2 * Copyright (C) STMicroelectronics 2009
3 * Copyright (C) ST-Ericsson SA 2010
5 * License Terms: GNU General Public License v2
6 * Author: Kumar Sanghvi <kumar.sanghvi@stericsson.com>
7 * Author: Sundar Iyer <sundar.iyer@stericsson.com>
8 * Author: Mattias Nilsson <mattias.i.nilsson@stericsson.com>
10 * U8500 PRCM Unit interface driver
13 #include <linux/module.h>
14 #include <linux/kernel.h>
15 #include <linux/delay.h>
16 #include <linux/errno.h>
17 #include <linux/err.h>
18 #include <linux/spinlock.h>
20 #include <linux/slab.h>
21 #include <linux/mutex.h>
22 #include <linux/completion.h>
23 #include <linux/irq.h>
24 #include <linux/jiffies.h>
25 #include <linux/bitops.h>
27 #include <linux/platform_device.h>
28 #include <linux/uaccess.h>
29 #include <linux/mfd/core.h>
30 #include <linux/mfd/dbx500-prcmu.h>
31 #include <linux/mfd/abx500/ab8500.h>
32 #include <linux/regulator/db8500-prcmu.h>
33 #include <linux/regulator/machine.h>
34 #include <asm/hardware/gic.h>
35 #include <mach/hardware.h>
36 #include <mach/irqs.h>
37 #include <mach/db8500-regs.h>
39 #include "dbx500-prcmu-regs.h"
41 /* Offset for the firmware version within the TCPM */
42 #define PRCMU_FW_VERSION_OFFSET 0xA4
44 /* Index of different voltages to be used when accessing AVSData */
45 #define PRCM_AVS_BASE 0x2FC
46 #define PRCM_AVS_VBB_RET (PRCM_AVS_BASE + 0x0)
47 #define PRCM_AVS_VBB_MAX_OPP (PRCM_AVS_BASE + 0x1)
48 #define PRCM_AVS_VBB_100_OPP (PRCM_AVS_BASE + 0x2)
49 #define PRCM_AVS_VBB_50_OPP (PRCM_AVS_BASE + 0x3)
50 #define PRCM_AVS_VARM_MAX_OPP (PRCM_AVS_BASE + 0x4)
51 #define PRCM_AVS_VARM_100_OPP (PRCM_AVS_BASE + 0x5)
52 #define PRCM_AVS_VARM_50_OPP (PRCM_AVS_BASE + 0x6)
53 #define PRCM_AVS_VARM_RET (PRCM_AVS_BASE + 0x7)
54 #define PRCM_AVS_VAPE_100_OPP (PRCM_AVS_BASE + 0x8)
55 #define PRCM_AVS_VAPE_50_OPP (PRCM_AVS_BASE + 0x9)
56 #define PRCM_AVS_VMOD_100_OPP (PRCM_AVS_BASE + 0xA)
57 #define PRCM_AVS_VMOD_50_OPP (PRCM_AVS_BASE + 0xB)
58 #define PRCM_AVS_VSAFE (PRCM_AVS_BASE + 0xC)
60 #define PRCM_AVS_VOLTAGE 0
61 #define PRCM_AVS_VOLTAGE_MASK 0x3f
62 #define PRCM_AVS_ISSLOWSTARTUP 6
63 #define PRCM_AVS_ISSLOWSTARTUP_MASK (1 << PRCM_AVS_ISSLOWSTARTUP)
64 #define PRCM_AVS_ISMODEENABLE 7
65 #define PRCM_AVS_ISMODEENABLE_MASK (1 << PRCM_AVS_ISMODEENABLE)
67 #define PRCM_BOOT_STATUS 0xFFF
68 #define PRCM_ROMCODE_A2P 0xFFE
69 #define PRCM_ROMCODE_P2A 0xFFD
70 #define PRCM_XP70_CUR_PWR_STATE 0xFFC /* 4 BYTES */
72 #define PRCM_SW_RST_REASON 0xFF8 /* 2 bytes */
74 #define _PRCM_MBOX_HEADER 0xFE8 /* 16 bytes */
75 #define PRCM_MBOX_HEADER_REQ_MB0 (_PRCM_MBOX_HEADER + 0x0)
76 #define PRCM_MBOX_HEADER_REQ_MB1 (_PRCM_MBOX_HEADER + 0x1)
77 #define PRCM_MBOX_HEADER_REQ_MB2 (_PRCM_MBOX_HEADER + 0x2)
78 #define PRCM_MBOX_HEADER_REQ_MB3 (_PRCM_MBOX_HEADER + 0x3)
79 #define PRCM_MBOX_HEADER_REQ_MB4 (_PRCM_MBOX_HEADER + 0x4)
80 #define PRCM_MBOX_HEADER_REQ_MB5 (_PRCM_MBOX_HEADER + 0x5)
81 #define PRCM_MBOX_HEADER_ACK_MB0 (_PRCM_MBOX_HEADER + 0x8)
84 #define PRCM_REQ_MB0 0xFDC /* 12 bytes */
85 #define PRCM_REQ_MB1 0xFD0 /* 12 bytes */
86 #define PRCM_REQ_MB2 0xFC0 /* 16 bytes */
87 #define PRCM_REQ_MB3 0xE4C /* 372 bytes */
88 #define PRCM_REQ_MB4 0xE48 /* 4 bytes */
89 #define PRCM_REQ_MB5 0xE44 /* 4 bytes */
92 #define PRCM_ACK_MB0 0xE08 /* 52 bytes */
93 #define PRCM_ACK_MB1 0xE04 /* 4 bytes */
94 #define PRCM_ACK_MB2 0xE00 /* 4 bytes */
95 #define PRCM_ACK_MB3 0xDFC /* 4 bytes */
96 #define PRCM_ACK_MB4 0xDF8 /* 4 bytes */
97 #define PRCM_ACK_MB5 0xDF4 /* 4 bytes */
99 /* Mailbox 0 headers */
100 #define MB0H_POWER_STATE_TRANS 0
101 #define MB0H_CONFIG_WAKEUPS_EXE 1
102 #define MB0H_READ_WAKEUP_ACK 3
103 #define MB0H_CONFIG_WAKEUPS_SLEEP 4
105 #define MB0H_WAKEUP_EXE 2
106 #define MB0H_WAKEUP_SLEEP 5
109 #define PRCM_REQ_MB0_AP_POWER_STATE (PRCM_REQ_MB0 + 0x0)
110 #define PRCM_REQ_MB0_AP_PLL_STATE (PRCM_REQ_MB0 + 0x1)
111 #define PRCM_REQ_MB0_ULP_CLOCK_STATE (PRCM_REQ_MB0 + 0x2)
112 #define PRCM_REQ_MB0_DO_NOT_WFI (PRCM_REQ_MB0 + 0x3)
113 #define PRCM_REQ_MB0_WAKEUP_8500 (PRCM_REQ_MB0 + 0x4)
114 #define PRCM_REQ_MB0_WAKEUP_4500 (PRCM_REQ_MB0 + 0x8)
117 #define PRCM_ACK_MB0_AP_PWRSTTR_STATUS (PRCM_ACK_MB0 + 0x0)
118 #define PRCM_ACK_MB0_READ_POINTER (PRCM_ACK_MB0 + 0x1)
119 #define PRCM_ACK_MB0_WAKEUP_0_8500 (PRCM_ACK_MB0 + 0x4)
120 #define PRCM_ACK_MB0_WAKEUP_0_4500 (PRCM_ACK_MB0 + 0x8)
121 #define PRCM_ACK_MB0_WAKEUP_1_8500 (PRCM_ACK_MB0 + 0x1C)
122 #define PRCM_ACK_MB0_WAKEUP_1_4500 (PRCM_ACK_MB0 + 0x20)
123 #define PRCM_ACK_MB0_EVENT_4500_NUMBERS 20
125 /* Mailbox 1 headers */
126 #define MB1H_ARM_APE_OPP 0x0
127 #define MB1H_RESET_MODEM 0x2
128 #define MB1H_REQUEST_APE_OPP_100_VOLT 0x3
129 #define MB1H_RELEASE_APE_OPP_100_VOLT 0x4
130 #define MB1H_RELEASE_USB_WAKEUP 0x5
131 #define MB1H_PLL_ON_OFF 0x6
133 /* Mailbox 1 Requests */
134 #define PRCM_REQ_MB1_ARM_OPP (PRCM_REQ_MB1 + 0x0)
135 #define PRCM_REQ_MB1_APE_OPP (PRCM_REQ_MB1 + 0x1)
136 #define PRCM_REQ_MB1_PLL_ON_OFF (PRCM_REQ_MB1 + 0x4)
137 #define PLL_SOC0_OFF 0x1
138 #define PLL_SOC0_ON 0x2
139 #define PLL_SOC1_OFF 0x4
140 #define PLL_SOC1_ON 0x8
143 #define PRCM_ACK_MB1_CURRENT_ARM_OPP (PRCM_ACK_MB1 + 0x0)
144 #define PRCM_ACK_MB1_CURRENT_APE_OPP (PRCM_ACK_MB1 + 0x1)
145 #define PRCM_ACK_MB1_APE_VOLTAGE_STATUS (PRCM_ACK_MB1 + 0x2)
146 #define PRCM_ACK_MB1_DVFS_STATUS (PRCM_ACK_MB1 + 0x3)
148 /* Mailbox 2 headers */
150 #define MB2H_AUTO_PWR 0x1
153 #define PRCM_REQ_MB2_SVA_MMDSP (PRCM_REQ_MB2 + 0x0)
154 #define PRCM_REQ_MB2_SVA_PIPE (PRCM_REQ_MB2 + 0x1)
155 #define PRCM_REQ_MB2_SIA_MMDSP (PRCM_REQ_MB2 + 0x2)
156 #define PRCM_REQ_MB2_SIA_PIPE (PRCM_REQ_MB2 + 0x3)
157 #define PRCM_REQ_MB2_SGA (PRCM_REQ_MB2 + 0x4)
158 #define PRCM_REQ_MB2_B2R2_MCDE (PRCM_REQ_MB2 + 0x5)
159 #define PRCM_REQ_MB2_ESRAM12 (PRCM_REQ_MB2 + 0x6)
160 #define PRCM_REQ_MB2_ESRAM34 (PRCM_REQ_MB2 + 0x7)
161 #define PRCM_REQ_MB2_AUTO_PM_SLEEP (PRCM_REQ_MB2 + 0x8)
162 #define PRCM_REQ_MB2_AUTO_PM_IDLE (PRCM_REQ_MB2 + 0xC)
165 #define PRCM_ACK_MB2_DPS_STATUS (PRCM_ACK_MB2 + 0x0)
166 #define HWACC_PWR_ST_OK 0xFE
168 /* Mailbox 3 headers */
170 #define MB3H_SIDETONE 0x1
171 #define MB3H_SYSCLK 0xE
173 /* Mailbox 3 Requests */
174 #define PRCM_REQ_MB3_ANC_FIR_COEFF (PRCM_REQ_MB3 + 0x0)
175 #define PRCM_REQ_MB3_ANC_IIR_COEFF (PRCM_REQ_MB3 + 0x20)
176 #define PRCM_REQ_MB3_ANC_SHIFTER (PRCM_REQ_MB3 + 0x60)
177 #define PRCM_REQ_MB3_ANC_WARP (PRCM_REQ_MB3 + 0x64)
178 #define PRCM_REQ_MB3_SIDETONE_FIR_GAIN (PRCM_REQ_MB3 + 0x68)
179 #define PRCM_REQ_MB3_SIDETONE_FIR_COEFF (PRCM_REQ_MB3 + 0x6C)
180 #define PRCM_REQ_MB3_SYSCLK_MGT (PRCM_REQ_MB3 + 0x16C)
182 /* Mailbox 4 headers */
183 #define MB4H_DDR_INIT 0x0
184 #define MB4H_MEM_ST 0x1
185 #define MB4H_HOTDOG 0x12
186 #define MB4H_HOTMON 0x13
187 #define MB4H_HOT_PERIOD 0x14
188 #define MB4H_A9WDOG_CONF 0x16
189 #define MB4H_A9WDOG_EN 0x17
190 #define MB4H_A9WDOG_DIS 0x18
191 #define MB4H_A9WDOG_LOAD 0x19
192 #define MB4H_A9WDOG_KICK 0x20
194 /* Mailbox 4 Requests */
195 #define PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE (PRCM_REQ_MB4 + 0x0)
196 #define PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE (PRCM_REQ_MB4 + 0x1)
197 #define PRCM_REQ_MB4_ESRAM0_ST (PRCM_REQ_MB4 + 0x3)
198 #define PRCM_REQ_MB4_HOTDOG_THRESHOLD (PRCM_REQ_MB4 + 0x0)
199 #define PRCM_REQ_MB4_HOTMON_LOW (PRCM_REQ_MB4 + 0x0)
200 #define PRCM_REQ_MB4_HOTMON_HIGH (PRCM_REQ_MB4 + 0x1)
201 #define PRCM_REQ_MB4_HOTMON_CONFIG (PRCM_REQ_MB4 + 0x2)
202 #define PRCM_REQ_MB4_HOT_PERIOD (PRCM_REQ_MB4 + 0x0)
203 #define HOTMON_CONFIG_LOW BIT(0)
204 #define HOTMON_CONFIG_HIGH BIT(1)
205 #define PRCM_REQ_MB4_A9WDOG_0 (PRCM_REQ_MB4 + 0x0)
206 #define PRCM_REQ_MB4_A9WDOG_1 (PRCM_REQ_MB4 + 0x1)
207 #define PRCM_REQ_MB4_A9WDOG_2 (PRCM_REQ_MB4 + 0x2)
208 #define PRCM_REQ_MB4_A9WDOG_3 (PRCM_REQ_MB4 + 0x3)
209 #define A9WDOG_AUTO_OFF_EN BIT(7)
210 #define A9WDOG_AUTO_OFF_DIS 0
211 #define A9WDOG_ID_MASK 0xf
213 /* Mailbox 5 Requests */
214 #define PRCM_REQ_MB5_I2C_SLAVE_OP (PRCM_REQ_MB5 + 0x0)
215 #define PRCM_REQ_MB5_I2C_HW_BITS (PRCM_REQ_MB5 + 0x1)
216 #define PRCM_REQ_MB5_I2C_REG (PRCM_REQ_MB5 + 0x2)
217 #define PRCM_REQ_MB5_I2C_VAL (PRCM_REQ_MB5 + 0x3)
218 #define PRCMU_I2C_WRITE(slave) \
219 (((slave) << 1) | (cpu_is_u8500v2() ? BIT(6) : 0))
220 #define PRCMU_I2C_READ(slave) \
221 (((slave) << 1) | BIT(0) | (cpu_is_u8500v2() ? BIT(6) : 0))
222 #define PRCMU_I2C_STOP_EN BIT(3)
225 #define PRCM_ACK_MB5_I2C_STATUS (PRCM_ACK_MB5 + 0x1)
226 #define PRCM_ACK_MB5_I2C_VAL (PRCM_ACK_MB5 + 0x3)
227 #define I2C_WR_OK 0x1
228 #define I2C_RD_OK 0x2
232 #define ALL_MBOX_BITS (MBOX_BIT(NUM_MB) - 1)
238 #define WAKEUP_BIT_RTC BIT(0)
239 #define WAKEUP_BIT_RTT0 BIT(1)
240 #define WAKEUP_BIT_RTT1 BIT(2)
241 #define WAKEUP_BIT_HSI0 BIT(3)
242 #define WAKEUP_BIT_HSI1 BIT(4)
243 #define WAKEUP_BIT_CA_WAKE BIT(5)
244 #define WAKEUP_BIT_USB BIT(6)
245 #define WAKEUP_BIT_ABB BIT(7)
246 #define WAKEUP_BIT_ABB_FIFO BIT(8)
247 #define WAKEUP_BIT_SYSCLK_OK BIT(9)
248 #define WAKEUP_BIT_CA_SLEEP BIT(10)
249 #define WAKEUP_BIT_AC_WAKE_ACK BIT(11)
250 #define WAKEUP_BIT_SIDE_TONE_OK BIT(12)
251 #define WAKEUP_BIT_ANC_OK BIT(13)
252 #define WAKEUP_BIT_SW_ERROR BIT(14)
253 #define WAKEUP_BIT_AC_SLEEP_ACK BIT(15)
254 #define WAKEUP_BIT_ARM BIT(17)
255 #define WAKEUP_BIT_HOTMON_LOW BIT(18)
256 #define WAKEUP_BIT_HOTMON_HIGH BIT(19)
257 #define WAKEUP_BIT_MODEM_SW_RESET_REQ BIT(20)
258 #define WAKEUP_BIT_GPIO0 BIT(23)
259 #define WAKEUP_BIT_GPIO1 BIT(24)
260 #define WAKEUP_BIT_GPIO2 BIT(25)
261 #define WAKEUP_BIT_GPIO3 BIT(26)
262 #define WAKEUP_BIT_GPIO4 BIT(27)
263 #define WAKEUP_BIT_GPIO5 BIT(28)
264 #define WAKEUP_BIT_GPIO6 BIT(29)
265 #define WAKEUP_BIT_GPIO7 BIT(30)
266 #define WAKEUP_BIT_GPIO8 BIT(31)
270 struct prcmu_fw_version version
;
273 static struct irq_domain
*db8500_irq_domain
;
276 * This vector maps irq numbers to the bits in the bit field used in
277 * communication with the PRCMU firmware.
279 * The reason for having this is to keep the irq numbers contiguous even though
280 * the bits in the bit field are not. (The bits also have a tendency to move
281 * around, to further complicate matters.)
283 #define IRQ_INDEX(_name) ((IRQ_PRCMU_##_name) - IRQ_PRCMU_BASE)
284 #define IRQ_ENTRY(_name)[IRQ_INDEX(_name)] = (WAKEUP_BIT_##_name)
285 static u32 prcmu_irq_bit
[NUM_PRCMU_WAKEUPS
] = {
297 IRQ_ENTRY(HOTMON_LOW
),
298 IRQ_ENTRY(HOTMON_HIGH
),
299 IRQ_ENTRY(MODEM_SW_RESET_REQ
),
311 #define VALID_WAKEUPS (BIT(NUM_PRCMU_WAKEUP_INDICES) - 1)
312 #define WAKEUP_ENTRY(_name)[PRCMU_WAKEUP_INDEX_##_name] = (WAKEUP_BIT_##_name)
313 static u32 prcmu_wakeup_bit
[NUM_PRCMU_WAKEUP_INDICES
] = {
321 WAKEUP_ENTRY(ABB_FIFO
),
326 * mb0_transfer - state needed for mailbox 0 communication.
327 * @lock: The transaction lock.
328 * @dbb_events_lock: A lock used to handle concurrent access to (parts of)
330 * @mask_work: Work structure used for (un)masking wakeup interrupts.
331 * @req: Request data that need to persist between requests.
335 spinlock_t dbb_irqs_lock
;
336 struct work_struct mask_work
;
337 struct mutex ac_wake_lock
;
338 struct completion ac_wake_work
;
347 * mb1_transfer - state needed for mailbox 1 communication.
348 * @lock: The transaction lock.
349 * @work: The transaction completion structure.
350 * @ape_opp: The current APE OPP.
351 * @ack: Reply ("acknowledge") data.
355 struct completion work
;
361 u8 ape_voltage_status
;
366 * mb2_transfer - state needed for mailbox 2 communication.
367 * @lock: The transaction lock.
368 * @work: The transaction completion structure.
369 * @auto_pm_lock: The autonomous power management configuration lock.
370 * @auto_pm_enabled: A flag indicating whether autonomous PM is enabled.
371 * @req: Request data that need to persist between requests.
372 * @ack: Reply ("acknowledge") data.
376 struct completion work
;
377 spinlock_t auto_pm_lock
;
378 bool auto_pm_enabled
;
385 * mb3_transfer - state needed for mailbox 3 communication.
386 * @lock: The request lock.
387 * @sysclk_lock: A lock used to handle concurrent sysclk requests.
388 * @sysclk_work: Work structure used for sysclk requests.
392 struct mutex sysclk_lock
;
393 struct completion sysclk_work
;
397 * mb4_transfer - state needed for mailbox 4 communication.
398 * @lock: The transaction lock.
399 * @work: The transaction completion structure.
403 struct completion work
;
407 * mb5_transfer - state needed for mailbox 5 communication.
408 * @lock: The transaction lock.
409 * @work: The transaction completion structure.
410 * @ack: Reply ("acknowledge") data.
414 struct completion work
;
421 static atomic_t ac_wake_req_state
= ATOMIC_INIT(0);
423 /* Functions definition */
424 static void compute_armss_rate(void);
427 static DEFINE_SPINLOCK(prcmu_lock
);
428 static DEFINE_SPINLOCK(clkout_lock
);
430 /* Global var to runtime determine TCDM base for v2 or v1 */
431 static __iomem
void *tcdm_base
;
446 static DEFINE_SPINLOCK(clk_mgt_lock
);
448 #define CLK_MGT_ENTRY(_name, _branch, _clk38div)[PRCMU_##_name] = \
449 { (PRCM_##_name##_MGT), 0 , _branch, _clk38div}
450 struct clk_mgt clk_mgt
[PRCMU_NUM_REG_CLOCKS
] = {
451 CLK_MGT_ENTRY(SGACLK
, PLL_DIV
, false),
452 CLK_MGT_ENTRY(UARTCLK
, PLL_FIX
, true),
453 CLK_MGT_ENTRY(MSP02CLK
, PLL_FIX
, true),
454 CLK_MGT_ENTRY(MSP1CLK
, PLL_FIX
, true),
455 CLK_MGT_ENTRY(I2CCLK
, PLL_FIX
, true),
456 CLK_MGT_ENTRY(SDMMCCLK
, PLL_DIV
, true),
457 CLK_MGT_ENTRY(SLIMCLK
, PLL_FIX
, true),
458 CLK_MGT_ENTRY(PER1CLK
, PLL_DIV
, true),
459 CLK_MGT_ENTRY(PER2CLK
, PLL_DIV
, true),
460 CLK_MGT_ENTRY(PER3CLK
, PLL_DIV
, true),
461 CLK_MGT_ENTRY(PER5CLK
, PLL_DIV
, true),
462 CLK_MGT_ENTRY(PER6CLK
, PLL_DIV
, true),
463 CLK_MGT_ENTRY(PER7CLK
, PLL_DIV
, true),
464 CLK_MGT_ENTRY(LCDCLK
, PLL_FIX
, true),
465 CLK_MGT_ENTRY(BMLCLK
, PLL_DIV
, true),
466 CLK_MGT_ENTRY(HSITXCLK
, PLL_DIV
, true),
467 CLK_MGT_ENTRY(HSIRXCLK
, PLL_DIV
, true),
468 CLK_MGT_ENTRY(HDMICLK
, PLL_FIX
, false),
469 CLK_MGT_ENTRY(APEATCLK
, PLL_DIV
, true),
470 CLK_MGT_ENTRY(APETRACECLK
, PLL_DIV
, true),
471 CLK_MGT_ENTRY(MCDECLK
, PLL_DIV
, true),
472 CLK_MGT_ENTRY(IPI2CCLK
, PLL_FIX
, true),
473 CLK_MGT_ENTRY(DSIALTCLK
, PLL_FIX
, false),
474 CLK_MGT_ENTRY(DMACLK
, PLL_DIV
, true),
475 CLK_MGT_ENTRY(B2R2CLK
, PLL_DIV
, true),
476 CLK_MGT_ENTRY(TVCLK
, PLL_FIX
, true),
477 CLK_MGT_ENTRY(SSPCLK
, PLL_FIX
, true),
478 CLK_MGT_ENTRY(RNGCLK
, PLL_FIX
, true),
479 CLK_MGT_ENTRY(UICCCLK
, PLL_FIX
, false),
488 static struct dsiclk dsiclk
[2] = {
490 .divsel_mask
= PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_MASK
,
491 .divsel_shift
= PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_SHIFT
,
492 .divsel
= PRCM_DSI_PLLOUT_SEL_PHI
,
495 .divsel_mask
= PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_MASK
,
496 .divsel_shift
= PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_SHIFT
,
497 .divsel
= PRCM_DSI_PLLOUT_SEL_PHI
,
507 static struct dsiescclk dsiescclk
[3] = {
509 .en
= PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_EN
,
510 .div_mask
= PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_MASK
,
511 .div_shift
= PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_SHIFT
,
514 .en
= PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_EN
,
515 .div_mask
= PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_MASK
,
516 .div_shift
= PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_SHIFT
,
519 .en
= PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_EN
,
520 .div_mask
= PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_MASK
,
521 .div_shift
= PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_SHIFT
,
527 * Used by MCDE to setup all necessary PRCMU registers
529 #define PRCMU_RESET_DSIPLL 0x00004000
530 #define PRCMU_UNCLAMP_DSIPLL 0x00400800
532 #define PRCMU_CLK_PLL_DIV_SHIFT 0
533 #define PRCMU_CLK_PLL_SW_SHIFT 5
534 #define PRCMU_CLK_38 (1 << 9)
535 #define PRCMU_CLK_38_SRC (1 << 10)
536 #define PRCMU_CLK_38_DIV (1 << 11)
538 /* PLLDIV=12, PLLSW=4 (PLLDDR) */
539 #define PRCMU_DSI_CLOCK_SETTING 0x0000008C
541 /* DPI 50000000 Hz */
542 #define PRCMU_DPI_CLOCK_SETTING ((1 << PRCMU_CLK_PLL_SW_SHIFT) | \
543 (16 << PRCMU_CLK_PLL_DIV_SHIFT))
544 #define PRCMU_DSI_LP_CLOCK_SETTING 0x00000E00
546 /* D=101, N=1, R=4, SELDIV2=0 */
547 #define PRCMU_PLLDSI_FREQ_SETTING 0x00040165
549 #define PRCMU_ENABLE_PLLDSI 0x00000001
550 #define PRCMU_DISABLE_PLLDSI 0x00000000
551 #define PRCMU_RELEASE_RESET_DSS 0x0000400C
552 #define PRCMU_DSI_PLLOUT_SEL_SETTING 0x00000202
553 /* ESC clk, div0=1, div1=1, div2=3 */
554 #define PRCMU_ENABLE_ESCAPE_CLOCK_DIV 0x07030101
555 #define PRCMU_DISABLE_ESCAPE_CLOCK_DIV 0x00030101
556 #define PRCMU_DSI_RESET_SW 0x00000007
558 #define PRCMU_PLLDSI_LOCKP_LOCKED 0x3
560 int db8500_prcmu_enable_dsipll(void)
564 /* Clear DSIPLL_RESETN */
565 writel(PRCMU_RESET_DSIPLL
, PRCM_APE_RESETN_CLR
);
566 /* Unclamp DSIPLL in/out */
567 writel(PRCMU_UNCLAMP_DSIPLL
, PRCM_MMIP_LS_CLAMP_CLR
);
569 /* Set DSI PLL FREQ */
570 writel(PRCMU_PLLDSI_FREQ_SETTING
, PRCM_PLLDSI_FREQ
);
571 writel(PRCMU_DSI_PLLOUT_SEL_SETTING
, PRCM_DSI_PLLOUT_SEL
);
572 /* Enable Escape clocks */
573 writel(PRCMU_ENABLE_ESCAPE_CLOCK_DIV
, PRCM_DSITVCLK_DIV
);
576 writel(PRCMU_ENABLE_PLLDSI
, PRCM_PLLDSI_ENABLE
);
578 writel(PRCMU_DSI_RESET_SW
, PRCM_DSI_SW_RESET
);
579 for (i
= 0; i
< 10; i
++) {
580 if ((readl(PRCM_PLLDSI_LOCKP
) & PRCMU_PLLDSI_LOCKP_LOCKED
)
581 == PRCMU_PLLDSI_LOCKP_LOCKED
)
585 /* Set DSIPLL_RESETN */
586 writel(PRCMU_RESET_DSIPLL
, PRCM_APE_RESETN_SET
);
590 int db8500_prcmu_disable_dsipll(void)
592 /* Disable dsi pll */
593 writel(PRCMU_DISABLE_PLLDSI
, PRCM_PLLDSI_ENABLE
);
594 /* Disable escapeclock */
595 writel(PRCMU_DISABLE_ESCAPE_CLOCK_DIV
, PRCM_DSITVCLK_DIV
);
599 int db8500_prcmu_set_display_clocks(void)
603 spin_lock_irqsave(&clk_mgt_lock
, flags
);
605 /* Grab the HW semaphore. */
606 while ((readl(PRCM_SEM
) & PRCM_SEM_PRCM_SEM
) != 0)
609 writel(PRCMU_DSI_CLOCK_SETTING
, PRCM_HDMICLK_MGT
);
610 writel(PRCMU_DSI_LP_CLOCK_SETTING
, PRCM_TVCLK_MGT
);
611 writel(PRCMU_DPI_CLOCK_SETTING
, PRCM_LCDCLK_MGT
);
613 /* Release the HW semaphore. */
616 spin_unlock_irqrestore(&clk_mgt_lock
, flags
);
621 u32
db8500_prcmu_read(unsigned int reg
)
623 return readl(_PRCMU_BASE
+ reg
);
626 void db8500_prcmu_write(unsigned int reg
, u32 value
)
630 spin_lock_irqsave(&prcmu_lock
, flags
);
631 writel(value
, (_PRCMU_BASE
+ reg
));
632 spin_unlock_irqrestore(&prcmu_lock
, flags
);
635 void db8500_prcmu_write_masked(unsigned int reg
, u32 mask
, u32 value
)
640 spin_lock_irqsave(&prcmu_lock
, flags
);
641 val
= readl(_PRCMU_BASE
+ reg
);
642 val
= ((val
& ~mask
) | (value
& mask
));
643 writel(val
, (_PRCMU_BASE
+ reg
));
644 spin_unlock_irqrestore(&prcmu_lock
, flags
);
647 struct prcmu_fw_version
*prcmu_get_fw_version(void)
649 return fw_info
.valid
? &fw_info
.version
: NULL
;
652 bool prcmu_has_arm_maxopp(void)
654 return (readb(tcdm_base
+ PRCM_AVS_VARM_MAX_OPP
) &
655 PRCM_AVS_ISMODEENABLE_MASK
) == PRCM_AVS_ISMODEENABLE_MASK
;
659 * prcmu_get_boot_status - PRCMU boot status checking
660 * Returns: the current PRCMU boot status
662 int prcmu_get_boot_status(void)
664 return readb(tcdm_base
+ PRCM_BOOT_STATUS
);
668 * prcmu_set_rc_a2p - This function is used to run few power state sequences
669 * @val: Value to be set, i.e. transition requested
670 * Returns: 0 on success, -EINVAL on invalid argument
672 * This function is used to run the following power state sequences -
673 * any state to ApReset, ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
675 int prcmu_set_rc_a2p(enum romcode_write val
)
677 if (val
< RDY_2_DS
|| val
> RDY_2_XP70_RST
)
679 writeb(val
, (tcdm_base
+ PRCM_ROMCODE_A2P
));
684 * prcmu_get_rc_p2a - This function is used to get power state sequences
685 * Returns: the power transition that has last happened
687 * This function can return the following transitions-
688 * any state to ApReset, ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
690 enum romcode_read
prcmu_get_rc_p2a(void)
692 return readb(tcdm_base
+ PRCM_ROMCODE_P2A
);
696 * prcmu_get_current_mode - Return the current XP70 power mode
697 * Returns: Returns the current AP(ARM) power mode: init,
698 * apBoot, apExecute, apDeepSleep, apSleep, apIdle, apReset
700 enum ap_pwrst
prcmu_get_xp70_current_state(void)
702 return readb(tcdm_base
+ PRCM_XP70_CUR_PWR_STATE
);
706 * prcmu_config_clkout - Configure one of the programmable clock outputs.
707 * @clkout: The CLKOUT number (0 or 1).
708 * @source: The clock to be used (one of the PRCMU_CLKSRC_*).
709 * @div: The divider to be applied.
711 * Configures one of the programmable clock outputs (CLKOUTs).
712 * @div should be in the range [1,63] to request a configuration, or 0 to
713 * inform that the configuration is no longer requested.
715 int prcmu_config_clkout(u8 clkout
, u8 source
, u8 div
)
717 static int requests
[2];
727 BUG_ON((clkout
== 0) && (source
> PRCMU_CLKSRC_CLK009
));
729 if (!div
&& !requests
[clkout
])
734 div_mask
= PRCM_CLKOCR_CLKODIV0_MASK
;
735 mask
= (PRCM_CLKOCR_CLKODIV0_MASK
| PRCM_CLKOCR_CLKOSEL0_MASK
);
736 bits
= ((source
<< PRCM_CLKOCR_CLKOSEL0_SHIFT
) |
737 (div
<< PRCM_CLKOCR_CLKODIV0_SHIFT
));
740 div_mask
= PRCM_CLKOCR_CLKODIV1_MASK
;
741 mask
= (PRCM_CLKOCR_CLKODIV1_MASK
| PRCM_CLKOCR_CLKOSEL1_MASK
|
742 PRCM_CLKOCR_CLK1TYPE
);
743 bits
= ((source
<< PRCM_CLKOCR_CLKOSEL1_SHIFT
) |
744 (div
<< PRCM_CLKOCR_CLKODIV1_SHIFT
));
749 spin_lock_irqsave(&clkout_lock
, flags
);
751 val
= readl(PRCM_CLKOCR
);
752 if (val
& div_mask
) {
754 if ((val
& mask
) != bits
) {
756 goto unlock_and_return
;
759 if ((val
& mask
& ~div_mask
) != bits
) {
761 goto unlock_and_return
;
765 writel((bits
| (val
& ~mask
)), PRCM_CLKOCR
);
766 requests
[clkout
] += (div
? 1 : -1);
769 spin_unlock_irqrestore(&clkout_lock
, flags
);
774 int db8500_prcmu_set_power_state(u8 state
, bool keep_ulp_clk
, bool keep_ap_pll
)
778 BUG_ON((state
< PRCMU_AP_SLEEP
) || (PRCMU_AP_DEEP_IDLE
< state
));
780 spin_lock_irqsave(&mb0_transfer
.lock
, flags
);
782 while (readl(PRCM_MBOX_CPU_VAL
) & MBOX_BIT(0))
785 writeb(MB0H_POWER_STATE_TRANS
, (tcdm_base
+ PRCM_MBOX_HEADER_REQ_MB0
));
786 writeb(state
, (tcdm_base
+ PRCM_REQ_MB0_AP_POWER_STATE
));
787 writeb((keep_ap_pll
? 1 : 0), (tcdm_base
+ PRCM_REQ_MB0_AP_PLL_STATE
));
788 writeb((keep_ulp_clk
? 1 : 0),
789 (tcdm_base
+ PRCM_REQ_MB0_ULP_CLOCK_STATE
));
790 writeb(0, (tcdm_base
+ PRCM_REQ_MB0_DO_NOT_WFI
));
791 writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET
);
793 spin_unlock_irqrestore(&mb0_transfer
.lock
, flags
);
798 u8
db8500_prcmu_get_power_state_result(void)
800 return readb(tcdm_base
+ PRCM_ACK_MB0_AP_PWRSTTR_STATUS
);
803 /* This function decouple the gic from the prcmu */
804 int db8500_prcmu_gic_decouple(void)
806 u32 val
= readl(PRCM_A9_MASK_REQ
);
808 /* Set bit 0 register value to 1 */
809 writel(val
| PRCM_A9_MASK_REQ_PRCM_A9_MASK_REQ
,
812 /* Make sure the register is updated */
813 readl(PRCM_A9_MASK_REQ
);
815 /* Wait a few cycles for the gic mask completion */
821 /* This function recouple the gic with the prcmu */
822 int db8500_prcmu_gic_recouple(void)
824 u32 val
= readl(PRCM_A9_MASK_REQ
);
826 /* Set bit 0 register value to 0 */
827 writel(val
& ~PRCM_A9_MASK_REQ_PRCM_A9_MASK_REQ
, PRCM_A9_MASK_REQ
);
832 #define PRCMU_GIC_NUMBER_REGS 5
835 * This function checks if there are pending irq on the gic. It only
836 * makes sense if the gic has been decoupled before with the
837 * db8500_prcmu_gic_decouple function. Disabling an interrupt only
838 * disables the forwarding of the interrupt to any CPU interface. It
839 * does not prevent the interrupt from changing state, for example
840 * becoming pending, or active and pending if it is already
841 * active. Hence, we have to check the interrupt is pending *and* is
844 bool db8500_prcmu_gic_pending_irq(void)
846 u32 pr
; /* Pending register */
847 u32 er
; /* Enable register */
848 void __iomem
*dist_base
= __io_address(U8500_GIC_DIST_BASE
);
851 /* 5 registers. STI & PPI not skipped */
852 for (i
= 0; i
< PRCMU_GIC_NUMBER_REGS
; i
++) {
854 pr
= readl_relaxed(dist_base
+ GIC_DIST_PENDING_SET
+ i
* 4);
855 er
= readl_relaxed(dist_base
+ GIC_DIST_ENABLE_SET
+ i
* 4);
858 return true; /* There is a pending interrupt */
865 * This function checks if there are pending interrupt on the
866 * prcmu which has been delegated to monitor the irqs with the
867 * db8500_prcmu_copy_gic_settings function.
869 bool db8500_prcmu_pending_irq(void)
874 for (i
= 0; i
< PRCMU_GIC_NUMBER_REGS
- 1; i
++) {
875 it
= readl(PRCM_ARMITVAL31TO0
+ i
* 4);
876 im
= readl(PRCM_ARMITMSK31TO0
+ i
* 4);
878 return true; /* There is a pending interrupt */
885 * This function checks if the specified cpu is in in WFI. It's usage
886 * makes sense only if the gic is decoupled with the db8500_prcmu_gic_decouple
887 * function. Of course passing smp_processor_id() to this function will
888 * always return false...
890 bool db8500_prcmu_is_cpu_in_wfi(int cpu
)
892 return readl(PRCM_ARM_WFI_STANDBY
) & cpu
? PRCM_ARM_WFI_STANDBY_WFI1
:
893 PRCM_ARM_WFI_STANDBY_WFI0
;
897 * This function copies the gic SPI settings to the prcmu in order to
898 * monitor them and abort/finish the retention/off sequence or state.
900 int db8500_prcmu_copy_gic_settings(void)
902 u32 er
; /* Enable register */
903 void __iomem
*dist_base
= __io_address(U8500_GIC_DIST_BASE
);
906 /* We skip the STI and PPI */
907 for (i
= 0; i
< PRCMU_GIC_NUMBER_REGS
- 1; i
++) {
908 er
= readl_relaxed(dist_base
+
909 GIC_DIST_ENABLE_SET
+ (i
+ 1) * 4);
910 writel(er
, PRCM_ARMITMSK31TO0
+ i
* 4);
916 /* This function should only be called while mb0_transfer.lock is held. */
917 static void config_wakeups(void)
919 const u8 header
[2] = {
920 MB0H_CONFIG_WAKEUPS_EXE
,
921 MB0H_CONFIG_WAKEUPS_SLEEP
923 static u32 last_dbb_events
;
924 static u32 last_abb_events
;
929 dbb_events
= mb0_transfer
.req
.dbb_irqs
| mb0_transfer
.req
.dbb_wakeups
;
930 dbb_events
|= (WAKEUP_BIT_AC_WAKE_ACK
| WAKEUP_BIT_AC_SLEEP_ACK
);
932 abb_events
= mb0_transfer
.req
.abb_events
;
934 if ((dbb_events
== last_dbb_events
) && (abb_events
== last_abb_events
))
937 for (i
= 0; i
< 2; i
++) {
938 while (readl(PRCM_MBOX_CPU_VAL
) & MBOX_BIT(0))
940 writel(dbb_events
, (tcdm_base
+ PRCM_REQ_MB0_WAKEUP_8500
));
941 writel(abb_events
, (tcdm_base
+ PRCM_REQ_MB0_WAKEUP_4500
));
942 writeb(header
[i
], (tcdm_base
+ PRCM_MBOX_HEADER_REQ_MB0
));
943 writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET
);
945 last_dbb_events
= dbb_events
;
946 last_abb_events
= abb_events
;
949 void db8500_prcmu_enable_wakeups(u32 wakeups
)
955 BUG_ON(wakeups
!= (wakeups
& VALID_WAKEUPS
));
957 for (i
= 0, bits
= 0; i
< NUM_PRCMU_WAKEUP_INDICES
; i
++) {
958 if (wakeups
& BIT(i
))
959 bits
|= prcmu_wakeup_bit
[i
];
962 spin_lock_irqsave(&mb0_transfer
.lock
, flags
);
964 mb0_transfer
.req
.dbb_wakeups
= bits
;
967 spin_unlock_irqrestore(&mb0_transfer
.lock
, flags
);
970 void db8500_prcmu_config_abb_event_readout(u32 abb_events
)
974 spin_lock_irqsave(&mb0_transfer
.lock
, flags
);
976 mb0_transfer
.req
.abb_events
= abb_events
;
979 spin_unlock_irqrestore(&mb0_transfer
.lock
, flags
);
982 void db8500_prcmu_get_abb_event_buffer(void __iomem
**buf
)
984 if (readb(tcdm_base
+ PRCM_ACK_MB0_READ_POINTER
) & 1)
985 *buf
= (tcdm_base
+ PRCM_ACK_MB0_WAKEUP_1_4500
);
987 *buf
= (tcdm_base
+ PRCM_ACK_MB0_WAKEUP_0_4500
);
991 * db8500_prcmu_set_arm_opp - set the appropriate ARM OPP
992 * @opp: The new ARM operating point to which transition is to be made
993 * Returns: 0 on success, non-zero on failure
995 * This function sets the the operating point of the ARM.
997 int db8500_prcmu_set_arm_opp(u8 opp
)
1001 if (opp
< ARM_NO_CHANGE
|| opp
> ARM_EXTCLK
)
1006 mutex_lock(&mb1_transfer
.lock
);
1008 while (readl(PRCM_MBOX_CPU_VAL
) & MBOX_BIT(1))
1011 writeb(MB1H_ARM_APE_OPP
, (tcdm_base
+ PRCM_MBOX_HEADER_REQ_MB1
));
1012 writeb(opp
, (tcdm_base
+ PRCM_REQ_MB1_ARM_OPP
));
1013 writeb(APE_NO_CHANGE
, (tcdm_base
+ PRCM_REQ_MB1_APE_OPP
));
1015 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET
);
1016 wait_for_completion(&mb1_transfer
.work
);
1018 if ((mb1_transfer
.ack
.header
!= MB1H_ARM_APE_OPP
) ||
1019 (mb1_transfer
.ack
.arm_opp
!= opp
))
1022 compute_armss_rate();
1023 mutex_unlock(&mb1_transfer
.lock
);
1029 * db8500_prcmu_get_arm_opp - get the current ARM OPP
1031 * Returns: the current ARM OPP
1033 int db8500_prcmu_get_arm_opp(void)
1035 return readb(tcdm_base
+ PRCM_ACK_MB1_CURRENT_ARM_OPP
);
1039 * db8500_prcmu_get_ddr_opp - get the current DDR OPP
1041 * Returns: the current DDR OPP
1043 int db8500_prcmu_get_ddr_opp(void)
1045 return readb(PRCM_DDR_SUBSYS_APE_MINBW
);
1049 * db8500_set_ddr_opp - set the appropriate DDR OPP
1050 * @opp: The new DDR operating point to which transition is to be made
1051 * Returns: 0 on success, non-zero on failure
1053 * This function sets the operating point of the DDR.
1055 int db8500_prcmu_set_ddr_opp(u8 opp
)
1057 if (opp
< DDR_100_OPP
|| opp
> DDR_25_OPP
)
1059 /* Changing the DDR OPP can hang the hardware pre-v21 */
1060 if (cpu_is_u8500v20_or_later() && !cpu_is_u8500v20())
1061 writeb(opp
, PRCM_DDR_SUBSYS_APE_MINBW
);
1066 /* Divide the frequency of certain clocks by 2 for APE_50_PARTLY_25_OPP. */
1067 static void request_even_slower_clocks(bool enable
)
1069 void __iomem
*clock_reg
[] = {
1073 unsigned long flags
;
1076 spin_lock_irqsave(&clk_mgt_lock
, flags
);
1078 /* Grab the HW semaphore. */
1079 while ((readl(PRCM_SEM
) & PRCM_SEM_PRCM_SEM
) != 0)
1082 for (i
= 0; i
< ARRAY_SIZE(clock_reg
); i
++) {
1086 val
= readl(clock_reg
[i
]);
1087 div
= (val
& PRCM_CLK_MGT_CLKPLLDIV_MASK
);
1089 if ((div
<= 1) || (div
> 15)) {
1090 pr_err("prcmu: Bad clock divider %d in %s\n",
1092 goto unlock_and_return
;
1097 goto unlock_and_return
;
1100 val
= ((val
& ~PRCM_CLK_MGT_CLKPLLDIV_MASK
) |
1101 (div
& PRCM_CLK_MGT_CLKPLLDIV_MASK
));
1102 writel(val
, clock_reg
[i
]);
1106 /* Release the HW semaphore. */
1107 writel(0, PRCM_SEM
);
1109 spin_unlock_irqrestore(&clk_mgt_lock
, flags
);
1113 * db8500_set_ape_opp - set the appropriate APE OPP
1114 * @opp: The new APE operating point to which transition is to be made
1115 * Returns: 0 on success, non-zero on failure
1117 * This function sets the operating point of the APE.
1119 int db8500_prcmu_set_ape_opp(u8 opp
)
1123 if (opp
== mb1_transfer
.ape_opp
)
1126 mutex_lock(&mb1_transfer
.lock
);
1128 if (mb1_transfer
.ape_opp
== APE_50_PARTLY_25_OPP
)
1129 request_even_slower_clocks(false);
1131 if ((opp
!= APE_100_OPP
) && (mb1_transfer
.ape_opp
!= APE_100_OPP
))
1134 while (readl(PRCM_MBOX_CPU_VAL
) & MBOX_BIT(1))
1137 writeb(MB1H_ARM_APE_OPP
, (tcdm_base
+ PRCM_MBOX_HEADER_REQ_MB1
));
1138 writeb(ARM_NO_CHANGE
, (tcdm_base
+ PRCM_REQ_MB1_ARM_OPP
));
1139 writeb(((opp
== APE_50_PARTLY_25_OPP
) ? APE_50_OPP
: opp
),
1140 (tcdm_base
+ PRCM_REQ_MB1_APE_OPP
));
1142 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET
);
1143 wait_for_completion(&mb1_transfer
.work
);
1145 if ((mb1_transfer
.ack
.header
!= MB1H_ARM_APE_OPP
) ||
1146 (mb1_transfer
.ack
.ape_opp
!= opp
))
1150 if ((!r
&& (opp
== APE_50_PARTLY_25_OPP
)) ||
1151 (r
&& (mb1_transfer
.ape_opp
== APE_50_PARTLY_25_OPP
)))
1152 request_even_slower_clocks(true);
1154 mb1_transfer
.ape_opp
= opp
;
1156 mutex_unlock(&mb1_transfer
.lock
);
1162 * db8500_prcmu_get_ape_opp - get the current APE OPP
1164 * Returns: the current APE OPP
1166 int db8500_prcmu_get_ape_opp(void)
1168 return readb(tcdm_base
+ PRCM_ACK_MB1_CURRENT_APE_OPP
);
1172 * prcmu_request_ape_opp_100_voltage - Request APE OPP 100% voltage
1173 * @enable: true to request the higher voltage, false to drop a request.
1175 * Calls to this function to enable and disable requests must be balanced.
1177 int prcmu_request_ape_opp_100_voltage(bool enable
)
1181 static unsigned int requests
;
1183 mutex_lock(&mb1_transfer
.lock
);
1186 if (0 != requests
++)
1187 goto unlock_and_return
;
1188 header
= MB1H_REQUEST_APE_OPP_100_VOLT
;
1190 if (requests
== 0) {
1192 goto unlock_and_return
;
1193 } else if (1 != requests
--) {
1194 goto unlock_and_return
;
1196 header
= MB1H_RELEASE_APE_OPP_100_VOLT
;
1199 while (readl(PRCM_MBOX_CPU_VAL
) & MBOX_BIT(1))
1202 writeb(header
, (tcdm_base
+ PRCM_MBOX_HEADER_REQ_MB1
));
1204 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET
);
1205 wait_for_completion(&mb1_transfer
.work
);
1207 if ((mb1_transfer
.ack
.header
!= header
) ||
1208 ((mb1_transfer
.ack
.ape_voltage_status
& BIT(0)) != 0))
1212 mutex_unlock(&mb1_transfer
.lock
);
1218 * prcmu_release_usb_wakeup_state - release the state required by a USB wakeup
1220 * This function releases the power state requirements of a USB wakeup.
1222 int prcmu_release_usb_wakeup_state(void)
1226 mutex_lock(&mb1_transfer
.lock
);
1228 while (readl(PRCM_MBOX_CPU_VAL
) & MBOX_BIT(1))
1231 writeb(MB1H_RELEASE_USB_WAKEUP
,
1232 (tcdm_base
+ PRCM_MBOX_HEADER_REQ_MB1
));
1234 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET
);
1235 wait_for_completion(&mb1_transfer
.work
);
1237 if ((mb1_transfer
.ack
.header
!= MB1H_RELEASE_USB_WAKEUP
) ||
1238 ((mb1_transfer
.ack
.ape_voltage_status
& BIT(0)) != 0))
1241 mutex_unlock(&mb1_transfer
.lock
);
1246 static int request_pll(u8 clock
, bool enable
)
1250 if (clock
== PRCMU_PLLSOC0
)
1251 clock
= (enable
? PLL_SOC0_ON
: PLL_SOC0_OFF
);
1252 else if (clock
== PRCMU_PLLSOC1
)
1253 clock
= (enable
? PLL_SOC1_ON
: PLL_SOC1_OFF
);
1257 mutex_lock(&mb1_transfer
.lock
);
1259 while (readl(PRCM_MBOX_CPU_VAL
) & MBOX_BIT(1))
1262 writeb(MB1H_PLL_ON_OFF
, (tcdm_base
+ PRCM_MBOX_HEADER_REQ_MB1
));
1263 writeb(clock
, (tcdm_base
+ PRCM_REQ_MB1_PLL_ON_OFF
));
1265 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET
);
1266 wait_for_completion(&mb1_transfer
.work
);
1268 if (mb1_transfer
.ack
.header
!= MB1H_PLL_ON_OFF
)
1271 mutex_unlock(&mb1_transfer
.lock
);
1277 * db8500_prcmu_set_epod - set the state of a EPOD (power domain)
1278 * @epod_id: The EPOD to set
1279 * @epod_state: The new EPOD state
1281 * This function sets the state of a EPOD (power domain). It may not be called
1282 * from interrupt context.
1284 int db8500_prcmu_set_epod(u16 epod_id
, u8 epod_state
)
1287 bool ram_retention
= false;
1290 /* check argument */
1291 BUG_ON(epod_id
>= NUM_EPOD_ID
);
1293 /* set flag if retention is possible */
1295 case EPOD_ID_SVAMMDSP
:
1296 case EPOD_ID_SIAMMDSP
:
1297 case EPOD_ID_ESRAM12
:
1298 case EPOD_ID_ESRAM34
:
1299 ram_retention
= true;
1303 /* check argument */
1304 BUG_ON(epod_state
> EPOD_STATE_ON
);
1305 BUG_ON(epod_state
== EPOD_STATE_RAMRET
&& !ram_retention
);
1308 mutex_lock(&mb2_transfer
.lock
);
1310 /* wait for mailbox */
1311 while (readl(PRCM_MBOX_CPU_VAL
) & MBOX_BIT(2))
1314 /* fill in mailbox */
1315 for (i
= 0; i
< NUM_EPOD_ID
; i
++)
1316 writeb(EPOD_STATE_NO_CHANGE
, (tcdm_base
+ PRCM_REQ_MB2
+ i
));
1317 writeb(epod_state
, (tcdm_base
+ PRCM_REQ_MB2
+ epod_id
));
1319 writeb(MB2H_DPS
, (tcdm_base
+ PRCM_MBOX_HEADER_REQ_MB2
));
1321 writel(MBOX_BIT(2), PRCM_MBOX_CPU_SET
);
1324 * The current firmware version does not handle errors correctly,
1325 * and we cannot recover if there is an error.
1326 * This is expected to change when the firmware is updated.
1328 if (!wait_for_completion_timeout(&mb2_transfer
.work
,
1329 msecs_to_jiffies(20000))) {
1330 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
1333 goto unlock_and_return
;
1336 if (mb2_transfer
.ack
.status
!= HWACC_PWR_ST_OK
)
1340 mutex_unlock(&mb2_transfer
.lock
);
1345 * prcmu_configure_auto_pm - Configure autonomous power management.
1346 * @sleep: Configuration for ApSleep.
1347 * @idle: Configuration for ApIdle.
1349 void prcmu_configure_auto_pm(struct prcmu_auto_pm_config
*sleep
,
1350 struct prcmu_auto_pm_config
*idle
)
1354 unsigned long flags
;
1356 BUG_ON((sleep
== NULL
) || (idle
== NULL
));
1358 sleep_cfg
= (sleep
->sva_auto_pm_enable
& 0xF);
1359 sleep_cfg
= ((sleep_cfg
<< 4) | (sleep
->sia_auto_pm_enable
& 0xF));
1360 sleep_cfg
= ((sleep_cfg
<< 8) | (sleep
->sva_power_on
& 0xFF));
1361 sleep_cfg
= ((sleep_cfg
<< 8) | (sleep
->sia_power_on
& 0xFF));
1362 sleep_cfg
= ((sleep_cfg
<< 4) | (sleep
->sva_policy
& 0xF));
1363 sleep_cfg
= ((sleep_cfg
<< 4) | (sleep
->sia_policy
& 0xF));
1365 idle_cfg
= (idle
->sva_auto_pm_enable
& 0xF);
1366 idle_cfg
= ((idle_cfg
<< 4) | (idle
->sia_auto_pm_enable
& 0xF));
1367 idle_cfg
= ((idle_cfg
<< 8) | (idle
->sva_power_on
& 0xFF));
1368 idle_cfg
= ((idle_cfg
<< 8) | (idle
->sia_power_on
& 0xFF));
1369 idle_cfg
= ((idle_cfg
<< 4) | (idle
->sva_policy
& 0xF));
1370 idle_cfg
= ((idle_cfg
<< 4) | (idle
->sia_policy
& 0xF));
1372 spin_lock_irqsave(&mb2_transfer
.auto_pm_lock
, flags
);
1375 * The autonomous power management configuration is done through
1376 * fields in mailbox 2, but these fields are only used as shared
1377 * variables - i.e. there is no need to send a message.
1379 writel(sleep_cfg
, (tcdm_base
+ PRCM_REQ_MB2_AUTO_PM_SLEEP
));
1380 writel(idle_cfg
, (tcdm_base
+ PRCM_REQ_MB2_AUTO_PM_IDLE
));
1382 mb2_transfer
.auto_pm_enabled
=
1383 ((sleep
->sva_auto_pm_enable
== PRCMU_AUTO_PM_ON
) ||
1384 (sleep
->sia_auto_pm_enable
== PRCMU_AUTO_PM_ON
) ||
1385 (idle
->sva_auto_pm_enable
== PRCMU_AUTO_PM_ON
) ||
1386 (idle
->sia_auto_pm_enable
== PRCMU_AUTO_PM_ON
));
1388 spin_unlock_irqrestore(&mb2_transfer
.auto_pm_lock
, flags
);
1390 EXPORT_SYMBOL(prcmu_configure_auto_pm
);
1392 bool prcmu_is_auto_pm_enabled(void)
1394 return mb2_transfer
.auto_pm_enabled
;
1397 static int request_sysclk(bool enable
)
1400 unsigned long flags
;
1404 mutex_lock(&mb3_transfer
.sysclk_lock
);
1406 spin_lock_irqsave(&mb3_transfer
.lock
, flags
);
1408 while (readl(PRCM_MBOX_CPU_VAL
) & MBOX_BIT(3))
1411 writeb((enable
? ON
: OFF
), (tcdm_base
+ PRCM_REQ_MB3_SYSCLK_MGT
));
1413 writeb(MB3H_SYSCLK
, (tcdm_base
+ PRCM_MBOX_HEADER_REQ_MB3
));
1414 writel(MBOX_BIT(3), PRCM_MBOX_CPU_SET
);
1416 spin_unlock_irqrestore(&mb3_transfer
.lock
, flags
);
1419 * The firmware only sends an ACK if we want to enable the
1420 * SysClk, and it succeeds.
1422 if (enable
&& !wait_for_completion_timeout(&mb3_transfer
.sysclk_work
,
1423 msecs_to_jiffies(20000))) {
1424 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
1429 mutex_unlock(&mb3_transfer
.sysclk_lock
);
1434 static int request_timclk(bool enable
)
1436 u32 val
= (PRCM_TCR_DOZE_MODE
| PRCM_TCR_TENSEL_MASK
);
1439 val
|= PRCM_TCR_STOP_TIMERS
;
1440 writel(val
, PRCM_TCR
);
1445 static int request_clock(u8 clock
, bool enable
)
1448 unsigned long flags
;
1450 spin_lock_irqsave(&clk_mgt_lock
, flags
);
1452 /* Grab the HW semaphore. */
1453 while ((readl(PRCM_SEM
) & PRCM_SEM_PRCM_SEM
) != 0)
1456 val
= readl(clk_mgt
[clock
].reg
);
1458 val
|= (PRCM_CLK_MGT_CLKEN
| clk_mgt
[clock
].pllsw
);
1460 clk_mgt
[clock
].pllsw
= (val
& PRCM_CLK_MGT_CLKPLLSW_MASK
);
1461 val
&= ~(PRCM_CLK_MGT_CLKEN
| PRCM_CLK_MGT_CLKPLLSW_MASK
);
1463 writel(val
, clk_mgt
[clock
].reg
);
1465 /* Release the HW semaphore. */
1466 writel(0, PRCM_SEM
);
1468 spin_unlock_irqrestore(&clk_mgt_lock
, flags
);
1473 static int request_sga_clock(u8 clock
, bool enable
)
1479 val
= readl(PRCM_CGATING_BYPASS
);
1480 writel(val
| PRCM_CGATING_BYPASS_ICN2
, PRCM_CGATING_BYPASS
);
1483 ret
= request_clock(clock
, enable
);
1485 if (!ret
&& !enable
) {
1486 val
= readl(PRCM_CGATING_BYPASS
);
1487 writel(val
& ~PRCM_CGATING_BYPASS_ICN2
, PRCM_CGATING_BYPASS
);
1493 static inline bool plldsi_locked(void)
1495 return (readl(PRCM_PLLDSI_LOCKP
) &
1496 (PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10
|
1497 PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3
)) ==
1498 (PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10
|
1499 PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3
);
1502 static int request_plldsi(bool enable
)
1507 writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP
|
1508 PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI
), (enable
?
1509 PRCM_MMIP_LS_CLAMP_CLR
: PRCM_MMIP_LS_CLAMP_SET
));
1511 val
= readl(PRCM_PLLDSI_ENABLE
);
1513 val
|= PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE
;
1515 val
&= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE
;
1516 writel(val
, PRCM_PLLDSI_ENABLE
);
1520 bool locked
= plldsi_locked();
1522 for (i
= 10; !locked
&& (i
> 0); --i
) {
1524 locked
= plldsi_locked();
1527 writel(PRCM_APE_RESETN_DSIPLL_RESETN
,
1528 PRCM_APE_RESETN_SET
);
1530 writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP
|
1531 PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI
),
1532 PRCM_MMIP_LS_CLAMP_SET
);
1533 val
&= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE
;
1534 writel(val
, PRCM_PLLDSI_ENABLE
);
1538 writel(PRCM_APE_RESETN_DSIPLL_RESETN
, PRCM_APE_RESETN_CLR
);
1543 static int request_dsiclk(u8 n
, bool enable
)
1547 val
= readl(PRCM_DSI_PLLOUT_SEL
);
1548 val
&= ~dsiclk
[n
].divsel_mask
;
1549 val
|= ((enable
? dsiclk
[n
].divsel
: PRCM_DSI_PLLOUT_SEL_OFF
) <<
1550 dsiclk
[n
].divsel_shift
);
1551 writel(val
, PRCM_DSI_PLLOUT_SEL
);
1555 static int request_dsiescclk(u8 n
, bool enable
)
1559 val
= readl(PRCM_DSITVCLK_DIV
);
1560 enable
? (val
|= dsiescclk
[n
].en
) : (val
&= ~dsiescclk
[n
].en
);
1561 writel(val
, PRCM_DSITVCLK_DIV
);
1566 * db8500_prcmu_request_clock() - Request for a clock to be enabled or disabled.
1567 * @clock: The clock for which the request is made.
1568 * @enable: Whether the clock should be enabled (true) or disabled (false).
1570 * This function should only be used by the clock implementation.
1571 * Do not use it from any other place!
1573 int db8500_prcmu_request_clock(u8 clock
, bool enable
)
1575 if (clock
== PRCMU_SGACLK
)
1576 return request_sga_clock(clock
, enable
);
1577 else if (clock
< PRCMU_NUM_REG_CLOCKS
)
1578 return request_clock(clock
, enable
);
1579 else if (clock
== PRCMU_TIMCLK
)
1580 return request_timclk(enable
);
1581 else if ((clock
== PRCMU_DSI0CLK
) || (clock
== PRCMU_DSI1CLK
))
1582 return request_dsiclk((clock
- PRCMU_DSI0CLK
), enable
);
1583 else if ((PRCMU_DSI0ESCCLK
<= clock
) && (clock
<= PRCMU_DSI2ESCCLK
))
1584 return request_dsiescclk((clock
- PRCMU_DSI0ESCCLK
), enable
);
1585 else if (clock
== PRCMU_PLLDSI
)
1586 return request_plldsi(enable
);
1587 else if (clock
== PRCMU_SYSCLK
)
1588 return request_sysclk(enable
);
1589 else if ((clock
== PRCMU_PLLSOC0
) || (clock
== PRCMU_PLLSOC1
))
1590 return request_pll(clock
, enable
);
1595 static unsigned long pll_rate(void __iomem
*reg
, unsigned long src_rate
,
1606 rate
*= ((val
& PRCM_PLL_FREQ_D_MASK
) >> PRCM_PLL_FREQ_D_SHIFT
);
1608 d
= ((val
& PRCM_PLL_FREQ_N_MASK
) >> PRCM_PLL_FREQ_N_SHIFT
);
1612 d
= ((val
& PRCM_PLL_FREQ_R_MASK
) >> PRCM_PLL_FREQ_R_SHIFT
);
1616 if (val
& PRCM_PLL_FREQ_SELDIV2
)
1619 if ((branch
== PLL_FIX
) || ((branch
== PLL_DIV
) &&
1620 (val
& PRCM_PLL_FREQ_DIV2EN
) &&
1621 ((reg
== PRCM_PLLSOC0_FREQ
) ||
1622 (reg
== PRCM_PLLARM_FREQ
) ||
1623 (reg
== PRCM_PLLDDR_FREQ
))))
1626 (void)do_div(rate
, div
);
1628 return (unsigned long)rate
;
1631 #define ROOT_CLOCK_RATE 38400000
1633 static unsigned long clock_rate(u8 clock
)
1637 unsigned long rate
= ROOT_CLOCK_RATE
;
1639 val
= readl(clk_mgt
[clock
].reg
);
1641 if (val
& PRCM_CLK_MGT_CLK38
) {
1642 if (clk_mgt
[clock
].clk38div
&& (val
& PRCM_CLK_MGT_CLK38DIV
))
1647 val
|= clk_mgt
[clock
].pllsw
;
1648 pllsw
= (val
& PRCM_CLK_MGT_CLKPLLSW_MASK
);
1650 if (pllsw
== PRCM_CLK_MGT_CLKPLLSW_SOC0
)
1651 rate
= pll_rate(PRCM_PLLSOC0_FREQ
, rate
, clk_mgt
[clock
].branch
);
1652 else if (pllsw
== PRCM_CLK_MGT_CLKPLLSW_SOC1
)
1653 rate
= pll_rate(PRCM_PLLSOC1_FREQ
, rate
, clk_mgt
[clock
].branch
);
1654 else if (pllsw
== PRCM_CLK_MGT_CLKPLLSW_DDR
)
1655 rate
= pll_rate(PRCM_PLLDDR_FREQ
, rate
, clk_mgt
[clock
].branch
);
1659 if ((clock
== PRCMU_SGACLK
) &&
1660 (val
& PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN
)) {
1661 u64 r
= (rate
* 10);
1663 (void)do_div(r
, 25);
1664 return (unsigned long)r
;
1666 val
&= PRCM_CLK_MGT_CLKPLLDIV_MASK
;
1672 static unsigned long latest_armss_rate
;
1673 static unsigned long armss_rate(void)
1675 return latest_armss_rate
;
1678 static void compute_armss_rate(void)
1683 r
= readl(PRCM_ARM_CHGCLKREQ
);
1685 if (r
& PRCM_ARM_CHGCLKREQ_PRCM_ARM_CHGCLKREQ
) {
1686 /* External ARMCLKFIX clock */
1688 rate
= pll_rate(PRCM_PLLDDR_FREQ
, ROOT_CLOCK_RATE
, PLL_FIX
);
1690 /* Check PRCM_ARM_CHGCLKREQ divider */
1691 if (!(r
& PRCM_ARM_CHGCLKREQ_PRCM_ARM_DIVSEL
))
1694 /* Check PRCM_ARMCLKFIX_MGT divider */
1695 r
= readl(PRCM_ARMCLKFIX_MGT
);
1696 r
&= PRCM_CLK_MGT_CLKPLLDIV_MASK
;
1699 } else {/* ARM PLL */
1700 rate
= pll_rate(PRCM_PLLARM_FREQ
, ROOT_CLOCK_RATE
, PLL_DIV
);
1703 latest_armss_rate
= rate
;
1706 static unsigned long dsiclk_rate(u8 n
)
1711 divsel
= readl(PRCM_DSI_PLLOUT_SEL
);
1712 divsel
= ((divsel
& dsiclk
[n
].divsel_mask
) >> dsiclk
[n
].divsel_shift
);
1714 if (divsel
== PRCM_DSI_PLLOUT_SEL_OFF
)
1715 divsel
= dsiclk
[n
].divsel
;
1718 case PRCM_DSI_PLLOUT_SEL_PHI_4
:
1720 case PRCM_DSI_PLLOUT_SEL_PHI_2
:
1722 case PRCM_DSI_PLLOUT_SEL_PHI
:
1723 return pll_rate(PRCM_PLLDSI_FREQ
, clock_rate(PRCMU_HDMICLK
),
1730 static unsigned long dsiescclk_rate(u8 n
)
1734 div
= readl(PRCM_DSITVCLK_DIV
);
1735 div
= ((div
& dsiescclk
[n
].div_mask
) >> (dsiescclk
[n
].div_shift
));
1736 return clock_rate(PRCMU_TVCLK
) / max((u32
)1, div
);
1739 unsigned long prcmu_clock_rate(u8 clock
)
1741 if (clock
< PRCMU_NUM_REG_CLOCKS
)
1742 return clock_rate(clock
);
1743 else if (clock
== PRCMU_TIMCLK
)
1744 return ROOT_CLOCK_RATE
/ 16;
1745 else if (clock
== PRCMU_SYSCLK
)
1746 return ROOT_CLOCK_RATE
;
1747 else if (clock
== PRCMU_PLLSOC0
)
1748 return pll_rate(PRCM_PLLSOC0_FREQ
, ROOT_CLOCK_RATE
, PLL_RAW
);
1749 else if (clock
== PRCMU_PLLSOC1
)
1750 return pll_rate(PRCM_PLLSOC1_FREQ
, ROOT_CLOCK_RATE
, PLL_RAW
);
1751 else if (clock
== PRCMU_ARMSS
)
1752 return armss_rate();
1753 else if (clock
== PRCMU_PLLDDR
)
1754 return pll_rate(PRCM_PLLDDR_FREQ
, ROOT_CLOCK_RATE
, PLL_RAW
);
1755 else if (clock
== PRCMU_PLLDSI
)
1756 return pll_rate(PRCM_PLLDSI_FREQ
, clock_rate(PRCMU_HDMICLK
),
1758 else if ((clock
== PRCMU_DSI0CLK
) || (clock
== PRCMU_DSI1CLK
))
1759 return dsiclk_rate(clock
- PRCMU_DSI0CLK
);
1760 else if ((PRCMU_DSI0ESCCLK
<= clock
) && (clock
<= PRCMU_DSI2ESCCLK
))
1761 return dsiescclk_rate(clock
- PRCMU_DSI0ESCCLK
);
1766 static unsigned long clock_source_rate(u32 clk_mgt_val
, int branch
)
1768 if (clk_mgt_val
& PRCM_CLK_MGT_CLK38
)
1769 return ROOT_CLOCK_RATE
;
1770 clk_mgt_val
&= PRCM_CLK_MGT_CLKPLLSW_MASK
;
1771 if (clk_mgt_val
== PRCM_CLK_MGT_CLKPLLSW_SOC0
)
1772 return pll_rate(PRCM_PLLSOC0_FREQ
, ROOT_CLOCK_RATE
, branch
);
1773 else if (clk_mgt_val
== PRCM_CLK_MGT_CLKPLLSW_SOC1
)
1774 return pll_rate(PRCM_PLLSOC1_FREQ
, ROOT_CLOCK_RATE
, branch
);
1775 else if (clk_mgt_val
== PRCM_CLK_MGT_CLKPLLSW_DDR
)
1776 return pll_rate(PRCM_PLLDDR_FREQ
, ROOT_CLOCK_RATE
, branch
);
1781 static u32
clock_divider(unsigned long src_rate
, unsigned long rate
)
1785 div
= (src_rate
/ rate
);
1788 if (rate
< (src_rate
/ div
))
1793 static long round_clock_rate(u8 clock
, unsigned long rate
)
1797 unsigned long src_rate
;
1800 val
= readl(clk_mgt
[clock
].reg
);
1801 src_rate
= clock_source_rate((val
| clk_mgt
[clock
].pllsw
),
1802 clk_mgt
[clock
].branch
);
1803 div
= clock_divider(src_rate
, rate
);
1804 if (val
& PRCM_CLK_MGT_CLK38
) {
1805 if (clk_mgt
[clock
].clk38div
) {
1811 } else if ((clock
== PRCMU_SGACLK
) && (div
== 3)) {
1812 u64 r
= (src_rate
* 10);
1814 (void)do_div(r
, 25);
1816 return (unsigned long)r
;
1818 rounded_rate
= (src_rate
/ min(div
, (u32
)31));
1820 return rounded_rate
;
1823 #define MIN_PLL_VCO_RATE 600000000ULL
1824 #define MAX_PLL_VCO_RATE 1680640000ULL
1826 static long round_plldsi_rate(unsigned long rate
)
1828 long rounded_rate
= 0;
1829 unsigned long src_rate
;
1833 src_rate
= clock_rate(PRCMU_HDMICLK
);
1836 for (r
= 7; (rem
> 0) && (r
> 0); r
--) {
1840 (void)do_div(d
, src_rate
);
1846 if (((2 * d
) < (r
* MIN_PLL_VCO_RATE
)) ||
1847 ((r
* MAX_PLL_VCO_RATE
) < (2 * d
)))
1851 if (rounded_rate
== 0)
1852 rounded_rate
= (long)d
;
1855 if ((rate
- d
) < rem
) {
1857 rounded_rate
= (long)d
;
1860 return rounded_rate
;
1863 static long round_dsiclk_rate(unsigned long rate
)
1866 unsigned long src_rate
;
1869 src_rate
= pll_rate(PRCM_PLLDSI_FREQ
, clock_rate(PRCMU_HDMICLK
),
1871 div
= clock_divider(src_rate
, rate
);
1872 rounded_rate
= (src_rate
/ ((div
> 2) ? 4 : div
));
1874 return rounded_rate
;
1877 static long round_dsiescclk_rate(unsigned long rate
)
1880 unsigned long src_rate
;
1883 src_rate
= clock_rate(PRCMU_TVCLK
);
1884 div
= clock_divider(src_rate
, rate
);
1885 rounded_rate
= (src_rate
/ min(div
, (u32
)255));
1887 return rounded_rate
;
1890 long prcmu_round_clock_rate(u8 clock
, unsigned long rate
)
1892 if (clock
< PRCMU_NUM_REG_CLOCKS
)
1893 return round_clock_rate(clock
, rate
);
1894 else if (clock
== PRCMU_PLLDSI
)
1895 return round_plldsi_rate(rate
);
1896 else if ((clock
== PRCMU_DSI0CLK
) || (clock
== PRCMU_DSI1CLK
))
1897 return round_dsiclk_rate(rate
);
1898 else if ((PRCMU_DSI0ESCCLK
<= clock
) && (clock
<= PRCMU_DSI2ESCCLK
))
1899 return round_dsiescclk_rate(rate
);
1901 return (long)prcmu_clock_rate(clock
);
1904 static void set_clock_rate(u8 clock
, unsigned long rate
)
1908 unsigned long src_rate
;
1909 unsigned long flags
;
1911 spin_lock_irqsave(&clk_mgt_lock
, flags
);
1913 /* Grab the HW semaphore. */
1914 while ((readl(PRCM_SEM
) & PRCM_SEM_PRCM_SEM
) != 0)
1917 val
= readl(clk_mgt
[clock
].reg
);
1918 src_rate
= clock_source_rate((val
| clk_mgt
[clock
].pllsw
),
1919 clk_mgt
[clock
].branch
);
1920 div
= clock_divider(src_rate
, rate
);
1921 if (val
& PRCM_CLK_MGT_CLK38
) {
1922 if (clk_mgt
[clock
].clk38div
) {
1924 val
|= PRCM_CLK_MGT_CLK38DIV
;
1926 val
&= ~PRCM_CLK_MGT_CLK38DIV
;
1928 } else if (clock
== PRCMU_SGACLK
) {
1929 val
&= ~(PRCM_CLK_MGT_CLKPLLDIV_MASK
|
1930 PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN
);
1932 u64 r
= (src_rate
* 10);
1934 (void)do_div(r
, 25);
1936 val
|= PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN
;
1940 val
|= min(div
, (u32
)31);
1942 val
&= ~PRCM_CLK_MGT_CLKPLLDIV_MASK
;
1943 val
|= min(div
, (u32
)31);
1945 writel(val
, clk_mgt
[clock
].reg
);
1947 /* Release the HW semaphore. */
1948 writel(0, PRCM_SEM
);
1950 spin_unlock_irqrestore(&clk_mgt_lock
, flags
);
1953 static int set_plldsi_rate(unsigned long rate
)
1955 unsigned long src_rate
;
1960 src_rate
= clock_rate(PRCMU_HDMICLK
);
1963 for (r
= 7; (rem
> 0) && (r
> 0); r
--) {
1968 (void)do_div(d
, src_rate
);
1973 hwrate
= (d
* src_rate
);
1974 if (((2 * hwrate
) < (r
* MIN_PLL_VCO_RATE
)) ||
1975 ((r
* MAX_PLL_VCO_RATE
) < (2 * hwrate
)))
1977 (void)do_div(hwrate
, r
);
1978 if (rate
< hwrate
) {
1980 pll_freq
= (((u32
)d
<< PRCM_PLL_FREQ_D_SHIFT
) |
1981 (r
<< PRCM_PLL_FREQ_R_SHIFT
));
1984 if ((rate
- hwrate
) < rem
) {
1985 rem
= (rate
- hwrate
);
1986 pll_freq
= (((u32
)d
<< PRCM_PLL_FREQ_D_SHIFT
) |
1987 (r
<< PRCM_PLL_FREQ_R_SHIFT
));
1993 pll_freq
|= (1 << PRCM_PLL_FREQ_N_SHIFT
);
1994 writel(pll_freq
, PRCM_PLLDSI_FREQ
);
1999 static void set_dsiclk_rate(u8 n
, unsigned long rate
)
2004 div
= clock_divider(pll_rate(PRCM_PLLDSI_FREQ
,
2005 clock_rate(PRCMU_HDMICLK
), PLL_RAW
), rate
);
2007 dsiclk
[n
].divsel
= (div
== 1) ? PRCM_DSI_PLLOUT_SEL_PHI
:
2008 (div
== 2) ? PRCM_DSI_PLLOUT_SEL_PHI_2
:
2009 /* else */ PRCM_DSI_PLLOUT_SEL_PHI_4
;
2011 val
= readl(PRCM_DSI_PLLOUT_SEL
);
2012 val
&= ~dsiclk
[n
].divsel_mask
;
2013 val
|= (dsiclk
[n
].divsel
<< dsiclk
[n
].divsel_shift
);
2014 writel(val
, PRCM_DSI_PLLOUT_SEL
);
2017 static void set_dsiescclk_rate(u8 n
, unsigned long rate
)
2022 div
= clock_divider(clock_rate(PRCMU_TVCLK
), rate
);
2023 val
= readl(PRCM_DSITVCLK_DIV
);
2024 val
&= ~dsiescclk
[n
].div_mask
;
2025 val
|= (min(div
, (u32
)255) << dsiescclk
[n
].div_shift
);
2026 writel(val
, PRCM_DSITVCLK_DIV
);
2029 int prcmu_set_clock_rate(u8 clock
, unsigned long rate
)
2031 if (clock
< PRCMU_NUM_REG_CLOCKS
)
2032 set_clock_rate(clock
, rate
);
2033 else if (clock
== PRCMU_PLLDSI
)
2034 return set_plldsi_rate(rate
);
2035 else if ((clock
== PRCMU_DSI0CLK
) || (clock
== PRCMU_DSI1CLK
))
2036 set_dsiclk_rate((clock
- PRCMU_DSI0CLK
), rate
);
2037 else if ((PRCMU_DSI0ESCCLK
<= clock
) && (clock
<= PRCMU_DSI2ESCCLK
))
2038 set_dsiescclk_rate((clock
- PRCMU_DSI0ESCCLK
), rate
);
2042 int db8500_prcmu_config_esram0_deep_sleep(u8 state
)
2044 if ((state
> ESRAM0_DEEP_SLEEP_STATE_RET
) ||
2045 (state
< ESRAM0_DEEP_SLEEP_STATE_OFF
))
2048 mutex_lock(&mb4_transfer
.lock
);
2050 while (readl(PRCM_MBOX_CPU_VAL
) & MBOX_BIT(4))
2053 writeb(MB4H_MEM_ST
, (tcdm_base
+ PRCM_MBOX_HEADER_REQ_MB4
));
2054 writeb(((DDR_PWR_STATE_OFFHIGHLAT
<< 4) | DDR_PWR_STATE_ON
),
2055 (tcdm_base
+ PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE
));
2056 writeb(DDR_PWR_STATE_ON
,
2057 (tcdm_base
+ PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE
));
2058 writeb(state
, (tcdm_base
+ PRCM_REQ_MB4_ESRAM0_ST
));
2060 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET
);
2061 wait_for_completion(&mb4_transfer
.work
);
2063 mutex_unlock(&mb4_transfer
.lock
);
2068 int db8500_prcmu_config_hotdog(u8 threshold
)
2070 mutex_lock(&mb4_transfer
.lock
);
2072 while (readl(PRCM_MBOX_CPU_VAL
) & MBOX_BIT(4))
2075 writeb(threshold
, (tcdm_base
+ PRCM_REQ_MB4_HOTDOG_THRESHOLD
));
2076 writeb(MB4H_HOTDOG
, (tcdm_base
+ PRCM_MBOX_HEADER_REQ_MB4
));
2078 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET
);
2079 wait_for_completion(&mb4_transfer
.work
);
2081 mutex_unlock(&mb4_transfer
.lock
);
2086 int db8500_prcmu_config_hotmon(u8 low
, u8 high
)
2088 mutex_lock(&mb4_transfer
.lock
);
2090 while (readl(PRCM_MBOX_CPU_VAL
) & MBOX_BIT(4))
2093 writeb(low
, (tcdm_base
+ PRCM_REQ_MB4_HOTMON_LOW
));
2094 writeb(high
, (tcdm_base
+ PRCM_REQ_MB4_HOTMON_HIGH
));
2095 writeb((HOTMON_CONFIG_LOW
| HOTMON_CONFIG_HIGH
),
2096 (tcdm_base
+ PRCM_REQ_MB4_HOTMON_CONFIG
));
2097 writeb(MB4H_HOTMON
, (tcdm_base
+ PRCM_MBOX_HEADER_REQ_MB4
));
2099 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET
);
2100 wait_for_completion(&mb4_transfer
.work
);
2102 mutex_unlock(&mb4_transfer
.lock
);
2107 static int config_hot_period(u16 val
)
2109 mutex_lock(&mb4_transfer
.lock
);
2111 while (readl(PRCM_MBOX_CPU_VAL
) & MBOX_BIT(4))
2114 writew(val
, (tcdm_base
+ PRCM_REQ_MB4_HOT_PERIOD
));
2115 writeb(MB4H_HOT_PERIOD
, (tcdm_base
+ PRCM_MBOX_HEADER_REQ_MB4
));
2117 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET
);
2118 wait_for_completion(&mb4_transfer
.work
);
2120 mutex_unlock(&mb4_transfer
.lock
);
2125 int db8500_prcmu_start_temp_sense(u16 cycles32k
)
2127 if (cycles32k
== 0xFFFF)
2130 return config_hot_period(cycles32k
);
2133 int db8500_prcmu_stop_temp_sense(void)
2135 return config_hot_period(0xFFFF);
2138 static int prcmu_a9wdog(u8 cmd
, u8 d0
, u8 d1
, u8 d2
, u8 d3
)
2141 mutex_lock(&mb4_transfer
.lock
);
2143 while (readl(PRCM_MBOX_CPU_VAL
) & MBOX_BIT(4))
2146 writeb(d0
, (tcdm_base
+ PRCM_REQ_MB4_A9WDOG_0
));
2147 writeb(d1
, (tcdm_base
+ PRCM_REQ_MB4_A9WDOG_1
));
2148 writeb(d2
, (tcdm_base
+ PRCM_REQ_MB4_A9WDOG_2
));
2149 writeb(d3
, (tcdm_base
+ PRCM_REQ_MB4_A9WDOG_3
));
2151 writeb(cmd
, (tcdm_base
+ PRCM_MBOX_HEADER_REQ_MB4
));
2153 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET
);
2154 wait_for_completion(&mb4_transfer
.work
);
2156 mutex_unlock(&mb4_transfer
.lock
);
2162 int db8500_prcmu_config_a9wdog(u8 num
, bool sleep_auto_off
)
2164 BUG_ON(num
== 0 || num
> 0xf);
2165 return prcmu_a9wdog(MB4H_A9WDOG_CONF
, num
, 0, 0,
2166 sleep_auto_off
? A9WDOG_AUTO_OFF_EN
:
2167 A9WDOG_AUTO_OFF_DIS
);
2170 int db8500_prcmu_enable_a9wdog(u8 id
)
2172 return prcmu_a9wdog(MB4H_A9WDOG_EN
, id
, 0, 0, 0);
2175 int db8500_prcmu_disable_a9wdog(u8 id
)
2177 return prcmu_a9wdog(MB4H_A9WDOG_DIS
, id
, 0, 0, 0);
2180 int db8500_prcmu_kick_a9wdog(u8 id
)
2182 return prcmu_a9wdog(MB4H_A9WDOG_KICK
, id
, 0, 0, 0);
2186 * timeout is 28 bit, in ms.
2188 int db8500_prcmu_load_a9wdog(u8 id
, u32 timeout
)
2190 return prcmu_a9wdog(MB4H_A9WDOG_LOAD
,
2191 (id
& A9WDOG_ID_MASK
) |
2193 * Put the lowest 28 bits of timeout at
2194 * offset 4. Four first bits are used for id.
2196 (u8
)((timeout
<< 4) & 0xf0),
2197 (u8
)((timeout
>> 4) & 0xff),
2198 (u8
)((timeout
>> 12) & 0xff),
2199 (u8
)((timeout
>> 20) & 0xff));
2203 * prcmu_abb_read() - Read register value(s) from the ABB.
2204 * @slave: The I2C slave address.
2205 * @reg: The (start) register address.
2206 * @value: The read out value(s).
2207 * @size: The number of registers to read.
2209 * Reads register value(s) from the ABB.
2210 * @size has to be 1 for the current firmware version.
2212 int prcmu_abb_read(u8 slave
, u8 reg
, u8
*value
, u8 size
)
2219 mutex_lock(&mb5_transfer
.lock
);
2221 while (readl(PRCM_MBOX_CPU_VAL
) & MBOX_BIT(5))
2224 writeb(0, (tcdm_base
+ PRCM_MBOX_HEADER_REQ_MB5
));
2225 writeb(PRCMU_I2C_READ(slave
), (tcdm_base
+ PRCM_REQ_MB5_I2C_SLAVE_OP
));
2226 writeb(PRCMU_I2C_STOP_EN
, (tcdm_base
+ PRCM_REQ_MB5_I2C_HW_BITS
));
2227 writeb(reg
, (tcdm_base
+ PRCM_REQ_MB5_I2C_REG
));
2228 writeb(0, (tcdm_base
+ PRCM_REQ_MB5_I2C_VAL
));
2230 writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET
);
2232 if (!wait_for_completion_timeout(&mb5_transfer
.work
,
2233 msecs_to_jiffies(20000))) {
2234 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
2238 r
= ((mb5_transfer
.ack
.status
== I2C_RD_OK
) ? 0 : -EIO
);
2242 *value
= mb5_transfer
.ack
.value
;
2244 mutex_unlock(&mb5_transfer
.lock
);
2250 * prcmu_abb_write_masked() - Write masked register value(s) to the ABB.
2251 * @slave: The I2C slave address.
2252 * @reg: The (start) register address.
2253 * @value: The value(s) to write.
2254 * @mask: The mask(s) to use.
2255 * @size: The number of registers to write.
2257 * Writes masked register value(s) to the ABB.
2258 * For each @value, only the bits set to 1 in the corresponding @mask
2259 * will be written. The other bits are not changed.
2260 * @size has to be 1 for the current firmware version.
2262 int prcmu_abb_write_masked(u8 slave
, u8 reg
, u8
*value
, u8
*mask
, u8 size
)
2269 mutex_lock(&mb5_transfer
.lock
);
2271 while (readl(PRCM_MBOX_CPU_VAL
) & MBOX_BIT(5))
2274 writeb(~*mask
, (tcdm_base
+ PRCM_MBOX_HEADER_REQ_MB5
));
2275 writeb(PRCMU_I2C_WRITE(slave
), (tcdm_base
+ PRCM_REQ_MB5_I2C_SLAVE_OP
));
2276 writeb(PRCMU_I2C_STOP_EN
, (tcdm_base
+ PRCM_REQ_MB5_I2C_HW_BITS
));
2277 writeb(reg
, (tcdm_base
+ PRCM_REQ_MB5_I2C_REG
));
2278 writeb(*value
, (tcdm_base
+ PRCM_REQ_MB5_I2C_VAL
));
2280 writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET
);
2282 if (!wait_for_completion_timeout(&mb5_transfer
.work
,
2283 msecs_to_jiffies(20000))) {
2284 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
2288 r
= ((mb5_transfer
.ack
.status
== I2C_WR_OK
) ? 0 : -EIO
);
2291 mutex_unlock(&mb5_transfer
.lock
);
2297 * prcmu_abb_write() - Write register value(s) to the ABB.
2298 * @slave: The I2C slave address.
2299 * @reg: The (start) register address.
2300 * @value: The value(s) to write.
2301 * @size: The number of registers to write.
2303 * Writes register value(s) to the ABB.
2304 * @size has to be 1 for the current firmware version.
2306 int prcmu_abb_write(u8 slave
, u8 reg
, u8
*value
, u8 size
)
2310 return prcmu_abb_write_masked(slave
, reg
, value
, &mask
, size
);
2314 * prcmu_ac_wake_req - should be called whenever ARM wants to wakeup Modem
2316 int prcmu_ac_wake_req(void)
2321 mutex_lock(&mb0_transfer
.ac_wake_lock
);
2323 val
= readl(PRCM_HOSTACCESS_REQ
);
2324 if (val
& PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ
)
2325 goto unlock_and_return
;
2327 atomic_set(&ac_wake_req_state
, 1);
2330 * Force Modem Wake-up before hostaccess_req ping-pong.
2331 * It prevents Modem to enter in Sleep while acking the hostaccess
2332 * request. The 31us delay has been calculated by HWI.
2334 val
|= PRCM_HOSTACCESS_REQ_WAKE_REQ
;
2335 writel(val
, PRCM_HOSTACCESS_REQ
);
2339 val
|= PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ
;
2340 writel(val
, PRCM_HOSTACCESS_REQ
);
2342 if (!wait_for_completion_timeout(&mb0_transfer
.ac_wake_work
,
2343 msecs_to_jiffies(5000))) {
2344 #if defined(CONFIG_DBX500_PRCMU_DEBUG)
2345 db8500_prcmu_debug_dump(__func__
, true, true);
2347 pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n",
2353 mutex_unlock(&mb0_transfer
.ac_wake_lock
);
2358 * prcmu_ac_sleep_req - called when ARM no longer needs to talk to modem
2360 void prcmu_ac_sleep_req()
2364 mutex_lock(&mb0_transfer
.ac_wake_lock
);
2366 val
= readl(PRCM_HOSTACCESS_REQ
);
2367 if (!(val
& PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ
))
2368 goto unlock_and_return
;
2370 writel((val
& ~PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ
),
2371 PRCM_HOSTACCESS_REQ
);
2373 if (!wait_for_completion_timeout(&mb0_transfer
.ac_wake_work
,
2374 msecs_to_jiffies(5000))) {
2375 pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n",
2379 atomic_set(&ac_wake_req_state
, 0);
2382 mutex_unlock(&mb0_transfer
.ac_wake_lock
);
2385 bool db8500_prcmu_is_ac_wake_requested(void)
2387 return (atomic_read(&ac_wake_req_state
) != 0);
2391 * db8500_prcmu_system_reset - System reset
2393 * Saves the reset reason code and then sets the APE_SOFTRST register which
2394 * fires interrupt to fw
2396 void db8500_prcmu_system_reset(u16 reset_code
)
2398 writew(reset_code
, (tcdm_base
+ PRCM_SW_RST_REASON
));
2399 writel(1, PRCM_APE_SOFTRST
);
2403 * db8500_prcmu_get_reset_code - Retrieve SW reset reason code
2405 * Retrieves the reset reason code stored by prcmu_system_reset() before
2408 u16
db8500_prcmu_get_reset_code(void)
2410 return readw(tcdm_base
+ PRCM_SW_RST_REASON
);
2414 * db8500_prcmu_reset_modem - ask the PRCMU to reset modem
2416 void db8500_prcmu_modem_reset(void)
2418 mutex_lock(&mb1_transfer
.lock
);
2420 while (readl(PRCM_MBOX_CPU_VAL
) & MBOX_BIT(1))
2423 writeb(MB1H_RESET_MODEM
, (tcdm_base
+ PRCM_MBOX_HEADER_REQ_MB1
));
2424 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET
);
2425 wait_for_completion(&mb1_transfer
.work
);
2428 * No need to check return from PRCMU as modem should go in reset state
2429 * This state is already managed by upper layer
2432 mutex_unlock(&mb1_transfer
.lock
);
2435 static void ack_dbb_wakeup(void)
2437 unsigned long flags
;
2439 spin_lock_irqsave(&mb0_transfer
.lock
, flags
);
2441 while (readl(PRCM_MBOX_CPU_VAL
) & MBOX_BIT(0))
2444 writeb(MB0H_READ_WAKEUP_ACK
, (tcdm_base
+ PRCM_MBOX_HEADER_REQ_MB0
));
2445 writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET
);
2447 spin_unlock_irqrestore(&mb0_transfer
.lock
, flags
);
2450 static inline void print_unknown_header_warning(u8 n
, u8 header
)
2452 pr_warning("prcmu: Unknown message header (%d) in mailbox %d.\n",
2456 static bool read_mailbox_0(void)
2463 header
= readb(tcdm_base
+ PRCM_MBOX_HEADER_ACK_MB0
);
2465 case MB0H_WAKEUP_EXE
:
2466 case MB0H_WAKEUP_SLEEP
:
2467 if (readb(tcdm_base
+ PRCM_ACK_MB0_READ_POINTER
) & 1)
2468 ev
= readl(tcdm_base
+ PRCM_ACK_MB0_WAKEUP_1_8500
);
2470 ev
= readl(tcdm_base
+ PRCM_ACK_MB0_WAKEUP_0_8500
);
2472 if (ev
& (WAKEUP_BIT_AC_WAKE_ACK
| WAKEUP_BIT_AC_SLEEP_ACK
))
2473 complete(&mb0_transfer
.ac_wake_work
);
2474 if (ev
& WAKEUP_BIT_SYSCLK_OK
)
2475 complete(&mb3_transfer
.sysclk_work
);
2477 ev
&= mb0_transfer
.req
.dbb_irqs
;
2479 for (n
= 0; n
< NUM_PRCMU_WAKEUPS
; n
++) {
2480 if (ev
& prcmu_irq_bit
[n
])
2481 generic_handle_irq(IRQ_PRCMU_BASE
+ n
);
2486 print_unknown_header_warning(0, header
);
2490 writel(MBOX_BIT(0), PRCM_ARM_IT1_CLR
);
2494 static bool read_mailbox_1(void)
2496 mb1_transfer
.ack
.header
= readb(tcdm_base
+ PRCM_MBOX_HEADER_REQ_MB1
);
2497 mb1_transfer
.ack
.arm_opp
= readb(tcdm_base
+
2498 PRCM_ACK_MB1_CURRENT_ARM_OPP
);
2499 mb1_transfer
.ack
.ape_opp
= readb(tcdm_base
+
2500 PRCM_ACK_MB1_CURRENT_APE_OPP
);
2501 mb1_transfer
.ack
.ape_voltage_status
= readb(tcdm_base
+
2502 PRCM_ACK_MB1_APE_VOLTAGE_STATUS
);
2503 writel(MBOX_BIT(1), PRCM_ARM_IT1_CLR
);
2504 complete(&mb1_transfer
.work
);
2508 static bool read_mailbox_2(void)
2510 mb2_transfer
.ack
.status
= readb(tcdm_base
+ PRCM_ACK_MB2_DPS_STATUS
);
2511 writel(MBOX_BIT(2), PRCM_ARM_IT1_CLR
);
2512 complete(&mb2_transfer
.work
);
2516 static bool read_mailbox_3(void)
2518 writel(MBOX_BIT(3), PRCM_ARM_IT1_CLR
);
2522 static bool read_mailbox_4(void)
2525 bool do_complete
= true;
2527 header
= readb(tcdm_base
+ PRCM_MBOX_HEADER_REQ_MB4
);
2532 case MB4H_HOT_PERIOD
:
2533 case MB4H_A9WDOG_CONF
:
2534 case MB4H_A9WDOG_EN
:
2535 case MB4H_A9WDOG_DIS
:
2536 case MB4H_A9WDOG_LOAD
:
2537 case MB4H_A9WDOG_KICK
:
2540 print_unknown_header_warning(4, header
);
2541 do_complete
= false;
2545 writel(MBOX_BIT(4), PRCM_ARM_IT1_CLR
);
2548 complete(&mb4_transfer
.work
);
2553 static bool read_mailbox_5(void)
2555 mb5_transfer
.ack
.status
= readb(tcdm_base
+ PRCM_ACK_MB5_I2C_STATUS
);
2556 mb5_transfer
.ack
.value
= readb(tcdm_base
+ PRCM_ACK_MB5_I2C_VAL
);
2557 writel(MBOX_BIT(5), PRCM_ARM_IT1_CLR
);
2558 complete(&mb5_transfer
.work
);
2562 static bool read_mailbox_6(void)
2564 writel(MBOX_BIT(6), PRCM_ARM_IT1_CLR
);
2568 static bool read_mailbox_7(void)
2570 writel(MBOX_BIT(7), PRCM_ARM_IT1_CLR
);
2574 static bool (* const read_mailbox
[NUM_MB
])(void) = {
2585 static irqreturn_t
prcmu_irq_handler(int irq
, void *data
)
2591 bits
= (readl(PRCM_ARM_IT1_VAL
) & ALL_MBOX_BITS
);
2592 if (unlikely(!bits
))
2596 for (n
= 0; bits
; n
++) {
2597 if (bits
& MBOX_BIT(n
)) {
2598 bits
-= MBOX_BIT(n
);
2599 if (read_mailbox
[n
]())
2600 r
= IRQ_WAKE_THREAD
;
2606 static irqreturn_t
prcmu_irq_thread_fn(int irq
, void *data
)
2612 static void prcmu_mask_work(struct work_struct
*work
)
2614 unsigned long flags
;
2616 spin_lock_irqsave(&mb0_transfer
.lock
, flags
);
2620 spin_unlock_irqrestore(&mb0_transfer
.lock
, flags
);
2623 static void prcmu_irq_mask(struct irq_data
*d
)
2625 unsigned long flags
;
2627 spin_lock_irqsave(&mb0_transfer
.dbb_irqs_lock
, flags
);
2629 mb0_transfer
.req
.dbb_irqs
&= ~prcmu_irq_bit
[d
->hwirq
];
2631 spin_unlock_irqrestore(&mb0_transfer
.dbb_irqs_lock
, flags
);
2633 if (d
->irq
!= IRQ_PRCMU_CA_SLEEP
)
2634 schedule_work(&mb0_transfer
.mask_work
);
2637 static void prcmu_irq_unmask(struct irq_data
*d
)
2639 unsigned long flags
;
2641 spin_lock_irqsave(&mb0_transfer
.dbb_irqs_lock
, flags
);
2643 mb0_transfer
.req
.dbb_irqs
|= prcmu_irq_bit
[d
->hwirq
];
2645 spin_unlock_irqrestore(&mb0_transfer
.dbb_irqs_lock
, flags
);
2647 if (d
->irq
!= IRQ_PRCMU_CA_SLEEP
)
2648 schedule_work(&mb0_transfer
.mask_work
);
2651 static void noop(struct irq_data
*d
)
2655 static struct irq_chip prcmu_irq_chip
= {
2657 .irq_disable
= prcmu_irq_mask
,
2659 .irq_mask
= prcmu_irq_mask
,
2660 .irq_unmask
= prcmu_irq_unmask
,
2663 static char *fw_project_name(u8 project
)
2666 case PRCMU_FW_PROJECT_U8500
:
2668 case PRCMU_FW_PROJECT_U8500_C2
:
2670 case PRCMU_FW_PROJECT_U9500
:
2672 case PRCMU_FW_PROJECT_U9500_C2
:
2674 case PRCMU_FW_PROJECT_U8520
:
2676 case PRCMU_FW_PROJECT_U8420
:
2683 static int db8500_irq_map(struct irq_domain
*d
, unsigned int virq
,
2684 irq_hw_number_t hwirq
)
2686 irq_set_chip_and_handler(virq
, &prcmu_irq_chip
,
2688 set_irq_flags(virq
, IRQF_VALID
);
2693 static struct irq_domain_ops db8500_irq_ops
= {
2694 .map
= db8500_irq_map
,
2695 .xlate
= irq_domain_xlate_twocell
,
2698 static int db8500_irq_init(struct device_node
*np
)
2700 db8500_irq_domain
= irq_domain_add_legacy(
2701 np
, NUM_PRCMU_WAKEUPS
, IRQ_PRCMU_BASE
,
2702 0, &db8500_irq_ops
, NULL
);
2704 if (!db8500_irq_domain
) {
2705 pr_err("Failed to create irqdomain\n");
2712 void __init
db8500_prcmu_early_init(void)
2714 if (cpu_is_u8500v2()) {
2715 void *tcpm_base
= ioremap_nocache(U8500_PRCMU_TCPM_BASE
, SZ_4K
);
2717 if (tcpm_base
!= NULL
) {
2719 version
= readl(tcpm_base
+ PRCMU_FW_VERSION_OFFSET
);
2720 fw_info
.version
.project
= version
& 0xFF;
2721 fw_info
.version
.api_version
= (version
>> 8) & 0xFF;
2722 fw_info
.version
.func_version
= (version
>> 16) & 0xFF;
2723 fw_info
.version
.errata
= (version
>> 24) & 0xFF;
2724 fw_info
.valid
= true;
2725 pr_info("PRCMU firmware: %s, version %d.%d.%d\n",
2726 fw_project_name(fw_info
.version
.project
),
2727 (version
>> 8) & 0xFF, (version
>> 16) & 0xFF,
2728 (version
>> 24) & 0xFF);
2732 tcdm_base
= __io_address(U8500_PRCMU_TCDM_BASE
);
2734 pr_err("prcmu: Unsupported chip version\n");
2738 spin_lock_init(&mb0_transfer
.lock
);
2739 spin_lock_init(&mb0_transfer
.dbb_irqs_lock
);
2740 mutex_init(&mb0_transfer
.ac_wake_lock
);
2741 init_completion(&mb0_transfer
.ac_wake_work
);
2742 mutex_init(&mb1_transfer
.lock
);
2743 init_completion(&mb1_transfer
.work
);
2744 mb1_transfer
.ape_opp
= APE_NO_CHANGE
;
2745 mutex_init(&mb2_transfer
.lock
);
2746 init_completion(&mb2_transfer
.work
);
2747 spin_lock_init(&mb2_transfer
.auto_pm_lock
);
2748 spin_lock_init(&mb3_transfer
.lock
);
2749 mutex_init(&mb3_transfer
.sysclk_lock
);
2750 init_completion(&mb3_transfer
.sysclk_work
);
2751 mutex_init(&mb4_transfer
.lock
);
2752 init_completion(&mb4_transfer
.work
);
2753 mutex_init(&mb5_transfer
.lock
);
2754 init_completion(&mb5_transfer
.work
);
2756 INIT_WORK(&mb0_transfer
.mask_work
, prcmu_mask_work
);
2758 compute_armss_rate();
2761 static void __init
init_prcm_registers(void)
2765 val
= readl(PRCM_A9PL_FORCE_CLKEN
);
2766 val
&= ~(PRCM_A9PL_FORCE_CLKEN_PRCM_A9PL_FORCE_CLKEN
|
2767 PRCM_A9PL_FORCE_CLKEN_PRCM_A9AXI_FORCE_CLKEN
);
2768 writel(val
, (PRCM_A9PL_FORCE_CLKEN
));
2772 * Power domain switches (ePODs) modeled as regulators for the DB8500 SoC
2774 static struct regulator_consumer_supply db8500_vape_consumers
[] = {
2775 REGULATOR_SUPPLY("v-ape", NULL
),
2776 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.0"),
2777 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.1"),
2778 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.2"),
2779 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.3"),
2780 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.4"),
2781 /* "v-mmc" changed to "vcore" in the mainline kernel */
2782 REGULATOR_SUPPLY("vcore", "sdi0"),
2783 REGULATOR_SUPPLY("vcore", "sdi1"),
2784 REGULATOR_SUPPLY("vcore", "sdi2"),
2785 REGULATOR_SUPPLY("vcore", "sdi3"),
2786 REGULATOR_SUPPLY("vcore", "sdi4"),
2787 REGULATOR_SUPPLY("v-dma", "dma40.0"),
2788 REGULATOR_SUPPLY("v-ape", "ab8500-usb.0"),
2789 /* "v-uart" changed to "vcore" in the mainline kernel */
2790 REGULATOR_SUPPLY("vcore", "uart0"),
2791 REGULATOR_SUPPLY("vcore", "uart1"),
2792 REGULATOR_SUPPLY("vcore", "uart2"),
2793 REGULATOR_SUPPLY("v-ape", "nmk-ske-keypad.0"),
2794 REGULATOR_SUPPLY("v-hsi", "ste_hsi.0"),
2795 REGULATOR_SUPPLY("vddvario", "smsc911x.0"),
2798 static struct regulator_consumer_supply db8500_vsmps2_consumers
[] = {
2799 REGULATOR_SUPPLY("musb_1v8", "ab8500-usb.0"),
2800 /* AV8100 regulator */
2801 REGULATOR_SUPPLY("hdmi_1v8", "0-0070"),
2804 static struct regulator_consumer_supply db8500_b2r2_mcde_consumers
[] = {
2805 REGULATOR_SUPPLY("vsupply", "b2r2_bus"),
2806 REGULATOR_SUPPLY("vsupply", "mcde"),
2809 /* SVA MMDSP regulator switch */
2810 static struct regulator_consumer_supply db8500_svammdsp_consumers
[] = {
2811 REGULATOR_SUPPLY("sva-mmdsp", "cm_control"),
2814 /* SVA pipe regulator switch */
2815 static struct regulator_consumer_supply db8500_svapipe_consumers
[] = {
2816 REGULATOR_SUPPLY("sva-pipe", "cm_control"),
2819 /* SIA MMDSP regulator switch */
2820 static struct regulator_consumer_supply db8500_siammdsp_consumers
[] = {
2821 REGULATOR_SUPPLY("sia-mmdsp", "cm_control"),
2824 /* SIA pipe regulator switch */
2825 static struct regulator_consumer_supply db8500_siapipe_consumers
[] = {
2826 REGULATOR_SUPPLY("sia-pipe", "cm_control"),
2829 static struct regulator_consumer_supply db8500_sga_consumers
[] = {
2830 REGULATOR_SUPPLY("v-mali", NULL
),
2833 /* ESRAM1 and 2 regulator switch */
2834 static struct regulator_consumer_supply db8500_esram12_consumers
[] = {
2835 REGULATOR_SUPPLY("esram12", "cm_control"),
2838 /* ESRAM3 and 4 regulator switch */
2839 static struct regulator_consumer_supply db8500_esram34_consumers
[] = {
2840 REGULATOR_SUPPLY("v-esram34", "mcde"),
2841 REGULATOR_SUPPLY("esram34", "cm_control"),
2842 REGULATOR_SUPPLY("lcla_esram", "dma40.0"),
2845 static struct regulator_init_data db8500_regulators
[DB8500_NUM_REGULATORS
] = {
2846 [DB8500_REGULATOR_VAPE
] = {
2848 .name
= "db8500-vape",
2849 .valid_ops_mask
= REGULATOR_CHANGE_STATUS
,
2852 .consumer_supplies
= db8500_vape_consumers
,
2853 .num_consumer_supplies
= ARRAY_SIZE(db8500_vape_consumers
),
2855 [DB8500_REGULATOR_VARM
] = {
2857 .name
= "db8500-varm",
2858 .valid_ops_mask
= REGULATOR_CHANGE_STATUS
,
2861 [DB8500_REGULATOR_VMODEM
] = {
2863 .name
= "db8500-vmodem",
2864 .valid_ops_mask
= REGULATOR_CHANGE_STATUS
,
2867 [DB8500_REGULATOR_VPLL
] = {
2869 .name
= "db8500-vpll",
2870 .valid_ops_mask
= REGULATOR_CHANGE_STATUS
,
2873 [DB8500_REGULATOR_VSMPS1
] = {
2875 .name
= "db8500-vsmps1",
2876 .valid_ops_mask
= REGULATOR_CHANGE_STATUS
,
2879 [DB8500_REGULATOR_VSMPS2
] = {
2881 .name
= "db8500-vsmps2",
2882 .valid_ops_mask
= REGULATOR_CHANGE_STATUS
,
2884 .consumer_supplies
= db8500_vsmps2_consumers
,
2885 .num_consumer_supplies
= ARRAY_SIZE(db8500_vsmps2_consumers
),
2887 [DB8500_REGULATOR_VSMPS3
] = {
2889 .name
= "db8500-vsmps3",
2890 .valid_ops_mask
= REGULATOR_CHANGE_STATUS
,
2893 [DB8500_REGULATOR_VRF1
] = {
2895 .name
= "db8500-vrf1",
2896 .valid_ops_mask
= REGULATOR_CHANGE_STATUS
,
2899 [DB8500_REGULATOR_SWITCH_SVAMMDSP
] = {
2900 /* dependency to u8500-vape is handled outside regulator framework */
2902 .name
= "db8500-sva-mmdsp",
2903 .valid_ops_mask
= REGULATOR_CHANGE_STATUS
,
2905 .consumer_supplies
= db8500_svammdsp_consumers
,
2906 .num_consumer_supplies
= ARRAY_SIZE(db8500_svammdsp_consumers
),
2908 [DB8500_REGULATOR_SWITCH_SVAMMDSPRET
] = {
2910 /* "ret" means "retention" */
2911 .name
= "db8500-sva-mmdsp-ret",
2912 .valid_ops_mask
= REGULATOR_CHANGE_STATUS
,
2915 [DB8500_REGULATOR_SWITCH_SVAPIPE
] = {
2916 /* dependency to u8500-vape is handled outside regulator framework */
2918 .name
= "db8500-sva-pipe",
2919 .valid_ops_mask
= REGULATOR_CHANGE_STATUS
,
2921 .consumer_supplies
= db8500_svapipe_consumers
,
2922 .num_consumer_supplies
= ARRAY_SIZE(db8500_svapipe_consumers
),
2924 [DB8500_REGULATOR_SWITCH_SIAMMDSP
] = {
2925 /* dependency to u8500-vape is handled outside regulator framework */
2927 .name
= "db8500-sia-mmdsp",
2928 .valid_ops_mask
= REGULATOR_CHANGE_STATUS
,
2930 .consumer_supplies
= db8500_siammdsp_consumers
,
2931 .num_consumer_supplies
= ARRAY_SIZE(db8500_siammdsp_consumers
),
2933 [DB8500_REGULATOR_SWITCH_SIAMMDSPRET
] = {
2935 .name
= "db8500-sia-mmdsp-ret",
2936 .valid_ops_mask
= REGULATOR_CHANGE_STATUS
,
2939 [DB8500_REGULATOR_SWITCH_SIAPIPE
] = {
2940 /* dependency to u8500-vape is handled outside regulator framework */
2942 .name
= "db8500-sia-pipe",
2943 .valid_ops_mask
= REGULATOR_CHANGE_STATUS
,
2945 .consumer_supplies
= db8500_siapipe_consumers
,
2946 .num_consumer_supplies
= ARRAY_SIZE(db8500_siapipe_consumers
),
2948 [DB8500_REGULATOR_SWITCH_SGA
] = {
2949 .supply_regulator
= "db8500-vape",
2951 .name
= "db8500-sga",
2952 .valid_ops_mask
= REGULATOR_CHANGE_STATUS
,
2954 .consumer_supplies
= db8500_sga_consumers
,
2955 .num_consumer_supplies
= ARRAY_SIZE(db8500_sga_consumers
),
2958 [DB8500_REGULATOR_SWITCH_B2R2_MCDE
] = {
2959 .supply_regulator
= "db8500-vape",
2961 .name
= "db8500-b2r2-mcde",
2962 .valid_ops_mask
= REGULATOR_CHANGE_STATUS
,
2964 .consumer_supplies
= db8500_b2r2_mcde_consumers
,
2965 .num_consumer_supplies
= ARRAY_SIZE(db8500_b2r2_mcde_consumers
),
2967 [DB8500_REGULATOR_SWITCH_ESRAM12
] = {
2969 * esram12 is set in retention and supplied by Vsafe when Vape is off,
2970 * no need to hold Vape
2973 .name
= "db8500-esram12",
2974 .valid_ops_mask
= REGULATOR_CHANGE_STATUS
,
2976 .consumer_supplies
= db8500_esram12_consumers
,
2977 .num_consumer_supplies
= ARRAY_SIZE(db8500_esram12_consumers
),
2979 [DB8500_REGULATOR_SWITCH_ESRAM12RET
] = {
2981 .name
= "db8500-esram12-ret",
2982 .valid_ops_mask
= REGULATOR_CHANGE_STATUS
,
2985 [DB8500_REGULATOR_SWITCH_ESRAM34
] = {
2987 * esram34 is set in retention and supplied by Vsafe when Vape is off,
2988 * no need to hold Vape
2991 .name
= "db8500-esram34",
2992 .valid_ops_mask
= REGULATOR_CHANGE_STATUS
,
2994 .consumer_supplies
= db8500_esram34_consumers
,
2995 .num_consumer_supplies
= ARRAY_SIZE(db8500_esram34_consumers
),
2997 [DB8500_REGULATOR_SWITCH_ESRAM34RET
] = {
2999 .name
= "db8500-esram34-ret",
3000 .valid_ops_mask
= REGULATOR_CHANGE_STATUS
,
3005 static struct resource ab8500_resources
[] = {
3007 .start
= IRQ_DB8500_AB8500
,
3008 .end
= IRQ_DB8500_AB8500
,
3009 .flags
= IORESOURCE_IRQ
3013 static struct mfd_cell db8500_prcmu_devs
[] = {
3015 .name
= "db8500-prcmu-regulators",
3016 .of_compatible
= "stericsson,db8500-prcmu-regulator",
3017 .platform_data
= &db8500_regulators
,
3018 .pdata_size
= sizeof(db8500_regulators
),
3021 .name
= "cpufreq-u8500",
3022 .of_compatible
= "stericsson,cpufreq-u8500",
3025 .name
= "ab8500-core",
3026 .of_compatible
= "stericsson,ab8500",
3027 .num_resources
= ARRAY_SIZE(ab8500_resources
),
3028 .resources
= ab8500_resources
,
3029 .id
= AB8500_VERSION_AB8500
,
3034 * prcmu_fw_init - arch init call for the Linux PRCMU fw init logic
3037 static int __devinit
db8500_prcmu_probe(struct platform_device
*pdev
)
3039 struct ab8500_platform_data
*ab8500_platdata
= pdev
->dev
.platform_data
;
3040 struct device_node
*np
= pdev
->dev
.of_node
;
3041 int irq
= 0, err
= 0, i
;
3046 init_prcm_registers();
3048 /* Clean up the mailbox interrupts after pre-kernel code. */
3049 writel(ALL_MBOX_BITS
, PRCM_ARM_IT1_CLR
);
3052 irq
= platform_get_irq(pdev
, 0);
3054 if (!np
|| irq
<= 0)
3055 irq
= IRQ_DB8500_PRCMU1
;
3057 err
= request_threaded_irq(irq
, prcmu_irq_handler
,
3058 prcmu_irq_thread_fn
, IRQF_NO_SUSPEND
, "prcmu", NULL
);
3060 pr_err("prcmu: Failed to allocate IRQ_DB8500_PRCMU1.\n");
3065 db8500_irq_init(np
);
3067 for (i
= 0; i
< ARRAY_SIZE(db8500_prcmu_devs
); i
++) {
3068 if (!strcmp(db8500_prcmu_devs
[i
].name
, "ab8500-core")) {
3069 db8500_prcmu_devs
[i
].platform_data
= ab8500_platdata
;
3070 db8500_prcmu_devs
[i
].pdata_size
= sizeof(struct ab8500_platform_data
);
3074 if (cpu_is_u8500v20_or_later())
3075 prcmu_config_esram0_deep_sleep(ESRAM0_DEEP_SLEEP_STATE_RET
);
3077 err
= mfd_add_devices(&pdev
->dev
, 0, db8500_prcmu_devs
,
3078 ARRAY_SIZE(db8500_prcmu_devs
), NULL
, 0, NULL
);
3080 pr_err("prcmu: Failed to add subdevices\n");
3084 pr_info("DB8500 PRCMU initialized\n");
3089 static const struct of_device_id db8500_prcmu_match
[] = {
3090 { .compatible
= "stericsson,db8500-prcmu"},
3094 static struct platform_driver db8500_prcmu_driver
= {
3096 .name
= "db8500-prcmu",
3097 .owner
= THIS_MODULE
,
3098 .of_match_table
= db8500_prcmu_match
,
3100 .probe
= db8500_prcmu_probe
,
3103 static int __init
db8500_prcmu_init(void)
3105 return platform_driver_register(&db8500_prcmu_driver
);
3108 core_initcall(db8500_prcmu_init
);
3110 MODULE_AUTHOR("Mattias Nilsson <mattias.i.nilsson@stericsson.com>");
3111 MODULE_DESCRIPTION("DB8500 PRCM Unit driver");
3112 MODULE_LICENSE("GPL v2");