irqdomain: augment add_simple() to allocate descs
[linux-2.6/libata-dev.git] / fs / exec.c
blob4f2bebc276c52f3ca60b75fbff9eeea8ea21bbe5
1 /*
2 * linux/fs/exec.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
7 /*
8 * #!-checking implemented by tytso.
9 */
11 * Demand-loading implemented 01.12.91 - no need to read anything but
12 * the header into memory. The inode of the executable is put into
13 * "current->executable", and page faults do the actual loading. Clean.
15 * Once more I can proudly say that linux stood up to being changed: it
16 * was less than 2 hours work to get demand-loading completely implemented.
18 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead,
19 * current->executable is only used by the procfs. This allows a dispatch
20 * table to check for several different types of binary formats. We keep
21 * trying until we recognize the file or we run out of supported binary
22 * formats.
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
28 #include <linux/mm.h>
29 #include <linux/stat.h>
30 #include <linux/fcntl.h>
31 #include <linux/swap.h>
32 #include <linux/string.h>
33 #include <linux/init.h>
34 #include <linux/pagemap.h>
35 #include <linux/perf_event.h>
36 #include <linux/highmem.h>
37 #include <linux/spinlock.h>
38 #include <linux/key.h>
39 #include <linux/personality.h>
40 #include <linux/binfmts.h>
41 #include <linux/utsname.h>
42 #include <linux/pid_namespace.h>
43 #include <linux/module.h>
44 #include <linux/namei.h>
45 #include <linux/mount.h>
46 #include <linux/security.h>
47 #include <linux/syscalls.h>
48 #include <linux/tsacct_kern.h>
49 #include <linux/cn_proc.h>
50 #include <linux/audit.h>
51 #include <linux/tracehook.h>
52 #include <linux/kmod.h>
53 #include <linux/fsnotify.h>
54 #include <linux/fs_struct.h>
55 #include <linux/pipe_fs_i.h>
56 #include <linux/oom.h>
57 #include <linux/compat.h>
59 #include <asm/uaccess.h>
60 #include <asm/mmu_context.h>
61 #include <asm/tlb.h>
62 #include <asm/exec.h>
64 #include <trace/events/task.h>
65 #include "internal.h"
66 #include "coredump.h"
68 #include <trace/events/sched.h>
70 int suid_dumpable = 0;
72 static LIST_HEAD(formats);
73 static DEFINE_RWLOCK(binfmt_lock);
75 void __register_binfmt(struct linux_binfmt * fmt, int insert)
77 BUG_ON(!fmt);
78 write_lock(&binfmt_lock);
79 insert ? list_add(&fmt->lh, &formats) :
80 list_add_tail(&fmt->lh, &formats);
81 write_unlock(&binfmt_lock);
84 EXPORT_SYMBOL(__register_binfmt);
86 void unregister_binfmt(struct linux_binfmt * fmt)
88 write_lock(&binfmt_lock);
89 list_del(&fmt->lh);
90 write_unlock(&binfmt_lock);
93 EXPORT_SYMBOL(unregister_binfmt);
95 static inline void put_binfmt(struct linux_binfmt * fmt)
97 module_put(fmt->module);
101 * Note that a shared library must be both readable and executable due to
102 * security reasons.
104 * Also note that we take the address to load from from the file itself.
106 SYSCALL_DEFINE1(uselib, const char __user *, library)
108 struct file *file;
109 char *tmp = getname(library);
110 int error = PTR_ERR(tmp);
111 static const struct open_flags uselib_flags = {
112 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
113 .acc_mode = MAY_READ | MAY_EXEC | MAY_OPEN,
114 .intent = LOOKUP_OPEN
117 if (IS_ERR(tmp))
118 goto out;
120 file = do_filp_open(AT_FDCWD, tmp, &uselib_flags, LOOKUP_FOLLOW);
121 putname(tmp);
122 error = PTR_ERR(file);
123 if (IS_ERR(file))
124 goto out;
126 error = -EINVAL;
127 if (!S_ISREG(file->f_path.dentry->d_inode->i_mode))
128 goto exit;
130 error = -EACCES;
131 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
132 goto exit;
134 fsnotify_open(file);
136 error = -ENOEXEC;
137 if(file->f_op) {
138 struct linux_binfmt * fmt;
140 read_lock(&binfmt_lock);
141 list_for_each_entry(fmt, &formats, lh) {
142 if (!fmt->load_shlib)
143 continue;
144 if (!try_module_get(fmt->module))
145 continue;
146 read_unlock(&binfmt_lock);
147 error = fmt->load_shlib(file);
148 read_lock(&binfmt_lock);
149 put_binfmt(fmt);
150 if (error != -ENOEXEC)
151 break;
153 read_unlock(&binfmt_lock);
155 exit:
156 fput(file);
157 out:
158 return error;
161 #ifdef CONFIG_MMU
163 * The nascent bprm->mm is not visible until exec_mmap() but it can
164 * use a lot of memory, account these pages in current->mm temporary
165 * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
166 * change the counter back via acct_arg_size(0).
168 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
170 struct mm_struct *mm = current->mm;
171 long diff = (long)(pages - bprm->vma_pages);
173 if (!mm || !diff)
174 return;
176 bprm->vma_pages = pages;
177 add_mm_counter(mm, MM_ANONPAGES, diff);
180 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
181 int write)
183 struct page *page;
184 int ret;
186 #ifdef CONFIG_STACK_GROWSUP
187 if (write) {
188 ret = expand_downwards(bprm->vma, pos);
189 if (ret < 0)
190 return NULL;
192 #endif
193 ret = get_user_pages(current, bprm->mm, pos,
194 1, write, 1, &page, NULL);
195 if (ret <= 0)
196 return NULL;
198 if (write) {
199 unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
200 struct rlimit *rlim;
202 acct_arg_size(bprm, size / PAGE_SIZE);
205 * We've historically supported up to 32 pages (ARG_MAX)
206 * of argument strings even with small stacks
208 if (size <= ARG_MAX)
209 return page;
212 * Limit to 1/4-th the stack size for the argv+env strings.
213 * This ensures that:
214 * - the remaining binfmt code will not run out of stack space,
215 * - the program will have a reasonable amount of stack left
216 * to work from.
218 rlim = current->signal->rlim;
219 if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur) / 4) {
220 put_page(page);
221 return NULL;
225 return page;
228 static void put_arg_page(struct page *page)
230 put_page(page);
233 static void free_arg_page(struct linux_binprm *bprm, int i)
237 static void free_arg_pages(struct linux_binprm *bprm)
241 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
242 struct page *page)
244 flush_cache_page(bprm->vma, pos, page_to_pfn(page));
247 static int __bprm_mm_init(struct linux_binprm *bprm)
249 int err;
250 struct vm_area_struct *vma = NULL;
251 struct mm_struct *mm = bprm->mm;
253 bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
254 if (!vma)
255 return -ENOMEM;
257 down_write(&mm->mmap_sem);
258 vma->vm_mm = mm;
261 * Place the stack at the largest stack address the architecture
262 * supports. Later, we'll move this to an appropriate place. We don't
263 * use STACK_TOP because that can depend on attributes which aren't
264 * configured yet.
266 BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
267 vma->vm_end = STACK_TOP_MAX;
268 vma->vm_start = vma->vm_end - PAGE_SIZE;
269 vma->vm_flags = VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
270 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
271 INIT_LIST_HEAD(&vma->anon_vma_chain);
273 err = insert_vm_struct(mm, vma);
274 if (err)
275 goto err;
277 mm->stack_vm = mm->total_vm = 1;
278 up_write(&mm->mmap_sem);
279 bprm->p = vma->vm_end - sizeof(void *);
280 return 0;
281 err:
282 up_write(&mm->mmap_sem);
283 bprm->vma = NULL;
284 kmem_cache_free(vm_area_cachep, vma);
285 return err;
288 static bool valid_arg_len(struct linux_binprm *bprm, long len)
290 return len <= MAX_ARG_STRLEN;
293 #else
295 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
299 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
300 int write)
302 struct page *page;
304 page = bprm->page[pos / PAGE_SIZE];
305 if (!page && write) {
306 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
307 if (!page)
308 return NULL;
309 bprm->page[pos / PAGE_SIZE] = page;
312 return page;
315 static void put_arg_page(struct page *page)
319 static void free_arg_page(struct linux_binprm *bprm, int i)
321 if (bprm->page[i]) {
322 __free_page(bprm->page[i]);
323 bprm->page[i] = NULL;
327 static void free_arg_pages(struct linux_binprm *bprm)
329 int i;
331 for (i = 0; i < MAX_ARG_PAGES; i++)
332 free_arg_page(bprm, i);
335 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
336 struct page *page)
340 static int __bprm_mm_init(struct linux_binprm *bprm)
342 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
343 return 0;
346 static bool valid_arg_len(struct linux_binprm *bprm, long len)
348 return len <= bprm->p;
351 #endif /* CONFIG_MMU */
354 * Create a new mm_struct and populate it with a temporary stack
355 * vm_area_struct. We don't have enough context at this point to set the stack
356 * flags, permissions, and offset, so we use temporary values. We'll update
357 * them later in setup_arg_pages().
359 int bprm_mm_init(struct linux_binprm *bprm)
361 int err;
362 struct mm_struct *mm = NULL;
364 bprm->mm = mm = mm_alloc();
365 err = -ENOMEM;
366 if (!mm)
367 goto err;
369 err = init_new_context(current, mm);
370 if (err)
371 goto err;
373 err = __bprm_mm_init(bprm);
374 if (err)
375 goto err;
377 return 0;
379 err:
380 if (mm) {
381 bprm->mm = NULL;
382 mmdrop(mm);
385 return err;
388 struct user_arg_ptr {
389 #ifdef CONFIG_COMPAT
390 bool is_compat;
391 #endif
392 union {
393 const char __user *const __user *native;
394 #ifdef CONFIG_COMPAT
395 compat_uptr_t __user *compat;
396 #endif
397 } ptr;
400 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
402 const char __user *native;
404 #ifdef CONFIG_COMPAT
405 if (unlikely(argv.is_compat)) {
406 compat_uptr_t compat;
408 if (get_user(compat, argv.ptr.compat + nr))
409 return ERR_PTR(-EFAULT);
411 return compat_ptr(compat);
413 #endif
415 if (get_user(native, argv.ptr.native + nr))
416 return ERR_PTR(-EFAULT);
418 return native;
422 * count() counts the number of strings in array ARGV.
424 static int count(struct user_arg_ptr argv, int max)
426 int i = 0;
428 if (argv.ptr.native != NULL) {
429 for (;;) {
430 const char __user *p = get_user_arg_ptr(argv, i);
432 if (!p)
433 break;
435 if (IS_ERR(p))
436 return -EFAULT;
438 if (i++ >= max)
439 return -E2BIG;
441 if (fatal_signal_pending(current))
442 return -ERESTARTNOHAND;
443 cond_resched();
446 return i;
450 * 'copy_strings()' copies argument/environment strings from the old
451 * processes's memory to the new process's stack. The call to get_user_pages()
452 * ensures the destination page is created and not swapped out.
454 static int copy_strings(int argc, struct user_arg_ptr argv,
455 struct linux_binprm *bprm)
457 struct page *kmapped_page = NULL;
458 char *kaddr = NULL;
459 unsigned long kpos = 0;
460 int ret;
462 while (argc-- > 0) {
463 const char __user *str;
464 int len;
465 unsigned long pos;
467 ret = -EFAULT;
468 str = get_user_arg_ptr(argv, argc);
469 if (IS_ERR(str))
470 goto out;
472 len = strnlen_user(str, MAX_ARG_STRLEN);
473 if (!len)
474 goto out;
476 ret = -E2BIG;
477 if (!valid_arg_len(bprm, len))
478 goto out;
480 /* We're going to work our way backwords. */
481 pos = bprm->p;
482 str += len;
483 bprm->p -= len;
485 while (len > 0) {
486 int offset, bytes_to_copy;
488 if (fatal_signal_pending(current)) {
489 ret = -ERESTARTNOHAND;
490 goto out;
492 cond_resched();
494 offset = pos % PAGE_SIZE;
495 if (offset == 0)
496 offset = PAGE_SIZE;
498 bytes_to_copy = offset;
499 if (bytes_to_copy > len)
500 bytes_to_copy = len;
502 offset -= bytes_to_copy;
503 pos -= bytes_to_copy;
504 str -= bytes_to_copy;
505 len -= bytes_to_copy;
507 if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
508 struct page *page;
510 page = get_arg_page(bprm, pos, 1);
511 if (!page) {
512 ret = -E2BIG;
513 goto out;
516 if (kmapped_page) {
517 flush_kernel_dcache_page(kmapped_page);
518 kunmap(kmapped_page);
519 put_arg_page(kmapped_page);
521 kmapped_page = page;
522 kaddr = kmap(kmapped_page);
523 kpos = pos & PAGE_MASK;
524 flush_arg_page(bprm, kpos, kmapped_page);
526 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
527 ret = -EFAULT;
528 goto out;
532 ret = 0;
533 out:
534 if (kmapped_page) {
535 flush_kernel_dcache_page(kmapped_page);
536 kunmap(kmapped_page);
537 put_arg_page(kmapped_page);
539 return ret;
543 * Like copy_strings, but get argv and its values from kernel memory.
545 int copy_strings_kernel(int argc, const char *const *__argv,
546 struct linux_binprm *bprm)
548 int r;
549 mm_segment_t oldfs = get_fs();
550 struct user_arg_ptr argv = {
551 .ptr.native = (const char __user *const __user *)__argv,
554 set_fs(KERNEL_DS);
555 r = copy_strings(argc, argv, bprm);
556 set_fs(oldfs);
558 return r;
560 EXPORT_SYMBOL(copy_strings_kernel);
562 #ifdef CONFIG_MMU
565 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once
566 * the binfmt code determines where the new stack should reside, we shift it to
567 * its final location. The process proceeds as follows:
569 * 1) Use shift to calculate the new vma endpoints.
570 * 2) Extend vma to cover both the old and new ranges. This ensures the
571 * arguments passed to subsequent functions are consistent.
572 * 3) Move vma's page tables to the new range.
573 * 4) Free up any cleared pgd range.
574 * 5) Shrink the vma to cover only the new range.
576 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
578 struct mm_struct *mm = vma->vm_mm;
579 unsigned long old_start = vma->vm_start;
580 unsigned long old_end = vma->vm_end;
581 unsigned long length = old_end - old_start;
582 unsigned long new_start = old_start - shift;
583 unsigned long new_end = old_end - shift;
584 struct mmu_gather tlb;
586 BUG_ON(new_start > new_end);
589 * ensure there are no vmas between where we want to go
590 * and where we are
592 if (vma != find_vma(mm, new_start))
593 return -EFAULT;
596 * cover the whole range: [new_start, old_end)
598 if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
599 return -ENOMEM;
602 * move the page tables downwards, on failure we rely on
603 * process cleanup to remove whatever mess we made.
605 if (length != move_page_tables(vma, old_start,
606 vma, new_start, length, false))
607 return -ENOMEM;
609 lru_add_drain();
610 tlb_gather_mmu(&tlb, mm, 0);
611 if (new_end > old_start) {
613 * when the old and new regions overlap clear from new_end.
615 free_pgd_range(&tlb, new_end, old_end, new_end,
616 vma->vm_next ? vma->vm_next->vm_start : 0);
617 } else {
619 * otherwise, clean from old_start; this is done to not touch
620 * the address space in [new_end, old_start) some architectures
621 * have constraints on va-space that make this illegal (IA64) -
622 * for the others its just a little faster.
624 free_pgd_range(&tlb, old_start, old_end, new_end,
625 vma->vm_next ? vma->vm_next->vm_start : 0);
627 tlb_finish_mmu(&tlb, new_end, old_end);
630 * Shrink the vma to just the new range. Always succeeds.
632 vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
634 return 0;
638 * Finalizes the stack vm_area_struct. The flags and permissions are updated,
639 * the stack is optionally relocated, and some extra space is added.
641 int setup_arg_pages(struct linux_binprm *bprm,
642 unsigned long stack_top,
643 int executable_stack)
645 unsigned long ret;
646 unsigned long stack_shift;
647 struct mm_struct *mm = current->mm;
648 struct vm_area_struct *vma = bprm->vma;
649 struct vm_area_struct *prev = NULL;
650 unsigned long vm_flags;
651 unsigned long stack_base;
652 unsigned long stack_size;
653 unsigned long stack_expand;
654 unsigned long rlim_stack;
656 #ifdef CONFIG_STACK_GROWSUP
657 /* Limit stack size to 1GB */
658 stack_base = rlimit_max(RLIMIT_STACK);
659 if (stack_base > (1 << 30))
660 stack_base = 1 << 30;
662 /* Make sure we didn't let the argument array grow too large. */
663 if (vma->vm_end - vma->vm_start > stack_base)
664 return -ENOMEM;
666 stack_base = PAGE_ALIGN(stack_top - stack_base);
668 stack_shift = vma->vm_start - stack_base;
669 mm->arg_start = bprm->p - stack_shift;
670 bprm->p = vma->vm_end - stack_shift;
671 #else
672 stack_top = arch_align_stack(stack_top);
673 stack_top = PAGE_ALIGN(stack_top);
675 if (unlikely(stack_top < mmap_min_addr) ||
676 unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
677 return -ENOMEM;
679 stack_shift = vma->vm_end - stack_top;
681 bprm->p -= stack_shift;
682 mm->arg_start = bprm->p;
683 #endif
685 if (bprm->loader)
686 bprm->loader -= stack_shift;
687 bprm->exec -= stack_shift;
689 down_write(&mm->mmap_sem);
690 vm_flags = VM_STACK_FLAGS;
693 * Adjust stack execute permissions; explicitly enable for
694 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
695 * (arch default) otherwise.
697 if (unlikely(executable_stack == EXSTACK_ENABLE_X))
698 vm_flags |= VM_EXEC;
699 else if (executable_stack == EXSTACK_DISABLE_X)
700 vm_flags &= ~VM_EXEC;
701 vm_flags |= mm->def_flags;
702 vm_flags |= VM_STACK_INCOMPLETE_SETUP;
704 ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
705 vm_flags);
706 if (ret)
707 goto out_unlock;
708 BUG_ON(prev != vma);
710 /* Move stack pages down in memory. */
711 if (stack_shift) {
712 ret = shift_arg_pages(vma, stack_shift);
713 if (ret)
714 goto out_unlock;
717 /* mprotect_fixup is overkill to remove the temporary stack flags */
718 vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
720 stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
721 stack_size = vma->vm_end - vma->vm_start;
723 * Align this down to a page boundary as expand_stack
724 * will align it up.
726 rlim_stack = rlimit(RLIMIT_STACK) & PAGE_MASK;
727 #ifdef CONFIG_STACK_GROWSUP
728 if (stack_size + stack_expand > rlim_stack)
729 stack_base = vma->vm_start + rlim_stack;
730 else
731 stack_base = vma->vm_end + stack_expand;
732 #else
733 if (stack_size + stack_expand > rlim_stack)
734 stack_base = vma->vm_end - rlim_stack;
735 else
736 stack_base = vma->vm_start - stack_expand;
737 #endif
738 current->mm->start_stack = bprm->p;
739 ret = expand_stack(vma, stack_base);
740 if (ret)
741 ret = -EFAULT;
743 out_unlock:
744 up_write(&mm->mmap_sem);
745 return ret;
747 EXPORT_SYMBOL(setup_arg_pages);
749 #endif /* CONFIG_MMU */
751 struct file *open_exec(const char *name)
753 struct file *file;
754 int err;
755 static const struct open_flags open_exec_flags = {
756 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
757 .acc_mode = MAY_EXEC | MAY_OPEN,
758 .intent = LOOKUP_OPEN
761 file = do_filp_open(AT_FDCWD, name, &open_exec_flags, LOOKUP_FOLLOW);
762 if (IS_ERR(file))
763 goto out;
765 err = -EACCES;
766 if (!S_ISREG(file->f_path.dentry->d_inode->i_mode))
767 goto exit;
769 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
770 goto exit;
772 fsnotify_open(file);
774 err = deny_write_access(file);
775 if (err)
776 goto exit;
778 out:
779 return file;
781 exit:
782 fput(file);
783 return ERR_PTR(err);
785 EXPORT_SYMBOL(open_exec);
787 int kernel_read(struct file *file, loff_t offset,
788 char *addr, unsigned long count)
790 mm_segment_t old_fs;
791 loff_t pos = offset;
792 int result;
794 old_fs = get_fs();
795 set_fs(get_ds());
796 /* The cast to a user pointer is valid due to the set_fs() */
797 result = vfs_read(file, (void __user *)addr, count, &pos);
798 set_fs(old_fs);
799 return result;
802 EXPORT_SYMBOL(kernel_read);
804 static int exec_mmap(struct mm_struct *mm)
806 struct task_struct *tsk;
807 struct mm_struct * old_mm, *active_mm;
809 /* Notify parent that we're no longer interested in the old VM */
810 tsk = current;
811 old_mm = current->mm;
812 mm_release(tsk, old_mm);
814 if (old_mm) {
815 sync_mm_rss(old_mm);
817 * Make sure that if there is a core dump in progress
818 * for the old mm, we get out and die instead of going
819 * through with the exec. We must hold mmap_sem around
820 * checking core_state and changing tsk->mm.
822 down_read(&old_mm->mmap_sem);
823 if (unlikely(old_mm->core_state)) {
824 up_read(&old_mm->mmap_sem);
825 return -EINTR;
828 task_lock(tsk);
829 active_mm = tsk->active_mm;
830 tsk->mm = mm;
831 tsk->active_mm = mm;
832 activate_mm(active_mm, mm);
833 task_unlock(tsk);
834 arch_pick_mmap_layout(mm);
835 if (old_mm) {
836 up_read(&old_mm->mmap_sem);
837 BUG_ON(active_mm != old_mm);
838 setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
839 mm_update_next_owner(old_mm);
840 mmput(old_mm);
841 return 0;
843 mmdrop(active_mm);
844 return 0;
848 * This function makes sure the current process has its own signal table,
849 * so that flush_signal_handlers can later reset the handlers without
850 * disturbing other processes. (Other processes might share the signal
851 * table via the CLONE_SIGHAND option to clone().)
853 static int de_thread(struct task_struct *tsk)
855 struct signal_struct *sig = tsk->signal;
856 struct sighand_struct *oldsighand = tsk->sighand;
857 spinlock_t *lock = &oldsighand->siglock;
859 if (thread_group_empty(tsk))
860 goto no_thread_group;
863 * Kill all other threads in the thread group.
865 spin_lock_irq(lock);
866 if (signal_group_exit(sig)) {
868 * Another group action in progress, just
869 * return so that the signal is processed.
871 spin_unlock_irq(lock);
872 return -EAGAIN;
875 sig->group_exit_task = tsk;
876 sig->notify_count = zap_other_threads(tsk);
877 if (!thread_group_leader(tsk))
878 sig->notify_count--;
880 while (sig->notify_count) {
881 __set_current_state(TASK_KILLABLE);
882 spin_unlock_irq(lock);
883 schedule();
884 if (unlikely(__fatal_signal_pending(tsk)))
885 goto killed;
886 spin_lock_irq(lock);
888 spin_unlock_irq(lock);
891 * At this point all other threads have exited, all we have to
892 * do is to wait for the thread group leader to become inactive,
893 * and to assume its PID:
895 if (!thread_group_leader(tsk)) {
896 struct task_struct *leader = tsk->group_leader;
898 sig->notify_count = -1; /* for exit_notify() */
899 for (;;) {
900 write_lock_irq(&tasklist_lock);
901 if (likely(leader->exit_state))
902 break;
903 __set_current_state(TASK_KILLABLE);
904 write_unlock_irq(&tasklist_lock);
905 schedule();
906 if (unlikely(__fatal_signal_pending(tsk)))
907 goto killed;
911 * The only record we have of the real-time age of a
912 * process, regardless of execs it's done, is start_time.
913 * All the past CPU time is accumulated in signal_struct
914 * from sister threads now dead. But in this non-leader
915 * exec, nothing survives from the original leader thread,
916 * whose birth marks the true age of this process now.
917 * When we take on its identity by switching to its PID, we
918 * also take its birthdate (always earlier than our own).
920 tsk->start_time = leader->start_time;
922 BUG_ON(!same_thread_group(leader, tsk));
923 BUG_ON(has_group_leader_pid(tsk));
925 * An exec() starts a new thread group with the
926 * TGID of the previous thread group. Rehash the
927 * two threads with a switched PID, and release
928 * the former thread group leader:
931 /* Become a process group leader with the old leader's pid.
932 * The old leader becomes a thread of the this thread group.
933 * Note: The old leader also uses this pid until release_task
934 * is called. Odd but simple and correct.
936 detach_pid(tsk, PIDTYPE_PID);
937 tsk->pid = leader->pid;
938 attach_pid(tsk, PIDTYPE_PID, task_pid(leader));
939 transfer_pid(leader, tsk, PIDTYPE_PGID);
940 transfer_pid(leader, tsk, PIDTYPE_SID);
942 list_replace_rcu(&leader->tasks, &tsk->tasks);
943 list_replace_init(&leader->sibling, &tsk->sibling);
945 tsk->group_leader = tsk;
946 leader->group_leader = tsk;
948 tsk->exit_signal = SIGCHLD;
949 leader->exit_signal = -1;
951 BUG_ON(leader->exit_state != EXIT_ZOMBIE);
952 leader->exit_state = EXIT_DEAD;
955 * We are going to release_task()->ptrace_unlink() silently,
956 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
957 * the tracer wont't block again waiting for this thread.
959 if (unlikely(leader->ptrace))
960 __wake_up_parent(leader, leader->parent);
961 write_unlock_irq(&tasklist_lock);
963 release_task(leader);
966 sig->group_exit_task = NULL;
967 sig->notify_count = 0;
969 no_thread_group:
970 /* we have changed execution domain */
971 tsk->exit_signal = SIGCHLD;
973 exit_itimers(sig);
974 flush_itimer_signals();
976 if (atomic_read(&oldsighand->count) != 1) {
977 struct sighand_struct *newsighand;
979 * This ->sighand is shared with the CLONE_SIGHAND
980 * but not CLONE_THREAD task, switch to the new one.
982 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
983 if (!newsighand)
984 return -ENOMEM;
986 atomic_set(&newsighand->count, 1);
987 memcpy(newsighand->action, oldsighand->action,
988 sizeof(newsighand->action));
990 write_lock_irq(&tasklist_lock);
991 spin_lock(&oldsighand->siglock);
992 rcu_assign_pointer(tsk->sighand, newsighand);
993 spin_unlock(&oldsighand->siglock);
994 write_unlock_irq(&tasklist_lock);
996 __cleanup_sighand(oldsighand);
999 BUG_ON(!thread_group_leader(tsk));
1000 return 0;
1002 killed:
1003 /* protects against exit_notify() and __exit_signal() */
1004 read_lock(&tasklist_lock);
1005 sig->group_exit_task = NULL;
1006 sig->notify_count = 0;
1007 read_unlock(&tasklist_lock);
1008 return -EAGAIN;
1011 char *get_task_comm(char *buf, struct task_struct *tsk)
1013 /* buf must be at least sizeof(tsk->comm) in size */
1014 task_lock(tsk);
1015 strncpy(buf, tsk->comm, sizeof(tsk->comm));
1016 task_unlock(tsk);
1017 return buf;
1019 EXPORT_SYMBOL_GPL(get_task_comm);
1022 * These functions flushes out all traces of the currently running executable
1023 * so that a new one can be started
1026 void set_task_comm(struct task_struct *tsk, char *buf)
1028 task_lock(tsk);
1030 trace_task_rename(tsk, buf);
1033 * Threads may access current->comm without holding
1034 * the task lock, so write the string carefully.
1035 * Readers without a lock may see incomplete new
1036 * names but are safe from non-terminating string reads.
1038 memset(tsk->comm, 0, TASK_COMM_LEN);
1039 wmb();
1040 strlcpy(tsk->comm, buf, sizeof(tsk->comm));
1041 task_unlock(tsk);
1042 perf_event_comm(tsk);
1045 static void filename_to_taskname(char *tcomm, const char *fn, unsigned int len)
1047 int i, ch;
1049 /* Copies the binary name from after last slash */
1050 for (i = 0; (ch = *(fn++)) != '\0';) {
1051 if (ch == '/')
1052 i = 0; /* overwrite what we wrote */
1053 else
1054 if (i < len - 1)
1055 tcomm[i++] = ch;
1057 tcomm[i] = '\0';
1060 int flush_old_exec(struct linux_binprm * bprm)
1062 int retval;
1065 * Make sure we have a private signal table and that
1066 * we are unassociated from the previous thread group.
1068 retval = de_thread(current);
1069 if (retval)
1070 goto out;
1072 set_mm_exe_file(bprm->mm, bprm->file);
1074 filename_to_taskname(bprm->tcomm, bprm->filename, sizeof(bprm->tcomm));
1076 * Release all of the old mmap stuff
1078 acct_arg_size(bprm, 0);
1079 retval = exec_mmap(bprm->mm);
1080 if (retval)
1081 goto out;
1083 bprm->mm = NULL; /* We're using it now */
1085 set_fs(USER_DS);
1086 current->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC | PF_KTHREAD);
1087 flush_thread();
1088 current->personality &= ~bprm->per_clear;
1090 return 0;
1092 out:
1093 return retval;
1095 EXPORT_SYMBOL(flush_old_exec);
1097 void would_dump(struct linux_binprm *bprm, struct file *file)
1099 if (inode_permission(file->f_path.dentry->d_inode, MAY_READ) < 0)
1100 bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1102 EXPORT_SYMBOL(would_dump);
1104 void setup_new_exec(struct linux_binprm * bprm)
1106 arch_pick_mmap_layout(current->mm);
1108 /* This is the point of no return */
1109 current->sas_ss_sp = current->sas_ss_size = 0;
1111 if (uid_eq(current_euid(), current_uid()) && gid_eq(current_egid(), current_gid()))
1112 set_dumpable(current->mm, SUID_DUMPABLE_ENABLED);
1113 else
1114 set_dumpable(current->mm, suid_dumpable);
1116 set_task_comm(current, bprm->tcomm);
1118 /* Set the new mm task size. We have to do that late because it may
1119 * depend on TIF_32BIT which is only updated in flush_thread() on
1120 * some architectures like powerpc
1122 current->mm->task_size = TASK_SIZE;
1124 /* install the new credentials */
1125 if (!uid_eq(bprm->cred->uid, current_euid()) ||
1126 !gid_eq(bprm->cred->gid, current_egid())) {
1127 current->pdeath_signal = 0;
1128 } else {
1129 would_dump(bprm, bprm->file);
1130 if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP)
1131 set_dumpable(current->mm, suid_dumpable);
1135 * Flush performance counters when crossing a
1136 * security domain:
1138 if (!get_dumpable(current->mm))
1139 perf_event_exit_task(current);
1141 /* An exec changes our domain. We are no longer part of the thread
1142 group */
1144 current->self_exec_id++;
1146 flush_signal_handlers(current, 0);
1147 do_close_on_exec(current->files);
1149 EXPORT_SYMBOL(setup_new_exec);
1152 * Prepare credentials and lock ->cred_guard_mutex.
1153 * install_exec_creds() commits the new creds and drops the lock.
1154 * Or, if exec fails before, free_bprm() should release ->cred and
1155 * and unlock.
1157 int prepare_bprm_creds(struct linux_binprm *bprm)
1159 if (mutex_lock_interruptible(&current->signal->cred_guard_mutex))
1160 return -ERESTARTNOINTR;
1162 bprm->cred = prepare_exec_creds();
1163 if (likely(bprm->cred))
1164 return 0;
1166 mutex_unlock(&current->signal->cred_guard_mutex);
1167 return -ENOMEM;
1170 void free_bprm(struct linux_binprm *bprm)
1172 free_arg_pages(bprm);
1173 if (bprm->cred) {
1174 mutex_unlock(&current->signal->cred_guard_mutex);
1175 abort_creds(bprm->cred);
1177 kfree(bprm);
1181 * install the new credentials for this executable
1183 void install_exec_creds(struct linux_binprm *bprm)
1185 security_bprm_committing_creds(bprm);
1187 commit_creds(bprm->cred);
1188 bprm->cred = NULL;
1190 * cred_guard_mutex must be held at least to this point to prevent
1191 * ptrace_attach() from altering our determination of the task's
1192 * credentials; any time after this it may be unlocked.
1194 security_bprm_committed_creds(bprm);
1195 mutex_unlock(&current->signal->cred_guard_mutex);
1197 EXPORT_SYMBOL(install_exec_creds);
1200 * determine how safe it is to execute the proposed program
1201 * - the caller must hold ->cred_guard_mutex to protect against
1202 * PTRACE_ATTACH
1204 static int check_unsafe_exec(struct linux_binprm *bprm)
1206 struct task_struct *p = current, *t;
1207 unsigned n_fs;
1208 int res = 0;
1210 if (p->ptrace) {
1211 if (p->ptrace & PT_PTRACE_CAP)
1212 bprm->unsafe |= LSM_UNSAFE_PTRACE_CAP;
1213 else
1214 bprm->unsafe |= LSM_UNSAFE_PTRACE;
1218 * This isn't strictly necessary, but it makes it harder for LSMs to
1219 * mess up.
1221 if (current->no_new_privs)
1222 bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
1224 n_fs = 1;
1225 spin_lock(&p->fs->lock);
1226 rcu_read_lock();
1227 for (t = next_thread(p); t != p; t = next_thread(t)) {
1228 if (t->fs == p->fs)
1229 n_fs++;
1231 rcu_read_unlock();
1233 if (p->fs->users > n_fs) {
1234 bprm->unsafe |= LSM_UNSAFE_SHARE;
1235 } else {
1236 res = -EAGAIN;
1237 if (!p->fs->in_exec) {
1238 p->fs->in_exec = 1;
1239 res = 1;
1242 spin_unlock(&p->fs->lock);
1244 return res;
1248 * Fill the binprm structure from the inode.
1249 * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1251 * This may be called multiple times for binary chains (scripts for example).
1253 int prepare_binprm(struct linux_binprm *bprm)
1255 umode_t mode;
1256 struct inode * inode = bprm->file->f_path.dentry->d_inode;
1257 int retval;
1259 mode = inode->i_mode;
1260 if (bprm->file->f_op == NULL)
1261 return -EACCES;
1263 /* clear any previous set[ug]id data from a previous binary */
1264 bprm->cred->euid = current_euid();
1265 bprm->cred->egid = current_egid();
1267 if (!(bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID) &&
1268 !current->no_new_privs) {
1269 /* Set-uid? */
1270 if (mode & S_ISUID) {
1271 if (!kuid_has_mapping(bprm->cred->user_ns, inode->i_uid))
1272 return -EPERM;
1273 bprm->per_clear |= PER_CLEAR_ON_SETID;
1274 bprm->cred->euid = inode->i_uid;
1278 /* Set-gid? */
1280 * If setgid is set but no group execute bit then this
1281 * is a candidate for mandatory locking, not a setgid
1282 * executable.
1284 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1285 if (!kgid_has_mapping(bprm->cred->user_ns, inode->i_gid))
1286 return -EPERM;
1287 bprm->per_clear |= PER_CLEAR_ON_SETID;
1288 bprm->cred->egid = inode->i_gid;
1292 /* fill in binprm security blob */
1293 retval = security_bprm_set_creds(bprm);
1294 if (retval)
1295 return retval;
1296 bprm->cred_prepared = 1;
1298 memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1299 return kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE);
1302 EXPORT_SYMBOL(prepare_binprm);
1305 * Arguments are '\0' separated strings found at the location bprm->p
1306 * points to; chop off the first by relocating brpm->p to right after
1307 * the first '\0' encountered.
1309 int remove_arg_zero(struct linux_binprm *bprm)
1311 int ret = 0;
1312 unsigned long offset;
1313 char *kaddr;
1314 struct page *page;
1316 if (!bprm->argc)
1317 return 0;
1319 do {
1320 offset = bprm->p & ~PAGE_MASK;
1321 page = get_arg_page(bprm, bprm->p, 0);
1322 if (!page) {
1323 ret = -EFAULT;
1324 goto out;
1326 kaddr = kmap_atomic(page);
1328 for (; offset < PAGE_SIZE && kaddr[offset];
1329 offset++, bprm->p++)
1332 kunmap_atomic(kaddr);
1333 put_arg_page(page);
1335 if (offset == PAGE_SIZE)
1336 free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1);
1337 } while (offset == PAGE_SIZE);
1339 bprm->p++;
1340 bprm->argc--;
1341 ret = 0;
1343 out:
1344 return ret;
1346 EXPORT_SYMBOL(remove_arg_zero);
1349 * cycle the list of binary formats handler, until one recognizes the image
1351 int search_binary_handler(struct linux_binprm *bprm,struct pt_regs *regs)
1353 unsigned int depth = bprm->recursion_depth;
1354 int try,retval;
1355 struct linux_binfmt *fmt;
1356 pid_t old_pid, old_vpid;
1358 retval = security_bprm_check(bprm);
1359 if (retval)
1360 return retval;
1362 retval = audit_bprm(bprm);
1363 if (retval)
1364 return retval;
1366 /* Need to fetch pid before load_binary changes it */
1367 old_pid = current->pid;
1368 rcu_read_lock();
1369 old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1370 rcu_read_unlock();
1372 retval = -ENOENT;
1373 for (try=0; try<2; try++) {
1374 read_lock(&binfmt_lock);
1375 list_for_each_entry(fmt, &formats, lh) {
1376 int (*fn)(struct linux_binprm *, struct pt_regs *) = fmt->load_binary;
1377 if (!fn)
1378 continue;
1379 if (!try_module_get(fmt->module))
1380 continue;
1381 read_unlock(&binfmt_lock);
1382 retval = fn(bprm, regs);
1384 * Restore the depth counter to its starting value
1385 * in this call, so we don't have to rely on every
1386 * load_binary function to restore it on return.
1388 bprm->recursion_depth = depth;
1389 if (retval >= 0) {
1390 if (depth == 0) {
1391 trace_sched_process_exec(current, old_pid, bprm);
1392 ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1394 put_binfmt(fmt);
1395 allow_write_access(bprm->file);
1396 if (bprm->file)
1397 fput(bprm->file);
1398 bprm->file = NULL;
1399 current->did_exec = 1;
1400 proc_exec_connector(current);
1401 return retval;
1403 read_lock(&binfmt_lock);
1404 put_binfmt(fmt);
1405 if (retval != -ENOEXEC || bprm->mm == NULL)
1406 break;
1407 if (!bprm->file) {
1408 read_unlock(&binfmt_lock);
1409 return retval;
1412 read_unlock(&binfmt_lock);
1413 #ifdef CONFIG_MODULES
1414 if (retval != -ENOEXEC || bprm->mm == NULL) {
1415 break;
1416 } else {
1417 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1418 if (printable(bprm->buf[0]) &&
1419 printable(bprm->buf[1]) &&
1420 printable(bprm->buf[2]) &&
1421 printable(bprm->buf[3]))
1422 break; /* -ENOEXEC */
1423 if (try)
1424 break; /* -ENOEXEC */
1425 request_module("binfmt-%04x", *(unsigned short *)(&bprm->buf[2]));
1427 #else
1428 break;
1429 #endif
1431 return retval;
1434 EXPORT_SYMBOL(search_binary_handler);
1437 * sys_execve() executes a new program.
1439 static int do_execve_common(const char *filename,
1440 struct user_arg_ptr argv,
1441 struct user_arg_ptr envp,
1442 struct pt_regs *regs)
1444 struct linux_binprm *bprm;
1445 struct file *file;
1446 struct files_struct *displaced;
1447 bool clear_in_exec;
1448 int retval;
1449 const struct cred *cred = current_cred();
1452 * We move the actual failure in case of RLIMIT_NPROC excess from
1453 * set*uid() to execve() because too many poorly written programs
1454 * don't check setuid() return code. Here we additionally recheck
1455 * whether NPROC limit is still exceeded.
1457 if ((current->flags & PF_NPROC_EXCEEDED) &&
1458 atomic_read(&cred->user->processes) > rlimit(RLIMIT_NPROC)) {
1459 retval = -EAGAIN;
1460 goto out_ret;
1463 /* We're below the limit (still or again), so we don't want to make
1464 * further execve() calls fail. */
1465 current->flags &= ~PF_NPROC_EXCEEDED;
1467 retval = unshare_files(&displaced);
1468 if (retval)
1469 goto out_ret;
1471 retval = -ENOMEM;
1472 bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1473 if (!bprm)
1474 goto out_files;
1476 retval = prepare_bprm_creds(bprm);
1477 if (retval)
1478 goto out_free;
1480 retval = check_unsafe_exec(bprm);
1481 if (retval < 0)
1482 goto out_free;
1483 clear_in_exec = retval;
1484 current->in_execve = 1;
1486 file = open_exec(filename);
1487 retval = PTR_ERR(file);
1488 if (IS_ERR(file))
1489 goto out_unmark;
1491 sched_exec();
1493 bprm->file = file;
1494 bprm->filename = filename;
1495 bprm->interp = filename;
1497 retval = bprm_mm_init(bprm);
1498 if (retval)
1499 goto out_file;
1501 bprm->argc = count(argv, MAX_ARG_STRINGS);
1502 if ((retval = bprm->argc) < 0)
1503 goto out;
1505 bprm->envc = count(envp, MAX_ARG_STRINGS);
1506 if ((retval = bprm->envc) < 0)
1507 goto out;
1509 retval = prepare_binprm(bprm);
1510 if (retval < 0)
1511 goto out;
1513 retval = copy_strings_kernel(1, &bprm->filename, bprm);
1514 if (retval < 0)
1515 goto out;
1517 bprm->exec = bprm->p;
1518 retval = copy_strings(bprm->envc, envp, bprm);
1519 if (retval < 0)
1520 goto out;
1522 retval = copy_strings(bprm->argc, argv, bprm);
1523 if (retval < 0)
1524 goto out;
1526 retval = search_binary_handler(bprm,regs);
1527 if (retval < 0)
1528 goto out;
1530 /* execve succeeded */
1531 current->fs->in_exec = 0;
1532 current->in_execve = 0;
1533 acct_update_integrals(current);
1534 free_bprm(bprm);
1535 if (displaced)
1536 put_files_struct(displaced);
1537 return retval;
1539 out:
1540 if (bprm->mm) {
1541 acct_arg_size(bprm, 0);
1542 mmput(bprm->mm);
1545 out_file:
1546 if (bprm->file) {
1547 allow_write_access(bprm->file);
1548 fput(bprm->file);
1551 out_unmark:
1552 if (clear_in_exec)
1553 current->fs->in_exec = 0;
1554 current->in_execve = 0;
1556 out_free:
1557 free_bprm(bprm);
1559 out_files:
1560 if (displaced)
1561 reset_files_struct(displaced);
1562 out_ret:
1563 return retval;
1566 int do_execve(const char *filename,
1567 const char __user *const __user *__argv,
1568 const char __user *const __user *__envp,
1569 struct pt_regs *regs)
1571 struct user_arg_ptr argv = { .ptr.native = __argv };
1572 struct user_arg_ptr envp = { .ptr.native = __envp };
1573 return do_execve_common(filename, argv, envp, regs);
1576 #ifdef CONFIG_COMPAT
1577 int compat_do_execve(char *filename,
1578 compat_uptr_t __user *__argv,
1579 compat_uptr_t __user *__envp,
1580 struct pt_regs *regs)
1582 struct user_arg_ptr argv = {
1583 .is_compat = true,
1584 .ptr.compat = __argv,
1586 struct user_arg_ptr envp = {
1587 .is_compat = true,
1588 .ptr.compat = __envp,
1590 return do_execve_common(filename, argv, envp, regs);
1592 #endif
1594 void set_binfmt(struct linux_binfmt *new)
1596 struct mm_struct *mm = current->mm;
1598 if (mm->binfmt)
1599 module_put(mm->binfmt->module);
1601 mm->binfmt = new;
1602 if (new)
1603 __module_get(new->module);
1606 EXPORT_SYMBOL(set_binfmt);
1609 * set_dumpable converts traditional three-value dumpable to two flags and
1610 * stores them into mm->flags. It modifies lower two bits of mm->flags, but
1611 * these bits are not changed atomically. So get_dumpable can observe the
1612 * intermediate state. To avoid doing unexpected behavior, get get_dumpable
1613 * return either old dumpable or new one by paying attention to the order of
1614 * modifying the bits.
1616 * dumpable | mm->flags (binary)
1617 * old new | initial interim final
1618 * ---------+-----------------------
1619 * 0 1 | 00 01 01
1620 * 0 2 | 00 10(*) 11
1621 * 1 0 | 01 00 00
1622 * 1 2 | 01 11 11
1623 * 2 0 | 11 10(*) 00
1624 * 2 1 | 11 11 01
1626 * (*) get_dumpable regards interim value of 10 as 11.
1628 void set_dumpable(struct mm_struct *mm, int value)
1630 switch (value) {
1631 case SUID_DUMPABLE_DISABLED:
1632 clear_bit(MMF_DUMPABLE, &mm->flags);
1633 smp_wmb();
1634 clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1635 break;
1636 case SUID_DUMPABLE_ENABLED:
1637 set_bit(MMF_DUMPABLE, &mm->flags);
1638 smp_wmb();
1639 clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1640 break;
1641 case SUID_DUMPABLE_SAFE:
1642 set_bit(MMF_DUMP_SECURELY, &mm->flags);
1643 smp_wmb();
1644 set_bit(MMF_DUMPABLE, &mm->flags);
1645 break;
1649 int __get_dumpable(unsigned long mm_flags)
1651 int ret;
1653 ret = mm_flags & MMF_DUMPABLE_MASK;
1654 return (ret > SUID_DUMPABLE_ENABLED) ? SUID_DUMPABLE_SAFE : ret;
1657 int get_dumpable(struct mm_struct *mm)
1659 return __get_dumpable(mm->flags);