2 * Implement CPU time clocks for the POSIX clock interface.
5 #include <linux/sched.h>
6 #include <linux/posix-timers.h>
7 #include <linux/errno.h>
8 #include <linux/math64.h>
9 #include <asm/uaccess.h>
10 #include <linux/kernel_stat.h>
11 #include <trace/events/timer.h>
14 * Called after updating RLIMIT_CPU to run cpu timer and update
15 * tsk->signal->cputime_expires expiration cache if necessary. Needs
16 * siglock protection since other code may update expiration cache as
19 void update_rlimit_cpu(struct task_struct
*task
, unsigned long rlim_new
)
21 cputime_t cputime
= secs_to_cputime(rlim_new
);
23 spin_lock_irq(&task
->sighand
->siglock
);
24 set_process_cpu_timer(task
, CPUCLOCK_PROF
, &cputime
, NULL
);
25 spin_unlock_irq(&task
->sighand
->siglock
);
28 static int check_clock(const clockid_t which_clock
)
31 struct task_struct
*p
;
32 const pid_t pid
= CPUCLOCK_PID(which_clock
);
34 if (CPUCLOCK_WHICH(which_clock
) >= CPUCLOCK_MAX
)
41 p
= find_task_by_vpid(pid
);
42 if (!p
|| !(CPUCLOCK_PERTHREAD(which_clock
) ?
43 same_thread_group(p
, current
) : has_group_leader_pid(p
))) {
51 static inline union cpu_time_count
52 timespec_to_sample(const clockid_t which_clock
, const struct timespec
*tp
)
54 union cpu_time_count ret
;
55 ret
.sched
= 0; /* high half always zero when .cpu used */
56 if (CPUCLOCK_WHICH(which_clock
) == CPUCLOCK_SCHED
) {
57 ret
.sched
= (unsigned long long)tp
->tv_sec
* NSEC_PER_SEC
+ tp
->tv_nsec
;
59 ret
.cpu
= timespec_to_cputime(tp
);
64 static void sample_to_timespec(const clockid_t which_clock
,
65 union cpu_time_count cpu
,
68 if (CPUCLOCK_WHICH(which_clock
) == CPUCLOCK_SCHED
)
69 *tp
= ns_to_timespec(cpu
.sched
);
71 cputime_to_timespec(cpu
.cpu
, tp
);
74 static inline int cpu_time_before(const clockid_t which_clock
,
75 union cpu_time_count now
,
76 union cpu_time_count then
)
78 if (CPUCLOCK_WHICH(which_clock
) == CPUCLOCK_SCHED
) {
79 return now
.sched
< then
.sched
;
81 return cputime_lt(now
.cpu
, then
.cpu
);
84 static inline void cpu_time_add(const clockid_t which_clock
,
85 union cpu_time_count
*acc
,
86 union cpu_time_count val
)
88 if (CPUCLOCK_WHICH(which_clock
) == CPUCLOCK_SCHED
) {
89 acc
->sched
+= val
.sched
;
91 acc
->cpu
= cputime_add(acc
->cpu
, val
.cpu
);
94 static inline union cpu_time_count
cpu_time_sub(const clockid_t which_clock
,
95 union cpu_time_count a
,
96 union cpu_time_count b
)
98 if (CPUCLOCK_WHICH(which_clock
) == CPUCLOCK_SCHED
) {
101 a
.cpu
= cputime_sub(a
.cpu
, b
.cpu
);
107 * Divide and limit the result to res >= 1
109 * This is necessary to prevent signal delivery starvation, when the result of
110 * the division would be rounded down to 0.
112 static inline cputime_t
cputime_div_non_zero(cputime_t time
, unsigned long div
)
114 cputime_t res
= cputime_div(time
, div
);
116 return max_t(cputime_t
, res
, 1);
120 * Update expiry time from increment, and increase overrun count,
121 * given the current clock sample.
123 static void bump_cpu_timer(struct k_itimer
*timer
,
124 union cpu_time_count now
)
128 if (timer
->it
.cpu
.incr
.sched
== 0)
131 if (CPUCLOCK_WHICH(timer
->it_clock
) == CPUCLOCK_SCHED
) {
132 unsigned long long delta
, incr
;
134 if (now
.sched
< timer
->it
.cpu
.expires
.sched
)
136 incr
= timer
->it
.cpu
.incr
.sched
;
137 delta
= now
.sched
+ incr
- timer
->it
.cpu
.expires
.sched
;
138 /* Don't use (incr*2 < delta), incr*2 might overflow. */
139 for (i
= 0; incr
< delta
- incr
; i
++)
141 for (; i
>= 0; incr
>>= 1, i
--) {
144 timer
->it
.cpu
.expires
.sched
+= incr
;
145 timer
->it_overrun
+= 1 << i
;
149 cputime_t delta
, incr
;
151 if (cputime_lt(now
.cpu
, timer
->it
.cpu
.expires
.cpu
))
153 incr
= timer
->it
.cpu
.incr
.cpu
;
154 delta
= cputime_sub(cputime_add(now
.cpu
, incr
),
155 timer
->it
.cpu
.expires
.cpu
);
156 /* Don't use (incr*2 < delta), incr*2 might overflow. */
157 for (i
= 0; cputime_lt(incr
, cputime_sub(delta
, incr
)); i
++)
158 incr
= cputime_add(incr
, incr
);
159 for (; i
>= 0; incr
= cputime_halve(incr
), i
--) {
160 if (cputime_lt(delta
, incr
))
162 timer
->it
.cpu
.expires
.cpu
=
163 cputime_add(timer
->it
.cpu
.expires
.cpu
, incr
);
164 timer
->it_overrun
+= 1 << i
;
165 delta
= cputime_sub(delta
, incr
);
170 static inline cputime_t
prof_ticks(struct task_struct
*p
)
172 return cputime_add(p
->utime
, p
->stime
);
174 static inline cputime_t
virt_ticks(struct task_struct
*p
)
180 posix_cpu_clock_getres(const clockid_t which_clock
, struct timespec
*tp
)
182 int error
= check_clock(which_clock
);
185 tp
->tv_nsec
= ((NSEC_PER_SEC
+ HZ
- 1) / HZ
);
186 if (CPUCLOCK_WHICH(which_clock
) == CPUCLOCK_SCHED
) {
188 * If sched_clock is using a cycle counter, we
189 * don't have any idea of its true resolution
190 * exported, but it is much more than 1s/HZ.
199 posix_cpu_clock_set(const clockid_t which_clock
, const struct timespec
*tp
)
202 * You can never reset a CPU clock, but we check for other errors
203 * in the call before failing with EPERM.
205 int error
= check_clock(which_clock
);
214 * Sample a per-thread clock for the given task.
216 static int cpu_clock_sample(const clockid_t which_clock
, struct task_struct
*p
,
217 union cpu_time_count
*cpu
)
219 switch (CPUCLOCK_WHICH(which_clock
)) {
223 cpu
->cpu
= prof_ticks(p
);
226 cpu
->cpu
= virt_ticks(p
);
229 cpu
->sched
= task_sched_runtime(p
);
235 void thread_group_cputime(struct task_struct
*tsk
, struct task_cputime
*times
)
237 struct signal_struct
*sig
= tsk
->signal
;
238 struct task_struct
*t
;
240 times
->utime
= sig
->utime
;
241 times
->stime
= sig
->stime
;
242 times
->sum_exec_runtime
= sig
->sum_sched_runtime
;
245 /* make sure we can trust tsk->thread_group list */
246 if (!likely(pid_alive(tsk
)))
251 times
->utime
= cputime_add(times
->utime
, t
->utime
);
252 times
->stime
= cputime_add(times
->stime
, t
->stime
);
253 times
->sum_exec_runtime
+= task_sched_runtime(t
);
254 } while_each_thread(tsk
, t
);
259 static void update_gt_cputime(struct task_cputime
*a
, struct task_cputime
*b
)
261 if (cputime_gt(b
->utime
, a
->utime
))
264 if (cputime_gt(b
->stime
, a
->stime
))
267 if (b
->sum_exec_runtime
> a
->sum_exec_runtime
)
268 a
->sum_exec_runtime
= b
->sum_exec_runtime
;
271 void thread_group_cputimer(struct task_struct
*tsk
, struct task_cputime
*times
)
273 struct thread_group_cputimer
*cputimer
= &tsk
->signal
->cputimer
;
274 struct task_cputime sum
;
277 spin_lock_irqsave(&cputimer
->lock
, flags
);
278 if (!cputimer
->running
) {
279 cputimer
->running
= 1;
281 * The POSIX timer interface allows for absolute time expiry
282 * values through the TIMER_ABSTIME flag, therefore we have
283 * to synchronize the timer to the clock every time we start
286 thread_group_cputime(tsk
, &sum
);
287 update_gt_cputime(&cputimer
->cputime
, &sum
);
289 *times
= cputimer
->cputime
;
290 spin_unlock_irqrestore(&cputimer
->lock
, flags
);
294 * Sample a process (thread group) clock for the given group_leader task.
295 * Must be called with tasklist_lock held for reading.
297 static int cpu_clock_sample_group(const clockid_t which_clock
,
298 struct task_struct
*p
,
299 union cpu_time_count
*cpu
)
301 struct task_cputime cputime
;
303 switch (CPUCLOCK_WHICH(which_clock
)) {
307 thread_group_cputime(p
, &cputime
);
308 cpu
->cpu
= cputime_add(cputime
.utime
, cputime
.stime
);
311 thread_group_cputime(p
, &cputime
);
312 cpu
->cpu
= cputime
.utime
;
315 thread_group_cputime(p
, &cputime
);
316 cpu
->sched
= cputime
.sum_exec_runtime
;
323 static int posix_cpu_clock_get(const clockid_t which_clock
, struct timespec
*tp
)
325 const pid_t pid
= CPUCLOCK_PID(which_clock
);
327 union cpu_time_count rtn
;
331 * Special case constant value for our own clocks.
332 * We don't have to do any lookup to find ourselves.
334 if (CPUCLOCK_PERTHREAD(which_clock
)) {
336 * Sampling just ourselves we can do with no locking.
338 error
= cpu_clock_sample(which_clock
,
341 read_lock(&tasklist_lock
);
342 error
= cpu_clock_sample_group(which_clock
,
344 read_unlock(&tasklist_lock
);
348 * Find the given PID, and validate that the caller
349 * should be able to see it.
351 struct task_struct
*p
;
353 p
= find_task_by_vpid(pid
);
355 if (CPUCLOCK_PERTHREAD(which_clock
)) {
356 if (same_thread_group(p
, current
)) {
357 error
= cpu_clock_sample(which_clock
,
361 read_lock(&tasklist_lock
);
362 if (thread_group_leader(p
) && p
->sighand
) {
364 cpu_clock_sample_group(which_clock
,
367 read_unlock(&tasklist_lock
);
375 sample_to_timespec(which_clock
, rtn
, tp
);
381 * Validate the clockid_t for a new CPU-clock timer, and initialize the timer.
382 * This is called from sys_timer_create() and do_cpu_nanosleep() with the
383 * new timer already all-zeros initialized.
385 static int posix_cpu_timer_create(struct k_itimer
*new_timer
)
388 const pid_t pid
= CPUCLOCK_PID(new_timer
->it_clock
);
389 struct task_struct
*p
;
391 if (CPUCLOCK_WHICH(new_timer
->it_clock
) >= CPUCLOCK_MAX
)
394 INIT_LIST_HEAD(&new_timer
->it
.cpu
.entry
);
397 if (CPUCLOCK_PERTHREAD(new_timer
->it_clock
)) {
401 p
= find_task_by_vpid(pid
);
402 if (p
&& !same_thread_group(p
, current
))
407 p
= current
->group_leader
;
409 p
= find_task_by_vpid(pid
);
410 if (p
&& !has_group_leader_pid(p
))
414 new_timer
->it
.cpu
.task
= p
;
426 * Clean up a CPU-clock timer that is about to be destroyed.
427 * This is called from timer deletion with the timer already locked.
428 * If we return TIMER_RETRY, it's necessary to release the timer's lock
429 * and try again. (This happens when the timer is in the middle of firing.)
431 static int posix_cpu_timer_del(struct k_itimer
*timer
)
433 struct task_struct
*p
= timer
->it
.cpu
.task
;
436 if (likely(p
!= NULL
)) {
437 read_lock(&tasklist_lock
);
438 if (unlikely(p
->sighand
== NULL
)) {
440 * We raced with the reaping of the task.
441 * The deletion should have cleared us off the list.
443 BUG_ON(!list_empty(&timer
->it
.cpu
.entry
));
445 spin_lock(&p
->sighand
->siglock
);
446 if (timer
->it
.cpu
.firing
)
449 list_del(&timer
->it
.cpu
.entry
);
450 spin_unlock(&p
->sighand
->siglock
);
452 read_unlock(&tasklist_lock
);
462 * Clean out CPU timers still ticking when a thread exited. The task
463 * pointer is cleared, and the expiry time is replaced with the residual
464 * time for later timer_gettime calls to return.
465 * This must be called with the siglock held.
467 static void cleanup_timers(struct list_head
*head
,
468 cputime_t utime
, cputime_t stime
,
469 unsigned long long sum_exec_runtime
)
471 struct cpu_timer_list
*timer
, *next
;
472 cputime_t ptime
= cputime_add(utime
, stime
);
474 list_for_each_entry_safe(timer
, next
, head
, entry
) {
475 list_del_init(&timer
->entry
);
476 if (cputime_lt(timer
->expires
.cpu
, ptime
)) {
477 timer
->expires
.cpu
= cputime_zero
;
479 timer
->expires
.cpu
= cputime_sub(timer
->expires
.cpu
,
485 list_for_each_entry_safe(timer
, next
, head
, entry
) {
486 list_del_init(&timer
->entry
);
487 if (cputime_lt(timer
->expires
.cpu
, utime
)) {
488 timer
->expires
.cpu
= cputime_zero
;
490 timer
->expires
.cpu
= cputime_sub(timer
->expires
.cpu
,
496 list_for_each_entry_safe(timer
, next
, head
, entry
) {
497 list_del_init(&timer
->entry
);
498 if (timer
->expires
.sched
< sum_exec_runtime
) {
499 timer
->expires
.sched
= 0;
501 timer
->expires
.sched
-= sum_exec_runtime
;
507 * These are both called with the siglock held, when the current thread
508 * is being reaped. When the final (leader) thread in the group is reaped,
509 * posix_cpu_timers_exit_group will be called after posix_cpu_timers_exit.
511 void posix_cpu_timers_exit(struct task_struct
*tsk
)
513 cleanup_timers(tsk
->cpu_timers
,
514 tsk
->utime
, tsk
->stime
, tsk
->se
.sum_exec_runtime
);
517 void posix_cpu_timers_exit_group(struct task_struct
*tsk
)
519 struct signal_struct
*const sig
= tsk
->signal
;
521 cleanup_timers(tsk
->signal
->cpu_timers
,
522 cputime_add(tsk
->utime
, sig
->utime
),
523 cputime_add(tsk
->stime
, sig
->stime
),
524 tsk
->se
.sum_exec_runtime
+ sig
->sum_sched_runtime
);
527 static void clear_dead_task(struct k_itimer
*timer
, union cpu_time_count now
)
530 * That's all for this thread or process.
531 * We leave our residual in expires to be reported.
533 put_task_struct(timer
->it
.cpu
.task
);
534 timer
->it
.cpu
.task
= NULL
;
535 timer
->it
.cpu
.expires
= cpu_time_sub(timer
->it_clock
,
536 timer
->it
.cpu
.expires
,
540 static inline int expires_gt(cputime_t expires
, cputime_t new_exp
)
542 return cputime_eq(expires
, cputime_zero
) ||
543 cputime_gt(expires
, new_exp
);
547 * Insert the timer on the appropriate list before any timers that
548 * expire later. This must be called with the tasklist_lock held
549 * for reading, interrupts disabled and p->sighand->siglock taken.
551 static void arm_timer(struct k_itimer
*timer
)
553 struct task_struct
*p
= timer
->it
.cpu
.task
;
554 struct list_head
*head
, *listpos
;
555 struct task_cputime
*cputime_expires
;
556 struct cpu_timer_list
*const nt
= &timer
->it
.cpu
;
557 struct cpu_timer_list
*next
;
559 if (CPUCLOCK_PERTHREAD(timer
->it_clock
)) {
560 head
= p
->cpu_timers
;
561 cputime_expires
= &p
->cputime_expires
;
563 head
= p
->signal
->cpu_timers
;
564 cputime_expires
= &p
->signal
->cputime_expires
;
566 head
+= CPUCLOCK_WHICH(timer
->it_clock
);
569 list_for_each_entry(next
, head
, entry
) {
570 if (cpu_time_before(timer
->it_clock
, nt
->expires
, next
->expires
))
572 listpos
= &next
->entry
;
574 list_add(&nt
->entry
, listpos
);
576 if (listpos
== head
) {
577 union cpu_time_count
*exp
= &nt
->expires
;
580 * We are the new earliest-expiring POSIX 1.b timer, hence
581 * need to update expiration cache. Take into account that
582 * for process timers we share expiration cache with itimers
583 * and RLIMIT_CPU and for thread timers with RLIMIT_RTTIME.
586 switch (CPUCLOCK_WHICH(timer
->it_clock
)) {
588 if (expires_gt(cputime_expires
->prof_exp
, exp
->cpu
))
589 cputime_expires
->prof_exp
= exp
->cpu
;
592 if (expires_gt(cputime_expires
->virt_exp
, exp
->cpu
))
593 cputime_expires
->virt_exp
= exp
->cpu
;
596 if (cputime_expires
->sched_exp
== 0 ||
597 cputime_expires
->sched_exp
> exp
->sched
)
598 cputime_expires
->sched_exp
= exp
->sched
;
605 * The timer is locked, fire it and arrange for its reload.
607 static void cpu_timer_fire(struct k_itimer
*timer
)
609 if ((timer
->it_sigev_notify
& ~SIGEV_THREAD_ID
) == SIGEV_NONE
) {
611 * User don't want any signal.
613 timer
->it
.cpu
.expires
.sched
= 0;
614 } else if (unlikely(timer
->sigq
== NULL
)) {
616 * This a special case for clock_nanosleep,
617 * not a normal timer from sys_timer_create.
619 wake_up_process(timer
->it_process
);
620 timer
->it
.cpu
.expires
.sched
= 0;
621 } else if (timer
->it
.cpu
.incr
.sched
== 0) {
623 * One-shot timer. Clear it as soon as it's fired.
625 posix_timer_event(timer
, 0);
626 timer
->it
.cpu
.expires
.sched
= 0;
627 } else if (posix_timer_event(timer
, ++timer
->it_requeue_pending
)) {
629 * The signal did not get queued because the signal
630 * was ignored, so we won't get any callback to
631 * reload the timer. But we need to keep it
632 * ticking in case the signal is deliverable next time.
634 posix_cpu_timer_schedule(timer
);
639 * Sample a process (thread group) timer for the given group_leader task.
640 * Must be called with tasklist_lock held for reading.
642 static int cpu_timer_sample_group(const clockid_t which_clock
,
643 struct task_struct
*p
,
644 union cpu_time_count
*cpu
)
646 struct task_cputime cputime
;
648 thread_group_cputimer(p
, &cputime
);
649 switch (CPUCLOCK_WHICH(which_clock
)) {
653 cpu
->cpu
= cputime_add(cputime
.utime
, cputime
.stime
);
656 cpu
->cpu
= cputime
.utime
;
659 cpu
->sched
= cputime
.sum_exec_runtime
+ task_delta_exec(p
);
666 * Guts of sys_timer_settime for CPU timers.
667 * This is called with the timer locked and interrupts disabled.
668 * If we return TIMER_RETRY, it's necessary to release the timer's lock
669 * and try again. (This happens when the timer is in the middle of firing.)
671 static int posix_cpu_timer_set(struct k_itimer
*timer
, int flags
,
672 struct itimerspec
*new, struct itimerspec
*old
)
674 struct task_struct
*p
= timer
->it
.cpu
.task
;
675 union cpu_time_count old_expires
, new_expires
, old_incr
, val
;
678 if (unlikely(p
== NULL
)) {
680 * Timer refers to a dead task's clock.
685 new_expires
= timespec_to_sample(timer
->it_clock
, &new->it_value
);
687 read_lock(&tasklist_lock
);
689 * We need the tasklist_lock to protect against reaping that
690 * clears p->sighand. If p has just been reaped, we can no
691 * longer get any information about it at all.
693 if (unlikely(p
->sighand
== NULL
)) {
694 read_unlock(&tasklist_lock
);
696 timer
->it
.cpu
.task
= NULL
;
701 * Disarm any old timer after extracting its expiry time.
703 BUG_ON(!irqs_disabled());
706 old_incr
= timer
->it
.cpu
.incr
;
707 spin_lock(&p
->sighand
->siglock
);
708 old_expires
= timer
->it
.cpu
.expires
;
709 if (unlikely(timer
->it
.cpu
.firing
)) {
710 timer
->it
.cpu
.firing
= -1;
713 list_del_init(&timer
->it
.cpu
.entry
);
716 * We need to sample the current value to convert the new
717 * value from to relative and absolute, and to convert the
718 * old value from absolute to relative. To set a process
719 * timer, we need a sample to balance the thread expiry
720 * times (in arm_timer). With an absolute time, we must
721 * check if it's already passed. In short, we need a sample.
723 if (CPUCLOCK_PERTHREAD(timer
->it_clock
)) {
724 cpu_clock_sample(timer
->it_clock
, p
, &val
);
726 cpu_timer_sample_group(timer
->it_clock
, p
, &val
);
730 if (old_expires
.sched
== 0) {
731 old
->it_value
.tv_sec
= 0;
732 old
->it_value
.tv_nsec
= 0;
735 * Update the timer in case it has
736 * overrun already. If it has,
737 * we'll report it as having overrun
738 * and with the next reloaded timer
739 * already ticking, though we are
740 * swallowing that pending
741 * notification here to install the
744 bump_cpu_timer(timer
, val
);
745 if (cpu_time_before(timer
->it_clock
, val
,
746 timer
->it
.cpu
.expires
)) {
747 old_expires
= cpu_time_sub(
749 timer
->it
.cpu
.expires
, val
);
750 sample_to_timespec(timer
->it_clock
,
754 old
->it_value
.tv_nsec
= 1;
755 old
->it_value
.tv_sec
= 0;
762 * We are colliding with the timer actually firing.
763 * Punt after filling in the timer's old value, and
764 * disable this firing since we are already reporting
765 * it as an overrun (thanks to bump_cpu_timer above).
767 spin_unlock(&p
->sighand
->siglock
);
768 read_unlock(&tasklist_lock
);
772 if (new_expires
.sched
!= 0 && !(flags
& TIMER_ABSTIME
)) {
773 cpu_time_add(timer
->it_clock
, &new_expires
, val
);
777 * Install the new expiry time (or zero).
778 * For a timer with no notification action, we don't actually
779 * arm the timer (we'll just fake it for timer_gettime).
781 timer
->it
.cpu
.expires
= new_expires
;
782 if (new_expires
.sched
!= 0 &&
783 cpu_time_before(timer
->it_clock
, val
, new_expires
)) {
787 spin_unlock(&p
->sighand
->siglock
);
788 read_unlock(&tasklist_lock
);
791 * Install the new reload setting, and
792 * set up the signal and overrun bookkeeping.
794 timer
->it
.cpu
.incr
= timespec_to_sample(timer
->it_clock
,
798 * This acts as a modification timestamp for the timer,
799 * so any automatic reload attempt will punt on seeing
800 * that we have reset the timer manually.
802 timer
->it_requeue_pending
= (timer
->it_requeue_pending
+ 2) &
804 timer
->it_overrun_last
= 0;
805 timer
->it_overrun
= -1;
807 if (new_expires
.sched
!= 0 &&
808 !cpu_time_before(timer
->it_clock
, val
, new_expires
)) {
810 * The designated time already passed, so we notify
811 * immediately, even if the thread never runs to
812 * accumulate more time on this clock.
814 cpu_timer_fire(timer
);
820 sample_to_timespec(timer
->it_clock
,
821 old_incr
, &old
->it_interval
);
826 static void posix_cpu_timer_get(struct k_itimer
*timer
, struct itimerspec
*itp
)
828 union cpu_time_count now
;
829 struct task_struct
*p
= timer
->it
.cpu
.task
;
833 * Easy part: convert the reload time.
835 sample_to_timespec(timer
->it_clock
,
836 timer
->it
.cpu
.incr
, &itp
->it_interval
);
838 if (timer
->it
.cpu
.expires
.sched
== 0) { /* Timer not armed at all. */
839 itp
->it_value
.tv_sec
= itp
->it_value
.tv_nsec
= 0;
843 if (unlikely(p
== NULL
)) {
845 * This task already died and the timer will never fire.
846 * In this case, expires is actually the dead value.
849 sample_to_timespec(timer
->it_clock
, timer
->it
.cpu
.expires
,
855 * Sample the clock to take the difference with the expiry time.
857 if (CPUCLOCK_PERTHREAD(timer
->it_clock
)) {
858 cpu_clock_sample(timer
->it_clock
, p
, &now
);
859 clear_dead
= p
->exit_state
;
861 read_lock(&tasklist_lock
);
862 if (unlikely(p
->sighand
== NULL
)) {
864 * The process has been reaped.
865 * We can't even collect a sample any more.
866 * Call the timer disarmed, nothing else to do.
869 timer
->it
.cpu
.task
= NULL
;
870 timer
->it
.cpu
.expires
.sched
= 0;
871 read_unlock(&tasklist_lock
);
874 cpu_timer_sample_group(timer
->it_clock
, p
, &now
);
875 clear_dead
= (unlikely(p
->exit_state
) &&
876 thread_group_empty(p
));
878 read_unlock(&tasklist_lock
);
881 if (unlikely(clear_dead
)) {
883 * We've noticed that the thread is dead, but
884 * not yet reaped. Take this opportunity to
887 clear_dead_task(timer
, now
);
891 if (cpu_time_before(timer
->it_clock
, now
, timer
->it
.cpu
.expires
)) {
892 sample_to_timespec(timer
->it_clock
,
893 cpu_time_sub(timer
->it_clock
,
894 timer
->it
.cpu
.expires
, now
),
898 * The timer should have expired already, but the firing
899 * hasn't taken place yet. Say it's just about to expire.
901 itp
->it_value
.tv_nsec
= 1;
902 itp
->it_value
.tv_sec
= 0;
907 * Check for any per-thread CPU timers that have fired and move them off
908 * the tsk->cpu_timers[N] list onto the firing list. Here we update the
909 * tsk->it_*_expires values to reflect the remaining thread CPU timers.
911 static void check_thread_timers(struct task_struct
*tsk
,
912 struct list_head
*firing
)
915 struct list_head
*timers
= tsk
->cpu_timers
;
916 struct signal_struct
*const sig
= tsk
->signal
;
920 tsk
->cputime_expires
.prof_exp
= cputime_zero
;
921 while (!list_empty(timers
)) {
922 struct cpu_timer_list
*t
= list_first_entry(timers
,
923 struct cpu_timer_list
,
925 if (!--maxfire
|| cputime_lt(prof_ticks(tsk
), t
->expires
.cpu
)) {
926 tsk
->cputime_expires
.prof_exp
= t
->expires
.cpu
;
930 list_move_tail(&t
->entry
, firing
);
935 tsk
->cputime_expires
.virt_exp
= cputime_zero
;
936 while (!list_empty(timers
)) {
937 struct cpu_timer_list
*t
= list_first_entry(timers
,
938 struct cpu_timer_list
,
940 if (!--maxfire
|| cputime_lt(virt_ticks(tsk
), t
->expires
.cpu
)) {
941 tsk
->cputime_expires
.virt_exp
= t
->expires
.cpu
;
945 list_move_tail(&t
->entry
, firing
);
950 tsk
->cputime_expires
.sched_exp
= 0;
951 while (!list_empty(timers
)) {
952 struct cpu_timer_list
*t
= list_first_entry(timers
,
953 struct cpu_timer_list
,
955 if (!--maxfire
|| tsk
->se
.sum_exec_runtime
< t
->expires
.sched
) {
956 tsk
->cputime_expires
.sched_exp
= t
->expires
.sched
;
960 list_move_tail(&t
->entry
, firing
);
964 * Check for the special case thread timers.
966 soft
= ACCESS_ONCE(sig
->rlim
[RLIMIT_RTTIME
].rlim_cur
);
967 if (soft
!= RLIM_INFINITY
) {
969 ACCESS_ONCE(sig
->rlim
[RLIMIT_RTTIME
].rlim_max
);
971 if (hard
!= RLIM_INFINITY
&&
972 tsk
->rt
.timeout
> DIV_ROUND_UP(hard
, USEC_PER_SEC
/HZ
)) {
974 * At the hard limit, we just die.
975 * No need to calculate anything else now.
977 __group_send_sig_info(SIGKILL
, SEND_SIG_PRIV
, tsk
);
980 if (tsk
->rt
.timeout
> DIV_ROUND_UP(soft
, USEC_PER_SEC
/HZ
)) {
982 * At the soft limit, send a SIGXCPU every second.
985 soft
+= USEC_PER_SEC
;
986 sig
->rlim
[RLIMIT_RTTIME
].rlim_cur
= soft
;
989 "RT Watchdog Timeout: %s[%d]\n",
990 tsk
->comm
, task_pid_nr(tsk
));
991 __group_send_sig_info(SIGXCPU
, SEND_SIG_PRIV
, tsk
);
996 static void stop_process_timers(struct signal_struct
*sig
)
998 struct thread_group_cputimer
*cputimer
= &sig
->cputimer
;
1001 spin_lock_irqsave(&cputimer
->lock
, flags
);
1002 cputimer
->running
= 0;
1003 spin_unlock_irqrestore(&cputimer
->lock
, flags
);
1006 static u32 onecputick
;
1008 static void check_cpu_itimer(struct task_struct
*tsk
, struct cpu_itimer
*it
,
1009 cputime_t
*expires
, cputime_t cur_time
, int signo
)
1011 if (cputime_eq(it
->expires
, cputime_zero
))
1014 if (cputime_ge(cur_time
, it
->expires
)) {
1015 if (!cputime_eq(it
->incr
, cputime_zero
)) {
1016 it
->expires
= cputime_add(it
->expires
, it
->incr
);
1017 it
->error
+= it
->incr_error
;
1018 if (it
->error
>= onecputick
) {
1019 it
->expires
= cputime_sub(it
->expires
,
1021 it
->error
-= onecputick
;
1024 it
->expires
= cputime_zero
;
1027 trace_itimer_expire(signo
== SIGPROF
?
1028 ITIMER_PROF
: ITIMER_VIRTUAL
,
1029 tsk
->signal
->leader_pid
, cur_time
);
1030 __group_send_sig_info(signo
, SEND_SIG_PRIV
, tsk
);
1033 if (!cputime_eq(it
->expires
, cputime_zero
) &&
1034 (cputime_eq(*expires
, cputime_zero
) ||
1035 cputime_lt(it
->expires
, *expires
))) {
1036 *expires
= it
->expires
;
1041 * task_cputime_zero - Check a task_cputime struct for all zero fields.
1043 * @cputime: The struct to compare.
1045 * Checks @cputime to see if all fields are zero. Returns true if all fields
1046 * are zero, false if any field is nonzero.
1048 static inline int task_cputime_zero(const struct task_cputime
*cputime
)
1050 if (cputime_eq(cputime
->utime
, cputime_zero
) &&
1051 cputime_eq(cputime
->stime
, cputime_zero
) &&
1052 cputime
->sum_exec_runtime
== 0)
1058 * Check for any per-thread CPU timers that have fired and move them
1059 * off the tsk->*_timers list onto the firing list. Per-thread timers
1060 * have already been taken off.
1062 static void check_process_timers(struct task_struct
*tsk
,
1063 struct list_head
*firing
)
1066 struct signal_struct
*const sig
= tsk
->signal
;
1067 cputime_t utime
, ptime
, virt_expires
, prof_expires
;
1068 unsigned long long sum_sched_runtime
, sched_expires
;
1069 struct list_head
*timers
= sig
->cpu_timers
;
1070 struct task_cputime cputime
;
1074 * Collect the current process totals.
1076 thread_group_cputimer(tsk
, &cputime
);
1077 utime
= cputime
.utime
;
1078 ptime
= cputime_add(utime
, cputime
.stime
);
1079 sum_sched_runtime
= cputime
.sum_exec_runtime
;
1081 prof_expires
= cputime_zero
;
1082 while (!list_empty(timers
)) {
1083 struct cpu_timer_list
*tl
= list_first_entry(timers
,
1084 struct cpu_timer_list
,
1086 if (!--maxfire
|| cputime_lt(ptime
, tl
->expires
.cpu
)) {
1087 prof_expires
= tl
->expires
.cpu
;
1091 list_move_tail(&tl
->entry
, firing
);
1096 virt_expires
= cputime_zero
;
1097 while (!list_empty(timers
)) {
1098 struct cpu_timer_list
*tl
= list_first_entry(timers
,
1099 struct cpu_timer_list
,
1101 if (!--maxfire
|| cputime_lt(utime
, tl
->expires
.cpu
)) {
1102 virt_expires
= tl
->expires
.cpu
;
1106 list_move_tail(&tl
->entry
, firing
);
1112 while (!list_empty(timers
)) {
1113 struct cpu_timer_list
*tl
= list_first_entry(timers
,
1114 struct cpu_timer_list
,
1116 if (!--maxfire
|| sum_sched_runtime
< tl
->expires
.sched
) {
1117 sched_expires
= tl
->expires
.sched
;
1121 list_move_tail(&tl
->entry
, firing
);
1125 * Check for the special case process timers.
1127 check_cpu_itimer(tsk
, &sig
->it
[CPUCLOCK_PROF
], &prof_expires
, ptime
,
1129 check_cpu_itimer(tsk
, &sig
->it
[CPUCLOCK_VIRT
], &virt_expires
, utime
,
1131 soft
= ACCESS_ONCE(sig
->rlim
[RLIMIT_CPU
].rlim_cur
);
1132 if (soft
!= RLIM_INFINITY
) {
1133 unsigned long psecs
= cputime_to_secs(ptime
);
1134 unsigned long hard
=
1135 ACCESS_ONCE(sig
->rlim
[RLIMIT_CPU
].rlim_max
);
1137 if (psecs
>= hard
) {
1139 * At the hard limit, we just die.
1140 * No need to calculate anything else now.
1142 __group_send_sig_info(SIGKILL
, SEND_SIG_PRIV
, tsk
);
1145 if (psecs
>= soft
) {
1147 * At the soft limit, send a SIGXCPU every second.
1149 __group_send_sig_info(SIGXCPU
, SEND_SIG_PRIV
, tsk
);
1152 sig
->rlim
[RLIMIT_CPU
].rlim_cur
= soft
;
1155 x
= secs_to_cputime(soft
);
1156 if (cputime_eq(prof_expires
, cputime_zero
) ||
1157 cputime_lt(x
, prof_expires
)) {
1162 sig
->cputime_expires
.prof_exp
= prof_expires
;
1163 sig
->cputime_expires
.virt_exp
= virt_expires
;
1164 sig
->cputime_expires
.sched_exp
= sched_expires
;
1165 if (task_cputime_zero(&sig
->cputime_expires
))
1166 stop_process_timers(sig
);
1170 * This is called from the signal code (via do_schedule_next_timer)
1171 * when the last timer signal was delivered and we have to reload the timer.
1173 void posix_cpu_timer_schedule(struct k_itimer
*timer
)
1175 struct task_struct
*p
= timer
->it
.cpu
.task
;
1176 union cpu_time_count now
;
1178 if (unlikely(p
== NULL
))
1180 * The task was cleaned up already, no future firings.
1185 * Fetch the current sample and update the timer's expiry time.
1187 if (CPUCLOCK_PERTHREAD(timer
->it_clock
)) {
1188 cpu_clock_sample(timer
->it_clock
, p
, &now
);
1189 bump_cpu_timer(timer
, now
);
1190 if (unlikely(p
->exit_state
)) {
1191 clear_dead_task(timer
, now
);
1194 read_lock(&tasklist_lock
); /* arm_timer needs it. */
1195 spin_lock(&p
->sighand
->siglock
);
1197 read_lock(&tasklist_lock
);
1198 if (unlikely(p
->sighand
== NULL
)) {
1200 * The process has been reaped.
1201 * We can't even collect a sample any more.
1204 timer
->it
.cpu
.task
= p
= NULL
;
1205 timer
->it
.cpu
.expires
.sched
= 0;
1207 } else if (unlikely(p
->exit_state
) && thread_group_empty(p
)) {
1209 * We've noticed that the thread is dead, but
1210 * not yet reaped. Take this opportunity to
1211 * drop our task ref.
1213 clear_dead_task(timer
, now
);
1216 spin_lock(&p
->sighand
->siglock
);
1217 cpu_timer_sample_group(timer
->it_clock
, p
, &now
);
1218 bump_cpu_timer(timer
, now
);
1219 /* Leave the tasklist_lock locked for the call below. */
1223 * Now re-arm for the new expiry time.
1225 BUG_ON(!irqs_disabled());
1227 spin_unlock(&p
->sighand
->siglock
);
1230 read_unlock(&tasklist_lock
);
1233 timer
->it_overrun_last
= timer
->it_overrun
;
1234 timer
->it_overrun
= -1;
1235 ++timer
->it_requeue_pending
;
1239 * task_cputime_expired - Compare two task_cputime entities.
1241 * @sample: The task_cputime structure to be checked for expiration.
1242 * @expires: Expiration times, against which @sample will be checked.
1244 * Checks @sample against @expires to see if any field of @sample has expired.
1245 * Returns true if any field of the former is greater than the corresponding
1246 * field of the latter if the latter field is set. Otherwise returns false.
1248 static inline int task_cputime_expired(const struct task_cputime
*sample
,
1249 const struct task_cputime
*expires
)
1251 if (!cputime_eq(expires
->utime
, cputime_zero
) &&
1252 cputime_ge(sample
->utime
, expires
->utime
))
1254 if (!cputime_eq(expires
->stime
, cputime_zero
) &&
1255 cputime_ge(cputime_add(sample
->utime
, sample
->stime
),
1258 if (expires
->sum_exec_runtime
!= 0 &&
1259 sample
->sum_exec_runtime
>= expires
->sum_exec_runtime
)
1265 * fastpath_timer_check - POSIX CPU timers fast path.
1267 * @tsk: The task (thread) being checked.
1269 * Check the task and thread group timers. If both are zero (there are no
1270 * timers set) return false. Otherwise snapshot the task and thread group
1271 * timers and compare them with the corresponding expiration times. Return
1272 * true if a timer has expired, else return false.
1274 static inline int fastpath_timer_check(struct task_struct
*tsk
)
1276 struct signal_struct
*sig
;
1278 if (!task_cputime_zero(&tsk
->cputime_expires
)) {
1279 struct task_cputime task_sample
= {
1280 .utime
= tsk
->utime
,
1281 .stime
= tsk
->stime
,
1282 .sum_exec_runtime
= tsk
->se
.sum_exec_runtime
1285 if (task_cputime_expired(&task_sample
, &tsk
->cputime_expires
))
1290 if (sig
->cputimer
.running
) {
1291 struct task_cputime group_sample
;
1293 spin_lock(&sig
->cputimer
.lock
);
1294 group_sample
= sig
->cputimer
.cputime
;
1295 spin_unlock(&sig
->cputimer
.lock
);
1297 if (task_cputime_expired(&group_sample
, &sig
->cputime_expires
))
1305 * This is called from the timer interrupt handler. The irq handler has
1306 * already updated our counts. We need to check if any timers fire now.
1307 * Interrupts are disabled.
1309 void run_posix_cpu_timers(struct task_struct
*tsk
)
1312 struct k_itimer
*timer
, *next
;
1313 unsigned long flags
;
1315 BUG_ON(!irqs_disabled());
1318 * The fast path checks that there are no expired thread or thread
1319 * group timers. If that's so, just return.
1321 if (!fastpath_timer_check(tsk
))
1324 if (!lock_task_sighand(tsk
, &flags
))
1327 * Here we take off tsk->signal->cpu_timers[N] and
1328 * tsk->cpu_timers[N] all the timers that are firing, and
1329 * put them on the firing list.
1331 check_thread_timers(tsk
, &firing
);
1333 * If there are any active process wide timers (POSIX 1.b, itimers,
1334 * RLIMIT_CPU) cputimer must be running.
1336 if (tsk
->signal
->cputimer
.running
)
1337 check_process_timers(tsk
, &firing
);
1340 * We must release these locks before taking any timer's lock.
1341 * There is a potential race with timer deletion here, as the
1342 * siglock now protects our private firing list. We have set
1343 * the firing flag in each timer, so that a deletion attempt
1344 * that gets the timer lock before we do will give it up and
1345 * spin until we've taken care of that timer below.
1347 unlock_task_sighand(tsk
, &flags
);
1350 * Now that all the timers on our list have the firing flag,
1351 * no one will touch their list entries but us. We'll take
1352 * each timer's lock before clearing its firing flag, so no
1353 * timer call will interfere.
1355 list_for_each_entry_safe(timer
, next
, &firing
, it
.cpu
.entry
) {
1358 spin_lock(&timer
->it_lock
);
1359 list_del_init(&timer
->it
.cpu
.entry
);
1360 cpu_firing
= timer
->it
.cpu
.firing
;
1361 timer
->it
.cpu
.firing
= 0;
1363 * The firing flag is -1 if we collided with a reset
1364 * of the timer, which already reported this
1365 * almost-firing as an overrun. So don't generate an event.
1367 if (likely(cpu_firing
>= 0))
1368 cpu_timer_fire(timer
);
1369 spin_unlock(&timer
->it_lock
);
1374 * Set one of the process-wide special case CPU timers or RLIMIT_CPU.
1375 * The tsk->sighand->siglock must be held by the caller.
1377 void set_process_cpu_timer(struct task_struct
*tsk
, unsigned int clock_idx
,
1378 cputime_t
*newval
, cputime_t
*oldval
)
1380 union cpu_time_count now
;
1382 BUG_ON(clock_idx
== CPUCLOCK_SCHED
);
1383 cpu_timer_sample_group(clock_idx
, tsk
, &now
);
1387 * We are setting itimer. The *oldval is absolute and we update
1388 * it to be relative, *newval argument is relative and we update
1389 * it to be absolute.
1391 if (!cputime_eq(*oldval
, cputime_zero
)) {
1392 if (cputime_le(*oldval
, now
.cpu
)) {
1393 /* Just about to fire. */
1394 *oldval
= cputime_one_jiffy
;
1396 *oldval
= cputime_sub(*oldval
, now
.cpu
);
1400 if (cputime_eq(*newval
, cputime_zero
))
1402 *newval
= cputime_add(*newval
, now
.cpu
);
1406 * Update expiration cache if we are the earliest timer, or eventually
1407 * RLIMIT_CPU limit is earlier than prof_exp cpu timer expire.
1409 switch (clock_idx
) {
1411 if (expires_gt(tsk
->signal
->cputime_expires
.prof_exp
, *newval
))
1412 tsk
->signal
->cputime_expires
.prof_exp
= *newval
;
1415 if (expires_gt(tsk
->signal
->cputime_expires
.virt_exp
, *newval
))
1416 tsk
->signal
->cputime_expires
.virt_exp
= *newval
;
1421 static int do_cpu_nanosleep(const clockid_t which_clock
, int flags
,
1422 struct timespec
*rqtp
, struct itimerspec
*it
)
1424 struct k_itimer timer
;
1428 * Set up a temporary timer and then wait for it to go off.
1430 memset(&timer
, 0, sizeof timer
);
1431 spin_lock_init(&timer
.it_lock
);
1432 timer
.it_clock
= which_clock
;
1433 timer
.it_overrun
= -1;
1434 error
= posix_cpu_timer_create(&timer
);
1435 timer
.it_process
= current
;
1437 static struct itimerspec zero_it
;
1439 memset(it
, 0, sizeof *it
);
1440 it
->it_value
= *rqtp
;
1442 spin_lock_irq(&timer
.it_lock
);
1443 error
= posix_cpu_timer_set(&timer
, flags
, it
, NULL
);
1445 spin_unlock_irq(&timer
.it_lock
);
1449 while (!signal_pending(current
)) {
1450 if (timer
.it
.cpu
.expires
.sched
== 0) {
1452 * Our timer fired and was reset.
1454 spin_unlock_irq(&timer
.it_lock
);
1459 * Block until cpu_timer_fire (or a signal) wakes us.
1461 __set_current_state(TASK_INTERRUPTIBLE
);
1462 spin_unlock_irq(&timer
.it_lock
);
1464 spin_lock_irq(&timer
.it_lock
);
1468 * We were interrupted by a signal.
1470 sample_to_timespec(which_clock
, timer
.it
.cpu
.expires
, rqtp
);
1471 posix_cpu_timer_set(&timer
, 0, &zero_it
, it
);
1472 spin_unlock_irq(&timer
.it_lock
);
1474 if ((it
->it_value
.tv_sec
| it
->it_value
.tv_nsec
) == 0) {
1476 * It actually did fire already.
1481 error
= -ERESTART_RESTARTBLOCK
;
1487 static long posix_cpu_nsleep_restart(struct restart_block
*restart_block
);
1489 static int posix_cpu_nsleep(const clockid_t which_clock
, int flags
,
1490 struct timespec
*rqtp
, struct timespec __user
*rmtp
)
1492 struct restart_block
*restart_block
=
1493 ¤t_thread_info()->restart_block
;
1494 struct itimerspec it
;
1498 * Diagnose required errors first.
1500 if (CPUCLOCK_PERTHREAD(which_clock
) &&
1501 (CPUCLOCK_PID(which_clock
) == 0 ||
1502 CPUCLOCK_PID(which_clock
) == current
->pid
))
1505 error
= do_cpu_nanosleep(which_clock
, flags
, rqtp
, &it
);
1507 if (error
== -ERESTART_RESTARTBLOCK
) {
1509 if (flags
& TIMER_ABSTIME
)
1510 return -ERESTARTNOHAND
;
1512 * Report back to the user the time still remaining.
1514 if (rmtp
&& copy_to_user(rmtp
, &it
.it_value
, sizeof *rmtp
))
1517 restart_block
->fn
= posix_cpu_nsleep_restart
;
1518 restart_block
->nanosleep
.clockid
= which_clock
;
1519 restart_block
->nanosleep
.rmtp
= rmtp
;
1520 restart_block
->nanosleep
.expires
= timespec_to_ns(rqtp
);
1525 static long posix_cpu_nsleep_restart(struct restart_block
*restart_block
)
1527 clockid_t which_clock
= restart_block
->nanosleep
.clockid
;
1529 struct itimerspec it
;
1532 t
= ns_to_timespec(restart_block
->nanosleep
.expires
);
1534 error
= do_cpu_nanosleep(which_clock
, TIMER_ABSTIME
, &t
, &it
);
1536 if (error
== -ERESTART_RESTARTBLOCK
) {
1537 struct timespec __user
*rmtp
= restart_block
->nanosleep
.rmtp
;
1539 * Report back to the user the time still remaining.
1541 if (rmtp
&& copy_to_user(rmtp
, &it
.it_value
, sizeof *rmtp
))
1544 restart_block
->nanosleep
.expires
= timespec_to_ns(&t
);
1550 #define PROCESS_CLOCK MAKE_PROCESS_CPUCLOCK(0, CPUCLOCK_SCHED)
1551 #define THREAD_CLOCK MAKE_THREAD_CPUCLOCK(0, CPUCLOCK_SCHED)
1553 static int process_cpu_clock_getres(const clockid_t which_clock
,
1554 struct timespec
*tp
)
1556 return posix_cpu_clock_getres(PROCESS_CLOCK
, tp
);
1558 static int process_cpu_clock_get(const clockid_t which_clock
,
1559 struct timespec
*tp
)
1561 return posix_cpu_clock_get(PROCESS_CLOCK
, tp
);
1563 static int process_cpu_timer_create(struct k_itimer
*timer
)
1565 timer
->it_clock
= PROCESS_CLOCK
;
1566 return posix_cpu_timer_create(timer
);
1568 static int process_cpu_nsleep(const clockid_t which_clock
, int flags
,
1569 struct timespec
*rqtp
,
1570 struct timespec __user
*rmtp
)
1572 return posix_cpu_nsleep(PROCESS_CLOCK
, flags
, rqtp
, rmtp
);
1574 static long process_cpu_nsleep_restart(struct restart_block
*restart_block
)
1578 static int thread_cpu_clock_getres(const clockid_t which_clock
,
1579 struct timespec
*tp
)
1581 return posix_cpu_clock_getres(THREAD_CLOCK
, tp
);
1583 static int thread_cpu_clock_get(const clockid_t which_clock
,
1584 struct timespec
*tp
)
1586 return posix_cpu_clock_get(THREAD_CLOCK
, tp
);
1588 static int thread_cpu_timer_create(struct k_itimer
*timer
)
1590 timer
->it_clock
= THREAD_CLOCK
;
1591 return posix_cpu_timer_create(timer
);
1594 struct k_clock clock_posix_cpu
= {
1595 .clock_getres
= posix_cpu_clock_getres
,
1596 .clock_set
= posix_cpu_clock_set
,
1597 .clock_get
= posix_cpu_clock_get
,
1598 .timer_create
= posix_cpu_timer_create
,
1599 .nsleep
= posix_cpu_nsleep
,
1600 .nsleep_restart
= posix_cpu_nsleep_restart
,
1601 .timer_set
= posix_cpu_timer_set
,
1602 .timer_del
= posix_cpu_timer_del
,
1603 .timer_get
= posix_cpu_timer_get
,
1606 static __init
int init_posix_cpu_timers(void)
1608 struct k_clock process
= {
1609 .clock_getres
= process_cpu_clock_getres
,
1610 .clock_get
= process_cpu_clock_get
,
1611 .timer_create
= process_cpu_timer_create
,
1612 .nsleep
= process_cpu_nsleep
,
1613 .nsleep_restart
= process_cpu_nsleep_restart
,
1615 struct k_clock thread
= {
1616 .clock_getres
= thread_cpu_clock_getres
,
1617 .clock_get
= thread_cpu_clock_get
,
1618 .timer_create
= thread_cpu_timer_create
,
1622 posix_timers_register_clock(CLOCK_PROCESS_CPUTIME_ID
, &process
);
1623 posix_timers_register_clock(CLOCK_THREAD_CPUTIME_ID
, &thread
);
1625 cputime_to_timespec(cputime_one_jiffy
, &ts
);
1626 onecputick
= ts
.tv_nsec
;
1627 WARN_ON(ts
.tv_sec
!= 0);
1631 __initcall(init_posix_cpu_timers
);