1 #ifndef _LINUX_MMZONE_H
2 #define _LINUX_MMZONE_H
5 #ifndef __GENERATING_BOUNDS_H
7 #include <linux/spinlock.h>
8 #include <linux/list.h>
9 #include <linux/wait.h>
10 #include <linux/bitops.h>
11 #include <linux/cache.h>
12 #include <linux/threads.h>
13 #include <linux/numa.h>
14 #include <linux/init.h>
15 #include <linux/seqlock.h>
16 #include <linux/nodemask.h>
17 #include <linux/pageblock-flags.h>
18 #include <generated/bounds.h>
19 #include <asm/atomic.h>
22 /* Free memory management - zoned buddy allocator. */
23 #ifndef CONFIG_FORCE_MAX_ZONEORDER
26 #define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
28 #define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
31 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
32 * costly to service. That is between allocation orders which should
33 * coelesce naturally under reasonable reclaim pressure and those which
36 #define PAGE_ALLOC_COSTLY_ORDER 3
38 #define MIGRATE_UNMOVABLE 0
39 #define MIGRATE_RECLAIMABLE 1
40 #define MIGRATE_MOVABLE 2
41 #define MIGRATE_PCPTYPES 3 /* the number of types on the pcp lists */
42 #define MIGRATE_RESERVE 3
43 #define MIGRATE_ISOLATE 4 /* can't allocate from here */
44 #define MIGRATE_TYPES 5
46 #define for_each_migratetype_order(order, type) \
47 for (order = 0; order < MAX_ORDER; order++) \
48 for (type = 0; type < MIGRATE_TYPES; type++)
50 extern int page_group_by_mobility_disabled
;
52 static inline int get_pageblock_migratetype(struct page
*page
)
54 return get_pageblock_flags_group(page
, PB_migrate
, PB_migrate_end
);
58 struct list_head free_list
[MIGRATE_TYPES
];
59 unsigned long nr_free
;
65 * zone->lock and zone->lru_lock are two of the hottest locks in the kernel.
66 * So add a wild amount of padding here to ensure that they fall into separate
67 * cachelines. There are very few zone structures in the machine, so space
68 * consumption is not a concern here.
70 #if defined(CONFIG_SMP)
73 } ____cacheline_internodealigned_in_smp
;
74 #define ZONE_PADDING(name) struct zone_padding name;
76 #define ZONE_PADDING(name)
80 /* First 128 byte cacheline (assuming 64 bit words) */
83 NR_INACTIVE_ANON
= NR_LRU_BASE
, /* must match order of LRU_[IN]ACTIVE */
84 NR_ACTIVE_ANON
, /* " " " " " */
85 NR_INACTIVE_FILE
, /* " " " " " */
86 NR_ACTIVE_FILE
, /* " " " " " */
87 NR_UNEVICTABLE
, /* " " " " " */
88 NR_MLOCK
, /* mlock()ed pages found and moved off LRU */
89 NR_ANON_PAGES
, /* Mapped anonymous pages */
90 NR_FILE_MAPPED
, /* pagecache pages mapped into pagetables.
91 only modified from process context */
96 NR_SLAB_UNRECLAIMABLE
,
97 NR_PAGETABLE
, /* used for pagetables */
99 /* Second 128 byte cacheline */
100 NR_UNSTABLE_NFS
, /* NFS unstable pages */
103 NR_WRITEBACK_TEMP
, /* Writeback using temporary buffers */
104 NR_ISOLATED_ANON
, /* Temporary isolated pages from anon lru */
105 NR_ISOLATED_FILE
, /* Temporary isolated pages from file lru */
106 NR_SHMEM
, /* shmem pages (included tmpfs/GEM pages) */
108 NUMA_HIT
, /* allocated in intended node */
109 NUMA_MISS
, /* allocated in non intended node */
110 NUMA_FOREIGN
, /* was intended here, hit elsewhere */
111 NUMA_INTERLEAVE_HIT
, /* interleaver preferred this zone */
112 NUMA_LOCAL
, /* allocation from local node */
113 NUMA_OTHER
, /* allocation from other node */
115 NR_VM_ZONE_STAT_ITEMS
};
118 * We do arithmetic on the LRU lists in various places in the code,
119 * so it is important to keep the active lists LRU_ACTIVE higher in
120 * the array than the corresponding inactive lists, and to keep
121 * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
123 * This has to be kept in sync with the statistics in zone_stat_item
124 * above and the descriptions in vmstat_text in mm/vmstat.c
131 LRU_INACTIVE_ANON
= LRU_BASE
,
132 LRU_ACTIVE_ANON
= LRU_BASE
+ LRU_ACTIVE
,
133 LRU_INACTIVE_FILE
= LRU_BASE
+ LRU_FILE
,
134 LRU_ACTIVE_FILE
= LRU_BASE
+ LRU_FILE
+ LRU_ACTIVE
,
139 #define for_each_lru(l) for (l = 0; l < NR_LRU_LISTS; l++)
141 #define for_each_evictable_lru(l) for (l = 0; l <= LRU_ACTIVE_FILE; l++)
143 static inline int is_file_lru(enum lru_list l
)
145 return (l
== LRU_INACTIVE_FILE
|| l
== LRU_ACTIVE_FILE
);
148 static inline int is_active_lru(enum lru_list l
)
150 return (l
== LRU_ACTIVE_ANON
|| l
== LRU_ACTIVE_FILE
);
153 static inline int is_unevictable_lru(enum lru_list l
)
155 return (l
== LRU_UNEVICTABLE
);
158 enum zone_watermarks
{
165 #define min_wmark_pages(z) (z->watermark[WMARK_MIN])
166 #define low_wmark_pages(z) (z->watermark[WMARK_LOW])
167 #define high_wmark_pages(z) (z->watermark[WMARK_HIGH])
169 struct per_cpu_pages
{
170 int count
; /* number of pages in the list */
171 int high
; /* high watermark, emptying needed */
172 int batch
; /* chunk size for buddy add/remove */
174 /* Lists of pages, one per migrate type stored on the pcp-lists */
175 struct list_head lists
[MIGRATE_PCPTYPES
];
178 struct per_cpu_pageset
{
179 struct per_cpu_pages pcp
;
185 s8 vm_stat_diff
[NR_VM_ZONE_STAT_ITEMS
];
189 #endif /* !__GENERATING_BOUNDS.H */
192 #ifdef CONFIG_ZONE_DMA
194 * ZONE_DMA is used when there are devices that are not able
195 * to do DMA to all of addressable memory (ZONE_NORMAL). Then we
196 * carve out the portion of memory that is needed for these devices.
197 * The range is arch specific.
202 * ---------------------------
203 * parisc, ia64, sparc <4G
206 * alpha Unlimited or 0-16MB.
208 * i386, x86_64 and multiple other arches
213 #ifdef CONFIG_ZONE_DMA32
215 * x86_64 needs two ZONE_DMAs because it supports devices that are
216 * only able to do DMA to the lower 16M but also 32 bit devices that
217 * can only do DMA areas below 4G.
222 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
223 * performed on pages in ZONE_NORMAL if the DMA devices support
224 * transfers to all addressable memory.
227 #ifdef CONFIG_HIGHMEM
229 * A memory area that is only addressable by the kernel through
230 * mapping portions into its own address space. This is for example
231 * used by i386 to allow the kernel to address the memory beyond
232 * 900MB. The kernel will set up special mappings (page
233 * table entries on i386) for each page that the kernel needs to
242 #ifndef __GENERATING_BOUNDS_H
245 * When a memory allocation must conform to specific limitations (such
246 * as being suitable for DMA) the caller will pass in hints to the
247 * allocator in the gfp_mask, in the zone modifier bits. These bits
248 * are used to select a priority ordered list of memory zones which
249 * match the requested limits. See gfp_zone() in include/linux/gfp.h
253 #define ZONES_SHIFT 0
254 #elif MAX_NR_ZONES <= 2
255 #define ZONES_SHIFT 1
256 #elif MAX_NR_ZONES <= 4
257 #define ZONES_SHIFT 2
259 #error ZONES_SHIFT -- too many zones configured adjust calculation
262 struct zone_reclaim_stat
{
264 * The pageout code in vmscan.c keeps track of how many of the
265 * mem/swap backed and file backed pages are refeferenced.
266 * The higher the rotated/scanned ratio, the more valuable
269 * The anon LRU stats live in [0], file LRU stats in [1]
271 unsigned long recent_rotated
[2];
272 unsigned long recent_scanned
[2];
275 * accumulated for batching
277 unsigned long nr_saved_scan
[NR_LRU_LISTS
];
281 /* Fields commonly accessed by the page allocator */
283 /* zone watermarks, access with *_wmark_pages(zone) macros */
284 unsigned long watermark
[NR_WMARK
];
287 * We don't know if the memory that we're going to allocate will be freeable
288 * or/and it will be released eventually, so to avoid totally wasting several
289 * GB of ram we must reserve some of the lower zone memory (otherwise we risk
290 * to run OOM on the lower zones despite there's tons of freeable ram
291 * on the higher zones). This array is recalculated at runtime if the
292 * sysctl_lowmem_reserve_ratio sysctl changes.
294 unsigned long lowmem_reserve
[MAX_NR_ZONES
];
299 * zone reclaim becomes active if more unmapped pages exist.
301 unsigned long min_unmapped_pages
;
302 unsigned long min_slab_pages
;
304 struct per_cpu_pageset __percpu
*pageset
;
306 * free areas of different sizes
309 int all_unreclaimable
; /* All pages pinned */
310 #ifdef CONFIG_MEMORY_HOTPLUG
311 /* see spanned/present_pages for more description */
312 seqlock_t span_seqlock
;
314 struct free_area free_area
[MAX_ORDER
];
316 #ifndef CONFIG_SPARSEMEM
318 * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
319 * In SPARSEMEM, this map is stored in struct mem_section
321 unsigned long *pageblock_flags
;
322 #endif /* CONFIG_SPARSEMEM */
324 #ifdef CONFIG_COMPACTION
326 * On compaction failure, 1<<compact_defer_shift compactions
327 * are skipped before trying again. The number attempted since
328 * last failure is tracked with compact_considered.
330 unsigned int compact_considered
;
331 unsigned int compact_defer_shift
;
336 /* Fields commonly accessed by the page reclaim scanner */
339 struct list_head list
;
342 struct zone_reclaim_stat reclaim_stat
;
344 unsigned long pages_scanned
; /* since last reclaim */
345 unsigned long flags
; /* zone flags, see below */
347 /* Zone statistics */
348 atomic_long_t vm_stat
[NR_VM_ZONE_STAT_ITEMS
];
351 * The target ratio of ACTIVE_ANON to INACTIVE_ANON pages on
352 * this zone's LRU. Maintained by the pageout code.
354 unsigned int inactive_ratio
;
358 /* Rarely used or read-mostly fields */
361 * wait_table -- the array holding the hash table
362 * wait_table_hash_nr_entries -- the size of the hash table array
363 * wait_table_bits -- wait_table_size == (1 << wait_table_bits)
365 * The purpose of all these is to keep track of the people
366 * waiting for a page to become available and make them
367 * runnable again when possible. The trouble is that this
368 * consumes a lot of space, especially when so few things
369 * wait on pages at a given time. So instead of using
370 * per-page waitqueues, we use a waitqueue hash table.
372 * The bucket discipline is to sleep on the same queue when
373 * colliding and wake all in that wait queue when removing.
374 * When something wakes, it must check to be sure its page is
375 * truly available, a la thundering herd. The cost of a
376 * collision is great, but given the expected load of the
377 * table, they should be so rare as to be outweighed by the
378 * benefits from the saved space.
380 * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the
381 * primary users of these fields, and in mm/page_alloc.c
382 * free_area_init_core() performs the initialization of them.
384 wait_queue_head_t
* wait_table
;
385 unsigned long wait_table_hash_nr_entries
;
386 unsigned long wait_table_bits
;
389 * Discontig memory support fields.
391 struct pglist_data
*zone_pgdat
;
392 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
393 unsigned long zone_start_pfn
;
396 * zone_start_pfn, spanned_pages and present_pages are all
397 * protected by span_seqlock. It is a seqlock because it has
398 * to be read outside of zone->lock, and it is done in the main
399 * allocator path. But, it is written quite infrequently.
401 * The lock is declared along with zone->lock because it is
402 * frequently read in proximity to zone->lock. It's good to
403 * give them a chance of being in the same cacheline.
405 unsigned long spanned_pages
; /* total size, including holes */
406 unsigned long present_pages
; /* amount of memory (excluding holes) */
409 * rarely used fields:
412 } ____cacheline_internodealigned_in_smp
;
415 ZONE_RECLAIM_LOCKED
, /* prevents concurrent reclaim */
416 ZONE_OOM_LOCKED
, /* zone is in OOM killer zonelist */
419 static inline void zone_set_flag(struct zone
*zone
, zone_flags_t flag
)
421 set_bit(flag
, &zone
->flags
);
424 static inline int zone_test_and_set_flag(struct zone
*zone
, zone_flags_t flag
)
426 return test_and_set_bit(flag
, &zone
->flags
);
429 static inline void zone_clear_flag(struct zone
*zone
, zone_flags_t flag
)
431 clear_bit(flag
, &zone
->flags
);
434 static inline int zone_is_reclaim_locked(const struct zone
*zone
)
436 return test_bit(ZONE_RECLAIM_LOCKED
, &zone
->flags
);
439 static inline int zone_is_oom_locked(const struct zone
*zone
)
441 return test_bit(ZONE_OOM_LOCKED
, &zone
->flags
);
445 * The "priority" of VM scanning is how much of the queues we will scan in one
446 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
447 * queues ("queue_length >> 12") during an aging round.
449 #define DEF_PRIORITY 12
451 /* Maximum number of zones on a zonelist */
452 #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
457 * The NUMA zonelists are doubled becausse we need zonelists that restrict the
458 * allocations to a single node for GFP_THISNODE.
460 * [0] : Zonelist with fallback
461 * [1] : No fallback (GFP_THISNODE)
463 #define MAX_ZONELISTS 2
467 * We cache key information from each zonelist for smaller cache
468 * footprint when scanning for free pages in get_page_from_freelist().
470 * 1) The BITMAP fullzones tracks which zones in a zonelist have come
471 * up short of free memory since the last time (last_fullzone_zap)
472 * we zero'd fullzones.
473 * 2) The array z_to_n[] maps each zone in the zonelist to its node
474 * id, so that we can efficiently evaluate whether that node is
475 * set in the current tasks mems_allowed.
477 * Both fullzones and z_to_n[] are one-to-one with the zonelist,
478 * indexed by a zones offset in the zonelist zones[] array.
480 * The get_page_from_freelist() routine does two scans. During the
481 * first scan, we skip zones whose corresponding bit in 'fullzones'
482 * is set or whose corresponding node in current->mems_allowed (which
483 * comes from cpusets) is not set. During the second scan, we bypass
484 * this zonelist_cache, to ensure we look methodically at each zone.
486 * Once per second, we zero out (zap) fullzones, forcing us to
487 * reconsider nodes that might have regained more free memory.
488 * The field last_full_zap is the time we last zapped fullzones.
490 * This mechanism reduces the amount of time we waste repeatedly
491 * reexaming zones for free memory when they just came up low on
492 * memory momentarilly ago.
494 * The zonelist_cache struct members logically belong in struct
495 * zonelist. However, the mempolicy zonelists constructed for
496 * MPOL_BIND are intentionally variable length (and usually much
497 * shorter). A general purpose mechanism for handling structs with
498 * multiple variable length members is more mechanism than we want
499 * here. We resort to some special case hackery instead.
501 * The MPOL_BIND zonelists don't need this zonelist_cache (in good
502 * part because they are shorter), so we put the fixed length stuff
503 * at the front of the zonelist struct, ending in a variable length
504 * zones[], as is needed by MPOL_BIND.
506 * Then we put the optional zonelist cache on the end of the zonelist
507 * struct. This optional stuff is found by a 'zlcache_ptr' pointer in
508 * the fixed length portion at the front of the struct. This pointer
509 * both enables us to find the zonelist cache, and in the case of
510 * MPOL_BIND zonelists, (which will just set the zlcache_ptr to NULL)
511 * to know that the zonelist cache is not there.
513 * The end result is that struct zonelists come in two flavors:
514 * 1) The full, fixed length version, shown below, and
515 * 2) The custom zonelists for MPOL_BIND.
516 * The custom MPOL_BIND zonelists have a NULL zlcache_ptr and no zlcache.
518 * Even though there may be multiple CPU cores on a node modifying
519 * fullzones or last_full_zap in the same zonelist_cache at the same
520 * time, we don't lock it. This is just hint data - if it is wrong now
521 * and then, the allocator will still function, perhaps a bit slower.
525 struct zonelist_cache
{
526 unsigned short z_to_n
[MAX_ZONES_PER_ZONELIST
]; /* zone->nid */
527 DECLARE_BITMAP(fullzones
, MAX_ZONES_PER_ZONELIST
); /* zone full? */
528 unsigned long last_full_zap
; /* when last zap'd (jiffies) */
531 #define MAX_ZONELISTS 1
532 struct zonelist_cache
;
536 * This struct contains information about a zone in a zonelist. It is stored
537 * here to avoid dereferences into large structures and lookups of tables
540 struct zone
*zone
; /* Pointer to actual zone */
541 int zone_idx
; /* zone_idx(zoneref->zone) */
545 * One allocation request operates on a zonelist. A zonelist
546 * is a list of zones, the first one is the 'goal' of the
547 * allocation, the other zones are fallback zones, in decreasing
550 * If zlcache_ptr is not NULL, then it is just the address of zlcache,
551 * as explained above. If zlcache_ptr is NULL, there is no zlcache.
553 * To speed the reading of the zonelist, the zonerefs contain the zone index
554 * of the entry being read. Helper functions to access information given
555 * a struct zoneref are
557 * zonelist_zone() - Return the struct zone * for an entry in _zonerefs
558 * zonelist_zone_idx() - Return the index of the zone for an entry
559 * zonelist_node_idx() - Return the index of the node for an entry
562 struct zonelist_cache
*zlcache_ptr
; // NULL or &zlcache
563 struct zoneref _zonerefs
[MAX_ZONES_PER_ZONELIST
+ 1];
565 struct zonelist_cache zlcache
; // optional ...
569 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
570 struct node_active_region
{
571 unsigned long start_pfn
;
572 unsigned long end_pfn
;
575 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
577 #ifndef CONFIG_DISCONTIGMEM
578 /* The array of struct pages - for discontigmem use pgdat->lmem_map */
579 extern struct page
*mem_map
;
583 * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM
584 * (mostly NUMA machines?) to denote a higher-level memory zone than the
587 * On NUMA machines, each NUMA node would have a pg_data_t to describe
588 * it's memory layout.
590 * Memory statistics and page replacement data structures are maintained on a
594 typedef struct pglist_data
{
595 struct zone node_zones
[MAX_NR_ZONES
];
596 struct zonelist node_zonelists
[MAX_ZONELISTS
];
598 #ifdef CONFIG_FLAT_NODE_MEM_MAP /* means !SPARSEMEM */
599 struct page
*node_mem_map
;
600 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
601 struct page_cgroup
*node_page_cgroup
;
604 #ifndef CONFIG_NO_BOOTMEM
605 struct bootmem_data
*bdata
;
607 #ifdef CONFIG_MEMORY_HOTPLUG
609 * Must be held any time you expect node_start_pfn, node_present_pages
610 * or node_spanned_pages stay constant. Holding this will also
611 * guarantee that any pfn_valid() stays that way.
613 * Nests above zone->lock and zone->size_seqlock.
615 spinlock_t node_size_lock
;
617 unsigned long node_start_pfn
;
618 unsigned long node_present_pages
; /* total number of physical pages */
619 unsigned long node_spanned_pages
; /* total size of physical page
620 range, including holes */
622 wait_queue_head_t kswapd_wait
;
623 struct task_struct
*kswapd
;
624 int kswapd_max_order
;
627 #define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages)
628 #define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages)
629 #ifdef CONFIG_FLAT_NODE_MEM_MAP
630 #define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr))
632 #define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr))
634 #define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr))
636 #include <linux/memory_hotplug.h>
638 extern struct mutex zonelists_mutex
;
639 void build_all_zonelists(void *data
);
640 void wakeup_kswapd(struct zone
*zone
, int order
);
641 int zone_watermark_ok(struct zone
*z
, int order
, unsigned long mark
,
642 int classzone_idx
, int alloc_flags
);
643 enum memmap_context
{
647 extern int init_currently_empty_zone(struct zone
*zone
, unsigned long start_pfn
,
649 enum memmap_context context
);
651 #ifdef CONFIG_HAVE_MEMORY_PRESENT
652 void memory_present(int nid
, unsigned long start
, unsigned long end
);
654 static inline void memory_present(int nid
, unsigned long start
, unsigned long end
) {}
657 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
658 int local_memory_node(int node_id
);
660 static inline int local_memory_node(int node_id
) { return node_id
; };
663 #ifdef CONFIG_NEED_NODE_MEMMAP_SIZE
664 unsigned long __init
node_memmap_size_bytes(int, unsigned long, unsigned long);
668 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
670 #define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones)
672 static inline int populated_zone(struct zone
*zone
)
674 return (!!zone
->present_pages
);
677 extern int movable_zone
;
679 static inline int zone_movable_is_highmem(void)
681 #if defined(CONFIG_HIGHMEM) && defined(CONFIG_ARCH_POPULATES_NODE_MAP)
682 return movable_zone
== ZONE_HIGHMEM
;
688 static inline int is_highmem_idx(enum zone_type idx
)
690 #ifdef CONFIG_HIGHMEM
691 return (idx
== ZONE_HIGHMEM
||
692 (idx
== ZONE_MOVABLE
&& zone_movable_is_highmem()));
698 static inline int is_normal_idx(enum zone_type idx
)
700 return (idx
== ZONE_NORMAL
);
704 * is_highmem - helper function to quickly check if a struct zone is a
705 * highmem zone or not. This is an attempt to keep references
706 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
707 * @zone - pointer to struct zone variable
709 static inline int is_highmem(struct zone
*zone
)
711 #ifdef CONFIG_HIGHMEM
712 int zone_off
= (char *)zone
- (char *)zone
->zone_pgdat
->node_zones
;
713 return zone_off
== ZONE_HIGHMEM
* sizeof(*zone
) ||
714 (zone_off
== ZONE_MOVABLE
* sizeof(*zone
) &&
715 zone_movable_is_highmem());
721 static inline int is_normal(struct zone
*zone
)
723 return zone
== zone
->zone_pgdat
->node_zones
+ ZONE_NORMAL
;
726 static inline int is_dma32(struct zone
*zone
)
728 #ifdef CONFIG_ZONE_DMA32
729 return zone
== zone
->zone_pgdat
->node_zones
+ ZONE_DMA32
;
735 static inline int is_dma(struct zone
*zone
)
737 #ifdef CONFIG_ZONE_DMA
738 return zone
== zone
->zone_pgdat
->node_zones
+ ZONE_DMA
;
744 /* These two functions are used to setup the per zone pages min values */
746 int min_free_kbytes_sysctl_handler(struct ctl_table
*, int,
747 void __user
*, size_t *, loff_t
*);
748 extern int sysctl_lowmem_reserve_ratio
[MAX_NR_ZONES
-1];
749 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table
*, int,
750 void __user
*, size_t *, loff_t
*);
751 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table
*, int,
752 void __user
*, size_t *, loff_t
*);
753 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table
*, int,
754 void __user
*, size_t *, loff_t
*);
755 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table
*, int,
756 void __user
*, size_t *, loff_t
*);
758 extern int numa_zonelist_order_handler(struct ctl_table
*, int,
759 void __user
*, size_t *, loff_t
*);
760 extern char numa_zonelist_order
[];
761 #define NUMA_ZONELIST_ORDER_LEN 16 /* string buffer size */
763 #ifndef CONFIG_NEED_MULTIPLE_NODES
765 extern struct pglist_data contig_page_data
;
766 #define NODE_DATA(nid) (&contig_page_data)
767 #define NODE_MEM_MAP(nid) mem_map
769 #else /* CONFIG_NEED_MULTIPLE_NODES */
771 #include <asm/mmzone.h>
773 #endif /* !CONFIG_NEED_MULTIPLE_NODES */
775 extern struct pglist_data
*first_online_pgdat(void);
776 extern struct pglist_data
*next_online_pgdat(struct pglist_data
*pgdat
);
777 extern struct zone
*next_zone(struct zone
*zone
);
780 * for_each_online_pgdat - helper macro to iterate over all online nodes
781 * @pgdat - pointer to a pg_data_t variable
783 #define for_each_online_pgdat(pgdat) \
784 for (pgdat = first_online_pgdat(); \
786 pgdat = next_online_pgdat(pgdat))
788 * for_each_zone - helper macro to iterate over all memory zones
789 * @zone - pointer to struct zone variable
791 * The user only needs to declare the zone variable, for_each_zone
794 #define for_each_zone(zone) \
795 for (zone = (first_online_pgdat())->node_zones; \
797 zone = next_zone(zone))
799 #define for_each_populated_zone(zone) \
800 for (zone = (first_online_pgdat())->node_zones; \
802 zone = next_zone(zone)) \
803 if (!populated_zone(zone)) \
807 static inline struct zone
*zonelist_zone(struct zoneref
*zoneref
)
809 return zoneref
->zone
;
812 static inline int zonelist_zone_idx(struct zoneref
*zoneref
)
814 return zoneref
->zone_idx
;
817 static inline int zonelist_node_idx(struct zoneref
*zoneref
)
820 /* zone_to_nid not available in this context */
821 return zoneref
->zone
->node
;
824 #endif /* CONFIG_NUMA */
828 * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
829 * @z - The cursor used as a starting point for the search
830 * @highest_zoneidx - The zone index of the highest zone to return
831 * @nodes - An optional nodemask to filter the zonelist with
832 * @zone - The first suitable zone found is returned via this parameter
834 * This function returns the next zone at or below a given zone index that is
835 * within the allowed nodemask using a cursor as the starting point for the
836 * search. The zoneref returned is a cursor that represents the current zone
837 * being examined. It should be advanced by one before calling
838 * next_zones_zonelist again.
840 struct zoneref
*next_zones_zonelist(struct zoneref
*z
,
841 enum zone_type highest_zoneidx
,
846 * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
847 * @zonelist - The zonelist to search for a suitable zone
848 * @highest_zoneidx - The zone index of the highest zone to return
849 * @nodes - An optional nodemask to filter the zonelist with
850 * @zone - The first suitable zone found is returned via this parameter
852 * This function returns the first zone at or below a given zone index that is
853 * within the allowed nodemask. The zoneref returned is a cursor that can be
854 * used to iterate the zonelist with next_zones_zonelist by advancing it by
855 * one before calling.
857 static inline struct zoneref
*first_zones_zonelist(struct zonelist
*zonelist
,
858 enum zone_type highest_zoneidx
,
862 return next_zones_zonelist(zonelist
->_zonerefs
, highest_zoneidx
, nodes
,
867 * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
868 * @zone - The current zone in the iterator
869 * @z - The current pointer within zonelist->zones being iterated
870 * @zlist - The zonelist being iterated
871 * @highidx - The zone index of the highest zone to return
872 * @nodemask - Nodemask allowed by the allocator
874 * This iterator iterates though all zones at or below a given zone index and
875 * within a given nodemask
877 #define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
878 for (z = first_zones_zonelist(zlist, highidx, nodemask, &zone); \
880 z = next_zones_zonelist(++z, highidx, nodemask, &zone)) \
883 * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
884 * @zone - The current zone in the iterator
885 * @z - The current pointer within zonelist->zones being iterated
886 * @zlist - The zonelist being iterated
887 * @highidx - The zone index of the highest zone to return
889 * This iterator iterates though all zones at or below a given zone index.
891 #define for_each_zone_zonelist(zone, z, zlist, highidx) \
892 for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
894 #ifdef CONFIG_SPARSEMEM
895 #include <asm/sparsemem.h>
898 #if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \
899 !defined(CONFIG_ARCH_POPULATES_NODE_MAP)
900 static inline unsigned long early_pfn_to_nid(unsigned long pfn
)
906 #ifdef CONFIG_FLATMEM
907 #define pfn_to_nid(pfn) (0)
910 #define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT)
911 #define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT)
913 #ifdef CONFIG_SPARSEMEM
916 * SECTION_SHIFT #bits space required to store a section #
918 * PA_SECTION_SHIFT physical address to/from section number
919 * PFN_SECTION_SHIFT pfn to/from section number
921 #define SECTIONS_SHIFT (MAX_PHYSMEM_BITS - SECTION_SIZE_BITS)
923 #define PA_SECTION_SHIFT (SECTION_SIZE_BITS)
924 #define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT)
926 #define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT)
928 #define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT)
929 #define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1))
931 #define SECTION_BLOCKFLAGS_BITS \
932 ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
934 #if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
935 #error Allocator MAX_ORDER exceeds SECTION_SIZE
942 * This is, logically, a pointer to an array of struct
943 * pages. However, it is stored with some other magic.
944 * (see sparse.c::sparse_init_one_section())
946 * Additionally during early boot we encode node id of
947 * the location of the section here to guide allocation.
948 * (see sparse.c::memory_present())
950 * Making it a UL at least makes someone do a cast
951 * before using it wrong.
953 unsigned long section_mem_map
;
955 /* See declaration of similar field in struct zone */
956 unsigned long *pageblock_flags
;
957 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
959 * If !SPARSEMEM, pgdat doesn't have page_cgroup pointer. We use
960 * section. (see memcontrol.h/page_cgroup.h about this.)
962 struct page_cgroup
*page_cgroup
;
967 #ifdef CONFIG_SPARSEMEM_EXTREME
968 #define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section))
970 #define SECTIONS_PER_ROOT 1
973 #define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT)
974 #define NR_SECTION_ROOTS DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
975 #define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1)
977 #ifdef CONFIG_SPARSEMEM_EXTREME
978 extern struct mem_section
*mem_section
[NR_SECTION_ROOTS
];
980 extern struct mem_section mem_section
[NR_SECTION_ROOTS
][SECTIONS_PER_ROOT
];
983 static inline struct mem_section
*__nr_to_section(unsigned long nr
)
985 if (!mem_section
[SECTION_NR_TO_ROOT(nr
)])
987 return &mem_section
[SECTION_NR_TO_ROOT(nr
)][nr
& SECTION_ROOT_MASK
];
989 extern int __section_nr(struct mem_section
* ms
);
990 extern unsigned long usemap_size(void);
993 * We use the lower bits of the mem_map pointer to store
994 * a little bit of information. There should be at least
995 * 3 bits here due to 32-bit alignment.
997 #define SECTION_MARKED_PRESENT (1UL<<0)
998 #define SECTION_HAS_MEM_MAP (1UL<<1)
999 #define SECTION_MAP_LAST_BIT (1UL<<2)
1000 #define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1))
1001 #define SECTION_NID_SHIFT 2
1003 static inline struct page
*__section_mem_map_addr(struct mem_section
*section
)
1005 unsigned long map
= section
->section_mem_map
;
1006 map
&= SECTION_MAP_MASK
;
1007 return (struct page
*)map
;
1010 static inline int present_section(struct mem_section
*section
)
1012 return (section
&& (section
->section_mem_map
& SECTION_MARKED_PRESENT
));
1015 static inline int present_section_nr(unsigned long nr
)
1017 return present_section(__nr_to_section(nr
));
1020 static inline int valid_section(struct mem_section
*section
)
1022 return (section
&& (section
->section_mem_map
& SECTION_HAS_MEM_MAP
));
1025 static inline int valid_section_nr(unsigned long nr
)
1027 return valid_section(__nr_to_section(nr
));
1030 static inline struct mem_section
*__pfn_to_section(unsigned long pfn
)
1032 return __nr_to_section(pfn_to_section_nr(pfn
));
1035 static inline int pfn_valid(unsigned long pfn
)
1037 if (pfn_to_section_nr(pfn
) >= NR_MEM_SECTIONS
)
1039 return valid_section(__nr_to_section(pfn_to_section_nr(pfn
)));
1042 static inline int pfn_present(unsigned long pfn
)
1044 if (pfn_to_section_nr(pfn
) >= NR_MEM_SECTIONS
)
1046 return present_section(__nr_to_section(pfn_to_section_nr(pfn
)));
1050 * These are _only_ used during initialisation, therefore they
1051 * can use __initdata ... They could have names to indicate
1055 #define pfn_to_nid(pfn) \
1057 unsigned long __pfn_to_nid_pfn = (pfn); \
1058 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \
1061 #define pfn_to_nid(pfn) (0)
1064 #define early_pfn_valid(pfn) pfn_valid(pfn)
1065 void sparse_init(void);
1067 #define sparse_init() do {} while (0)
1068 #define sparse_index_init(_sec, _nid) do {} while (0)
1069 #endif /* CONFIG_SPARSEMEM */
1071 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1072 bool early_pfn_in_nid(unsigned long pfn
, int nid
);
1074 #define early_pfn_in_nid(pfn, nid) (1)
1077 #ifndef early_pfn_valid
1078 #define early_pfn_valid(pfn) (1)
1081 void memory_present(int nid
, unsigned long start
, unsigned long end
);
1082 unsigned long __init
node_memmap_size_bytes(int, unsigned long, unsigned long);
1085 * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
1086 * need to check pfn validility within that MAX_ORDER_NR_PAGES block.
1087 * pfn_valid_within() should be used in this case; we optimise this away
1088 * when we have no holes within a MAX_ORDER_NR_PAGES block.
1090 #ifdef CONFIG_HOLES_IN_ZONE
1091 #define pfn_valid_within(pfn) pfn_valid(pfn)
1093 #define pfn_valid_within(pfn) (1)
1096 #ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL
1098 * pfn_valid() is meant to be able to tell if a given PFN has valid memmap
1099 * associated with it or not. In FLATMEM, it is expected that holes always
1100 * have valid memmap as long as there is valid PFNs either side of the hole.
1101 * In SPARSEMEM, it is assumed that a valid section has a memmap for the
1104 * However, an ARM, and maybe other embedded architectures in the future
1105 * free memmap backing holes to save memory on the assumption the memmap is
1106 * never used. The page_zone linkages are then broken even though pfn_valid()
1107 * returns true. A walker of the full memmap must then do this additional
1108 * check to ensure the memmap they are looking at is sane by making sure
1109 * the zone and PFN linkages are still valid. This is expensive, but walkers
1110 * of the full memmap are extremely rare.
1112 int memmap_valid_within(unsigned long pfn
,
1113 struct page
*page
, struct zone
*zone
);
1115 static inline int memmap_valid_within(unsigned long pfn
,
1116 struct page
*page
, struct zone
*zone
)
1120 #endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */
1122 #endif /* !__GENERATING_BOUNDS.H */
1123 #endif /* !__ASSEMBLY__ */
1124 #endif /* _LINUX_MMZONE_H */