irq: slab alloc for default irq_affinity
[linux-2.6/libata-dev.git] / kernel / irq / handle.c
blob065205bdd920bfd9751d72b0d0e6a7024ecbf774
1 /*
2 * linux/kernel/irq/handle.c
4 * Copyright (C) 1992, 1998-2006 Linus Torvalds, Ingo Molnar
5 * Copyright (C) 2005-2006, Thomas Gleixner, Russell King
7 * This file contains the core interrupt handling code.
9 * Detailed information is available in Documentation/DocBook/genericirq
13 #include <linux/irq.h>
14 #include <linux/slab.h>
15 #include <linux/module.h>
16 #include <linux/random.h>
17 #include <linux/interrupt.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/rculist.h>
20 #include <linux/hash.h>
21 #include <linux/bootmem.h>
22 #include <trace/events/irq.h>
24 #include "internals.h"
27 * lockdep: we want to handle all irq_desc locks as a single lock-class:
29 struct lock_class_key irq_desc_lock_class;
31 /**
32 * handle_bad_irq - handle spurious and unhandled irqs
33 * @irq: the interrupt number
34 * @desc: description of the interrupt
36 * Handles spurious and unhandled IRQ's. It also prints a debugmessage.
38 void handle_bad_irq(unsigned int irq, struct irq_desc *desc)
40 print_irq_desc(irq, desc);
41 kstat_incr_irqs_this_cpu(irq, desc);
42 ack_bad_irq(irq);
45 #if defined(CONFIG_SMP) && defined(CONFIG_GENERIC_HARDIRQS)
46 static void __init init_irq_default_affinity(void)
48 alloc_cpumask_var(&irq_default_affinity, GFP_NOWAIT);
49 cpumask_setall(irq_default_affinity);
51 #else
52 static void __init init_irq_default_affinity(void)
55 #endif
58 * Linux has a controller-independent interrupt architecture.
59 * Every controller has a 'controller-template', that is used
60 * by the main code to do the right thing. Each driver-visible
61 * interrupt source is transparently wired to the appropriate
62 * controller. Thus drivers need not be aware of the
63 * interrupt-controller.
65 * The code is designed to be easily extended with new/different
66 * interrupt controllers, without having to do assembly magic or
67 * having to touch the generic code.
69 * Controller mappings for all interrupt sources:
71 int nr_irqs = NR_IRQS;
72 EXPORT_SYMBOL_GPL(nr_irqs);
74 #ifdef CONFIG_SPARSE_IRQ
76 static struct irq_desc irq_desc_init = {
77 .irq = -1,
78 .status = IRQ_DISABLED,
79 .chip = &no_irq_chip,
80 .handle_irq = handle_bad_irq,
81 .depth = 1,
82 .lock = __SPIN_LOCK_UNLOCKED(irq_desc_init.lock),
85 void __ref init_kstat_irqs(struct irq_desc *desc, int node, int nr)
87 void *ptr;
89 if (slab_is_available())
90 ptr = kzalloc_node(nr * sizeof(*desc->kstat_irqs),
91 GFP_ATOMIC, node);
92 else
93 ptr = alloc_bootmem_node(NODE_DATA(node),
94 nr * sizeof(*desc->kstat_irqs));
97 * don't overwite if can not get new one
98 * init_copy_kstat_irqs() could still use old one
100 if (ptr) {
101 printk(KERN_DEBUG " alloc kstat_irqs on node %d\n", node);
102 desc->kstat_irqs = ptr;
106 static void init_one_irq_desc(int irq, struct irq_desc *desc, int node)
108 memcpy(desc, &irq_desc_init, sizeof(struct irq_desc));
110 spin_lock_init(&desc->lock);
111 desc->irq = irq;
112 #ifdef CONFIG_SMP
113 desc->node = node;
114 #endif
115 lockdep_set_class(&desc->lock, &irq_desc_lock_class);
116 init_kstat_irqs(desc, node, nr_cpu_ids);
117 if (!desc->kstat_irqs) {
118 printk(KERN_ERR "can not alloc kstat_irqs\n");
119 BUG_ON(1);
121 if (!alloc_desc_masks(desc, node, false)) {
122 printk(KERN_ERR "can not alloc irq_desc cpumasks\n");
123 BUG_ON(1);
125 init_desc_masks(desc);
126 arch_init_chip_data(desc, node);
130 * Protect the sparse_irqs:
132 DEFINE_SPINLOCK(sparse_irq_lock);
134 struct irq_desc **irq_desc_ptrs __read_mostly;
136 static struct irq_desc irq_desc_legacy[NR_IRQS_LEGACY] __cacheline_aligned_in_smp = {
137 [0 ... NR_IRQS_LEGACY-1] = {
138 .irq = -1,
139 .status = IRQ_DISABLED,
140 .chip = &no_irq_chip,
141 .handle_irq = handle_bad_irq,
142 .depth = 1,
143 .lock = __SPIN_LOCK_UNLOCKED(irq_desc_init.lock),
147 static unsigned int *kstat_irqs_legacy;
149 int __init early_irq_init(void)
151 struct irq_desc *desc;
152 int legacy_count;
153 int node;
154 int i;
156 init_irq_default_affinity();
158 /* initialize nr_irqs based on nr_cpu_ids */
159 arch_probe_nr_irqs();
160 printk(KERN_INFO "NR_IRQS:%d nr_irqs:%d\n", NR_IRQS, nr_irqs);
162 desc = irq_desc_legacy;
163 legacy_count = ARRAY_SIZE(irq_desc_legacy);
164 node = first_online_node;
166 /* allocate irq_desc_ptrs array based on nr_irqs */
167 irq_desc_ptrs = kcalloc(nr_irqs, sizeof(void *), GFP_NOWAIT);
169 /* allocate based on nr_cpu_ids */
170 kstat_irqs_legacy = kzalloc_node(NR_IRQS_LEGACY * nr_cpu_ids *
171 sizeof(int), GFP_NOWAIT, node);
173 for (i = 0; i < legacy_count; i++) {
174 desc[i].irq = i;
175 desc[i].kstat_irqs = kstat_irqs_legacy + i * nr_cpu_ids;
176 lockdep_set_class(&desc[i].lock, &irq_desc_lock_class);
177 alloc_desc_masks(&desc[i], node, true);
178 init_desc_masks(&desc[i]);
179 irq_desc_ptrs[i] = desc + i;
182 for (i = legacy_count; i < nr_irqs; i++)
183 irq_desc_ptrs[i] = NULL;
185 return arch_early_irq_init();
188 struct irq_desc *irq_to_desc(unsigned int irq)
190 if (irq_desc_ptrs && irq < nr_irqs)
191 return irq_desc_ptrs[irq];
193 return NULL;
196 struct irq_desc * __ref irq_to_desc_alloc_node(unsigned int irq, int node)
198 struct irq_desc *desc;
199 unsigned long flags;
201 if (irq >= nr_irqs) {
202 WARN(1, "irq (%d) >= nr_irqs (%d) in irq_to_desc_alloc\n",
203 irq, nr_irqs);
204 return NULL;
207 desc = irq_desc_ptrs[irq];
208 if (desc)
209 return desc;
211 spin_lock_irqsave(&sparse_irq_lock, flags);
213 /* We have to check it to avoid races with another CPU */
214 desc = irq_desc_ptrs[irq];
215 if (desc)
216 goto out_unlock;
218 if (slab_is_available())
219 desc = kzalloc_node(sizeof(*desc), GFP_ATOMIC, node);
220 else
221 desc = alloc_bootmem_node(NODE_DATA(node), sizeof(*desc));
223 printk(KERN_DEBUG " alloc irq_desc for %d on node %d\n", irq, node);
224 if (!desc) {
225 printk(KERN_ERR "can not alloc irq_desc\n");
226 BUG_ON(1);
228 init_one_irq_desc(irq, desc, node);
230 irq_desc_ptrs[irq] = desc;
232 out_unlock:
233 spin_unlock_irqrestore(&sparse_irq_lock, flags);
235 return desc;
238 #else /* !CONFIG_SPARSE_IRQ */
240 struct irq_desc irq_desc[NR_IRQS] __cacheline_aligned_in_smp = {
241 [0 ... NR_IRQS-1] = {
242 .status = IRQ_DISABLED,
243 .chip = &no_irq_chip,
244 .handle_irq = handle_bad_irq,
245 .depth = 1,
246 .lock = __SPIN_LOCK_UNLOCKED(irq_desc->lock),
250 static unsigned int kstat_irqs_all[NR_IRQS][NR_CPUS];
251 int __init early_irq_init(void)
253 struct irq_desc *desc;
254 int count;
255 int i;
257 init_irq_default_affinity();
259 printk(KERN_INFO "NR_IRQS:%d\n", NR_IRQS);
261 desc = irq_desc;
262 count = ARRAY_SIZE(irq_desc);
264 for (i = 0; i < count; i++) {
265 desc[i].irq = i;
266 alloc_desc_masks(&desc[i], 0, true);
267 init_desc_masks(&desc[i]);
268 desc[i].kstat_irqs = kstat_irqs_all[i];
270 return arch_early_irq_init();
273 struct irq_desc *irq_to_desc(unsigned int irq)
275 return (irq < NR_IRQS) ? irq_desc + irq : NULL;
278 struct irq_desc *irq_to_desc_alloc_node(unsigned int irq, int node)
280 return irq_to_desc(irq);
282 #endif /* !CONFIG_SPARSE_IRQ */
284 void clear_kstat_irqs(struct irq_desc *desc)
286 memset(desc->kstat_irqs, 0, nr_cpu_ids * sizeof(*(desc->kstat_irqs)));
290 * What should we do if we get a hw irq event on an illegal vector?
291 * Each architecture has to answer this themself.
293 static void ack_bad(unsigned int irq)
295 struct irq_desc *desc = irq_to_desc(irq);
297 print_irq_desc(irq, desc);
298 ack_bad_irq(irq);
302 * NOP functions
304 static void noop(unsigned int irq)
308 static unsigned int noop_ret(unsigned int irq)
310 return 0;
314 * Generic no controller implementation
316 struct irq_chip no_irq_chip = {
317 .name = "none",
318 .startup = noop_ret,
319 .shutdown = noop,
320 .enable = noop,
321 .disable = noop,
322 .ack = ack_bad,
323 .end = noop,
327 * Generic dummy implementation which can be used for
328 * real dumb interrupt sources
330 struct irq_chip dummy_irq_chip = {
331 .name = "dummy",
332 .startup = noop_ret,
333 .shutdown = noop,
334 .enable = noop,
335 .disable = noop,
336 .ack = noop,
337 .mask = noop,
338 .unmask = noop,
339 .end = noop,
343 * Special, empty irq handler:
345 irqreturn_t no_action(int cpl, void *dev_id)
347 return IRQ_NONE;
350 static void warn_no_thread(unsigned int irq, struct irqaction *action)
352 if (test_and_set_bit(IRQTF_WARNED, &action->thread_flags))
353 return;
355 printk(KERN_WARNING "IRQ %d device %s returned IRQ_WAKE_THREAD "
356 "but no thread function available.", irq, action->name);
360 * handle_IRQ_event - irq action chain handler
361 * @irq: the interrupt number
362 * @action: the interrupt action chain for this irq
364 * Handles the action chain of an irq event
366 irqreturn_t handle_IRQ_event(unsigned int irq, struct irqaction *action)
368 irqreturn_t ret, retval = IRQ_NONE;
369 unsigned int status = 0;
371 if (!(action->flags & IRQF_DISABLED))
372 local_irq_enable_in_hardirq();
374 do {
375 trace_irq_handler_entry(irq, action);
376 ret = action->handler(irq, action->dev_id);
377 trace_irq_handler_exit(irq, action, ret);
379 switch (ret) {
380 case IRQ_WAKE_THREAD:
382 * Set result to handled so the spurious check
383 * does not trigger.
385 ret = IRQ_HANDLED;
388 * Catch drivers which return WAKE_THREAD but
389 * did not set up a thread function
391 if (unlikely(!action->thread_fn)) {
392 warn_no_thread(irq, action);
393 break;
397 * Wake up the handler thread for this
398 * action. In case the thread crashed and was
399 * killed we just pretend that we handled the
400 * interrupt. The hardirq handler above has
401 * disabled the device interrupt, so no irq
402 * storm is lurking.
404 if (likely(!test_bit(IRQTF_DIED,
405 &action->thread_flags))) {
406 set_bit(IRQTF_RUNTHREAD, &action->thread_flags);
407 wake_up_process(action->thread);
410 /* Fall through to add to randomness */
411 case IRQ_HANDLED:
412 status |= action->flags;
413 break;
415 default:
416 break;
419 retval |= ret;
420 action = action->next;
421 } while (action);
423 if (status & IRQF_SAMPLE_RANDOM)
424 add_interrupt_randomness(irq);
425 local_irq_disable();
427 return retval;
430 #ifndef CONFIG_GENERIC_HARDIRQS_NO__DO_IRQ
432 #ifdef CONFIG_ENABLE_WARN_DEPRECATED
433 # warning __do_IRQ is deprecated. Please convert to proper flow handlers
434 #endif
437 * __do_IRQ - original all in one highlevel IRQ handler
438 * @irq: the interrupt number
440 * __do_IRQ handles all normal device IRQ's (the special
441 * SMP cross-CPU interrupts have their own specific
442 * handlers).
444 * This is the original x86 implementation which is used for every
445 * interrupt type.
447 unsigned int __do_IRQ(unsigned int irq)
449 struct irq_desc *desc = irq_to_desc(irq);
450 struct irqaction *action;
451 unsigned int status;
453 kstat_incr_irqs_this_cpu(irq, desc);
455 if (CHECK_IRQ_PER_CPU(desc->status)) {
456 irqreturn_t action_ret;
459 * No locking required for CPU-local interrupts:
461 if (desc->chip->ack)
462 desc->chip->ack(irq);
463 if (likely(!(desc->status & IRQ_DISABLED))) {
464 action_ret = handle_IRQ_event(irq, desc->action);
465 if (!noirqdebug)
466 note_interrupt(irq, desc, action_ret);
468 desc->chip->end(irq);
469 return 1;
472 spin_lock(&desc->lock);
473 if (desc->chip->ack)
474 desc->chip->ack(irq);
476 * REPLAY is when Linux resends an IRQ that was dropped earlier
477 * WAITING is used by probe to mark irqs that are being tested
479 status = desc->status & ~(IRQ_REPLAY | IRQ_WAITING);
480 status |= IRQ_PENDING; /* we _want_ to handle it */
483 * If the IRQ is disabled for whatever reason, we cannot
484 * use the action we have.
486 action = NULL;
487 if (likely(!(status & (IRQ_DISABLED | IRQ_INPROGRESS)))) {
488 action = desc->action;
489 status &= ~IRQ_PENDING; /* we commit to handling */
490 status |= IRQ_INPROGRESS; /* we are handling it */
492 desc->status = status;
495 * If there is no IRQ handler or it was disabled, exit early.
496 * Since we set PENDING, if another processor is handling
497 * a different instance of this same irq, the other processor
498 * will take care of it.
500 if (unlikely(!action))
501 goto out;
504 * Edge triggered interrupts need to remember
505 * pending events.
506 * This applies to any hw interrupts that allow a second
507 * instance of the same irq to arrive while we are in do_IRQ
508 * or in the handler. But the code here only handles the _second_
509 * instance of the irq, not the third or fourth. So it is mostly
510 * useful for irq hardware that does not mask cleanly in an
511 * SMP environment.
513 for (;;) {
514 irqreturn_t action_ret;
516 spin_unlock(&desc->lock);
518 action_ret = handle_IRQ_event(irq, action);
519 if (!noirqdebug)
520 note_interrupt(irq, desc, action_ret);
522 spin_lock(&desc->lock);
523 if (likely(!(desc->status & IRQ_PENDING)))
524 break;
525 desc->status &= ~IRQ_PENDING;
527 desc->status &= ~IRQ_INPROGRESS;
529 out:
531 * The ->end() handler has to deal with interrupts which got
532 * disabled while the handler was running.
534 desc->chip->end(irq);
535 spin_unlock(&desc->lock);
537 return 1;
539 #endif
541 void early_init_irq_lock_class(void)
543 struct irq_desc *desc;
544 int i;
546 for_each_irq_desc(i, desc) {
547 lockdep_set_class(&desc->lock, &irq_desc_lock_class);
551 unsigned int kstat_irqs_cpu(unsigned int irq, int cpu)
553 struct irq_desc *desc = irq_to_desc(irq);
554 return desc ? desc->kstat_irqs[cpu] : 0;
556 EXPORT_SYMBOL(kstat_irqs_cpu);