ACPI / glue: Update DBG macro to include KERN_DEBUG
[linux-2.6/libata-dev.git] / fs / f2fs / data.c
blob655aeabc1dd41f8b18f77ee14092601c8ad89cbb
1 /*
2 * fs/f2fs/data.c
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/buffer_head.h>
14 #include <linux/mpage.h>
15 #include <linux/writeback.h>
16 #include <linux/backing-dev.h>
17 #include <linux/blkdev.h>
18 #include <linux/bio.h>
20 #include "f2fs.h"
21 #include "node.h"
22 #include "segment.h"
25 * Lock ordering for the change of data block address:
26 * ->data_page
27 * ->node_page
28 * update block addresses in the node page
30 static void __set_data_blkaddr(struct dnode_of_data *dn, block_t new_addr)
32 struct f2fs_node *rn;
33 __le32 *addr_array;
34 struct page *node_page = dn->node_page;
35 unsigned int ofs_in_node = dn->ofs_in_node;
37 wait_on_page_writeback(node_page);
39 rn = (struct f2fs_node *)page_address(node_page);
41 /* Get physical address of data block */
42 addr_array = blkaddr_in_node(rn);
43 addr_array[ofs_in_node] = cpu_to_le32(new_addr);
44 set_page_dirty(node_page);
47 int reserve_new_block(struct dnode_of_data *dn)
49 struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
51 if (is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC))
52 return -EPERM;
53 if (!inc_valid_block_count(sbi, dn->inode, 1))
54 return -ENOSPC;
56 __set_data_blkaddr(dn, NEW_ADDR);
57 dn->data_blkaddr = NEW_ADDR;
58 sync_inode_page(dn);
59 return 0;
62 static int check_extent_cache(struct inode *inode, pgoff_t pgofs,
63 struct buffer_head *bh_result)
65 struct f2fs_inode_info *fi = F2FS_I(inode);
66 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
67 pgoff_t start_fofs, end_fofs;
68 block_t start_blkaddr;
70 read_lock(&fi->ext.ext_lock);
71 if (fi->ext.len == 0) {
72 read_unlock(&fi->ext.ext_lock);
73 return 0;
76 sbi->total_hit_ext++;
77 start_fofs = fi->ext.fofs;
78 end_fofs = fi->ext.fofs + fi->ext.len - 1;
79 start_blkaddr = fi->ext.blk_addr;
81 if (pgofs >= start_fofs && pgofs <= end_fofs) {
82 unsigned int blkbits = inode->i_sb->s_blocksize_bits;
83 size_t count;
85 clear_buffer_new(bh_result);
86 map_bh(bh_result, inode->i_sb,
87 start_blkaddr + pgofs - start_fofs);
88 count = end_fofs - pgofs + 1;
89 if (count < (UINT_MAX >> blkbits))
90 bh_result->b_size = (count << blkbits);
91 else
92 bh_result->b_size = UINT_MAX;
94 sbi->read_hit_ext++;
95 read_unlock(&fi->ext.ext_lock);
96 return 1;
98 read_unlock(&fi->ext.ext_lock);
99 return 0;
102 void update_extent_cache(block_t blk_addr, struct dnode_of_data *dn)
104 struct f2fs_inode_info *fi = F2FS_I(dn->inode);
105 pgoff_t fofs, start_fofs, end_fofs;
106 block_t start_blkaddr, end_blkaddr;
108 BUG_ON(blk_addr == NEW_ADDR);
109 fofs = start_bidx_of_node(ofs_of_node(dn->node_page)) + dn->ofs_in_node;
111 /* Update the page address in the parent node */
112 __set_data_blkaddr(dn, blk_addr);
114 write_lock(&fi->ext.ext_lock);
116 start_fofs = fi->ext.fofs;
117 end_fofs = fi->ext.fofs + fi->ext.len - 1;
118 start_blkaddr = fi->ext.blk_addr;
119 end_blkaddr = fi->ext.blk_addr + fi->ext.len - 1;
121 /* Drop and initialize the matched extent */
122 if (fi->ext.len == 1 && fofs == start_fofs)
123 fi->ext.len = 0;
125 /* Initial extent */
126 if (fi->ext.len == 0) {
127 if (blk_addr != NULL_ADDR) {
128 fi->ext.fofs = fofs;
129 fi->ext.blk_addr = blk_addr;
130 fi->ext.len = 1;
132 goto end_update;
135 /* Frone merge */
136 if (fofs == start_fofs - 1 && blk_addr == start_blkaddr - 1) {
137 fi->ext.fofs--;
138 fi->ext.blk_addr--;
139 fi->ext.len++;
140 goto end_update;
143 /* Back merge */
144 if (fofs == end_fofs + 1 && blk_addr == end_blkaddr + 1) {
145 fi->ext.len++;
146 goto end_update;
149 /* Split the existing extent */
150 if (fi->ext.len > 1 &&
151 fofs >= start_fofs && fofs <= end_fofs) {
152 if ((end_fofs - fofs) < (fi->ext.len >> 1)) {
153 fi->ext.len = fofs - start_fofs;
154 } else {
155 fi->ext.fofs = fofs + 1;
156 fi->ext.blk_addr = start_blkaddr +
157 fofs - start_fofs + 1;
158 fi->ext.len -= fofs - start_fofs + 1;
160 goto end_update;
162 write_unlock(&fi->ext.ext_lock);
163 return;
165 end_update:
166 write_unlock(&fi->ext.ext_lock);
167 sync_inode_page(dn);
168 return;
171 struct page *find_data_page(struct inode *inode, pgoff_t index)
173 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
174 struct address_space *mapping = inode->i_mapping;
175 struct dnode_of_data dn;
176 struct page *page;
177 int err;
179 page = find_get_page(mapping, index);
180 if (page && PageUptodate(page))
181 return page;
182 f2fs_put_page(page, 0);
184 set_new_dnode(&dn, inode, NULL, NULL, 0);
185 err = get_dnode_of_data(&dn, index, RDONLY_NODE);
186 if (err)
187 return ERR_PTR(err);
188 f2fs_put_dnode(&dn);
190 if (dn.data_blkaddr == NULL_ADDR)
191 return ERR_PTR(-ENOENT);
193 /* By fallocate(), there is no cached page, but with NEW_ADDR */
194 if (dn.data_blkaddr == NEW_ADDR)
195 return ERR_PTR(-EINVAL);
197 page = grab_cache_page(mapping, index);
198 if (!page)
199 return ERR_PTR(-ENOMEM);
201 err = f2fs_readpage(sbi, page, dn.data_blkaddr, READ_SYNC);
202 if (err) {
203 f2fs_put_page(page, 1);
204 return ERR_PTR(err);
206 unlock_page(page);
207 return page;
211 * If it tries to access a hole, return an error.
212 * Because, the callers, functions in dir.c and GC, should be able to know
213 * whether this page exists or not.
215 struct page *get_lock_data_page(struct inode *inode, pgoff_t index)
217 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
218 struct address_space *mapping = inode->i_mapping;
219 struct dnode_of_data dn;
220 struct page *page;
221 int err;
223 set_new_dnode(&dn, inode, NULL, NULL, 0);
224 err = get_dnode_of_data(&dn, index, RDONLY_NODE);
225 if (err)
226 return ERR_PTR(err);
227 f2fs_put_dnode(&dn);
229 if (dn.data_blkaddr == NULL_ADDR)
230 return ERR_PTR(-ENOENT);
232 page = grab_cache_page(mapping, index);
233 if (!page)
234 return ERR_PTR(-ENOMEM);
236 if (PageUptodate(page))
237 return page;
239 BUG_ON(dn.data_blkaddr == NEW_ADDR);
240 BUG_ON(dn.data_blkaddr == NULL_ADDR);
242 err = f2fs_readpage(sbi, page, dn.data_blkaddr, READ_SYNC);
243 if (err) {
244 f2fs_put_page(page, 1);
245 return ERR_PTR(err);
247 return page;
251 * Caller ensures that this data page is never allocated.
252 * A new zero-filled data page is allocated in the page cache.
254 struct page *get_new_data_page(struct inode *inode, pgoff_t index,
255 bool new_i_size)
257 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
258 struct address_space *mapping = inode->i_mapping;
259 struct page *page;
260 struct dnode_of_data dn;
261 int err;
263 set_new_dnode(&dn, inode, NULL, NULL, 0);
264 err = get_dnode_of_data(&dn, index, 0);
265 if (err)
266 return ERR_PTR(err);
268 if (dn.data_blkaddr == NULL_ADDR) {
269 if (reserve_new_block(&dn)) {
270 f2fs_put_dnode(&dn);
271 return ERR_PTR(-ENOSPC);
274 f2fs_put_dnode(&dn);
276 page = grab_cache_page(mapping, index);
277 if (!page)
278 return ERR_PTR(-ENOMEM);
280 if (PageUptodate(page))
281 return page;
283 if (dn.data_blkaddr == NEW_ADDR) {
284 zero_user_segment(page, 0, PAGE_CACHE_SIZE);
285 } else {
286 err = f2fs_readpage(sbi, page, dn.data_blkaddr, READ_SYNC);
287 if (err) {
288 f2fs_put_page(page, 1);
289 return ERR_PTR(err);
292 SetPageUptodate(page);
294 if (new_i_size &&
295 i_size_read(inode) < ((index + 1) << PAGE_CACHE_SHIFT)) {
296 i_size_write(inode, ((index + 1) << PAGE_CACHE_SHIFT));
297 mark_inode_dirty_sync(inode);
299 return page;
302 static void read_end_io(struct bio *bio, int err)
304 const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
305 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
307 do {
308 struct page *page = bvec->bv_page;
310 if (--bvec >= bio->bi_io_vec)
311 prefetchw(&bvec->bv_page->flags);
313 if (uptodate) {
314 SetPageUptodate(page);
315 } else {
316 ClearPageUptodate(page);
317 SetPageError(page);
319 unlock_page(page);
320 } while (bvec >= bio->bi_io_vec);
321 kfree(bio->bi_private);
322 bio_put(bio);
326 * Fill the locked page with data located in the block address.
327 * Read operation is synchronous, and caller must unlock the page.
329 int f2fs_readpage(struct f2fs_sb_info *sbi, struct page *page,
330 block_t blk_addr, int type)
332 struct block_device *bdev = sbi->sb->s_bdev;
333 bool sync = (type == READ_SYNC);
334 struct bio *bio;
336 /* This page can be already read by other threads */
337 if (PageUptodate(page)) {
338 if (!sync)
339 unlock_page(page);
340 return 0;
343 down_read(&sbi->bio_sem);
345 /* Allocate a new bio */
346 bio = f2fs_bio_alloc(bdev, 1);
348 /* Initialize the bio */
349 bio->bi_sector = SECTOR_FROM_BLOCK(sbi, blk_addr);
350 bio->bi_end_io = read_end_io;
352 if (bio_add_page(bio, page, PAGE_CACHE_SIZE, 0) < PAGE_CACHE_SIZE) {
353 kfree(bio->bi_private);
354 bio_put(bio);
355 up_read(&sbi->bio_sem);
356 return -EFAULT;
359 submit_bio(type, bio);
360 up_read(&sbi->bio_sem);
362 /* wait for read completion if sync */
363 if (sync) {
364 lock_page(page);
365 if (PageError(page))
366 return -EIO;
368 return 0;
372 * This function should be used by the data read flow only where it
373 * does not check the "create" flag that indicates block allocation.
374 * The reason for this special functionality is to exploit VFS readahead
375 * mechanism.
377 static int get_data_block_ro(struct inode *inode, sector_t iblock,
378 struct buffer_head *bh_result, int create)
380 unsigned int blkbits = inode->i_sb->s_blocksize_bits;
381 unsigned maxblocks = bh_result->b_size >> blkbits;
382 struct dnode_of_data dn;
383 pgoff_t pgofs;
384 int err;
386 /* Get the page offset from the block offset(iblock) */
387 pgofs = (pgoff_t)(iblock >> (PAGE_CACHE_SHIFT - blkbits));
389 if (check_extent_cache(inode, pgofs, bh_result))
390 return 0;
392 /* When reading holes, we need its node page */
393 set_new_dnode(&dn, inode, NULL, NULL, 0);
394 err = get_dnode_of_data(&dn, pgofs, RDONLY_NODE);
395 if (err)
396 return (err == -ENOENT) ? 0 : err;
398 /* It does not support data allocation */
399 BUG_ON(create);
401 if (dn.data_blkaddr != NEW_ADDR && dn.data_blkaddr != NULL_ADDR) {
402 int i;
403 unsigned int end_offset;
405 end_offset = IS_INODE(dn.node_page) ?
406 ADDRS_PER_INODE :
407 ADDRS_PER_BLOCK;
409 clear_buffer_new(bh_result);
411 /* Give more consecutive addresses for the read ahead */
412 for (i = 0; i < end_offset - dn.ofs_in_node; i++)
413 if (((datablock_addr(dn.node_page,
414 dn.ofs_in_node + i))
415 != (dn.data_blkaddr + i)) || maxblocks == i)
416 break;
417 map_bh(bh_result, inode->i_sb, dn.data_blkaddr);
418 bh_result->b_size = (i << blkbits);
420 f2fs_put_dnode(&dn);
421 return 0;
424 static int f2fs_read_data_page(struct file *file, struct page *page)
426 return mpage_readpage(page, get_data_block_ro);
429 static int f2fs_read_data_pages(struct file *file,
430 struct address_space *mapping,
431 struct list_head *pages, unsigned nr_pages)
433 return mpage_readpages(mapping, pages, nr_pages, get_data_block_ro);
436 int do_write_data_page(struct page *page)
438 struct inode *inode = page->mapping->host;
439 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
440 block_t old_blk_addr, new_blk_addr;
441 struct dnode_of_data dn;
442 int err = 0;
444 set_new_dnode(&dn, inode, NULL, NULL, 0);
445 err = get_dnode_of_data(&dn, page->index, RDONLY_NODE);
446 if (err)
447 return err;
449 old_blk_addr = dn.data_blkaddr;
451 /* This page is already truncated */
452 if (old_blk_addr == NULL_ADDR)
453 goto out_writepage;
455 set_page_writeback(page);
458 * If current allocation needs SSR,
459 * it had better in-place writes for updated data.
461 if (old_blk_addr != NEW_ADDR && !is_cold_data(page) &&
462 need_inplace_update(inode)) {
463 rewrite_data_page(F2FS_SB(inode->i_sb), page,
464 old_blk_addr);
465 } else {
466 write_data_page(inode, page, &dn,
467 old_blk_addr, &new_blk_addr);
468 update_extent_cache(new_blk_addr, &dn);
469 F2FS_I(inode)->data_version =
470 le64_to_cpu(F2FS_CKPT(sbi)->checkpoint_ver);
472 out_writepage:
473 f2fs_put_dnode(&dn);
474 return err;
477 static int f2fs_write_data_page(struct page *page,
478 struct writeback_control *wbc)
480 struct inode *inode = page->mapping->host;
481 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
482 loff_t i_size = i_size_read(inode);
483 const pgoff_t end_index = ((unsigned long long) i_size)
484 >> PAGE_CACHE_SHIFT;
485 unsigned offset;
486 int err = 0;
488 if (page->index < end_index)
489 goto out;
492 * If the offset is out-of-range of file size,
493 * this page does not have to be written to disk.
495 offset = i_size & (PAGE_CACHE_SIZE - 1);
496 if ((page->index >= end_index + 1) || !offset) {
497 if (S_ISDIR(inode->i_mode)) {
498 dec_page_count(sbi, F2FS_DIRTY_DENTS);
499 inode_dec_dirty_dents(inode);
501 goto unlock_out;
504 zero_user_segment(page, offset, PAGE_CACHE_SIZE);
505 out:
506 if (sbi->por_doing)
507 goto redirty_out;
509 if (wbc->for_reclaim && !S_ISDIR(inode->i_mode) && !is_cold_data(page))
510 goto redirty_out;
512 mutex_lock_op(sbi, DATA_WRITE);
513 if (S_ISDIR(inode->i_mode)) {
514 dec_page_count(sbi, F2FS_DIRTY_DENTS);
515 inode_dec_dirty_dents(inode);
517 err = do_write_data_page(page);
518 if (err && err != -ENOENT) {
519 wbc->pages_skipped++;
520 set_page_dirty(page);
522 mutex_unlock_op(sbi, DATA_WRITE);
524 if (wbc->for_reclaim)
525 f2fs_submit_bio(sbi, DATA, true);
527 if (err == -ENOENT)
528 goto unlock_out;
530 clear_cold_data(page);
531 unlock_page(page);
533 if (!wbc->for_reclaim && !S_ISDIR(inode->i_mode))
534 f2fs_balance_fs(sbi);
535 return 0;
537 unlock_out:
538 unlock_page(page);
539 return (err == -ENOENT) ? 0 : err;
541 redirty_out:
542 wbc->pages_skipped++;
543 set_page_dirty(page);
544 return AOP_WRITEPAGE_ACTIVATE;
547 #define MAX_DESIRED_PAGES_WP 4096
549 static int f2fs_write_data_pages(struct address_space *mapping,
550 struct writeback_control *wbc)
552 struct inode *inode = mapping->host;
553 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
554 int ret;
555 long excess_nrtw = 0, desired_nrtw;
557 if (wbc->nr_to_write < MAX_DESIRED_PAGES_WP) {
558 desired_nrtw = MAX_DESIRED_PAGES_WP;
559 excess_nrtw = desired_nrtw - wbc->nr_to_write;
560 wbc->nr_to_write = desired_nrtw;
563 if (!S_ISDIR(inode->i_mode))
564 mutex_lock(&sbi->writepages);
565 ret = generic_writepages(mapping, wbc);
566 if (!S_ISDIR(inode->i_mode))
567 mutex_unlock(&sbi->writepages);
568 f2fs_submit_bio(sbi, DATA, (wbc->sync_mode == WB_SYNC_ALL));
570 remove_dirty_dir_inode(inode);
572 wbc->nr_to_write -= excess_nrtw;
573 return ret;
576 static int f2fs_write_begin(struct file *file, struct address_space *mapping,
577 loff_t pos, unsigned len, unsigned flags,
578 struct page **pagep, void **fsdata)
580 struct inode *inode = mapping->host;
581 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
582 struct page *page;
583 pgoff_t index = ((unsigned long long) pos) >> PAGE_CACHE_SHIFT;
584 struct dnode_of_data dn;
585 int err = 0;
587 /* for nobh_write_end */
588 *fsdata = NULL;
590 f2fs_balance_fs(sbi);
592 page = grab_cache_page_write_begin(mapping, index, flags);
593 if (!page)
594 return -ENOMEM;
595 *pagep = page;
597 mutex_lock_op(sbi, DATA_NEW);
599 set_new_dnode(&dn, inode, NULL, NULL, 0);
600 err = get_dnode_of_data(&dn, index, 0);
601 if (err) {
602 mutex_unlock_op(sbi, DATA_NEW);
603 f2fs_put_page(page, 1);
604 return err;
607 if (dn.data_blkaddr == NULL_ADDR) {
608 err = reserve_new_block(&dn);
609 if (err) {
610 f2fs_put_dnode(&dn);
611 mutex_unlock_op(sbi, DATA_NEW);
612 f2fs_put_page(page, 1);
613 return err;
616 f2fs_put_dnode(&dn);
618 mutex_unlock_op(sbi, DATA_NEW);
620 if ((len == PAGE_CACHE_SIZE) || PageUptodate(page))
621 return 0;
623 if ((pos & PAGE_CACHE_MASK) >= i_size_read(inode)) {
624 unsigned start = pos & (PAGE_CACHE_SIZE - 1);
625 unsigned end = start + len;
627 /* Reading beyond i_size is simple: memset to zero */
628 zero_user_segments(page, 0, start, end, PAGE_CACHE_SIZE);
629 return 0;
632 if (dn.data_blkaddr == NEW_ADDR) {
633 zero_user_segment(page, 0, PAGE_CACHE_SIZE);
634 } else {
635 err = f2fs_readpage(sbi, page, dn.data_blkaddr, READ_SYNC);
636 if (err) {
637 f2fs_put_page(page, 1);
638 return err;
641 SetPageUptodate(page);
642 clear_cold_data(page);
643 return 0;
646 static ssize_t f2fs_direct_IO(int rw, struct kiocb *iocb,
647 const struct iovec *iov, loff_t offset, unsigned long nr_segs)
649 struct file *file = iocb->ki_filp;
650 struct inode *inode = file->f_mapping->host;
652 if (rw == WRITE)
653 return 0;
655 /* Needs synchronization with the cleaner */
656 return blockdev_direct_IO(rw, iocb, inode, iov, offset, nr_segs,
657 get_data_block_ro);
660 static void f2fs_invalidate_data_page(struct page *page, unsigned long offset)
662 struct inode *inode = page->mapping->host;
663 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
664 if (S_ISDIR(inode->i_mode) && PageDirty(page)) {
665 dec_page_count(sbi, F2FS_DIRTY_DENTS);
666 inode_dec_dirty_dents(inode);
668 ClearPagePrivate(page);
671 static int f2fs_release_data_page(struct page *page, gfp_t wait)
673 ClearPagePrivate(page);
674 return 0;
677 static int f2fs_set_data_page_dirty(struct page *page)
679 struct address_space *mapping = page->mapping;
680 struct inode *inode = mapping->host;
682 SetPageUptodate(page);
683 if (!PageDirty(page)) {
684 __set_page_dirty_nobuffers(page);
685 set_dirty_dir_page(inode, page);
686 return 1;
688 return 0;
691 const struct address_space_operations f2fs_dblock_aops = {
692 .readpage = f2fs_read_data_page,
693 .readpages = f2fs_read_data_pages,
694 .writepage = f2fs_write_data_page,
695 .writepages = f2fs_write_data_pages,
696 .write_begin = f2fs_write_begin,
697 .write_end = nobh_write_end,
698 .set_page_dirty = f2fs_set_data_page_dirty,
699 .invalidatepage = f2fs_invalidate_data_page,
700 .releasepage = f2fs_release_data_page,
701 .direct_IO = f2fs_direct_IO,