_dbg("Flow Control = "
789 "RX PAUSE frames only.\r\n");
793 * For receiving PAUSE frames ONLY.
795 * LOCAL DEVICE | LINK PARTNER
796 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
797 *-------|---------|-------|---------|--------------------
798 * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
800 else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
801 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
802 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
803 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
804 hw->fc.type = e1000_fc_tx_pause;
805 hw_dbg("Flow Control = TX PAUSE frames only.\r\n");
808 * For transmitting PAUSE frames ONLY.
810 * LOCAL DEVICE | LINK PARTNER
811 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
812 *-------|---------|-------|---------|--------------------
813 * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
815 else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
816 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
817 !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
818 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
819 hw->fc.type = e1000_fc_rx_pause;
820 hw_dbg("Flow Control = RX PAUSE frames only.\r\n");
823 * Per the IEEE spec, at this point flow control should be
824 * disabled. However, we want to consider that we could
825 * be connected to a legacy switch that doesn't advertise
826 * desired flow control, but can be forced on the link
827 * partner. So if we advertised no flow control, that is
828 * what we will resolve to. If we advertised some kind of
829 * receive capability (Rx Pause Only or Full Flow Control)
830 * and the link partner advertised none, we will configure
831 * ourselves to enable Rx Flow Control only. We can do
832 * this safely for two reasons: If the link partner really
833 * didn't want flow control enabled, and we enable Rx, no
834 * harm done since we won't be receiving any PAUSE frames
835 * anyway. If the intent on the link partner was to have
836 * flow control enabled, then by us enabling RX only, we
837 * can at least receive pause frames and process them.
838 * This is a good idea because in most cases, since we are
839 * predominantly a server NIC, more times than not we will
840 * be asked to delay transmission of packets than asking
841 * our link partner to pause transmission of frames.
843 else if ((hw->fc.original_type == e1000_fc_none ||
844 hw->fc.original_type == e1000_fc_tx_pause) ||
845 hw->fc.strict_ieee) {
846 hw->fc.type = e1000_fc_none;
847 hw_dbg("Flow Control = NONE.\r\n");
848 } else {
849 hw->fc.type = e1000_fc_rx_pause;
850 hw_dbg("Flow Control = RX PAUSE frames only.\r\n");
854 * Now we need to do one last check... If we auto-
855 * negotiated to HALF DUPLEX, flow control should not be
856 * enabled per IEEE 802.3 spec.
858 ret_val = hw->mac.ops.get_speed_and_duplex(hw, &speed, &duplex);
859 if (ret_val) {
860 hw_dbg("Error getting link speed and duplex\n");
861 goto out;
864 if (duplex == HALF_DUPLEX)
865 hw->fc.type = e1000_fc_none;
868 * Now we call a subroutine to actually force the MAC
869 * controller to use the correct flow control settings.
871 ret_val = igb_force_mac_fc(hw);
872 if (ret_val) {
873 hw_dbg("Error forcing flow control settings\n");
874 goto out;
878 out:
879 return ret_val;
883 * igb_get_speed_and_duplex_copper - Retreive current speed/duplex
884 * @hw: pointer to the HW structure
885 * @speed: stores the current speed
886 * @duplex: stores the current duplex
888 * Read the status register for the current speed/duplex and store the current
889 * speed and duplex for copper connections.
891 s32 igb_get_speed_and_duplex_copper(struct e1000_hw *hw, u16 *speed,
892 u16 *duplex)
894 u32 status;
896 status = rd32(E1000_STATUS);
897 if (status & E1000_STATUS_SPEED_1000) {
898 *speed = SPEED_1000;
899 hw_dbg("1000 Mbs, ");
900 } else if (status & E1000_STATUS_SPEED_100) {
901 *speed = SPEED_100;
902 hw_dbg("100 Mbs, ");
903 } else {
904 *speed = SPEED_10;
905 hw_dbg("10 Mbs, ");
908 if (status & E1000_STATUS_FD) {
909 *duplex = FULL_DUPLEX;
910 hw_dbg("Full Duplex\n");
911 } else {
912 *duplex = HALF_DUPLEX;
913 hw_dbg("Half Duplex\n");
916 return 0;
920 * igb_get_hw_semaphore - Acquire hardware semaphore
921 * @hw: pointer to the HW structure
923 * Acquire the HW semaphore to access the PHY or NVM
925 s32 igb_get_hw_semaphore(struct e1000_hw *hw)
927 u32 swsm;
928 s32 ret_val = 0;
929 s32 timeout = hw->nvm.word_size + 1;
930 s32 i = 0;
932 /* Get the SW semaphore */
933 while (i < timeout) {
934 swsm = rd32(E1000_SWSM);
935 if (!(swsm & E1000_SWSM_SMBI))
936 break;
938 udelay(50);
939 i++;
942 if (i == timeout) {
943 hw_dbg("Driver can't access device - SMBI bit is set.\n");
944 ret_val = -E1000_ERR_NVM;
945 goto out;
948 /* Get the FW semaphore. */
949 for (i = 0; i < timeout; i++) {
950 swsm = rd32(E1000_SWSM);
951 wr32(E1000_SWSM, swsm | E1000_SWSM_SWESMBI);
953 /* Semaphore acquired if bit latched */
954 if (rd32(E1000_SWSM) & E1000_SWSM_SWESMBI)
955 break;
957 udelay(50);
960 if (i == timeout) {
961 /* Release semaphores */
962 igb_put_hw_semaphore(hw);
963 hw_dbg("Driver can't access the NVM\n");
964 ret_val = -E1000_ERR_NVM;
965 goto out;
968 out:
969 return ret_val;
973 * igb_put_hw_semaphore - Release hardware semaphore
974 * @hw: pointer to the HW structure
976 * Release hardware semaphore used to access the PHY or NVM
978 void igb_put_hw_semaphore(struct e1000_hw *hw)
980 u32 swsm;
982 swsm = rd32(E1000_SWSM);
984 swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
986 wr32(E1000_SWSM, swsm);
990 * igb_get_auto_rd_done - Check for auto read completion
991 * @hw: pointer to the HW structure
993 * Check EEPROM for Auto Read done bit.
995 s32 igb_get_auto_rd_done(struct e1000_hw *hw)
997 s32 i = 0;
998 s32 ret_val = 0;
1001 while (i < AUTO_READ_DONE_TIMEOUT) {
1002 if (rd32(E1000_EECD) & E1000_EECD_AUTO_RD)
1003 break;
1004 msleep(1);
1005 i++;
1008 if (i == AUTO_READ_DONE_TIMEOUT) {
1009 hw_dbg("Auto read by HW from NVM has not completed.\n");
1010 ret_val = -E1000_ERR_RESET;
1011 goto out;
1014 out:
1015 return ret_val;
1019 * igb_valid_led_default - Verify a valid default LED config
1020 * @hw: pointer to the HW structure
1021 * @data: pointer to the NVM (EEPROM)
1023 * Read the EEPROM for the current default LED configuration. If the
1024 * LED configuration is not valid, set to a valid LED configuration.
1026 static s32 igb_valid_led_default(struct e1000_hw *hw, u16 *data)
1028 s32 ret_val;
1030 ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data);
1031 if (ret_val) {
1032 hw_dbg("NVM Read Error\n");
1033 goto out;
1036 if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
1037 *data = ID_LED_DEFAULT;
1039 out:
1040 return ret_val;
1044 * igb_id_led_init -
1045 * @hw: pointer to the HW structure
1048 s32 igb_id_led_init(struct e1000_hw *hw)
1050 struct e1000_mac_info *mac = &hw->mac;
1051 s32 ret_val;
1052 const u32 ledctl_mask = 0x000000FF;
1053 const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON;
1054 const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF;
1055 u16 data, i, temp;
1056 const u16 led_mask = 0x0F;
1058 ret_val = igb_valid_led_default(hw, &data);
1059 if (ret_val)
1060 goto out;
1062 mac->ledctl_default = rd32(E1000_LEDCTL);
1063 mac->ledctl_mode1 = mac->ledctl_default;
1064 mac->ledctl_mode2 = mac->ledctl_default;
1066 for (i = 0; i < 4; i++) {
1067 temp = (data >> (i << 2)) & led_mask;
1068 switch (temp) {
1069 case ID_LED_ON1_DEF2:
1070 case ID_LED_ON1_ON2:
1071 case ID_LED_ON1_OFF2:
1072 mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
1073 mac->ledctl_mode1 |= ledctl_on << (i << 3);
1074 break;
1075 case ID_LED_OFF1_DEF2:
1076 case ID_LED_OFF1_ON2:
1077 case ID_LED_OFF1_OFF2:
1078 mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
1079 mac->ledctl_mode1 |= ledctl_off << (i << 3);
1080 break;
1081 default:
1082 /* Do nothing */
1083 break;
1085 switch (temp) {
1086 case ID_LED_DEF1_ON2:
1087 case ID_LED_ON1_ON2:
1088 case ID_LED_OFF1_ON2:
1089 mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
1090 mac->ledctl_mode2 |= ledctl_on << (i << 3);
1091 break;
1092 case ID_LED_DEF1_OFF2:
1093 case ID_LED_ON1_OFF2:
1094 case ID_LED_OFF1_OFF2:
1095 mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
1096 mac->ledctl_mode2 |= ledctl_off << (i << 3);
1097 break;
1098 default:
1099 /* Do nothing */
1100 break;
1104 out:
1105 return ret_val;
1109 * igb_cleanup_led - Set LED config to default operation
1110 * @hw: pointer to the HW structure
1112 * Remove the current LED configuration and set the LED configuration
1113 * to the default value, saved from the EEPROM.
1115 s32 igb_cleanup_led(struct e1000_hw *hw)
1117 wr32(E1000_LEDCTL, hw->mac.ledctl_default);
1118 return 0;
1122 * igb_blink_led - Blink LED
1123 * @hw: pointer to the HW structure
1125 * Blink the led's which are set to be on.
1127 s32 igb_blink_led(struct e1000_hw *hw)
1129 u32 ledctl_blink = 0;
1130 u32 i;
1132 if (hw->phy.media_type == e1000_media_type_fiber) {
1133 /* always blink LED0 for PCI-E fiber */
1134 ledctl_blink = E1000_LEDCTL_LED0_BLINK |
1135 (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED0_MODE_SHIFT);
1136 } else {
1138 * set the blink bit for each LED that's "on" (0x0E)
1139 * in ledctl_mode2
1141 ledctl_blink = hw->mac.ledctl_mode2;
1142 for (i = 0; i < 4; i++)
1143 if (((hw->mac.ledctl_mode2 >> (i * 8)) & 0xFF) ==
1144 E1000_LEDCTL_MODE_LED_ON)
1145 ledctl_blink |= (E1000_LEDCTL_LED0_BLINK <<
1146 (i * 8));
1149 wr32(E1000_LEDCTL, ledctl_blink);
1151 return 0;
1155 * igb_led_off - Turn LED off
1156 * @hw: pointer to the HW structure
1158 * Turn LED off.
1160 s32 igb_led_off(struct e1000_hw *hw)
1162 u32 ctrl;
1164 switch (hw->phy.media_type) {
1165 case e1000_media_type_fiber:
1166 ctrl = rd32(E1000_CTRL);
1167 ctrl |= E1000_CTRL_SWDPIN0;
1168 ctrl |= E1000_CTRL_SWDPIO0;
1169 wr32(E1000_CTRL, ctrl);
1170 break;
1171 case e1000_media_type_copper:
1172 wr32(E1000_LEDCTL, hw->mac.ledctl_mode1);
1173 break;
1174 default:
1175 break;
1178 return 0;
1182 * igb_disable_pcie_master - Disables PCI-express master access
1183 * @hw: pointer to the HW structure
1185 * Returns 0 (0) if successful, else returns -10
1186 * (-E1000_ERR_MASTER_REQUESTS_PENDING) if master disable bit has not casued
1187 * the master requests to be disabled.
1189 * Disables PCI-Express master access and verifies there are no pending
1190 * requests.
1192 s32 igb_disable_pcie_master(struct e1000_hw *hw)
1194 u32 ctrl;
1195 s32 timeout = MASTER_DISABLE_TIMEOUT;
1196 s32 ret_val = 0;
1198 if (hw->bus.type != e1000_bus_type_pci_express)
1199 goto out;
1201 ctrl = rd32(E1000_CTRL);
1202 ctrl |= E1000_CTRL_GIO_MASTER_DISABLE;
1203 wr32(E1000_CTRL, ctrl);
1205 while (timeout) {
1206 if (!(rd32(E1000_STATUS) &
1207 E1000_STATUS_GIO_MASTER_ENABLE))
1208 break;
1209 udelay(100);
1210 timeout--;
1213 if (!timeout) {
1214 hw_dbg("Master requests are pending.\n");
1215 ret_val = -E1000_ERR_MASTER_REQUESTS_PENDING;
1216 goto out;
1219 out:
1220 return ret_val;
1224 * igb_reset_adaptive - Reset Adaptive Interframe Spacing
1225 * @hw: pointer to the HW structure
1227 * Reset the Adaptive Interframe Spacing throttle to default values.
1229 void igb_reset_adaptive(struct e1000_hw *hw)
1231 struct e1000_mac_info *mac = &hw->mac;
1233 if (!mac->adaptive_ifs) {
1234 hw_dbg("Not in Adaptive IFS mode!\n");
1235 goto out;
1238 if (!mac->ifs_params_forced) {
1239 mac->current_ifs_val = 0;
1240 mac->ifs_min_val = IFS_MIN;
1241 mac->ifs_max_val = IFS_MAX;
1242 mac->ifs_step_size = IFS_STEP;
1243 mac->ifs_ratio = IFS_RATIO;
1246 mac->in_ifs_mode = false;
1247 wr32(E1000_AIT, 0);
1248 out:
1249 return;
1253 * igb_update_adaptive - Update Adaptive Interframe Spacing
1254 * @hw: pointer to the HW structure
1256 * Update the Adaptive Interframe Spacing Throttle value based on the
1257 * time between transmitted packets and time between collisions.
1259 void igb_update_adaptive(struct e1000_hw *hw)
1261 struct e1000_mac_info *mac = &hw->mac;
1263 if (!mac->adaptive_ifs) {
1264 hw_dbg("Not in Adaptive IFS mode!\n");
1265 goto out;
1268 if ((mac->collision_delta * mac->ifs_ratio) > mac->tx_packet_delta) {
1269 if (mac->tx_packet_delta > MIN_NUM_XMITS) {
1270 mac->in_ifs_mode = true;
1271 if (mac->current_ifs_val < mac->ifs_max_val) {
1272 if (!mac->current_ifs_val)
1273 mac->current_ifs_val = mac->ifs_min_val;
1274 else
1275 mac->current_ifs_val +=
1276 mac->ifs_step_size;
1277 wr32(E1000_AIT,
1278 mac->current_ifs_val);
1281 } else {
1282 if (mac->in_ifs_mode &&
1283 (mac->tx_packet_delta <= MIN_NUM_XMITS)) {
1284 mac->current_ifs_val = 0;
1285 mac->in_ifs_mode = false;
1286 wr32(E1000_AIT, 0);
1289 out:
1290 return;
1294 * igb_validate_mdi_setting - Verify MDI/MDIx settings
1295 * @hw: pointer to the HW structure
1297 * Verify that when not using auto-negotitation that MDI/MDIx is correctly
1298 * set, which is forced to MDI mode only.
1300 s32 igb_validate_mdi_setting(struct e1000_hw *hw)
1302 s32 ret_val = 0;
1304 if (!hw->mac.autoneg && (hw->phy.mdix == 0 || hw->phy.mdix == 3)) {
1305 hw_dbg("Invalid MDI setting detected\n");
1306 hw->phy.mdix = 1;
1307 ret_val = -E1000_ERR_CONFIG;
1308 goto out;
1311 out:
1312 return ret_val;
1316 * igb_write_8bit_ctrl_reg - Write a 8bit CTRL register
1317 * @hw: pointer to the HW structure
1318 * @reg: 32bit register offset such as E1000_SCTL
1319 * @offset: register offset to write to
1320 * @data: data to write at register offset
1322 * Writes an address/data control type register. There are several of these
1323 * and they all have the format address << 8 | data and bit 31 is polled for
1324 * completion.
1326 s32 igb_write_8bit_ctrl_reg(struct e1000_hw *hw, u32 reg,
1327 u32 offset, u8 data)
1329 u32 i, regvalue = 0;
1330 s32 ret_val = 0;
1332 /* Set up the address and data */
1333 regvalue = ((u32)data) | (offset << E1000_GEN_CTL_ADDRESS_SHIFT);
1334 wr32(reg, regvalue);
1336 /* Poll the ready bit to see if the MDI read completed */
1337 for (i = 0; i < E1000_GEN_POLL_TIMEOUT; i++) {
1338 udelay(5);
1339 regvalue = rd32(reg);
1340 if (regvalue & E1000_GEN_CTL_READY)
1341 break;
1343 if (!(regvalue & E1000_GEN_CTL_READY)) {
1344 hw_dbg("Reg %08x did not indicate ready\n", reg);
1345 ret_val = -E1000_ERR_PHY;
1346 goto out;
1349 out:
1350 return ret_val;
1354 * igb_enable_mng_pass_thru - Enable processing of ARP's
1355 * @hw: pointer to the HW structure
1357 * Verifies the hardware needs to allow ARPs to be processed by the host.
1359 bool igb_enable_mng_pass_thru(struct e1000_hw *hw)
1361 u32 manc;
1362 u32 fwsm, factps;
1363 bool ret_val = false;
1365 if (!hw->mac.asf_firmware_present)
1366 goto out;
1368 manc = rd32(E1000_MANC);
1370 if (!(manc & E1000_MANC_RCV_TCO_EN) ||
1371 !(manc & E1000_MANC_EN_MAC_ADDR_FILTER))
1372 goto out;
1374 if (hw->mac.arc_subsystem_valid) {
1375 fwsm = rd32(E1000_FWSM);
1376 factps = rd32(E1000_FACTPS);
1378 if (!(factps & E1000_FACTPS_MNGCG) &&
1379 ((fwsm & E1000_FWSM_MODE_MASK) ==
1380 (e1000_mng_mode_pt << E1000_FWSM_MODE_SHIFT))) {
1381 ret_val = true;
1382 goto out;
1384 } else {
1385 if ((manc & E1000_MANC_SMBUS_EN) &&
1386 !(manc & E1000_MANC_ASF_EN)) {
1387 ret_val = true;
1388 goto out;
1392 out:
1393 return ret_val;