Merge commit 'v2.6.30-rc1' into x86/urgent
[linux-2.6/libata-dev.git] / drivers / input / input.c
blobec3db3ade1182b01ef663a946c85de10efa54023
1 /*
2 * The input core
4 * Copyright (c) 1999-2002 Vojtech Pavlik
5 */
7 /*
8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms of the GNU General Public License version 2 as published by
10 * the Free Software Foundation.
13 #include <linux/init.h>
14 #include <linux/input.h>
15 #include <linux/module.h>
16 #include <linux/random.h>
17 #include <linux/major.h>
18 #include <linux/proc_fs.h>
19 #include <linux/seq_file.h>
20 #include <linux/poll.h>
21 #include <linux/device.h>
22 #include <linux/mutex.h>
23 #include <linux/rcupdate.h>
24 #include <linux/smp_lock.h>
26 MODULE_AUTHOR("Vojtech Pavlik <vojtech@suse.cz>");
27 MODULE_DESCRIPTION("Input core");
28 MODULE_LICENSE("GPL");
30 #define INPUT_DEVICES 256
32 static LIST_HEAD(input_dev_list);
33 static LIST_HEAD(input_handler_list);
36 * input_mutex protects access to both input_dev_list and input_handler_list.
37 * This also causes input_[un]register_device and input_[un]register_handler
38 * be mutually exclusive which simplifies locking in drivers implementing
39 * input handlers.
41 static DEFINE_MUTEX(input_mutex);
43 static struct input_handler *input_table[8];
45 static inline int is_event_supported(unsigned int code,
46 unsigned long *bm, unsigned int max)
48 return code <= max && test_bit(code, bm);
51 static int input_defuzz_abs_event(int value, int old_val, int fuzz)
53 if (fuzz) {
54 if (value > old_val - fuzz / 2 && value < old_val + fuzz / 2)
55 return old_val;
57 if (value > old_val - fuzz && value < old_val + fuzz)
58 return (old_val * 3 + value) / 4;
60 if (value > old_val - fuzz * 2 && value < old_val + fuzz * 2)
61 return (old_val + value) / 2;
64 return value;
68 * Pass event through all open handles. This function is called with
69 * dev->event_lock held and interrupts disabled.
71 static void input_pass_event(struct input_dev *dev,
72 unsigned int type, unsigned int code, int value)
74 struct input_handle *handle;
76 rcu_read_lock();
78 handle = rcu_dereference(dev->grab);
79 if (handle)
80 handle->handler->event(handle, type, code, value);
81 else
82 list_for_each_entry_rcu(handle, &dev->h_list, d_node)
83 if (handle->open)
84 handle->handler->event(handle,
85 type, code, value);
86 rcu_read_unlock();
90 * Generate software autorepeat event. Note that we take
91 * dev->event_lock here to avoid racing with input_event
92 * which may cause keys get "stuck".
94 static void input_repeat_key(unsigned long data)
96 struct input_dev *dev = (void *) data;
97 unsigned long flags;
99 spin_lock_irqsave(&dev->event_lock, flags);
101 if (test_bit(dev->repeat_key, dev->key) &&
102 is_event_supported(dev->repeat_key, dev->keybit, KEY_MAX)) {
104 input_pass_event(dev, EV_KEY, dev->repeat_key, 2);
106 if (dev->sync) {
108 * Only send SYN_REPORT if we are not in a middle
109 * of driver parsing a new hardware packet.
110 * Otherwise assume that the driver will send
111 * SYN_REPORT once it's done.
113 input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
116 if (dev->rep[REP_PERIOD])
117 mod_timer(&dev->timer, jiffies +
118 msecs_to_jiffies(dev->rep[REP_PERIOD]));
121 spin_unlock_irqrestore(&dev->event_lock, flags);
124 static void input_start_autorepeat(struct input_dev *dev, int code)
126 if (test_bit(EV_REP, dev->evbit) &&
127 dev->rep[REP_PERIOD] && dev->rep[REP_DELAY] &&
128 dev->timer.data) {
129 dev->repeat_key = code;
130 mod_timer(&dev->timer,
131 jiffies + msecs_to_jiffies(dev->rep[REP_DELAY]));
135 #define INPUT_IGNORE_EVENT 0
136 #define INPUT_PASS_TO_HANDLERS 1
137 #define INPUT_PASS_TO_DEVICE 2
138 #define INPUT_PASS_TO_ALL (INPUT_PASS_TO_HANDLERS | INPUT_PASS_TO_DEVICE)
140 static void input_handle_event(struct input_dev *dev,
141 unsigned int type, unsigned int code, int value)
143 int disposition = INPUT_IGNORE_EVENT;
145 switch (type) {
147 case EV_SYN:
148 switch (code) {
149 case SYN_CONFIG:
150 disposition = INPUT_PASS_TO_ALL;
151 break;
153 case SYN_REPORT:
154 if (!dev->sync) {
155 dev->sync = 1;
156 disposition = INPUT_PASS_TO_HANDLERS;
158 break;
160 break;
162 case EV_KEY:
163 if (is_event_supported(code, dev->keybit, KEY_MAX) &&
164 !!test_bit(code, dev->key) != value) {
166 if (value != 2) {
167 __change_bit(code, dev->key);
168 if (value)
169 input_start_autorepeat(dev, code);
172 disposition = INPUT_PASS_TO_HANDLERS;
174 break;
176 case EV_SW:
177 if (is_event_supported(code, dev->swbit, SW_MAX) &&
178 !!test_bit(code, dev->sw) != value) {
180 __change_bit(code, dev->sw);
181 disposition = INPUT_PASS_TO_HANDLERS;
183 break;
185 case EV_ABS:
186 if (is_event_supported(code, dev->absbit, ABS_MAX)) {
188 value = input_defuzz_abs_event(value,
189 dev->abs[code], dev->absfuzz[code]);
191 if (dev->abs[code] != value) {
192 dev->abs[code] = value;
193 disposition = INPUT_PASS_TO_HANDLERS;
196 break;
198 case EV_REL:
199 if (is_event_supported(code, dev->relbit, REL_MAX) && value)
200 disposition = INPUT_PASS_TO_HANDLERS;
202 break;
204 case EV_MSC:
205 if (is_event_supported(code, dev->mscbit, MSC_MAX))
206 disposition = INPUT_PASS_TO_ALL;
208 break;
210 case EV_LED:
211 if (is_event_supported(code, dev->ledbit, LED_MAX) &&
212 !!test_bit(code, dev->led) != value) {
214 __change_bit(code, dev->led);
215 disposition = INPUT_PASS_TO_ALL;
217 break;
219 case EV_SND:
220 if (is_event_supported(code, dev->sndbit, SND_MAX)) {
222 if (!!test_bit(code, dev->snd) != !!value)
223 __change_bit(code, dev->snd);
224 disposition = INPUT_PASS_TO_ALL;
226 break;
228 case EV_REP:
229 if (code <= REP_MAX && value >= 0 && dev->rep[code] != value) {
230 dev->rep[code] = value;
231 disposition = INPUT_PASS_TO_ALL;
233 break;
235 case EV_FF:
236 if (value >= 0)
237 disposition = INPUT_PASS_TO_ALL;
238 break;
240 case EV_PWR:
241 disposition = INPUT_PASS_TO_ALL;
242 break;
245 if (disposition != INPUT_IGNORE_EVENT && type != EV_SYN)
246 dev->sync = 0;
248 if ((disposition & INPUT_PASS_TO_DEVICE) && dev->event)
249 dev->event(dev, type, code, value);
251 if (disposition & INPUT_PASS_TO_HANDLERS)
252 input_pass_event(dev, type, code, value);
256 * input_event() - report new input event
257 * @dev: device that generated the event
258 * @type: type of the event
259 * @code: event code
260 * @value: value of the event
262 * This function should be used by drivers implementing various input
263 * devices. See also input_inject_event().
266 void input_event(struct input_dev *dev,
267 unsigned int type, unsigned int code, int value)
269 unsigned long flags;
271 if (is_event_supported(type, dev->evbit, EV_MAX)) {
273 spin_lock_irqsave(&dev->event_lock, flags);
274 add_input_randomness(type, code, value);
275 input_handle_event(dev, type, code, value);
276 spin_unlock_irqrestore(&dev->event_lock, flags);
279 EXPORT_SYMBOL(input_event);
282 * input_inject_event() - send input event from input handler
283 * @handle: input handle to send event through
284 * @type: type of the event
285 * @code: event code
286 * @value: value of the event
288 * Similar to input_event() but will ignore event if device is
289 * "grabbed" and handle injecting event is not the one that owns
290 * the device.
292 void input_inject_event(struct input_handle *handle,
293 unsigned int type, unsigned int code, int value)
295 struct input_dev *dev = handle->dev;
296 struct input_handle *grab;
297 unsigned long flags;
299 if (is_event_supported(type, dev->evbit, EV_MAX)) {
300 spin_lock_irqsave(&dev->event_lock, flags);
302 rcu_read_lock();
303 grab = rcu_dereference(dev->grab);
304 if (!grab || grab == handle)
305 input_handle_event(dev, type, code, value);
306 rcu_read_unlock();
308 spin_unlock_irqrestore(&dev->event_lock, flags);
311 EXPORT_SYMBOL(input_inject_event);
314 * input_grab_device - grabs device for exclusive use
315 * @handle: input handle that wants to own the device
317 * When a device is grabbed by an input handle all events generated by
318 * the device are delivered only to this handle. Also events injected
319 * by other input handles are ignored while device is grabbed.
321 int input_grab_device(struct input_handle *handle)
323 struct input_dev *dev = handle->dev;
324 int retval;
326 retval = mutex_lock_interruptible(&dev->mutex);
327 if (retval)
328 return retval;
330 if (dev->grab) {
331 retval = -EBUSY;
332 goto out;
335 rcu_assign_pointer(dev->grab, handle);
336 synchronize_rcu();
338 out:
339 mutex_unlock(&dev->mutex);
340 return retval;
342 EXPORT_SYMBOL(input_grab_device);
344 static void __input_release_device(struct input_handle *handle)
346 struct input_dev *dev = handle->dev;
348 if (dev->grab == handle) {
349 rcu_assign_pointer(dev->grab, NULL);
350 /* Make sure input_pass_event() notices that grab is gone */
351 synchronize_rcu();
353 list_for_each_entry(handle, &dev->h_list, d_node)
354 if (handle->open && handle->handler->start)
355 handle->handler->start(handle);
360 * input_release_device - release previously grabbed device
361 * @handle: input handle that owns the device
363 * Releases previously grabbed device so that other input handles can
364 * start receiving input events. Upon release all handlers attached
365 * to the device have their start() method called so they have a change
366 * to synchronize device state with the rest of the system.
368 void input_release_device(struct input_handle *handle)
370 struct input_dev *dev = handle->dev;
372 mutex_lock(&dev->mutex);
373 __input_release_device(handle);
374 mutex_unlock(&dev->mutex);
376 EXPORT_SYMBOL(input_release_device);
379 * input_open_device - open input device
380 * @handle: handle through which device is being accessed
382 * This function should be called by input handlers when they
383 * want to start receive events from given input device.
385 int input_open_device(struct input_handle *handle)
387 struct input_dev *dev = handle->dev;
388 int retval;
390 retval = mutex_lock_interruptible(&dev->mutex);
391 if (retval)
392 return retval;
394 if (dev->going_away) {
395 retval = -ENODEV;
396 goto out;
399 handle->open++;
401 if (!dev->users++ && dev->open)
402 retval = dev->open(dev);
404 if (retval) {
405 dev->users--;
406 if (!--handle->open) {
408 * Make sure we are not delivering any more events
409 * through this handle
411 synchronize_rcu();
415 out:
416 mutex_unlock(&dev->mutex);
417 return retval;
419 EXPORT_SYMBOL(input_open_device);
421 int input_flush_device(struct input_handle *handle, struct file *file)
423 struct input_dev *dev = handle->dev;
424 int retval;
426 retval = mutex_lock_interruptible(&dev->mutex);
427 if (retval)
428 return retval;
430 if (dev->flush)
431 retval = dev->flush(dev, file);
433 mutex_unlock(&dev->mutex);
434 return retval;
436 EXPORT_SYMBOL(input_flush_device);
439 * input_close_device - close input device
440 * @handle: handle through which device is being accessed
442 * This function should be called by input handlers when they
443 * want to stop receive events from given input device.
445 void input_close_device(struct input_handle *handle)
447 struct input_dev *dev = handle->dev;
449 mutex_lock(&dev->mutex);
451 __input_release_device(handle);
453 if (!--dev->users && dev->close)
454 dev->close(dev);
456 if (!--handle->open) {
458 * synchronize_rcu() makes sure that input_pass_event()
459 * completed and that no more input events are delivered
460 * through this handle
462 synchronize_rcu();
465 mutex_unlock(&dev->mutex);
467 EXPORT_SYMBOL(input_close_device);
470 * Prepare device for unregistering
472 static void input_disconnect_device(struct input_dev *dev)
474 struct input_handle *handle;
475 int code;
478 * Mark device as going away. Note that we take dev->mutex here
479 * not to protect access to dev->going_away but rather to ensure
480 * that there are no threads in the middle of input_open_device()
482 mutex_lock(&dev->mutex);
483 dev->going_away = 1;
484 mutex_unlock(&dev->mutex);
486 spin_lock_irq(&dev->event_lock);
489 * Simulate keyup events for all pressed keys so that handlers
490 * are not left with "stuck" keys. The driver may continue
491 * generate events even after we done here but they will not
492 * reach any handlers.
494 if (is_event_supported(EV_KEY, dev->evbit, EV_MAX)) {
495 for (code = 0; code <= KEY_MAX; code++) {
496 if (is_event_supported(code, dev->keybit, KEY_MAX) &&
497 __test_and_clear_bit(code, dev->key)) {
498 input_pass_event(dev, EV_KEY, code, 0);
501 input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
504 list_for_each_entry(handle, &dev->h_list, d_node)
505 handle->open = 0;
507 spin_unlock_irq(&dev->event_lock);
510 static int input_fetch_keycode(struct input_dev *dev, int scancode)
512 switch (dev->keycodesize) {
513 case 1:
514 return ((u8 *)dev->keycode)[scancode];
516 case 2:
517 return ((u16 *)dev->keycode)[scancode];
519 default:
520 return ((u32 *)dev->keycode)[scancode];
524 static int input_default_getkeycode(struct input_dev *dev,
525 int scancode, int *keycode)
527 if (!dev->keycodesize)
528 return -EINVAL;
530 if (scancode >= dev->keycodemax)
531 return -EINVAL;
533 *keycode = input_fetch_keycode(dev, scancode);
535 return 0;
538 static int input_default_setkeycode(struct input_dev *dev,
539 int scancode, int keycode)
541 int old_keycode;
542 int i;
544 if (scancode >= dev->keycodemax)
545 return -EINVAL;
547 if (!dev->keycodesize)
548 return -EINVAL;
550 if (dev->keycodesize < sizeof(keycode) && (keycode >> (dev->keycodesize * 8)))
551 return -EINVAL;
553 switch (dev->keycodesize) {
554 case 1: {
555 u8 *k = (u8 *)dev->keycode;
556 old_keycode = k[scancode];
557 k[scancode] = keycode;
558 break;
560 case 2: {
561 u16 *k = (u16 *)dev->keycode;
562 old_keycode = k[scancode];
563 k[scancode] = keycode;
564 break;
566 default: {
567 u32 *k = (u32 *)dev->keycode;
568 old_keycode = k[scancode];
569 k[scancode] = keycode;
570 break;
574 clear_bit(old_keycode, dev->keybit);
575 set_bit(keycode, dev->keybit);
577 for (i = 0; i < dev->keycodemax; i++) {
578 if (input_fetch_keycode(dev, i) == old_keycode) {
579 set_bit(old_keycode, dev->keybit);
580 break; /* Setting the bit twice is useless, so break */
584 return 0;
588 * input_get_keycode - retrieve keycode currently mapped to a given scancode
589 * @dev: input device which keymap is being queried
590 * @scancode: scancode (or its equivalent for device in question) for which
591 * keycode is needed
592 * @keycode: result
594 * This function should be called by anyone interested in retrieving current
595 * keymap. Presently keyboard and evdev handlers use it.
597 int input_get_keycode(struct input_dev *dev, int scancode, int *keycode)
599 if (scancode < 0)
600 return -EINVAL;
602 return dev->getkeycode(dev, scancode, keycode);
604 EXPORT_SYMBOL(input_get_keycode);
607 * input_get_keycode - assign new keycode to a given scancode
608 * @dev: input device which keymap is being updated
609 * @scancode: scancode (or its equivalent for device in question)
610 * @keycode: new keycode to be assigned to the scancode
612 * This function should be called by anyone needing to update current
613 * keymap. Presently keyboard and evdev handlers use it.
615 int input_set_keycode(struct input_dev *dev, int scancode, int keycode)
617 unsigned long flags;
618 int old_keycode;
619 int retval;
621 if (scancode < 0)
622 return -EINVAL;
624 if (keycode < 0 || keycode > KEY_MAX)
625 return -EINVAL;
627 spin_lock_irqsave(&dev->event_lock, flags);
629 retval = dev->getkeycode(dev, scancode, &old_keycode);
630 if (retval)
631 goto out;
633 retval = dev->setkeycode(dev, scancode, keycode);
634 if (retval)
635 goto out;
638 * Simulate keyup event if keycode is not present
639 * in the keymap anymore
641 if (test_bit(EV_KEY, dev->evbit) &&
642 !is_event_supported(old_keycode, dev->keybit, KEY_MAX) &&
643 __test_and_clear_bit(old_keycode, dev->key)) {
645 input_pass_event(dev, EV_KEY, old_keycode, 0);
646 if (dev->sync)
647 input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
650 out:
651 spin_unlock_irqrestore(&dev->event_lock, flags);
653 return retval;
655 EXPORT_SYMBOL(input_set_keycode);
657 #define MATCH_BIT(bit, max) \
658 for (i = 0; i < BITS_TO_LONGS(max); i++) \
659 if ((id->bit[i] & dev->bit[i]) != id->bit[i]) \
660 break; \
661 if (i != BITS_TO_LONGS(max)) \
662 continue;
664 static const struct input_device_id *input_match_device(const struct input_device_id *id,
665 struct input_dev *dev)
667 int i;
669 for (; id->flags || id->driver_info; id++) {
671 if (id->flags & INPUT_DEVICE_ID_MATCH_BUS)
672 if (id->bustype != dev->id.bustype)
673 continue;
675 if (id->flags & INPUT_DEVICE_ID_MATCH_VENDOR)
676 if (id->vendor != dev->id.vendor)
677 continue;
679 if (id->flags & INPUT_DEVICE_ID_MATCH_PRODUCT)
680 if (id->product != dev->id.product)
681 continue;
683 if (id->flags & INPUT_DEVICE_ID_MATCH_VERSION)
684 if (id->version != dev->id.version)
685 continue;
687 MATCH_BIT(evbit, EV_MAX);
688 MATCH_BIT(keybit, KEY_MAX);
689 MATCH_BIT(relbit, REL_MAX);
690 MATCH_BIT(absbit, ABS_MAX);
691 MATCH_BIT(mscbit, MSC_MAX);
692 MATCH_BIT(ledbit, LED_MAX);
693 MATCH_BIT(sndbit, SND_MAX);
694 MATCH_BIT(ffbit, FF_MAX);
695 MATCH_BIT(swbit, SW_MAX);
697 return id;
700 return NULL;
703 static int input_attach_handler(struct input_dev *dev, struct input_handler *handler)
705 const struct input_device_id *id;
706 int error;
708 if (handler->blacklist && input_match_device(handler->blacklist, dev))
709 return -ENODEV;
711 id = input_match_device(handler->id_table, dev);
712 if (!id)
713 return -ENODEV;
715 error = handler->connect(handler, dev, id);
716 if (error && error != -ENODEV)
717 printk(KERN_ERR
718 "input: failed to attach handler %s to device %s, "
719 "error: %d\n",
720 handler->name, kobject_name(&dev->dev.kobj), error);
722 return error;
726 #ifdef CONFIG_PROC_FS
728 static struct proc_dir_entry *proc_bus_input_dir;
729 static DECLARE_WAIT_QUEUE_HEAD(input_devices_poll_wait);
730 static int input_devices_state;
732 static inline void input_wakeup_procfs_readers(void)
734 input_devices_state++;
735 wake_up(&input_devices_poll_wait);
738 static unsigned int input_proc_devices_poll(struct file *file, poll_table *wait)
740 int state = input_devices_state;
742 poll_wait(file, &input_devices_poll_wait, wait);
743 if (state != input_devices_state)
744 return POLLIN | POLLRDNORM;
746 return 0;
749 static void *input_devices_seq_start(struct seq_file *seq, loff_t *pos)
751 if (mutex_lock_interruptible(&input_mutex))
752 return NULL;
754 return seq_list_start(&input_dev_list, *pos);
757 static void *input_devices_seq_next(struct seq_file *seq, void *v, loff_t *pos)
759 return seq_list_next(v, &input_dev_list, pos);
762 static void input_devices_seq_stop(struct seq_file *seq, void *v)
764 mutex_unlock(&input_mutex);
767 static void input_seq_print_bitmap(struct seq_file *seq, const char *name,
768 unsigned long *bitmap, int max)
770 int i;
772 for (i = BITS_TO_LONGS(max) - 1; i > 0; i--)
773 if (bitmap[i])
774 break;
776 seq_printf(seq, "B: %s=", name);
777 for (; i >= 0; i--)
778 seq_printf(seq, "%lx%s", bitmap[i], i > 0 ? " " : "");
779 seq_putc(seq, '\n');
782 static int input_devices_seq_show(struct seq_file *seq, void *v)
784 struct input_dev *dev = container_of(v, struct input_dev, node);
785 const char *path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
786 struct input_handle *handle;
788 seq_printf(seq, "I: Bus=%04x Vendor=%04x Product=%04x Version=%04x\n",
789 dev->id.bustype, dev->id.vendor, dev->id.product, dev->id.version);
791 seq_printf(seq, "N: Name=\"%s\"\n", dev->name ? dev->name : "");
792 seq_printf(seq, "P: Phys=%s\n", dev->phys ? dev->phys : "");
793 seq_printf(seq, "S: Sysfs=%s\n", path ? path : "");
794 seq_printf(seq, "U: Uniq=%s\n", dev->uniq ? dev->uniq : "");
795 seq_printf(seq, "H: Handlers=");
797 list_for_each_entry(handle, &dev->h_list, d_node)
798 seq_printf(seq, "%s ", handle->name);
799 seq_putc(seq, '\n');
801 input_seq_print_bitmap(seq, "EV", dev->evbit, EV_MAX);
802 if (test_bit(EV_KEY, dev->evbit))
803 input_seq_print_bitmap(seq, "KEY", dev->keybit, KEY_MAX);
804 if (test_bit(EV_REL, dev->evbit))
805 input_seq_print_bitmap(seq, "REL", dev->relbit, REL_MAX);
806 if (test_bit(EV_ABS, dev->evbit))
807 input_seq_print_bitmap(seq, "ABS", dev->absbit, ABS_MAX);
808 if (test_bit(EV_MSC, dev->evbit))
809 input_seq_print_bitmap(seq, "MSC", dev->mscbit, MSC_MAX);
810 if (test_bit(EV_LED, dev->evbit))
811 input_seq_print_bitmap(seq, "LED", dev->ledbit, LED_MAX);
812 if (test_bit(EV_SND, dev->evbit))
813 input_seq_print_bitmap(seq, "SND", dev->sndbit, SND_MAX);
814 if (test_bit(EV_FF, dev->evbit))
815 input_seq_print_bitmap(seq, "FF", dev->ffbit, FF_MAX);
816 if (test_bit(EV_SW, dev->evbit))
817 input_seq_print_bitmap(seq, "SW", dev->swbit, SW_MAX);
819 seq_putc(seq, '\n');
821 kfree(path);
822 return 0;
825 static const struct seq_operations input_devices_seq_ops = {
826 .start = input_devices_seq_start,
827 .next = input_devices_seq_next,
828 .stop = input_devices_seq_stop,
829 .show = input_devices_seq_show,
832 static int input_proc_devices_open(struct inode *inode, struct file *file)
834 return seq_open(file, &input_devices_seq_ops);
837 static const struct file_operations input_devices_fileops = {
838 .owner = THIS_MODULE,
839 .open = input_proc_devices_open,
840 .poll = input_proc_devices_poll,
841 .read = seq_read,
842 .llseek = seq_lseek,
843 .release = seq_release,
846 static void *input_handlers_seq_start(struct seq_file *seq, loff_t *pos)
848 if (mutex_lock_interruptible(&input_mutex))
849 return NULL;
851 seq->private = (void *)(unsigned long)*pos;
852 return seq_list_start(&input_handler_list, *pos);
855 static void *input_handlers_seq_next(struct seq_file *seq, void *v, loff_t *pos)
857 seq->private = (void *)(unsigned long)(*pos + 1);
858 return seq_list_next(v, &input_handler_list, pos);
861 static void input_handlers_seq_stop(struct seq_file *seq, void *v)
863 mutex_unlock(&input_mutex);
866 static int input_handlers_seq_show(struct seq_file *seq, void *v)
868 struct input_handler *handler = container_of(v, struct input_handler, node);
870 seq_printf(seq, "N: Number=%ld Name=%s",
871 (unsigned long)seq->private, handler->name);
872 if (handler->fops)
873 seq_printf(seq, " Minor=%d", handler->minor);
874 seq_putc(seq, '\n');
876 return 0;
878 static const struct seq_operations input_handlers_seq_ops = {
879 .start = input_handlers_seq_start,
880 .next = input_handlers_seq_next,
881 .stop = input_handlers_seq_stop,
882 .show = input_handlers_seq_show,
885 static int input_proc_handlers_open(struct inode *inode, struct file *file)
887 return seq_open(file, &input_handlers_seq_ops);
890 static const struct file_operations input_handlers_fileops = {
891 .owner = THIS_MODULE,
892 .open = input_proc_handlers_open,
893 .read = seq_read,
894 .llseek = seq_lseek,
895 .release = seq_release,
898 static int __init input_proc_init(void)
900 struct proc_dir_entry *entry;
902 proc_bus_input_dir = proc_mkdir("bus/input", NULL);
903 if (!proc_bus_input_dir)
904 return -ENOMEM;
906 entry = proc_create("devices", 0, proc_bus_input_dir,
907 &input_devices_fileops);
908 if (!entry)
909 goto fail1;
911 entry = proc_create("handlers", 0, proc_bus_input_dir,
912 &input_handlers_fileops);
913 if (!entry)
914 goto fail2;
916 return 0;
918 fail2: remove_proc_entry("devices", proc_bus_input_dir);
919 fail1: remove_proc_entry("bus/input", NULL);
920 return -ENOMEM;
923 static void input_proc_exit(void)
925 remove_proc_entry("devices", proc_bus_input_dir);
926 remove_proc_entry("handlers", proc_bus_input_dir);
927 remove_proc_entry("bus/input", NULL);
930 #else /* !CONFIG_PROC_FS */
931 static inline void input_wakeup_procfs_readers(void) { }
932 static inline int input_proc_init(void) { return 0; }
933 static inline void input_proc_exit(void) { }
934 #endif
936 #define INPUT_DEV_STRING_ATTR_SHOW(name) \
937 static ssize_t input_dev_show_##name(struct device *dev, \
938 struct device_attribute *attr, \
939 char *buf) \
941 struct input_dev *input_dev = to_input_dev(dev); \
943 return scnprintf(buf, PAGE_SIZE, "%s\n", \
944 input_dev->name ? input_dev->name : ""); \
946 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_##name, NULL)
948 INPUT_DEV_STRING_ATTR_SHOW(name);
949 INPUT_DEV_STRING_ATTR_SHOW(phys);
950 INPUT_DEV_STRING_ATTR_SHOW(uniq);
952 static int input_print_modalias_bits(char *buf, int size,
953 char name, unsigned long *bm,
954 unsigned int min_bit, unsigned int max_bit)
956 int len = 0, i;
958 len += snprintf(buf, max(size, 0), "%c", name);
959 for (i = min_bit; i < max_bit; i++)
960 if (bm[BIT_WORD(i)] & BIT_MASK(i))
961 len += snprintf(buf + len, max(size - len, 0), "%X,", i);
962 return len;
965 static int input_print_modalias(char *buf, int size, struct input_dev *id,
966 int add_cr)
968 int len;
970 len = snprintf(buf, max(size, 0),
971 "input:b%04Xv%04Xp%04Xe%04X-",
972 id->id.bustype, id->id.vendor,
973 id->id.product, id->id.version);
975 len += input_print_modalias_bits(buf + len, size - len,
976 'e', id->evbit, 0, EV_MAX);
977 len += input_print_modalias_bits(buf + len, size - len,
978 'k', id->keybit, KEY_MIN_INTERESTING, KEY_MAX);
979 len += input_print_modalias_bits(buf + len, size - len,
980 'r', id->relbit, 0, REL_MAX);
981 len += input_print_modalias_bits(buf + len, size - len,
982 'a', id->absbit, 0, ABS_MAX);
983 len += input_print_modalias_bits(buf + len, size - len,
984 'm', id->mscbit, 0, MSC_MAX);
985 len += input_print_modalias_bits(buf + len, size - len,
986 'l', id->ledbit, 0, LED_MAX);
987 len += input_print_modalias_bits(buf + len, size - len,
988 's', id->sndbit, 0, SND_MAX);
989 len += input_print_modalias_bits(buf + len, size - len,
990 'f', id->ffbit, 0, FF_MAX);
991 len += input_print_modalias_bits(buf + len, size - len,
992 'w', id->swbit, 0, SW_MAX);
994 if (add_cr)
995 len += snprintf(buf + len, max(size - len, 0), "\n");
997 return len;
1000 static ssize_t input_dev_show_modalias(struct device *dev,
1001 struct device_attribute *attr,
1002 char *buf)
1004 struct input_dev *id = to_input_dev(dev);
1005 ssize_t len;
1007 len = input_print_modalias(buf, PAGE_SIZE, id, 1);
1009 return min_t(int, len, PAGE_SIZE);
1011 static DEVICE_ATTR(modalias, S_IRUGO, input_dev_show_modalias, NULL);
1013 static struct attribute *input_dev_attrs[] = {
1014 &dev_attr_name.attr,
1015 &dev_attr_phys.attr,
1016 &dev_attr_uniq.attr,
1017 &dev_attr_modalias.attr,
1018 NULL
1021 static struct attribute_group input_dev_attr_group = {
1022 .attrs = input_dev_attrs,
1025 #define INPUT_DEV_ID_ATTR(name) \
1026 static ssize_t input_dev_show_id_##name(struct device *dev, \
1027 struct device_attribute *attr, \
1028 char *buf) \
1030 struct input_dev *input_dev = to_input_dev(dev); \
1031 return scnprintf(buf, PAGE_SIZE, "%04x\n", input_dev->id.name); \
1033 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_id_##name, NULL)
1035 INPUT_DEV_ID_ATTR(bustype);
1036 INPUT_DEV_ID_ATTR(vendor);
1037 INPUT_DEV_ID_ATTR(product);
1038 INPUT_DEV_ID_ATTR(version);
1040 static struct attribute *input_dev_id_attrs[] = {
1041 &dev_attr_bustype.attr,
1042 &dev_attr_vendor.attr,
1043 &dev_attr_product.attr,
1044 &dev_attr_version.attr,
1045 NULL
1048 static struct attribute_group input_dev_id_attr_group = {
1049 .name = "id",
1050 .attrs = input_dev_id_attrs,
1053 static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap,
1054 int max, int add_cr)
1056 int i;
1057 int len = 0;
1059 for (i = BITS_TO_LONGS(max) - 1; i > 0; i--)
1060 if (bitmap[i])
1061 break;
1063 for (; i >= 0; i--)
1064 len += snprintf(buf + len, max(buf_size - len, 0),
1065 "%lx%s", bitmap[i], i > 0 ? " " : "");
1067 if (add_cr)
1068 len += snprintf(buf + len, max(buf_size - len, 0), "\n");
1070 return len;
1073 #define INPUT_DEV_CAP_ATTR(ev, bm) \
1074 static ssize_t input_dev_show_cap_##bm(struct device *dev, \
1075 struct device_attribute *attr, \
1076 char *buf) \
1078 struct input_dev *input_dev = to_input_dev(dev); \
1079 int len = input_print_bitmap(buf, PAGE_SIZE, \
1080 input_dev->bm##bit, ev##_MAX, 1); \
1081 return min_t(int, len, PAGE_SIZE); \
1083 static DEVICE_ATTR(bm, S_IRUGO, input_dev_show_cap_##bm, NULL)
1085 INPUT_DEV_CAP_ATTR(EV, ev);
1086 INPUT_DEV_CAP_ATTR(KEY, key);
1087 INPUT_DEV_CAP_ATTR(REL, rel);
1088 INPUT_DEV_CAP_ATTR(ABS, abs);
1089 INPUT_DEV_CAP_ATTR(MSC, msc);
1090 INPUT_DEV_CAP_ATTR(LED, led);
1091 INPUT_DEV_CAP_ATTR(SND, snd);
1092 INPUT_DEV_CAP_ATTR(FF, ff);
1093 INPUT_DEV_CAP_ATTR(SW, sw);
1095 static struct attribute *input_dev_caps_attrs[] = {
1096 &dev_attr_ev.attr,
1097 &dev_attr_key.attr,
1098 &dev_attr_rel.attr,
1099 &dev_attr_abs.attr,
1100 &dev_attr_msc.attr,
1101 &dev_attr_led.attr,
1102 &dev_attr_snd.attr,
1103 &dev_attr_ff.attr,
1104 &dev_attr_sw.attr,
1105 NULL
1108 static struct attribute_group input_dev_caps_attr_group = {
1109 .name = "capabilities",
1110 .attrs = input_dev_caps_attrs,
1113 static struct attribute_group *input_dev_attr_groups[] = {
1114 &input_dev_attr_group,
1115 &input_dev_id_attr_group,
1116 &input_dev_caps_attr_group,
1117 NULL
1120 static void input_dev_release(struct device *device)
1122 struct input_dev *dev = to_input_dev(device);
1124 input_ff_destroy(dev);
1125 kfree(dev);
1127 module_put(THIS_MODULE);
1131 * Input uevent interface - loading event handlers based on
1132 * device bitfields.
1134 static int input_add_uevent_bm_var(struct kobj_uevent_env *env,
1135 const char *name, unsigned long *bitmap, int max)
1137 int len;
1139 if (add_uevent_var(env, "%s=", name))
1140 return -ENOMEM;
1142 len = input_print_bitmap(&env->buf[env->buflen - 1],
1143 sizeof(env->buf) - env->buflen,
1144 bitmap, max, 0);
1145 if (len >= (sizeof(env->buf) - env->buflen))
1146 return -ENOMEM;
1148 env->buflen += len;
1149 return 0;
1152 static int input_add_uevent_modalias_var(struct kobj_uevent_env *env,
1153 struct input_dev *dev)
1155 int len;
1157 if (add_uevent_var(env, "MODALIAS="))
1158 return -ENOMEM;
1160 len = input_print_modalias(&env->buf[env->buflen - 1],
1161 sizeof(env->buf) - env->buflen,
1162 dev, 0);
1163 if (len >= (sizeof(env->buf) - env->buflen))
1164 return -ENOMEM;
1166 env->buflen += len;
1167 return 0;
1170 #define INPUT_ADD_HOTPLUG_VAR(fmt, val...) \
1171 do { \
1172 int err = add_uevent_var(env, fmt, val); \
1173 if (err) \
1174 return err; \
1175 } while (0)
1177 #define INPUT_ADD_HOTPLUG_BM_VAR(name, bm, max) \
1178 do { \
1179 int err = input_add_uevent_bm_var(env, name, bm, max); \
1180 if (err) \
1181 return err; \
1182 } while (0)
1184 #define INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev) \
1185 do { \
1186 int err = input_add_uevent_modalias_var(env, dev); \
1187 if (err) \
1188 return err; \
1189 } while (0)
1191 static int input_dev_uevent(struct device *device, struct kobj_uevent_env *env)
1193 struct input_dev *dev = to_input_dev(device);
1195 INPUT_ADD_HOTPLUG_VAR("PRODUCT=%x/%x/%x/%x",
1196 dev->id.bustype, dev->id.vendor,
1197 dev->id.product, dev->id.version);
1198 if (dev->name)
1199 INPUT_ADD_HOTPLUG_VAR("NAME=\"%s\"", dev->name);
1200 if (dev->phys)
1201 INPUT_ADD_HOTPLUG_VAR("PHYS=\"%s\"", dev->phys);
1202 if (dev->uniq)
1203 INPUT_ADD_HOTPLUG_VAR("UNIQ=\"%s\"", dev->uniq);
1205 INPUT_ADD_HOTPLUG_BM_VAR("EV=", dev->evbit, EV_MAX);
1206 if (test_bit(EV_KEY, dev->evbit))
1207 INPUT_ADD_HOTPLUG_BM_VAR("KEY=", dev->keybit, KEY_MAX);
1208 if (test_bit(EV_REL, dev->evbit))
1209 INPUT_ADD_HOTPLUG_BM_VAR("REL=", dev->relbit, REL_MAX);
1210 if (test_bit(EV_ABS, dev->evbit))
1211 INPUT_ADD_HOTPLUG_BM_VAR("ABS=", dev->absbit, ABS_MAX);
1212 if (test_bit(EV_MSC, dev->evbit))
1213 INPUT_ADD_HOTPLUG_BM_VAR("MSC=", dev->mscbit, MSC_MAX);
1214 if (test_bit(EV_LED, dev->evbit))
1215 INPUT_ADD_HOTPLUG_BM_VAR("LED=", dev->ledbit, LED_MAX);
1216 if (test_bit(EV_SND, dev->evbit))
1217 INPUT_ADD_HOTPLUG_BM_VAR("SND=", dev->sndbit, SND_MAX);
1218 if (test_bit(EV_FF, dev->evbit))
1219 INPUT_ADD_HOTPLUG_BM_VAR("FF=", dev->ffbit, FF_MAX);
1220 if (test_bit(EV_SW, dev->evbit))
1221 INPUT_ADD_HOTPLUG_BM_VAR("SW=", dev->swbit, SW_MAX);
1223 INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev);
1225 return 0;
1228 static struct device_type input_dev_type = {
1229 .groups = input_dev_attr_groups,
1230 .release = input_dev_release,
1231 .uevent = input_dev_uevent,
1234 struct class input_class = {
1235 .name = "input",
1237 EXPORT_SYMBOL_GPL(input_class);
1240 * input_allocate_device - allocate memory for new input device
1242 * Returns prepared struct input_dev or NULL.
1244 * NOTE: Use input_free_device() to free devices that have not been
1245 * registered; input_unregister_device() should be used for already
1246 * registered devices.
1248 struct input_dev *input_allocate_device(void)
1250 struct input_dev *dev;
1252 dev = kzalloc(sizeof(struct input_dev), GFP_KERNEL);
1253 if (dev) {
1254 dev->dev.type = &input_dev_type;
1255 dev->dev.class = &input_class;
1256 device_initialize(&dev->dev);
1257 mutex_init(&dev->mutex);
1258 spin_lock_init(&dev->event_lock);
1259 INIT_LIST_HEAD(&dev->h_list);
1260 INIT_LIST_HEAD(&dev->node);
1262 __module_get(THIS_MODULE);
1265 return dev;
1267 EXPORT_SYMBOL(input_allocate_device);
1270 * input_free_device - free memory occupied by input_dev structure
1271 * @dev: input device to free
1273 * This function should only be used if input_register_device()
1274 * was not called yet or if it failed. Once device was registered
1275 * use input_unregister_device() and memory will be freed once last
1276 * reference to the device is dropped.
1278 * Device should be allocated by input_allocate_device().
1280 * NOTE: If there are references to the input device then memory
1281 * will not be freed until last reference is dropped.
1283 void input_free_device(struct input_dev *dev)
1285 if (dev)
1286 input_put_device(dev);
1288 EXPORT_SYMBOL(input_free_device);
1291 * input_set_capability - mark device as capable of a certain event
1292 * @dev: device that is capable of emitting or accepting event
1293 * @type: type of the event (EV_KEY, EV_REL, etc...)
1294 * @code: event code
1296 * In addition to setting up corresponding bit in appropriate capability
1297 * bitmap the function also adjusts dev->evbit.
1299 void input_set_capability(struct input_dev *dev, unsigned int type, unsigned int code)
1301 switch (type) {
1302 case EV_KEY:
1303 __set_bit(code, dev->keybit);
1304 break;
1306 case EV_REL:
1307 __set_bit(code, dev->relbit);
1308 break;
1310 case EV_ABS:
1311 __set_bit(code, dev->absbit);
1312 break;
1314 case EV_MSC:
1315 __set_bit(code, dev->mscbit);
1316 break;
1318 case EV_SW:
1319 __set_bit(code, dev->swbit);
1320 break;
1322 case EV_LED:
1323 __set_bit(code, dev->ledbit);
1324 break;
1326 case EV_SND:
1327 __set_bit(code, dev->sndbit);
1328 break;
1330 case EV_FF:
1331 __set_bit(code, dev->ffbit);
1332 break;
1334 case EV_PWR:
1335 /* do nothing */
1336 break;
1338 default:
1339 printk(KERN_ERR
1340 "input_set_capability: unknown type %u (code %u)\n",
1341 type, code);
1342 dump_stack();
1343 return;
1346 __set_bit(type, dev->evbit);
1348 EXPORT_SYMBOL(input_set_capability);
1351 * input_register_device - register device with input core
1352 * @dev: device to be registered
1354 * This function registers device with input core. The device must be
1355 * allocated with input_allocate_device() and all it's capabilities
1356 * set up before registering.
1357 * If function fails the device must be freed with input_free_device().
1358 * Once device has been successfully registered it can be unregistered
1359 * with input_unregister_device(); input_free_device() should not be
1360 * called in this case.
1362 int input_register_device(struct input_dev *dev)
1364 static atomic_t input_no = ATOMIC_INIT(0);
1365 struct input_handler *handler;
1366 const char *path;
1367 int error;
1369 __set_bit(EV_SYN, dev->evbit);
1372 * If delay and period are pre-set by the driver, then autorepeating
1373 * is handled by the driver itself and we don't do it in input.c.
1376 init_timer(&dev->timer);
1377 if (!dev->rep[REP_DELAY] && !dev->rep[REP_PERIOD]) {
1378 dev->timer.data = (long) dev;
1379 dev->timer.function = input_repeat_key;
1380 dev->rep[REP_DELAY] = 250;
1381 dev->rep[REP_PERIOD] = 33;
1384 if (!dev->getkeycode)
1385 dev->getkeycode = input_default_getkeycode;
1387 if (!dev->setkeycode)
1388 dev->setkeycode = input_default_setkeycode;
1390 dev_set_name(&dev->dev, "input%ld",
1391 (unsigned long) atomic_inc_return(&input_no) - 1);
1393 error = device_add(&dev->dev);
1394 if (error)
1395 return error;
1397 path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
1398 printk(KERN_INFO "input: %s as %s\n",
1399 dev->name ? dev->name : "Unspecified device", path ? path : "N/A");
1400 kfree(path);
1402 error = mutex_lock_interruptible(&input_mutex);
1403 if (error) {
1404 device_del(&dev->dev);
1405 return error;
1408 list_add_tail(&dev->node, &input_dev_list);
1410 list_for_each_entry(handler, &input_handler_list, node)
1411 input_attach_handler(dev, handler);
1413 input_wakeup_procfs_readers();
1415 mutex_unlock(&input_mutex);
1417 return 0;
1419 EXPORT_SYMBOL(input_register_device);
1422 * input_unregister_device - unregister previously registered device
1423 * @dev: device to be unregistered
1425 * This function unregisters an input device. Once device is unregistered
1426 * the caller should not try to access it as it may get freed at any moment.
1428 void input_unregister_device(struct input_dev *dev)
1430 struct input_handle *handle, *next;
1432 input_disconnect_device(dev);
1434 mutex_lock(&input_mutex);
1436 list_for_each_entry_safe(handle, next, &dev->h_list, d_node)
1437 handle->handler->disconnect(handle);
1438 WARN_ON(!list_empty(&dev->h_list));
1440 del_timer_sync(&dev->timer);
1441 list_del_init(&dev->node);
1443 input_wakeup_procfs_readers();
1445 mutex_unlock(&input_mutex);
1447 device_unregister(&dev->dev);
1449 EXPORT_SYMBOL(input_unregister_device);
1452 * input_register_handler - register a new input handler
1453 * @handler: handler to be registered
1455 * This function registers a new input handler (interface) for input
1456 * devices in the system and attaches it to all input devices that
1457 * are compatible with the handler.
1459 int input_register_handler(struct input_handler *handler)
1461 struct input_dev *dev;
1462 int retval;
1464 retval = mutex_lock_interruptible(&input_mutex);
1465 if (retval)
1466 return retval;
1468 INIT_LIST_HEAD(&handler->h_list);
1470 if (handler->fops != NULL) {
1471 if (input_table[handler->minor >> 5]) {
1472 retval = -EBUSY;
1473 goto out;
1475 input_table[handler->minor >> 5] = handler;
1478 list_add_tail(&handler->node, &input_handler_list);
1480 list_for_each_entry(dev, &input_dev_list, node)
1481 input_attach_handler(dev, handler);
1483 input_wakeup_procfs_readers();
1485 out:
1486 mutex_unlock(&input_mutex);
1487 return retval;
1489 EXPORT_SYMBOL(input_register_handler);
1492 * input_unregister_handler - unregisters an input handler
1493 * @handler: handler to be unregistered
1495 * This function disconnects a handler from its input devices and
1496 * removes it from lists of known handlers.
1498 void input_unregister_handler(struct input_handler *handler)
1500 struct input_handle *handle, *next;
1502 mutex_lock(&input_mutex);
1504 list_for_each_entry_safe(handle, next, &handler->h_list, h_node)
1505 handler->disconnect(handle);
1506 WARN_ON(!list_empty(&handler->h_list));
1508 list_del_init(&handler->node);
1510 if (handler->fops != NULL)
1511 input_table[handler->minor >> 5] = NULL;
1513 input_wakeup_procfs_readers();
1515 mutex_unlock(&input_mutex);
1517 EXPORT_SYMBOL(input_unregister_handler);
1520 * input_register_handle - register a new input handle
1521 * @handle: handle to register
1523 * This function puts a new input handle onto device's
1524 * and handler's lists so that events can flow through
1525 * it once it is opened using input_open_device().
1527 * This function is supposed to be called from handler's
1528 * connect() method.
1530 int input_register_handle(struct input_handle *handle)
1532 struct input_handler *handler = handle->handler;
1533 struct input_dev *dev = handle->dev;
1534 int error;
1537 * We take dev->mutex here to prevent race with
1538 * input_release_device().
1540 error = mutex_lock_interruptible(&dev->mutex);
1541 if (error)
1542 return error;
1543 list_add_tail_rcu(&handle->d_node, &dev->h_list);
1544 mutex_unlock(&dev->mutex);
1545 synchronize_rcu();
1548 * Since we are supposed to be called from ->connect()
1549 * which is mutually exclusive with ->disconnect()
1550 * we can't be racing with input_unregister_handle()
1551 * and so separate lock is not needed here.
1553 list_add_tail(&handle->h_node, &handler->h_list);
1555 if (handler->start)
1556 handler->start(handle);
1558 return 0;
1560 EXPORT_SYMBOL(input_register_handle);
1563 * input_unregister_handle - unregister an input handle
1564 * @handle: handle to unregister
1566 * This function removes input handle from device's
1567 * and handler's lists.
1569 * This function is supposed to be called from handler's
1570 * disconnect() method.
1572 void input_unregister_handle(struct input_handle *handle)
1574 struct input_dev *dev = handle->dev;
1576 list_del_init(&handle->h_node);
1579 * Take dev->mutex to prevent race with input_release_device().
1581 mutex_lock(&dev->mutex);
1582 list_del_rcu(&handle->d_node);
1583 mutex_unlock(&dev->mutex);
1584 synchronize_rcu();
1586 EXPORT_SYMBOL(input_unregister_handle);
1588 static int input_open_file(struct inode *inode, struct file *file)
1590 struct input_handler *handler;
1591 const struct file_operations *old_fops, *new_fops = NULL;
1592 int err;
1594 lock_kernel();
1595 /* No load-on-demand here? */
1596 handler = input_table[iminor(inode) >> 5];
1597 if (!handler || !(new_fops = fops_get(handler->fops))) {
1598 err = -ENODEV;
1599 goto out;
1603 * That's _really_ odd. Usually NULL ->open means "nothing special",
1604 * not "no device". Oh, well...
1606 if (!new_fops->open) {
1607 fops_put(new_fops);
1608 err = -ENODEV;
1609 goto out;
1611 old_fops = file->f_op;
1612 file->f_op = new_fops;
1614 err = new_fops->open(inode, file);
1616 if (err) {
1617 fops_put(file->f_op);
1618 file->f_op = fops_get(old_fops);
1620 fops_put(old_fops);
1621 out:
1622 unlock_kernel();
1623 return err;
1626 static const struct file_operations input_fops = {
1627 .owner = THIS_MODULE,
1628 .open = input_open_file,
1631 static int __init input_init(void)
1633 int err;
1635 err = class_register(&input_class);
1636 if (err) {
1637 printk(KERN_ERR "input: unable to register input_dev class\n");
1638 return err;
1641 err = input_proc_init();
1642 if (err)
1643 goto fail1;
1645 err = register_chrdev(INPUT_MAJOR, "input", &input_fops);
1646 if (err) {
1647 printk(KERN_ERR "input: unable to register char major %d", INPUT_MAJOR);
1648 goto fail2;
1651 return 0;
1653 fail2: input_proc_exit();
1654 fail1: class_unregister(&input_class);
1655 return err;
1658 static void __exit input_exit(void)
1660 input_proc_exit();
1661 unregister_chrdev(INPUT_MAJOR, "input");
1662 class_unregister(&input_class);
1665 subsys_initcall(input_init);
1666 module_exit(input_exit);