2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
12 * This handles all read/write requests to block devices
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/highmem.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/string.h>
23 #include <linux/init.h>
24 #include <linux/completion.h>
25 #include <linux/slab.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/task_io_accounting_ops.h>
29 #include <linux/fault-inject.h>
30 #include <linux/list_sort.h>
31 #include <linux/delay.h>
32 #include <linux/ratelimit.h>
34 #define CREATE_TRACE_POINTS
35 #include <trace/events/block.h>
38 #include "blk-cgroup.h"
40 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap
);
41 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap
);
42 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete
);
44 DEFINE_IDA(blk_queue_ida
);
47 * For the allocated request tables
49 static struct kmem_cache
*request_cachep
;
52 * For queue allocation
54 struct kmem_cache
*blk_requestq_cachep
;
57 * Controlling structure to kblockd
59 static struct workqueue_struct
*kblockd_workqueue
;
61 static void drive_stat_acct(struct request
*rq
, int new_io
)
63 struct hd_struct
*part
;
64 int rw
= rq_data_dir(rq
);
67 if (!blk_do_io_stat(rq
))
70 cpu
= part_stat_lock();
74 part_stat_inc(cpu
, part
, merges
[rw
]);
76 part
= disk_map_sector_rcu(rq
->rq_disk
, blk_rq_pos(rq
));
77 if (!hd_struct_try_get(part
)) {
79 * The partition is already being removed,
80 * the request will be accounted on the disk only
82 * We take a reference on disk->part0 although that
83 * partition will never be deleted, so we can treat
84 * it as any other partition.
86 part
= &rq
->rq_disk
->part0
;
89 part_round_stats(cpu
, part
);
90 part_inc_in_flight(part
, rw
);
97 void blk_queue_congestion_threshold(struct request_queue
*q
)
101 nr
= q
->nr_requests
- (q
->nr_requests
/ 8) + 1;
102 if (nr
> q
->nr_requests
)
104 q
->nr_congestion_on
= nr
;
106 nr
= q
->nr_requests
- (q
->nr_requests
/ 8) - (q
->nr_requests
/ 16) - 1;
109 q
->nr_congestion_off
= nr
;
113 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
116 * Locates the passed device's request queue and returns the address of its
119 * Will return NULL if the request queue cannot be located.
121 struct backing_dev_info
*blk_get_backing_dev_info(struct block_device
*bdev
)
123 struct backing_dev_info
*ret
= NULL
;
124 struct request_queue
*q
= bdev_get_queue(bdev
);
127 ret
= &q
->backing_dev_info
;
130 EXPORT_SYMBOL(blk_get_backing_dev_info
);
132 void blk_rq_init(struct request_queue
*q
, struct request
*rq
)
134 memset(rq
, 0, sizeof(*rq
));
136 INIT_LIST_HEAD(&rq
->queuelist
);
137 INIT_LIST_HEAD(&rq
->timeout_list
);
140 rq
->__sector
= (sector_t
) -1;
141 INIT_HLIST_NODE(&rq
->hash
);
142 RB_CLEAR_NODE(&rq
->rb_node
);
144 rq
->cmd_len
= BLK_MAX_CDB
;
147 rq
->start_time
= jiffies
;
148 set_start_time_ns(rq
);
151 EXPORT_SYMBOL(blk_rq_init
);
153 static void req_bio_endio(struct request
*rq
, struct bio
*bio
,
154 unsigned int nbytes
, int error
)
157 clear_bit(BIO_UPTODATE
, &bio
->bi_flags
);
158 else if (!test_bit(BIO_UPTODATE
, &bio
->bi_flags
))
161 if (unlikely(nbytes
> bio
->bi_size
)) {
162 printk(KERN_ERR
"%s: want %u bytes done, %u left\n",
163 __func__
, nbytes
, bio
->bi_size
);
164 nbytes
= bio
->bi_size
;
167 if (unlikely(rq
->cmd_flags
& REQ_QUIET
))
168 set_bit(BIO_QUIET
, &bio
->bi_flags
);
170 bio
->bi_size
-= nbytes
;
171 bio
->bi_sector
+= (nbytes
>> 9);
173 if (bio_integrity(bio
))
174 bio_integrity_advance(bio
, nbytes
);
176 /* don't actually finish bio if it's part of flush sequence */
177 if (bio
->bi_size
== 0 && !(rq
->cmd_flags
& REQ_FLUSH_SEQ
))
178 bio_endio(bio
, error
);
181 void blk_dump_rq_flags(struct request
*rq
, char *msg
)
185 printk(KERN_INFO
"%s: dev %s: type=%x, flags=%x\n", msg
,
186 rq
->rq_disk
? rq
->rq_disk
->disk_name
: "?", rq
->cmd_type
,
189 printk(KERN_INFO
" sector %llu, nr/cnr %u/%u\n",
190 (unsigned long long)blk_rq_pos(rq
),
191 blk_rq_sectors(rq
), blk_rq_cur_sectors(rq
));
192 printk(KERN_INFO
" bio %p, biotail %p, buffer %p, len %u\n",
193 rq
->bio
, rq
->biotail
, rq
->buffer
, blk_rq_bytes(rq
));
195 if (rq
->cmd_type
== REQ_TYPE_BLOCK_PC
) {
196 printk(KERN_INFO
" cdb: ");
197 for (bit
= 0; bit
< BLK_MAX_CDB
; bit
++)
198 printk("%02x ", rq
->cmd
[bit
]);
202 EXPORT_SYMBOL(blk_dump_rq_flags
);
204 static void blk_delay_work(struct work_struct
*work
)
206 struct request_queue
*q
;
208 q
= container_of(work
, struct request_queue
, delay_work
.work
);
209 spin_lock_irq(q
->queue_lock
);
211 spin_unlock_irq(q
->queue_lock
);
215 * blk_delay_queue - restart queueing after defined interval
216 * @q: The &struct request_queue in question
217 * @msecs: Delay in msecs
220 * Sometimes queueing needs to be postponed for a little while, to allow
221 * resources to come back. This function will make sure that queueing is
222 * restarted around the specified time.
224 void blk_delay_queue(struct request_queue
*q
, unsigned long msecs
)
226 queue_delayed_work(kblockd_workqueue
, &q
->delay_work
,
227 msecs_to_jiffies(msecs
));
229 EXPORT_SYMBOL(blk_delay_queue
);
232 * blk_start_queue - restart a previously stopped queue
233 * @q: The &struct request_queue in question
236 * blk_start_queue() will clear the stop flag on the queue, and call
237 * the request_fn for the queue if it was in a stopped state when
238 * entered. Also see blk_stop_queue(). Queue lock must be held.
240 void blk_start_queue(struct request_queue
*q
)
242 WARN_ON(!irqs_disabled());
244 queue_flag_clear(QUEUE_FLAG_STOPPED
, q
);
247 EXPORT_SYMBOL(blk_start_queue
);
250 * blk_stop_queue - stop a queue
251 * @q: The &struct request_queue in question
254 * The Linux block layer assumes that a block driver will consume all
255 * entries on the request queue when the request_fn strategy is called.
256 * Often this will not happen, because of hardware limitations (queue
257 * depth settings). If a device driver gets a 'queue full' response,
258 * or if it simply chooses not to queue more I/O at one point, it can
259 * call this function to prevent the request_fn from being called until
260 * the driver has signalled it's ready to go again. This happens by calling
261 * blk_start_queue() to restart queue operations. Queue lock must be held.
263 void blk_stop_queue(struct request_queue
*q
)
265 cancel_delayed_work(&q
->delay_work
);
266 queue_flag_set(QUEUE_FLAG_STOPPED
, q
);
268 EXPORT_SYMBOL(blk_stop_queue
);
271 * blk_sync_queue - cancel any pending callbacks on a queue
275 * The block layer may perform asynchronous callback activity
276 * on a queue, such as calling the unplug function after a timeout.
277 * A block device may call blk_sync_queue to ensure that any
278 * such activity is cancelled, thus allowing it to release resources
279 * that the callbacks might use. The caller must already have made sure
280 * that its ->make_request_fn will not re-add plugging prior to calling
283 * This function does not cancel any asynchronous activity arising
284 * out of elevator or throttling code. That would require elevaotor_exit()
285 * and blkcg_exit_queue() to be called with queue lock initialized.
288 void blk_sync_queue(struct request_queue
*q
)
290 del_timer_sync(&q
->timeout
);
291 cancel_delayed_work_sync(&q
->delay_work
);
293 EXPORT_SYMBOL(blk_sync_queue
);
296 * __blk_run_queue - run a single device queue
297 * @q: The queue to run
300 * See @blk_run_queue. This variant must be called with the queue lock
301 * held and interrupts disabled.
303 void __blk_run_queue(struct request_queue
*q
)
305 if (unlikely(blk_queue_stopped(q
)))
310 EXPORT_SYMBOL(__blk_run_queue
);
313 * blk_run_queue_async - run a single device queue in workqueue context
314 * @q: The queue to run
317 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf
320 void blk_run_queue_async(struct request_queue
*q
)
322 if (likely(!blk_queue_stopped(q
)))
323 mod_delayed_work(kblockd_workqueue
, &q
->delay_work
, 0);
325 EXPORT_SYMBOL(blk_run_queue_async
);
328 * blk_run_queue - run a single device queue
329 * @q: The queue to run
332 * Invoke request handling on this queue, if it has pending work to do.
333 * May be used to restart queueing when a request has completed.
335 void blk_run_queue(struct request_queue
*q
)
339 spin_lock_irqsave(q
->queue_lock
, flags
);
341 spin_unlock_irqrestore(q
->queue_lock
, flags
);
343 EXPORT_SYMBOL(blk_run_queue
);
345 void blk_put_queue(struct request_queue
*q
)
347 kobject_put(&q
->kobj
);
349 EXPORT_SYMBOL(blk_put_queue
);
352 * blk_drain_queue - drain requests from request_queue
354 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
356 * Drain requests from @q. If @drain_all is set, all requests are drained.
357 * If not, only ELVPRIV requests are drained. The caller is responsible
358 * for ensuring that no new requests which need to be drained are queued.
360 void blk_drain_queue(struct request_queue
*q
, bool drain_all
)
367 spin_lock_irq(q
->queue_lock
);
370 * The caller might be trying to drain @q before its
371 * elevator is initialized.
374 elv_drain_elevator(q
);
376 blkcg_drain_queue(q
);
379 * This function might be called on a queue which failed
380 * driver init after queue creation or is not yet fully
381 * active yet. Some drivers (e.g. fd and loop) get unhappy
382 * in such cases. Kick queue iff dispatch queue has
383 * something on it and @q has request_fn set.
385 if (!list_empty(&q
->queue_head
) && q
->request_fn
)
388 drain
|= q
->nr_rqs_elvpriv
;
391 * Unfortunately, requests are queued at and tracked from
392 * multiple places and there's no single counter which can
393 * be drained. Check all the queues and counters.
396 drain
|= !list_empty(&q
->queue_head
);
397 for (i
= 0; i
< 2; i
++) {
398 drain
|= q
->nr_rqs
[i
];
399 drain
|= q
->in_flight
[i
];
400 drain
|= !list_empty(&q
->flush_queue
[i
]);
404 spin_unlock_irq(q
->queue_lock
);
412 * With queue marked dead, any woken up waiter will fail the
413 * allocation path, so the wakeup chaining is lost and we're
414 * left with hung waiters. We need to wake up those waiters.
417 struct request_list
*rl
;
419 spin_lock_irq(q
->queue_lock
);
421 blk_queue_for_each_rl(rl
, q
)
422 for (i
= 0; i
< ARRAY_SIZE(rl
->wait
); i
++)
423 wake_up_all(&rl
->wait
[i
]);
425 spin_unlock_irq(q
->queue_lock
);
430 * blk_queue_bypass_start - enter queue bypass mode
431 * @q: queue of interest
433 * In bypass mode, only the dispatch FIFO queue of @q is used. This
434 * function makes @q enter bypass mode and drains all requests which were
435 * throttled or issued before. On return, it's guaranteed that no request
436 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
437 * inside queue or RCU read lock.
439 void blk_queue_bypass_start(struct request_queue
*q
)
443 spin_lock_irq(q
->queue_lock
);
444 drain
= !q
->bypass_depth
++;
445 queue_flag_set(QUEUE_FLAG_BYPASS
, q
);
446 spin_unlock_irq(q
->queue_lock
);
449 blk_drain_queue(q
, false);
450 /* ensure blk_queue_bypass() is %true inside RCU read lock */
454 EXPORT_SYMBOL_GPL(blk_queue_bypass_start
);
457 * blk_queue_bypass_end - leave queue bypass mode
458 * @q: queue of interest
460 * Leave bypass mode and restore the normal queueing behavior.
462 void blk_queue_bypass_end(struct request_queue
*q
)
464 spin_lock_irq(q
->queue_lock
);
465 if (!--q
->bypass_depth
)
466 queue_flag_clear(QUEUE_FLAG_BYPASS
, q
);
467 WARN_ON_ONCE(q
->bypass_depth
< 0);
468 spin_unlock_irq(q
->queue_lock
);
470 EXPORT_SYMBOL_GPL(blk_queue_bypass_end
);
473 * blk_cleanup_queue - shutdown a request queue
474 * @q: request queue to shutdown
476 * Mark @q DEAD, drain all pending requests, destroy and put it. All
477 * future requests will be failed immediately with -ENODEV.
479 void blk_cleanup_queue(struct request_queue
*q
)
481 spinlock_t
*lock
= q
->queue_lock
;
483 /* mark @q DEAD, no new request or merges will be allowed afterwards */
484 mutex_lock(&q
->sysfs_lock
);
485 queue_flag_set_unlocked(QUEUE_FLAG_DEAD
, q
);
489 * Dead queue is permanently in bypass mode till released. Note
490 * that, unlike blk_queue_bypass_start(), we aren't performing
491 * synchronize_rcu() after entering bypass mode to avoid the delay
492 * as some drivers create and destroy a lot of queues while
493 * probing. This is still safe because blk_release_queue() will be
494 * called only after the queue refcnt drops to zero and nothing,
495 * RCU or not, would be traversing the queue by then.
498 queue_flag_set(QUEUE_FLAG_BYPASS
, q
);
500 queue_flag_set(QUEUE_FLAG_NOMERGES
, q
);
501 queue_flag_set(QUEUE_FLAG_NOXMERGES
, q
);
502 queue_flag_set(QUEUE_FLAG_DEAD
, q
);
503 spin_unlock_irq(lock
);
504 mutex_unlock(&q
->sysfs_lock
);
506 /* drain all requests queued before DEAD marking */
507 blk_drain_queue(q
, true);
509 /* @q won't process any more request, flush async actions */
510 del_timer_sync(&q
->backing_dev_info
.laptop_mode_wb_timer
);
514 if (q
->queue_lock
!= &q
->__queue_lock
)
515 q
->queue_lock
= &q
->__queue_lock
;
516 spin_unlock_irq(lock
);
518 /* @q is and will stay empty, shutdown and put */
521 EXPORT_SYMBOL(blk_cleanup_queue
);
523 int blk_init_rl(struct request_list
*rl
, struct request_queue
*q
,
526 if (unlikely(rl
->rq_pool
))
530 rl
->count
[BLK_RW_SYNC
] = rl
->count
[BLK_RW_ASYNC
] = 0;
531 rl
->starved
[BLK_RW_SYNC
] = rl
->starved
[BLK_RW_ASYNC
] = 0;
532 init_waitqueue_head(&rl
->wait
[BLK_RW_SYNC
]);
533 init_waitqueue_head(&rl
->wait
[BLK_RW_ASYNC
]);
535 rl
->rq_pool
= mempool_create_node(BLKDEV_MIN_RQ
, mempool_alloc_slab
,
536 mempool_free_slab
, request_cachep
,
544 void blk_exit_rl(struct request_list
*rl
)
547 mempool_destroy(rl
->rq_pool
);
550 struct request_queue
*blk_alloc_queue(gfp_t gfp_mask
)
552 return blk_alloc_queue_node(gfp_mask
, -1);
554 EXPORT_SYMBOL(blk_alloc_queue
);
556 struct request_queue
*blk_alloc_queue_node(gfp_t gfp_mask
, int node_id
)
558 struct request_queue
*q
;
561 q
= kmem_cache_alloc_node(blk_requestq_cachep
,
562 gfp_mask
| __GFP_ZERO
, node_id
);
566 q
->id
= ida_simple_get(&blk_queue_ida
, 0, 0, gfp_mask
);
570 q
->backing_dev_info
.ra_pages
=
571 (VM_MAX_READAHEAD
* 1024) / PAGE_CACHE_SIZE
;
572 q
->backing_dev_info
.state
= 0;
573 q
->backing_dev_info
.capabilities
= BDI_CAP_MAP_COPY
;
574 q
->backing_dev_info
.name
= "block";
577 err
= bdi_init(&q
->backing_dev_info
);
581 setup_timer(&q
->backing_dev_info
.laptop_mode_wb_timer
,
582 laptop_mode_timer_fn
, (unsigned long) q
);
583 setup_timer(&q
->timeout
, blk_rq_timed_out_timer
, (unsigned long) q
);
584 INIT_LIST_HEAD(&q
->queue_head
);
585 INIT_LIST_HEAD(&q
->timeout_list
);
586 INIT_LIST_HEAD(&q
->icq_list
);
587 #ifdef CONFIG_BLK_CGROUP
588 INIT_LIST_HEAD(&q
->blkg_list
);
590 INIT_LIST_HEAD(&q
->flush_queue
[0]);
591 INIT_LIST_HEAD(&q
->flush_queue
[1]);
592 INIT_LIST_HEAD(&q
->flush_data_in_flight
);
593 INIT_DELAYED_WORK(&q
->delay_work
, blk_delay_work
);
595 kobject_init(&q
->kobj
, &blk_queue_ktype
);
597 mutex_init(&q
->sysfs_lock
);
598 spin_lock_init(&q
->__queue_lock
);
601 * By default initialize queue_lock to internal lock and driver can
602 * override it later if need be.
604 q
->queue_lock
= &q
->__queue_lock
;
607 * A queue starts its life with bypass turned on to avoid
608 * unnecessary bypass on/off overhead and nasty surprises during
609 * init. The initial bypass will be finished when the queue is
610 * registered by blk_register_queue().
613 __set_bit(QUEUE_FLAG_BYPASS
, &q
->queue_flags
);
615 if (blkcg_init_queue(q
))
621 ida_simple_remove(&blk_queue_ida
, q
->id
);
623 kmem_cache_free(blk_requestq_cachep
, q
);
626 EXPORT_SYMBOL(blk_alloc_queue_node
);
629 * blk_init_queue - prepare a request queue for use with a block device
630 * @rfn: The function to be called to process requests that have been
631 * placed on the queue.
632 * @lock: Request queue spin lock
635 * If a block device wishes to use the standard request handling procedures,
636 * which sorts requests and coalesces adjacent requests, then it must
637 * call blk_init_queue(). The function @rfn will be called when there
638 * are requests on the queue that need to be processed. If the device
639 * supports plugging, then @rfn may not be called immediately when requests
640 * are available on the queue, but may be called at some time later instead.
641 * Plugged queues are generally unplugged when a buffer belonging to one
642 * of the requests on the queue is needed, or due to memory pressure.
644 * @rfn is not required, or even expected, to remove all requests off the
645 * queue, but only as many as it can handle at a time. If it does leave
646 * requests on the queue, it is responsible for arranging that the requests
647 * get dealt with eventually.
649 * The queue spin lock must be held while manipulating the requests on the
650 * request queue; this lock will be taken also from interrupt context, so irq
651 * disabling is needed for it.
653 * Function returns a pointer to the initialized request queue, or %NULL if
657 * blk_init_queue() must be paired with a blk_cleanup_queue() call
658 * when the block device is deactivated (such as at module unload).
661 struct request_queue
*blk_init_queue(request_fn_proc
*rfn
, spinlock_t
*lock
)
663 return blk_init_queue_node(rfn
, lock
, -1);
665 EXPORT_SYMBOL(blk_init_queue
);
667 struct request_queue
*
668 blk_init_queue_node(request_fn_proc
*rfn
, spinlock_t
*lock
, int node_id
)
670 struct request_queue
*uninit_q
, *q
;
672 uninit_q
= blk_alloc_queue_node(GFP_KERNEL
, node_id
);
676 q
= blk_init_allocated_queue(uninit_q
, rfn
, lock
);
678 blk_cleanup_queue(uninit_q
);
682 EXPORT_SYMBOL(blk_init_queue_node
);
684 struct request_queue
*
685 blk_init_allocated_queue(struct request_queue
*q
, request_fn_proc
*rfn
,
691 if (blk_init_rl(&q
->root_rl
, q
, GFP_KERNEL
))
695 q
->prep_rq_fn
= NULL
;
696 q
->unprep_rq_fn
= NULL
;
697 q
->queue_flags
|= QUEUE_FLAG_DEFAULT
;
699 /* Override internal queue lock with supplied lock pointer */
701 q
->queue_lock
= lock
;
704 * This also sets hw/phys segments, boundary and size
706 blk_queue_make_request(q
, blk_queue_bio
);
708 q
->sg_reserved_size
= INT_MAX
;
711 if (elevator_init(q
, NULL
))
715 EXPORT_SYMBOL(blk_init_allocated_queue
);
717 bool blk_get_queue(struct request_queue
*q
)
719 if (likely(!blk_queue_dead(q
))) {
726 EXPORT_SYMBOL(blk_get_queue
);
728 static inline void blk_free_request(struct request_list
*rl
, struct request
*rq
)
730 if (rq
->cmd_flags
& REQ_ELVPRIV
) {
731 elv_put_request(rl
->q
, rq
);
733 put_io_context(rq
->elv
.icq
->ioc
);
736 mempool_free(rq
, rl
->rq_pool
);
740 * ioc_batching returns true if the ioc is a valid batching request and
741 * should be given priority access to a request.
743 static inline int ioc_batching(struct request_queue
*q
, struct io_context
*ioc
)
749 * Make sure the process is able to allocate at least 1 request
750 * even if the batch times out, otherwise we could theoretically
753 return ioc
->nr_batch_requests
== q
->nr_batching
||
754 (ioc
->nr_batch_requests
> 0
755 && time_before(jiffies
, ioc
->last_waited
+ BLK_BATCH_TIME
));
759 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
760 * will cause the process to be a "batcher" on all queues in the system. This
761 * is the behaviour we want though - once it gets a wakeup it should be given
764 static void ioc_set_batching(struct request_queue
*q
, struct io_context
*ioc
)
766 if (!ioc
|| ioc_batching(q
, ioc
))
769 ioc
->nr_batch_requests
= q
->nr_batching
;
770 ioc
->last_waited
= jiffies
;
773 static void __freed_request(struct request_list
*rl
, int sync
)
775 struct request_queue
*q
= rl
->q
;
778 * bdi isn't aware of blkcg yet. As all async IOs end up root
779 * blkcg anyway, just use root blkcg state.
781 if (rl
== &q
->root_rl
&&
782 rl
->count
[sync
] < queue_congestion_off_threshold(q
))
783 blk_clear_queue_congested(q
, sync
);
785 if (rl
->count
[sync
] + 1 <= q
->nr_requests
) {
786 if (waitqueue_active(&rl
->wait
[sync
]))
787 wake_up(&rl
->wait
[sync
]);
789 blk_clear_rl_full(rl
, sync
);
794 * A request has just been released. Account for it, update the full and
795 * congestion status, wake up any waiters. Called under q->queue_lock.
797 static void freed_request(struct request_list
*rl
, unsigned int flags
)
799 struct request_queue
*q
= rl
->q
;
800 int sync
= rw_is_sync(flags
);
804 if (flags
& REQ_ELVPRIV
)
807 __freed_request(rl
, sync
);
809 if (unlikely(rl
->starved
[sync
^ 1]))
810 __freed_request(rl
, sync
^ 1);
814 * Determine if elevator data should be initialized when allocating the
815 * request associated with @bio.
817 static bool blk_rq_should_init_elevator(struct bio
*bio
)
823 * Flush requests do not use the elevator so skip initialization.
824 * This allows a request to share the flush and elevator data.
826 if (bio
->bi_rw
& (REQ_FLUSH
| REQ_FUA
))
833 * rq_ioc - determine io_context for request allocation
834 * @bio: request being allocated is for this bio (can be %NULL)
836 * Determine io_context to use for request allocation for @bio. May return
837 * %NULL if %current->io_context doesn't exist.
839 static struct io_context
*rq_ioc(struct bio
*bio
)
841 #ifdef CONFIG_BLK_CGROUP
842 if (bio
&& bio
->bi_ioc
)
845 return current
->io_context
;
849 * __get_request - get a free request
850 * @rl: request list to allocate from
851 * @rw_flags: RW and SYNC flags
852 * @bio: bio to allocate request for (can be %NULL)
853 * @gfp_mask: allocation mask
855 * Get a free request from @q. This function may fail under memory
856 * pressure or if @q is dead.
858 * Must be callled with @q->queue_lock held and,
859 * Returns %NULL on failure, with @q->queue_lock held.
860 * Returns !%NULL on success, with @q->queue_lock *not held*.
862 static struct request
*__get_request(struct request_list
*rl
, int rw_flags
,
863 struct bio
*bio
, gfp_t gfp_mask
)
865 struct request_queue
*q
= rl
->q
;
867 struct elevator_type
*et
= q
->elevator
->type
;
868 struct io_context
*ioc
= rq_ioc(bio
);
869 struct io_cq
*icq
= NULL
;
870 const bool is_sync
= rw_is_sync(rw_flags
) != 0;
873 if (unlikely(blk_queue_dead(q
)))
876 may_queue
= elv_may_queue(q
, rw_flags
);
877 if (may_queue
== ELV_MQUEUE_NO
)
880 if (rl
->count
[is_sync
]+1 >= queue_congestion_on_threshold(q
)) {
881 if (rl
->count
[is_sync
]+1 >= q
->nr_requests
) {
883 * The queue will fill after this allocation, so set
884 * it as full, and mark this process as "batching".
885 * This process will be allowed to complete a batch of
886 * requests, others will be blocked.
888 if (!blk_rl_full(rl
, is_sync
)) {
889 ioc_set_batching(q
, ioc
);
890 blk_set_rl_full(rl
, is_sync
);
892 if (may_queue
!= ELV_MQUEUE_MUST
893 && !ioc_batching(q
, ioc
)) {
895 * The queue is full and the allocating
896 * process is not a "batcher", and not
897 * exempted by the IO scheduler
904 * bdi isn't aware of blkcg yet. As all async IOs end up
905 * root blkcg anyway, just use root blkcg state.
907 if (rl
== &q
->root_rl
)
908 blk_set_queue_congested(q
, is_sync
);
912 * Only allow batching queuers to allocate up to 50% over the defined
913 * limit of requests, otherwise we could have thousands of requests
914 * allocated with any setting of ->nr_requests
916 if (rl
->count
[is_sync
] >= (3 * q
->nr_requests
/ 2))
919 q
->nr_rqs
[is_sync
]++;
920 rl
->count
[is_sync
]++;
921 rl
->starved
[is_sync
] = 0;
924 * Decide whether the new request will be managed by elevator. If
925 * so, mark @rw_flags and increment elvpriv. Non-zero elvpriv will
926 * prevent the current elevator from being destroyed until the new
927 * request is freed. This guarantees icq's won't be destroyed and
928 * makes creating new ones safe.
930 * Also, lookup icq while holding queue_lock. If it doesn't exist,
931 * it will be created after releasing queue_lock.
933 if (blk_rq_should_init_elevator(bio
) && !blk_queue_bypass(q
)) {
934 rw_flags
|= REQ_ELVPRIV
;
936 if (et
->icq_cache
&& ioc
)
937 icq
= ioc_lookup_icq(ioc
, q
);
940 if (blk_queue_io_stat(q
))
941 rw_flags
|= REQ_IO_STAT
;
942 spin_unlock_irq(q
->queue_lock
);
944 /* allocate and init request */
945 rq
= mempool_alloc(rl
->rq_pool
, gfp_mask
);
950 blk_rq_set_rl(rq
, rl
);
951 rq
->cmd_flags
= rw_flags
| REQ_ALLOCED
;
954 if (rw_flags
& REQ_ELVPRIV
) {
955 if (unlikely(et
->icq_cache
&& !icq
)) {
957 icq
= ioc_create_icq(ioc
, q
, gfp_mask
);
963 if (unlikely(elv_set_request(q
, rq
, bio
, gfp_mask
)))
966 /* @rq->elv.icq holds io_context until @rq is freed */
968 get_io_context(icq
->ioc
);
972 * ioc may be NULL here, and ioc_batching will be false. That's
973 * OK, if the queue is under the request limit then requests need
974 * not count toward the nr_batch_requests limit. There will always
975 * be some limit enforced by BLK_BATCH_TIME.
977 if (ioc_batching(q
, ioc
))
978 ioc
->nr_batch_requests
--;
980 trace_block_getrq(q
, bio
, rw_flags
& 1);
985 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed
986 * and may fail indefinitely under memory pressure and thus
987 * shouldn't stall IO. Treat this request as !elvpriv. This will
988 * disturb iosched and blkcg but weird is bettern than dead.
990 printk_ratelimited(KERN_WARNING
"%s: request aux data allocation failed, iosched may be disturbed\n",
991 dev_name(q
->backing_dev_info
.dev
));
993 rq
->cmd_flags
&= ~REQ_ELVPRIV
;
996 spin_lock_irq(q
->queue_lock
);
998 spin_unlock_irq(q
->queue_lock
);
1003 * Allocation failed presumably due to memory. Undo anything we
1004 * might have messed up.
1006 * Allocating task should really be put onto the front of the wait
1007 * queue, but this is pretty rare.
1009 spin_lock_irq(q
->queue_lock
);
1010 freed_request(rl
, rw_flags
);
1013 * in the very unlikely event that allocation failed and no
1014 * requests for this direction was pending, mark us starved so that
1015 * freeing of a request in the other direction will notice
1016 * us. another possible fix would be to split the rq mempool into
1020 if (unlikely(rl
->count
[is_sync
] == 0))
1021 rl
->starved
[is_sync
] = 1;
1026 * get_request - get a free request
1027 * @q: request_queue to allocate request from
1028 * @rw_flags: RW and SYNC flags
1029 * @bio: bio to allocate request for (can be %NULL)
1030 * @gfp_mask: allocation mask
1032 * Get a free request from @q. If %__GFP_WAIT is set in @gfp_mask, this
1033 * function keeps retrying under memory pressure and fails iff @q is dead.
1035 * Must be callled with @q->queue_lock held and,
1036 * Returns %NULL on failure, with @q->queue_lock held.
1037 * Returns !%NULL on success, with @q->queue_lock *not held*.
1039 static struct request
*get_request(struct request_queue
*q
, int rw_flags
,
1040 struct bio
*bio
, gfp_t gfp_mask
)
1042 const bool is_sync
= rw_is_sync(rw_flags
) != 0;
1044 struct request_list
*rl
;
1047 rl
= blk_get_rl(q
, bio
); /* transferred to @rq on success */
1049 rq
= __get_request(rl
, rw_flags
, bio
, gfp_mask
);
1053 if (!(gfp_mask
& __GFP_WAIT
) || unlikely(blk_queue_dead(q
))) {
1058 /* wait on @rl and retry */
1059 prepare_to_wait_exclusive(&rl
->wait
[is_sync
], &wait
,
1060 TASK_UNINTERRUPTIBLE
);
1062 trace_block_sleeprq(q
, bio
, rw_flags
& 1);
1064 spin_unlock_irq(q
->queue_lock
);
1068 * After sleeping, we become a "batching" process and will be able
1069 * to allocate at least one request, and up to a big batch of them
1070 * for a small period time. See ioc_batching, ioc_set_batching
1072 ioc_set_batching(q
, current
->io_context
);
1074 spin_lock_irq(q
->queue_lock
);
1075 finish_wait(&rl
->wait
[is_sync
], &wait
);
1080 struct request
*blk_get_request(struct request_queue
*q
, int rw
, gfp_t gfp_mask
)
1084 BUG_ON(rw
!= READ
&& rw
!= WRITE
);
1086 /* create ioc upfront */
1087 create_io_context(gfp_mask
, q
->node
);
1089 spin_lock_irq(q
->queue_lock
);
1090 rq
= get_request(q
, rw
, NULL
, gfp_mask
);
1092 spin_unlock_irq(q
->queue_lock
);
1093 /* q->queue_lock is unlocked at this point */
1097 EXPORT_SYMBOL(blk_get_request
);
1100 * blk_make_request - given a bio, allocate a corresponding struct request.
1101 * @q: target request queue
1102 * @bio: The bio describing the memory mappings that will be submitted for IO.
1103 * It may be a chained-bio properly constructed by block/bio layer.
1104 * @gfp_mask: gfp flags to be used for memory allocation
1106 * blk_make_request is the parallel of generic_make_request for BLOCK_PC
1107 * type commands. Where the struct request needs to be farther initialized by
1108 * the caller. It is passed a &struct bio, which describes the memory info of
1111 * The caller of blk_make_request must make sure that bi_io_vec
1112 * are set to describe the memory buffers. That bio_data_dir() will return
1113 * the needed direction of the request. (And all bio's in the passed bio-chain
1114 * are properly set accordingly)
1116 * If called under none-sleepable conditions, mapped bio buffers must not
1117 * need bouncing, by calling the appropriate masked or flagged allocator,
1118 * suitable for the target device. Otherwise the call to blk_queue_bounce will
1121 * WARNING: When allocating/cloning a bio-chain, careful consideration should be
1122 * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for
1123 * anything but the first bio in the chain. Otherwise you risk waiting for IO
1124 * completion of a bio that hasn't been submitted yet, thus resulting in a
1125 * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead
1126 * of bio_alloc(), as that avoids the mempool deadlock.
1127 * If possible a big IO should be split into smaller parts when allocation
1128 * fails. Partial allocation should not be an error, or you risk a live-lock.
1130 struct request
*blk_make_request(struct request_queue
*q
, struct bio
*bio
,
1133 struct request
*rq
= blk_get_request(q
, bio_data_dir(bio
), gfp_mask
);
1136 return ERR_PTR(-ENOMEM
);
1139 struct bio
*bounce_bio
= bio
;
1142 blk_queue_bounce(q
, &bounce_bio
);
1143 ret
= blk_rq_append_bio(q
, rq
, bounce_bio
);
1144 if (unlikely(ret
)) {
1145 blk_put_request(rq
);
1146 return ERR_PTR(ret
);
1152 EXPORT_SYMBOL(blk_make_request
);
1155 * blk_requeue_request - put a request back on queue
1156 * @q: request queue where request should be inserted
1157 * @rq: request to be inserted
1160 * Drivers often keep queueing requests until the hardware cannot accept
1161 * more, when that condition happens we need to put the request back
1162 * on the queue. Must be called with queue lock held.
1164 void blk_requeue_request(struct request_queue
*q
, struct request
*rq
)
1166 blk_delete_timer(rq
);
1167 blk_clear_rq_complete(rq
);
1168 trace_block_rq_requeue(q
, rq
);
1170 if (blk_rq_tagged(rq
))
1171 blk_queue_end_tag(q
, rq
);
1173 BUG_ON(blk_queued_rq(rq
));
1175 elv_requeue_request(q
, rq
);
1177 EXPORT_SYMBOL(blk_requeue_request
);
1179 static void add_acct_request(struct request_queue
*q
, struct request
*rq
,
1182 drive_stat_acct(rq
, 1);
1183 __elv_add_request(q
, rq
, where
);
1186 static void part_round_stats_single(int cpu
, struct hd_struct
*part
,
1189 if (now
== part
->stamp
)
1192 if (part_in_flight(part
)) {
1193 __part_stat_add(cpu
, part
, time_in_queue
,
1194 part_in_flight(part
) * (now
- part
->stamp
));
1195 __part_stat_add(cpu
, part
, io_ticks
, (now
- part
->stamp
));
1201 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1202 * @cpu: cpu number for stats access
1203 * @part: target partition
1205 * The average IO queue length and utilisation statistics are maintained
1206 * by observing the current state of the queue length and the amount of
1207 * time it has been in this state for.
1209 * Normally, that accounting is done on IO completion, but that can result
1210 * in more than a second's worth of IO being accounted for within any one
1211 * second, leading to >100% utilisation. To deal with that, we call this
1212 * function to do a round-off before returning the results when reading
1213 * /proc/diskstats. This accounts immediately for all queue usage up to
1214 * the current jiffies and restarts the counters again.
1216 void part_round_stats(int cpu
, struct hd_struct
*part
)
1218 unsigned long now
= jiffies
;
1221 part_round_stats_single(cpu
, &part_to_disk(part
)->part0
, now
);
1222 part_round_stats_single(cpu
, part
, now
);
1224 EXPORT_SYMBOL_GPL(part_round_stats
);
1227 * queue lock must be held
1229 void __blk_put_request(struct request_queue
*q
, struct request
*req
)
1233 if (unlikely(--req
->ref_count
))
1236 elv_completed_request(q
, req
);
1238 /* this is a bio leak */
1239 WARN_ON(req
->bio
!= NULL
);
1242 * Request may not have originated from ll_rw_blk. if not,
1243 * it didn't come out of our reserved rq pools
1245 if (req
->cmd_flags
& REQ_ALLOCED
) {
1246 unsigned int flags
= req
->cmd_flags
;
1247 struct request_list
*rl
= blk_rq_rl(req
);
1249 BUG_ON(!list_empty(&req
->queuelist
));
1250 BUG_ON(!hlist_unhashed(&req
->hash
));
1252 blk_free_request(rl
, req
);
1253 freed_request(rl
, flags
);
1257 EXPORT_SYMBOL_GPL(__blk_put_request
);
1259 void blk_put_request(struct request
*req
)
1261 unsigned long flags
;
1262 struct request_queue
*q
= req
->q
;
1264 spin_lock_irqsave(q
->queue_lock
, flags
);
1265 __blk_put_request(q
, req
);
1266 spin_unlock_irqrestore(q
->queue_lock
, flags
);
1268 EXPORT_SYMBOL(blk_put_request
);
1271 * blk_add_request_payload - add a payload to a request
1272 * @rq: request to update
1273 * @page: page backing the payload
1274 * @len: length of the payload.
1276 * This allows to later add a payload to an already submitted request by
1277 * a block driver. The driver needs to take care of freeing the payload
1280 * Note that this is a quite horrible hack and nothing but handling of
1281 * discard requests should ever use it.
1283 void blk_add_request_payload(struct request
*rq
, struct page
*page
,
1286 struct bio
*bio
= rq
->bio
;
1288 bio
->bi_io_vec
->bv_page
= page
;
1289 bio
->bi_io_vec
->bv_offset
= 0;
1290 bio
->bi_io_vec
->bv_len
= len
;
1294 bio
->bi_phys_segments
= 1;
1296 rq
->__data_len
= rq
->resid_len
= len
;
1297 rq
->nr_phys_segments
= 1;
1298 rq
->buffer
= bio_data(bio
);
1300 EXPORT_SYMBOL_GPL(blk_add_request_payload
);
1302 static bool bio_attempt_back_merge(struct request_queue
*q
, struct request
*req
,
1305 const int ff
= bio
->bi_rw
& REQ_FAILFAST_MASK
;
1307 if (!ll_back_merge_fn(q
, req
, bio
))
1310 trace_block_bio_backmerge(q
, bio
);
1312 if ((req
->cmd_flags
& REQ_FAILFAST_MASK
) != ff
)
1313 blk_rq_set_mixed_merge(req
);
1315 req
->biotail
->bi_next
= bio
;
1317 req
->__data_len
+= bio
->bi_size
;
1318 req
->ioprio
= ioprio_best(req
->ioprio
, bio_prio(bio
));
1320 drive_stat_acct(req
, 0);
1324 static bool bio_attempt_front_merge(struct request_queue
*q
,
1325 struct request
*req
, struct bio
*bio
)
1327 const int ff
= bio
->bi_rw
& REQ_FAILFAST_MASK
;
1329 if (!ll_front_merge_fn(q
, req
, bio
))
1332 trace_block_bio_frontmerge(q
, bio
);
1334 if ((req
->cmd_flags
& REQ_FAILFAST_MASK
) != ff
)
1335 blk_rq_set_mixed_merge(req
);
1337 bio
->bi_next
= req
->bio
;
1341 * may not be valid. if the low level driver said
1342 * it didn't need a bounce buffer then it better
1343 * not touch req->buffer either...
1345 req
->buffer
= bio_data(bio
);
1346 req
->__sector
= bio
->bi_sector
;
1347 req
->__data_len
+= bio
->bi_size
;
1348 req
->ioprio
= ioprio_best(req
->ioprio
, bio_prio(bio
));
1350 drive_stat_acct(req
, 0);
1355 * attempt_plug_merge - try to merge with %current's plugged list
1356 * @q: request_queue new bio is being queued at
1357 * @bio: new bio being queued
1358 * @request_count: out parameter for number of traversed plugged requests
1360 * Determine whether @bio being queued on @q can be merged with a request
1361 * on %current's plugged list. Returns %true if merge was successful,
1364 * Plugging coalesces IOs from the same issuer for the same purpose without
1365 * going through @q->queue_lock. As such it's more of an issuing mechanism
1366 * than scheduling, and the request, while may have elvpriv data, is not
1367 * added on the elevator at this point. In addition, we don't have
1368 * reliable access to the elevator outside queue lock. Only check basic
1369 * merging parameters without querying the elevator.
1371 static bool attempt_plug_merge(struct request_queue
*q
, struct bio
*bio
,
1372 unsigned int *request_count
)
1374 struct blk_plug
*plug
;
1378 plug
= current
->plug
;
1383 list_for_each_entry_reverse(rq
, &plug
->list
, queuelist
) {
1389 if (rq
->q
!= q
|| !blk_rq_merge_ok(rq
, bio
))
1392 el_ret
= blk_try_merge(rq
, bio
);
1393 if (el_ret
== ELEVATOR_BACK_MERGE
) {
1394 ret
= bio_attempt_back_merge(q
, rq
, bio
);
1397 } else if (el_ret
== ELEVATOR_FRONT_MERGE
) {
1398 ret
= bio_attempt_front_merge(q
, rq
, bio
);
1407 void init_request_from_bio(struct request
*req
, struct bio
*bio
)
1409 req
->cmd_type
= REQ_TYPE_FS
;
1411 req
->cmd_flags
|= bio
->bi_rw
& REQ_COMMON_MASK
;
1412 if (bio
->bi_rw
& REQ_RAHEAD
)
1413 req
->cmd_flags
|= REQ_FAILFAST_MASK
;
1416 req
->__sector
= bio
->bi_sector
;
1417 req
->ioprio
= bio_prio(bio
);
1418 blk_rq_bio_prep(req
->q
, req
, bio
);
1421 void blk_queue_bio(struct request_queue
*q
, struct bio
*bio
)
1423 const bool sync
= !!(bio
->bi_rw
& REQ_SYNC
);
1424 struct blk_plug
*plug
;
1425 int el_ret
, rw_flags
, where
= ELEVATOR_INSERT_SORT
;
1426 struct request
*req
;
1427 unsigned int request_count
= 0;
1430 * low level driver can indicate that it wants pages above a
1431 * certain limit bounced to low memory (ie for highmem, or even
1432 * ISA dma in theory)
1434 blk_queue_bounce(q
, &bio
);
1436 if (bio
->bi_rw
& (REQ_FLUSH
| REQ_FUA
)) {
1437 spin_lock_irq(q
->queue_lock
);
1438 where
= ELEVATOR_INSERT_FLUSH
;
1443 * Check if we can merge with the plugged list before grabbing
1446 if (attempt_plug_merge(q
, bio
, &request_count
))
1449 spin_lock_irq(q
->queue_lock
);
1451 el_ret
= elv_merge(q
, &req
, bio
);
1452 if (el_ret
== ELEVATOR_BACK_MERGE
) {
1453 if (bio_attempt_back_merge(q
, req
, bio
)) {
1454 elv_bio_merged(q
, req
, bio
);
1455 if (!attempt_back_merge(q
, req
))
1456 elv_merged_request(q
, req
, el_ret
);
1459 } else if (el_ret
== ELEVATOR_FRONT_MERGE
) {
1460 if (bio_attempt_front_merge(q
, req
, bio
)) {
1461 elv_bio_merged(q
, req
, bio
);
1462 if (!attempt_front_merge(q
, req
))
1463 elv_merged_request(q
, req
, el_ret
);
1470 * This sync check and mask will be re-done in init_request_from_bio(),
1471 * but we need to set it earlier to expose the sync flag to the
1472 * rq allocator and io schedulers.
1474 rw_flags
= bio_data_dir(bio
);
1476 rw_flags
|= REQ_SYNC
;
1479 * Grab a free request. This is might sleep but can not fail.
1480 * Returns with the queue unlocked.
1482 req
= get_request(q
, rw_flags
, bio
, GFP_NOIO
);
1483 if (unlikely(!req
)) {
1484 bio_endio(bio
, -ENODEV
); /* @q is dead */
1489 * After dropping the lock and possibly sleeping here, our request
1490 * may now be mergeable after it had proven unmergeable (above).
1491 * We don't worry about that case for efficiency. It won't happen
1492 * often, and the elevators are able to handle it.
1494 init_request_from_bio(req
, bio
);
1496 if (test_bit(QUEUE_FLAG_SAME_COMP
, &q
->queue_flags
))
1497 req
->cpu
= raw_smp_processor_id();
1499 plug
= current
->plug
;
1502 * If this is the first request added after a plug, fire
1503 * of a plug trace. If others have been added before, check
1504 * if we have multiple devices in this plug. If so, make a
1505 * note to sort the list before dispatch.
1507 if (list_empty(&plug
->list
))
1508 trace_block_plug(q
);
1510 if (!plug
->should_sort
) {
1511 struct request
*__rq
;
1513 __rq
= list_entry_rq(plug
->list
.prev
);
1515 plug
->should_sort
= 1;
1517 if (request_count
>= BLK_MAX_REQUEST_COUNT
) {
1518 blk_flush_plug_list(plug
, false);
1519 trace_block_plug(q
);
1522 list_add_tail(&req
->queuelist
, &plug
->list
);
1523 drive_stat_acct(req
, 1);
1525 spin_lock_irq(q
->queue_lock
);
1526 add_acct_request(q
, req
, where
);
1529 spin_unlock_irq(q
->queue_lock
);
1532 EXPORT_SYMBOL_GPL(blk_queue_bio
); /* for device mapper only */
1535 * If bio->bi_dev is a partition, remap the location
1537 static inline void blk_partition_remap(struct bio
*bio
)
1539 struct block_device
*bdev
= bio
->bi_bdev
;
1541 if (bio_sectors(bio
) && bdev
!= bdev
->bd_contains
) {
1542 struct hd_struct
*p
= bdev
->bd_part
;
1544 bio
->bi_sector
+= p
->start_sect
;
1545 bio
->bi_bdev
= bdev
->bd_contains
;
1547 trace_block_bio_remap(bdev_get_queue(bio
->bi_bdev
), bio
,
1549 bio
->bi_sector
- p
->start_sect
);
1553 static void handle_bad_sector(struct bio
*bio
)
1555 char b
[BDEVNAME_SIZE
];
1557 printk(KERN_INFO
"attempt to access beyond end of device\n");
1558 printk(KERN_INFO
"%s: rw=%ld, want=%Lu, limit=%Lu\n",
1559 bdevname(bio
->bi_bdev
, b
),
1561 (unsigned long long)bio
->bi_sector
+ bio_sectors(bio
),
1562 (long long)(i_size_read(bio
->bi_bdev
->bd_inode
) >> 9));
1564 set_bit(BIO_EOF
, &bio
->bi_flags
);
1567 #ifdef CONFIG_FAIL_MAKE_REQUEST
1569 static DECLARE_FAULT_ATTR(fail_make_request
);
1571 static int __init
setup_fail_make_request(char *str
)
1573 return setup_fault_attr(&fail_make_request
, str
);
1575 __setup("fail_make_request=", setup_fail_make_request
);
1577 static bool should_fail_request(struct hd_struct
*part
, unsigned int bytes
)
1579 return part
->make_it_fail
&& should_fail(&fail_make_request
, bytes
);
1582 static int __init
fail_make_request_debugfs(void)
1584 struct dentry
*dir
= fault_create_debugfs_attr("fail_make_request",
1585 NULL
, &fail_make_request
);
1587 return IS_ERR(dir
) ? PTR_ERR(dir
) : 0;
1590 late_initcall(fail_make_request_debugfs
);
1592 #else /* CONFIG_FAIL_MAKE_REQUEST */
1594 static inline bool should_fail_request(struct hd_struct
*part
,
1600 #endif /* CONFIG_FAIL_MAKE_REQUEST */
1603 * Check whether this bio extends beyond the end of the device.
1605 static inline int bio_check_eod(struct bio
*bio
, unsigned int nr_sectors
)
1612 /* Test device or partition size, when known. */
1613 maxsector
= i_size_read(bio
->bi_bdev
->bd_inode
) >> 9;
1615 sector_t sector
= bio
->bi_sector
;
1617 if (maxsector
< nr_sectors
|| maxsector
- nr_sectors
< sector
) {
1619 * This may well happen - the kernel calls bread()
1620 * without checking the size of the device, e.g., when
1621 * mounting a device.
1623 handle_bad_sector(bio
);
1631 static noinline_for_stack
bool
1632 generic_make_request_checks(struct bio
*bio
)
1634 struct request_queue
*q
;
1635 int nr_sectors
= bio_sectors(bio
);
1637 char b
[BDEVNAME_SIZE
];
1638 struct hd_struct
*part
;
1642 if (bio_check_eod(bio
, nr_sectors
))
1645 q
= bdev_get_queue(bio
->bi_bdev
);
1648 "generic_make_request: Trying to access "
1649 "nonexistent block-device %s (%Lu)\n",
1650 bdevname(bio
->bi_bdev
, b
),
1651 (long long) bio
->bi_sector
);
1655 if (likely(bio_is_rw(bio
) &&
1656 nr_sectors
> queue_max_hw_sectors(q
))) {
1657 printk(KERN_ERR
"bio too big device %s (%u > %u)\n",
1658 bdevname(bio
->bi_bdev
, b
),
1660 queue_max_hw_sectors(q
));
1664 part
= bio
->bi_bdev
->bd_part
;
1665 if (should_fail_request(part
, bio
->bi_size
) ||
1666 should_fail_request(&part_to_disk(part
)->part0
,
1671 * If this device has partitions, remap block n
1672 * of partition p to block n+start(p) of the disk.
1674 blk_partition_remap(bio
);
1676 if (bio_integrity_enabled(bio
) && bio_integrity_prep(bio
))
1679 if (bio_check_eod(bio
, nr_sectors
))
1683 * Filter flush bio's early so that make_request based
1684 * drivers without flush support don't have to worry
1687 if ((bio
->bi_rw
& (REQ_FLUSH
| REQ_FUA
)) && !q
->flush_flags
) {
1688 bio
->bi_rw
&= ~(REQ_FLUSH
| REQ_FUA
);
1695 if ((bio
->bi_rw
& REQ_DISCARD
) &&
1696 (!blk_queue_discard(q
) ||
1697 ((bio
->bi_rw
& REQ_SECURE
) && !blk_queue_secdiscard(q
)))) {
1702 if (bio
->bi_rw
& REQ_WRITE_SAME
&& !bdev_write_same(bio
->bi_bdev
)) {
1708 * Various block parts want %current->io_context and lazy ioc
1709 * allocation ends up trading a lot of pain for a small amount of
1710 * memory. Just allocate it upfront. This may fail and block
1711 * layer knows how to live with it.
1713 create_io_context(GFP_ATOMIC
, q
->node
);
1715 if (blk_throtl_bio(q
, bio
))
1716 return false; /* throttled, will be resubmitted later */
1718 trace_block_bio_queue(q
, bio
);
1722 bio_endio(bio
, err
);
1727 * generic_make_request - hand a buffer to its device driver for I/O
1728 * @bio: The bio describing the location in memory and on the device.
1730 * generic_make_request() is used to make I/O requests of block
1731 * devices. It is passed a &struct bio, which describes the I/O that needs
1734 * generic_make_request() does not return any status. The
1735 * success/failure status of the request, along with notification of
1736 * completion, is delivered asynchronously through the bio->bi_end_io
1737 * function described (one day) else where.
1739 * The caller of generic_make_request must make sure that bi_io_vec
1740 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1741 * set to describe the device address, and the
1742 * bi_end_io and optionally bi_private are set to describe how
1743 * completion notification should be signaled.
1745 * generic_make_request and the drivers it calls may use bi_next if this
1746 * bio happens to be merged with someone else, and may resubmit the bio to
1747 * a lower device by calling into generic_make_request recursively, which
1748 * means the bio should NOT be touched after the call to ->make_request_fn.
1750 void generic_make_request(struct bio
*bio
)
1752 struct bio_list bio_list_on_stack
;
1754 if (!generic_make_request_checks(bio
))
1758 * We only want one ->make_request_fn to be active at a time, else
1759 * stack usage with stacked devices could be a problem. So use
1760 * current->bio_list to keep a list of requests submited by a
1761 * make_request_fn function. current->bio_list is also used as a
1762 * flag to say if generic_make_request is currently active in this
1763 * task or not. If it is NULL, then no make_request is active. If
1764 * it is non-NULL, then a make_request is active, and new requests
1765 * should be added at the tail
1767 if (current
->bio_list
) {
1768 bio_list_add(current
->bio_list
, bio
);
1772 /* following loop may be a bit non-obvious, and so deserves some
1774 * Before entering the loop, bio->bi_next is NULL (as all callers
1775 * ensure that) so we have a list with a single bio.
1776 * We pretend that we have just taken it off a longer list, so
1777 * we assign bio_list to a pointer to the bio_list_on_stack,
1778 * thus initialising the bio_list of new bios to be
1779 * added. ->make_request() may indeed add some more bios
1780 * through a recursive call to generic_make_request. If it
1781 * did, we find a non-NULL value in bio_list and re-enter the loop
1782 * from the top. In this case we really did just take the bio
1783 * of the top of the list (no pretending) and so remove it from
1784 * bio_list, and call into ->make_request() again.
1786 BUG_ON(bio
->bi_next
);
1787 bio_list_init(&bio_list_on_stack
);
1788 current
->bio_list
= &bio_list_on_stack
;
1790 struct request_queue
*q
= bdev_get_queue(bio
->bi_bdev
);
1792 q
->make_request_fn(q
, bio
);
1794 bio
= bio_list_pop(current
->bio_list
);
1796 current
->bio_list
= NULL
; /* deactivate */
1798 EXPORT_SYMBOL(generic_make_request
);
1801 * submit_bio - submit a bio to the block device layer for I/O
1802 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1803 * @bio: The &struct bio which describes the I/O
1805 * submit_bio() is very similar in purpose to generic_make_request(), and
1806 * uses that function to do most of the work. Both are fairly rough
1807 * interfaces; @bio must be presetup and ready for I/O.
1810 void submit_bio(int rw
, struct bio
*bio
)
1815 * If it's a regular read/write or a barrier with data attached,
1816 * go through the normal accounting stuff before submission.
1818 if (bio_has_data(bio
)) {
1821 if (unlikely(rw
& REQ_WRITE_SAME
))
1822 count
= bdev_logical_block_size(bio
->bi_bdev
) >> 9;
1824 count
= bio_sectors(bio
);
1827 count_vm_events(PGPGOUT
, count
);
1829 task_io_account_read(bio
->bi_size
);
1830 count_vm_events(PGPGIN
, count
);
1833 if (unlikely(block_dump
)) {
1834 char b
[BDEVNAME_SIZE
];
1835 printk(KERN_DEBUG
"%s(%d): %s block %Lu on %s (%u sectors)\n",
1836 current
->comm
, task_pid_nr(current
),
1837 (rw
& WRITE
) ? "WRITE" : "READ",
1838 (unsigned long long)bio
->bi_sector
,
1839 bdevname(bio
->bi_bdev
, b
),
1844 generic_make_request(bio
);
1846 EXPORT_SYMBOL(submit_bio
);
1849 * blk_rq_check_limits - Helper function to check a request for the queue limit
1851 * @rq: the request being checked
1854 * @rq may have been made based on weaker limitations of upper-level queues
1855 * in request stacking drivers, and it may violate the limitation of @q.
1856 * Since the block layer and the underlying device driver trust @rq
1857 * after it is inserted to @q, it should be checked against @q before
1858 * the insertion using this generic function.
1860 * This function should also be useful for request stacking drivers
1861 * in some cases below, so export this function.
1862 * Request stacking drivers like request-based dm may change the queue
1863 * limits while requests are in the queue (e.g. dm's table swapping).
1864 * Such request stacking drivers should check those requests agaist
1865 * the new queue limits again when they dispatch those requests,
1866 * although such checkings are also done against the old queue limits
1867 * when submitting requests.
1869 int blk_rq_check_limits(struct request_queue
*q
, struct request
*rq
)
1871 if (!rq_mergeable(rq
))
1874 if (blk_rq_sectors(rq
) > blk_queue_get_max_sectors(q
, rq
->cmd_flags
)) {
1875 printk(KERN_ERR
"%s: over max size limit.\n", __func__
);
1880 * queue's settings related to segment counting like q->bounce_pfn
1881 * may differ from that of other stacking queues.
1882 * Recalculate it to check the request correctly on this queue's
1885 blk_recalc_rq_segments(rq
);
1886 if (rq
->nr_phys_segments
> queue_max_segments(q
)) {
1887 printk(KERN_ERR
"%s: over max segments limit.\n", __func__
);
1893 EXPORT_SYMBOL_GPL(blk_rq_check_limits
);
1896 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1897 * @q: the queue to submit the request
1898 * @rq: the request being queued
1900 int blk_insert_cloned_request(struct request_queue
*q
, struct request
*rq
)
1902 unsigned long flags
;
1903 int where
= ELEVATOR_INSERT_BACK
;
1905 if (blk_rq_check_limits(q
, rq
))
1909 should_fail_request(&rq
->rq_disk
->part0
, blk_rq_bytes(rq
)))
1912 spin_lock_irqsave(q
->queue_lock
, flags
);
1913 if (unlikely(blk_queue_dead(q
))) {
1914 spin_unlock_irqrestore(q
->queue_lock
, flags
);
1919 * Submitting request must be dequeued before calling this function
1920 * because it will be linked to another request_queue
1922 BUG_ON(blk_queued_rq(rq
));
1924 if (rq
->cmd_flags
& (REQ_FLUSH
|REQ_FUA
))
1925 where
= ELEVATOR_INSERT_FLUSH
;
1927 add_acct_request(q
, rq
, where
);
1928 if (where
== ELEVATOR_INSERT_FLUSH
)
1930 spin_unlock_irqrestore(q
->queue_lock
, flags
);
1934 EXPORT_SYMBOL_GPL(blk_insert_cloned_request
);
1937 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1938 * @rq: request to examine
1941 * A request could be merge of IOs which require different failure
1942 * handling. This function determines the number of bytes which
1943 * can be failed from the beginning of the request without
1944 * crossing into area which need to be retried further.
1947 * The number of bytes to fail.
1950 * queue_lock must be held.
1952 unsigned int blk_rq_err_bytes(const struct request
*rq
)
1954 unsigned int ff
= rq
->cmd_flags
& REQ_FAILFAST_MASK
;
1955 unsigned int bytes
= 0;
1958 if (!(rq
->cmd_flags
& REQ_MIXED_MERGE
))
1959 return blk_rq_bytes(rq
);
1962 * Currently the only 'mixing' which can happen is between
1963 * different fastfail types. We can safely fail portions
1964 * which have all the failfast bits that the first one has -
1965 * the ones which are at least as eager to fail as the first
1968 for (bio
= rq
->bio
; bio
; bio
= bio
->bi_next
) {
1969 if ((bio
->bi_rw
& ff
) != ff
)
1971 bytes
+= bio
->bi_size
;
1974 /* this could lead to infinite loop */
1975 BUG_ON(blk_rq_bytes(rq
) && !bytes
);
1978 EXPORT_SYMBOL_GPL(blk_rq_err_bytes
);
1980 static void blk_account_io_completion(struct request
*req
, unsigned int bytes
)
1982 if (blk_do_io_stat(req
)) {
1983 const int rw
= rq_data_dir(req
);
1984 struct hd_struct
*part
;
1987 cpu
= part_stat_lock();
1989 part_stat_add(cpu
, part
, sectors
[rw
], bytes
>> 9);
1994 static void blk_account_io_done(struct request
*req
)
1997 * Account IO completion. flush_rq isn't accounted as a
1998 * normal IO on queueing nor completion. Accounting the
1999 * containing request is enough.
2001 if (blk_do_io_stat(req
) && !(req
->cmd_flags
& REQ_FLUSH_SEQ
)) {
2002 unsigned long duration
= jiffies
- req
->start_time
;
2003 const int rw
= rq_data_dir(req
);
2004 struct hd_struct
*part
;
2007 cpu
= part_stat_lock();
2010 part_stat_inc(cpu
, part
, ios
[rw
]);
2011 part_stat_add(cpu
, part
, ticks
[rw
], duration
);
2012 part_round_stats(cpu
, part
);
2013 part_dec_in_flight(part
, rw
);
2015 hd_struct_put(part
);
2021 * blk_peek_request - peek at the top of a request queue
2022 * @q: request queue to peek at
2025 * Return the request at the top of @q. The returned request
2026 * should be started using blk_start_request() before LLD starts
2030 * Pointer to the request at the top of @q if available. Null
2034 * queue_lock must be held.
2036 struct request
*blk_peek_request(struct request_queue
*q
)
2041 while ((rq
= __elv_next_request(q
)) != NULL
) {
2042 if (!(rq
->cmd_flags
& REQ_STARTED
)) {
2044 * This is the first time the device driver
2045 * sees this request (possibly after
2046 * requeueing). Notify IO scheduler.
2048 if (rq
->cmd_flags
& REQ_SORTED
)
2049 elv_activate_rq(q
, rq
);
2052 * just mark as started even if we don't start
2053 * it, a request that has been delayed should
2054 * not be passed by new incoming requests
2056 rq
->cmd_flags
|= REQ_STARTED
;
2057 trace_block_rq_issue(q
, rq
);
2060 if (!q
->boundary_rq
|| q
->boundary_rq
== rq
) {
2061 q
->end_sector
= rq_end_sector(rq
);
2062 q
->boundary_rq
= NULL
;
2065 if (rq
->cmd_flags
& REQ_DONTPREP
)
2068 if (q
->dma_drain_size
&& blk_rq_bytes(rq
)) {
2070 * make sure space for the drain appears we
2071 * know we can do this because max_hw_segments
2072 * has been adjusted to be one fewer than the
2075 rq
->nr_phys_segments
++;
2081 ret
= q
->prep_rq_fn(q
, rq
);
2082 if (ret
== BLKPREP_OK
) {
2084 } else if (ret
== BLKPREP_DEFER
) {
2086 * the request may have been (partially) prepped.
2087 * we need to keep this request in the front to
2088 * avoid resource deadlock. REQ_STARTED will
2089 * prevent other fs requests from passing this one.
2091 if (q
->dma_drain_size
&& blk_rq_bytes(rq
) &&
2092 !(rq
->cmd_flags
& REQ_DONTPREP
)) {
2094 * remove the space for the drain we added
2095 * so that we don't add it again
2097 --rq
->nr_phys_segments
;
2102 } else if (ret
== BLKPREP_KILL
) {
2103 rq
->cmd_flags
|= REQ_QUIET
;
2105 * Mark this request as started so we don't trigger
2106 * any debug logic in the end I/O path.
2108 blk_start_request(rq
);
2109 __blk_end_request_all(rq
, -EIO
);
2111 printk(KERN_ERR
"%s: bad return=%d\n", __func__
, ret
);
2118 EXPORT_SYMBOL(blk_peek_request
);
2120 void blk_dequeue_request(struct request
*rq
)
2122 struct request_queue
*q
= rq
->q
;
2124 BUG_ON(list_empty(&rq
->queuelist
));
2125 BUG_ON(ELV_ON_HASH(rq
));
2127 list_del_init(&rq
->queuelist
);
2130 * the time frame between a request being removed from the lists
2131 * and to it is freed is accounted as io that is in progress at
2134 if (blk_account_rq(rq
)) {
2135 q
->in_flight
[rq_is_sync(rq
)]++;
2136 set_io_start_time_ns(rq
);
2141 * blk_start_request - start request processing on the driver
2142 * @req: request to dequeue
2145 * Dequeue @req and start timeout timer on it. This hands off the
2146 * request to the driver.
2148 * Block internal functions which don't want to start timer should
2149 * call blk_dequeue_request().
2152 * queue_lock must be held.
2154 void blk_start_request(struct request
*req
)
2156 blk_dequeue_request(req
);
2159 * We are now handing the request to the hardware, initialize
2160 * resid_len to full count and add the timeout handler.
2162 req
->resid_len
= blk_rq_bytes(req
);
2163 if (unlikely(blk_bidi_rq(req
)))
2164 req
->next_rq
->resid_len
= blk_rq_bytes(req
->next_rq
);
2168 EXPORT_SYMBOL(blk_start_request
);
2171 * blk_fetch_request - fetch a request from a request queue
2172 * @q: request queue to fetch a request from
2175 * Return the request at the top of @q. The request is started on
2176 * return and LLD can start processing it immediately.
2179 * Pointer to the request at the top of @q if available. Null
2183 * queue_lock must be held.
2185 struct request
*blk_fetch_request(struct request_queue
*q
)
2189 rq
= blk_peek_request(q
);
2191 blk_start_request(rq
);
2194 EXPORT_SYMBOL(blk_fetch_request
);
2197 * blk_update_request - Special helper function for request stacking drivers
2198 * @req: the request being processed
2199 * @error: %0 for success, < %0 for error
2200 * @nr_bytes: number of bytes to complete @req
2203 * Ends I/O on a number of bytes attached to @req, but doesn't complete
2204 * the request structure even if @req doesn't have leftover.
2205 * If @req has leftover, sets it up for the next range of segments.
2207 * This special helper function is only for request stacking drivers
2208 * (e.g. request-based dm) so that they can handle partial completion.
2209 * Actual device drivers should use blk_end_request instead.
2211 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2212 * %false return from this function.
2215 * %false - this request doesn't have any more data
2216 * %true - this request has more data
2218 bool blk_update_request(struct request
*req
, int error
, unsigned int nr_bytes
)
2220 int total_bytes
, bio_nbytes
, next_idx
= 0;
2226 trace_block_rq_complete(req
->q
, req
);
2229 * For fs requests, rq is just carrier of independent bio's
2230 * and each partial completion should be handled separately.
2231 * Reset per-request error on each partial completion.
2233 * TODO: tj: This is too subtle. It would be better to let
2234 * low level drivers do what they see fit.
2236 if (req
->cmd_type
== REQ_TYPE_FS
)
2239 if (error
&& req
->cmd_type
== REQ_TYPE_FS
&&
2240 !(req
->cmd_flags
& REQ_QUIET
)) {
2245 error_type
= "recoverable transport";
2248 error_type
= "critical target";
2251 error_type
= "critical nexus";
2258 printk_ratelimited(KERN_ERR
"end_request: %s error, dev %s, sector %llu\n",
2259 error_type
, req
->rq_disk
?
2260 req
->rq_disk
->disk_name
: "?",
2261 (unsigned long long)blk_rq_pos(req
));
2265 blk_account_io_completion(req
, nr_bytes
);
2267 total_bytes
= bio_nbytes
= 0;
2268 while ((bio
= req
->bio
) != NULL
) {
2271 if (nr_bytes
>= bio
->bi_size
) {
2272 req
->bio
= bio
->bi_next
;
2273 nbytes
= bio
->bi_size
;
2274 req_bio_endio(req
, bio
, nbytes
, error
);
2278 int idx
= bio
->bi_idx
+ next_idx
;
2280 if (unlikely(idx
>= bio
->bi_vcnt
)) {
2281 blk_dump_rq_flags(req
, "__end_that");
2282 printk(KERN_ERR
"%s: bio idx %d >= vcnt %d\n",
2283 __func__
, idx
, bio
->bi_vcnt
);
2287 nbytes
= bio_iovec_idx(bio
, idx
)->bv_len
;
2288 BIO_BUG_ON(nbytes
> bio
->bi_size
);
2291 * not a complete bvec done
2293 if (unlikely(nbytes
> nr_bytes
)) {
2294 bio_nbytes
+= nr_bytes
;
2295 total_bytes
+= nr_bytes
;
2300 * advance to the next vector
2303 bio_nbytes
+= nbytes
;
2306 total_bytes
+= nbytes
;
2312 * end more in this run, or just return 'not-done'
2314 if (unlikely(nr_bytes
<= 0))
2324 * Reset counters so that the request stacking driver
2325 * can find how many bytes remain in the request
2328 req
->__data_len
= 0;
2333 * if the request wasn't completed, update state
2336 req_bio_endio(req
, bio
, bio_nbytes
, error
);
2337 bio
->bi_idx
+= next_idx
;
2338 bio_iovec(bio
)->bv_offset
+= nr_bytes
;
2339 bio_iovec(bio
)->bv_len
-= nr_bytes
;
2342 req
->__data_len
-= total_bytes
;
2343 req
->buffer
= bio_data(req
->bio
);
2345 /* update sector only for requests with clear definition of sector */
2346 if (req
->cmd_type
== REQ_TYPE_FS
)
2347 req
->__sector
+= total_bytes
>> 9;
2349 /* mixed attributes always follow the first bio */
2350 if (req
->cmd_flags
& REQ_MIXED_MERGE
) {
2351 req
->cmd_flags
&= ~REQ_FAILFAST_MASK
;
2352 req
->cmd_flags
|= req
->bio
->bi_rw
& REQ_FAILFAST_MASK
;
2356 * If total number of sectors is less than the first segment
2357 * size, something has gone terribly wrong.
2359 if (blk_rq_bytes(req
) < blk_rq_cur_bytes(req
)) {
2360 blk_dump_rq_flags(req
, "request botched");
2361 req
->__data_len
= blk_rq_cur_bytes(req
);
2364 /* recalculate the number of segments */
2365 blk_recalc_rq_segments(req
);
2369 EXPORT_SYMBOL_GPL(blk_update_request
);
2371 static bool blk_update_bidi_request(struct request
*rq
, int error
,
2372 unsigned int nr_bytes
,
2373 unsigned int bidi_bytes
)
2375 if (blk_update_request(rq
, error
, nr_bytes
))
2378 /* Bidi request must be completed as a whole */
2379 if (unlikely(blk_bidi_rq(rq
)) &&
2380 blk_update_request(rq
->next_rq
, error
, bidi_bytes
))
2383 if (blk_queue_add_random(rq
->q
))
2384 add_disk_randomness(rq
->rq_disk
);
2390 * blk_unprep_request - unprepare a request
2393 * This function makes a request ready for complete resubmission (or
2394 * completion). It happens only after all error handling is complete,
2395 * so represents the appropriate moment to deallocate any resources
2396 * that were allocated to the request in the prep_rq_fn. The queue
2397 * lock is held when calling this.
2399 void blk_unprep_request(struct request
*req
)
2401 struct request_queue
*q
= req
->q
;
2403 req
->cmd_flags
&= ~REQ_DONTPREP
;
2404 if (q
->unprep_rq_fn
)
2405 q
->unprep_rq_fn(q
, req
);
2407 EXPORT_SYMBOL_GPL(blk_unprep_request
);
2410 * queue lock must be held
2412 static void blk_finish_request(struct request
*req
, int error
)
2414 if (blk_rq_tagged(req
))
2415 blk_queue_end_tag(req
->q
, req
);
2417 BUG_ON(blk_queued_rq(req
));
2419 if (unlikely(laptop_mode
) && req
->cmd_type
== REQ_TYPE_FS
)
2420 laptop_io_completion(&req
->q
->backing_dev_info
);
2422 blk_delete_timer(req
);
2424 if (req
->cmd_flags
& REQ_DONTPREP
)
2425 blk_unprep_request(req
);
2428 blk_account_io_done(req
);
2431 req
->end_io(req
, error
);
2433 if (blk_bidi_rq(req
))
2434 __blk_put_request(req
->next_rq
->q
, req
->next_rq
);
2436 __blk_put_request(req
->q
, req
);
2441 * blk_end_bidi_request - Complete a bidi request
2442 * @rq: the request to complete
2443 * @error: %0 for success, < %0 for error
2444 * @nr_bytes: number of bytes to complete @rq
2445 * @bidi_bytes: number of bytes to complete @rq->next_rq
2448 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2449 * Drivers that supports bidi can safely call this member for any
2450 * type of request, bidi or uni. In the later case @bidi_bytes is
2454 * %false - we are done with this request
2455 * %true - still buffers pending for this request
2457 static bool blk_end_bidi_request(struct request
*rq
, int error
,
2458 unsigned int nr_bytes
, unsigned int bidi_bytes
)
2460 struct request_queue
*q
= rq
->q
;
2461 unsigned long flags
;
2463 if (blk_update_bidi_request(rq
, error
, nr_bytes
, bidi_bytes
))
2466 spin_lock_irqsave(q
->queue_lock
, flags
);
2467 blk_finish_request(rq
, error
);
2468 spin_unlock_irqrestore(q
->queue_lock
, flags
);
2474 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2475 * @rq: the request to complete
2476 * @error: %0 for success, < %0 for error
2477 * @nr_bytes: number of bytes to complete @rq
2478 * @bidi_bytes: number of bytes to complete @rq->next_rq
2481 * Identical to blk_end_bidi_request() except that queue lock is
2482 * assumed to be locked on entry and remains so on return.
2485 * %false - we are done with this request
2486 * %true - still buffers pending for this request
2488 bool __blk_end_bidi_request(struct request
*rq
, int error
,
2489 unsigned int nr_bytes
, unsigned int bidi_bytes
)
2491 if (blk_update_bidi_request(rq
, error
, nr_bytes
, bidi_bytes
))
2494 blk_finish_request(rq
, error
);
2500 * blk_end_request - Helper function for drivers to complete the request.
2501 * @rq: the request being processed
2502 * @error: %0 for success, < %0 for error
2503 * @nr_bytes: number of bytes to complete
2506 * Ends I/O on a number of bytes attached to @rq.
2507 * If @rq has leftover, sets it up for the next range of segments.
2510 * %false - we are done with this request
2511 * %true - still buffers pending for this request
2513 bool blk_end_request(struct request
*rq
, int error
, unsigned int nr_bytes
)
2515 return blk_end_bidi_request(rq
, error
, nr_bytes
, 0);
2517 EXPORT_SYMBOL(blk_end_request
);
2520 * blk_end_request_all - Helper function for drives to finish the request.
2521 * @rq: the request to finish
2522 * @error: %0 for success, < %0 for error
2525 * Completely finish @rq.
2527 void blk_end_request_all(struct request
*rq
, int error
)
2530 unsigned int bidi_bytes
= 0;
2532 if (unlikely(blk_bidi_rq(rq
)))
2533 bidi_bytes
= blk_rq_bytes(rq
->next_rq
);
2535 pending
= blk_end_bidi_request(rq
, error
, blk_rq_bytes(rq
), bidi_bytes
);
2538 EXPORT_SYMBOL(blk_end_request_all
);
2541 * blk_end_request_cur - Helper function to finish the current request chunk.
2542 * @rq: the request to finish the current chunk for
2543 * @error: %0 for success, < %0 for error
2546 * Complete the current consecutively mapped chunk from @rq.
2549 * %false - we are done with this request
2550 * %true - still buffers pending for this request
2552 bool blk_end_request_cur(struct request
*rq
, int error
)
2554 return blk_end_request(rq
, error
, blk_rq_cur_bytes(rq
));
2556 EXPORT_SYMBOL(blk_end_request_cur
);
2559 * blk_end_request_err - Finish a request till the next failure boundary.
2560 * @rq: the request to finish till the next failure boundary for
2561 * @error: must be negative errno
2564 * Complete @rq till the next failure boundary.
2567 * %false - we are done with this request
2568 * %true - still buffers pending for this request
2570 bool blk_end_request_err(struct request
*rq
, int error
)
2572 WARN_ON(error
>= 0);
2573 return blk_end_request(rq
, error
, blk_rq_err_bytes(rq
));
2575 EXPORT_SYMBOL_GPL(blk_end_request_err
);
2578 * __blk_end_request - Helper function for drivers to complete the request.
2579 * @rq: the request being processed
2580 * @error: %0 for success, < %0 for error
2581 * @nr_bytes: number of bytes to complete
2584 * Must be called with queue lock held unlike blk_end_request().
2587 * %false - we are done with this request
2588 * %true - still buffers pending for this request
2590 bool __blk_end_request(struct request
*rq
, int error
, unsigned int nr_bytes
)
2592 return __blk_end_bidi_request(rq
, error
, nr_bytes
, 0);
2594 EXPORT_SYMBOL(__blk_end_request
);
2597 * __blk_end_request_all - Helper function for drives to finish the request.
2598 * @rq: the request to finish
2599 * @error: %0 for success, < %0 for error
2602 * Completely finish @rq. Must be called with queue lock held.
2604 void __blk_end_request_all(struct request
*rq
, int error
)
2607 unsigned int bidi_bytes
= 0;
2609 if (unlikely(blk_bidi_rq(rq
)))
2610 bidi_bytes
= blk_rq_bytes(rq
->next_rq
);
2612 pending
= __blk_end_bidi_request(rq
, error
, blk_rq_bytes(rq
), bidi_bytes
);
2615 EXPORT_SYMBOL(__blk_end_request_all
);
2618 * __blk_end_request_cur - Helper function to finish the current request chunk.
2619 * @rq: the request to finish the current chunk for
2620 * @error: %0 for success, < %0 for error
2623 * Complete the current consecutively mapped chunk from @rq. Must
2624 * be called with queue lock held.
2627 * %false - we are done with this request
2628 * %true - still buffers pending for this request
2630 bool __blk_end_request_cur(struct request
*rq
, int error
)
2632 return __blk_end_request(rq
, error
, blk_rq_cur_bytes(rq
));
2634 EXPORT_SYMBOL(__blk_end_request_cur
);
2637 * __blk_end_request_err - Finish a request till the next failure boundary.
2638 * @rq: the request to finish till the next failure boundary for
2639 * @error: must be negative errno
2642 * Complete @rq till the next failure boundary. Must be called
2643 * with queue lock held.
2646 * %false - we are done with this request
2647 * %true - still buffers pending for this request
2649 bool __blk_end_request_err(struct request
*rq
, int error
)
2651 WARN_ON(error
>= 0);
2652 return __blk_end_request(rq
, error
, blk_rq_err_bytes(rq
));
2654 EXPORT_SYMBOL_GPL(__blk_end_request_err
);
2656 void blk_rq_bio_prep(struct request_queue
*q
, struct request
*rq
,
2659 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */
2660 rq
->cmd_flags
|= bio
->bi_rw
& REQ_WRITE
;
2662 if (bio_has_data(bio
)) {
2663 rq
->nr_phys_segments
= bio_phys_segments(q
, bio
);
2664 rq
->buffer
= bio_data(bio
);
2666 rq
->__data_len
= bio
->bi_size
;
2667 rq
->bio
= rq
->biotail
= bio
;
2670 rq
->rq_disk
= bio
->bi_bdev
->bd_disk
;
2673 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2675 * rq_flush_dcache_pages - Helper function to flush all pages in a request
2676 * @rq: the request to be flushed
2679 * Flush all pages in @rq.
2681 void rq_flush_dcache_pages(struct request
*rq
)
2683 struct req_iterator iter
;
2684 struct bio_vec
*bvec
;
2686 rq_for_each_segment(bvec
, rq
, iter
)
2687 flush_dcache_page(bvec
->bv_page
);
2689 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages
);
2693 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2694 * @q : the queue of the device being checked
2697 * Check if underlying low-level drivers of a device are busy.
2698 * If the drivers want to export their busy state, they must set own
2699 * exporting function using blk_queue_lld_busy() first.
2701 * Basically, this function is used only by request stacking drivers
2702 * to stop dispatching requests to underlying devices when underlying
2703 * devices are busy. This behavior helps more I/O merging on the queue
2704 * of the request stacking driver and prevents I/O throughput regression
2705 * on burst I/O load.
2708 * 0 - Not busy (The request stacking driver should dispatch request)
2709 * 1 - Busy (The request stacking driver should stop dispatching request)
2711 int blk_lld_busy(struct request_queue
*q
)
2714 return q
->lld_busy_fn(q
);
2718 EXPORT_SYMBOL_GPL(blk_lld_busy
);
2721 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2722 * @rq: the clone request to be cleaned up
2725 * Free all bios in @rq for a cloned request.
2727 void blk_rq_unprep_clone(struct request
*rq
)
2731 while ((bio
= rq
->bio
) != NULL
) {
2732 rq
->bio
= bio
->bi_next
;
2737 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone
);
2740 * Copy attributes of the original request to the clone request.
2741 * The actual data parts (e.g. ->cmd, ->buffer, ->sense) are not copied.
2743 static void __blk_rq_prep_clone(struct request
*dst
, struct request
*src
)
2745 dst
->cpu
= src
->cpu
;
2746 dst
->cmd_flags
= (src
->cmd_flags
& REQ_CLONE_MASK
) | REQ_NOMERGE
;
2747 dst
->cmd_type
= src
->cmd_type
;
2748 dst
->__sector
= blk_rq_pos(src
);
2749 dst
->__data_len
= blk_rq_bytes(src
);
2750 dst
->nr_phys_segments
= src
->nr_phys_segments
;
2751 dst
->ioprio
= src
->ioprio
;
2752 dst
->extra_len
= src
->extra_len
;
2756 * blk_rq_prep_clone - Helper function to setup clone request
2757 * @rq: the request to be setup
2758 * @rq_src: original request to be cloned
2759 * @bs: bio_set that bios for clone are allocated from
2760 * @gfp_mask: memory allocation mask for bio
2761 * @bio_ctr: setup function to be called for each clone bio.
2762 * Returns %0 for success, non %0 for failure.
2763 * @data: private data to be passed to @bio_ctr
2766 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
2767 * The actual data parts of @rq_src (e.g. ->cmd, ->buffer, ->sense)
2768 * are not copied, and copying such parts is the caller's responsibility.
2769 * Also, pages which the original bios are pointing to are not copied
2770 * and the cloned bios just point same pages.
2771 * So cloned bios must be completed before original bios, which means
2772 * the caller must complete @rq before @rq_src.
2774 int blk_rq_prep_clone(struct request
*rq
, struct request
*rq_src
,
2775 struct bio_set
*bs
, gfp_t gfp_mask
,
2776 int (*bio_ctr
)(struct bio
*, struct bio
*, void *),
2779 struct bio
*bio
, *bio_src
;
2784 blk_rq_init(NULL
, rq
);
2786 __rq_for_each_bio(bio_src
, rq_src
) {
2787 bio
= bio_clone_bioset(bio_src
, gfp_mask
, bs
);
2791 if (bio_ctr
&& bio_ctr(bio
, bio_src
, data
))
2795 rq
->biotail
->bi_next
= bio
;
2798 rq
->bio
= rq
->biotail
= bio
;
2801 __blk_rq_prep_clone(rq
, rq_src
);
2808 blk_rq_unprep_clone(rq
);
2812 EXPORT_SYMBOL_GPL(blk_rq_prep_clone
);
2814 int kblockd_schedule_work(struct request_queue
*q
, struct work_struct
*work
)
2816 return queue_work(kblockd_workqueue
, work
);
2818 EXPORT_SYMBOL(kblockd_schedule_work
);
2820 int kblockd_schedule_delayed_work(struct request_queue
*q
,
2821 struct delayed_work
*dwork
, unsigned long delay
)
2823 return queue_delayed_work(kblockd_workqueue
, dwork
, delay
);
2825 EXPORT_SYMBOL(kblockd_schedule_delayed_work
);
2827 #define PLUG_MAGIC 0x91827364
2830 * blk_start_plug - initialize blk_plug and track it inside the task_struct
2831 * @plug: The &struct blk_plug that needs to be initialized
2834 * Tracking blk_plug inside the task_struct will help with auto-flushing the
2835 * pending I/O should the task end up blocking between blk_start_plug() and
2836 * blk_finish_plug(). This is important from a performance perspective, but
2837 * also ensures that we don't deadlock. For instance, if the task is blocking
2838 * for a memory allocation, memory reclaim could end up wanting to free a
2839 * page belonging to that request that is currently residing in our private
2840 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
2841 * this kind of deadlock.
2843 void blk_start_plug(struct blk_plug
*plug
)
2845 struct task_struct
*tsk
= current
;
2847 plug
->magic
= PLUG_MAGIC
;
2848 INIT_LIST_HEAD(&plug
->list
);
2849 INIT_LIST_HEAD(&plug
->cb_list
);
2850 plug
->should_sort
= 0;
2853 * If this is a nested plug, don't actually assign it. It will be
2854 * flushed on its own.
2858 * Store ordering should not be needed here, since a potential
2859 * preempt will imply a full memory barrier
2864 EXPORT_SYMBOL(blk_start_plug
);
2866 static int plug_rq_cmp(void *priv
, struct list_head
*a
, struct list_head
*b
)
2868 struct request
*rqa
= container_of(a
, struct request
, queuelist
);
2869 struct request
*rqb
= container_of(b
, struct request
, queuelist
);
2871 return !(rqa
->q
< rqb
->q
||
2872 (rqa
->q
== rqb
->q
&& blk_rq_pos(rqa
) < blk_rq_pos(rqb
)));
2876 * If 'from_schedule' is true, then postpone the dispatch of requests
2877 * until a safe kblockd context. We due this to avoid accidental big
2878 * additional stack usage in driver dispatch, in places where the originally
2879 * plugger did not intend it.
2881 static void queue_unplugged(struct request_queue
*q
, unsigned int depth
,
2883 __releases(q
->queue_lock
)
2885 trace_block_unplug(q
, depth
, !from_schedule
);
2888 * Don't mess with dead queue.
2890 if (unlikely(blk_queue_dead(q
))) {
2891 spin_unlock(q
->queue_lock
);
2896 * If we are punting this to kblockd, then we can safely drop
2897 * the queue_lock before waking kblockd (which needs to take
2900 if (from_schedule
) {
2901 spin_unlock(q
->queue_lock
);
2902 blk_run_queue_async(q
);
2905 spin_unlock(q
->queue_lock
);
2910 static void flush_plug_callbacks(struct blk_plug
*plug
, bool from_schedule
)
2912 LIST_HEAD(callbacks
);
2914 while (!list_empty(&plug
->cb_list
)) {
2915 list_splice_init(&plug
->cb_list
, &callbacks
);
2917 while (!list_empty(&callbacks
)) {
2918 struct blk_plug_cb
*cb
= list_first_entry(&callbacks
,
2921 list_del(&cb
->list
);
2922 cb
->callback(cb
, from_schedule
);
2927 struct blk_plug_cb
*blk_check_plugged(blk_plug_cb_fn unplug
, void *data
,
2930 struct blk_plug
*plug
= current
->plug
;
2931 struct blk_plug_cb
*cb
;
2936 list_for_each_entry(cb
, &plug
->cb_list
, list
)
2937 if (cb
->callback
== unplug
&& cb
->data
== data
)
2940 /* Not currently on the callback list */
2941 BUG_ON(size
< sizeof(*cb
));
2942 cb
= kzalloc(size
, GFP_ATOMIC
);
2945 cb
->callback
= unplug
;
2946 list_add(&cb
->list
, &plug
->cb_list
);
2950 EXPORT_SYMBOL(blk_check_plugged
);
2952 void blk_flush_plug_list(struct blk_plug
*plug
, bool from_schedule
)
2954 struct request_queue
*q
;
2955 unsigned long flags
;
2960 BUG_ON(plug
->magic
!= PLUG_MAGIC
);
2962 flush_plug_callbacks(plug
, from_schedule
);
2963 if (list_empty(&plug
->list
))
2966 list_splice_init(&plug
->list
, &list
);
2968 if (plug
->should_sort
) {
2969 list_sort(NULL
, &list
, plug_rq_cmp
);
2970 plug
->should_sort
= 0;
2977 * Save and disable interrupts here, to avoid doing it for every
2978 * queue lock we have to take.
2980 local_irq_save(flags
);
2981 while (!list_empty(&list
)) {
2982 rq
= list_entry_rq(list
.next
);
2983 list_del_init(&rq
->queuelist
);
2987 * This drops the queue lock
2990 queue_unplugged(q
, depth
, from_schedule
);
2993 spin_lock(q
->queue_lock
);
2997 * Short-circuit if @q is dead
2999 if (unlikely(blk_queue_dead(q
))) {
3000 __blk_end_request_all(rq
, -ENODEV
);
3005 * rq is already accounted, so use raw insert
3007 if (rq
->cmd_flags
& (REQ_FLUSH
| REQ_FUA
))
3008 __elv_add_request(q
, rq
, ELEVATOR_INSERT_FLUSH
);
3010 __elv_add_request(q
, rq
, ELEVATOR_INSERT_SORT_MERGE
);
3016 * This drops the queue lock
3019 queue_unplugged(q
, depth
, from_schedule
);
3021 local_irq_restore(flags
);
3024 void blk_finish_plug(struct blk_plug
*plug
)
3026 blk_flush_plug_list(plug
, false);
3028 if (plug
== current
->plug
)
3029 current
->plug
= NULL
;
3031 EXPORT_SYMBOL(blk_finish_plug
);
3033 int __init
blk_dev_init(void)
3035 BUILD_BUG_ON(__REQ_NR_BITS
> 8 *
3036 sizeof(((struct request
*)0)->cmd_flags
));
3038 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
3039 kblockd_workqueue
= alloc_workqueue("kblockd",
3040 WQ_MEM_RECLAIM
| WQ_HIGHPRI
, 0);
3041 if (!kblockd_workqueue
)
3042 panic("Failed to create kblockd\n");
3044 request_cachep
= kmem_cache_create("blkdev_requests",
3045 sizeof(struct request
), 0, SLAB_PANIC
, NULL
);
3047 blk_requestq_cachep
= kmem_cache_create("blkdev_queue",
3048 sizeof(struct request_queue
), 0, SLAB_PANIC
, NULL
);