memcg/sl[au]b: shrink dead caches
[linux-2.6/libata-dev.git] / mm / memcontrol.c
blob7633e0d429e05bfde1ddfb116931e4d0e87d61a4
1 /* memcontrol.c - Memory Controller
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
17 * This program is free software; you can redistribute it and/or modify
18 * it under the terms of the GNU General Public License as published by
19 * the Free Software Foundation; either version 2 of the License, or
20 * (at your option) any later version.
22 * This program is distributed in the hope that it will be useful,
23 * but WITHOUT ANY WARRANTY; without even the implied warranty of
24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
25 * GNU General Public License for more details.
28 #include <linux/res_counter.h>
29 #include <linux/memcontrol.h>
30 #include <linux/cgroup.h>
31 #include <linux/mm.h>
32 #include <linux/hugetlb.h>
33 #include <linux/pagemap.h>
34 #include <linux/smp.h>
35 #include <linux/page-flags.h>
36 #include <linux/backing-dev.h>
37 #include <linux/bit_spinlock.h>
38 #include <linux/rcupdate.h>
39 #include <linux/limits.h>
40 #include <linux/export.h>
41 #include <linux/mutex.h>
42 #include <linux/rbtree.h>
43 #include <linux/slab.h>
44 #include <linux/swap.h>
45 #include <linux/swapops.h>
46 #include <linux/spinlock.h>
47 #include <linux/eventfd.h>
48 #include <linux/sort.h>
49 #include <linux/fs.h>
50 #include <linux/seq_file.h>
51 #include <linux/vmalloc.h>
52 #include <linux/mm_inline.h>
53 #include <linux/page_cgroup.h>
54 #include <linux/cpu.h>
55 #include <linux/oom.h>
56 #include "internal.h"
57 #include <net/sock.h>
58 #include <net/ip.h>
59 #include <net/tcp_memcontrol.h>
61 #include <asm/uaccess.h>
63 #include <trace/events/vmscan.h>
65 struct cgroup_subsys mem_cgroup_subsys __read_mostly;
66 EXPORT_SYMBOL(mem_cgroup_subsys);
68 #define MEM_CGROUP_RECLAIM_RETRIES 5
69 static struct mem_cgroup *root_mem_cgroup __read_mostly;
71 #ifdef CONFIG_MEMCG_SWAP
72 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
73 int do_swap_account __read_mostly;
75 /* for remember boot option*/
76 #ifdef CONFIG_MEMCG_SWAP_ENABLED
77 static int really_do_swap_account __initdata = 1;
78 #else
79 static int really_do_swap_account __initdata = 0;
80 #endif
82 #else
83 #define do_swap_account 0
84 #endif
88 * Statistics for memory cgroup.
90 enum mem_cgroup_stat_index {
92 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
94 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
95 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */
96 MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */
97 MEM_CGROUP_STAT_SWAP, /* # of pages, swapped out */
98 MEM_CGROUP_STAT_NSTATS,
101 static const char * const mem_cgroup_stat_names[] = {
102 "cache",
103 "rss",
104 "mapped_file",
105 "swap",
108 enum mem_cgroup_events_index {
109 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
110 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
111 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
112 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
113 MEM_CGROUP_EVENTS_NSTATS,
116 static const char * const mem_cgroup_events_names[] = {
117 "pgpgin",
118 "pgpgout",
119 "pgfault",
120 "pgmajfault",
124 * Per memcg event counter is incremented at every pagein/pageout. With THP,
125 * it will be incremated by the number of pages. This counter is used for
126 * for trigger some periodic events. This is straightforward and better
127 * than using jiffies etc. to handle periodic memcg event.
129 enum mem_cgroup_events_target {
130 MEM_CGROUP_TARGET_THRESH,
131 MEM_CGROUP_TARGET_SOFTLIMIT,
132 MEM_CGROUP_TARGET_NUMAINFO,
133 MEM_CGROUP_NTARGETS,
135 #define THRESHOLDS_EVENTS_TARGET 128
136 #define SOFTLIMIT_EVENTS_TARGET 1024
137 #define NUMAINFO_EVENTS_TARGET 1024
139 struct mem_cgroup_stat_cpu {
140 long count[MEM_CGROUP_STAT_NSTATS];
141 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
142 unsigned long nr_page_events;
143 unsigned long targets[MEM_CGROUP_NTARGETS];
146 struct mem_cgroup_reclaim_iter {
147 /* css_id of the last scanned hierarchy member */
148 int position;
149 /* scan generation, increased every round-trip */
150 unsigned int generation;
154 * per-zone information in memory controller.
156 struct mem_cgroup_per_zone {
157 struct lruvec lruvec;
158 unsigned long lru_size[NR_LRU_LISTS];
160 struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
162 struct rb_node tree_node; /* RB tree node */
163 unsigned long long usage_in_excess;/* Set to the value by which */
164 /* the soft limit is exceeded*/
165 bool on_tree;
166 struct mem_cgroup *memcg; /* Back pointer, we cannot */
167 /* use container_of */
170 struct mem_cgroup_per_node {
171 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
174 struct mem_cgroup_lru_info {
175 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
179 * Cgroups above their limits are maintained in a RB-Tree, independent of
180 * their hierarchy representation
183 struct mem_cgroup_tree_per_zone {
184 struct rb_root rb_root;
185 spinlock_t lock;
188 struct mem_cgroup_tree_per_node {
189 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
192 struct mem_cgroup_tree {
193 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
196 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
198 struct mem_cgroup_threshold {
199 struct eventfd_ctx *eventfd;
200 u64 threshold;
203 /* For threshold */
204 struct mem_cgroup_threshold_ary {
205 /* An array index points to threshold just below or equal to usage. */
206 int current_threshold;
207 /* Size of entries[] */
208 unsigned int size;
209 /* Array of thresholds */
210 struct mem_cgroup_threshold entries[0];
213 struct mem_cgroup_thresholds {
214 /* Primary thresholds array */
215 struct mem_cgroup_threshold_ary *primary;
217 * Spare threshold array.
218 * This is needed to make mem_cgroup_unregister_event() "never fail".
219 * It must be able to store at least primary->size - 1 entries.
221 struct mem_cgroup_threshold_ary *spare;
224 /* for OOM */
225 struct mem_cgroup_eventfd_list {
226 struct list_head list;
227 struct eventfd_ctx *eventfd;
230 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
231 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
234 * The memory controller data structure. The memory controller controls both
235 * page cache and RSS per cgroup. We would eventually like to provide
236 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
237 * to help the administrator determine what knobs to tune.
239 * TODO: Add a water mark for the memory controller. Reclaim will begin when
240 * we hit the water mark. May be even add a low water mark, such that
241 * no reclaim occurs from a cgroup at it's low water mark, this is
242 * a feature that will be implemented much later in the future.
244 struct mem_cgroup {
245 struct cgroup_subsys_state css;
247 * the counter to account for memory usage
249 struct res_counter res;
251 union {
253 * the counter to account for mem+swap usage.
255 struct res_counter memsw;
258 * rcu_freeing is used only when freeing struct mem_cgroup,
259 * so put it into a union to avoid wasting more memory.
260 * It must be disjoint from the css field. It could be
261 * in a union with the res field, but res plays a much
262 * larger part in mem_cgroup life than memsw, and might
263 * be of interest, even at time of free, when debugging.
264 * So share rcu_head with the less interesting memsw.
266 struct rcu_head rcu_freeing;
268 * We also need some space for a worker in deferred freeing.
269 * By the time we call it, rcu_freeing is no longer in use.
271 struct work_struct work_freeing;
275 * the counter to account for kernel memory usage.
277 struct res_counter kmem;
279 * Per cgroup active and inactive list, similar to the
280 * per zone LRU lists.
282 struct mem_cgroup_lru_info info;
283 int last_scanned_node;
284 #if MAX_NUMNODES > 1
285 nodemask_t scan_nodes;
286 atomic_t numainfo_events;
287 atomic_t numainfo_updating;
288 #endif
290 * Should the accounting and control be hierarchical, per subtree?
292 bool use_hierarchy;
293 unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
295 bool oom_lock;
296 atomic_t under_oom;
298 atomic_t refcnt;
300 int swappiness;
301 /* OOM-Killer disable */
302 int oom_kill_disable;
304 /* set when res.limit == memsw.limit */
305 bool memsw_is_minimum;
307 /* protect arrays of thresholds */
308 struct mutex thresholds_lock;
310 /* thresholds for memory usage. RCU-protected */
311 struct mem_cgroup_thresholds thresholds;
313 /* thresholds for mem+swap usage. RCU-protected */
314 struct mem_cgroup_thresholds memsw_thresholds;
316 /* For oom notifier event fd */
317 struct list_head oom_notify;
320 * Should we move charges of a task when a task is moved into this
321 * mem_cgroup ? And what type of charges should we move ?
323 unsigned long move_charge_at_immigrate;
325 * set > 0 if pages under this cgroup are moving to other cgroup.
327 atomic_t moving_account;
328 /* taken only while moving_account > 0 */
329 spinlock_t move_lock;
331 * percpu counter.
333 struct mem_cgroup_stat_cpu __percpu *stat;
335 * used when a cpu is offlined or other synchronizations
336 * See mem_cgroup_read_stat().
338 struct mem_cgroup_stat_cpu nocpu_base;
339 spinlock_t pcp_counter_lock;
341 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
342 struct tcp_memcontrol tcp_mem;
343 #endif
344 #if defined(CONFIG_MEMCG_KMEM)
345 /* analogous to slab_common's slab_caches list. per-memcg */
346 struct list_head memcg_slab_caches;
347 /* Not a spinlock, we can take a lot of time walking the list */
348 struct mutex slab_caches_mutex;
349 /* Index in the kmem_cache->memcg_params->memcg_caches array */
350 int kmemcg_id;
351 #endif
354 /* internal only representation about the status of kmem accounting. */
355 enum {
356 KMEM_ACCOUNTED_ACTIVE = 0, /* accounted by this cgroup itself */
357 KMEM_ACCOUNTED_ACTIVATED, /* static key enabled. */
358 KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */
361 /* We account when limit is on, but only after call sites are patched */
362 #define KMEM_ACCOUNTED_MASK \
363 ((1 << KMEM_ACCOUNTED_ACTIVE) | (1 << KMEM_ACCOUNTED_ACTIVATED))
365 #ifdef CONFIG_MEMCG_KMEM
366 static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
368 set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
371 static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
373 return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
376 static void memcg_kmem_set_activated(struct mem_cgroup *memcg)
378 set_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
381 static void memcg_kmem_clear_activated(struct mem_cgroup *memcg)
383 clear_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
386 static void memcg_kmem_mark_dead(struct mem_cgroup *memcg)
388 if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags))
389 set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags);
392 static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg)
394 return test_and_clear_bit(KMEM_ACCOUNTED_DEAD,
395 &memcg->kmem_account_flags);
397 #endif
399 /* Stuffs for move charges at task migration. */
401 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
402 * left-shifted bitmap of these types.
404 enum move_type {
405 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
406 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
407 NR_MOVE_TYPE,
410 /* "mc" and its members are protected by cgroup_mutex */
411 static struct move_charge_struct {
412 spinlock_t lock; /* for from, to */
413 struct mem_cgroup *from;
414 struct mem_cgroup *to;
415 unsigned long precharge;
416 unsigned long moved_charge;
417 unsigned long moved_swap;
418 struct task_struct *moving_task; /* a task moving charges */
419 wait_queue_head_t waitq; /* a waitq for other context */
420 } mc = {
421 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
422 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
425 static bool move_anon(void)
427 return test_bit(MOVE_CHARGE_TYPE_ANON,
428 &mc.to->move_charge_at_immigrate);
431 static bool move_file(void)
433 return test_bit(MOVE_CHARGE_TYPE_FILE,
434 &mc.to->move_charge_at_immigrate);
438 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
439 * limit reclaim to prevent infinite loops, if they ever occur.
441 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
442 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
444 enum charge_type {
445 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
446 MEM_CGROUP_CHARGE_TYPE_ANON,
447 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
448 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
449 NR_CHARGE_TYPE,
452 /* for encoding cft->private value on file */
453 enum res_type {
454 _MEM,
455 _MEMSWAP,
456 _OOM_TYPE,
457 _KMEM,
460 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
461 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
462 #define MEMFILE_ATTR(val) ((val) & 0xffff)
463 /* Used for OOM nofiier */
464 #define OOM_CONTROL (0)
467 * Reclaim flags for mem_cgroup_hierarchical_reclaim
469 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
470 #define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
471 #define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
472 #define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
474 static void mem_cgroup_get(struct mem_cgroup *memcg);
475 static void mem_cgroup_put(struct mem_cgroup *memcg);
477 static inline
478 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
480 return container_of(s, struct mem_cgroup, css);
483 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
485 return (memcg == root_mem_cgroup);
488 /* Writing them here to avoid exposing memcg's inner layout */
489 #if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
491 void sock_update_memcg(struct sock *sk)
493 if (mem_cgroup_sockets_enabled) {
494 struct mem_cgroup *memcg;
495 struct cg_proto *cg_proto;
497 BUG_ON(!sk->sk_prot->proto_cgroup);
499 /* Socket cloning can throw us here with sk_cgrp already
500 * filled. It won't however, necessarily happen from
501 * process context. So the test for root memcg given
502 * the current task's memcg won't help us in this case.
504 * Respecting the original socket's memcg is a better
505 * decision in this case.
507 if (sk->sk_cgrp) {
508 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
509 mem_cgroup_get(sk->sk_cgrp->memcg);
510 return;
513 rcu_read_lock();
514 memcg = mem_cgroup_from_task(current);
515 cg_proto = sk->sk_prot->proto_cgroup(memcg);
516 if (!mem_cgroup_is_root(memcg) && memcg_proto_active(cg_proto)) {
517 mem_cgroup_get(memcg);
518 sk->sk_cgrp = cg_proto;
520 rcu_read_unlock();
523 EXPORT_SYMBOL(sock_update_memcg);
525 void sock_release_memcg(struct sock *sk)
527 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
528 struct mem_cgroup *memcg;
529 WARN_ON(!sk->sk_cgrp->memcg);
530 memcg = sk->sk_cgrp->memcg;
531 mem_cgroup_put(memcg);
535 struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
537 if (!memcg || mem_cgroup_is_root(memcg))
538 return NULL;
540 return &memcg->tcp_mem.cg_proto;
542 EXPORT_SYMBOL(tcp_proto_cgroup);
544 static void disarm_sock_keys(struct mem_cgroup *memcg)
546 if (!memcg_proto_activated(&memcg->tcp_mem.cg_proto))
547 return;
548 static_key_slow_dec(&memcg_socket_limit_enabled);
550 #else
551 static void disarm_sock_keys(struct mem_cgroup *memcg)
554 #endif
556 #ifdef CONFIG_MEMCG_KMEM
558 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
559 * There are two main reasons for not using the css_id for this:
560 * 1) this works better in sparse environments, where we have a lot of memcgs,
561 * but only a few kmem-limited. Or also, if we have, for instance, 200
562 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
563 * 200 entry array for that.
565 * 2) In order not to violate the cgroup API, we would like to do all memory
566 * allocation in ->create(). At that point, we haven't yet allocated the
567 * css_id. Having a separate index prevents us from messing with the cgroup
568 * core for this
570 * The current size of the caches array is stored in
571 * memcg_limited_groups_array_size. It will double each time we have to
572 * increase it.
574 static DEFINE_IDA(kmem_limited_groups);
575 static int memcg_limited_groups_array_size;
577 * MIN_SIZE is different than 1, because we would like to avoid going through
578 * the alloc/free process all the time. In a small machine, 4 kmem-limited
579 * cgroups is a reasonable guess. In the future, it could be a parameter or
580 * tunable, but that is strictly not necessary.
582 * MAX_SIZE should be as large as the number of css_ids. Ideally, we could get
583 * this constant directly from cgroup, but it is understandable that this is
584 * better kept as an internal representation in cgroup.c. In any case, the
585 * css_id space is not getting any smaller, and we don't have to necessarily
586 * increase ours as well if it increases.
588 #define MEMCG_CACHES_MIN_SIZE 4
589 #define MEMCG_CACHES_MAX_SIZE 65535
592 * A lot of the calls to the cache allocation functions are expected to be
593 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
594 * conditional to this static branch, we'll have to allow modules that does
595 * kmem_cache_alloc and the such to see this symbol as well
597 struct static_key memcg_kmem_enabled_key;
598 EXPORT_SYMBOL(memcg_kmem_enabled_key);
600 static void disarm_kmem_keys(struct mem_cgroup *memcg)
602 if (memcg_kmem_is_active(memcg)) {
603 static_key_slow_dec(&memcg_kmem_enabled_key);
604 ida_simple_remove(&kmem_limited_groups, memcg->kmemcg_id);
607 * This check can't live in kmem destruction function,
608 * since the charges will outlive the cgroup
610 WARN_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0);
612 #else
613 static void disarm_kmem_keys(struct mem_cgroup *memcg)
616 #endif /* CONFIG_MEMCG_KMEM */
618 static void disarm_static_keys(struct mem_cgroup *memcg)
620 disarm_sock_keys(memcg);
621 disarm_kmem_keys(memcg);
624 static void drain_all_stock_async(struct mem_cgroup *memcg);
626 static struct mem_cgroup_per_zone *
627 mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
629 return &memcg->info.nodeinfo[nid]->zoneinfo[zid];
632 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
634 return &memcg->css;
637 static struct mem_cgroup_per_zone *
638 page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
640 int nid = page_to_nid(page);
641 int zid = page_zonenum(page);
643 return mem_cgroup_zoneinfo(memcg, nid, zid);
646 static struct mem_cgroup_tree_per_zone *
647 soft_limit_tree_node_zone(int nid, int zid)
649 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
652 static struct mem_cgroup_tree_per_zone *
653 soft_limit_tree_from_page(struct page *page)
655 int nid = page_to_nid(page);
656 int zid = page_zonenum(page);
658 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
661 static void
662 __mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
663 struct mem_cgroup_per_zone *mz,
664 struct mem_cgroup_tree_per_zone *mctz,
665 unsigned long long new_usage_in_excess)
667 struct rb_node **p = &mctz->rb_root.rb_node;
668 struct rb_node *parent = NULL;
669 struct mem_cgroup_per_zone *mz_node;
671 if (mz->on_tree)
672 return;
674 mz->usage_in_excess = new_usage_in_excess;
675 if (!mz->usage_in_excess)
676 return;
677 while (*p) {
678 parent = *p;
679 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
680 tree_node);
681 if (mz->usage_in_excess < mz_node->usage_in_excess)
682 p = &(*p)->rb_left;
684 * We can't avoid mem cgroups that are over their soft
685 * limit by the same amount
687 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
688 p = &(*p)->rb_right;
690 rb_link_node(&mz->tree_node, parent, p);
691 rb_insert_color(&mz->tree_node, &mctz->rb_root);
692 mz->on_tree = true;
695 static void
696 __mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
697 struct mem_cgroup_per_zone *mz,
698 struct mem_cgroup_tree_per_zone *mctz)
700 if (!mz->on_tree)
701 return;
702 rb_erase(&mz->tree_node, &mctz->rb_root);
703 mz->on_tree = false;
706 static void
707 mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
708 struct mem_cgroup_per_zone *mz,
709 struct mem_cgroup_tree_per_zone *mctz)
711 spin_lock(&mctz->lock);
712 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
713 spin_unlock(&mctz->lock);
717 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
719 unsigned long long excess;
720 struct mem_cgroup_per_zone *mz;
721 struct mem_cgroup_tree_per_zone *mctz;
722 int nid = page_to_nid(page);
723 int zid = page_zonenum(page);
724 mctz = soft_limit_tree_from_page(page);
727 * Necessary to update all ancestors when hierarchy is used.
728 * because their event counter is not touched.
730 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
731 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
732 excess = res_counter_soft_limit_excess(&memcg->res);
734 * We have to update the tree if mz is on RB-tree or
735 * mem is over its softlimit.
737 if (excess || mz->on_tree) {
738 spin_lock(&mctz->lock);
739 /* if on-tree, remove it */
740 if (mz->on_tree)
741 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
743 * Insert again. mz->usage_in_excess will be updated.
744 * If excess is 0, no tree ops.
746 __mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
747 spin_unlock(&mctz->lock);
752 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
754 int node, zone;
755 struct mem_cgroup_per_zone *mz;
756 struct mem_cgroup_tree_per_zone *mctz;
758 for_each_node(node) {
759 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
760 mz = mem_cgroup_zoneinfo(memcg, node, zone);
761 mctz = soft_limit_tree_node_zone(node, zone);
762 mem_cgroup_remove_exceeded(memcg, mz, mctz);
767 static struct mem_cgroup_per_zone *
768 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
770 struct rb_node *rightmost = NULL;
771 struct mem_cgroup_per_zone *mz;
773 retry:
774 mz = NULL;
775 rightmost = rb_last(&mctz->rb_root);
776 if (!rightmost)
777 goto done; /* Nothing to reclaim from */
779 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
781 * Remove the node now but someone else can add it back,
782 * we will to add it back at the end of reclaim to its correct
783 * position in the tree.
785 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
786 if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
787 !css_tryget(&mz->memcg->css))
788 goto retry;
789 done:
790 return mz;
793 static struct mem_cgroup_per_zone *
794 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
796 struct mem_cgroup_per_zone *mz;
798 spin_lock(&mctz->lock);
799 mz = __mem_cgroup_largest_soft_limit_node(mctz);
800 spin_unlock(&mctz->lock);
801 return mz;
805 * Implementation Note: reading percpu statistics for memcg.
807 * Both of vmstat[] and percpu_counter has threshold and do periodic
808 * synchronization to implement "quick" read. There are trade-off between
809 * reading cost and precision of value. Then, we may have a chance to implement
810 * a periodic synchronizion of counter in memcg's counter.
812 * But this _read() function is used for user interface now. The user accounts
813 * memory usage by memory cgroup and he _always_ requires exact value because
814 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
815 * have to visit all online cpus and make sum. So, for now, unnecessary
816 * synchronization is not implemented. (just implemented for cpu hotplug)
818 * If there are kernel internal actions which can make use of some not-exact
819 * value, and reading all cpu value can be performance bottleneck in some
820 * common workload, threashold and synchonization as vmstat[] should be
821 * implemented.
823 static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
824 enum mem_cgroup_stat_index idx)
826 long val = 0;
827 int cpu;
829 get_online_cpus();
830 for_each_online_cpu(cpu)
831 val += per_cpu(memcg->stat->count[idx], cpu);
832 #ifdef CONFIG_HOTPLUG_CPU
833 spin_lock(&memcg->pcp_counter_lock);
834 val += memcg->nocpu_base.count[idx];
835 spin_unlock(&memcg->pcp_counter_lock);
836 #endif
837 put_online_cpus();
838 return val;
841 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
842 bool charge)
844 int val = (charge) ? 1 : -1;
845 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
848 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
849 enum mem_cgroup_events_index idx)
851 unsigned long val = 0;
852 int cpu;
854 for_each_online_cpu(cpu)
855 val += per_cpu(memcg->stat->events[idx], cpu);
856 #ifdef CONFIG_HOTPLUG_CPU
857 spin_lock(&memcg->pcp_counter_lock);
858 val += memcg->nocpu_base.events[idx];
859 spin_unlock(&memcg->pcp_counter_lock);
860 #endif
861 return val;
864 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
865 bool anon, int nr_pages)
867 preempt_disable();
870 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
871 * counted as CACHE even if it's on ANON LRU.
873 if (anon)
874 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
875 nr_pages);
876 else
877 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
878 nr_pages);
880 /* pagein of a big page is an event. So, ignore page size */
881 if (nr_pages > 0)
882 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
883 else {
884 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
885 nr_pages = -nr_pages; /* for event */
888 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
890 preempt_enable();
893 unsigned long
894 mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
896 struct mem_cgroup_per_zone *mz;
898 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
899 return mz->lru_size[lru];
902 static unsigned long
903 mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
904 unsigned int lru_mask)
906 struct mem_cgroup_per_zone *mz;
907 enum lru_list lru;
908 unsigned long ret = 0;
910 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
912 for_each_lru(lru) {
913 if (BIT(lru) & lru_mask)
914 ret += mz->lru_size[lru];
916 return ret;
919 static unsigned long
920 mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
921 int nid, unsigned int lru_mask)
923 u64 total = 0;
924 int zid;
926 for (zid = 0; zid < MAX_NR_ZONES; zid++)
927 total += mem_cgroup_zone_nr_lru_pages(memcg,
928 nid, zid, lru_mask);
930 return total;
933 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
934 unsigned int lru_mask)
936 int nid;
937 u64 total = 0;
939 for_each_node_state(nid, N_MEMORY)
940 total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
941 return total;
944 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
945 enum mem_cgroup_events_target target)
947 unsigned long val, next;
949 val = __this_cpu_read(memcg->stat->nr_page_events);
950 next = __this_cpu_read(memcg->stat->targets[target]);
951 /* from time_after() in jiffies.h */
952 if ((long)next - (long)val < 0) {
953 switch (target) {
954 case MEM_CGROUP_TARGET_THRESH:
955 next = val + THRESHOLDS_EVENTS_TARGET;
956 break;
957 case MEM_CGROUP_TARGET_SOFTLIMIT:
958 next = val + SOFTLIMIT_EVENTS_TARGET;
959 break;
960 case MEM_CGROUP_TARGET_NUMAINFO:
961 next = val + NUMAINFO_EVENTS_TARGET;
962 break;
963 default:
964 break;
966 __this_cpu_write(memcg->stat->targets[target], next);
967 return true;
969 return false;
973 * Check events in order.
976 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
978 preempt_disable();
979 /* threshold event is triggered in finer grain than soft limit */
980 if (unlikely(mem_cgroup_event_ratelimit(memcg,
981 MEM_CGROUP_TARGET_THRESH))) {
982 bool do_softlimit;
983 bool do_numainfo __maybe_unused;
985 do_softlimit = mem_cgroup_event_ratelimit(memcg,
986 MEM_CGROUP_TARGET_SOFTLIMIT);
987 #if MAX_NUMNODES > 1
988 do_numainfo = mem_cgroup_event_ratelimit(memcg,
989 MEM_CGROUP_TARGET_NUMAINFO);
990 #endif
991 preempt_enable();
993 mem_cgroup_threshold(memcg);
994 if (unlikely(do_softlimit))
995 mem_cgroup_update_tree(memcg, page);
996 #if MAX_NUMNODES > 1
997 if (unlikely(do_numainfo))
998 atomic_inc(&memcg->numainfo_events);
999 #endif
1000 } else
1001 preempt_enable();
1004 struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
1006 return mem_cgroup_from_css(
1007 cgroup_subsys_state(cont, mem_cgroup_subsys_id));
1010 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
1013 * mm_update_next_owner() may clear mm->owner to NULL
1014 * if it races with swapoff, page migration, etc.
1015 * So this can be called with p == NULL.
1017 if (unlikely(!p))
1018 return NULL;
1020 return mem_cgroup_from_css(task_subsys_state(p, mem_cgroup_subsys_id));
1023 struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
1025 struct mem_cgroup *memcg = NULL;
1027 if (!mm)
1028 return NULL;
1030 * Because we have no locks, mm->owner's may be being moved to other
1031 * cgroup. We use css_tryget() here even if this looks
1032 * pessimistic (rather than adding locks here).
1034 rcu_read_lock();
1035 do {
1036 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1037 if (unlikely(!memcg))
1038 break;
1039 } while (!css_tryget(&memcg->css));
1040 rcu_read_unlock();
1041 return memcg;
1045 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1046 * @root: hierarchy root
1047 * @prev: previously returned memcg, NULL on first invocation
1048 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1050 * Returns references to children of the hierarchy below @root, or
1051 * @root itself, or %NULL after a full round-trip.
1053 * Caller must pass the return value in @prev on subsequent
1054 * invocations for reference counting, or use mem_cgroup_iter_break()
1055 * to cancel a hierarchy walk before the round-trip is complete.
1057 * Reclaimers can specify a zone and a priority level in @reclaim to
1058 * divide up the memcgs in the hierarchy among all concurrent
1059 * reclaimers operating on the same zone and priority.
1061 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1062 struct mem_cgroup *prev,
1063 struct mem_cgroup_reclaim_cookie *reclaim)
1065 struct mem_cgroup *memcg = NULL;
1066 int id = 0;
1068 if (mem_cgroup_disabled())
1069 return NULL;
1071 if (!root)
1072 root = root_mem_cgroup;
1074 if (prev && !reclaim)
1075 id = css_id(&prev->css);
1077 if (prev && prev != root)
1078 css_put(&prev->css);
1080 if (!root->use_hierarchy && root != root_mem_cgroup) {
1081 if (prev)
1082 return NULL;
1083 return root;
1086 while (!memcg) {
1087 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
1088 struct cgroup_subsys_state *css;
1090 if (reclaim) {
1091 int nid = zone_to_nid(reclaim->zone);
1092 int zid = zone_idx(reclaim->zone);
1093 struct mem_cgroup_per_zone *mz;
1095 mz = mem_cgroup_zoneinfo(root, nid, zid);
1096 iter = &mz->reclaim_iter[reclaim->priority];
1097 if (prev && reclaim->generation != iter->generation)
1098 return NULL;
1099 id = iter->position;
1102 rcu_read_lock();
1103 css = css_get_next(&mem_cgroup_subsys, id + 1, &root->css, &id);
1104 if (css) {
1105 if (css == &root->css || css_tryget(css))
1106 memcg = mem_cgroup_from_css(css);
1107 } else
1108 id = 0;
1109 rcu_read_unlock();
1111 if (reclaim) {
1112 iter->position = id;
1113 if (!css)
1114 iter->generation++;
1115 else if (!prev && memcg)
1116 reclaim->generation = iter->generation;
1119 if (prev && !css)
1120 return NULL;
1122 return memcg;
1126 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1127 * @root: hierarchy root
1128 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1130 void mem_cgroup_iter_break(struct mem_cgroup *root,
1131 struct mem_cgroup *prev)
1133 if (!root)
1134 root = root_mem_cgroup;
1135 if (prev && prev != root)
1136 css_put(&prev->css);
1140 * Iteration constructs for visiting all cgroups (under a tree). If
1141 * loops are exited prematurely (break), mem_cgroup_iter_break() must
1142 * be used for reference counting.
1144 #define for_each_mem_cgroup_tree(iter, root) \
1145 for (iter = mem_cgroup_iter(root, NULL, NULL); \
1146 iter != NULL; \
1147 iter = mem_cgroup_iter(root, iter, NULL))
1149 #define for_each_mem_cgroup(iter) \
1150 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
1151 iter != NULL; \
1152 iter = mem_cgroup_iter(NULL, iter, NULL))
1154 void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1156 struct mem_cgroup *memcg;
1158 rcu_read_lock();
1159 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1160 if (unlikely(!memcg))
1161 goto out;
1163 switch (idx) {
1164 case PGFAULT:
1165 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1166 break;
1167 case PGMAJFAULT:
1168 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1169 break;
1170 default:
1171 BUG();
1173 out:
1174 rcu_read_unlock();
1176 EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
1179 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1180 * @zone: zone of the wanted lruvec
1181 * @memcg: memcg of the wanted lruvec
1183 * Returns the lru list vector holding pages for the given @zone and
1184 * @mem. This can be the global zone lruvec, if the memory controller
1185 * is disabled.
1187 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1188 struct mem_cgroup *memcg)
1190 struct mem_cgroup_per_zone *mz;
1191 struct lruvec *lruvec;
1193 if (mem_cgroup_disabled()) {
1194 lruvec = &zone->lruvec;
1195 goto out;
1198 mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
1199 lruvec = &mz->lruvec;
1200 out:
1202 * Since a node can be onlined after the mem_cgroup was created,
1203 * we have to be prepared to initialize lruvec->zone here;
1204 * and if offlined then reonlined, we need to reinitialize it.
1206 if (unlikely(lruvec->zone != zone))
1207 lruvec->zone = zone;
1208 return lruvec;
1212 * Following LRU functions are allowed to be used without PCG_LOCK.
1213 * Operations are called by routine of global LRU independently from memcg.
1214 * What we have to take care of here is validness of pc->mem_cgroup.
1216 * Changes to pc->mem_cgroup happens when
1217 * 1. charge
1218 * 2. moving account
1219 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
1220 * It is added to LRU before charge.
1221 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
1222 * When moving account, the page is not on LRU. It's isolated.
1226 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
1227 * @page: the page
1228 * @zone: zone of the page
1230 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
1232 struct mem_cgroup_per_zone *mz;
1233 struct mem_cgroup *memcg;
1234 struct page_cgroup *pc;
1235 struct lruvec *lruvec;
1237 if (mem_cgroup_disabled()) {
1238 lruvec = &zone->lruvec;
1239 goto out;
1242 pc = lookup_page_cgroup(page);
1243 memcg = pc->mem_cgroup;
1246 * Surreptitiously switch any uncharged offlist page to root:
1247 * an uncharged page off lru does nothing to secure
1248 * its former mem_cgroup from sudden removal.
1250 * Our caller holds lru_lock, and PageCgroupUsed is updated
1251 * under page_cgroup lock: between them, they make all uses
1252 * of pc->mem_cgroup safe.
1254 if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
1255 pc->mem_cgroup = memcg = root_mem_cgroup;
1257 mz = page_cgroup_zoneinfo(memcg, page);
1258 lruvec = &mz->lruvec;
1259 out:
1261 * Since a node can be onlined after the mem_cgroup was created,
1262 * we have to be prepared to initialize lruvec->zone here;
1263 * and if offlined then reonlined, we need to reinitialize it.
1265 if (unlikely(lruvec->zone != zone))
1266 lruvec->zone = zone;
1267 return lruvec;
1271 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1272 * @lruvec: mem_cgroup per zone lru vector
1273 * @lru: index of lru list the page is sitting on
1274 * @nr_pages: positive when adding or negative when removing
1276 * This function must be called when a page is added to or removed from an
1277 * lru list.
1279 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1280 int nr_pages)
1282 struct mem_cgroup_per_zone *mz;
1283 unsigned long *lru_size;
1285 if (mem_cgroup_disabled())
1286 return;
1288 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1289 lru_size = mz->lru_size + lru;
1290 *lru_size += nr_pages;
1291 VM_BUG_ON((long)(*lru_size) < 0);
1295 * Checks whether given mem is same or in the root_mem_cgroup's
1296 * hierarchy subtree
1298 bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1299 struct mem_cgroup *memcg)
1301 if (root_memcg == memcg)
1302 return true;
1303 if (!root_memcg->use_hierarchy || !memcg)
1304 return false;
1305 return css_is_ancestor(&memcg->css, &root_memcg->css);
1308 static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1309 struct mem_cgroup *memcg)
1311 bool ret;
1313 rcu_read_lock();
1314 ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
1315 rcu_read_unlock();
1316 return ret;
1319 int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg)
1321 int ret;
1322 struct mem_cgroup *curr = NULL;
1323 struct task_struct *p;
1325 p = find_lock_task_mm(task);
1326 if (p) {
1327 curr = try_get_mem_cgroup_from_mm(p->mm);
1328 task_unlock(p);
1329 } else {
1331 * All threads may have already detached their mm's, but the oom
1332 * killer still needs to detect if they have already been oom
1333 * killed to prevent needlessly killing additional tasks.
1335 task_lock(task);
1336 curr = mem_cgroup_from_task(task);
1337 if (curr)
1338 css_get(&curr->css);
1339 task_unlock(task);
1341 if (!curr)
1342 return 0;
1344 * We should check use_hierarchy of "memcg" not "curr". Because checking
1345 * use_hierarchy of "curr" here make this function true if hierarchy is
1346 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1347 * hierarchy(even if use_hierarchy is disabled in "memcg").
1349 ret = mem_cgroup_same_or_subtree(memcg, curr);
1350 css_put(&curr->css);
1351 return ret;
1354 int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1356 unsigned long inactive_ratio;
1357 unsigned long inactive;
1358 unsigned long active;
1359 unsigned long gb;
1361 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1362 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1364 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1365 if (gb)
1366 inactive_ratio = int_sqrt(10 * gb);
1367 else
1368 inactive_ratio = 1;
1370 return inactive * inactive_ratio < active;
1373 int mem_cgroup_inactive_file_is_low(struct lruvec *lruvec)
1375 unsigned long active;
1376 unsigned long inactive;
1378 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_FILE);
1379 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_FILE);
1381 return (active > inactive);
1384 #define mem_cgroup_from_res_counter(counter, member) \
1385 container_of(counter, struct mem_cgroup, member)
1388 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1389 * @memcg: the memory cgroup
1391 * Returns the maximum amount of memory @mem can be charged with, in
1392 * pages.
1394 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1396 unsigned long long margin;
1398 margin = res_counter_margin(&memcg->res);
1399 if (do_swap_account)
1400 margin = min(margin, res_counter_margin(&memcg->memsw));
1401 return margin >> PAGE_SHIFT;
1404 int mem_cgroup_swappiness(struct mem_cgroup *memcg)
1406 struct cgroup *cgrp = memcg->css.cgroup;
1408 /* root ? */
1409 if (cgrp->parent == NULL)
1410 return vm_swappiness;
1412 return memcg->swappiness;
1416 * memcg->moving_account is used for checking possibility that some thread is
1417 * calling move_account(). When a thread on CPU-A starts moving pages under
1418 * a memcg, other threads should check memcg->moving_account under
1419 * rcu_read_lock(), like this:
1421 * CPU-A CPU-B
1422 * rcu_read_lock()
1423 * memcg->moving_account+1 if (memcg->mocing_account)
1424 * take heavy locks.
1425 * synchronize_rcu() update something.
1426 * rcu_read_unlock()
1427 * start move here.
1430 /* for quick checking without looking up memcg */
1431 atomic_t memcg_moving __read_mostly;
1433 static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1435 atomic_inc(&memcg_moving);
1436 atomic_inc(&memcg->moving_account);
1437 synchronize_rcu();
1440 static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1443 * Now, mem_cgroup_clear_mc() may call this function with NULL.
1444 * We check NULL in callee rather than caller.
1446 if (memcg) {
1447 atomic_dec(&memcg_moving);
1448 atomic_dec(&memcg->moving_account);
1453 * 2 routines for checking "mem" is under move_account() or not.
1455 * mem_cgroup_stolen() - checking whether a cgroup is mc.from or not. This
1456 * is used for avoiding races in accounting. If true,
1457 * pc->mem_cgroup may be overwritten.
1459 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1460 * under hierarchy of moving cgroups. This is for
1461 * waiting at hith-memory prressure caused by "move".
1464 static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
1466 VM_BUG_ON(!rcu_read_lock_held());
1467 return atomic_read(&memcg->moving_account) > 0;
1470 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1472 struct mem_cgroup *from;
1473 struct mem_cgroup *to;
1474 bool ret = false;
1476 * Unlike task_move routines, we access mc.to, mc.from not under
1477 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1479 spin_lock(&mc.lock);
1480 from = mc.from;
1481 to = mc.to;
1482 if (!from)
1483 goto unlock;
1485 ret = mem_cgroup_same_or_subtree(memcg, from)
1486 || mem_cgroup_same_or_subtree(memcg, to);
1487 unlock:
1488 spin_unlock(&mc.lock);
1489 return ret;
1492 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1494 if (mc.moving_task && current != mc.moving_task) {
1495 if (mem_cgroup_under_move(memcg)) {
1496 DEFINE_WAIT(wait);
1497 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1498 /* moving charge context might have finished. */
1499 if (mc.moving_task)
1500 schedule();
1501 finish_wait(&mc.waitq, &wait);
1502 return true;
1505 return false;
1509 * Take this lock when
1510 * - a code tries to modify page's memcg while it's USED.
1511 * - a code tries to modify page state accounting in a memcg.
1512 * see mem_cgroup_stolen(), too.
1514 static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
1515 unsigned long *flags)
1517 spin_lock_irqsave(&memcg->move_lock, *flags);
1520 static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
1521 unsigned long *flags)
1523 spin_unlock_irqrestore(&memcg->move_lock, *flags);
1527 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1528 * @memcg: The memory cgroup that went over limit
1529 * @p: Task that is going to be killed
1531 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1532 * enabled
1534 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1536 struct cgroup *task_cgrp;
1537 struct cgroup *mem_cgrp;
1539 * Need a buffer in BSS, can't rely on allocations. The code relies
1540 * on the assumption that OOM is serialized for memory controller.
1541 * If this assumption is broken, revisit this code.
1543 static char memcg_name[PATH_MAX];
1544 int ret;
1546 if (!memcg || !p)
1547 return;
1549 rcu_read_lock();
1551 mem_cgrp = memcg->css.cgroup;
1552 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1554 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1555 if (ret < 0) {
1557 * Unfortunately, we are unable to convert to a useful name
1558 * But we'll still print out the usage information
1560 rcu_read_unlock();
1561 goto done;
1563 rcu_read_unlock();
1565 printk(KERN_INFO "Task in %s killed", memcg_name);
1567 rcu_read_lock();
1568 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1569 if (ret < 0) {
1570 rcu_read_unlock();
1571 goto done;
1573 rcu_read_unlock();
1576 * Continues from above, so we don't need an KERN_ level
1578 printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1579 done:
1581 printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1582 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1583 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1584 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1585 printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1586 "failcnt %llu\n",
1587 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1588 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1589 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1590 printk(KERN_INFO "kmem: usage %llukB, limit %llukB, failcnt %llu\n",
1591 res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10,
1592 res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10,
1593 res_counter_read_u64(&memcg->kmem, RES_FAILCNT));
1597 * This function returns the number of memcg under hierarchy tree. Returns
1598 * 1(self count) if no children.
1600 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1602 int num = 0;
1603 struct mem_cgroup *iter;
1605 for_each_mem_cgroup_tree(iter, memcg)
1606 num++;
1607 return num;
1611 * Return the memory (and swap, if configured) limit for a memcg.
1613 static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1615 u64 limit;
1617 limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1620 * Do not consider swap space if we cannot swap due to swappiness
1622 if (mem_cgroup_swappiness(memcg)) {
1623 u64 memsw;
1625 limit += total_swap_pages << PAGE_SHIFT;
1626 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1629 * If memsw is finite and limits the amount of swap space
1630 * available to this memcg, return that limit.
1632 limit = min(limit, memsw);
1635 return limit;
1638 static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1639 int order)
1641 struct mem_cgroup *iter;
1642 unsigned long chosen_points = 0;
1643 unsigned long totalpages;
1644 unsigned int points = 0;
1645 struct task_struct *chosen = NULL;
1648 * If current has a pending SIGKILL, then automatically select it. The
1649 * goal is to allow it to allocate so that it may quickly exit and free
1650 * its memory.
1652 if (fatal_signal_pending(current)) {
1653 set_thread_flag(TIF_MEMDIE);
1654 return;
1657 check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
1658 totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
1659 for_each_mem_cgroup_tree(iter, memcg) {
1660 struct cgroup *cgroup = iter->css.cgroup;
1661 struct cgroup_iter it;
1662 struct task_struct *task;
1664 cgroup_iter_start(cgroup, &it);
1665 while ((task = cgroup_iter_next(cgroup, &it))) {
1666 switch (oom_scan_process_thread(task, totalpages, NULL,
1667 false)) {
1668 case OOM_SCAN_SELECT:
1669 if (chosen)
1670 put_task_struct(chosen);
1671 chosen = task;
1672 chosen_points = ULONG_MAX;
1673 get_task_struct(chosen);
1674 /* fall through */
1675 case OOM_SCAN_CONTINUE:
1676 continue;
1677 case OOM_SCAN_ABORT:
1678 cgroup_iter_end(cgroup, &it);
1679 mem_cgroup_iter_break(memcg, iter);
1680 if (chosen)
1681 put_task_struct(chosen);
1682 return;
1683 case OOM_SCAN_OK:
1684 break;
1686 points = oom_badness(task, memcg, NULL, totalpages);
1687 if (points > chosen_points) {
1688 if (chosen)
1689 put_task_struct(chosen);
1690 chosen = task;
1691 chosen_points = points;
1692 get_task_struct(chosen);
1695 cgroup_iter_end(cgroup, &it);
1698 if (!chosen)
1699 return;
1700 points = chosen_points * 1000 / totalpages;
1701 oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
1702 NULL, "Memory cgroup out of memory");
1705 static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
1706 gfp_t gfp_mask,
1707 unsigned long flags)
1709 unsigned long total = 0;
1710 bool noswap = false;
1711 int loop;
1713 if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
1714 noswap = true;
1715 if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
1716 noswap = true;
1718 for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
1719 if (loop)
1720 drain_all_stock_async(memcg);
1721 total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
1723 * Allow limit shrinkers, which are triggered directly
1724 * by userspace, to catch signals and stop reclaim
1725 * after minimal progress, regardless of the margin.
1727 if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
1728 break;
1729 if (mem_cgroup_margin(memcg))
1730 break;
1732 * If nothing was reclaimed after two attempts, there
1733 * may be no reclaimable pages in this hierarchy.
1735 if (loop && !total)
1736 break;
1738 return total;
1742 * test_mem_cgroup_node_reclaimable
1743 * @memcg: the target memcg
1744 * @nid: the node ID to be checked.
1745 * @noswap : specify true here if the user wants flle only information.
1747 * This function returns whether the specified memcg contains any
1748 * reclaimable pages on a node. Returns true if there are any reclaimable
1749 * pages in the node.
1751 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1752 int nid, bool noswap)
1754 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1755 return true;
1756 if (noswap || !total_swap_pages)
1757 return false;
1758 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1759 return true;
1760 return false;
1763 #if MAX_NUMNODES > 1
1766 * Always updating the nodemask is not very good - even if we have an empty
1767 * list or the wrong list here, we can start from some node and traverse all
1768 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1771 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1773 int nid;
1775 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1776 * pagein/pageout changes since the last update.
1778 if (!atomic_read(&memcg->numainfo_events))
1779 return;
1780 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1781 return;
1783 /* make a nodemask where this memcg uses memory from */
1784 memcg->scan_nodes = node_states[N_MEMORY];
1786 for_each_node_mask(nid, node_states[N_MEMORY]) {
1788 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1789 node_clear(nid, memcg->scan_nodes);
1792 atomic_set(&memcg->numainfo_events, 0);
1793 atomic_set(&memcg->numainfo_updating, 0);
1797 * Selecting a node where we start reclaim from. Because what we need is just
1798 * reducing usage counter, start from anywhere is O,K. Considering
1799 * memory reclaim from current node, there are pros. and cons.
1801 * Freeing memory from current node means freeing memory from a node which
1802 * we'll use or we've used. So, it may make LRU bad. And if several threads
1803 * hit limits, it will see a contention on a node. But freeing from remote
1804 * node means more costs for memory reclaim because of memory latency.
1806 * Now, we use round-robin. Better algorithm is welcomed.
1808 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1810 int node;
1812 mem_cgroup_may_update_nodemask(memcg);
1813 node = memcg->last_scanned_node;
1815 node = next_node(node, memcg->scan_nodes);
1816 if (node == MAX_NUMNODES)
1817 node = first_node(memcg->scan_nodes);
1819 * We call this when we hit limit, not when pages are added to LRU.
1820 * No LRU may hold pages because all pages are UNEVICTABLE or
1821 * memcg is too small and all pages are not on LRU. In that case,
1822 * we use curret node.
1824 if (unlikely(node == MAX_NUMNODES))
1825 node = numa_node_id();
1827 memcg->last_scanned_node = node;
1828 return node;
1832 * Check all nodes whether it contains reclaimable pages or not.
1833 * For quick scan, we make use of scan_nodes. This will allow us to skip
1834 * unused nodes. But scan_nodes is lazily updated and may not cotain
1835 * enough new information. We need to do double check.
1837 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1839 int nid;
1842 * quick check...making use of scan_node.
1843 * We can skip unused nodes.
1845 if (!nodes_empty(memcg->scan_nodes)) {
1846 for (nid = first_node(memcg->scan_nodes);
1847 nid < MAX_NUMNODES;
1848 nid = next_node(nid, memcg->scan_nodes)) {
1850 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1851 return true;
1855 * Check rest of nodes.
1857 for_each_node_state(nid, N_MEMORY) {
1858 if (node_isset(nid, memcg->scan_nodes))
1859 continue;
1860 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1861 return true;
1863 return false;
1866 #else
1867 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1869 return 0;
1872 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1874 return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
1876 #endif
1878 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1879 struct zone *zone,
1880 gfp_t gfp_mask,
1881 unsigned long *total_scanned)
1883 struct mem_cgroup *victim = NULL;
1884 int total = 0;
1885 int loop = 0;
1886 unsigned long excess;
1887 unsigned long nr_scanned;
1888 struct mem_cgroup_reclaim_cookie reclaim = {
1889 .zone = zone,
1890 .priority = 0,
1893 excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
1895 while (1) {
1896 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1897 if (!victim) {
1898 loop++;
1899 if (loop >= 2) {
1901 * If we have not been able to reclaim
1902 * anything, it might because there are
1903 * no reclaimable pages under this hierarchy
1905 if (!total)
1906 break;
1908 * We want to do more targeted reclaim.
1909 * excess >> 2 is not to excessive so as to
1910 * reclaim too much, nor too less that we keep
1911 * coming back to reclaim from this cgroup
1913 if (total >= (excess >> 2) ||
1914 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1915 break;
1917 continue;
1919 if (!mem_cgroup_reclaimable(victim, false))
1920 continue;
1921 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1922 zone, &nr_scanned);
1923 *total_scanned += nr_scanned;
1924 if (!res_counter_soft_limit_excess(&root_memcg->res))
1925 break;
1927 mem_cgroup_iter_break(root_memcg, victim);
1928 return total;
1932 * Check OOM-Killer is already running under our hierarchy.
1933 * If someone is running, return false.
1934 * Has to be called with memcg_oom_lock
1936 static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
1938 struct mem_cgroup *iter, *failed = NULL;
1940 for_each_mem_cgroup_tree(iter, memcg) {
1941 if (iter->oom_lock) {
1943 * this subtree of our hierarchy is already locked
1944 * so we cannot give a lock.
1946 failed = iter;
1947 mem_cgroup_iter_break(memcg, iter);
1948 break;
1949 } else
1950 iter->oom_lock = true;
1953 if (!failed)
1954 return true;
1957 * OK, we failed to lock the whole subtree so we have to clean up
1958 * what we set up to the failing subtree
1960 for_each_mem_cgroup_tree(iter, memcg) {
1961 if (iter == failed) {
1962 mem_cgroup_iter_break(memcg, iter);
1963 break;
1965 iter->oom_lock = false;
1967 return false;
1971 * Has to be called with memcg_oom_lock
1973 static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1975 struct mem_cgroup *iter;
1977 for_each_mem_cgroup_tree(iter, memcg)
1978 iter->oom_lock = false;
1979 return 0;
1982 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1984 struct mem_cgroup *iter;
1986 for_each_mem_cgroup_tree(iter, memcg)
1987 atomic_inc(&iter->under_oom);
1990 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1992 struct mem_cgroup *iter;
1995 * When a new child is created while the hierarchy is under oom,
1996 * mem_cgroup_oom_lock() may not be called. We have to use
1997 * atomic_add_unless() here.
1999 for_each_mem_cgroup_tree(iter, memcg)
2000 atomic_add_unless(&iter->under_oom, -1, 0);
2003 static DEFINE_SPINLOCK(memcg_oom_lock);
2004 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
2006 struct oom_wait_info {
2007 struct mem_cgroup *memcg;
2008 wait_queue_t wait;
2011 static int memcg_oom_wake_function(wait_queue_t *wait,
2012 unsigned mode, int sync, void *arg)
2014 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
2015 struct mem_cgroup *oom_wait_memcg;
2016 struct oom_wait_info *oom_wait_info;
2018 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
2019 oom_wait_memcg = oom_wait_info->memcg;
2022 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
2023 * Then we can use css_is_ancestor without taking care of RCU.
2025 if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
2026 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
2027 return 0;
2028 return autoremove_wake_function(wait, mode, sync, arg);
2031 static void memcg_wakeup_oom(struct mem_cgroup *memcg)
2033 /* for filtering, pass "memcg" as argument. */
2034 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
2037 static void memcg_oom_recover(struct mem_cgroup *memcg)
2039 if (memcg && atomic_read(&memcg->under_oom))
2040 memcg_wakeup_oom(memcg);
2044 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
2046 static bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask,
2047 int order)
2049 struct oom_wait_info owait;
2050 bool locked, need_to_kill;
2052 owait.memcg = memcg;
2053 owait.wait.flags = 0;
2054 owait.wait.func = memcg_oom_wake_function;
2055 owait.wait.private = current;
2056 INIT_LIST_HEAD(&owait.wait.task_list);
2057 need_to_kill = true;
2058 mem_cgroup_mark_under_oom(memcg);
2060 /* At first, try to OOM lock hierarchy under memcg.*/
2061 spin_lock(&memcg_oom_lock);
2062 locked = mem_cgroup_oom_lock(memcg);
2064 * Even if signal_pending(), we can't quit charge() loop without
2065 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
2066 * under OOM is always welcomed, use TASK_KILLABLE here.
2068 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
2069 if (!locked || memcg->oom_kill_disable)
2070 need_to_kill = false;
2071 if (locked)
2072 mem_cgroup_oom_notify(memcg);
2073 spin_unlock(&memcg_oom_lock);
2075 if (need_to_kill) {
2076 finish_wait(&memcg_oom_waitq, &owait.wait);
2077 mem_cgroup_out_of_memory(memcg, mask, order);
2078 } else {
2079 schedule();
2080 finish_wait(&memcg_oom_waitq, &owait.wait);
2082 spin_lock(&memcg_oom_lock);
2083 if (locked)
2084 mem_cgroup_oom_unlock(memcg);
2085 memcg_wakeup_oom(memcg);
2086 spin_unlock(&memcg_oom_lock);
2088 mem_cgroup_unmark_under_oom(memcg);
2090 if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
2091 return false;
2092 /* Give chance to dying process */
2093 schedule_timeout_uninterruptible(1);
2094 return true;
2098 * Currently used to update mapped file statistics, but the routine can be
2099 * generalized to update other statistics as well.
2101 * Notes: Race condition
2103 * We usually use page_cgroup_lock() for accessing page_cgroup member but
2104 * it tends to be costly. But considering some conditions, we doesn't need
2105 * to do so _always_.
2107 * Considering "charge", lock_page_cgroup() is not required because all
2108 * file-stat operations happen after a page is attached to radix-tree. There
2109 * are no race with "charge".
2111 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
2112 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
2113 * if there are race with "uncharge". Statistics itself is properly handled
2114 * by flags.
2116 * Considering "move", this is an only case we see a race. To make the race
2117 * small, we check mm->moving_account and detect there are possibility of race
2118 * If there is, we take a lock.
2121 void __mem_cgroup_begin_update_page_stat(struct page *page,
2122 bool *locked, unsigned long *flags)
2124 struct mem_cgroup *memcg;
2125 struct page_cgroup *pc;
2127 pc = lookup_page_cgroup(page);
2128 again:
2129 memcg = pc->mem_cgroup;
2130 if (unlikely(!memcg || !PageCgroupUsed(pc)))
2131 return;
2133 * If this memory cgroup is not under account moving, we don't
2134 * need to take move_lock_mem_cgroup(). Because we already hold
2135 * rcu_read_lock(), any calls to move_account will be delayed until
2136 * rcu_read_unlock() if mem_cgroup_stolen() == true.
2138 if (!mem_cgroup_stolen(memcg))
2139 return;
2141 move_lock_mem_cgroup(memcg, flags);
2142 if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
2143 move_unlock_mem_cgroup(memcg, flags);
2144 goto again;
2146 *locked = true;
2149 void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
2151 struct page_cgroup *pc = lookup_page_cgroup(page);
2154 * It's guaranteed that pc->mem_cgroup never changes while
2155 * lock is held because a routine modifies pc->mem_cgroup
2156 * should take move_lock_mem_cgroup().
2158 move_unlock_mem_cgroup(pc->mem_cgroup, flags);
2161 void mem_cgroup_update_page_stat(struct page *page,
2162 enum mem_cgroup_page_stat_item idx, int val)
2164 struct mem_cgroup *memcg;
2165 struct page_cgroup *pc = lookup_page_cgroup(page);
2166 unsigned long uninitialized_var(flags);
2168 if (mem_cgroup_disabled())
2169 return;
2171 memcg = pc->mem_cgroup;
2172 if (unlikely(!memcg || !PageCgroupUsed(pc)))
2173 return;
2175 switch (idx) {
2176 case MEMCG_NR_FILE_MAPPED:
2177 idx = MEM_CGROUP_STAT_FILE_MAPPED;
2178 break;
2179 default:
2180 BUG();
2183 this_cpu_add(memcg->stat->count[idx], val);
2187 * size of first charge trial. "32" comes from vmscan.c's magic value.
2188 * TODO: maybe necessary to use big numbers in big irons.
2190 #define CHARGE_BATCH 32U
2191 struct memcg_stock_pcp {
2192 struct mem_cgroup *cached; /* this never be root cgroup */
2193 unsigned int nr_pages;
2194 struct work_struct work;
2195 unsigned long flags;
2196 #define FLUSHING_CACHED_CHARGE 0
2198 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2199 static DEFINE_MUTEX(percpu_charge_mutex);
2202 * consume_stock: Try to consume stocked charge on this cpu.
2203 * @memcg: memcg to consume from.
2204 * @nr_pages: how many pages to charge.
2206 * The charges will only happen if @memcg matches the current cpu's memcg
2207 * stock, and at least @nr_pages are available in that stock. Failure to
2208 * service an allocation will refill the stock.
2210 * returns true if successful, false otherwise.
2212 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2214 struct memcg_stock_pcp *stock;
2215 bool ret = true;
2217 if (nr_pages > CHARGE_BATCH)
2218 return false;
2220 stock = &get_cpu_var(memcg_stock);
2221 if (memcg == stock->cached && stock->nr_pages >= nr_pages)
2222 stock->nr_pages -= nr_pages;
2223 else /* need to call res_counter_charge */
2224 ret = false;
2225 put_cpu_var(memcg_stock);
2226 return ret;
2230 * Returns stocks cached in percpu to res_counter and reset cached information.
2232 static void drain_stock(struct memcg_stock_pcp *stock)
2234 struct mem_cgroup *old = stock->cached;
2236 if (stock->nr_pages) {
2237 unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2239 res_counter_uncharge(&old->res, bytes);
2240 if (do_swap_account)
2241 res_counter_uncharge(&old->memsw, bytes);
2242 stock->nr_pages = 0;
2244 stock->cached = NULL;
2248 * This must be called under preempt disabled or must be called by
2249 * a thread which is pinned to local cpu.
2251 static void drain_local_stock(struct work_struct *dummy)
2253 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
2254 drain_stock(stock);
2255 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2259 * Cache charges(val) which is from res_counter, to local per_cpu area.
2260 * This will be consumed by consume_stock() function, later.
2262 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2264 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2266 if (stock->cached != memcg) { /* reset if necessary */
2267 drain_stock(stock);
2268 stock->cached = memcg;
2270 stock->nr_pages += nr_pages;
2271 put_cpu_var(memcg_stock);
2275 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2276 * of the hierarchy under it. sync flag says whether we should block
2277 * until the work is done.
2279 static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2281 int cpu, curcpu;
2283 /* Notify other cpus that system-wide "drain" is running */
2284 get_online_cpus();
2285 curcpu = get_cpu();
2286 for_each_online_cpu(cpu) {
2287 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2288 struct mem_cgroup *memcg;
2290 memcg = stock->cached;
2291 if (!memcg || !stock->nr_pages)
2292 continue;
2293 if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2294 continue;
2295 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2296 if (cpu == curcpu)
2297 drain_local_stock(&stock->work);
2298 else
2299 schedule_work_on(cpu, &stock->work);
2302 put_cpu();
2304 if (!sync)
2305 goto out;
2307 for_each_online_cpu(cpu) {
2308 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2309 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2310 flush_work(&stock->work);
2312 out:
2313 put_online_cpus();
2317 * Tries to drain stocked charges in other cpus. This function is asynchronous
2318 * and just put a work per cpu for draining localy on each cpu. Caller can
2319 * expects some charges will be back to res_counter later but cannot wait for
2320 * it.
2322 static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2325 * If someone calls draining, avoid adding more kworker runs.
2327 if (!mutex_trylock(&percpu_charge_mutex))
2328 return;
2329 drain_all_stock(root_memcg, false);
2330 mutex_unlock(&percpu_charge_mutex);
2333 /* This is a synchronous drain interface. */
2334 static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2336 /* called when force_empty is called */
2337 mutex_lock(&percpu_charge_mutex);
2338 drain_all_stock(root_memcg, true);
2339 mutex_unlock(&percpu_charge_mutex);
2343 * This function drains percpu counter value from DEAD cpu and
2344 * move it to local cpu. Note that this function can be preempted.
2346 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2348 int i;
2350 spin_lock(&memcg->pcp_counter_lock);
2351 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2352 long x = per_cpu(memcg->stat->count[i], cpu);
2354 per_cpu(memcg->stat->count[i], cpu) = 0;
2355 memcg->nocpu_base.count[i] += x;
2357 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2358 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2360 per_cpu(memcg->stat->events[i], cpu) = 0;
2361 memcg->nocpu_base.events[i] += x;
2363 spin_unlock(&memcg->pcp_counter_lock);
2366 static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
2367 unsigned long action,
2368 void *hcpu)
2370 int cpu = (unsigned long)hcpu;
2371 struct memcg_stock_pcp *stock;
2372 struct mem_cgroup *iter;
2374 if (action == CPU_ONLINE)
2375 return NOTIFY_OK;
2377 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2378 return NOTIFY_OK;
2380 for_each_mem_cgroup(iter)
2381 mem_cgroup_drain_pcp_counter(iter, cpu);
2383 stock = &per_cpu(memcg_stock, cpu);
2384 drain_stock(stock);
2385 return NOTIFY_OK;
2389 /* See __mem_cgroup_try_charge() for details */
2390 enum {
2391 CHARGE_OK, /* success */
2392 CHARGE_RETRY, /* need to retry but retry is not bad */
2393 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
2394 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
2395 CHARGE_OOM_DIE, /* the current is killed because of OOM */
2398 static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2399 unsigned int nr_pages, unsigned int min_pages,
2400 bool oom_check)
2402 unsigned long csize = nr_pages * PAGE_SIZE;
2403 struct mem_cgroup *mem_over_limit;
2404 struct res_counter *fail_res;
2405 unsigned long flags = 0;
2406 int ret;
2408 ret = res_counter_charge(&memcg->res, csize, &fail_res);
2410 if (likely(!ret)) {
2411 if (!do_swap_account)
2412 return CHARGE_OK;
2413 ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2414 if (likely(!ret))
2415 return CHARGE_OK;
2417 res_counter_uncharge(&memcg->res, csize);
2418 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2419 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2420 } else
2421 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2423 * Never reclaim on behalf of optional batching, retry with a
2424 * single page instead.
2426 if (nr_pages > min_pages)
2427 return CHARGE_RETRY;
2429 if (!(gfp_mask & __GFP_WAIT))
2430 return CHARGE_WOULDBLOCK;
2432 if (gfp_mask & __GFP_NORETRY)
2433 return CHARGE_NOMEM;
2435 ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2436 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2437 return CHARGE_RETRY;
2439 * Even though the limit is exceeded at this point, reclaim
2440 * may have been able to free some pages. Retry the charge
2441 * before killing the task.
2443 * Only for regular pages, though: huge pages are rather
2444 * unlikely to succeed so close to the limit, and we fall back
2445 * to regular pages anyway in case of failure.
2447 if (nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER) && ret)
2448 return CHARGE_RETRY;
2451 * At task move, charge accounts can be doubly counted. So, it's
2452 * better to wait until the end of task_move if something is going on.
2454 if (mem_cgroup_wait_acct_move(mem_over_limit))
2455 return CHARGE_RETRY;
2457 /* If we don't need to call oom-killer at el, return immediately */
2458 if (!oom_check)
2459 return CHARGE_NOMEM;
2460 /* check OOM */
2461 if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask, get_order(csize)))
2462 return CHARGE_OOM_DIE;
2464 return CHARGE_RETRY;
2468 * __mem_cgroup_try_charge() does
2469 * 1. detect memcg to be charged against from passed *mm and *ptr,
2470 * 2. update res_counter
2471 * 3. call memory reclaim if necessary.
2473 * In some special case, if the task is fatal, fatal_signal_pending() or
2474 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
2475 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
2476 * as possible without any hazards. 2: all pages should have a valid
2477 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
2478 * pointer, that is treated as a charge to root_mem_cgroup.
2480 * So __mem_cgroup_try_charge() will return
2481 * 0 ... on success, filling *ptr with a valid memcg pointer.
2482 * -ENOMEM ... charge failure because of resource limits.
2483 * -EINTR ... if thread is fatal. *ptr is filled with root_mem_cgroup.
2485 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
2486 * the oom-killer can be invoked.
2488 static int __mem_cgroup_try_charge(struct mm_struct *mm,
2489 gfp_t gfp_mask,
2490 unsigned int nr_pages,
2491 struct mem_cgroup **ptr,
2492 bool oom)
2494 unsigned int batch = max(CHARGE_BATCH, nr_pages);
2495 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2496 struct mem_cgroup *memcg = NULL;
2497 int ret;
2500 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2501 * in system level. So, allow to go ahead dying process in addition to
2502 * MEMDIE process.
2504 if (unlikely(test_thread_flag(TIF_MEMDIE)
2505 || fatal_signal_pending(current)))
2506 goto bypass;
2509 * We always charge the cgroup the mm_struct belongs to.
2510 * The mm_struct's mem_cgroup changes on task migration if the
2511 * thread group leader migrates. It's possible that mm is not
2512 * set, if so charge the root memcg (happens for pagecache usage).
2514 if (!*ptr && !mm)
2515 *ptr = root_mem_cgroup;
2516 again:
2517 if (*ptr) { /* css should be a valid one */
2518 memcg = *ptr;
2519 if (mem_cgroup_is_root(memcg))
2520 goto done;
2521 if (consume_stock(memcg, nr_pages))
2522 goto done;
2523 css_get(&memcg->css);
2524 } else {
2525 struct task_struct *p;
2527 rcu_read_lock();
2528 p = rcu_dereference(mm->owner);
2530 * Because we don't have task_lock(), "p" can exit.
2531 * In that case, "memcg" can point to root or p can be NULL with
2532 * race with swapoff. Then, we have small risk of mis-accouning.
2533 * But such kind of mis-account by race always happens because
2534 * we don't have cgroup_mutex(). It's overkill and we allo that
2535 * small race, here.
2536 * (*) swapoff at el will charge against mm-struct not against
2537 * task-struct. So, mm->owner can be NULL.
2539 memcg = mem_cgroup_from_task(p);
2540 if (!memcg)
2541 memcg = root_mem_cgroup;
2542 if (mem_cgroup_is_root(memcg)) {
2543 rcu_read_unlock();
2544 goto done;
2546 if (consume_stock(memcg, nr_pages)) {
2548 * It seems dagerous to access memcg without css_get().
2549 * But considering how consume_stok works, it's not
2550 * necessary. If consume_stock success, some charges
2551 * from this memcg are cached on this cpu. So, we
2552 * don't need to call css_get()/css_tryget() before
2553 * calling consume_stock().
2555 rcu_read_unlock();
2556 goto done;
2558 /* after here, we may be blocked. we need to get refcnt */
2559 if (!css_tryget(&memcg->css)) {
2560 rcu_read_unlock();
2561 goto again;
2563 rcu_read_unlock();
2566 do {
2567 bool oom_check;
2569 /* If killed, bypass charge */
2570 if (fatal_signal_pending(current)) {
2571 css_put(&memcg->css);
2572 goto bypass;
2575 oom_check = false;
2576 if (oom && !nr_oom_retries) {
2577 oom_check = true;
2578 nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2581 ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, nr_pages,
2582 oom_check);
2583 switch (ret) {
2584 case CHARGE_OK:
2585 break;
2586 case CHARGE_RETRY: /* not in OOM situation but retry */
2587 batch = nr_pages;
2588 css_put(&memcg->css);
2589 memcg = NULL;
2590 goto again;
2591 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2592 css_put(&memcg->css);
2593 goto nomem;
2594 case CHARGE_NOMEM: /* OOM routine works */
2595 if (!oom) {
2596 css_put(&memcg->css);
2597 goto nomem;
2599 /* If oom, we never return -ENOMEM */
2600 nr_oom_retries--;
2601 break;
2602 case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2603 css_put(&memcg->css);
2604 goto bypass;
2606 } while (ret != CHARGE_OK);
2608 if (batch > nr_pages)
2609 refill_stock(memcg, batch - nr_pages);
2610 css_put(&memcg->css);
2611 done:
2612 *ptr = memcg;
2613 return 0;
2614 nomem:
2615 *ptr = NULL;
2616 return -ENOMEM;
2617 bypass:
2618 *ptr = root_mem_cgroup;
2619 return -EINTR;
2623 * Somemtimes we have to undo a charge we got by try_charge().
2624 * This function is for that and do uncharge, put css's refcnt.
2625 * gotten by try_charge().
2627 static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2628 unsigned int nr_pages)
2630 if (!mem_cgroup_is_root(memcg)) {
2631 unsigned long bytes = nr_pages * PAGE_SIZE;
2633 res_counter_uncharge(&memcg->res, bytes);
2634 if (do_swap_account)
2635 res_counter_uncharge(&memcg->memsw, bytes);
2640 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
2641 * This is useful when moving usage to parent cgroup.
2643 static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
2644 unsigned int nr_pages)
2646 unsigned long bytes = nr_pages * PAGE_SIZE;
2648 if (mem_cgroup_is_root(memcg))
2649 return;
2651 res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
2652 if (do_swap_account)
2653 res_counter_uncharge_until(&memcg->memsw,
2654 memcg->memsw.parent, bytes);
2658 * A helper function to get mem_cgroup from ID. must be called under
2659 * rcu_read_lock(). The caller is responsible for calling css_tryget if
2660 * the mem_cgroup is used for charging. (dropping refcnt from swap can be
2661 * called against removed memcg.)
2663 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2665 struct cgroup_subsys_state *css;
2667 /* ID 0 is unused ID */
2668 if (!id)
2669 return NULL;
2670 css = css_lookup(&mem_cgroup_subsys, id);
2671 if (!css)
2672 return NULL;
2673 return mem_cgroup_from_css(css);
2676 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2678 struct mem_cgroup *memcg = NULL;
2679 struct page_cgroup *pc;
2680 unsigned short id;
2681 swp_entry_t ent;
2683 VM_BUG_ON(!PageLocked(page));
2685 pc = lookup_page_cgroup(page);
2686 lock_page_cgroup(pc);
2687 if (PageCgroupUsed(pc)) {
2688 memcg = pc->mem_cgroup;
2689 if (memcg && !css_tryget(&memcg->css))
2690 memcg = NULL;
2691 } else if (PageSwapCache(page)) {
2692 ent.val = page_private(page);
2693 id = lookup_swap_cgroup_id(ent);
2694 rcu_read_lock();
2695 memcg = mem_cgroup_lookup(id);
2696 if (memcg && !css_tryget(&memcg->css))
2697 memcg = NULL;
2698 rcu_read_unlock();
2700 unlock_page_cgroup(pc);
2701 return memcg;
2704 static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2705 struct page *page,
2706 unsigned int nr_pages,
2707 enum charge_type ctype,
2708 bool lrucare)
2710 struct page_cgroup *pc = lookup_page_cgroup(page);
2711 struct zone *uninitialized_var(zone);
2712 struct lruvec *lruvec;
2713 bool was_on_lru = false;
2714 bool anon;
2716 lock_page_cgroup(pc);
2717 VM_BUG_ON(PageCgroupUsed(pc));
2719 * we don't need page_cgroup_lock about tail pages, becase they are not
2720 * accessed by any other context at this point.
2724 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2725 * may already be on some other mem_cgroup's LRU. Take care of it.
2727 if (lrucare) {
2728 zone = page_zone(page);
2729 spin_lock_irq(&zone->lru_lock);
2730 if (PageLRU(page)) {
2731 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2732 ClearPageLRU(page);
2733 del_page_from_lru_list(page, lruvec, page_lru(page));
2734 was_on_lru = true;
2738 pc->mem_cgroup = memcg;
2740 * We access a page_cgroup asynchronously without lock_page_cgroup().
2741 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2742 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2743 * before USED bit, we need memory barrier here.
2744 * See mem_cgroup_add_lru_list(), etc.
2746 smp_wmb();
2747 SetPageCgroupUsed(pc);
2749 if (lrucare) {
2750 if (was_on_lru) {
2751 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2752 VM_BUG_ON(PageLRU(page));
2753 SetPageLRU(page);
2754 add_page_to_lru_list(page, lruvec, page_lru(page));
2756 spin_unlock_irq(&zone->lru_lock);
2759 if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
2760 anon = true;
2761 else
2762 anon = false;
2764 mem_cgroup_charge_statistics(memcg, anon, nr_pages);
2765 unlock_page_cgroup(pc);
2768 * "charge_statistics" updated event counter. Then, check it.
2769 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2770 * if they exceeds softlimit.
2772 memcg_check_events(memcg, page);
2775 static DEFINE_MUTEX(set_limit_mutex);
2777 #ifdef CONFIG_MEMCG_KMEM
2778 static inline bool memcg_can_account_kmem(struct mem_cgroup *memcg)
2780 return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) &&
2781 (memcg->kmem_account_flags & KMEM_ACCOUNTED_MASK);
2785 * This is a bit cumbersome, but it is rarely used and avoids a backpointer
2786 * in the memcg_cache_params struct.
2788 static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
2790 struct kmem_cache *cachep;
2792 VM_BUG_ON(p->is_root_cache);
2793 cachep = p->root_cache;
2794 return cachep->memcg_params->memcg_caches[memcg_cache_id(p->memcg)];
2797 static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size)
2799 struct res_counter *fail_res;
2800 struct mem_cgroup *_memcg;
2801 int ret = 0;
2802 bool may_oom;
2804 ret = res_counter_charge(&memcg->kmem, size, &fail_res);
2805 if (ret)
2806 return ret;
2809 * Conditions under which we can wait for the oom_killer. Those are
2810 * the same conditions tested by the core page allocator
2812 may_oom = (gfp & __GFP_FS) && !(gfp & __GFP_NORETRY);
2814 _memcg = memcg;
2815 ret = __mem_cgroup_try_charge(NULL, gfp, size >> PAGE_SHIFT,
2816 &_memcg, may_oom);
2818 if (ret == -EINTR) {
2820 * __mem_cgroup_try_charge() chosed to bypass to root due to
2821 * OOM kill or fatal signal. Since our only options are to
2822 * either fail the allocation or charge it to this cgroup, do
2823 * it as a temporary condition. But we can't fail. From a
2824 * kmem/slab perspective, the cache has already been selected,
2825 * by mem_cgroup_kmem_get_cache(), so it is too late to change
2826 * our minds.
2828 * This condition will only trigger if the task entered
2829 * memcg_charge_kmem in a sane state, but was OOM-killed during
2830 * __mem_cgroup_try_charge() above. Tasks that were already
2831 * dying when the allocation triggers should have been already
2832 * directed to the root cgroup in memcontrol.h
2834 res_counter_charge_nofail(&memcg->res, size, &fail_res);
2835 if (do_swap_account)
2836 res_counter_charge_nofail(&memcg->memsw, size,
2837 &fail_res);
2838 ret = 0;
2839 } else if (ret)
2840 res_counter_uncharge(&memcg->kmem, size);
2842 return ret;
2845 static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size)
2847 res_counter_uncharge(&memcg->res, size);
2848 if (do_swap_account)
2849 res_counter_uncharge(&memcg->memsw, size);
2851 /* Not down to 0 */
2852 if (res_counter_uncharge(&memcg->kmem, size))
2853 return;
2855 if (memcg_kmem_test_and_clear_dead(memcg))
2856 mem_cgroup_put(memcg);
2859 void memcg_cache_list_add(struct mem_cgroup *memcg, struct kmem_cache *cachep)
2861 if (!memcg)
2862 return;
2864 mutex_lock(&memcg->slab_caches_mutex);
2865 list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches);
2866 mutex_unlock(&memcg->slab_caches_mutex);
2870 * helper for acessing a memcg's index. It will be used as an index in the
2871 * child cache array in kmem_cache, and also to derive its name. This function
2872 * will return -1 when this is not a kmem-limited memcg.
2874 int memcg_cache_id(struct mem_cgroup *memcg)
2876 return memcg ? memcg->kmemcg_id : -1;
2880 * This ends up being protected by the set_limit mutex, during normal
2881 * operation, because that is its main call site.
2883 * But when we create a new cache, we can call this as well if its parent
2884 * is kmem-limited. That will have to hold set_limit_mutex as well.
2886 int memcg_update_cache_sizes(struct mem_cgroup *memcg)
2888 int num, ret;
2890 num = ida_simple_get(&kmem_limited_groups,
2891 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2892 if (num < 0)
2893 return num;
2895 * After this point, kmem_accounted (that we test atomically in
2896 * the beginning of this conditional), is no longer 0. This
2897 * guarantees only one process will set the following boolean
2898 * to true. We don't need test_and_set because we're protected
2899 * by the set_limit_mutex anyway.
2901 memcg_kmem_set_activated(memcg);
2903 ret = memcg_update_all_caches(num+1);
2904 if (ret) {
2905 ida_simple_remove(&kmem_limited_groups, num);
2906 memcg_kmem_clear_activated(memcg);
2907 return ret;
2910 memcg->kmemcg_id = num;
2911 INIT_LIST_HEAD(&memcg->memcg_slab_caches);
2912 mutex_init(&memcg->slab_caches_mutex);
2913 return 0;
2916 static size_t memcg_caches_array_size(int num_groups)
2918 ssize_t size;
2919 if (num_groups <= 0)
2920 return 0;
2922 size = 2 * num_groups;
2923 if (size < MEMCG_CACHES_MIN_SIZE)
2924 size = MEMCG_CACHES_MIN_SIZE;
2925 else if (size > MEMCG_CACHES_MAX_SIZE)
2926 size = MEMCG_CACHES_MAX_SIZE;
2928 return size;
2932 * We should update the current array size iff all caches updates succeed. This
2933 * can only be done from the slab side. The slab mutex needs to be held when
2934 * calling this.
2936 void memcg_update_array_size(int num)
2938 if (num > memcg_limited_groups_array_size)
2939 memcg_limited_groups_array_size = memcg_caches_array_size(num);
2942 int memcg_update_cache_size(struct kmem_cache *s, int num_groups)
2944 struct memcg_cache_params *cur_params = s->memcg_params;
2946 VM_BUG_ON(s->memcg_params && !s->memcg_params->is_root_cache);
2948 if (num_groups > memcg_limited_groups_array_size) {
2949 int i;
2950 ssize_t size = memcg_caches_array_size(num_groups);
2952 size *= sizeof(void *);
2953 size += sizeof(struct memcg_cache_params);
2955 s->memcg_params = kzalloc(size, GFP_KERNEL);
2956 if (!s->memcg_params) {
2957 s->memcg_params = cur_params;
2958 return -ENOMEM;
2961 s->memcg_params->is_root_cache = true;
2964 * There is the chance it will be bigger than
2965 * memcg_limited_groups_array_size, if we failed an allocation
2966 * in a cache, in which case all caches updated before it, will
2967 * have a bigger array.
2969 * But if that is the case, the data after
2970 * memcg_limited_groups_array_size is certainly unused
2972 for (i = 0; i < memcg_limited_groups_array_size; i++) {
2973 if (!cur_params->memcg_caches[i])
2974 continue;
2975 s->memcg_params->memcg_caches[i] =
2976 cur_params->memcg_caches[i];
2980 * Ideally, we would wait until all caches succeed, and only
2981 * then free the old one. But this is not worth the extra
2982 * pointer per-cache we'd have to have for this.
2984 * It is not a big deal if some caches are left with a size
2985 * bigger than the others. And all updates will reset this
2986 * anyway.
2988 kfree(cur_params);
2990 return 0;
2993 int memcg_register_cache(struct mem_cgroup *memcg, struct kmem_cache *s)
2995 size_t size = sizeof(struct memcg_cache_params);
2997 if (!memcg_kmem_enabled())
2998 return 0;
3000 if (!memcg)
3001 size += memcg_limited_groups_array_size * sizeof(void *);
3003 s->memcg_params = kzalloc(size, GFP_KERNEL);
3004 if (!s->memcg_params)
3005 return -ENOMEM;
3007 if (memcg)
3008 s->memcg_params->memcg = memcg;
3009 return 0;
3012 void memcg_release_cache(struct kmem_cache *s)
3014 struct kmem_cache *root;
3015 struct mem_cgroup *memcg;
3016 int id;
3019 * This happens, for instance, when a root cache goes away before we
3020 * add any memcg.
3022 if (!s->memcg_params)
3023 return;
3025 if (s->memcg_params->is_root_cache)
3026 goto out;
3028 memcg = s->memcg_params->memcg;
3029 id = memcg_cache_id(memcg);
3031 root = s->memcg_params->root_cache;
3032 root->memcg_params->memcg_caches[id] = NULL;
3033 mem_cgroup_put(memcg);
3035 mutex_lock(&memcg->slab_caches_mutex);
3036 list_del(&s->memcg_params->list);
3037 mutex_unlock(&memcg->slab_caches_mutex);
3039 out:
3040 kfree(s->memcg_params);
3044 * During the creation a new cache, we need to disable our accounting mechanism
3045 * altogether. This is true even if we are not creating, but rather just
3046 * enqueing new caches to be created.
3048 * This is because that process will trigger allocations; some visible, like
3049 * explicit kmallocs to auxiliary data structures, name strings and internal
3050 * cache structures; some well concealed, like INIT_WORK() that can allocate
3051 * objects during debug.
3053 * If any allocation happens during memcg_kmem_get_cache, we will recurse back
3054 * to it. This may not be a bounded recursion: since the first cache creation
3055 * failed to complete (waiting on the allocation), we'll just try to create the
3056 * cache again, failing at the same point.
3058 * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
3059 * memcg_kmem_skip_account. So we enclose anything that might allocate memory
3060 * inside the following two functions.
3062 static inline void memcg_stop_kmem_account(void)
3064 VM_BUG_ON(!current->mm);
3065 current->memcg_kmem_skip_account++;
3068 static inline void memcg_resume_kmem_account(void)
3070 VM_BUG_ON(!current->mm);
3071 current->memcg_kmem_skip_account--;
3074 static void kmem_cache_destroy_work_func(struct work_struct *w)
3076 struct kmem_cache *cachep;
3077 struct memcg_cache_params *p;
3079 p = container_of(w, struct memcg_cache_params, destroy);
3081 cachep = memcg_params_to_cache(p);
3084 * If we get down to 0 after shrink, we could delete right away.
3085 * However, memcg_release_pages() already puts us back in the workqueue
3086 * in that case. If we proceed deleting, we'll get a dangling
3087 * reference, and removing the object from the workqueue in that case
3088 * is unnecessary complication. We are not a fast path.
3090 * Note that this case is fundamentally different from racing with
3091 * shrink_slab(): if memcg_cgroup_destroy_cache() is called in
3092 * kmem_cache_shrink, not only we would be reinserting a dead cache
3093 * into the queue, but doing so from inside the worker racing to
3094 * destroy it.
3096 * So if we aren't down to zero, we'll just schedule a worker and try
3097 * again
3099 if (atomic_read(&cachep->memcg_params->nr_pages) != 0) {
3100 kmem_cache_shrink(cachep);
3101 if (atomic_read(&cachep->memcg_params->nr_pages) == 0)
3102 return;
3103 } else
3104 kmem_cache_destroy(cachep);
3107 void mem_cgroup_destroy_cache(struct kmem_cache *cachep)
3109 if (!cachep->memcg_params->dead)
3110 return;
3113 * There are many ways in which we can get here.
3115 * We can get to a memory-pressure situation while the delayed work is
3116 * still pending to run. The vmscan shrinkers can then release all
3117 * cache memory and get us to destruction. If this is the case, we'll
3118 * be executed twice, which is a bug (the second time will execute over
3119 * bogus data). In this case, cancelling the work should be fine.
3121 * But we can also get here from the worker itself, if
3122 * kmem_cache_shrink is enough to shake all the remaining objects and
3123 * get the page count to 0. In this case, we'll deadlock if we try to
3124 * cancel the work (the worker runs with an internal lock held, which
3125 * is the same lock we would hold for cancel_work_sync().)
3127 * Since we can't possibly know who got us here, just refrain from
3128 * running if there is already work pending
3130 if (work_pending(&cachep->memcg_params->destroy))
3131 return;
3133 * We have to defer the actual destroying to a workqueue, because
3134 * we might currently be in a context that cannot sleep.
3136 schedule_work(&cachep->memcg_params->destroy);
3139 static char *memcg_cache_name(struct mem_cgroup *memcg, struct kmem_cache *s)
3141 char *name;
3142 struct dentry *dentry;
3144 rcu_read_lock();
3145 dentry = rcu_dereference(memcg->css.cgroup->dentry);
3146 rcu_read_unlock();
3148 BUG_ON(dentry == NULL);
3150 name = kasprintf(GFP_KERNEL, "%s(%d:%s)", s->name,
3151 memcg_cache_id(memcg), dentry->d_name.name);
3153 return name;
3156 static struct kmem_cache *kmem_cache_dup(struct mem_cgroup *memcg,
3157 struct kmem_cache *s)
3159 char *name;
3160 struct kmem_cache *new;
3162 name = memcg_cache_name(memcg, s);
3163 if (!name)
3164 return NULL;
3166 new = kmem_cache_create_memcg(memcg, name, s->object_size, s->align,
3167 (s->flags & ~SLAB_PANIC), s->ctor);
3169 if (new)
3170 new->allocflags |= __GFP_KMEMCG;
3172 kfree(name);
3173 return new;
3177 * This lock protects updaters, not readers. We want readers to be as fast as
3178 * they can, and they will either see NULL or a valid cache value. Our model
3179 * allow them to see NULL, in which case the root memcg will be selected.
3181 * We need this lock because multiple allocations to the same cache from a non
3182 * will span more than one worker. Only one of them can create the cache.
3184 static DEFINE_MUTEX(memcg_cache_mutex);
3185 static struct kmem_cache *memcg_create_kmem_cache(struct mem_cgroup *memcg,
3186 struct kmem_cache *cachep)
3188 struct kmem_cache *new_cachep;
3189 int idx;
3191 BUG_ON(!memcg_can_account_kmem(memcg));
3193 idx = memcg_cache_id(memcg);
3195 mutex_lock(&memcg_cache_mutex);
3196 new_cachep = cachep->memcg_params->memcg_caches[idx];
3197 if (new_cachep)
3198 goto out;
3200 new_cachep = kmem_cache_dup(memcg, cachep);
3201 if (new_cachep == NULL) {
3202 new_cachep = cachep;
3203 goto out;
3206 mem_cgroup_get(memcg);
3207 new_cachep->memcg_params->root_cache = cachep;
3208 atomic_set(&new_cachep->memcg_params->nr_pages , 0);
3210 cachep->memcg_params->memcg_caches[idx] = new_cachep;
3212 * the readers won't lock, make sure everybody sees the updated value,
3213 * so they won't put stuff in the queue again for no reason
3215 wmb();
3216 out:
3217 mutex_unlock(&memcg_cache_mutex);
3218 return new_cachep;
3221 void kmem_cache_destroy_memcg_children(struct kmem_cache *s)
3223 struct kmem_cache *c;
3224 int i;
3226 if (!s->memcg_params)
3227 return;
3228 if (!s->memcg_params->is_root_cache)
3229 return;
3232 * If the cache is being destroyed, we trust that there is no one else
3233 * requesting objects from it. Even if there are, the sanity checks in
3234 * kmem_cache_destroy should caught this ill-case.
3236 * Still, we don't want anyone else freeing memcg_caches under our
3237 * noses, which can happen if a new memcg comes to life. As usual,
3238 * we'll take the set_limit_mutex to protect ourselves against this.
3240 mutex_lock(&set_limit_mutex);
3241 for (i = 0; i < memcg_limited_groups_array_size; i++) {
3242 c = s->memcg_params->memcg_caches[i];
3243 if (!c)
3244 continue;
3247 * We will now manually delete the caches, so to avoid races
3248 * we need to cancel all pending destruction workers and
3249 * proceed with destruction ourselves.
3251 * kmem_cache_destroy() will call kmem_cache_shrink internally,
3252 * and that could spawn the workers again: it is likely that
3253 * the cache still have active pages until this very moment.
3254 * This would lead us back to mem_cgroup_destroy_cache.
3256 * But that will not execute at all if the "dead" flag is not
3257 * set, so flip it down to guarantee we are in control.
3259 c->memcg_params->dead = false;
3260 cancel_work_sync(&c->memcg_params->destroy);
3261 kmem_cache_destroy(c);
3263 mutex_unlock(&set_limit_mutex);
3266 struct create_work {
3267 struct mem_cgroup *memcg;
3268 struct kmem_cache *cachep;
3269 struct work_struct work;
3272 static void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
3274 struct kmem_cache *cachep;
3275 struct memcg_cache_params *params;
3277 if (!memcg_kmem_is_active(memcg))
3278 return;
3280 mutex_lock(&memcg->slab_caches_mutex);
3281 list_for_each_entry(params, &memcg->memcg_slab_caches, list) {
3282 cachep = memcg_params_to_cache(params);
3283 cachep->memcg_params->dead = true;
3284 INIT_WORK(&cachep->memcg_params->destroy,
3285 kmem_cache_destroy_work_func);
3286 schedule_work(&cachep->memcg_params->destroy);
3288 mutex_unlock(&memcg->slab_caches_mutex);
3291 static void memcg_create_cache_work_func(struct work_struct *w)
3293 struct create_work *cw;
3295 cw = container_of(w, struct create_work, work);
3296 memcg_create_kmem_cache(cw->memcg, cw->cachep);
3297 /* Drop the reference gotten when we enqueued. */
3298 css_put(&cw->memcg->css);
3299 kfree(cw);
3303 * Enqueue the creation of a per-memcg kmem_cache.
3304 * Called with rcu_read_lock.
3306 static void __memcg_create_cache_enqueue(struct mem_cgroup *memcg,
3307 struct kmem_cache *cachep)
3309 struct create_work *cw;
3311 cw = kmalloc(sizeof(struct create_work), GFP_NOWAIT);
3312 if (cw == NULL)
3313 return;
3315 /* The corresponding put will be done in the workqueue. */
3316 if (!css_tryget(&memcg->css)) {
3317 kfree(cw);
3318 return;
3321 cw->memcg = memcg;
3322 cw->cachep = cachep;
3324 INIT_WORK(&cw->work, memcg_create_cache_work_func);
3325 schedule_work(&cw->work);
3328 static void memcg_create_cache_enqueue(struct mem_cgroup *memcg,
3329 struct kmem_cache *cachep)
3332 * We need to stop accounting when we kmalloc, because if the
3333 * corresponding kmalloc cache is not yet created, the first allocation
3334 * in __memcg_create_cache_enqueue will recurse.
3336 * However, it is better to enclose the whole function. Depending on
3337 * the debugging options enabled, INIT_WORK(), for instance, can
3338 * trigger an allocation. This too, will make us recurse. Because at
3339 * this point we can't allow ourselves back into memcg_kmem_get_cache,
3340 * the safest choice is to do it like this, wrapping the whole function.
3342 memcg_stop_kmem_account();
3343 __memcg_create_cache_enqueue(memcg, cachep);
3344 memcg_resume_kmem_account();
3347 * Return the kmem_cache we're supposed to use for a slab allocation.
3348 * We try to use the current memcg's version of the cache.
3350 * If the cache does not exist yet, if we are the first user of it,
3351 * we either create it immediately, if possible, or create it asynchronously
3352 * in a workqueue.
3353 * In the latter case, we will let the current allocation go through with
3354 * the original cache.
3356 * Can't be called in interrupt context or from kernel threads.
3357 * This function needs to be called with rcu_read_lock() held.
3359 struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
3360 gfp_t gfp)
3362 struct mem_cgroup *memcg;
3363 int idx;
3365 VM_BUG_ON(!cachep->memcg_params);
3366 VM_BUG_ON(!cachep->memcg_params->is_root_cache);
3368 if (!current->mm || current->memcg_kmem_skip_account)
3369 return cachep;
3371 rcu_read_lock();
3372 memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));
3373 rcu_read_unlock();
3375 if (!memcg_can_account_kmem(memcg))
3376 return cachep;
3378 idx = memcg_cache_id(memcg);
3381 * barrier to mare sure we're always seeing the up to date value. The
3382 * code updating memcg_caches will issue a write barrier to match this.
3384 read_barrier_depends();
3385 if (unlikely(cachep->memcg_params->memcg_caches[idx] == NULL)) {
3387 * If we are in a safe context (can wait, and not in interrupt
3388 * context), we could be be predictable and return right away.
3389 * This would guarantee that the allocation being performed
3390 * already belongs in the new cache.
3392 * However, there are some clashes that can arrive from locking.
3393 * For instance, because we acquire the slab_mutex while doing
3394 * kmem_cache_dup, this means no further allocation could happen
3395 * with the slab_mutex held.
3397 * Also, because cache creation issue get_online_cpus(), this
3398 * creates a lock chain: memcg_slab_mutex -> cpu_hotplug_mutex,
3399 * that ends up reversed during cpu hotplug. (cpuset allocates
3400 * a bunch of GFP_KERNEL memory during cpuup). Due to all that,
3401 * better to defer everything.
3403 memcg_create_cache_enqueue(memcg, cachep);
3404 return cachep;
3407 return cachep->memcg_params->memcg_caches[idx];
3409 EXPORT_SYMBOL(__memcg_kmem_get_cache);
3412 * We need to verify if the allocation against current->mm->owner's memcg is
3413 * possible for the given order. But the page is not allocated yet, so we'll
3414 * need a further commit step to do the final arrangements.
3416 * It is possible for the task to switch cgroups in this mean time, so at
3417 * commit time, we can't rely on task conversion any longer. We'll then use
3418 * the handle argument to return to the caller which cgroup we should commit
3419 * against. We could also return the memcg directly and avoid the pointer
3420 * passing, but a boolean return value gives better semantics considering
3421 * the compiled-out case as well.
3423 * Returning true means the allocation is possible.
3425 bool
3426 __memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
3428 struct mem_cgroup *memcg;
3429 int ret;
3431 *_memcg = NULL;
3432 memcg = try_get_mem_cgroup_from_mm(current->mm);
3435 * very rare case described in mem_cgroup_from_task. Unfortunately there
3436 * isn't much we can do without complicating this too much, and it would
3437 * be gfp-dependent anyway. Just let it go
3439 if (unlikely(!memcg))
3440 return true;
3442 if (!memcg_can_account_kmem(memcg)) {
3443 css_put(&memcg->css);
3444 return true;
3447 ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order);
3448 if (!ret)
3449 *_memcg = memcg;
3451 css_put(&memcg->css);
3452 return (ret == 0);
3455 void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
3456 int order)
3458 struct page_cgroup *pc;
3460 VM_BUG_ON(mem_cgroup_is_root(memcg));
3462 /* The page allocation failed. Revert */
3463 if (!page) {
3464 memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
3465 return;
3468 pc = lookup_page_cgroup(page);
3469 lock_page_cgroup(pc);
3470 pc->mem_cgroup = memcg;
3471 SetPageCgroupUsed(pc);
3472 unlock_page_cgroup(pc);
3475 void __memcg_kmem_uncharge_pages(struct page *page, int order)
3477 struct mem_cgroup *memcg = NULL;
3478 struct page_cgroup *pc;
3481 pc = lookup_page_cgroup(page);
3483 * Fast unlocked return. Theoretically might have changed, have to
3484 * check again after locking.
3486 if (!PageCgroupUsed(pc))
3487 return;
3489 lock_page_cgroup(pc);
3490 if (PageCgroupUsed(pc)) {
3491 memcg = pc->mem_cgroup;
3492 ClearPageCgroupUsed(pc);
3494 unlock_page_cgroup(pc);
3497 * We trust that only if there is a memcg associated with the page, it
3498 * is a valid allocation
3500 if (!memcg)
3501 return;
3503 VM_BUG_ON(mem_cgroup_is_root(memcg));
3504 memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
3506 #else
3507 static inline void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
3510 #endif /* CONFIG_MEMCG_KMEM */
3512 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3514 #define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
3516 * Because tail pages are not marked as "used", set it. We're under
3517 * zone->lru_lock, 'splitting on pmd' and compound_lock.
3518 * charge/uncharge will be never happen and move_account() is done under
3519 * compound_lock(), so we don't have to take care of races.
3521 void mem_cgroup_split_huge_fixup(struct page *head)
3523 struct page_cgroup *head_pc = lookup_page_cgroup(head);
3524 struct page_cgroup *pc;
3525 int i;
3527 if (mem_cgroup_disabled())
3528 return;
3529 for (i = 1; i < HPAGE_PMD_NR; i++) {
3530 pc = head_pc + i;
3531 pc->mem_cgroup = head_pc->mem_cgroup;
3532 smp_wmb();/* see __commit_charge() */
3533 pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
3536 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3539 * mem_cgroup_move_account - move account of the page
3540 * @page: the page
3541 * @nr_pages: number of regular pages (>1 for huge pages)
3542 * @pc: page_cgroup of the page.
3543 * @from: mem_cgroup which the page is moved from.
3544 * @to: mem_cgroup which the page is moved to. @from != @to.
3546 * The caller must confirm following.
3547 * - page is not on LRU (isolate_page() is useful.)
3548 * - compound_lock is held when nr_pages > 1
3550 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
3551 * from old cgroup.
3553 static int mem_cgroup_move_account(struct page *page,
3554 unsigned int nr_pages,
3555 struct page_cgroup *pc,
3556 struct mem_cgroup *from,
3557 struct mem_cgroup *to)
3559 unsigned long flags;
3560 int ret;
3561 bool anon = PageAnon(page);
3563 VM_BUG_ON(from == to);
3564 VM_BUG_ON(PageLRU(page));
3566 * The page is isolated from LRU. So, collapse function
3567 * will not handle this page. But page splitting can happen.
3568 * Do this check under compound_page_lock(). The caller should
3569 * hold it.
3571 ret = -EBUSY;
3572 if (nr_pages > 1 && !PageTransHuge(page))
3573 goto out;
3575 lock_page_cgroup(pc);
3577 ret = -EINVAL;
3578 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
3579 goto unlock;
3581 move_lock_mem_cgroup(from, &flags);
3583 if (!anon && page_mapped(page)) {
3584 /* Update mapped_file data for mem_cgroup */
3585 preempt_disable();
3586 __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
3587 __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
3588 preempt_enable();
3590 mem_cgroup_charge_statistics(from, anon, -nr_pages);
3592 /* caller should have done css_get */
3593 pc->mem_cgroup = to;
3594 mem_cgroup_charge_statistics(to, anon, nr_pages);
3595 move_unlock_mem_cgroup(from, &flags);
3596 ret = 0;
3597 unlock:
3598 unlock_page_cgroup(pc);
3600 * check events
3602 memcg_check_events(to, page);
3603 memcg_check_events(from, page);
3604 out:
3605 return ret;
3609 * mem_cgroup_move_parent - moves page to the parent group
3610 * @page: the page to move
3611 * @pc: page_cgroup of the page
3612 * @child: page's cgroup
3614 * move charges to its parent or the root cgroup if the group has no
3615 * parent (aka use_hierarchy==0).
3616 * Although this might fail (get_page_unless_zero, isolate_lru_page or
3617 * mem_cgroup_move_account fails) the failure is always temporary and
3618 * it signals a race with a page removal/uncharge or migration. In the
3619 * first case the page is on the way out and it will vanish from the LRU
3620 * on the next attempt and the call should be retried later.
3621 * Isolation from the LRU fails only if page has been isolated from
3622 * the LRU since we looked at it and that usually means either global
3623 * reclaim or migration going on. The page will either get back to the
3624 * LRU or vanish.
3625 * Finaly mem_cgroup_move_account fails only if the page got uncharged
3626 * (!PageCgroupUsed) or moved to a different group. The page will
3627 * disappear in the next attempt.
3629 static int mem_cgroup_move_parent(struct page *page,
3630 struct page_cgroup *pc,
3631 struct mem_cgroup *child)
3633 struct mem_cgroup *parent;
3634 unsigned int nr_pages;
3635 unsigned long uninitialized_var(flags);
3636 int ret;
3638 VM_BUG_ON(mem_cgroup_is_root(child));
3640 ret = -EBUSY;
3641 if (!get_page_unless_zero(page))
3642 goto out;
3643 if (isolate_lru_page(page))
3644 goto put;
3646 nr_pages = hpage_nr_pages(page);
3648 parent = parent_mem_cgroup(child);
3650 * If no parent, move charges to root cgroup.
3652 if (!parent)
3653 parent = root_mem_cgroup;
3655 if (nr_pages > 1) {
3656 VM_BUG_ON(!PageTransHuge(page));
3657 flags = compound_lock_irqsave(page);
3660 ret = mem_cgroup_move_account(page, nr_pages,
3661 pc, child, parent);
3662 if (!ret)
3663 __mem_cgroup_cancel_local_charge(child, nr_pages);
3665 if (nr_pages > 1)
3666 compound_unlock_irqrestore(page, flags);
3667 putback_lru_page(page);
3668 put:
3669 put_page(page);
3670 out:
3671 return ret;
3675 * Charge the memory controller for page usage.
3676 * Return
3677 * 0 if the charge was successful
3678 * < 0 if the cgroup is over its limit
3680 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
3681 gfp_t gfp_mask, enum charge_type ctype)
3683 struct mem_cgroup *memcg = NULL;
3684 unsigned int nr_pages = 1;
3685 bool oom = true;
3686 int ret;
3688 if (PageTransHuge(page)) {
3689 nr_pages <<= compound_order(page);
3690 VM_BUG_ON(!PageTransHuge(page));
3692 * Never OOM-kill a process for a huge page. The
3693 * fault handler will fall back to regular pages.
3695 oom = false;
3698 ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
3699 if (ret == -ENOMEM)
3700 return ret;
3701 __mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
3702 return 0;
3705 int mem_cgroup_newpage_charge(struct page *page,
3706 struct mm_struct *mm, gfp_t gfp_mask)
3708 if (mem_cgroup_disabled())
3709 return 0;
3710 VM_BUG_ON(page_mapped(page));
3711 VM_BUG_ON(page->mapping && !PageAnon(page));
3712 VM_BUG_ON(!mm);
3713 return mem_cgroup_charge_common(page, mm, gfp_mask,
3714 MEM_CGROUP_CHARGE_TYPE_ANON);
3718 * While swap-in, try_charge -> commit or cancel, the page is locked.
3719 * And when try_charge() successfully returns, one refcnt to memcg without
3720 * struct page_cgroup is acquired. This refcnt will be consumed by
3721 * "commit()" or removed by "cancel()"
3723 static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm,
3724 struct page *page,
3725 gfp_t mask,
3726 struct mem_cgroup **memcgp)
3728 struct mem_cgroup *memcg;
3729 struct page_cgroup *pc;
3730 int ret;
3732 pc = lookup_page_cgroup(page);
3734 * Every swap fault against a single page tries to charge the
3735 * page, bail as early as possible. shmem_unuse() encounters
3736 * already charged pages, too. The USED bit is protected by
3737 * the page lock, which serializes swap cache removal, which
3738 * in turn serializes uncharging.
3740 if (PageCgroupUsed(pc))
3741 return 0;
3742 if (!do_swap_account)
3743 goto charge_cur_mm;
3744 memcg = try_get_mem_cgroup_from_page(page);
3745 if (!memcg)
3746 goto charge_cur_mm;
3747 *memcgp = memcg;
3748 ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
3749 css_put(&memcg->css);
3750 if (ret == -EINTR)
3751 ret = 0;
3752 return ret;
3753 charge_cur_mm:
3754 ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
3755 if (ret == -EINTR)
3756 ret = 0;
3757 return ret;
3760 int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page,
3761 gfp_t gfp_mask, struct mem_cgroup **memcgp)
3763 *memcgp = NULL;
3764 if (mem_cgroup_disabled())
3765 return 0;
3767 * A racing thread's fault, or swapoff, may have already
3768 * updated the pte, and even removed page from swap cache: in
3769 * those cases unuse_pte()'s pte_same() test will fail; but
3770 * there's also a KSM case which does need to charge the page.
3772 if (!PageSwapCache(page)) {
3773 int ret;
3775 ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, memcgp, true);
3776 if (ret == -EINTR)
3777 ret = 0;
3778 return ret;
3780 return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp);
3783 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
3785 if (mem_cgroup_disabled())
3786 return;
3787 if (!memcg)
3788 return;
3789 __mem_cgroup_cancel_charge(memcg, 1);
3792 static void
3793 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
3794 enum charge_type ctype)
3796 if (mem_cgroup_disabled())
3797 return;
3798 if (!memcg)
3799 return;
3801 __mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
3803 * Now swap is on-memory. This means this page may be
3804 * counted both as mem and swap....double count.
3805 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
3806 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
3807 * may call delete_from_swap_cache() before reach here.
3809 if (do_swap_account && PageSwapCache(page)) {
3810 swp_entry_t ent = {.val = page_private(page)};
3811 mem_cgroup_uncharge_swap(ent);
3815 void mem_cgroup_commit_charge_swapin(struct page *page,
3816 struct mem_cgroup *memcg)
3818 __mem_cgroup_commit_charge_swapin(page, memcg,
3819 MEM_CGROUP_CHARGE_TYPE_ANON);
3822 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
3823 gfp_t gfp_mask)
3825 struct mem_cgroup *memcg = NULL;
3826 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
3827 int ret;
3829 if (mem_cgroup_disabled())
3830 return 0;
3831 if (PageCompound(page))
3832 return 0;
3834 if (!PageSwapCache(page))
3835 ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
3836 else { /* page is swapcache/shmem */
3837 ret = __mem_cgroup_try_charge_swapin(mm, page,
3838 gfp_mask, &memcg);
3839 if (!ret)
3840 __mem_cgroup_commit_charge_swapin(page, memcg, type);
3842 return ret;
3845 static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
3846 unsigned int nr_pages,
3847 const enum charge_type ctype)
3849 struct memcg_batch_info *batch = NULL;
3850 bool uncharge_memsw = true;
3852 /* If swapout, usage of swap doesn't decrease */
3853 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
3854 uncharge_memsw = false;
3856 batch = &current->memcg_batch;
3858 * In usual, we do css_get() when we remember memcg pointer.
3859 * But in this case, we keep res->usage until end of a series of
3860 * uncharges. Then, it's ok to ignore memcg's refcnt.
3862 if (!batch->memcg)
3863 batch->memcg = memcg;
3865 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
3866 * In those cases, all pages freed continuously can be expected to be in
3867 * the same cgroup and we have chance to coalesce uncharges.
3868 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
3869 * because we want to do uncharge as soon as possible.
3872 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
3873 goto direct_uncharge;
3875 if (nr_pages > 1)
3876 goto direct_uncharge;
3879 * In typical case, batch->memcg == mem. This means we can
3880 * merge a series of uncharges to an uncharge of res_counter.
3881 * If not, we uncharge res_counter ony by one.
3883 if (batch->memcg != memcg)
3884 goto direct_uncharge;
3885 /* remember freed charge and uncharge it later */
3886 batch->nr_pages++;
3887 if (uncharge_memsw)
3888 batch->memsw_nr_pages++;
3889 return;
3890 direct_uncharge:
3891 res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
3892 if (uncharge_memsw)
3893 res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
3894 if (unlikely(batch->memcg != memcg))
3895 memcg_oom_recover(memcg);
3899 * uncharge if !page_mapped(page)
3901 static struct mem_cgroup *
3902 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
3903 bool end_migration)
3905 struct mem_cgroup *memcg = NULL;
3906 unsigned int nr_pages = 1;
3907 struct page_cgroup *pc;
3908 bool anon;
3910 if (mem_cgroup_disabled())
3911 return NULL;
3913 VM_BUG_ON(PageSwapCache(page));
3915 if (PageTransHuge(page)) {
3916 nr_pages <<= compound_order(page);
3917 VM_BUG_ON(!PageTransHuge(page));
3920 * Check if our page_cgroup is valid
3922 pc = lookup_page_cgroup(page);
3923 if (unlikely(!PageCgroupUsed(pc)))
3924 return NULL;
3926 lock_page_cgroup(pc);
3928 memcg = pc->mem_cgroup;
3930 if (!PageCgroupUsed(pc))
3931 goto unlock_out;
3933 anon = PageAnon(page);
3935 switch (ctype) {
3936 case MEM_CGROUP_CHARGE_TYPE_ANON:
3938 * Generally PageAnon tells if it's the anon statistics to be
3939 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
3940 * used before page reached the stage of being marked PageAnon.
3942 anon = true;
3943 /* fallthrough */
3944 case MEM_CGROUP_CHARGE_TYPE_DROP:
3945 /* See mem_cgroup_prepare_migration() */
3946 if (page_mapped(page))
3947 goto unlock_out;
3949 * Pages under migration may not be uncharged. But
3950 * end_migration() /must/ be the one uncharging the
3951 * unused post-migration page and so it has to call
3952 * here with the migration bit still set. See the
3953 * res_counter handling below.
3955 if (!end_migration && PageCgroupMigration(pc))
3956 goto unlock_out;
3957 break;
3958 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
3959 if (!PageAnon(page)) { /* Shared memory */
3960 if (page->mapping && !page_is_file_cache(page))
3961 goto unlock_out;
3962 } else if (page_mapped(page)) /* Anon */
3963 goto unlock_out;
3964 break;
3965 default:
3966 break;
3969 mem_cgroup_charge_statistics(memcg, anon, -nr_pages);
3971 ClearPageCgroupUsed(pc);
3973 * pc->mem_cgroup is not cleared here. It will be accessed when it's
3974 * freed from LRU. This is safe because uncharged page is expected not
3975 * to be reused (freed soon). Exception is SwapCache, it's handled by
3976 * special functions.
3979 unlock_page_cgroup(pc);
3981 * even after unlock, we have memcg->res.usage here and this memcg
3982 * will never be freed.
3984 memcg_check_events(memcg, page);
3985 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
3986 mem_cgroup_swap_statistics(memcg, true);
3987 mem_cgroup_get(memcg);
3990 * Migration does not charge the res_counter for the
3991 * replacement page, so leave it alone when phasing out the
3992 * page that is unused after the migration.
3994 if (!end_migration && !mem_cgroup_is_root(memcg))
3995 mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
3997 return memcg;
3999 unlock_out:
4000 unlock_page_cgroup(pc);
4001 return NULL;
4004 void mem_cgroup_uncharge_page(struct page *page)
4006 /* early check. */
4007 if (page_mapped(page))
4008 return;
4009 VM_BUG_ON(page->mapping && !PageAnon(page));
4010 if (PageSwapCache(page))
4011 return;
4012 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
4015 void mem_cgroup_uncharge_cache_page(struct page *page)
4017 VM_BUG_ON(page_mapped(page));
4018 VM_BUG_ON(page->mapping);
4019 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
4023 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
4024 * In that cases, pages are freed continuously and we can expect pages
4025 * are in the same memcg. All these calls itself limits the number of
4026 * pages freed at once, then uncharge_start/end() is called properly.
4027 * This may be called prural(2) times in a context,
4030 void mem_cgroup_uncharge_start(void)
4032 current->memcg_batch.do_batch++;
4033 /* We can do nest. */
4034 if (current->memcg_batch.do_batch == 1) {
4035 current->memcg_batch.memcg = NULL;
4036 current->memcg_batch.nr_pages = 0;
4037 current->memcg_batch.memsw_nr_pages = 0;
4041 void mem_cgroup_uncharge_end(void)
4043 struct memcg_batch_info *batch = &current->memcg_batch;
4045 if (!batch->do_batch)
4046 return;
4048 batch->do_batch--;
4049 if (batch->do_batch) /* If stacked, do nothing. */
4050 return;
4052 if (!batch->memcg)
4053 return;
4055 * This "batch->memcg" is valid without any css_get/put etc...
4056 * bacause we hide charges behind us.
4058 if (batch->nr_pages)
4059 res_counter_uncharge(&batch->memcg->res,
4060 batch->nr_pages * PAGE_SIZE);
4061 if (batch->memsw_nr_pages)
4062 res_counter_uncharge(&batch->memcg->memsw,
4063 batch->memsw_nr_pages * PAGE_SIZE);
4064 memcg_oom_recover(batch->memcg);
4065 /* forget this pointer (for sanity check) */
4066 batch->memcg = NULL;
4069 #ifdef CONFIG_SWAP
4071 * called after __delete_from_swap_cache() and drop "page" account.
4072 * memcg information is recorded to swap_cgroup of "ent"
4074 void
4075 mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
4077 struct mem_cgroup *memcg;
4078 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
4080 if (!swapout) /* this was a swap cache but the swap is unused ! */
4081 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
4083 memcg = __mem_cgroup_uncharge_common(page, ctype, false);
4086 * record memcg information, if swapout && memcg != NULL,
4087 * mem_cgroup_get() was called in uncharge().
4089 if (do_swap_account && swapout && memcg)
4090 swap_cgroup_record(ent, css_id(&memcg->css));
4092 #endif
4094 #ifdef CONFIG_MEMCG_SWAP
4096 * called from swap_entry_free(). remove record in swap_cgroup and
4097 * uncharge "memsw" account.
4099 void mem_cgroup_uncharge_swap(swp_entry_t ent)
4101 struct mem_cgroup *memcg;
4102 unsigned short id;
4104 if (!do_swap_account)
4105 return;
4107 id = swap_cgroup_record(ent, 0);
4108 rcu_read_lock();
4109 memcg = mem_cgroup_lookup(id);
4110 if (memcg) {
4112 * We uncharge this because swap is freed.
4113 * This memcg can be obsolete one. We avoid calling css_tryget
4115 if (!mem_cgroup_is_root(memcg))
4116 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
4117 mem_cgroup_swap_statistics(memcg, false);
4118 mem_cgroup_put(memcg);
4120 rcu_read_unlock();
4124 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
4125 * @entry: swap entry to be moved
4126 * @from: mem_cgroup which the entry is moved from
4127 * @to: mem_cgroup which the entry is moved to
4129 * It succeeds only when the swap_cgroup's record for this entry is the same
4130 * as the mem_cgroup's id of @from.
4132 * Returns 0 on success, -EINVAL on failure.
4134 * The caller must have charged to @to, IOW, called res_counter_charge() about
4135 * both res and memsw, and called css_get().
4137 static int mem_cgroup_move_swap_account(swp_entry_t entry,
4138 struct mem_cgroup *from, struct mem_cgroup *to)
4140 unsigned short old_id, new_id;
4142 old_id = css_id(&from->css);
4143 new_id = css_id(&to->css);
4145 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
4146 mem_cgroup_swap_statistics(from, false);
4147 mem_cgroup_swap_statistics(to, true);
4149 * This function is only called from task migration context now.
4150 * It postpones res_counter and refcount handling till the end
4151 * of task migration(mem_cgroup_clear_mc()) for performance
4152 * improvement. But we cannot postpone mem_cgroup_get(to)
4153 * because if the process that has been moved to @to does
4154 * swap-in, the refcount of @to might be decreased to 0.
4156 mem_cgroup_get(to);
4157 return 0;
4159 return -EINVAL;
4161 #else
4162 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
4163 struct mem_cgroup *from, struct mem_cgroup *to)
4165 return -EINVAL;
4167 #endif
4170 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
4171 * page belongs to.
4173 void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
4174 struct mem_cgroup **memcgp)
4176 struct mem_cgroup *memcg = NULL;
4177 unsigned int nr_pages = 1;
4178 struct page_cgroup *pc;
4179 enum charge_type ctype;
4181 *memcgp = NULL;
4183 if (mem_cgroup_disabled())
4184 return;
4186 if (PageTransHuge(page))
4187 nr_pages <<= compound_order(page);
4189 pc = lookup_page_cgroup(page);
4190 lock_page_cgroup(pc);
4191 if (PageCgroupUsed(pc)) {
4192 memcg = pc->mem_cgroup;
4193 css_get(&memcg->css);
4195 * At migrating an anonymous page, its mapcount goes down
4196 * to 0 and uncharge() will be called. But, even if it's fully
4197 * unmapped, migration may fail and this page has to be
4198 * charged again. We set MIGRATION flag here and delay uncharge
4199 * until end_migration() is called
4201 * Corner Case Thinking
4202 * A)
4203 * When the old page was mapped as Anon and it's unmap-and-freed
4204 * while migration was ongoing.
4205 * If unmap finds the old page, uncharge() of it will be delayed
4206 * until end_migration(). If unmap finds a new page, it's
4207 * uncharged when it make mapcount to be 1->0. If unmap code
4208 * finds swap_migration_entry, the new page will not be mapped
4209 * and end_migration() will find it(mapcount==0).
4211 * B)
4212 * When the old page was mapped but migraion fails, the kernel
4213 * remaps it. A charge for it is kept by MIGRATION flag even
4214 * if mapcount goes down to 0. We can do remap successfully
4215 * without charging it again.
4217 * C)
4218 * The "old" page is under lock_page() until the end of
4219 * migration, so, the old page itself will not be swapped-out.
4220 * If the new page is swapped out before end_migraton, our
4221 * hook to usual swap-out path will catch the event.
4223 if (PageAnon(page))
4224 SetPageCgroupMigration(pc);
4226 unlock_page_cgroup(pc);
4228 * If the page is not charged at this point,
4229 * we return here.
4231 if (!memcg)
4232 return;
4234 *memcgp = memcg;
4236 * We charge new page before it's used/mapped. So, even if unlock_page()
4237 * is called before end_migration, we can catch all events on this new
4238 * page. In the case new page is migrated but not remapped, new page's
4239 * mapcount will be finally 0 and we call uncharge in end_migration().
4241 if (PageAnon(page))
4242 ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
4243 else
4244 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
4246 * The page is committed to the memcg, but it's not actually
4247 * charged to the res_counter since we plan on replacing the
4248 * old one and only one page is going to be left afterwards.
4250 __mem_cgroup_commit_charge(memcg, newpage, nr_pages, ctype, false);
4253 /* remove redundant charge if migration failed*/
4254 void mem_cgroup_end_migration(struct mem_cgroup *memcg,
4255 struct page *oldpage, struct page *newpage, bool migration_ok)
4257 struct page *used, *unused;
4258 struct page_cgroup *pc;
4259 bool anon;
4261 if (!memcg)
4262 return;
4264 if (!migration_ok) {
4265 used = oldpage;
4266 unused = newpage;
4267 } else {
4268 used = newpage;
4269 unused = oldpage;
4271 anon = PageAnon(used);
4272 __mem_cgroup_uncharge_common(unused,
4273 anon ? MEM_CGROUP_CHARGE_TYPE_ANON
4274 : MEM_CGROUP_CHARGE_TYPE_CACHE,
4275 true);
4276 css_put(&memcg->css);
4278 * We disallowed uncharge of pages under migration because mapcount
4279 * of the page goes down to zero, temporarly.
4280 * Clear the flag and check the page should be charged.
4282 pc = lookup_page_cgroup(oldpage);
4283 lock_page_cgroup(pc);
4284 ClearPageCgroupMigration(pc);
4285 unlock_page_cgroup(pc);
4288 * If a page is a file cache, radix-tree replacement is very atomic
4289 * and we can skip this check. When it was an Anon page, its mapcount
4290 * goes down to 0. But because we added MIGRATION flage, it's not
4291 * uncharged yet. There are several case but page->mapcount check
4292 * and USED bit check in mem_cgroup_uncharge_page() will do enough
4293 * check. (see prepare_charge() also)
4295 if (anon)
4296 mem_cgroup_uncharge_page(used);
4300 * At replace page cache, newpage is not under any memcg but it's on
4301 * LRU. So, this function doesn't touch res_counter but handles LRU
4302 * in correct way. Both pages are locked so we cannot race with uncharge.
4304 void mem_cgroup_replace_page_cache(struct page *oldpage,
4305 struct page *newpage)
4307 struct mem_cgroup *memcg = NULL;
4308 struct page_cgroup *pc;
4309 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
4311 if (mem_cgroup_disabled())
4312 return;
4314 pc = lookup_page_cgroup(oldpage);
4315 /* fix accounting on old pages */
4316 lock_page_cgroup(pc);
4317 if (PageCgroupUsed(pc)) {
4318 memcg = pc->mem_cgroup;
4319 mem_cgroup_charge_statistics(memcg, false, -1);
4320 ClearPageCgroupUsed(pc);
4322 unlock_page_cgroup(pc);
4325 * When called from shmem_replace_page(), in some cases the
4326 * oldpage has already been charged, and in some cases not.
4328 if (!memcg)
4329 return;
4331 * Even if newpage->mapping was NULL before starting replacement,
4332 * the newpage may be on LRU(or pagevec for LRU) already. We lock
4333 * LRU while we overwrite pc->mem_cgroup.
4335 __mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
4338 #ifdef CONFIG_DEBUG_VM
4339 static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
4341 struct page_cgroup *pc;
4343 pc = lookup_page_cgroup(page);
4345 * Can be NULL while feeding pages into the page allocator for
4346 * the first time, i.e. during boot or memory hotplug;
4347 * or when mem_cgroup_disabled().
4349 if (likely(pc) && PageCgroupUsed(pc))
4350 return pc;
4351 return NULL;
4354 bool mem_cgroup_bad_page_check(struct page *page)
4356 if (mem_cgroup_disabled())
4357 return false;
4359 return lookup_page_cgroup_used(page) != NULL;
4362 void mem_cgroup_print_bad_page(struct page *page)
4364 struct page_cgroup *pc;
4366 pc = lookup_page_cgroup_used(page);
4367 if (pc) {
4368 printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
4369 pc, pc->flags, pc->mem_cgroup);
4372 #endif
4374 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
4375 unsigned long long val)
4377 int retry_count;
4378 u64 memswlimit, memlimit;
4379 int ret = 0;
4380 int children = mem_cgroup_count_children(memcg);
4381 u64 curusage, oldusage;
4382 int enlarge;
4385 * For keeping hierarchical_reclaim simple, how long we should retry
4386 * is depends on callers. We set our retry-count to be function
4387 * of # of children which we should visit in this loop.
4389 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
4391 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4393 enlarge = 0;
4394 while (retry_count) {
4395 if (signal_pending(current)) {
4396 ret = -EINTR;
4397 break;
4400 * Rather than hide all in some function, I do this in
4401 * open coded manner. You see what this really does.
4402 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4404 mutex_lock(&set_limit_mutex);
4405 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4406 if (memswlimit < val) {
4407 ret = -EINVAL;
4408 mutex_unlock(&set_limit_mutex);
4409 break;
4412 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4413 if (memlimit < val)
4414 enlarge = 1;
4416 ret = res_counter_set_limit(&memcg->res, val);
4417 if (!ret) {
4418 if (memswlimit == val)
4419 memcg->memsw_is_minimum = true;
4420 else
4421 memcg->memsw_is_minimum = false;
4423 mutex_unlock(&set_limit_mutex);
4425 if (!ret)
4426 break;
4428 mem_cgroup_reclaim(memcg, GFP_KERNEL,
4429 MEM_CGROUP_RECLAIM_SHRINK);
4430 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4431 /* Usage is reduced ? */
4432 if (curusage >= oldusage)
4433 retry_count--;
4434 else
4435 oldusage = curusage;
4437 if (!ret && enlarge)
4438 memcg_oom_recover(memcg);
4440 return ret;
4443 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
4444 unsigned long long val)
4446 int retry_count;
4447 u64 memlimit, memswlimit, oldusage, curusage;
4448 int children = mem_cgroup_count_children(memcg);
4449 int ret = -EBUSY;
4450 int enlarge = 0;
4452 /* see mem_cgroup_resize_res_limit */
4453 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
4454 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4455 while (retry_count) {
4456 if (signal_pending(current)) {
4457 ret = -EINTR;
4458 break;
4461 * Rather than hide all in some function, I do this in
4462 * open coded manner. You see what this really does.
4463 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4465 mutex_lock(&set_limit_mutex);
4466 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4467 if (memlimit > val) {
4468 ret = -EINVAL;
4469 mutex_unlock(&set_limit_mutex);
4470 break;
4472 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4473 if (memswlimit < val)
4474 enlarge = 1;
4475 ret = res_counter_set_limit(&memcg->memsw, val);
4476 if (!ret) {
4477 if (memlimit == val)
4478 memcg->memsw_is_minimum = true;
4479 else
4480 memcg->memsw_is_minimum = false;
4482 mutex_unlock(&set_limit_mutex);
4484 if (!ret)
4485 break;
4487 mem_cgroup_reclaim(memcg, GFP_KERNEL,
4488 MEM_CGROUP_RECLAIM_NOSWAP |
4489 MEM_CGROUP_RECLAIM_SHRINK);
4490 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4491 /* Usage is reduced ? */
4492 if (curusage >= oldusage)
4493 retry_count--;
4494 else
4495 oldusage = curusage;
4497 if (!ret && enlarge)
4498 memcg_oom_recover(memcg);
4499 return ret;
4502 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
4503 gfp_t gfp_mask,
4504 unsigned long *total_scanned)
4506 unsigned long nr_reclaimed = 0;
4507 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
4508 unsigned long reclaimed;
4509 int loop = 0;
4510 struct mem_cgroup_tree_per_zone *mctz;
4511 unsigned long long excess;
4512 unsigned long nr_scanned;
4514 if (order > 0)
4515 return 0;
4517 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
4519 * This loop can run a while, specially if mem_cgroup's continuously
4520 * keep exceeding their soft limit and putting the system under
4521 * pressure
4523 do {
4524 if (next_mz)
4525 mz = next_mz;
4526 else
4527 mz = mem_cgroup_largest_soft_limit_node(mctz);
4528 if (!mz)
4529 break;
4531 nr_scanned = 0;
4532 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
4533 gfp_mask, &nr_scanned);
4534 nr_reclaimed += reclaimed;
4535 *total_scanned += nr_scanned;
4536 spin_lock(&mctz->lock);
4539 * If we failed to reclaim anything from this memory cgroup
4540 * it is time to move on to the next cgroup
4542 next_mz = NULL;
4543 if (!reclaimed) {
4544 do {
4546 * Loop until we find yet another one.
4548 * By the time we get the soft_limit lock
4549 * again, someone might have aded the
4550 * group back on the RB tree. Iterate to
4551 * make sure we get a different mem.
4552 * mem_cgroup_largest_soft_limit_node returns
4553 * NULL if no other cgroup is present on
4554 * the tree
4556 next_mz =
4557 __mem_cgroup_largest_soft_limit_node(mctz);
4558 if (next_mz == mz)
4559 css_put(&next_mz->memcg->css);
4560 else /* next_mz == NULL or other memcg */
4561 break;
4562 } while (1);
4564 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
4565 excess = res_counter_soft_limit_excess(&mz->memcg->res);
4567 * One school of thought says that we should not add
4568 * back the node to the tree if reclaim returns 0.
4569 * But our reclaim could return 0, simply because due
4570 * to priority we are exposing a smaller subset of
4571 * memory to reclaim from. Consider this as a longer
4572 * term TODO.
4574 /* If excess == 0, no tree ops */
4575 __mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
4576 spin_unlock(&mctz->lock);
4577 css_put(&mz->memcg->css);
4578 loop++;
4580 * Could not reclaim anything and there are no more
4581 * mem cgroups to try or we seem to be looping without
4582 * reclaiming anything.
4584 if (!nr_reclaimed &&
4585 (next_mz == NULL ||
4586 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
4587 break;
4588 } while (!nr_reclaimed);
4589 if (next_mz)
4590 css_put(&next_mz->memcg->css);
4591 return nr_reclaimed;
4595 * mem_cgroup_force_empty_list - clears LRU of a group
4596 * @memcg: group to clear
4597 * @node: NUMA node
4598 * @zid: zone id
4599 * @lru: lru to to clear
4601 * Traverse a specified page_cgroup list and try to drop them all. This doesn't
4602 * reclaim the pages page themselves - pages are moved to the parent (or root)
4603 * group.
4605 static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
4606 int node, int zid, enum lru_list lru)
4608 struct lruvec *lruvec;
4609 unsigned long flags;
4610 struct list_head *list;
4611 struct page *busy;
4612 struct zone *zone;
4614 zone = &NODE_DATA(node)->node_zones[zid];
4615 lruvec = mem_cgroup_zone_lruvec(zone, memcg);
4616 list = &lruvec->lists[lru];
4618 busy = NULL;
4619 do {
4620 struct page_cgroup *pc;
4621 struct page *page;
4623 spin_lock_irqsave(&zone->lru_lock, flags);
4624 if (list_empty(list)) {
4625 spin_unlock_irqrestore(&zone->lru_lock, flags);
4626 break;
4628 page = list_entry(list->prev, struct page, lru);
4629 if (busy == page) {
4630 list_move(&page->lru, list);
4631 busy = NULL;
4632 spin_unlock_irqrestore(&zone->lru_lock, flags);
4633 continue;
4635 spin_unlock_irqrestore(&zone->lru_lock, flags);
4637 pc = lookup_page_cgroup(page);
4639 if (mem_cgroup_move_parent(page, pc, memcg)) {
4640 /* found lock contention or "pc" is obsolete. */
4641 busy = page;
4642 cond_resched();
4643 } else
4644 busy = NULL;
4645 } while (!list_empty(list));
4649 * make mem_cgroup's charge to be 0 if there is no task by moving
4650 * all the charges and pages to the parent.
4651 * This enables deleting this mem_cgroup.
4653 * Caller is responsible for holding css reference on the memcg.
4655 static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
4657 int node, zid;
4658 u64 usage;
4660 do {
4661 /* This is for making all *used* pages to be on LRU. */
4662 lru_add_drain_all();
4663 drain_all_stock_sync(memcg);
4664 mem_cgroup_start_move(memcg);
4665 for_each_node_state(node, N_MEMORY) {
4666 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4667 enum lru_list lru;
4668 for_each_lru(lru) {
4669 mem_cgroup_force_empty_list(memcg,
4670 node, zid, lru);
4674 mem_cgroup_end_move(memcg);
4675 memcg_oom_recover(memcg);
4676 cond_resched();
4679 * Kernel memory may not necessarily be trackable to a specific
4680 * process. So they are not migrated, and therefore we can't
4681 * expect their value to drop to 0 here.
4682 * Having res filled up with kmem only is enough.
4684 * This is a safety check because mem_cgroup_force_empty_list
4685 * could have raced with mem_cgroup_replace_page_cache callers
4686 * so the lru seemed empty but the page could have been added
4687 * right after the check. RES_USAGE should be safe as we always
4688 * charge before adding to the LRU.
4690 usage = res_counter_read_u64(&memcg->res, RES_USAGE) -
4691 res_counter_read_u64(&memcg->kmem, RES_USAGE);
4692 } while (usage > 0);
4696 * Reclaims as many pages from the given memcg as possible and moves
4697 * the rest to the parent.
4699 * Caller is responsible for holding css reference for memcg.
4701 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
4703 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
4704 struct cgroup *cgrp = memcg->css.cgroup;
4706 /* returns EBUSY if there is a task or if we come here twice. */
4707 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
4708 return -EBUSY;
4710 /* we call try-to-free pages for make this cgroup empty */
4711 lru_add_drain_all();
4712 /* try to free all pages in this cgroup */
4713 while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
4714 int progress;
4716 if (signal_pending(current))
4717 return -EINTR;
4719 progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
4720 false);
4721 if (!progress) {
4722 nr_retries--;
4723 /* maybe some writeback is necessary */
4724 congestion_wait(BLK_RW_ASYNC, HZ/10);
4728 lru_add_drain();
4729 mem_cgroup_reparent_charges(memcg);
4731 return 0;
4734 static int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
4736 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4737 int ret;
4739 if (mem_cgroup_is_root(memcg))
4740 return -EINVAL;
4741 css_get(&memcg->css);
4742 ret = mem_cgroup_force_empty(memcg);
4743 css_put(&memcg->css);
4745 return ret;
4749 static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
4751 return mem_cgroup_from_cont(cont)->use_hierarchy;
4754 static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
4755 u64 val)
4757 int retval = 0;
4758 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4759 struct cgroup *parent = cont->parent;
4760 struct mem_cgroup *parent_memcg = NULL;
4762 if (parent)
4763 parent_memcg = mem_cgroup_from_cont(parent);
4765 cgroup_lock();
4767 if (memcg->use_hierarchy == val)
4768 goto out;
4771 * If parent's use_hierarchy is set, we can't make any modifications
4772 * in the child subtrees. If it is unset, then the change can
4773 * occur, provided the current cgroup has no children.
4775 * For the root cgroup, parent_mem is NULL, we allow value to be
4776 * set if there are no children.
4778 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
4779 (val == 1 || val == 0)) {
4780 if (list_empty(&cont->children))
4781 memcg->use_hierarchy = val;
4782 else
4783 retval = -EBUSY;
4784 } else
4785 retval = -EINVAL;
4787 out:
4788 cgroup_unlock();
4790 return retval;
4794 static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
4795 enum mem_cgroup_stat_index idx)
4797 struct mem_cgroup *iter;
4798 long val = 0;
4800 /* Per-cpu values can be negative, use a signed accumulator */
4801 for_each_mem_cgroup_tree(iter, memcg)
4802 val += mem_cgroup_read_stat(iter, idx);
4804 if (val < 0) /* race ? */
4805 val = 0;
4806 return val;
4809 static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
4811 u64 val;
4813 if (!mem_cgroup_is_root(memcg)) {
4814 if (!swap)
4815 return res_counter_read_u64(&memcg->res, RES_USAGE);
4816 else
4817 return res_counter_read_u64(&memcg->memsw, RES_USAGE);
4820 val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
4821 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
4823 if (swap)
4824 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
4826 return val << PAGE_SHIFT;
4829 static ssize_t mem_cgroup_read(struct cgroup *cont, struct cftype *cft,
4830 struct file *file, char __user *buf,
4831 size_t nbytes, loff_t *ppos)
4833 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4834 char str[64];
4835 u64 val;
4836 int name, len;
4837 enum res_type type;
4839 type = MEMFILE_TYPE(cft->private);
4840 name = MEMFILE_ATTR(cft->private);
4842 if (!do_swap_account && type == _MEMSWAP)
4843 return -EOPNOTSUPP;
4845 switch (type) {
4846 case _MEM:
4847 if (name == RES_USAGE)
4848 val = mem_cgroup_usage(memcg, false);
4849 else
4850 val = res_counter_read_u64(&memcg->res, name);
4851 break;
4852 case _MEMSWAP:
4853 if (name == RES_USAGE)
4854 val = mem_cgroup_usage(memcg, true);
4855 else
4856 val = res_counter_read_u64(&memcg->memsw, name);
4857 break;
4858 case _KMEM:
4859 val = res_counter_read_u64(&memcg->kmem, name);
4860 break;
4861 default:
4862 BUG();
4865 len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val);
4866 return simple_read_from_buffer(buf, nbytes, ppos, str, len);
4869 static int memcg_update_kmem_limit(struct cgroup *cont, u64 val)
4871 int ret = -EINVAL;
4872 #ifdef CONFIG_MEMCG_KMEM
4873 bool must_inc_static_branch = false;
4875 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4877 * For simplicity, we won't allow this to be disabled. It also can't
4878 * be changed if the cgroup has children already, or if tasks had
4879 * already joined.
4881 * If tasks join before we set the limit, a person looking at
4882 * kmem.usage_in_bytes will have no way to determine when it took
4883 * place, which makes the value quite meaningless.
4885 * After it first became limited, changes in the value of the limit are
4886 * of course permitted.
4888 * Taking the cgroup_lock is really offensive, but it is so far the only
4889 * way to guarantee that no children will appear. There are plenty of
4890 * other offenders, and they should all go away. Fine grained locking
4891 * is probably the way to go here. When we are fully hierarchical, we
4892 * can also get rid of the use_hierarchy check.
4894 cgroup_lock();
4895 mutex_lock(&set_limit_mutex);
4896 if (!memcg->kmem_account_flags && val != RESOURCE_MAX) {
4897 if (cgroup_task_count(cont) || (memcg->use_hierarchy &&
4898 !list_empty(&cont->children))) {
4899 ret = -EBUSY;
4900 goto out;
4902 ret = res_counter_set_limit(&memcg->kmem, val);
4903 VM_BUG_ON(ret);
4905 ret = memcg_update_cache_sizes(memcg);
4906 if (ret) {
4907 res_counter_set_limit(&memcg->kmem, RESOURCE_MAX);
4908 goto out;
4910 must_inc_static_branch = true;
4912 * kmem charges can outlive the cgroup. In the case of slab
4913 * pages, for instance, a page contain objects from various
4914 * processes, so it is unfeasible to migrate them away. We
4915 * need to reference count the memcg because of that.
4917 mem_cgroup_get(memcg);
4918 } else
4919 ret = res_counter_set_limit(&memcg->kmem, val);
4920 out:
4921 mutex_unlock(&set_limit_mutex);
4922 cgroup_unlock();
4925 * We are by now familiar with the fact that we can't inc the static
4926 * branch inside cgroup_lock. See disarm functions for details. A
4927 * worker here is overkill, but also wrong: After the limit is set, we
4928 * must start accounting right away. Since this operation can't fail,
4929 * we can safely defer it to here - no rollback will be needed.
4931 * The boolean used to control this is also safe, because
4932 * KMEM_ACCOUNTED_ACTIVATED guarantees that only one process will be
4933 * able to set it to true;
4935 if (must_inc_static_branch) {
4936 static_key_slow_inc(&memcg_kmem_enabled_key);
4938 * setting the active bit after the inc will guarantee no one
4939 * starts accounting before all call sites are patched
4941 memcg_kmem_set_active(memcg);
4944 #endif
4945 return ret;
4948 static int memcg_propagate_kmem(struct mem_cgroup *memcg)
4950 int ret = 0;
4951 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
4952 if (!parent)
4953 goto out;
4955 memcg->kmem_account_flags = parent->kmem_account_flags;
4956 #ifdef CONFIG_MEMCG_KMEM
4958 * When that happen, we need to disable the static branch only on those
4959 * memcgs that enabled it. To achieve this, we would be forced to
4960 * complicate the code by keeping track of which memcgs were the ones
4961 * that actually enabled limits, and which ones got it from its
4962 * parents.
4964 * It is a lot simpler just to do static_key_slow_inc() on every child
4965 * that is accounted.
4967 if (!memcg_kmem_is_active(memcg))
4968 goto out;
4971 * destroy(), called if we fail, will issue static_key_slow_inc() and
4972 * mem_cgroup_put() if kmem is enabled. We have to either call them
4973 * unconditionally, or clear the KMEM_ACTIVE flag. I personally find
4974 * this more consistent, since it always leads to the same destroy path
4976 mem_cgroup_get(memcg);
4977 static_key_slow_inc(&memcg_kmem_enabled_key);
4979 mutex_lock(&set_limit_mutex);
4980 ret = memcg_update_cache_sizes(memcg);
4981 mutex_unlock(&set_limit_mutex);
4982 #endif
4983 out:
4984 return ret;
4988 * The user of this function is...
4989 * RES_LIMIT.
4991 static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
4992 const char *buffer)
4994 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4995 enum res_type type;
4996 int name;
4997 unsigned long long val;
4998 int ret;
5000 type = MEMFILE_TYPE(cft->private);
5001 name = MEMFILE_ATTR(cft->private);
5003 if (!do_swap_account && type == _MEMSWAP)
5004 return -EOPNOTSUPP;
5006 switch (name) {
5007 case RES_LIMIT:
5008 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
5009 ret = -EINVAL;
5010 break;
5012 /* This function does all necessary parse...reuse it */
5013 ret = res_counter_memparse_write_strategy(buffer, &val);
5014 if (ret)
5015 break;
5016 if (type == _MEM)
5017 ret = mem_cgroup_resize_limit(memcg, val);
5018 else if (type == _MEMSWAP)
5019 ret = mem_cgroup_resize_memsw_limit(memcg, val);
5020 else if (type == _KMEM)
5021 ret = memcg_update_kmem_limit(cont, val);
5022 else
5023 return -EINVAL;
5024 break;
5025 case RES_SOFT_LIMIT:
5026 ret = res_counter_memparse_write_strategy(buffer, &val);
5027 if (ret)
5028 break;
5030 * For memsw, soft limits are hard to implement in terms
5031 * of semantics, for now, we support soft limits for
5032 * control without swap
5034 if (type == _MEM)
5035 ret = res_counter_set_soft_limit(&memcg->res, val);
5036 else
5037 ret = -EINVAL;
5038 break;
5039 default:
5040 ret = -EINVAL; /* should be BUG() ? */
5041 break;
5043 return ret;
5046 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
5047 unsigned long long *mem_limit, unsigned long long *memsw_limit)
5049 struct cgroup *cgroup;
5050 unsigned long long min_limit, min_memsw_limit, tmp;
5052 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
5053 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
5054 cgroup = memcg->css.cgroup;
5055 if (!memcg->use_hierarchy)
5056 goto out;
5058 while (cgroup->parent) {
5059 cgroup = cgroup->parent;
5060 memcg = mem_cgroup_from_cont(cgroup);
5061 if (!memcg->use_hierarchy)
5062 break;
5063 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
5064 min_limit = min(min_limit, tmp);
5065 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
5066 min_memsw_limit = min(min_memsw_limit, tmp);
5068 out:
5069 *mem_limit = min_limit;
5070 *memsw_limit = min_memsw_limit;
5073 static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
5075 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5076 int name;
5077 enum res_type type;
5079 type = MEMFILE_TYPE(event);
5080 name = MEMFILE_ATTR(event);
5082 if (!do_swap_account && type == _MEMSWAP)
5083 return -EOPNOTSUPP;
5085 switch (name) {
5086 case RES_MAX_USAGE:
5087 if (type == _MEM)
5088 res_counter_reset_max(&memcg->res);
5089 else if (type == _MEMSWAP)
5090 res_counter_reset_max(&memcg->memsw);
5091 else if (type == _KMEM)
5092 res_counter_reset_max(&memcg->kmem);
5093 else
5094 return -EINVAL;
5095 break;
5096 case RES_FAILCNT:
5097 if (type == _MEM)
5098 res_counter_reset_failcnt(&memcg->res);
5099 else if (type == _MEMSWAP)
5100 res_counter_reset_failcnt(&memcg->memsw);
5101 else if (type == _KMEM)
5102 res_counter_reset_failcnt(&memcg->kmem);
5103 else
5104 return -EINVAL;
5105 break;
5108 return 0;
5111 static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
5112 struct cftype *cft)
5114 return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
5117 #ifdef CONFIG_MMU
5118 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
5119 struct cftype *cft, u64 val)
5121 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5123 if (val >= (1 << NR_MOVE_TYPE))
5124 return -EINVAL;
5126 * We check this value several times in both in can_attach() and
5127 * attach(), so we need cgroup lock to prevent this value from being
5128 * inconsistent.
5130 cgroup_lock();
5131 memcg->move_charge_at_immigrate = val;
5132 cgroup_unlock();
5134 return 0;
5136 #else
5137 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
5138 struct cftype *cft, u64 val)
5140 return -ENOSYS;
5142 #endif
5144 #ifdef CONFIG_NUMA
5145 static int memcg_numa_stat_show(struct cgroup *cont, struct cftype *cft,
5146 struct seq_file *m)
5148 int nid;
5149 unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
5150 unsigned long node_nr;
5151 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5153 total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL);
5154 seq_printf(m, "total=%lu", total_nr);
5155 for_each_node_state(nid, N_MEMORY) {
5156 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL);
5157 seq_printf(m, " N%d=%lu", nid, node_nr);
5159 seq_putc(m, '\n');
5161 file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE);
5162 seq_printf(m, "file=%lu", file_nr);
5163 for_each_node_state(nid, N_MEMORY) {
5164 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5165 LRU_ALL_FILE);
5166 seq_printf(m, " N%d=%lu", nid, node_nr);
5168 seq_putc(m, '\n');
5170 anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON);
5171 seq_printf(m, "anon=%lu", anon_nr);
5172 for_each_node_state(nid, N_MEMORY) {
5173 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5174 LRU_ALL_ANON);
5175 seq_printf(m, " N%d=%lu", nid, node_nr);
5177 seq_putc(m, '\n');
5179 unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
5180 seq_printf(m, "unevictable=%lu", unevictable_nr);
5181 for_each_node_state(nid, N_MEMORY) {
5182 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5183 BIT(LRU_UNEVICTABLE));
5184 seq_printf(m, " N%d=%lu", nid, node_nr);
5186 seq_putc(m, '\n');
5187 return 0;
5189 #endif /* CONFIG_NUMA */
5191 static const char * const mem_cgroup_lru_names[] = {
5192 "inactive_anon",
5193 "active_anon",
5194 "inactive_file",
5195 "active_file",
5196 "unevictable",
5199 static inline void mem_cgroup_lru_names_not_uptodate(void)
5201 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
5204 static int memcg_stat_show(struct cgroup *cont, struct cftype *cft,
5205 struct seq_file *m)
5207 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5208 struct mem_cgroup *mi;
5209 unsigned int i;
5211 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5212 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5213 continue;
5214 seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
5215 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
5218 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
5219 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
5220 mem_cgroup_read_events(memcg, i));
5222 for (i = 0; i < NR_LRU_LISTS; i++)
5223 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
5224 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
5226 /* Hierarchical information */
5228 unsigned long long limit, memsw_limit;
5229 memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
5230 seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
5231 if (do_swap_account)
5232 seq_printf(m, "hierarchical_memsw_limit %llu\n",
5233 memsw_limit);
5236 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5237 long long val = 0;
5239 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5240 continue;
5241 for_each_mem_cgroup_tree(mi, memcg)
5242 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
5243 seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
5246 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
5247 unsigned long long val = 0;
5249 for_each_mem_cgroup_tree(mi, memcg)
5250 val += mem_cgroup_read_events(mi, i);
5251 seq_printf(m, "total_%s %llu\n",
5252 mem_cgroup_events_names[i], val);
5255 for (i = 0; i < NR_LRU_LISTS; i++) {
5256 unsigned long long val = 0;
5258 for_each_mem_cgroup_tree(mi, memcg)
5259 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
5260 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
5263 #ifdef CONFIG_DEBUG_VM
5265 int nid, zid;
5266 struct mem_cgroup_per_zone *mz;
5267 struct zone_reclaim_stat *rstat;
5268 unsigned long recent_rotated[2] = {0, 0};
5269 unsigned long recent_scanned[2] = {0, 0};
5271 for_each_online_node(nid)
5272 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
5273 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
5274 rstat = &mz->lruvec.reclaim_stat;
5276 recent_rotated[0] += rstat->recent_rotated[0];
5277 recent_rotated[1] += rstat->recent_rotated[1];
5278 recent_scanned[0] += rstat->recent_scanned[0];
5279 recent_scanned[1] += rstat->recent_scanned[1];
5281 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
5282 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
5283 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
5284 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
5286 #endif
5288 return 0;
5291 static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
5293 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5295 return mem_cgroup_swappiness(memcg);
5298 static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
5299 u64 val)
5301 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5302 struct mem_cgroup *parent;
5304 if (val > 100)
5305 return -EINVAL;
5307 if (cgrp->parent == NULL)
5308 return -EINVAL;
5310 parent = mem_cgroup_from_cont(cgrp->parent);
5312 cgroup_lock();
5314 /* If under hierarchy, only empty-root can set this value */
5315 if ((parent->use_hierarchy) ||
5316 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
5317 cgroup_unlock();
5318 return -EINVAL;
5321 memcg->swappiness = val;
5323 cgroup_unlock();
5325 return 0;
5328 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
5330 struct mem_cgroup_threshold_ary *t;
5331 u64 usage;
5332 int i;
5334 rcu_read_lock();
5335 if (!swap)
5336 t = rcu_dereference(memcg->thresholds.primary);
5337 else
5338 t = rcu_dereference(memcg->memsw_thresholds.primary);
5340 if (!t)
5341 goto unlock;
5343 usage = mem_cgroup_usage(memcg, swap);
5346 * current_threshold points to threshold just below or equal to usage.
5347 * If it's not true, a threshold was crossed after last
5348 * call of __mem_cgroup_threshold().
5350 i = t->current_threshold;
5353 * Iterate backward over array of thresholds starting from
5354 * current_threshold and check if a threshold is crossed.
5355 * If none of thresholds below usage is crossed, we read
5356 * only one element of the array here.
5358 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
5359 eventfd_signal(t->entries[i].eventfd, 1);
5361 /* i = current_threshold + 1 */
5362 i++;
5365 * Iterate forward over array of thresholds starting from
5366 * current_threshold+1 and check if a threshold is crossed.
5367 * If none of thresholds above usage is crossed, we read
5368 * only one element of the array here.
5370 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
5371 eventfd_signal(t->entries[i].eventfd, 1);
5373 /* Update current_threshold */
5374 t->current_threshold = i - 1;
5375 unlock:
5376 rcu_read_unlock();
5379 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
5381 while (memcg) {
5382 __mem_cgroup_threshold(memcg, false);
5383 if (do_swap_account)
5384 __mem_cgroup_threshold(memcg, true);
5386 memcg = parent_mem_cgroup(memcg);
5390 static int compare_thresholds(const void *a, const void *b)
5392 const struct mem_cgroup_threshold *_a = a;
5393 const struct mem_cgroup_threshold *_b = b;
5395 return _a->threshold - _b->threshold;
5398 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
5400 struct mem_cgroup_eventfd_list *ev;
5402 list_for_each_entry(ev, &memcg->oom_notify, list)
5403 eventfd_signal(ev->eventfd, 1);
5404 return 0;
5407 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
5409 struct mem_cgroup *iter;
5411 for_each_mem_cgroup_tree(iter, memcg)
5412 mem_cgroup_oom_notify_cb(iter);
5415 static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
5416 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
5418 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5419 struct mem_cgroup_thresholds *thresholds;
5420 struct mem_cgroup_threshold_ary *new;
5421 enum res_type type = MEMFILE_TYPE(cft->private);
5422 u64 threshold, usage;
5423 int i, size, ret;
5425 ret = res_counter_memparse_write_strategy(args, &threshold);
5426 if (ret)
5427 return ret;
5429 mutex_lock(&memcg->thresholds_lock);
5431 if (type == _MEM)
5432 thresholds = &memcg->thresholds;
5433 else if (type == _MEMSWAP)
5434 thresholds = &memcg->memsw_thresholds;
5435 else
5436 BUG();
5438 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5440 /* Check if a threshold crossed before adding a new one */
5441 if (thresholds->primary)
5442 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
5444 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
5446 /* Allocate memory for new array of thresholds */
5447 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
5448 GFP_KERNEL);
5449 if (!new) {
5450 ret = -ENOMEM;
5451 goto unlock;
5453 new->size = size;
5455 /* Copy thresholds (if any) to new array */
5456 if (thresholds->primary) {
5457 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
5458 sizeof(struct mem_cgroup_threshold));
5461 /* Add new threshold */
5462 new->entries[size - 1].eventfd = eventfd;
5463 new->entries[size - 1].threshold = threshold;
5465 /* Sort thresholds. Registering of new threshold isn't time-critical */
5466 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
5467 compare_thresholds, NULL);
5469 /* Find current threshold */
5470 new->current_threshold = -1;
5471 for (i = 0; i < size; i++) {
5472 if (new->entries[i].threshold <= usage) {
5474 * new->current_threshold will not be used until
5475 * rcu_assign_pointer(), so it's safe to increment
5476 * it here.
5478 ++new->current_threshold;
5479 } else
5480 break;
5483 /* Free old spare buffer and save old primary buffer as spare */
5484 kfree(thresholds->spare);
5485 thresholds->spare = thresholds->primary;
5487 rcu_assign_pointer(thresholds->primary, new);
5489 /* To be sure that nobody uses thresholds */
5490 synchronize_rcu();
5492 unlock:
5493 mutex_unlock(&memcg->thresholds_lock);
5495 return ret;
5498 static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
5499 struct cftype *cft, struct eventfd_ctx *eventfd)
5501 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5502 struct mem_cgroup_thresholds *thresholds;
5503 struct mem_cgroup_threshold_ary *new;
5504 enum res_type type = MEMFILE_TYPE(cft->private);
5505 u64 usage;
5506 int i, j, size;
5508 mutex_lock(&memcg->thresholds_lock);
5509 if (type == _MEM)
5510 thresholds = &memcg->thresholds;
5511 else if (type == _MEMSWAP)
5512 thresholds = &memcg->memsw_thresholds;
5513 else
5514 BUG();
5516 if (!thresholds->primary)
5517 goto unlock;
5519 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5521 /* Check if a threshold crossed before removing */
5522 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
5524 /* Calculate new number of threshold */
5525 size = 0;
5526 for (i = 0; i < thresholds->primary->size; i++) {
5527 if (thresholds->primary->entries[i].eventfd != eventfd)
5528 size++;
5531 new = thresholds->spare;
5533 /* Set thresholds array to NULL if we don't have thresholds */
5534 if (!size) {
5535 kfree(new);
5536 new = NULL;
5537 goto swap_buffers;
5540 new->size = size;
5542 /* Copy thresholds and find current threshold */
5543 new->current_threshold = -1;
5544 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
5545 if (thresholds->primary->entries[i].eventfd == eventfd)
5546 continue;
5548 new->entries[j] = thresholds->primary->entries[i];
5549 if (new->entries[j].threshold <= usage) {
5551 * new->current_threshold will not be used
5552 * until rcu_assign_pointer(), so it's safe to increment
5553 * it here.
5555 ++new->current_threshold;
5557 j++;
5560 swap_buffers:
5561 /* Swap primary and spare array */
5562 thresholds->spare = thresholds->primary;
5563 /* If all events are unregistered, free the spare array */
5564 if (!new) {
5565 kfree(thresholds->spare);
5566 thresholds->spare = NULL;
5569 rcu_assign_pointer(thresholds->primary, new);
5571 /* To be sure that nobody uses thresholds */
5572 synchronize_rcu();
5573 unlock:
5574 mutex_unlock(&memcg->thresholds_lock);
5577 static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
5578 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
5580 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5581 struct mem_cgroup_eventfd_list *event;
5582 enum res_type type = MEMFILE_TYPE(cft->private);
5584 BUG_ON(type != _OOM_TYPE);
5585 event = kmalloc(sizeof(*event), GFP_KERNEL);
5586 if (!event)
5587 return -ENOMEM;
5589 spin_lock(&memcg_oom_lock);
5591 event->eventfd = eventfd;
5592 list_add(&event->list, &memcg->oom_notify);
5594 /* already in OOM ? */
5595 if (atomic_read(&memcg->under_oom))
5596 eventfd_signal(eventfd, 1);
5597 spin_unlock(&memcg_oom_lock);
5599 return 0;
5602 static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
5603 struct cftype *cft, struct eventfd_ctx *eventfd)
5605 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5606 struct mem_cgroup_eventfd_list *ev, *tmp;
5607 enum res_type type = MEMFILE_TYPE(cft->private);
5609 BUG_ON(type != _OOM_TYPE);
5611 spin_lock(&memcg_oom_lock);
5613 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
5614 if (ev->eventfd == eventfd) {
5615 list_del(&ev->list);
5616 kfree(ev);
5620 spin_unlock(&memcg_oom_lock);
5623 static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
5624 struct cftype *cft, struct cgroup_map_cb *cb)
5626 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5628 cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
5630 if (atomic_read(&memcg->under_oom))
5631 cb->fill(cb, "under_oom", 1);
5632 else
5633 cb->fill(cb, "under_oom", 0);
5634 return 0;
5637 static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
5638 struct cftype *cft, u64 val)
5640 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5641 struct mem_cgroup *parent;
5643 /* cannot set to root cgroup and only 0 and 1 are allowed */
5644 if (!cgrp->parent || !((val == 0) || (val == 1)))
5645 return -EINVAL;
5647 parent = mem_cgroup_from_cont(cgrp->parent);
5649 cgroup_lock();
5650 /* oom-kill-disable is a flag for subhierarchy. */
5651 if ((parent->use_hierarchy) ||
5652 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
5653 cgroup_unlock();
5654 return -EINVAL;
5656 memcg->oom_kill_disable = val;
5657 if (!val)
5658 memcg_oom_recover(memcg);
5659 cgroup_unlock();
5660 return 0;
5663 #ifdef CONFIG_MEMCG_KMEM
5664 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5666 int ret;
5668 memcg->kmemcg_id = -1;
5669 ret = memcg_propagate_kmem(memcg);
5670 if (ret)
5671 return ret;
5673 return mem_cgroup_sockets_init(memcg, ss);
5676 static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
5678 mem_cgroup_sockets_destroy(memcg);
5680 memcg_kmem_mark_dead(memcg);
5682 if (res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0)
5683 return;
5686 * Charges already down to 0, undo mem_cgroup_get() done in the charge
5687 * path here, being careful not to race with memcg_uncharge_kmem: it is
5688 * possible that the charges went down to 0 between mark_dead and the
5689 * res_counter read, so in that case, we don't need the put
5691 if (memcg_kmem_test_and_clear_dead(memcg))
5692 mem_cgroup_put(memcg);
5694 #else
5695 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5697 return 0;
5700 static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
5703 #endif
5705 static struct cftype mem_cgroup_files[] = {
5707 .name = "usage_in_bytes",
5708 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
5709 .read = mem_cgroup_read,
5710 .register_event = mem_cgroup_usage_register_event,
5711 .unregister_event = mem_cgroup_usage_unregister_event,
5714 .name = "max_usage_in_bytes",
5715 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
5716 .trigger = mem_cgroup_reset,
5717 .read = mem_cgroup_read,
5720 .name = "limit_in_bytes",
5721 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
5722 .write_string = mem_cgroup_write,
5723 .read = mem_cgroup_read,
5726 .name = "soft_limit_in_bytes",
5727 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
5728 .write_string = mem_cgroup_write,
5729 .read = mem_cgroup_read,
5732 .name = "failcnt",
5733 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
5734 .trigger = mem_cgroup_reset,
5735 .read = mem_cgroup_read,
5738 .name = "stat",
5739 .read_seq_string = memcg_stat_show,
5742 .name = "force_empty",
5743 .trigger = mem_cgroup_force_empty_write,
5746 .name = "use_hierarchy",
5747 .write_u64 = mem_cgroup_hierarchy_write,
5748 .read_u64 = mem_cgroup_hierarchy_read,
5751 .name = "swappiness",
5752 .read_u64 = mem_cgroup_swappiness_read,
5753 .write_u64 = mem_cgroup_swappiness_write,
5756 .name = "move_charge_at_immigrate",
5757 .read_u64 = mem_cgroup_move_charge_read,
5758 .write_u64 = mem_cgroup_move_charge_write,
5761 .name = "oom_control",
5762 .read_map = mem_cgroup_oom_control_read,
5763 .write_u64 = mem_cgroup_oom_control_write,
5764 .register_event = mem_cgroup_oom_register_event,
5765 .unregister_event = mem_cgroup_oom_unregister_event,
5766 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
5768 #ifdef CONFIG_NUMA
5770 .name = "numa_stat",
5771 .read_seq_string = memcg_numa_stat_show,
5773 #endif
5774 #ifdef CONFIG_MEMCG_SWAP
5776 .name = "memsw.usage_in_bytes",
5777 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
5778 .read = mem_cgroup_read,
5779 .register_event = mem_cgroup_usage_register_event,
5780 .unregister_event = mem_cgroup_usage_unregister_event,
5783 .name = "memsw.max_usage_in_bytes",
5784 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
5785 .trigger = mem_cgroup_reset,
5786 .read = mem_cgroup_read,
5789 .name = "memsw.limit_in_bytes",
5790 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
5791 .write_string = mem_cgroup_write,
5792 .read = mem_cgroup_read,
5795 .name = "memsw.failcnt",
5796 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
5797 .trigger = mem_cgroup_reset,
5798 .read = mem_cgroup_read,
5800 #endif
5801 #ifdef CONFIG_MEMCG_KMEM
5803 .name = "kmem.limit_in_bytes",
5804 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
5805 .write_string = mem_cgroup_write,
5806 .read = mem_cgroup_read,
5809 .name = "kmem.usage_in_bytes",
5810 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
5811 .read = mem_cgroup_read,
5814 .name = "kmem.failcnt",
5815 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
5816 .trigger = mem_cgroup_reset,
5817 .read = mem_cgroup_read,
5820 .name = "kmem.max_usage_in_bytes",
5821 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
5822 .trigger = mem_cgroup_reset,
5823 .read = mem_cgroup_read,
5825 #endif
5826 { }, /* terminate */
5829 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
5831 struct mem_cgroup_per_node *pn;
5832 struct mem_cgroup_per_zone *mz;
5833 int zone, tmp = node;
5835 * This routine is called against possible nodes.
5836 * But it's BUG to call kmalloc() against offline node.
5838 * TODO: this routine can waste much memory for nodes which will
5839 * never be onlined. It's better to use memory hotplug callback
5840 * function.
5842 if (!node_state(node, N_NORMAL_MEMORY))
5843 tmp = -1;
5844 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
5845 if (!pn)
5846 return 1;
5848 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
5849 mz = &pn->zoneinfo[zone];
5850 lruvec_init(&mz->lruvec);
5851 mz->usage_in_excess = 0;
5852 mz->on_tree = false;
5853 mz->memcg = memcg;
5855 memcg->info.nodeinfo[node] = pn;
5856 return 0;
5859 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
5861 kfree(memcg->info.nodeinfo[node]);
5864 static struct mem_cgroup *mem_cgroup_alloc(void)
5866 struct mem_cgroup *memcg;
5867 int size = sizeof(struct mem_cgroup);
5869 /* Can be very big if MAX_NUMNODES is very big */
5870 if (size < PAGE_SIZE)
5871 memcg = kzalloc(size, GFP_KERNEL);
5872 else
5873 memcg = vzalloc(size);
5875 if (!memcg)
5876 return NULL;
5878 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
5879 if (!memcg->stat)
5880 goto out_free;
5881 spin_lock_init(&memcg->pcp_counter_lock);
5882 return memcg;
5884 out_free:
5885 if (size < PAGE_SIZE)
5886 kfree(memcg);
5887 else
5888 vfree(memcg);
5889 return NULL;
5893 * At destroying mem_cgroup, references from swap_cgroup can remain.
5894 * (scanning all at force_empty is too costly...)
5896 * Instead of clearing all references at force_empty, we remember
5897 * the number of reference from swap_cgroup and free mem_cgroup when
5898 * it goes down to 0.
5900 * Removal of cgroup itself succeeds regardless of refs from swap.
5903 static void __mem_cgroup_free(struct mem_cgroup *memcg)
5905 int node;
5906 int size = sizeof(struct mem_cgroup);
5908 mem_cgroup_remove_from_trees(memcg);
5909 free_css_id(&mem_cgroup_subsys, &memcg->css);
5911 for_each_node(node)
5912 free_mem_cgroup_per_zone_info(memcg, node);
5914 free_percpu(memcg->stat);
5917 * We need to make sure that (at least for now), the jump label
5918 * destruction code runs outside of the cgroup lock. This is because
5919 * get_online_cpus(), which is called from the static_branch update,
5920 * can't be called inside the cgroup_lock. cpusets are the ones
5921 * enforcing this dependency, so if they ever change, we might as well.
5923 * schedule_work() will guarantee this happens. Be careful if you need
5924 * to move this code around, and make sure it is outside
5925 * the cgroup_lock.
5927 disarm_static_keys(memcg);
5928 if (size < PAGE_SIZE)
5929 kfree(memcg);
5930 else
5931 vfree(memcg);
5936 * Helpers for freeing a kmalloc()ed/vzalloc()ed mem_cgroup by RCU,
5937 * but in process context. The work_freeing structure is overlaid
5938 * on the rcu_freeing structure, which itself is overlaid on memsw.
5940 static void free_work(struct work_struct *work)
5942 struct mem_cgroup *memcg;
5944 memcg = container_of(work, struct mem_cgroup, work_freeing);
5945 __mem_cgroup_free(memcg);
5948 static void free_rcu(struct rcu_head *rcu_head)
5950 struct mem_cgroup *memcg;
5952 memcg = container_of(rcu_head, struct mem_cgroup, rcu_freeing);
5953 INIT_WORK(&memcg->work_freeing, free_work);
5954 schedule_work(&memcg->work_freeing);
5957 static void mem_cgroup_get(struct mem_cgroup *memcg)
5959 atomic_inc(&memcg->refcnt);
5962 static void __mem_cgroup_put(struct mem_cgroup *memcg, int count)
5964 if (atomic_sub_and_test(count, &memcg->refcnt)) {
5965 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
5966 call_rcu(&memcg->rcu_freeing, free_rcu);
5967 if (parent)
5968 mem_cgroup_put(parent);
5972 static void mem_cgroup_put(struct mem_cgroup *memcg)
5974 __mem_cgroup_put(memcg, 1);
5978 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
5980 struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
5982 if (!memcg->res.parent)
5983 return NULL;
5984 return mem_cgroup_from_res_counter(memcg->res.parent, res);
5986 EXPORT_SYMBOL(parent_mem_cgroup);
5988 #ifdef CONFIG_MEMCG_SWAP
5989 static void __init enable_swap_cgroup(void)
5991 if (!mem_cgroup_disabled() && really_do_swap_account)
5992 do_swap_account = 1;
5994 #else
5995 static void __init enable_swap_cgroup(void)
5998 #endif
6000 static int mem_cgroup_soft_limit_tree_init(void)
6002 struct mem_cgroup_tree_per_node *rtpn;
6003 struct mem_cgroup_tree_per_zone *rtpz;
6004 int tmp, node, zone;
6006 for_each_node(node) {
6007 tmp = node;
6008 if (!node_state(node, N_NORMAL_MEMORY))
6009 tmp = -1;
6010 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
6011 if (!rtpn)
6012 goto err_cleanup;
6014 soft_limit_tree.rb_tree_per_node[node] = rtpn;
6016 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
6017 rtpz = &rtpn->rb_tree_per_zone[zone];
6018 rtpz->rb_root = RB_ROOT;
6019 spin_lock_init(&rtpz->lock);
6022 return 0;
6024 err_cleanup:
6025 for_each_node(node) {
6026 if (!soft_limit_tree.rb_tree_per_node[node])
6027 break;
6028 kfree(soft_limit_tree.rb_tree_per_node[node]);
6029 soft_limit_tree.rb_tree_per_node[node] = NULL;
6031 return 1;
6035 static struct cgroup_subsys_state * __ref
6036 mem_cgroup_css_alloc(struct cgroup *cont)
6038 struct mem_cgroup *memcg, *parent;
6039 long error = -ENOMEM;
6040 int node;
6042 memcg = mem_cgroup_alloc();
6043 if (!memcg)
6044 return ERR_PTR(error);
6046 for_each_node(node)
6047 if (alloc_mem_cgroup_per_zone_info(memcg, node))
6048 goto free_out;
6050 /* root ? */
6051 if (cont->parent == NULL) {
6052 int cpu;
6053 enable_swap_cgroup();
6054 parent = NULL;
6055 if (mem_cgroup_soft_limit_tree_init())
6056 goto free_out;
6057 root_mem_cgroup = memcg;
6058 for_each_possible_cpu(cpu) {
6059 struct memcg_stock_pcp *stock =
6060 &per_cpu(memcg_stock, cpu);
6061 INIT_WORK(&stock->work, drain_local_stock);
6063 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
6064 } else {
6065 parent = mem_cgroup_from_cont(cont->parent);
6066 memcg->use_hierarchy = parent->use_hierarchy;
6067 memcg->oom_kill_disable = parent->oom_kill_disable;
6070 if (parent && parent->use_hierarchy) {
6071 res_counter_init(&memcg->res, &parent->res);
6072 res_counter_init(&memcg->memsw, &parent->memsw);
6073 res_counter_init(&memcg->kmem, &parent->kmem);
6076 * We increment refcnt of the parent to ensure that we can
6077 * safely access it on res_counter_charge/uncharge.
6078 * This refcnt will be decremented when freeing this
6079 * mem_cgroup(see mem_cgroup_put).
6081 mem_cgroup_get(parent);
6082 } else {
6083 res_counter_init(&memcg->res, NULL);
6084 res_counter_init(&memcg->memsw, NULL);
6085 res_counter_init(&memcg->kmem, NULL);
6087 * Deeper hierachy with use_hierarchy == false doesn't make
6088 * much sense so let cgroup subsystem know about this
6089 * unfortunate state in our controller.
6091 if (parent && parent != root_mem_cgroup)
6092 mem_cgroup_subsys.broken_hierarchy = true;
6094 memcg->last_scanned_node = MAX_NUMNODES;
6095 INIT_LIST_HEAD(&memcg->oom_notify);
6097 if (parent)
6098 memcg->swappiness = mem_cgroup_swappiness(parent);
6099 atomic_set(&memcg->refcnt, 1);
6100 memcg->move_charge_at_immigrate = 0;
6101 mutex_init(&memcg->thresholds_lock);
6102 spin_lock_init(&memcg->move_lock);
6104 error = memcg_init_kmem(memcg, &mem_cgroup_subsys);
6105 if (error) {
6107 * We call put now because our (and parent's) refcnts
6108 * are already in place. mem_cgroup_put() will internally
6109 * call __mem_cgroup_free, so return directly
6111 mem_cgroup_put(memcg);
6112 return ERR_PTR(error);
6114 return &memcg->css;
6115 free_out:
6116 __mem_cgroup_free(memcg);
6117 return ERR_PTR(error);
6120 static void mem_cgroup_css_offline(struct cgroup *cont)
6122 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
6124 mem_cgroup_reparent_charges(memcg);
6125 mem_cgroup_destroy_all_caches(memcg);
6128 static void mem_cgroup_css_free(struct cgroup *cont)
6130 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
6132 kmem_cgroup_destroy(memcg);
6134 mem_cgroup_put(memcg);
6137 #ifdef CONFIG_MMU
6138 /* Handlers for move charge at task migration. */
6139 #define PRECHARGE_COUNT_AT_ONCE 256
6140 static int mem_cgroup_do_precharge(unsigned long count)
6142 int ret = 0;
6143 int batch_count = PRECHARGE_COUNT_AT_ONCE;
6144 struct mem_cgroup *memcg = mc.to;
6146 if (mem_cgroup_is_root(memcg)) {
6147 mc.precharge += count;
6148 /* we don't need css_get for root */
6149 return ret;
6151 /* try to charge at once */
6152 if (count > 1) {
6153 struct res_counter *dummy;
6155 * "memcg" cannot be under rmdir() because we've already checked
6156 * by cgroup_lock_live_cgroup() that it is not removed and we
6157 * are still under the same cgroup_mutex. So we can postpone
6158 * css_get().
6160 if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
6161 goto one_by_one;
6162 if (do_swap_account && res_counter_charge(&memcg->memsw,
6163 PAGE_SIZE * count, &dummy)) {
6164 res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
6165 goto one_by_one;
6167 mc.precharge += count;
6168 return ret;
6170 one_by_one:
6171 /* fall back to one by one charge */
6172 while (count--) {
6173 if (signal_pending(current)) {
6174 ret = -EINTR;
6175 break;
6177 if (!batch_count--) {
6178 batch_count = PRECHARGE_COUNT_AT_ONCE;
6179 cond_resched();
6181 ret = __mem_cgroup_try_charge(NULL,
6182 GFP_KERNEL, 1, &memcg, false);
6183 if (ret)
6184 /* mem_cgroup_clear_mc() will do uncharge later */
6185 return ret;
6186 mc.precharge++;
6188 return ret;
6192 * get_mctgt_type - get target type of moving charge
6193 * @vma: the vma the pte to be checked belongs
6194 * @addr: the address corresponding to the pte to be checked
6195 * @ptent: the pte to be checked
6196 * @target: the pointer the target page or swap ent will be stored(can be NULL)
6198 * Returns
6199 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
6200 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
6201 * move charge. if @target is not NULL, the page is stored in target->page
6202 * with extra refcnt got(Callers should handle it).
6203 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
6204 * target for charge migration. if @target is not NULL, the entry is stored
6205 * in target->ent.
6207 * Called with pte lock held.
6209 union mc_target {
6210 struct page *page;
6211 swp_entry_t ent;
6214 enum mc_target_type {
6215 MC_TARGET_NONE = 0,
6216 MC_TARGET_PAGE,
6217 MC_TARGET_SWAP,
6220 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
6221 unsigned long addr, pte_t ptent)
6223 struct page *page = vm_normal_page(vma, addr, ptent);
6225 if (!page || !page_mapped(page))
6226 return NULL;
6227 if (PageAnon(page)) {
6228 /* we don't move shared anon */
6229 if (!move_anon())
6230 return NULL;
6231 } else if (!move_file())
6232 /* we ignore mapcount for file pages */
6233 return NULL;
6234 if (!get_page_unless_zero(page))
6235 return NULL;
6237 return page;
6240 #ifdef CONFIG_SWAP
6241 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6242 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6244 struct page *page = NULL;
6245 swp_entry_t ent = pte_to_swp_entry(ptent);
6247 if (!move_anon() || non_swap_entry(ent))
6248 return NULL;
6250 * Because lookup_swap_cache() updates some statistics counter,
6251 * we call find_get_page() with swapper_space directly.
6253 page = find_get_page(&swapper_space, ent.val);
6254 if (do_swap_account)
6255 entry->val = ent.val;
6257 return page;
6259 #else
6260 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6261 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6263 return NULL;
6265 #endif
6267 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
6268 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6270 struct page *page = NULL;
6271 struct address_space *mapping;
6272 pgoff_t pgoff;
6274 if (!vma->vm_file) /* anonymous vma */
6275 return NULL;
6276 if (!move_file())
6277 return NULL;
6279 mapping = vma->vm_file->f_mapping;
6280 if (pte_none(ptent))
6281 pgoff = linear_page_index(vma, addr);
6282 else /* pte_file(ptent) is true */
6283 pgoff = pte_to_pgoff(ptent);
6285 /* page is moved even if it's not RSS of this task(page-faulted). */
6286 page = find_get_page(mapping, pgoff);
6288 #ifdef CONFIG_SWAP
6289 /* shmem/tmpfs may report page out on swap: account for that too. */
6290 if (radix_tree_exceptional_entry(page)) {
6291 swp_entry_t swap = radix_to_swp_entry(page);
6292 if (do_swap_account)
6293 *entry = swap;
6294 page = find_get_page(&swapper_space, swap.val);
6296 #endif
6297 return page;
6300 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
6301 unsigned long addr, pte_t ptent, union mc_target *target)
6303 struct page *page = NULL;
6304 struct page_cgroup *pc;
6305 enum mc_target_type ret = MC_TARGET_NONE;
6306 swp_entry_t ent = { .val = 0 };
6308 if (pte_present(ptent))
6309 page = mc_handle_present_pte(vma, addr, ptent);
6310 else if (is_swap_pte(ptent))
6311 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
6312 else if (pte_none(ptent) || pte_file(ptent))
6313 page = mc_handle_file_pte(vma, addr, ptent, &ent);
6315 if (!page && !ent.val)
6316 return ret;
6317 if (page) {
6318 pc = lookup_page_cgroup(page);
6320 * Do only loose check w/o page_cgroup lock.
6321 * mem_cgroup_move_account() checks the pc is valid or not under
6322 * the lock.
6324 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6325 ret = MC_TARGET_PAGE;
6326 if (target)
6327 target->page = page;
6329 if (!ret || !target)
6330 put_page(page);
6332 /* There is a swap entry and a page doesn't exist or isn't charged */
6333 if (ent.val && !ret &&
6334 css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
6335 ret = MC_TARGET_SWAP;
6336 if (target)
6337 target->ent = ent;
6339 return ret;
6342 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6344 * We don't consider swapping or file mapped pages because THP does not
6345 * support them for now.
6346 * Caller should make sure that pmd_trans_huge(pmd) is true.
6348 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6349 unsigned long addr, pmd_t pmd, union mc_target *target)
6351 struct page *page = NULL;
6352 struct page_cgroup *pc;
6353 enum mc_target_type ret = MC_TARGET_NONE;
6355 page = pmd_page(pmd);
6356 VM_BUG_ON(!page || !PageHead(page));
6357 if (!move_anon())
6358 return ret;
6359 pc = lookup_page_cgroup(page);
6360 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6361 ret = MC_TARGET_PAGE;
6362 if (target) {
6363 get_page(page);
6364 target->page = page;
6367 return ret;
6369 #else
6370 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6371 unsigned long addr, pmd_t pmd, union mc_target *target)
6373 return MC_TARGET_NONE;
6375 #endif
6377 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
6378 unsigned long addr, unsigned long end,
6379 struct mm_walk *walk)
6381 struct vm_area_struct *vma = walk->private;
6382 pte_t *pte;
6383 spinlock_t *ptl;
6385 if (pmd_trans_huge_lock(pmd, vma) == 1) {
6386 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
6387 mc.precharge += HPAGE_PMD_NR;
6388 spin_unlock(&vma->vm_mm->page_table_lock);
6389 return 0;
6392 if (pmd_trans_unstable(pmd))
6393 return 0;
6394 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6395 for (; addr != end; pte++, addr += PAGE_SIZE)
6396 if (get_mctgt_type(vma, addr, *pte, NULL))
6397 mc.precharge++; /* increment precharge temporarily */
6398 pte_unmap_unlock(pte - 1, ptl);
6399 cond_resched();
6401 return 0;
6404 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
6406 unsigned long precharge;
6407 struct vm_area_struct *vma;
6409 down_read(&mm->mmap_sem);
6410 for (vma = mm->mmap; vma; vma = vma->vm_next) {
6411 struct mm_walk mem_cgroup_count_precharge_walk = {
6412 .pmd_entry = mem_cgroup_count_precharge_pte_range,
6413 .mm = mm,
6414 .private = vma,
6416 if (is_vm_hugetlb_page(vma))
6417 continue;
6418 walk_page_range(vma->vm_start, vma->vm_end,
6419 &mem_cgroup_count_precharge_walk);
6421 up_read(&mm->mmap_sem);
6423 precharge = mc.precharge;
6424 mc.precharge = 0;
6426 return precharge;
6429 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
6431 unsigned long precharge = mem_cgroup_count_precharge(mm);
6433 VM_BUG_ON(mc.moving_task);
6434 mc.moving_task = current;
6435 return mem_cgroup_do_precharge(precharge);
6438 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
6439 static void __mem_cgroup_clear_mc(void)
6441 struct mem_cgroup *from = mc.from;
6442 struct mem_cgroup *to = mc.to;
6444 /* we must uncharge all the leftover precharges from mc.to */
6445 if (mc.precharge) {
6446 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
6447 mc.precharge = 0;
6450 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
6451 * we must uncharge here.
6453 if (mc.moved_charge) {
6454 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
6455 mc.moved_charge = 0;
6457 /* we must fixup refcnts and charges */
6458 if (mc.moved_swap) {
6459 /* uncharge swap account from the old cgroup */
6460 if (!mem_cgroup_is_root(mc.from))
6461 res_counter_uncharge(&mc.from->memsw,
6462 PAGE_SIZE * mc.moved_swap);
6463 __mem_cgroup_put(mc.from, mc.moved_swap);
6465 if (!mem_cgroup_is_root(mc.to)) {
6467 * we charged both to->res and to->memsw, so we should
6468 * uncharge to->res.
6470 res_counter_uncharge(&mc.to->res,
6471 PAGE_SIZE * mc.moved_swap);
6473 /* we've already done mem_cgroup_get(mc.to) */
6474 mc.moved_swap = 0;
6476 memcg_oom_recover(from);
6477 memcg_oom_recover(to);
6478 wake_up_all(&mc.waitq);
6481 static void mem_cgroup_clear_mc(void)
6483 struct mem_cgroup *from = mc.from;
6486 * we must clear moving_task before waking up waiters at the end of
6487 * task migration.
6489 mc.moving_task = NULL;
6490 __mem_cgroup_clear_mc();
6491 spin_lock(&mc.lock);
6492 mc.from = NULL;
6493 mc.to = NULL;
6494 spin_unlock(&mc.lock);
6495 mem_cgroup_end_move(from);
6498 static int mem_cgroup_can_attach(struct cgroup *cgroup,
6499 struct cgroup_taskset *tset)
6501 struct task_struct *p = cgroup_taskset_first(tset);
6502 int ret = 0;
6503 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup);
6505 if (memcg->move_charge_at_immigrate) {
6506 struct mm_struct *mm;
6507 struct mem_cgroup *from = mem_cgroup_from_task(p);
6509 VM_BUG_ON(from == memcg);
6511 mm = get_task_mm(p);
6512 if (!mm)
6513 return 0;
6514 /* We move charges only when we move a owner of the mm */
6515 if (mm->owner == p) {
6516 VM_BUG_ON(mc.from);
6517 VM_BUG_ON(mc.to);
6518 VM_BUG_ON(mc.precharge);
6519 VM_BUG_ON(mc.moved_charge);
6520 VM_BUG_ON(mc.moved_swap);
6521 mem_cgroup_start_move(from);
6522 spin_lock(&mc.lock);
6523 mc.from = from;
6524 mc.to = memcg;
6525 spin_unlock(&mc.lock);
6526 /* We set mc.moving_task later */
6528 ret = mem_cgroup_precharge_mc(mm);
6529 if (ret)
6530 mem_cgroup_clear_mc();
6532 mmput(mm);
6534 return ret;
6537 static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
6538 struct cgroup_taskset *tset)
6540 mem_cgroup_clear_mc();
6543 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
6544 unsigned long addr, unsigned long end,
6545 struct mm_walk *walk)
6547 int ret = 0;
6548 struct vm_area_struct *vma = walk->private;
6549 pte_t *pte;
6550 spinlock_t *ptl;
6551 enum mc_target_type target_type;
6552 union mc_target target;
6553 struct page *page;
6554 struct page_cgroup *pc;
6557 * We don't take compound_lock() here but no race with splitting thp
6558 * happens because:
6559 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
6560 * under splitting, which means there's no concurrent thp split,
6561 * - if another thread runs into split_huge_page() just after we
6562 * entered this if-block, the thread must wait for page table lock
6563 * to be unlocked in __split_huge_page_splitting(), where the main
6564 * part of thp split is not executed yet.
6566 if (pmd_trans_huge_lock(pmd, vma) == 1) {
6567 if (mc.precharge < HPAGE_PMD_NR) {
6568 spin_unlock(&vma->vm_mm->page_table_lock);
6569 return 0;
6571 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6572 if (target_type == MC_TARGET_PAGE) {
6573 page = target.page;
6574 if (!isolate_lru_page(page)) {
6575 pc = lookup_page_cgroup(page);
6576 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
6577 pc, mc.from, mc.to)) {
6578 mc.precharge -= HPAGE_PMD_NR;
6579 mc.moved_charge += HPAGE_PMD_NR;
6581 putback_lru_page(page);
6583 put_page(page);
6585 spin_unlock(&vma->vm_mm->page_table_lock);
6586 return 0;
6589 if (pmd_trans_unstable(pmd))
6590 return 0;
6591 retry:
6592 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6593 for (; addr != end; addr += PAGE_SIZE) {
6594 pte_t ptent = *(pte++);
6595 swp_entry_t ent;
6597 if (!mc.precharge)
6598 break;
6600 switch (get_mctgt_type(vma, addr, ptent, &target)) {
6601 case MC_TARGET_PAGE:
6602 page = target.page;
6603 if (isolate_lru_page(page))
6604 goto put;
6605 pc = lookup_page_cgroup(page);
6606 if (!mem_cgroup_move_account(page, 1, pc,
6607 mc.from, mc.to)) {
6608 mc.precharge--;
6609 /* we uncharge from mc.from later. */
6610 mc.moved_charge++;
6612 putback_lru_page(page);
6613 put: /* get_mctgt_type() gets the page */
6614 put_page(page);
6615 break;
6616 case MC_TARGET_SWAP:
6617 ent = target.ent;
6618 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6619 mc.precharge--;
6620 /* we fixup refcnts and charges later. */
6621 mc.moved_swap++;
6623 break;
6624 default:
6625 break;
6628 pte_unmap_unlock(pte - 1, ptl);
6629 cond_resched();
6631 if (addr != end) {
6633 * We have consumed all precharges we got in can_attach().
6634 * We try charge one by one, but don't do any additional
6635 * charges to mc.to if we have failed in charge once in attach()
6636 * phase.
6638 ret = mem_cgroup_do_precharge(1);
6639 if (!ret)
6640 goto retry;
6643 return ret;
6646 static void mem_cgroup_move_charge(struct mm_struct *mm)
6648 struct vm_area_struct *vma;
6650 lru_add_drain_all();
6651 retry:
6652 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
6654 * Someone who are holding the mmap_sem might be waiting in
6655 * waitq. So we cancel all extra charges, wake up all waiters,
6656 * and retry. Because we cancel precharges, we might not be able
6657 * to move enough charges, but moving charge is a best-effort
6658 * feature anyway, so it wouldn't be a big problem.
6660 __mem_cgroup_clear_mc();
6661 cond_resched();
6662 goto retry;
6664 for (vma = mm->mmap; vma; vma = vma->vm_next) {
6665 int ret;
6666 struct mm_walk mem_cgroup_move_charge_walk = {
6667 .pmd_entry = mem_cgroup_move_charge_pte_range,
6668 .mm = mm,
6669 .private = vma,
6671 if (is_vm_hugetlb_page(vma))
6672 continue;
6673 ret = walk_page_range(vma->vm_start, vma->vm_end,
6674 &mem_cgroup_move_charge_walk);
6675 if (ret)
6677 * means we have consumed all precharges and failed in
6678 * doing additional charge. Just abandon here.
6680 break;
6682 up_read(&mm->mmap_sem);
6685 static void mem_cgroup_move_task(struct cgroup *cont,
6686 struct cgroup_taskset *tset)
6688 struct task_struct *p = cgroup_taskset_first(tset);
6689 struct mm_struct *mm = get_task_mm(p);
6691 if (mm) {
6692 if (mc.to)
6693 mem_cgroup_move_charge(mm);
6694 mmput(mm);
6696 if (mc.to)
6697 mem_cgroup_clear_mc();
6699 #else /* !CONFIG_MMU */
6700 static int mem_cgroup_can_attach(struct cgroup *cgroup,
6701 struct cgroup_taskset *tset)
6703 return 0;
6705 static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
6706 struct cgroup_taskset *tset)
6709 static void mem_cgroup_move_task(struct cgroup *cont,
6710 struct cgroup_taskset *tset)
6713 #endif
6715 struct cgroup_subsys mem_cgroup_subsys = {
6716 .name = "memory",
6717 .subsys_id = mem_cgroup_subsys_id,
6718 .css_alloc = mem_cgroup_css_alloc,
6719 .css_offline = mem_cgroup_css_offline,
6720 .css_free = mem_cgroup_css_free,
6721 .can_attach = mem_cgroup_can_attach,
6722 .cancel_attach = mem_cgroup_cancel_attach,
6723 .attach = mem_cgroup_move_task,
6724 .base_cftypes = mem_cgroup_files,
6725 .early_init = 0,
6726 .use_id = 1,
6729 #ifdef CONFIG_MEMCG_SWAP
6730 static int __init enable_swap_account(char *s)
6732 /* consider enabled if no parameter or 1 is given */
6733 if (!strcmp(s, "1"))
6734 really_do_swap_account = 1;
6735 else if (!strcmp(s, "0"))
6736 really_do_swap_account = 0;
6737 return 1;
6739 __setup("swapaccount=", enable_swap_account);
6741 #endif