cgroup: initialize cgrp->allcg_node in init_cgroup_housekeeping()
[linux-2.6/libata-dev.git] / kernel / cgroup.c
blobed0e177c465056f6170f647198a495f133a597e8
1 /*
2 * Generic process-grouping system.
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
29 #include <linux/cgroup.h>
30 #include <linux/cred.h>
31 #include <linux/ctype.h>
32 #include <linux/errno.h>
33 #include <linux/fs.h>
34 #include <linux/init_task.h>
35 #include <linux/kernel.h>
36 #include <linux/list.h>
37 #include <linux/mm.h>
38 #include <linux/mutex.h>
39 #include <linux/mount.h>
40 #include <linux/pagemap.h>
41 #include <linux/proc_fs.h>
42 #include <linux/rcupdate.h>
43 #include <linux/sched.h>
44 #include <linux/backing-dev.h>
45 #include <linux/seq_file.h>
46 #include <linux/slab.h>
47 #include <linux/magic.h>
48 #include <linux/spinlock.h>
49 #include <linux/string.h>
50 #include <linux/sort.h>
51 #include <linux/kmod.h>
52 #include <linux/module.h>
53 #include <linux/delayacct.h>
54 #include <linux/cgroupstats.h>
55 #include <linux/hash.h>
56 #include <linux/namei.h>
57 #include <linux/pid_namespace.h>
58 #include <linux/idr.h>
59 #include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
60 #include <linux/eventfd.h>
61 #include <linux/poll.h>
62 #include <linux/flex_array.h> /* used in cgroup_attach_proc */
63 #include <linux/kthread.h>
65 #include <linux/atomic.h>
67 /* css deactivation bias, makes css->refcnt negative to deny new trygets */
68 #define CSS_DEACT_BIAS INT_MIN
71 * cgroup_mutex is the master lock. Any modification to cgroup or its
72 * hierarchy must be performed while holding it.
74 * cgroup_root_mutex nests inside cgroup_mutex and should be held to modify
75 * cgroupfs_root of any cgroup hierarchy - subsys list, flags,
76 * release_agent_path and so on. Modifying requires both cgroup_mutex and
77 * cgroup_root_mutex. Readers can acquire either of the two. This is to
78 * break the following locking order cycle.
80 * A. cgroup_mutex -> cred_guard_mutex -> s_type->i_mutex_key -> namespace_sem
81 * B. namespace_sem -> cgroup_mutex
83 * B happens only through cgroup_show_options() and using cgroup_root_mutex
84 * breaks it.
86 static DEFINE_MUTEX(cgroup_mutex);
87 static DEFINE_MUTEX(cgroup_root_mutex);
90 * Generate an array of cgroup subsystem pointers. At boot time, this is
91 * populated with the built in subsystems, and modular subsystems are
92 * registered after that. The mutable section of this array is protected by
93 * cgroup_mutex.
95 #define SUBSYS(_x) [_x ## _subsys_id] = &_x ## _subsys,
96 #define IS_SUBSYS_ENABLED(option) IS_BUILTIN(option)
97 static struct cgroup_subsys *subsys[CGROUP_SUBSYS_COUNT] = {
98 #include <linux/cgroup_subsys.h>
101 #define MAX_CGROUP_ROOT_NAMELEN 64
104 * A cgroupfs_root represents the root of a cgroup hierarchy,
105 * and may be associated with a superblock to form an active
106 * hierarchy
108 struct cgroupfs_root {
109 struct super_block *sb;
112 * The bitmask of subsystems intended to be attached to this
113 * hierarchy
115 unsigned long subsys_mask;
117 /* Unique id for this hierarchy. */
118 int hierarchy_id;
120 /* The bitmask of subsystems currently attached to this hierarchy */
121 unsigned long actual_subsys_mask;
123 /* A list running through the attached subsystems */
124 struct list_head subsys_list;
126 /* The root cgroup for this hierarchy */
127 struct cgroup top_cgroup;
129 /* Tracks how many cgroups are currently defined in hierarchy.*/
130 int number_of_cgroups;
132 /* A list running through the active hierarchies */
133 struct list_head root_list;
135 /* All cgroups on this root, cgroup_mutex protected */
136 struct list_head allcg_list;
138 /* Hierarchy-specific flags */
139 unsigned long flags;
141 /* The path to use for release notifications. */
142 char release_agent_path[PATH_MAX];
144 /* The name for this hierarchy - may be empty */
145 char name[MAX_CGROUP_ROOT_NAMELEN];
149 * The "rootnode" hierarchy is the "dummy hierarchy", reserved for the
150 * subsystems that are otherwise unattached - it never has more than a
151 * single cgroup, and all tasks are part of that cgroup.
153 static struct cgroupfs_root rootnode;
156 * cgroupfs file entry, pointed to from leaf dentry->d_fsdata.
158 struct cfent {
159 struct list_head node;
160 struct dentry *dentry;
161 struct cftype *type;
165 * CSS ID -- ID per subsys's Cgroup Subsys State(CSS). used only when
166 * cgroup_subsys->use_id != 0.
168 #define CSS_ID_MAX (65535)
169 struct css_id {
171 * The css to which this ID points. This pointer is set to valid value
172 * after cgroup is populated. If cgroup is removed, this will be NULL.
173 * This pointer is expected to be RCU-safe because destroy()
174 * is called after synchronize_rcu(). But for safe use, css_tryget()
175 * should be used for avoiding race.
177 struct cgroup_subsys_state __rcu *css;
179 * ID of this css.
181 unsigned short id;
183 * Depth in hierarchy which this ID belongs to.
185 unsigned short depth;
187 * ID is freed by RCU. (and lookup routine is RCU safe.)
189 struct rcu_head rcu_head;
191 * Hierarchy of CSS ID belongs to.
193 unsigned short stack[0]; /* Array of Length (depth+1) */
197 * cgroup_event represents events which userspace want to receive.
199 struct cgroup_event {
201 * Cgroup which the event belongs to.
203 struct cgroup *cgrp;
205 * Control file which the event associated.
207 struct cftype *cft;
209 * eventfd to signal userspace about the event.
211 struct eventfd_ctx *eventfd;
213 * Each of these stored in a list by the cgroup.
215 struct list_head list;
217 * All fields below needed to unregister event when
218 * userspace closes eventfd.
220 poll_table pt;
221 wait_queue_head_t *wqh;
222 wait_queue_t wait;
223 struct work_struct remove;
226 /* The list of hierarchy roots */
228 static LIST_HEAD(roots);
229 static int root_count;
231 static DEFINE_IDA(hierarchy_ida);
232 static int next_hierarchy_id;
233 static DEFINE_SPINLOCK(hierarchy_id_lock);
235 /* dummytop is a shorthand for the dummy hierarchy's top cgroup */
236 #define dummytop (&rootnode.top_cgroup)
238 /* This flag indicates whether tasks in the fork and exit paths should
239 * check for fork/exit handlers to call. This avoids us having to do
240 * extra work in the fork/exit path if none of the subsystems need to
241 * be called.
243 static int need_forkexit_callback __read_mostly;
245 #ifdef CONFIG_PROVE_LOCKING
246 int cgroup_lock_is_held(void)
248 return lockdep_is_held(&cgroup_mutex);
250 #else /* #ifdef CONFIG_PROVE_LOCKING */
251 int cgroup_lock_is_held(void)
253 return mutex_is_locked(&cgroup_mutex);
255 #endif /* #else #ifdef CONFIG_PROVE_LOCKING */
257 EXPORT_SYMBOL_GPL(cgroup_lock_is_held);
259 static int css_unbias_refcnt(int refcnt)
261 return refcnt >= 0 ? refcnt : refcnt - CSS_DEACT_BIAS;
264 /* the current nr of refs, always >= 0 whether @css is deactivated or not */
265 static int css_refcnt(struct cgroup_subsys_state *css)
267 int v = atomic_read(&css->refcnt);
269 return css_unbias_refcnt(v);
272 /* convenient tests for these bits */
273 inline int cgroup_is_removed(const struct cgroup *cgrp)
275 return test_bit(CGRP_REMOVED, &cgrp->flags);
278 /* bits in struct cgroupfs_root flags field */
279 enum {
280 ROOT_NOPREFIX, /* mounted subsystems have no named prefix */
281 ROOT_XATTR, /* supports extended attributes */
284 static int cgroup_is_releasable(const struct cgroup *cgrp)
286 const int bits =
287 (1 << CGRP_RELEASABLE) |
288 (1 << CGRP_NOTIFY_ON_RELEASE);
289 return (cgrp->flags & bits) == bits;
292 static int notify_on_release(const struct cgroup *cgrp)
294 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
297 static int clone_children(const struct cgroup *cgrp)
299 return test_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
303 * for_each_subsys() allows you to iterate on each subsystem attached to
304 * an active hierarchy
306 #define for_each_subsys(_root, _ss) \
307 list_for_each_entry(_ss, &_root->subsys_list, sibling)
309 /* for_each_active_root() allows you to iterate across the active hierarchies */
310 #define for_each_active_root(_root) \
311 list_for_each_entry(_root, &roots, root_list)
313 static inline struct cgroup *__d_cgrp(struct dentry *dentry)
315 return dentry->d_fsdata;
318 static inline struct cfent *__d_cfe(struct dentry *dentry)
320 return dentry->d_fsdata;
323 static inline struct cftype *__d_cft(struct dentry *dentry)
325 return __d_cfe(dentry)->type;
328 /* the list of cgroups eligible for automatic release. Protected by
329 * release_list_lock */
330 static LIST_HEAD(release_list);
331 static DEFINE_RAW_SPINLOCK(release_list_lock);
332 static void cgroup_release_agent(struct work_struct *work);
333 static DECLARE_WORK(release_agent_work, cgroup_release_agent);
334 static void check_for_release(struct cgroup *cgrp);
336 /* Link structure for associating css_set objects with cgroups */
337 struct cg_cgroup_link {
339 * List running through cg_cgroup_links associated with a
340 * cgroup, anchored on cgroup->css_sets
342 struct list_head cgrp_link_list;
343 struct cgroup *cgrp;
345 * List running through cg_cgroup_links pointing at a
346 * single css_set object, anchored on css_set->cg_links
348 struct list_head cg_link_list;
349 struct css_set *cg;
352 /* The default css_set - used by init and its children prior to any
353 * hierarchies being mounted. It contains a pointer to the root state
354 * for each subsystem. Also used to anchor the list of css_sets. Not
355 * reference-counted, to improve performance when child cgroups
356 * haven't been created.
359 static struct css_set init_css_set;
360 static struct cg_cgroup_link init_css_set_link;
362 static int cgroup_init_idr(struct cgroup_subsys *ss,
363 struct cgroup_subsys_state *css);
365 /* css_set_lock protects the list of css_set objects, and the
366 * chain of tasks off each css_set. Nests outside task->alloc_lock
367 * due to cgroup_iter_start() */
368 static DEFINE_RWLOCK(css_set_lock);
369 static int css_set_count;
372 * hash table for cgroup groups. This improves the performance to find
373 * an existing css_set. This hash doesn't (currently) take into
374 * account cgroups in empty hierarchies.
376 #define CSS_SET_HASH_BITS 7
377 #define CSS_SET_TABLE_SIZE (1 << CSS_SET_HASH_BITS)
378 static struct hlist_head css_set_table[CSS_SET_TABLE_SIZE];
380 static struct hlist_head *css_set_hash(struct cgroup_subsys_state *css[])
382 int i;
383 int index;
384 unsigned long tmp = 0UL;
386 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++)
387 tmp += (unsigned long)css[i];
388 tmp = (tmp >> 16) ^ tmp;
390 index = hash_long(tmp, CSS_SET_HASH_BITS);
392 return &css_set_table[index];
395 /* We don't maintain the lists running through each css_set to its
396 * task until after the first call to cgroup_iter_start(). This
397 * reduces the fork()/exit() overhead for people who have cgroups
398 * compiled into their kernel but not actually in use */
399 static int use_task_css_set_links __read_mostly;
401 static void __put_css_set(struct css_set *cg, int taskexit)
403 struct cg_cgroup_link *link;
404 struct cg_cgroup_link *saved_link;
406 * Ensure that the refcount doesn't hit zero while any readers
407 * can see it. Similar to atomic_dec_and_lock(), but for an
408 * rwlock
410 if (atomic_add_unless(&cg->refcount, -1, 1))
411 return;
412 write_lock(&css_set_lock);
413 if (!atomic_dec_and_test(&cg->refcount)) {
414 write_unlock(&css_set_lock);
415 return;
418 /* This css_set is dead. unlink it and release cgroup refcounts */
419 hlist_del(&cg->hlist);
420 css_set_count--;
422 list_for_each_entry_safe(link, saved_link, &cg->cg_links,
423 cg_link_list) {
424 struct cgroup *cgrp = link->cgrp;
425 list_del(&link->cg_link_list);
426 list_del(&link->cgrp_link_list);
427 if (atomic_dec_and_test(&cgrp->count) &&
428 notify_on_release(cgrp)) {
429 if (taskexit)
430 set_bit(CGRP_RELEASABLE, &cgrp->flags);
431 check_for_release(cgrp);
434 kfree(link);
437 write_unlock(&css_set_lock);
438 kfree_rcu(cg, rcu_head);
442 * refcounted get/put for css_set objects
444 static inline void get_css_set(struct css_set *cg)
446 atomic_inc(&cg->refcount);
449 static inline void put_css_set(struct css_set *cg)
451 __put_css_set(cg, 0);
454 static inline void put_css_set_taskexit(struct css_set *cg)
456 __put_css_set(cg, 1);
460 * compare_css_sets - helper function for find_existing_css_set().
461 * @cg: candidate css_set being tested
462 * @old_cg: existing css_set for a task
463 * @new_cgrp: cgroup that's being entered by the task
464 * @template: desired set of css pointers in css_set (pre-calculated)
466 * Returns true if "cg" matches "old_cg" except for the hierarchy
467 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
469 static bool compare_css_sets(struct css_set *cg,
470 struct css_set *old_cg,
471 struct cgroup *new_cgrp,
472 struct cgroup_subsys_state *template[])
474 struct list_head *l1, *l2;
476 if (memcmp(template, cg->subsys, sizeof(cg->subsys))) {
477 /* Not all subsystems matched */
478 return false;
482 * Compare cgroup pointers in order to distinguish between
483 * different cgroups in heirarchies with no subsystems. We
484 * could get by with just this check alone (and skip the
485 * memcmp above) but on most setups the memcmp check will
486 * avoid the need for this more expensive check on almost all
487 * candidates.
490 l1 = &cg->cg_links;
491 l2 = &old_cg->cg_links;
492 while (1) {
493 struct cg_cgroup_link *cgl1, *cgl2;
494 struct cgroup *cg1, *cg2;
496 l1 = l1->next;
497 l2 = l2->next;
498 /* See if we reached the end - both lists are equal length. */
499 if (l1 == &cg->cg_links) {
500 BUG_ON(l2 != &old_cg->cg_links);
501 break;
502 } else {
503 BUG_ON(l2 == &old_cg->cg_links);
505 /* Locate the cgroups associated with these links. */
506 cgl1 = list_entry(l1, struct cg_cgroup_link, cg_link_list);
507 cgl2 = list_entry(l2, struct cg_cgroup_link, cg_link_list);
508 cg1 = cgl1->cgrp;
509 cg2 = cgl2->cgrp;
510 /* Hierarchies should be linked in the same order. */
511 BUG_ON(cg1->root != cg2->root);
514 * If this hierarchy is the hierarchy of the cgroup
515 * that's changing, then we need to check that this
516 * css_set points to the new cgroup; if it's any other
517 * hierarchy, then this css_set should point to the
518 * same cgroup as the old css_set.
520 if (cg1->root == new_cgrp->root) {
521 if (cg1 != new_cgrp)
522 return false;
523 } else {
524 if (cg1 != cg2)
525 return false;
528 return true;
532 * find_existing_css_set() is a helper for
533 * find_css_set(), and checks to see whether an existing
534 * css_set is suitable.
536 * oldcg: the cgroup group that we're using before the cgroup
537 * transition
539 * cgrp: the cgroup that we're moving into
541 * template: location in which to build the desired set of subsystem
542 * state objects for the new cgroup group
544 static struct css_set *find_existing_css_set(
545 struct css_set *oldcg,
546 struct cgroup *cgrp,
547 struct cgroup_subsys_state *template[])
549 int i;
550 struct cgroupfs_root *root = cgrp->root;
551 struct hlist_head *hhead;
552 struct hlist_node *node;
553 struct css_set *cg;
556 * Build the set of subsystem state objects that we want to see in the
557 * new css_set. while subsystems can change globally, the entries here
558 * won't change, so no need for locking.
560 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
561 if (root->subsys_mask & (1UL << i)) {
562 /* Subsystem is in this hierarchy. So we want
563 * the subsystem state from the new
564 * cgroup */
565 template[i] = cgrp->subsys[i];
566 } else {
567 /* Subsystem is not in this hierarchy, so we
568 * don't want to change the subsystem state */
569 template[i] = oldcg->subsys[i];
573 hhead = css_set_hash(template);
574 hlist_for_each_entry(cg, node, hhead, hlist) {
575 if (!compare_css_sets(cg, oldcg, cgrp, template))
576 continue;
578 /* This css_set matches what we need */
579 return cg;
582 /* No existing cgroup group matched */
583 return NULL;
586 static void free_cg_links(struct list_head *tmp)
588 struct cg_cgroup_link *link;
589 struct cg_cgroup_link *saved_link;
591 list_for_each_entry_safe(link, saved_link, tmp, cgrp_link_list) {
592 list_del(&link->cgrp_link_list);
593 kfree(link);
598 * allocate_cg_links() allocates "count" cg_cgroup_link structures
599 * and chains them on tmp through their cgrp_link_list fields. Returns 0 on
600 * success or a negative error
602 static int allocate_cg_links(int count, struct list_head *tmp)
604 struct cg_cgroup_link *link;
605 int i;
606 INIT_LIST_HEAD(tmp);
607 for (i = 0; i < count; i++) {
608 link = kmalloc(sizeof(*link), GFP_KERNEL);
609 if (!link) {
610 free_cg_links(tmp);
611 return -ENOMEM;
613 list_add(&link->cgrp_link_list, tmp);
615 return 0;
619 * link_css_set - a helper function to link a css_set to a cgroup
620 * @tmp_cg_links: cg_cgroup_link objects allocated by allocate_cg_links()
621 * @cg: the css_set to be linked
622 * @cgrp: the destination cgroup
624 static void link_css_set(struct list_head *tmp_cg_links,
625 struct css_set *cg, struct cgroup *cgrp)
627 struct cg_cgroup_link *link;
629 BUG_ON(list_empty(tmp_cg_links));
630 link = list_first_entry(tmp_cg_links, struct cg_cgroup_link,
631 cgrp_link_list);
632 link->cg = cg;
633 link->cgrp = cgrp;
634 atomic_inc(&cgrp->count);
635 list_move(&link->cgrp_link_list, &cgrp->css_sets);
637 * Always add links to the tail of the list so that the list
638 * is sorted by order of hierarchy creation
640 list_add_tail(&link->cg_link_list, &cg->cg_links);
644 * find_css_set() takes an existing cgroup group and a
645 * cgroup object, and returns a css_set object that's
646 * equivalent to the old group, but with the given cgroup
647 * substituted into the appropriate hierarchy. Must be called with
648 * cgroup_mutex held
650 static struct css_set *find_css_set(
651 struct css_set *oldcg, struct cgroup *cgrp)
653 struct css_set *res;
654 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT];
656 struct list_head tmp_cg_links;
658 struct hlist_head *hhead;
659 struct cg_cgroup_link *link;
661 /* First see if we already have a cgroup group that matches
662 * the desired set */
663 read_lock(&css_set_lock);
664 res = find_existing_css_set(oldcg, cgrp, template);
665 if (res)
666 get_css_set(res);
667 read_unlock(&css_set_lock);
669 if (res)
670 return res;
672 res = kmalloc(sizeof(*res), GFP_KERNEL);
673 if (!res)
674 return NULL;
676 /* Allocate all the cg_cgroup_link objects that we'll need */
677 if (allocate_cg_links(root_count, &tmp_cg_links) < 0) {
678 kfree(res);
679 return NULL;
682 atomic_set(&res->refcount, 1);
683 INIT_LIST_HEAD(&res->cg_links);
684 INIT_LIST_HEAD(&res->tasks);
685 INIT_HLIST_NODE(&res->hlist);
687 /* Copy the set of subsystem state objects generated in
688 * find_existing_css_set() */
689 memcpy(res->subsys, template, sizeof(res->subsys));
691 write_lock(&css_set_lock);
692 /* Add reference counts and links from the new css_set. */
693 list_for_each_entry(link, &oldcg->cg_links, cg_link_list) {
694 struct cgroup *c = link->cgrp;
695 if (c->root == cgrp->root)
696 c = cgrp;
697 link_css_set(&tmp_cg_links, res, c);
700 BUG_ON(!list_empty(&tmp_cg_links));
702 css_set_count++;
704 /* Add this cgroup group to the hash table */
705 hhead = css_set_hash(res->subsys);
706 hlist_add_head(&res->hlist, hhead);
708 write_unlock(&css_set_lock);
710 return res;
714 * Return the cgroup for "task" from the given hierarchy. Must be
715 * called with cgroup_mutex held.
717 static struct cgroup *task_cgroup_from_root(struct task_struct *task,
718 struct cgroupfs_root *root)
720 struct css_set *css;
721 struct cgroup *res = NULL;
723 BUG_ON(!mutex_is_locked(&cgroup_mutex));
724 read_lock(&css_set_lock);
726 * No need to lock the task - since we hold cgroup_mutex the
727 * task can't change groups, so the only thing that can happen
728 * is that it exits and its css is set back to init_css_set.
730 css = task->cgroups;
731 if (css == &init_css_set) {
732 res = &root->top_cgroup;
733 } else {
734 struct cg_cgroup_link *link;
735 list_for_each_entry(link, &css->cg_links, cg_link_list) {
736 struct cgroup *c = link->cgrp;
737 if (c->root == root) {
738 res = c;
739 break;
743 read_unlock(&css_set_lock);
744 BUG_ON(!res);
745 return res;
749 * There is one global cgroup mutex. We also require taking
750 * task_lock() when dereferencing a task's cgroup subsys pointers.
751 * See "The task_lock() exception", at the end of this comment.
753 * A task must hold cgroup_mutex to modify cgroups.
755 * Any task can increment and decrement the count field without lock.
756 * So in general, code holding cgroup_mutex can't rely on the count
757 * field not changing. However, if the count goes to zero, then only
758 * cgroup_attach_task() can increment it again. Because a count of zero
759 * means that no tasks are currently attached, therefore there is no
760 * way a task attached to that cgroup can fork (the other way to
761 * increment the count). So code holding cgroup_mutex can safely
762 * assume that if the count is zero, it will stay zero. Similarly, if
763 * a task holds cgroup_mutex on a cgroup with zero count, it
764 * knows that the cgroup won't be removed, as cgroup_rmdir()
765 * needs that mutex.
767 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
768 * (usually) take cgroup_mutex. These are the two most performance
769 * critical pieces of code here. The exception occurs on cgroup_exit(),
770 * when a task in a notify_on_release cgroup exits. Then cgroup_mutex
771 * is taken, and if the cgroup count is zero, a usermode call made
772 * to the release agent with the name of the cgroup (path relative to
773 * the root of cgroup file system) as the argument.
775 * A cgroup can only be deleted if both its 'count' of using tasks
776 * is zero, and its list of 'children' cgroups is empty. Since all
777 * tasks in the system use _some_ cgroup, and since there is always at
778 * least one task in the system (init, pid == 1), therefore, top_cgroup
779 * always has either children cgroups and/or using tasks. So we don't
780 * need a special hack to ensure that top_cgroup cannot be deleted.
782 * The task_lock() exception
784 * The need for this exception arises from the action of
785 * cgroup_attach_task(), which overwrites one tasks cgroup pointer with
786 * another. It does so using cgroup_mutex, however there are
787 * several performance critical places that need to reference
788 * task->cgroup without the expense of grabbing a system global
789 * mutex. Therefore except as noted below, when dereferencing or, as
790 * in cgroup_attach_task(), modifying a task'ss cgroup pointer we use
791 * task_lock(), which acts on a spinlock (task->alloc_lock) already in
792 * the task_struct routinely used for such matters.
794 * P.S. One more locking exception. RCU is used to guard the
795 * update of a tasks cgroup pointer by cgroup_attach_task()
799 * cgroup_lock - lock out any changes to cgroup structures
802 void cgroup_lock(void)
804 mutex_lock(&cgroup_mutex);
806 EXPORT_SYMBOL_GPL(cgroup_lock);
809 * cgroup_unlock - release lock on cgroup changes
811 * Undo the lock taken in a previous cgroup_lock() call.
813 void cgroup_unlock(void)
815 mutex_unlock(&cgroup_mutex);
817 EXPORT_SYMBOL_GPL(cgroup_unlock);
820 * A couple of forward declarations required, due to cyclic reference loop:
821 * cgroup_mkdir -> cgroup_create -> cgroup_populate_dir ->
822 * cgroup_add_file -> cgroup_create_file -> cgroup_dir_inode_operations
823 * -> cgroup_mkdir.
826 static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode);
827 static struct dentry *cgroup_lookup(struct inode *, struct dentry *, unsigned int);
828 static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry);
829 static int cgroup_populate_dir(struct cgroup *cgrp, bool base_files,
830 unsigned long subsys_mask);
831 static const struct inode_operations cgroup_dir_inode_operations;
832 static const struct file_operations proc_cgroupstats_operations;
834 static struct backing_dev_info cgroup_backing_dev_info = {
835 .name = "cgroup",
836 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK,
839 static int alloc_css_id(struct cgroup_subsys *ss,
840 struct cgroup *parent, struct cgroup *child);
842 static struct inode *cgroup_new_inode(umode_t mode, struct super_block *sb)
844 struct inode *inode = new_inode(sb);
846 if (inode) {
847 inode->i_ino = get_next_ino();
848 inode->i_mode = mode;
849 inode->i_uid = current_fsuid();
850 inode->i_gid = current_fsgid();
851 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
852 inode->i_mapping->backing_dev_info = &cgroup_backing_dev_info;
854 return inode;
857 static void cgroup_diput(struct dentry *dentry, struct inode *inode)
859 /* is dentry a directory ? if so, kfree() associated cgroup */
860 if (S_ISDIR(inode->i_mode)) {
861 struct cgroup *cgrp = dentry->d_fsdata;
862 struct cgroup_subsys *ss;
863 BUG_ON(!(cgroup_is_removed(cgrp)));
864 /* It's possible for external users to be holding css
865 * reference counts on a cgroup; css_put() needs to
866 * be able to access the cgroup after decrementing
867 * the reference count in order to know if it needs to
868 * queue the cgroup to be handled by the release
869 * agent */
870 synchronize_rcu();
872 mutex_lock(&cgroup_mutex);
874 * Release the subsystem state objects.
876 for_each_subsys(cgrp->root, ss)
877 ss->destroy(cgrp);
879 cgrp->root->number_of_cgroups--;
880 mutex_unlock(&cgroup_mutex);
883 * Drop the active superblock reference that we took when we
884 * created the cgroup
886 deactivate_super(cgrp->root->sb);
889 * if we're getting rid of the cgroup, refcount should ensure
890 * that there are no pidlists left.
892 BUG_ON(!list_empty(&cgrp->pidlists));
894 simple_xattrs_free(&cgrp->xattrs);
896 kfree_rcu(cgrp, rcu_head);
897 } else {
898 struct cfent *cfe = __d_cfe(dentry);
899 struct cgroup *cgrp = dentry->d_parent->d_fsdata;
900 struct cftype *cft = cfe->type;
902 WARN_ONCE(!list_empty(&cfe->node) &&
903 cgrp != &cgrp->root->top_cgroup,
904 "cfe still linked for %s\n", cfe->type->name);
905 kfree(cfe);
906 simple_xattrs_free(&cft->xattrs);
908 iput(inode);
911 static int cgroup_delete(const struct dentry *d)
913 return 1;
916 static void remove_dir(struct dentry *d)
918 struct dentry *parent = dget(d->d_parent);
920 d_delete(d);
921 simple_rmdir(parent->d_inode, d);
922 dput(parent);
925 static int cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
927 struct cfent *cfe;
929 lockdep_assert_held(&cgrp->dentry->d_inode->i_mutex);
930 lockdep_assert_held(&cgroup_mutex);
932 list_for_each_entry(cfe, &cgrp->files, node) {
933 struct dentry *d = cfe->dentry;
935 if (cft && cfe->type != cft)
936 continue;
938 dget(d);
939 d_delete(d);
940 simple_unlink(cgrp->dentry->d_inode, d);
941 list_del_init(&cfe->node);
942 dput(d);
944 return 0;
946 return -ENOENT;
950 * cgroup_clear_directory - selective removal of base and subsystem files
951 * @dir: directory containing the files
952 * @base_files: true if the base files should be removed
953 * @subsys_mask: mask of the subsystem ids whose files should be removed
955 static void cgroup_clear_directory(struct dentry *dir, bool base_files,
956 unsigned long subsys_mask)
958 struct cgroup *cgrp = __d_cgrp(dir);
959 struct cgroup_subsys *ss;
961 for_each_subsys(cgrp->root, ss) {
962 struct cftype_set *set;
963 if (!test_bit(ss->subsys_id, &subsys_mask))
964 continue;
965 list_for_each_entry(set, &ss->cftsets, node)
966 cgroup_rm_file(cgrp, set->cfts);
968 if (base_files) {
969 while (!list_empty(&cgrp->files))
970 cgroup_rm_file(cgrp, NULL);
975 * NOTE : the dentry must have been dget()'ed
977 static void cgroup_d_remove_dir(struct dentry *dentry)
979 struct dentry *parent;
980 struct cgroupfs_root *root = dentry->d_sb->s_fs_info;
982 cgroup_clear_directory(dentry, true, root->subsys_mask);
984 parent = dentry->d_parent;
985 spin_lock(&parent->d_lock);
986 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
987 list_del_init(&dentry->d_u.d_child);
988 spin_unlock(&dentry->d_lock);
989 spin_unlock(&parent->d_lock);
990 remove_dir(dentry);
994 * Call with cgroup_mutex held. Drops reference counts on modules, including
995 * any duplicate ones that parse_cgroupfs_options took. If this function
996 * returns an error, no reference counts are touched.
998 static int rebind_subsystems(struct cgroupfs_root *root,
999 unsigned long final_subsys_mask)
1001 unsigned long added_mask, removed_mask;
1002 struct cgroup *cgrp = &root->top_cgroup;
1003 int i;
1005 BUG_ON(!mutex_is_locked(&cgroup_mutex));
1006 BUG_ON(!mutex_is_locked(&cgroup_root_mutex));
1008 removed_mask = root->actual_subsys_mask & ~final_subsys_mask;
1009 added_mask = final_subsys_mask & ~root->actual_subsys_mask;
1010 /* Check that any added subsystems are currently free */
1011 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1012 unsigned long bit = 1UL << i;
1013 struct cgroup_subsys *ss = subsys[i];
1014 if (!(bit & added_mask))
1015 continue;
1017 * Nobody should tell us to do a subsys that doesn't exist:
1018 * parse_cgroupfs_options should catch that case and refcounts
1019 * ensure that subsystems won't disappear once selected.
1021 BUG_ON(ss == NULL);
1022 if (ss->root != &rootnode) {
1023 /* Subsystem isn't free */
1024 return -EBUSY;
1028 /* Currently we don't handle adding/removing subsystems when
1029 * any child cgroups exist. This is theoretically supportable
1030 * but involves complex error handling, so it's being left until
1031 * later */
1032 if (root->number_of_cgroups > 1)
1033 return -EBUSY;
1035 /* Process each subsystem */
1036 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1037 struct cgroup_subsys *ss = subsys[i];
1038 unsigned long bit = 1UL << i;
1039 if (bit & added_mask) {
1040 /* We're binding this subsystem to this hierarchy */
1041 BUG_ON(ss == NULL);
1042 BUG_ON(cgrp->subsys[i]);
1043 BUG_ON(!dummytop->subsys[i]);
1044 BUG_ON(dummytop->subsys[i]->cgroup != dummytop);
1045 cgrp->subsys[i] = dummytop->subsys[i];
1046 cgrp->subsys[i]->cgroup = cgrp;
1047 list_move(&ss->sibling, &root->subsys_list);
1048 ss->root = root;
1049 if (ss->bind)
1050 ss->bind(cgrp);
1051 /* refcount was already taken, and we're keeping it */
1052 } else if (bit & removed_mask) {
1053 /* We're removing this subsystem */
1054 BUG_ON(ss == NULL);
1055 BUG_ON(cgrp->subsys[i] != dummytop->subsys[i]);
1056 BUG_ON(cgrp->subsys[i]->cgroup != cgrp);
1057 if (ss->bind)
1058 ss->bind(dummytop);
1059 dummytop->subsys[i]->cgroup = dummytop;
1060 cgrp->subsys[i] = NULL;
1061 subsys[i]->root = &rootnode;
1062 list_move(&ss->sibling, &rootnode.subsys_list);
1063 /* subsystem is now free - drop reference on module */
1064 module_put(ss->module);
1065 } else if (bit & final_subsys_mask) {
1066 /* Subsystem state should already exist */
1067 BUG_ON(ss == NULL);
1068 BUG_ON(!cgrp->subsys[i]);
1070 * a refcount was taken, but we already had one, so
1071 * drop the extra reference.
1073 module_put(ss->module);
1074 #ifdef CONFIG_MODULE_UNLOAD
1075 BUG_ON(ss->module && !module_refcount(ss->module));
1076 #endif
1077 } else {
1078 /* Subsystem state shouldn't exist */
1079 BUG_ON(cgrp->subsys[i]);
1082 root->subsys_mask = root->actual_subsys_mask = final_subsys_mask;
1083 synchronize_rcu();
1085 return 0;
1088 static int cgroup_show_options(struct seq_file *seq, struct dentry *dentry)
1090 struct cgroupfs_root *root = dentry->d_sb->s_fs_info;
1091 struct cgroup_subsys *ss;
1093 mutex_lock(&cgroup_root_mutex);
1094 for_each_subsys(root, ss)
1095 seq_printf(seq, ",%s", ss->name);
1096 if (test_bit(ROOT_NOPREFIX, &root->flags))
1097 seq_puts(seq, ",noprefix");
1098 if (test_bit(ROOT_XATTR, &root->flags))
1099 seq_puts(seq, ",xattr");
1100 if (strlen(root->release_agent_path))
1101 seq_printf(seq, ",release_agent=%s", root->release_agent_path);
1102 if (clone_children(&root->top_cgroup))
1103 seq_puts(seq, ",clone_children");
1104 if (strlen(root->name))
1105 seq_printf(seq, ",name=%s", root->name);
1106 mutex_unlock(&cgroup_root_mutex);
1107 return 0;
1110 struct cgroup_sb_opts {
1111 unsigned long subsys_mask;
1112 unsigned long flags;
1113 char *release_agent;
1114 bool clone_children;
1115 char *name;
1116 /* User explicitly requested empty subsystem */
1117 bool none;
1119 struct cgroupfs_root *new_root;
1124 * Convert a hierarchy specifier into a bitmask of subsystems and flags. Call
1125 * with cgroup_mutex held to protect the subsys[] array. This function takes
1126 * refcounts on subsystems to be used, unless it returns error, in which case
1127 * no refcounts are taken.
1129 static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
1131 char *token, *o = data;
1132 bool all_ss = false, one_ss = false;
1133 unsigned long mask = (unsigned long)-1;
1134 int i;
1135 bool module_pin_failed = false;
1137 BUG_ON(!mutex_is_locked(&cgroup_mutex));
1139 #ifdef CONFIG_CPUSETS
1140 mask = ~(1UL << cpuset_subsys_id);
1141 #endif
1143 memset(opts, 0, sizeof(*opts));
1145 while ((token = strsep(&o, ",")) != NULL) {
1146 if (!*token)
1147 return -EINVAL;
1148 if (!strcmp(token, "none")) {
1149 /* Explicitly have no subsystems */
1150 opts->none = true;
1151 continue;
1153 if (!strcmp(token, "all")) {
1154 /* Mutually exclusive option 'all' + subsystem name */
1155 if (one_ss)
1156 return -EINVAL;
1157 all_ss = true;
1158 continue;
1160 if (!strcmp(token, "noprefix")) {
1161 set_bit(ROOT_NOPREFIX, &opts->flags);
1162 continue;
1164 if (!strcmp(token, "clone_children")) {
1165 opts->clone_children = true;
1166 continue;
1168 if (!strcmp(token, "xattr")) {
1169 set_bit(ROOT_XATTR, &opts->flags);
1170 continue;
1172 if (!strncmp(token, "release_agent=", 14)) {
1173 /* Specifying two release agents is forbidden */
1174 if (opts->release_agent)
1175 return -EINVAL;
1176 opts->release_agent =
1177 kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
1178 if (!opts->release_agent)
1179 return -ENOMEM;
1180 continue;
1182 if (!strncmp(token, "name=", 5)) {
1183 const char *name = token + 5;
1184 /* Can't specify an empty name */
1185 if (!strlen(name))
1186 return -EINVAL;
1187 /* Must match [\w.-]+ */
1188 for (i = 0; i < strlen(name); i++) {
1189 char c = name[i];
1190 if (isalnum(c))
1191 continue;
1192 if ((c == '.') || (c == '-') || (c == '_'))
1193 continue;
1194 return -EINVAL;
1196 /* Specifying two names is forbidden */
1197 if (opts->name)
1198 return -EINVAL;
1199 opts->name = kstrndup(name,
1200 MAX_CGROUP_ROOT_NAMELEN - 1,
1201 GFP_KERNEL);
1202 if (!opts->name)
1203 return -ENOMEM;
1205 continue;
1208 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1209 struct cgroup_subsys *ss = subsys[i];
1210 if (ss == NULL)
1211 continue;
1212 if (strcmp(token, ss->name))
1213 continue;
1214 if (ss->disabled)
1215 continue;
1217 /* Mutually exclusive option 'all' + subsystem name */
1218 if (all_ss)
1219 return -EINVAL;
1220 set_bit(i, &opts->subsys_mask);
1221 one_ss = true;
1223 break;
1225 if (i == CGROUP_SUBSYS_COUNT)
1226 return -ENOENT;
1230 * If the 'all' option was specified select all the subsystems,
1231 * otherwise if 'none', 'name=' and a subsystem name options
1232 * were not specified, let's default to 'all'
1234 if (all_ss || (!one_ss && !opts->none && !opts->name)) {
1235 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1236 struct cgroup_subsys *ss = subsys[i];
1237 if (ss == NULL)
1238 continue;
1239 if (ss->disabled)
1240 continue;
1241 set_bit(i, &opts->subsys_mask);
1245 /* Consistency checks */
1248 * Option noprefix was introduced just for backward compatibility
1249 * with the old cpuset, so we allow noprefix only if mounting just
1250 * the cpuset subsystem.
1252 if (test_bit(ROOT_NOPREFIX, &opts->flags) &&
1253 (opts->subsys_mask & mask))
1254 return -EINVAL;
1257 /* Can't specify "none" and some subsystems */
1258 if (opts->subsys_mask && opts->none)
1259 return -EINVAL;
1262 * We either have to specify by name or by subsystems. (So all
1263 * empty hierarchies must have a name).
1265 if (!opts->subsys_mask && !opts->name)
1266 return -EINVAL;
1269 * Grab references on all the modules we'll need, so the subsystems
1270 * don't dance around before rebind_subsystems attaches them. This may
1271 * take duplicate reference counts on a subsystem that's already used,
1272 * but rebind_subsystems handles this case.
1274 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1275 unsigned long bit = 1UL << i;
1277 if (!(bit & opts->subsys_mask))
1278 continue;
1279 if (!try_module_get(subsys[i]->module)) {
1280 module_pin_failed = true;
1281 break;
1284 if (module_pin_failed) {
1286 * oops, one of the modules was going away. this means that we
1287 * raced with a module_delete call, and to the user this is
1288 * essentially a "subsystem doesn't exist" case.
1290 for (i--; i >= 0; i--) {
1291 /* drop refcounts only on the ones we took */
1292 unsigned long bit = 1UL << i;
1294 if (!(bit & opts->subsys_mask))
1295 continue;
1296 module_put(subsys[i]->module);
1298 return -ENOENT;
1301 return 0;
1304 static void drop_parsed_module_refcounts(unsigned long subsys_mask)
1306 int i;
1307 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1308 unsigned long bit = 1UL << i;
1310 if (!(bit & subsys_mask))
1311 continue;
1312 module_put(subsys[i]->module);
1316 static int cgroup_remount(struct super_block *sb, int *flags, char *data)
1318 int ret = 0;
1319 struct cgroupfs_root *root = sb->s_fs_info;
1320 struct cgroup *cgrp = &root->top_cgroup;
1321 struct cgroup_sb_opts opts;
1322 unsigned long added_mask, removed_mask;
1324 mutex_lock(&cgrp->dentry->d_inode->i_mutex);
1325 mutex_lock(&cgroup_mutex);
1326 mutex_lock(&cgroup_root_mutex);
1328 /* See what subsystems are wanted */
1329 ret = parse_cgroupfs_options(data, &opts);
1330 if (ret)
1331 goto out_unlock;
1333 /* See feature-removal-schedule.txt */
1334 if (opts.subsys_mask != root->actual_subsys_mask || opts.release_agent)
1335 pr_warning("cgroup: option changes via remount are deprecated (pid=%d comm=%s)\n",
1336 task_tgid_nr(current), current->comm);
1338 added_mask = opts.subsys_mask & ~root->subsys_mask;
1339 removed_mask = root->subsys_mask & ~opts.subsys_mask;
1341 /* Don't allow flags or name to change at remount */
1342 if (opts.flags != root->flags ||
1343 (opts.name && strcmp(opts.name, root->name))) {
1344 ret = -EINVAL;
1345 drop_parsed_module_refcounts(opts.subsys_mask);
1346 goto out_unlock;
1349 ret = rebind_subsystems(root, opts.subsys_mask);
1350 if (ret) {
1351 drop_parsed_module_refcounts(opts.subsys_mask);
1352 goto out_unlock;
1355 /* clear out any existing files and repopulate subsystem files */
1356 cgroup_clear_directory(cgrp->dentry, false, removed_mask);
1357 /* re-populate subsystem files */
1358 cgroup_populate_dir(cgrp, false, added_mask);
1360 if (opts.release_agent)
1361 strcpy(root->release_agent_path, opts.release_agent);
1362 out_unlock:
1363 kfree(opts.release_agent);
1364 kfree(opts.name);
1365 mutex_unlock(&cgroup_root_mutex);
1366 mutex_unlock(&cgroup_mutex);
1367 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
1368 return ret;
1371 static const struct super_operations cgroup_ops = {
1372 .statfs = simple_statfs,
1373 .drop_inode = generic_delete_inode,
1374 .show_options = cgroup_show_options,
1375 .remount_fs = cgroup_remount,
1378 static void init_cgroup_housekeeping(struct cgroup *cgrp)
1380 INIT_LIST_HEAD(&cgrp->sibling);
1381 INIT_LIST_HEAD(&cgrp->children);
1382 INIT_LIST_HEAD(&cgrp->files);
1383 INIT_LIST_HEAD(&cgrp->css_sets);
1384 INIT_LIST_HEAD(&cgrp->allcg_node);
1385 INIT_LIST_HEAD(&cgrp->release_list);
1386 INIT_LIST_HEAD(&cgrp->pidlists);
1387 mutex_init(&cgrp->pidlist_mutex);
1388 INIT_LIST_HEAD(&cgrp->event_list);
1389 spin_lock_init(&cgrp->event_list_lock);
1390 simple_xattrs_init(&cgrp->xattrs);
1393 static void init_cgroup_root(struct cgroupfs_root *root)
1395 struct cgroup *cgrp = &root->top_cgroup;
1397 INIT_LIST_HEAD(&root->subsys_list);
1398 INIT_LIST_HEAD(&root->root_list);
1399 INIT_LIST_HEAD(&root->allcg_list);
1400 root->number_of_cgroups = 1;
1401 cgrp->root = root;
1402 cgrp->top_cgroup = cgrp;
1403 list_add_tail(&cgrp->allcg_node, &root->allcg_list);
1404 init_cgroup_housekeeping(cgrp);
1407 static bool init_root_id(struct cgroupfs_root *root)
1409 int ret = 0;
1411 do {
1412 if (!ida_pre_get(&hierarchy_ida, GFP_KERNEL))
1413 return false;
1414 spin_lock(&hierarchy_id_lock);
1415 /* Try to allocate the next unused ID */
1416 ret = ida_get_new_above(&hierarchy_ida, next_hierarchy_id,
1417 &root->hierarchy_id);
1418 if (ret == -ENOSPC)
1419 /* Try again starting from 0 */
1420 ret = ida_get_new(&hierarchy_ida, &root->hierarchy_id);
1421 if (!ret) {
1422 next_hierarchy_id = root->hierarchy_id + 1;
1423 } else if (ret != -EAGAIN) {
1424 /* Can only get here if the 31-bit IDR is full ... */
1425 BUG_ON(ret);
1427 spin_unlock(&hierarchy_id_lock);
1428 } while (ret);
1429 return true;
1432 static int cgroup_test_super(struct super_block *sb, void *data)
1434 struct cgroup_sb_opts *opts = data;
1435 struct cgroupfs_root *root = sb->s_fs_info;
1437 /* If we asked for a name then it must match */
1438 if (opts->name && strcmp(opts->name, root->name))
1439 return 0;
1442 * If we asked for subsystems (or explicitly for no
1443 * subsystems) then they must match
1445 if ((opts->subsys_mask || opts->none)
1446 && (opts->subsys_mask != root->subsys_mask))
1447 return 0;
1449 return 1;
1452 static struct cgroupfs_root *cgroup_root_from_opts(struct cgroup_sb_opts *opts)
1454 struct cgroupfs_root *root;
1456 if (!opts->subsys_mask && !opts->none)
1457 return NULL;
1459 root = kzalloc(sizeof(*root), GFP_KERNEL);
1460 if (!root)
1461 return ERR_PTR(-ENOMEM);
1463 if (!init_root_id(root)) {
1464 kfree(root);
1465 return ERR_PTR(-ENOMEM);
1467 init_cgroup_root(root);
1469 root->subsys_mask = opts->subsys_mask;
1470 root->flags = opts->flags;
1471 if (opts->release_agent)
1472 strcpy(root->release_agent_path, opts->release_agent);
1473 if (opts->name)
1474 strcpy(root->name, opts->name);
1475 if (opts->clone_children)
1476 set_bit(CGRP_CLONE_CHILDREN, &root->top_cgroup.flags);
1477 return root;
1480 static void cgroup_drop_root(struct cgroupfs_root *root)
1482 if (!root)
1483 return;
1485 BUG_ON(!root->hierarchy_id);
1486 spin_lock(&hierarchy_id_lock);
1487 ida_remove(&hierarchy_ida, root->hierarchy_id);
1488 spin_unlock(&hierarchy_id_lock);
1489 kfree(root);
1492 static int cgroup_set_super(struct super_block *sb, void *data)
1494 int ret;
1495 struct cgroup_sb_opts *opts = data;
1497 /* If we don't have a new root, we can't set up a new sb */
1498 if (!opts->new_root)
1499 return -EINVAL;
1501 BUG_ON(!opts->subsys_mask && !opts->none);
1503 ret = set_anon_super(sb, NULL);
1504 if (ret)
1505 return ret;
1507 sb->s_fs_info = opts->new_root;
1508 opts->new_root->sb = sb;
1510 sb->s_blocksize = PAGE_CACHE_SIZE;
1511 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
1512 sb->s_magic = CGROUP_SUPER_MAGIC;
1513 sb->s_op = &cgroup_ops;
1515 return 0;
1518 static int cgroup_get_rootdir(struct super_block *sb)
1520 static const struct dentry_operations cgroup_dops = {
1521 .d_iput = cgroup_diput,
1522 .d_delete = cgroup_delete,
1525 struct inode *inode =
1526 cgroup_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR, sb);
1528 if (!inode)
1529 return -ENOMEM;
1531 inode->i_fop = &simple_dir_operations;
1532 inode->i_op = &cgroup_dir_inode_operations;
1533 /* directories start off with i_nlink == 2 (for "." entry) */
1534 inc_nlink(inode);
1535 sb->s_root = d_make_root(inode);
1536 if (!sb->s_root)
1537 return -ENOMEM;
1538 /* for everything else we want ->d_op set */
1539 sb->s_d_op = &cgroup_dops;
1540 return 0;
1543 static struct dentry *cgroup_mount(struct file_system_type *fs_type,
1544 int flags, const char *unused_dev_name,
1545 void *data)
1547 struct cgroup_sb_opts opts;
1548 struct cgroupfs_root *root;
1549 int ret = 0;
1550 struct super_block *sb;
1551 struct cgroupfs_root *new_root;
1552 struct inode *inode;
1554 /* First find the desired set of subsystems */
1555 mutex_lock(&cgroup_mutex);
1556 ret = parse_cgroupfs_options(data, &opts);
1557 mutex_unlock(&cgroup_mutex);
1558 if (ret)
1559 goto out_err;
1562 * Allocate a new cgroup root. We may not need it if we're
1563 * reusing an existing hierarchy.
1565 new_root = cgroup_root_from_opts(&opts);
1566 if (IS_ERR(new_root)) {
1567 ret = PTR_ERR(new_root);
1568 goto drop_modules;
1570 opts.new_root = new_root;
1572 /* Locate an existing or new sb for this hierarchy */
1573 sb = sget(fs_type, cgroup_test_super, cgroup_set_super, 0, &opts);
1574 if (IS_ERR(sb)) {
1575 ret = PTR_ERR(sb);
1576 cgroup_drop_root(opts.new_root);
1577 goto drop_modules;
1580 root = sb->s_fs_info;
1581 BUG_ON(!root);
1582 if (root == opts.new_root) {
1583 /* We used the new root structure, so this is a new hierarchy */
1584 struct list_head tmp_cg_links;
1585 struct cgroup *root_cgrp = &root->top_cgroup;
1586 struct cgroupfs_root *existing_root;
1587 const struct cred *cred;
1588 int i;
1590 BUG_ON(sb->s_root != NULL);
1592 ret = cgroup_get_rootdir(sb);
1593 if (ret)
1594 goto drop_new_super;
1595 inode = sb->s_root->d_inode;
1597 mutex_lock(&inode->i_mutex);
1598 mutex_lock(&cgroup_mutex);
1599 mutex_lock(&cgroup_root_mutex);
1601 /* Check for name clashes with existing mounts */
1602 ret = -EBUSY;
1603 if (strlen(root->name))
1604 for_each_active_root(existing_root)
1605 if (!strcmp(existing_root->name, root->name))
1606 goto unlock_drop;
1609 * We're accessing css_set_count without locking
1610 * css_set_lock here, but that's OK - it can only be
1611 * increased by someone holding cgroup_lock, and
1612 * that's us. The worst that can happen is that we
1613 * have some link structures left over
1615 ret = allocate_cg_links(css_set_count, &tmp_cg_links);
1616 if (ret)
1617 goto unlock_drop;
1619 ret = rebind_subsystems(root, root->subsys_mask);
1620 if (ret == -EBUSY) {
1621 free_cg_links(&tmp_cg_links);
1622 goto unlock_drop;
1625 * There must be no failure case after here, since rebinding
1626 * takes care of subsystems' refcounts, which are explicitly
1627 * dropped in the failure exit path.
1630 /* EBUSY should be the only error here */
1631 BUG_ON(ret);
1633 list_add(&root->root_list, &roots);
1634 root_count++;
1636 sb->s_root->d_fsdata = root_cgrp;
1637 root->top_cgroup.dentry = sb->s_root;
1639 /* Link the top cgroup in this hierarchy into all
1640 * the css_set objects */
1641 write_lock(&css_set_lock);
1642 for (i = 0; i < CSS_SET_TABLE_SIZE; i++) {
1643 struct hlist_head *hhead = &css_set_table[i];
1644 struct hlist_node *node;
1645 struct css_set *cg;
1647 hlist_for_each_entry(cg, node, hhead, hlist)
1648 link_css_set(&tmp_cg_links, cg, root_cgrp);
1650 write_unlock(&css_set_lock);
1652 free_cg_links(&tmp_cg_links);
1654 BUG_ON(!list_empty(&root_cgrp->children));
1655 BUG_ON(root->number_of_cgroups != 1);
1657 cred = override_creds(&init_cred);
1658 cgroup_populate_dir(root_cgrp, true, root->subsys_mask);
1659 revert_creds(cred);
1660 mutex_unlock(&cgroup_root_mutex);
1661 mutex_unlock(&cgroup_mutex);
1662 mutex_unlock(&inode->i_mutex);
1663 } else {
1665 * We re-used an existing hierarchy - the new root (if
1666 * any) is not needed
1668 cgroup_drop_root(opts.new_root);
1669 /* no subsys rebinding, so refcounts don't change */
1670 drop_parsed_module_refcounts(opts.subsys_mask);
1673 kfree(opts.release_agent);
1674 kfree(opts.name);
1675 return dget(sb->s_root);
1677 unlock_drop:
1678 mutex_unlock(&cgroup_root_mutex);
1679 mutex_unlock(&cgroup_mutex);
1680 mutex_unlock(&inode->i_mutex);
1681 drop_new_super:
1682 deactivate_locked_super(sb);
1683 drop_modules:
1684 drop_parsed_module_refcounts(opts.subsys_mask);
1685 out_err:
1686 kfree(opts.release_agent);
1687 kfree(opts.name);
1688 return ERR_PTR(ret);
1691 static void cgroup_kill_sb(struct super_block *sb) {
1692 struct cgroupfs_root *root = sb->s_fs_info;
1693 struct cgroup *cgrp = &root->top_cgroup;
1694 int ret;
1695 struct cg_cgroup_link *link;
1696 struct cg_cgroup_link *saved_link;
1698 BUG_ON(!root);
1700 BUG_ON(root->number_of_cgroups != 1);
1701 BUG_ON(!list_empty(&cgrp->children));
1703 mutex_lock(&cgroup_mutex);
1704 mutex_lock(&cgroup_root_mutex);
1706 /* Rebind all subsystems back to the default hierarchy */
1707 ret = rebind_subsystems(root, 0);
1708 /* Shouldn't be able to fail ... */
1709 BUG_ON(ret);
1712 * Release all the links from css_sets to this hierarchy's
1713 * root cgroup
1715 write_lock(&css_set_lock);
1717 list_for_each_entry_safe(link, saved_link, &cgrp->css_sets,
1718 cgrp_link_list) {
1719 list_del(&link->cg_link_list);
1720 list_del(&link->cgrp_link_list);
1721 kfree(link);
1723 write_unlock(&css_set_lock);
1725 if (!list_empty(&root->root_list)) {
1726 list_del(&root->root_list);
1727 root_count--;
1730 mutex_unlock(&cgroup_root_mutex);
1731 mutex_unlock(&cgroup_mutex);
1733 simple_xattrs_free(&cgrp->xattrs);
1735 kill_litter_super(sb);
1736 cgroup_drop_root(root);
1739 static struct file_system_type cgroup_fs_type = {
1740 .name = "cgroup",
1741 .mount = cgroup_mount,
1742 .kill_sb = cgroup_kill_sb,
1745 static struct kobject *cgroup_kobj;
1748 * cgroup_path - generate the path of a cgroup
1749 * @cgrp: the cgroup in question
1750 * @buf: the buffer to write the path into
1751 * @buflen: the length of the buffer
1753 * Called with cgroup_mutex held or else with an RCU-protected cgroup
1754 * reference. Writes path of cgroup into buf. Returns 0 on success,
1755 * -errno on error.
1757 int cgroup_path(const struct cgroup *cgrp, char *buf, int buflen)
1759 char *start;
1760 struct dentry *dentry = rcu_dereference_check(cgrp->dentry,
1761 cgroup_lock_is_held());
1763 if (!dentry || cgrp == dummytop) {
1765 * Inactive subsystems have no dentry for their root
1766 * cgroup
1768 strcpy(buf, "/");
1769 return 0;
1772 start = buf + buflen - 1;
1774 *start = '\0';
1775 for (;;) {
1776 int len = dentry->d_name.len;
1778 if ((start -= len) < buf)
1779 return -ENAMETOOLONG;
1780 memcpy(start, dentry->d_name.name, len);
1781 cgrp = cgrp->parent;
1782 if (!cgrp)
1783 break;
1785 dentry = rcu_dereference_check(cgrp->dentry,
1786 cgroup_lock_is_held());
1787 if (!cgrp->parent)
1788 continue;
1789 if (--start < buf)
1790 return -ENAMETOOLONG;
1791 *start = '/';
1793 memmove(buf, start, buf + buflen - start);
1794 return 0;
1796 EXPORT_SYMBOL_GPL(cgroup_path);
1799 * Control Group taskset
1801 struct task_and_cgroup {
1802 struct task_struct *task;
1803 struct cgroup *cgrp;
1804 struct css_set *cg;
1807 struct cgroup_taskset {
1808 struct task_and_cgroup single;
1809 struct flex_array *tc_array;
1810 int tc_array_len;
1811 int idx;
1812 struct cgroup *cur_cgrp;
1816 * cgroup_taskset_first - reset taskset and return the first task
1817 * @tset: taskset of interest
1819 * @tset iteration is initialized and the first task is returned.
1821 struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset)
1823 if (tset->tc_array) {
1824 tset->idx = 0;
1825 return cgroup_taskset_next(tset);
1826 } else {
1827 tset->cur_cgrp = tset->single.cgrp;
1828 return tset->single.task;
1831 EXPORT_SYMBOL_GPL(cgroup_taskset_first);
1834 * cgroup_taskset_next - iterate to the next task in taskset
1835 * @tset: taskset of interest
1837 * Return the next task in @tset. Iteration must have been initialized
1838 * with cgroup_taskset_first().
1840 struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset)
1842 struct task_and_cgroup *tc;
1844 if (!tset->tc_array || tset->idx >= tset->tc_array_len)
1845 return NULL;
1847 tc = flex_array_get(tset->tc_array, tset->idx++);
1848 tset->cur_cgrp = tc->cgrp;
1849 return tc->task;
1851 EXPORT_SYMBOL_GPL(cgroup_taskset_next);
1854 * cgroup_taskset_cur_cgroup - return the matching cgroup for the current task
1855 * @tset: taskset of interest
1857 * Return the cgroup for the current (last returned) task of @tset. This
1858 * function must be preceded by either cgroup_taskset_first() or
1859 * cgroup_taskset_next().
1861 struct cgroup *cgroup_taskset_cur_cgroup(struct cgroup_taskset *tset)
1863 return tset->cur_cgrp;
1865 EXPORT_SYMBOL_GPL(cgroup_taskset_cur_cgroup);
1868 * cgroup_taskset_size - return the number of tasks in taskset
1869 * @tset: taskset of interest
1871 int cgroup_taskset_size(struct cgroup_taskset *tset)
1873 return tset->tc_array ? tset->tc_array_len : 1;
1875 EXPORT_SYMBOL_GPL(cgroup_taskset_size);
1879 * cgroup_task_migrate - move a task from one cgroup to another.
1881 * 'guarantee' is set if the caller promises that a new css_set for the task
1882 * will already exist. If not set, this function might sleep, and can fail with
1883 * -ENOMEM. Must be called with cgroup_mutex and threadgroup locked.
1885 static void cgroup_task_migrate(struct cgroup *cgrp, struct cgroup *oldcgrp,
1886 struct task_struct *tsk, struct css_set *newcg)
1888 struct css_set *oldcg;
1891 * We are synchronized through threadgroup_lock() against PF_EXITING
1892 * setting such that we can't race against cgroup_exit() changing the
1893 * css_set to init_css_set and dropping the old one.
1895 WARN_ON_ONCE(tsk->flags & PF_EXITING);
1896 oldcg = tsk->cgroups;
1898 task_lock(tsk);
1899 rcu_assign_pointer(tsk->cgroups, newcg);
1900 task_unlock(tsk);
1902 /* Update the css_set linked lists if we're using them */
1903 write_lock(&css_set_lock);
1904 if (!list_empty(&tsk->cg_list))
1905 list_move(&tsk->cg_list, &newcg->tasks);
1906 write_unlock(&css_set_lock);
1909 * We just gained a reference on oldcg by taking it from the task. As
1910 * trading it for newcg is protected by cgroup_mutex, we're safe to drop
1911 * it here; it will be freed under RCU.
1913 set_bit(CGRP_RELEASABLE, &oldcgrp->flags);
1914 put_css_set(oldcg);
1918 * cgroup_attach_task - attach task 'tsk' to cgroup 'cgrp'
1919 * @cgrp: the cgroup the task is attaching to
1920 * @tsk: the task to be attached
1922 * Call with cgroup_mutex and threadgroup locked. May take task_lock of
1923 * @tsk during call.
1925 int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
1927 int retval = 0;
1928 struct cgroup_subsys *ss, *failed_ss = NULL;
1929 struct cgroup *oldcgrp;
1930 struct cgroupfs_root *root = cgrp->root;
1931 struct cgroup_taskset tset = { };
1932 struct css_set *newcg;
1934 /* @tsk either already exited or can't exit until the end */
1935 if (tsk->flags & PF_EXITING)
1936 return -ESRCH;
1938 /* Nothing to do if the task is already in that cgroup */
1939 oldcgrp = task_cgroup_from_root(tsk, root);
1940 if (cgrp == oldcgrp)
1941 return 0;
1943 tset.single.task = tsk;
1944 tset.single.cgrp = oldcgrp;
1946 for_each_subsys(root, ss) {
1947 if (ss->can_attach) {
1948 retval = ss->can_attach(cgrp, &tset);
1949 if (retval) {
1951 * Remember on which subsystem the can_attach()
1952 * failed, so that we only call cancel_attach()
1953 * against the subsystems whose can_attach()
1954 * succeeded. (See below)
1956 failed_ss = ss;
1957 goto out;
1962 newcg = find_css_set(tsk->cgroups, cgrp);
1963 if (!newcg) {
1964 retval = -ENOMEM;
1965 goto out;
1968 cgroup_task_migrate(cgrp, oldcgrp, tsk, newcg);
1970 for_each_subsys(root, ss) {
1971 if (ss->attach)
1972 ss->attach(cgrp, &tset);
1975 synchronize_rcu();
1976 out:
1977 if (retval) {
1978 for_each_subsys(root, ss) {
1979 if (ss == failed_ss)
1981 * This subsystem was the one that failed the
1982 * can_attach() check earlier, so we don't need
1983 * to call cancel_attach() against it or any
1984 * remaining subsystems.
1986 break;
1987 if (ss->cancel_attach)
1988 ss->cancel_attach(cgrp, &tset);
1991 return retval;
1995 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
1996 * @from: attach to all cgroups of a given task
1997 * @tsk: the task to be attached
1999 int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
2001 struct cgroupfs_root *root;
2002 int retval = 0;
2004 cgroup_lock();
2005 for_each_active_root(root) {
2006 struct cgroup *from_cg = task_cgroup_from_root(from, root);
2008 retval = cgroup_attach_task(from_cg, tsk);
2009 if (retval)
2010 break;
2012 cgroup_unlock();
2014 return retval;
2016 EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
2019 * cgroup_attach_proc - attach all threads in a threadgroup to a cgroup
2020 * @cgrp: the cgroup to attach to
2021 * @leader: the threadgroup leader task_struct of the group to be attached
2023 * Call holding cgroup_mutex and the group_rwsem of the leader. Will take
2024 * task_lock of each thread in leader's threadgroup individually in turn.
2026 static int cgroup_attach_proc(struct cgroup *cgrp, struct task_struct *leader)
2028 int retval, i, group_size;
2029 struct cgroup_subsys *ss, *failed_ss = NULL;
2030 /* guaranteed to be initialized later, but the compiler needs this */
2031 struct cgroupfs_root *root = cgrp->root;
2032 /* threadgroup list cursor and array */
2033 struct task_struct *tsk;
2034 struct task_and_cgroup *tc;
2035 struct flex_array *group;
2036 struct cgroup_taskset tset = { };
2039 * step 0: in order to do expensive, possibly blocking operations for
2040 * every thread, we cannot iterate the thread group list, since it needs
2041 * rcu or tasklist locked. instead, build an array of all threads in the
2042 * group - group_rwsem prevents new threads from appearing, and if
2043 * threads exit, this will just be an over-estimate.
2045 group_size = get_nr_threads(leader);
2046 /* flex_array supports very large thread-groups better than kmalloc. */
2047 group = flex_array_alloc(sizeof(*tc), group_size, GFP_KERNEL);
2048 if (!group)
2049 return -ENOMEM;
2050 /* pre-allocate to guarantee space while iterating in rcu read-side. */
2051 retval = flex_array_prealloc(group, 0, group_size - 1, GFP_KERNEL);
2052 if (retval)
2053 goto out_free_group_list;
2055 tsk = leader;
2056 i = 0;
2058 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2059 * already PF_EXITING could be freed from underneath us unless we
2060 * take an rcu_read_lock.
2062 rcu_read_lock();
2063 do {
2064 struct task_and_cgroup ent;
2066 /* @tsk either already exited or can't exit until the end */
2067 if (tsk->flags & PF_EXITING)
2068 continue;
2070 /* as per above, nr_threads may decrease, but not increase. */
2071 BUG_ON(i >= group_size);
2072 ent.task = tsk;
2073 ent.cgrp = task_cgroup_from_root(tsk, root);
2074 /* nothing to do if this task is already in the cgroup */
2075 if (ent.cgrp == cgrp)
2076 continue;
2078 * saying GFP_ATOMIC has no effect here because we did prealloc
2079 * earlier, but it's good form to communicate our expectations.
2081 retval = flex_array_put(group, i, &ent, GFP_ATOMIC);
2082 BUG_ON(retval != 0);
2083 i++;
2084 } while_each_thread(leader, tsk);
2085 rcu_read_unlock();
2086 /* remember the number of threads in the array for later. */
2087 group_size = i;
2088 tset.tc_array = group;
2089 tset.tc_array_len = group_size;
2091 /* methods shouldn't be called if no task is actually migrating */
2092 retval = 0;
2093 if (!group_size)
2094 goto out_free_group_list;
2097 * step 1: check that we can legitimately attach to the cgroup.
2099 for_each_subsys(root, ss) {
2100 if (ss->can_attach) {
2101 retval = ss->can_attach(cgrp, &tset);
2102 if (retval) {
2103 failed_ss = ss;
2104 goto out_cancel_attach;
2110 * step 2: make sure css_sets exist for all threads to be migrated.
2111 * we use find_css_set, which allocates a new one if necessary.
2113 for (i = 0; i < group_size; i++) {
2114 tc = flex_array_get(group, i);
2115 tc->cg = find_css_set(tc->task->cgroups, cgrp);
2116 if (!tc->cg) {
2117 retval = -ENOMEM;
2118 goto out_put_css_set_refs;
2123 * step 3: now that we're guaranteed success wrt the css_sets,
2124 * proceed to move all tasks to the new cgroup. There are no
2125 * failure cases after here, so this is the commit point.
2127 for (i = 0; i < group_size; i++) {
2128 tc = flex_array_get(group, i);
2129 cgroup_task_migrate(cgrp, tc->cgrp, tc->task, tc->cg);
2131 /* nothing is sensitive to fork() after this point. */
2134 * step 4: do subsystem attach callbacks.
2136 for_each_subsys(root, ss) {
2137 if (ss->attach)
2138 ss->attach(cgrp, &tset);
2142 * step 5: success! and cleanup
2144 synchronize_rcu();
2145 retval = 0;
2146 out_put_css_set_refs:
2147 if (retval) {
2148 for (i = 0; i < group_size; i++) {
2149 tc = flex_array_get(group, i);
2150 if (!tc->cg)
2151 break;
2152 put_css_set(tc->cg);
2155 out_cancel_attach:
2156 if (retval) {
2157 for_each_subsys(root, ss) {
2158 if (ss == failed_ss)
2159 break;
2160 if (ss->cancel_attach)
2161 ss->cancel_attach(cgrp, &tset);
2164 out_free_group_list:
2165 flex_array_free(group);
2166 return retval;
2170 * Find the task_struct of the task to attach by vpid and pass it along to the
2171 * function to attach either it or all tasks in its threadgroup. Will lock
2172 * cgroup_mutex and threadgroup; may take task_lock of task.
2174 static int attach_task_by_pid(struct cgroup *cgrp, u64 pid, bool threadgroup)
2176 struct task_struct *tsk;
2177 const struct cred *cred = current_cred(), *tcred;
2178 int ret;
2180 if (!cgroup_lock_live_group(cgrp))
2181 return -ENODEV;
2183 retry_find_task:
2184 rcu_read_lock();
2185 if (pid) {
2186 tsk = find_task_by_vpid(pid);
2187 if (!tsk) {
2188 rcu_read_unlock();
2189 ret= -ESRCH;
2190 goto out_unlock_cgroup;
2193 * even if we're attaching all tasks in the thread group, we
2194 * only need to check permissions on one of them.
2196 tcred = __task_cred(tsk);
2197 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
2198 !uid_eq(cred->euid, tcred->uid) &&
2199 !uid_eq(cred->euid, tcred->suid)) {
2200 rcu_read_unlock();
2201 ret = -EACCES;
2202 goto out_unlock_cgroup;
2204 } else
2205 tsk = current;
2207 if (threadgroup)
2208 tsk = tsk->group_leader;
2211 * Workqueue threads may acquire PF_THREAD_BOUND and become
2212 * trapped in a cpuset, or RT worker may be born in a cgroup
2213 * with no rt_runtime allocated. Just say no.
2215 if (tsk == kthreadd_task || (tsk->flags & PF_THREAD_BOUND)) {
2216 ret = -EINVAL;
2217 rcu_read_unlock();
2218 goto out_unlock_cgroup;
2221 get_task_struct(tsk);
2222 rcu_read_unlock();
2224 threadgroup_lock(tsk);
2225 if (threadgroup) {
2226 if (!thread_group_leader(tsk)) {
2228 * a race with de_thread from another thread's exec()
2229 * may strip us of our leadership, if this happens,
2230 * there is no choice but to throw this task away and
2231 * try again; this is
2232 * "double-double-toil-and-trouble-check locking".
2234 threadgroup_unlock(tsk);
2235 put_task_struct(tsk);
2236 goto retry_find_task;
2238 ret = cgroup_attach_proc(cgrp, tsk);
2239 } else
2240 ret = cgroup_attach_task(cgrp, tsk);
2241 threadgroup_unlock(tsk);
2243 put_task_struct(tsk);
2244 out_unlock_cgroup:
2245 cgroup_unlock();
2246 return ret;
2249 static int cgroup_tasks_write(struct cgroup *cgrp, struct cftype *cft, u64 pid)
2251 return attach_task_by_pid(cgrp, pid, false);
2254 static int cgroup_procs_write(struct cgroup *cgrp, struct cftype *cft, u64 tgid)
2256 return attach_task_by_pid(cgrp, tgid, true);
2260 * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive.
2261 * @cgrp: the cgroup to be checked for liveness
2263 * On success, returns true; the lock should be later released with
2264 * cgroup_unlock(). On failure returns false with no lock held.
2266 bool cgroup_lock_live_group(struct cgroup *cgrp)
2268 mutex_lock(&cgroup_mutex);
2269 if (cgroup_is_removed(cgrp)) {
2270 mutex_unlock(&cgroup_mutex);
2271 return false;
2273 return true;
2275 EXPORT_SYMBOL_GPL(cgroup_lock_live_group);
2277 static int cgroup_release_agent_write(struct cgroup *cgrp, struct cftype *cft,
2278 const char *buffer)
2280 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
2281 if (strlen(buffer) >= PATH_MAX)
2282 return -EINVAL;
2283 if (!cgroup_lock_live_group(cgrp))
2284 return -ENODEV;
2285 mutex_lock(&cgroup_root_mutex);
2286 strcpy(cgrp->root->release_agent_path, buffer);
2287 mutex_unlock(&cgroup_root_mutex);
2288 cgroup_unlock();
2289 return 0;
2292 static int cgroup_release_agent_show(struct cgroup *cgrp, struct cftype *cft,
2293 struct seq_file *seq)
2295 if (!cgroup_lock_live_group(cgrp))
2296 return -ENODEV;
2297 seq_puts(seq, cgrp->root->release_agent_path);
2298 seq_putc(seq, '\n');
2299 cgroup_unlock();
2300 return 0;
2303 /* A buffer size big enough for numbers or short strings */
2304 #define CGROUP_LOCAL_BUFFER_SIZE 64
2306 static ssize_t cgroup_write_X64(struct cgroup *cgrp, struct cftype *cft,
2307 struct file *file,
2308 const char __user *userbuf,
2309 size_t nbytes, loff_t *unused_ppos)
2311 char buffer[CGROUP_LOCAL_BUFFER_SIZE];
2312 int retval = 0;
2313 char *end;
2315 if (!nbytes)
2316 return -EINVAL;
2317 if (nbytes >= sizeof(buffer))
2318 return -E2BIG;
2319 if (copy_from_user(buffer, userbuf, nbytes))
2320 return -EFAULT;
2322 buffer[nbytes] = 0; /* nul-terminate */
2323 if (cft->write_u64) {
2324 u64 val = simple_strtoull(strstrip(buffer), &end, 0);
2325 if (*end)
2326 return -EINVAL;
2327 retval = cft->write_u64(cgrp, cft, val);
2328 } else {
2329 s64 val = simple_strtoll(strstrip(buffer), &end, 0);
2330 if (*end)
2331 return -EINVAL;
2332 retval = cft->write_s64(cgrp, cft, val);
2334 if (!retval)
2335 retval = nbytes;
2336 return retval;
2339 static ssize_t cgroup_write_string(struct cgroup *cgrp, struct cftype *cft,
2340 struct file *file,
2341 const char __user *userbuf,
2342 size_t nbytes, loff_t *unused_ppos)
2344 char local_buffer[CGROUP_LOCAL_BUFFER_SIZE];
2345 int retval = 0;
2346 size_t max_bytes = cft->max_write_len;
2347 char *buffer = local_buffer;
2349 if (!max_bytes)
2350 max_bytes = sizeof(local_buffer) - 1;
2351 if (nbytes >= max_bytes)
2352 return -E2BIG;
2353 /* Allocate a dynamic buffer if we need one */
2354 if (nbytes >= sizeof(local_buffer)) {
2355 buffer = kmalloc(nbytes + 1, GFP_KERNEL);
2356 if (buffer == NULL)
2357 return -ENOMEM;
2359 if (nbytes && copy_from_user(buffer, userbuf, nbytes)) {
2360 retval = -EFAULT;
2361 goto out;
2364 buffer[nbytes] = 0; /* nul-terminate */
2365 retval = cft->write_string(cgrp, cft, strstrip(buffer));
2366 if (!retval)
2367 retval = nbytes;
2368 out:
2369 if (buffer != local_buffer)
2370 kfree(buffer);
2371 return retval;
2374 static ssize_t cgroup_file_write(struct file *file, const char __user *buf,
2375 size_t nbytes, loff_t *ppos)
2377 struct cftype *cft = __d_cft(file->f_dentry);
2378 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
2380 if (cgroup_is_removed(cgrp))
2381 return -ENODEV;
2382 if (cft->write)
2383 return cft->write(cgrp, cft, file, buf, nbytes, ppos);
2384 if (cft->write_u64 || cft->write_s64)
2385 return cgroup_write_X64(cgrp, cft, file, buf, nbytes, ppos);
2386 if (cft->write_string)
2387 return cgroup_write_string(cgrp, cft, file, buf, nbytes, ppos);
2388 if (cft->trigger) {
2389 int ret = cft->trigger(cgrp, (unsigned int)cft->private);
2390 return ret ? ret : nbytes;
2392 return -EINVAL;
2395 static ssize_t cgroup_read_u64(struct cgroup *cgrp, struct cftype *cft,
2396 struct file *file,
2397 char __user *buf, size_t nbytes,
2398 loff_t *ppos)
2400 char tmp[CGROUP_LOCAL_BUFFER_SIZE];
2401 u64 val = cft->read_u64(cgrp, cft);
2402 int len = sprintf(tmp, "%llu\n", (unsigned long long) val);
2404 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
2407 static ssize_t cgroup_read_s64(struct cgroup *cgrp, struct cftype *cft,
2408 struct file *file,
2409 char __user *buf, size_t nbytes,
2410 loff_t *ppos)
2412 char tmp[CGROUP_LOCAL_BUFFER_SIZE];
2413 s64 val = cft->read_s64(cgrp, cft);
2414 int len = sprintf(tmp, "%lld\n", (long long) val);
2416 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
2419 static ssize_t cgroup_file_read(struct file *file, char __user *buf,
2420 size_t nbytes, loff_t *ppos)
2422 struct cftype *cft = __d_cft(file->f_dentry);
2423 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
2425 if (cgroup_is_removed(cgrp))
2426 return -ENODEV;
2428 if (cft->read)
2429 return cft->read(cgrp, cft, file, buf, nbytes, ppos);
2430 if (cft->read_u64)
2431 return cgroup_read_u64(cgrp, cft, file, buf, nbytes, ppos);
2432 if (cft->read_s64)
2433 return cgroup_read_s64(cgrp, cft, file, buf, nbytes, ppos);
2434 return -EINVAL;
2438 * seqfile ops/methods for returning structured data. Currently just
2439 * supports string->u64 maps, but can be extended in future.
2442 struct cgroup_seqfile_state {
2443 struct cftype *cft;
2444 struct cgroup *cgroup;
2447 static int cgroup_map_add(struct cgroup_map_cb *cb, const char *key, u64 value)
2449 struct seq_file *sf = cb->state;
2450 return seq_printf(sf, "%s %llu\n", key, (unsigned long long)value);
2453 static int cgroup_seqfile_show(struct seq_file *m, void *arg)
2455 struct cgroup_seqfile_state *state = m->private;
2456 struct cftype *cft = state->cft;
2457 if (cft->read_map) {
2458 struct cgroup_map_cb cb = {
2459 .fill = cgroup_map_add,
2460 .state = m,
2462 return cft->read_map(state->cgroup, cft, &cb);
2464 return cft->read_seq_string(state->cgroup, cft, m);
2467 static int cgroup_seqfile_release(struct inode *inode, struct file *file)
2469 struct seq_file *seq = file->private_data;
2470 kfree(seq->private);
2471 return single_release(inode, file);
2474 static const struct file_operations cgroup_seqfile_operations = {
2475 .read = seq_read,
2476 .write = cgroup_file_write,
2477 .llseek = seq_lseek,
2478 .release = cgroup_seqfile_release,
2481 static int cgroup_file_open(struct inode *inode, struct file *file)
2483 int err;
2484 struct cftype *cft;
2486 err = generic_file_open(inode, file);
2487 if (err)
2488 return err;
2489 cft = __d_cft(file->f_dentry);
2491 if (cft->read_map || cft->read_seq_string) {
2492 struct cgroup_seqfile_state *state =
2493 kzalloc(sizeof(*state), GFP_USER);
2494 if (!state)
2495 return -ENOMEM;
2496 state->cft = cft;
2497 state->cgroup = __d_cgrp(file->f_dentry->d_parent);
2498 file->f_op = &cgroup_seqfile_operations;
2499 err = single_open(file, cgroup_seqfile_show, state);
2500 if (err < 0)
2501 kfree(state);
2502 } else if (cft->open)
2503 err = cft->open(inode, file);
2504 else
2505 err = 0;
2507 return err;
2510 static int cgroup_file_release(struct inode *inode, struct file *file)
2512 struct cftype *cft = __d_cft(file->f_dentry);
2513 if (cft->release)
2514 return cft->release(inode, file);
2515 return 0;
2519 * cgroup_rename - Only allow simple rename of directories in place.
2521 static int cgroup_rename(struct inode *old_dir, struct dentry *old_dentry,
2522 struct inode *new_dir, struct dentry *new_dentry)
2524 if (!S_ISDIR(old_dentry->d_inode->i_mode))
2525 return -ENOTDIR;
2526 if (new_dentry->d_inode)
2527 return -EEXIST;
2528 if (old_dir != new_dir)
2529 return -EIO;
2530 return simple_rename(old_dir, old_dentry, new_dir, new_dentry);
2533 static struct simple_xattrs *__d_xattrs(struct dentry *dentry)
2535 if (S_ISDIR(dentry->d_inode->i_mode))
2536 return &__d_cgrp(dentry)->xattrs;
2537 else
2538 return &__d_cft(dentry)->xattrs;
2541 static inline int xattr_enabled(struct dentry *dentry)
2543 struct cgroupfs_root *root = dentry->d_sb->s_fs_info;
2544 return test_bit(ROOT_XATTR, &root->flags);
2547 static bool is_valid_xattr(const char *name)
2549 if (!strncmp(name, XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN) ||
2550 !strncmp(name, XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN))
2551 return true;
2552 return false;
2555 static int cgroup_setxattr(struct dentry *dentry, const char *name,
2556 const void *val, size_t size, int flags)
2558 if (!xattr_enabled(dentry))
2559 return -EOPNOTSUPP;
2560 if (!is_valid_xattr(name))
2561 return -EINVAL;
2562 return simple_xattr_set(__d_xattrs(dentry), name, val, size, flags);
2565 static int cgroup_removexattr(struct dentry *dentry, const char *name)
2567 if (!xattr_enabled(dentry))
2568 return -EOPNOTSUPP;
2569 if (!is_valid_xattr(name))
2570 return -EINVAL;
2571 return simple_xattr_remove(__d_xattrs(dentry), name);
2574 static ssize_t cgroup_getxattr(struct dentry *dentry, const char *name,
2575 void *buf, size_t size)
2577 if (!xattr_enabled(dentry))
2578 return -EOPNOTSUPP;
2579 if (!is_valid_xattr(name))
2580 return -EINVAL;
2581 return simple_xattr_get(__d_xattrs(dentry), name, buf, size);
2584 static ssize_t cgroup_listxattr(struct dentry *dentry, char *buf, size_t size)
2586 if (!xattr_enabled(dentry))
2587 return -EOPNOTSUPP;
2588 return simple_xattr_list(__d_xattrs(dentry), buf, size);
2591 static const struct file_operations cgroup_file_operations = {
2592 .read = cgroup_file_read,
2593 .write = cgroup_file_write,
2594 .llseek = generic_file_llseek,
2595 .open = cgroup_file_open,
2596 .release = cgroup_file_release,
2599 static const struct inode_operations cgroup_file_inode_operations = {
2600 .setxattr = cgroup_setxattr,
2601 .getxattr = cgroup_getxattr,
2602 .listxattr = cgroup_listxattr,
2603 .removexattr = cgroup_removexattr,
2606 static const struct inode_operations cgroup_dir_inode_operations = {
2607 .lookup = cgroup_lookup,
2608 .mkdir = cgroup_mkdir,
2609 .rmdir = cgroup_rmdir,
2610 .rename = cgroup_rename,
2611 .setxattr = cgroup_setxattr,
2612 .getxattr = cgroup_getxattr,
2613 .listxattr = cgroup_listxattr,
2614 .removexattr = cgroup_removexattr,
2617 static struct dentry *cgroup_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
2619 if (dentry->d_name.len > NAME_MAX)
2620 return ERR_PTR(-ENAMETOOLONG);
2621 d_add(dentry, NULL);
2622 return NULL;
2626 * Check if a file is a control file
2628 static inline struct cftype *__file_cft(struct file *file)
2630 if (file->f_dentry->d_inode->i_fop != &cgroup_file_operations)
2631 return ERR_PTR(-EINVAL);
2632 return __d_cft(file->f_dentry);
2635 static int cgroup_create_file(struct dentry *dentry, umode_t mode,
2636 struct super_block *sb)
2638 struct inode *inode;
2640 if (!dentry)
2641 return -ENOENT;
2642 if (dentry->d_inode)
2643 return -EEXIST;
2645 inode = cgroup_new_inode(mode, sb);
2646 if (!inode)
2647 return -ENOMEM;
2649 if (S_ISDIR(mode)) {
2650 inode->i_op = &cgroup_dir_inode_operations;
2651 inode->i_fop = &simple_dir_operations;
2653 /* start off with i_nlink == 2 (for "." entry) */
2654 inc_nlink(inode);
2656 /* start with the directory inode held, so that we can
2657 * populate it without racing with another mkdir */
2658 mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
2659 } else if (S_ISREG(mode)) {
2660 inode->i_size = 0;
2661 inode->i_fop = &cgroup_file_operations;
2662 inode->i_op = &cgroup_file_inode_operations;
2664 d_instantiate(dentry, inode);
2665 dget(dentry); /* Extra count - pin the dentry in core */
2666 return 0;
2670 * cgroup_create_dir - create a directory for an object.
2671 * @cgrp: the cgroup we create the directory for. It must have a valid
2672 * ->parent field. And we are going to fill its ->dentry field.
2673 * @dentry: dentry of the new cgroup
2674 * @mode: mode to set on new directory.
2676 static int cgroup_create_dir(struct cgroup *cgrp, struct dentry *dentry,
2677 umode_t mode)
2679 struct dentry *parent;
2680 int error = 0;
2682 parent = cgrp->parent->dentry;
2683 error = cgroup_create_file(dentry, S_IFDIR | mode, cgrp->root->sb);
2684 if (!error) {
2685 dentry->d_fsdata = cgrp;
2686 inc_nlink(parent->d_inode);
2687 rcu_assign_pointer(cgrp->dentry, dentry);
2690 return error;
2694 * cgroup_file_mode - deduce file mode of a control file
2695 * @cft: the control file in question
2697 * returns cft->mode if ->mode is not 0
2698 * returns S_IRUGO|S_IWUSR if it has both a read and a write handler
2699 * returns S_IRUGO if it has only a read handler
2700 * returns S_IWUSR if it has only a write hander
2702 static umode_t cgroup_file_mode(const struct cftype *cft)
2704 umode_t mode = 0;
2706 if (cft->mode)
2707 return cft->mode;
2709 if (cft->read || cft->read_u64 || cft->read_s64 ||
2710 cft->read_map || cft->read_seq_string)
2711 mode |= S_IRUGO;
2713 if (cft->write || cft->write_u64 || cft->write_s64 ||
2714 cft->write_string || cft->trigger)
2715 mode |= S_IWUSR;
2717 return mode;
2720 static int cgroup_add_file(struct cgroup *cgrp, struct cgroup_subsys *subsys,
2721 struct cftype *cft)
2723 struct dentry *dir = cgrp->dentry;
2724 struct cgroup *parent = __d_cgrp(dir);
2725 struct dentry *dentry;
2726 struct cfent *cfe;
2727 int error;
2728 umode_t mode;
2729 char name[MAX_CGROUP_TYPE_NAMELEN + MAX_CFTYPE_NAME + 2] = { 0 };
2731 simple_xattrs_init(&cft->xattrs);
2733 /* does @cft->flags tell us to skip creation on @cgrp? */
2734 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgrp->parent)
2735 return 0;
2736 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgrp->parent)
2737 return 0;
2739 if (subsys && !test_bit(ROOT_NOPREFIX, &cgrp->root->flags)) {
2740 strcpy(name, subsys->name);
2741 strcat(name, ".");
2743 strcat(name, cft->name);
2745 BUG_ON(!mutex_is_locked(&dir->d_inode->i_mutex));
2747 cfe = kzalloc(sizeof(*cfe), GFP_KERNEL);
2748 if (!cfe)
2749 return -ENOMEM;
2751 dentry = lookup_one_len(name, dir, strlen(name));
2752 if (IS_ERR(dentry)) {
2753 error = PTR_ERR(dentry);
2754 goto out;
2757 mode = cgroup_file_mode(cft);
2758 error = cgroup_create_file(dentry, mode | S_IFREG, cgrp->root->sb);
2759 if (!error) {
2760 cfe->type = (void *)cft;
2761 cfe->dentry = dentry;
2762 dentry->d_fsdata = cfe;
2763 list_add_tail(&cfe->node, &parent->files);
2764 cfe = NULL;
2766 dput(dentry);
2767 out:
2768 kfree(cfe);
2769 return error;
2772 static int cgroup_addrm_files(struct cgroup *cgrp, struct cgroup_subsys *subsys,
2773 struct cftype cfts[], bool is_add)
2775 struct cftype *cft;
2776 int err, ret = 0;
2778 for (cft = cfts; cft->name[0] != '\0'; cft++) {
2779 if (is_add)
2780 err = cgroup_add_file(cgrp, subsys, cft);
2781 else
2782 err = cgroup_rm_file(cgrp, cft);
2783 if (err) {
2784 pr_warning("cgroup_addrm_files: failed to %s %s, err=%d\n",
2785 is_add ? "add" : "remove", cft->name, err);
2786 ret = err;
2789 return ret;
2792 static DEFINE_MUTEX(cgroup_cft_mutex);
2794 static void cgroup_cfts_prepare(void)
2795 __acquires(&cgroup_cft_mutex) __acquires(&cgroup_mutex)
2798 * Thanks to the entanglement with vfs inode locking, we can't walk
2799 * the existing cgroups under cgroup_mutex and create files.
2800 * Instead, we increment reference on all cgroups and build list of
2801 * them using @cgrp->cft_q_node. Grab cgroup_cft_mutex to ensure
2802 * exclusive access to the field.
2804 mutex_lock(&cgroup_cft_mutex);
2805 mutex_lock(&cgroup_mutex);
2808 static void cgroup_cfts_commit(struct cgroup_subsys *ss,
2809 struct cftype *cfts, bool is_add)
2810 __releases(&cgroup_mutex) __releases(&cgroup_cft_mutex)
2812 LIST_HEAD(pending);
2813 struct cgroup *cgrp, *n;
2815 /* %NULL @cfts indicates abort and don't bother if @ss isn't attached */
2816 if (cfts && ss->root != &rootnode) {
2817 list_for_each_entry(cgrp, &ss->root->allcg_list, allcg_node) {
2818 dget(cgrp->dentry);
2819 list_add_tail(&cgrp->cft_q_node, &pending);
2823 mutex_unlock(&cgroup_mutex);
2826 * All new cgroups will see @cfts update on @ss->cftsets. Add/rm
2827 * files for all cgroups which were created before.
2829 list_for_each_entry_safe(cgrp, n, &pending, cft_q_node) {
2830 struct inode *inode = cgrp->dentry->d_inode;
2832 mutex_lock(&inode->i_mutex);
2833 mutex_lock(&cgroup_mutex);
2834 if (!cgroup_is_removed(cgrp))
2835 cgroup_addrm_files(cgrp, ss, cfts, is_add);
2836 mutex_unlock(&cgroup_mutex);
2837 mutex_unlock(&inode->i_mutex);
2839 list_del_init(&cgrp->cft_q_node);
2840 dput(cgrp->dentry);
2843 mutex_unlock(&cgroup_cft_mutex);
2847 * cgroup_add_cftypes - add an array of cftypes to a subsystem
2848 * @ss: target cgroup subsystem
2849 * @cfts: zero-length name terminated array of cftypes
2851 * Register @cfts to @ss. Files described by @cfts are created for all
2852 * existing cgroups to which @ss is attached and all future cgroups will
2853 * have them too. This function can be called anytime whether @ss is
2854 * attached or not.
2856 * Returns 0 on successful registration, -errno on failure. Note that this
2857 * function currently returns 0 as long as @cfts registration is successful
2858 * even if some file creation attempts on existing cgroups fail.
2860 int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
2862 struct cftype_set *set;
2864 set = kzalloc(sizeof(*set), GFP_KERNEL);
2865 if (!set)
2866 return -ENOMEM;
2868 cgroup_cfts_prepare();
2869 set->cfts = cfts;
2870 list_add_tail(&set->node, &ss->cftsets);
2871 cgroup_cfts_commit(ss, cfts, true);
2873 return 0;
2875 EXPORT_SYMBOL_GPL(cgroup_add_cftypes);
2878 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
2879 * @ss: target cgroup subsystem
2880 * @cfts: zero-length name terminated array of cftypes
2882 * Unregister @cfts from @ss. Files described by @cfts are removed from
2883 * all existing cgroups to which @ss is attached and all future cgroups
2884 * won't have them either. This function can be called anytime whether @ss
2885 * is attached or not.
2887 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
2888 * registered with @ss.
2890 int cgroup_rm_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
2892 struct cftype_set *set;
2894 cgroup_cfts_prepare();
2896 list_for_each_entry(set, &ss->cftsets, node) {
2897 if (set->cfts == cfts) {
2898 list_del_init(&set->node);
2899 cgroup_cfts_commit(ss, cfts, false);
2900 return 0;
2904 cgroup_cfts_commit(ss, NULL, false);
2905 return -ENOENT;
2909 * cgroup_task_count - count the number of tasks in a cgroup.
2910 * @cgrp: the cgroup in question
2912 * Return the number of tasks in the cgroup.
2914 int cgroup_task_count(const struct cgroup *cgrp)
2916 int count = 0;
2917 struct cg_cgroup_link *link;
2919 read_lock(&css_set_lock);
2920 list_for_each_entry(link, &cgrp->css_sets, cgrp_link_list) {
2921 count += atomic_read(&link->cg->refcount);
2923 read_unlock(&css_set_lock);
2924 return count;
2928 * Advance a list_head iterator. The iterator should be positioned at
2929 * the start of a css_set
2931 static void cgroup_advance_iter(struct cgroup *cgrp,
2932 struct cgroup_iter *it)
2934 struct list_head *l = it->cg_link;
2935 struct cg_cgroup_link *link;
2936 struct css_set *cg;
2938 /* Advance to the next non-empty css_set */
2939 do {
2940 l = l->next;
2941 if (l == &cgrp->css_sets) {
2942 it->cg_link = NULL;
2943 return;
2945 link = list_entry(l, struct cg_cgroup_link, cgrp_link_list);
2946 cg = link->cg;
2947 } while (list_empty(&cg->tasks));
2948 it->cg_link = l;
2949 it->task = cg->tasks.next;
2953 * To reduce the fork() overhead for systems that are not actually
2954 * using their cgroups capability, we don't maintain the lists running
2955 * through each css_set to its tasks until we see the list actually
2956 * used - in other words after the first call to cgroup_iter_start().
2958 static void cgroup_enable_task_cg_lists(void)
2960 struct task_struct *p, *g;
2961 write_lock(&css_set_lock);
2962 use_task_css_set_links = 1;
2964 * We need tasklist_lock because RCU is not safe against
2965 * while_each_thread(). Besides, a forking task that has passed
2966 * cgroup_post_fork() without seeing use_task_css_set_links = 1
2967 * is not guaranteed to have its child immediately visible in the
2968 * tasklist if we walk through it with RCU.
2970 read_lock(&tasklist_lock);
2971 do_each_thread(g, p) {
2972 task_lock(p);
2974 * We should check if the process is exiting, otherwise
2975 * it will race with cgroup_exit() in that the list
2976 * entry won't be deleted though the process has exited.
2978 if (!(p->flags & PF_EXITING) && list_empty(&p->cg_list))
2979 list_add(&p->cg_list, &p->cgroups->tasks);
2980 task_unlock(p);
2981 } while_each_thread(g, p);
2982 read_unlock(&tasklist_lock);
2983 write_unlock(&css_set_lock);
2987 * cgroup_next_descendant_pre - find the next descendant for pre-order walk
2988 * @pos: the current position (%NULL to initiate traversal)
2989 * @cgroup: cgroup whose descendants to walk
2991 * To be used by cgroup_for_each_descendant_pre(). Find the next
2992 * descendant to visit for pre-order traversal of @cgroup's descendants.
2994 struct cgroup *cgroup_next_descendant_pre(struct cgroup *pos,
2995 struct cgroup *cgroup)
2997 struct cgroup *next;
2999 WARN_ON_ONCE(!rcu_read_lock_held());
3001 /* if first iteration, pretend we just visited @cgroup */
3002 if (!pos) {
3003 if (list_empty(&cgroup->children))
3004 return NULL;
3005 pos = cgroup;
3008 /* visit the first child if exists */
3009 next = list_first_or_null_rcu(&pos->children, struct cgroup, sibling);
3010 if (next)
3011 return next;
3013 /* no child, visit my or the closest ancestor's next sibling */
3014 do {
3015 next = list_entry_rcu(pos->sibling.next, struct cgroup,
3016 sibling);
3017 if (&next->sibling != &pos->parent->children)
3018 return next;
3020 pos = pos->parent;
3021 } while (pos != cgroup);
3023 return NULL;
3025 EXPORT_SYMBOL_GPL(cgroup_next_descendant_pre);
3027 static struct cgroup *cgroup_leftmost_descendant(struct cgroup *pos)
3029 struct cgroup *last;
3031 do {
3032 last = pos;
3033 pos = list_first_or_null_rcu(&pos->children, struct cgroup,
3034 sibling);
3035 } while (pos);
3037 return last;
3041 * cgroup_next_descendant_post - find the next descendant for post-order walk
3042 * @pos: the current position (%NULL to initiate traversal)
3043 * @cgroup: cgroup whose descendants to walk
3045 * To be used by cgroup_for_each_descendant_post(). Find the next
3046 * descendant to visit for post-order traversal of @cgroup's descendants.
3048 struct cgroup *cgroup_next_descendant_post(struct cgroup *pos,
3049 struct cgroup *cgroup)
3051 struct cgroup *next;
3053 WARN_ON_ONCE(!rcu_read_lock_held());
3055 /* if first iteration, visit the leftmost descendant */
3056 if (!pos) {
3057 next = cgroup_leftmost_descendant(cgroup);
3058 return next != cgroup ? next : NULL;
3061 /* if there's an unvisited sibling, visit its leftmost descendant */
3062 next = list_entry_rcu(pos->sibling.next, struct cgroup, sibling);
3063 if (&next->sibling != &pos->parent->children)
3064 return cgroup_leftmost_descendant(next);
3066 /* no sibling left, visit parent */
3067 next = pos->parent;
3068 return next != cgroup ? next : NULL;
3070 EXPORT_SYMBOL_GPL(cgroup_next_descendant_post);
3072 void cgroup_iter_start(struct cgroup *cgrp, struct cgroup_iter *it)
3073 __acquires(css_set_lock)
3076 * The first time anyone tries to iterate across a cgroup,
3077 * we need to enable the list linking each css_set to its
3078 * tasks, and fix up all existing tasks.
3080 if (!use_task_css_set_links)
3081 cgroup_enable_task_cg_lists();
3083 read_lock(&css_set_lock);
3084 it->cg_link = &cgrp->css_sets;
3085 cgroup_advance_iter(cgrp, it);
3088 struct task_struct *cgroup_iter_next(struct cgroup *cgrp,
3089 struct cgroup_iter *it)
3091 struct task_struct *res;
3092 struct list_head *l = it->task;
3093 struct cg_cgroup_link *link;
3095 /* If the iterator cg is NULL, we have no tasks */
3096 if (!it->cg_link)
3097 return NULL;
3098 res = list_entry(l, struct task_struct, cg_list);
3099 /* Advance iterator to find next entry */
3100 l = l->next;
3101 link = list_entry(it->cg_link, struct cg_cgroup_link, cgrp_link_list);
3102 if (l == &link->cg->tasks) {
3103 /* We reached the end of this task list - move on to
3104 * the next cg_cgroup_link */
3105 cgroup_advance_iter(cgrp, it);
3106 } else {
3107 it->task = l;
3109 return res;
3112 void cgroup_iter_end(struct cgroup *cgrp, struct cgroup_iter *it)
3113 __releases(css_set_lock)
3115 read_unlock(&css_set_lock);
3118 static inline int started_after_time(struct task_struct *t1,
3119 struct timespec *time,
3120 struct task_struct *t2)
3122 int start_diff = timespec_compare(&t1->start_time, time);
3123 if (start_diff > 0) {
3124 return 1;
3125 } else if (start_diff < 0) {
3126 return 0;
3127 } else {
3129 * Arbitrarily, if two processes started at the same
3130 * time, we'll say that the lower pointer value
3131 * started first. Note that t2 may have exited by now
3132 * so this may not be a valid pointer any longer, but
3133 * that's fine - it still serves to distinguish
3134 * between two tasks started (effectively) simultaneously.
3136 return t1 > t2;
3141 * This function is a callback from heap_insert() and is used to order
3142 * the heap.
3143 * In this case we order the heap in descending task start time.
3145 static inline int started_after(void *p1, void *p2)
3147 struct task_struct *t1 = p1;
3148 struct task_struct *t2 = p2;
3149 return started_after_time(t1, &t2->start_time, t2);
3153 * cgroup_scan_tasks - iterate though all the tasks in a cgroup
3154 * @scan: struct cgroup_scanner containing arguments for the scan
3156 * Arguments include pointers to callback functions test_task() and
3157 * process_task().
3158 * Iterate through all the tasks in a cgroup, calling test_task() for each,
3159 * and if it returns true, call process_task() for it also.
3160 * The test_task pointer may be NULL, meaning always true (select all tasks).
3161 * Effectively duplicates cgroup_iter_{start,next,end}()
3162 * but does not lock css_set_lock for the call to process_task().
3163 * The struct cgroup_scanner may be embedded in any structure of the caller's
3164 * creation.
3165 * It is guaranteed that process_task() will act on every task that
3166 * is a member of the cgroup for the duration of this call. This
3167 * function may or may not call process_task() for tasks that exit
3168 * or move to a different cgroup during the call, or are forked or
3169 * move into the cgroup during the call.
3171 * Note that test_task() may be called with locks held, and may in some
3172 * situations be called multiple times for the same task, so it should
3173 * be cheap.
3174 * If the heap pointer in the struct cgroup_scanner is non-NULL, a heap has been
3175 * pre-allocated and will be used for heap operations (and its "gt" member will
3176 * be overwritten), else a temporary heap will be used (allocation of which
3177 * may cause this function to fail).
3179 int cgroup_scan_tasks(struct cgroup_scanner *scan)
3181 int retval, i;
3182 struct cgroup_iter it;
3183 struct task_struct *p, *dropped;
3184 /* Never dereference latest_task, since it's not refcounted */
3185 struct task_struct *latest_task = NULL;
3186 struct ptr_heap tmp_heap;
3187 struct ptr_heap *heap;
3188 struct timespec latest_time = { 0, 0 };
3190 if (scan->heap) {
3191 /* The caller supplied our heap and pre-allocated its memory */
3192 heap = scan->heap;
3193 heap->gt = &started_after;
3194 } else {
3195 /* We need to allocate our own heap memory */
3196 heap = &tmp_heap;
3197 retval = heap_init(heap, PAGE_SIZE, GFP_KERNEL, &started_after);
3198 if (retval)
3199 /* cannot allocate the heap */
3200 return retval;
3203 again:
3205 * Scan tasks in the cgroup, using the scanner's "test_task" callback
3206 * to determine which are of interest, and using the scanner's
3207 * "process_task" callback to process any of them that need an update.
3208 * Since we don't want to hold any locks during the task updates,
3209 * gather tasks to be processed in a heap structure.
3210 * The heap is sorted by descending task start time.
3211 * If the statically-sized heap fills up, we overflow tasks that
3212 * started later, and in future iterations only consider tasks that
3213 * started after the latest task in the previous pass. This
3214 * guarantees forward progress and that we don't miss any tasks.
3216 heap->size = 0;
3217 cgroup_iter_start(scan->cg, &it);
3218 while ((p = cgroup_iter_next(scan->cg, &it))) {
3220 * Only affect tasks that qualify per the caller's callback,
3221 * if he provided one
3223 if (scan->test_task && !scan->test_task(p, scan))
3224 continue;
3226 * Only process tasks that started after the last task
3227 * we processed
3229 if (!started_after_time(p, &latest_time, latest_task))
3230 continue;
3231 dropped = heap_insert(heap, p);
3232 if (dropped == NULL) {
3234 * The new task was inserted; the heap wasn't
3235 * previously full
3237 get_task_struct(p);
3238 } else if (dropped != p) {
3240 * The new task was inserted, and pushed out a
3241 * different task
3243 get_task_struct(p);
3244 put_task_struct(dropped);
3247 * Else the new task was newer than anything already in
3248 * the heap and wasn't inserted
3251 cgroup_iter_end(scan->cg, &it);
3253 if (heap->size) {
3254 for (i = 0; i < heap->size; i++) {
3255 struct task_struct *q = heap->ptrs[i];
3256 if (i == 0) {
3257 latest_time = q->start_time;
3258 latest_task = q;
3260 /* Process the task per the caller's callback */
3261 scan->process_task(q, scan);
3262 put_task_struct(q);
3265 * If we had to process any tasks at all, scan again
3266 * in case some of them were in the middle of forking
3267 * children that didn't get processed.
3268 * Not the most efficient way to do it, but it avoids
3269 * having to take callback_mutex in the fork path
3271 goto again;
3273 if (heap == &tmp_heap)
3274 heap_free(&tmp_heap);
3275 return 0;
3279 * Stuff for reading the 'tasks'/'procs' files.
3281 * Reading this file can return large amounts of data if a cgroup has
3282 * *lots* of attached tasks. So it may need several calls to read(),
3283 * but we cannot guarantee that the information we produce is correct
3284 * unless we produce it entirely atomically.
3288 /* which pidlist file are we talking about? */
3289 enum cgroup_filetype {
3290 CGROUP_FILE_PROCS,
3291 CGROUP_FILE_TASKS,
3295 * A pidlist is a list of pids that virtually represents the contents of one
3296 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
3297 * a pair (one each for procs, tasks) for each pid namespace that's relevant
3298 * to the cgroup.
3300 struct cgroup_pidlist {
3302 * used to find which pidlist is wanted. doesn't change as long as
3303 * this particular list stays in the list.
3305 struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
3306 /* array of xids */
3307 pid_t *list;
3308 /* how many elements the above list has */
3309 int length;
3310 /* how many files are using the current array */
3311 int use_count;
3312 /* each of these stored in a list by its cgroup */
3313 struct list_head links;
3314 /* pointer to the cgroup we belong to, for list removal purposes */
3315 struct cgroup *owner;
3316 /* protects the other fields */
3317 struct rw_semaphore mutex;
3321 * The following two functions "fix" the issue where there are more pids
3322 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
3323 * TODO: replace with a kernel-wide solution to this problem
3325 #define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
3326 static void *pidlist_allocate(int count)
3328 if (PIDLIST_TOO_LARGE(count))
3329 return vmalloc(count * sizeof(pid_t));
3330 else
3331 return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
3333 static void pidlist_free(void *p)
3335 if (is_vmalloc_addr(p))
3336 vfree(p);
3337 else
3338 kfree(p);
3340 static void *pidlist_resize(void *p, int newcount)
3342 void *newlist;
3343 /* note: if new alloc fails, old p will still be valid either way */
3344 if (is_vmalloc_addr(p)) {
3345 newlist = vmalloc(newcount * sizeof(pid_t));
3346 if (!newlist)
3347 return NULL;
3348 memcpy(newlist, p, newcount * sizeof(pid_t));
3349 vfree(p);
3350 } else {
3351 newlist = krealloc(p, newcount * sizeof(pid_t), GFP_KERNEL);
3353 return newlist;
3357 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
3358 * If the new stripped list is sufficiently smaller and there's enough memory
3359 * to allocate a new buffer, will let go of the unneeded memory. Returns the
3360 * number of unique elements.
3362 /* is the size difference enough that we should re-allocate the array? */
3363 #define PIDLIST_REALLOC_DIFFERENCE(old, new) ((old) - PAGE_SIZE >= (new))
3364 static int pidlist_uniq(pid_t **p, int length)
3366 int src, dest = 1;
3367 pid_t *list = *p;
3368 pid_t *newlist;
3371 * we presume the 0th element is unique, so i starts at 1. trivial
3372 * edge cases first; no work needs to be done for either
3374 if (length == 0 || length == 1)
3375 return length;
3376 /* src and dest walk down the list; dest counts unique elements */
3377 for (src = 1; src < length; src++) {
3378 /* find next unique element */
3379 while (list[src] == list[src-1]) {
3380 src++;
3381 if (src == length)
3382 goto after;
3384 /* dest always points to where the next unique element goes */
3385 list[dest] = list[src];
3386 dest++;
3388 after:
3390 * if the length difference is large enough, we want to allocate a
3391 * smaller buffer to save memory. if this fails due to out of memory,
3392 * we'll just stay with what we've got.
3394 if (PIDLIST_REALLOC_DIFFERENCE(length, dest)) {
3395 newlist = pidlist_resize(list, dest);
3396 if (newlist)
3397 *p = newlist;
3399 return dest;
3402 static int cmppid(const void *a, const void *b)
3404 return *(pid_t *)a - *(pid_t *)b;
3408 * find the appropriate pidlist for our purpose (given procs vs tasks)
3409 * returns with the lock on that pidlist already held, and takes care
3410 * of the use count, or returns NULL with no locks held if we're out of
3411 * memory.
3413 static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
3414 enum cgroup_filetype type)
3416 struct cgroup_pidlist *l;
3417 /* don't need task_nsproxy() if we're looking at ourself */
3418 struct pid_namespace *ns = current->nsproxy->pid_ns;
3421 * We can't drop the pidlist_mutex before taking the l->mutex in case
3422 * the last ref-holder is trying to remove l from the list at the same
3423 * time. Holding the pidlist_mutex precludes somebody taking whichever
3424 * list we find out from under us - compare release_pid_array().
3426 mutex_lock(&cgrp->pidlist_mutex);
3427 list_for_each_entry(l, &cgrp->pidlists, links) {
3428 if (l->key.type == type && l->key.ns == ns) {
3429 /* make sure l doesn't vanish out from under us */
3430 down_write(&l->mutex);
3431 mutex_unlock(&cgrp->pidlist_mutex);
3432 return l;
3435 /* entry not found; create a new one */
3436 l = kmalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
3437 if (!l) {
3438 mutex_unlock(&cgrp->pidlist_mutex);
3439 return l;
3441 init_rwsem(&l->mutex);
3442 down_write(&l->mutex);
3443 l->key.type = type;
3444 l->key.ns = get_pid_ns(ns);
3445 l->use_count = 0; /* don't increment here */
3446 l->list = NULL;
3447 l->owner = cgrp;
3448 list_add(&l->links, &cgrp->pidlists);
3449 mutex_unlock(&cgrp->pidlist_mutex);
3450 return l;
3454 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
3456 static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
3457 struct cgroup_pidlist **lp)
3459 pid_t *array;
3460 int length;
3461 int pid, n = 0; /* used for populating the array */
3462 struct cgroup_iter it;
3463 struct task_struct *tsk;
3464 struct cgroup_pidlist *l;
3467 * If cgroup gets more users after we read count, we won't have
3468 * enough space - tough. This race is indistinguishable to the
3469 * caller from the case that the additional cgroup users didn't
3470 * show up until sometime later on.
3472 length = cgroup_task_count(cgrp);
3473 array = pidlist_allocate(length);
3474 if (!array)
3475 return -ENOMEM;
3476 /* now, populate the array */
3477 cgroup_iter_start(cgrp, &it);
3478 while ((tsk = cgroup_iter_next(cgrp, &it))) {
3479 if (unlikely(n == length))
3480 break;
3481 /* get tgid or pid for procs or tasks file respectively */
3482 if (type == CGROUP_FILE_PROCS)
3483 pid = task_tgid_vnr(tsk);
3484 else
3485 pid = task_pid_vnr(tsk);
3486 if (pid > 0) /* make sure to only use valid results */
3487 array[n++] = pid;
3489 cgroup_iter_end(cgrp, &it);
3490 length = n;
3491 /* now sort & (if procs) strip out duplicates */
3492 sort(array, length, sizeof(pid_t), cmppid, NULL);
3493 if (type == CGROUP_FILE_PROCS)
3494 length = pidlist_uniq(&array, length);
3495 l = cgroup_pidlist_find(cgrp, type);
3496 if (!l) {
3497 pidlist_free(array);
3498 return -ENOMEM;
3500 /* store array, freeing old if necessary - lock already held */
3501 pidlist_free(l->list);
3502 l->list = array;
3503 l->length = length;
3504 l->use_count++;
3505 up_write(&l->mutex);
3506 *lp = l;
3507 return 0;
3511 * cgroupstats_build - build and fill cgroupstats
3512 * @stats: cgroupstats to fill information into
3513 * @dentry: A dentry entry belonging to the cgroup for which stats have
3514 * been requested.
3516 * Build and fill cgroupstats so that taskstats can export it to user
3517 * space.
3519 int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
3521 int ret = -EINVAL;
3522 struct cgroup *cgrp;
3523 struct cgroup_iter it;
3524 struct task_struct *tsk;
3527 * Validate dentry by checking the superblock operations,
3528 * and make sure it's a directory.
3530 if (dentry->d_sb->s_op != &cgroup_ops ||
3531 !S_ISDIR(dentry->d_inode->i_mode))
3532 goto err;
3534 ret = 0;
3535 cgrp = dentry->d_fsdata;
3537 cgroup_iter_start(cgrp, &it);
3538 while ((tsk = cgroup_iter_next(cgrp, &it))) {
3539 switch (tsk->state) {
3540 case TASK_RUNNING:
3541 stats->nr_running++;
3542 break;
3543 case TASK_INTERRUPTIBLE:
3544 stats->nr_sleeping++;
3545 break;
3546 case TASK_UNINTERRUPTIBLE:
3547 stats->nr_uninterruptible++;
3548 break;
3549 case TASK_STOPPED:
3550 stats->nr_stopped++;
3551 break;
3552 default:
3553 if (delayacct_is_task_waiting_on_io(tsk))
3554 stats->nr_io_wait++;
3555 break;
3558 cgroup_iter_end(cgrp, &it);
3560 err:
3561 return ret;
3566 * seq_file methods for the tasks/procs files. The seq_file position is the
3567 * next pid to display; the seq_file iterator is a pointer to the pid
3568 * in the cgroup->l->list array.
3571 static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
3574 * Initially we receive a position value that corresponds to
3575 * one more than the last pid shown (or 0 on the first call or
3576 * after a seek to the start). Use a binary-search to find the
3577 * next pid to display, if any
3579 struct cgroup_pidlist *l = s->private;
3580 int index = 0, pid = *pos;
3581 int *iter;
3583 down_read(&l->mutex);
3584 if (pid) {
3585 int end = l->length;
3587 while (index < end) {
3588 int mid = (index + end) / 2;
3589 if (l->list[mid] == pid) {
3590 index = mid;
3591 break;
3592 } else if (l->list[mid] <= pid)
3593 index = mid + 1;
3594 else
3595 end = mid;
3598 /* If we're off the end of the array, we're done */
3599 if (index >= l->length)
3600 return NULL;
3601 /* Update the abstract position to be the actual pid that we found */
3602 iter = l->list + index;
3603 *pos = *iter;
3604 return iter;
3607 static void cgroup_pidlist_stop(struct seq_file *s, void *v)
3609 struct cgroup_pidlist *l = s->private;
3610 up_read(&l->mutex);
3613 static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
3615 struct cgroup_pidlist *l = s->private;
3616 pid_t *p = v;
3617 pid_t *end = l->list + l->length;
3619 * Advance to the next pid in the array. If this goes off the
3620 * end, we're done
3622 p++;
3623 if (p >= end) {
3624 return NULL;
3625 } else {
3626 *pos = *p;
3627 return p;
3631 static int cgroup_pidlist_show(struct seq_file *s, void *v)
3633 return seq_printf(s, "%d\n", *(int *)v);
3637 * seq_operations functions for iterating on pidlists through seq_file -
3638 * independent of whether it's tasks or procs
3640 static const struct seq_operations cgroup_pidlist_seq_operations = {
3641 .start = cgroup_pidlist_start,
3642 .stop = cgroup_pidlist_stop,
3643 .next = cgroup_pidlist_next,
3644 .show = cgroup_pidlist_show,
3647 static void cgroup_release_pid_array(struct cgroup_pidlist *l)
3650 * the case where we're the last user of this particular pidlist will
3651 * have us remove it from the cgroup's list, which entails taking the
3652 * mutex. since in pidlist_find the pidlist->lock depends on cgroup->
3653 * pidlist_mutex, we have to take pidlist_mutex first.
3655 mutex_lock(&l->owner->pidlist_mutex);
3656 down_write(&l->mutex);
3657 BUG_ON(!l->use_count);
3658 if (!--l->use_count) {
3659 /* we're the last user if refcount is 0; remove and free */
3660 list_del(&l->links);
3661 mutex_unlock(&l->owner->pidlist_mutex);
3662 pidlist_free(l->list);
3663 put_pid_ns(l->key.ns);
3664 up_write(&l->mutex);
3665 kfree(l);
3666 return;
3668 mutex_unlock(&l->owner->pidlist_mutex);
3669 up_write(&l->mutex);
3672 static int cgroup_pidlist_release(struct inode *inode, struct file *file)
3674 struct cgroup_pidlist *l;
3675 if (!(file->f_mode & FMODE_READ))
3676 return 0;
3678 * the seq_file will only be initialized if the file was opened for
3679 * reading; hence we check if it's not null only in that case.
3681 l = ((struct seq_file *)file->private_data)->private;
3682 cgroup_release_pid_array(l);
3683 return seq_release(inode, file);
3686 static const struct file_operations cgroup_pidlist_operations = {
3687 .read = seq_read,
3688 .llseek = seq_lseek,
3689 .write = cgroup_file_write,
3690 .release = cgroup_pidlist_release,
3694 * The following functions handle opens on a file that displays a pidlist
3695 * (tasks or procs). Prepare an array of the process/thread IDs of whoever's
3696 * in the cgroup.
3698 /* helper function for the two below it */
3699 static int cgroup_pidlist_open(struct file *file, enum cgroup_filetype type)
3701 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
3702 struct cgroup_pidlist *l;
3703 int retval;
3705 /* Nothing to do for write-only files */
3706 if (!(file->f_mode & FMODE_READ))
3707 return 0;
3709 /* have the array populated */
3710 retval = pidlist_array_load(cgrp, type, &l);
3711 if (retval)
3712 return retval;
3713 /* configure file information */
3714 file->f_op = &cgroup_pidlist_operations;
3716 retval = seq_open(file, &cgroup_pidlist_seq_operations);
3717 if (retval) {
3718 cgroup_release_pid_array(l);
3719 return retval;
3721 ((struct seq_file *)file->private_data)->private = l;
3722 return 0;
3724 static int cgroup_tasks_open(struct inode *unused, struct file *file)
3726 return cgroup_pidlist_open(file, CGROUP_FILE_TASKS);
3728 static int cgroup_procs_open(struct inode *unused, struct file *file)
3730 return cgroup_pidlist_open(file, CGROUP_FILE_PROCS);
3733 static u64 cgroup_read_notify_on_release(struct cgroup *cgrp,
3734 struct cftype *cft)
3736 return notify_on_release(cgrp);
3739 static int cgroup_write_notify_on_release(struct cgroup *cgrp,
3740 struct cftype *cft,
3741 u64 val)
3743 clear_bit(CGRP_RELEASABLE, &cgrp->flags);
3744 if (val)
3745 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3746 else
3747 clear_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3748 return 0;
3752 * Unregister event and free resources.
3754 * Gets called from workqueue.
3756 static void cgroup_event_remove(struct work_struct *work)
3758 struct cgroup_event *event = container_of(work, struct cgroup_event,
3759 remove);
3760 struct cgroup *cgrp = event->cgrp;
3762 event->cft->unregister_event(cgrp, event->cft, event->eventfd);
3764 eventfd_ctx_put(event->eventfd);
3765 kfree(event);
3766 dput(cgrp->dentry);
3770 * Gets called on POLLHUP on eventfd when user closes it.
3772 * Called with wqh->lock held and interrupts disabled.
3774 static int cgroup_event_wake(wait_queue_t *wait, unsigned mode,
3775 int sync, void *key)
3777 struct cgroup_event *event = container_of(wait,
3778 struct cgroup_event, wait);
3779 struct cgroup *cgrp = event->cgrp;
3780 unsigned long flags = (unsigned long)key;
3782 if (flags & POLLHUP) {
3783 __remove_wait_queue(event->wqh, &event->wait);
3784 spin_lock(&cgrp->event_list_lock);
3785 list_del(&event->list);
3786 spin_unlock(&cgrp->event_list_lock);
3788 * We are in atomic context, but cgroup_event_remove() may
3789 * sleep, so we have to call it in workqueue.
3791 schedule_work(&event->remove);
3794 return 0;
3797 static void cgroup_event_ptable_queue_proc(struct file *file,
3798 wait_queue_head_t *wqh, poll_table *pt)
3800 struct cgroup_event *event = container_of(pt,
3801 struct cgroup_event, pt);
3803 event->wqh = wqh;
3804 add_wait_queue(wqh, &event->wait);
3808 * Parse input and register new cgroup event handler.
3810 * Input must be in format '<event_fd> <control_fd> <args>'.
3811 * Interpretation of args is defined by control file implementation.
3813 static int cgroup_write_event_control(struct cgroup *cgrp, struct cftype *cft,
3814 const char *buffer)
3816 struct cgroup_event *event = NULL;
3817 unsigned int efd, cfd;
3818 struct file *efile = NULL;
3819 struct file *cfile = NULL;
3820 char *endp;
3821 int ret;
3823 efd = simple_strtoul(buffer, &endp, 10);
3824 if (*endp != ' ')
3825 return -EINVAL;
3826 buffer = endp + 1;
3828 cfd = simple_strtoul(buffer, &endp, 10);
3829 if ((*endp != ' ') && (*endp != '\0'))
3830 return -EINVAL;
3831 buffer = endp + 1;
3833 event = kzalloc(sizeof(*event), GFP_KERNEL);
3834 if (!event)
3835 return -ENOMEM;
3836 event->cgrp = cgrp;
3837 INIT_LIST_HEAD(&event->list);
3838 init_poll_funcptr(&event->pt, cgroup_event_ptable_queue_proc);
3839 init_waitqueue_func_entry(&event->wait, cgroup_event_wake);
3840 INIT_WORK(&event->remove, cgroup_event_remove);
3842 efile = eventfd_fget(efd);
3843 if (IS_ERR(efile)) {
3844 ret = PTR_ERR(efile);
3845 goto fail;
3848 event->eventfd = eventfd_ctx_fileget(efile);
3849 if (IS_ERR(event->eventfd)) {
3850 ret = PTR_ERR(event->eventfd);
3851 goto fail;
3854 cfile = fget(cfd);
3855 if (!cfile) {
3856 ret = -EBADF;
3857 goto fail;
3860 /* the process need read permission on control file */
3861 /* AV: shouldn't we check that it's been opened for read instead? */
3862 ret = inode_permission(cfile->f_path.dentry->d_inode, MAY_READ);
3863 if (ret < 0)
3864 goto fail;
3866 event->cft = __file_cft(cfile);
3867 if (IS_ERR(event->cft)) {
3868 ret = PTR_ERR(event->cft);
3869 goto fail;
3872 if (!event->cft->register_event || !event->cft->unregister_event) {
3873 ret = -EINVAL;
3874 goto fail;
3877 ret = event->cft->register_event(cgrp, event->cft,
3878 event->eventfd, buffer);
3879 if (ret)
3880 goto fail;
3882 if (efile->f_op->poll(efile, &event->pt) & POLLHUP) {
3883 event->cft->unregister_event(cgrp, event->cft, event->eventfd);
3884 ret = 0;
3885 goto fail;
3889 * Events should be removed after rmdir of cgroup directory, but before
3890 * destroying subsystem state objects. Let's take reference to cgroup
3891 * directory dentry to do that.
3893 dget(cgrp->dentry);
3895 spin_lock(&cgrp->event_list_lock);
3896 list_add(&event->list, &cgrp->event_list);
3897 spin_unlock(&cgrp->event_list_lock);
3899 fput(cfile);
3900 fput(efile);
3902 return 0;
3904 fail:
3905 if (cfile)
3906 fput(cfile);
3908 if (event && event->eventfd && !IS_ERR(event->eventfd))
3909 eventfd_ctx_put(event->eventfd);
3911 if (!IS_ERR_OR_NULL(efile))
3912 fput(efile);
3914 kfree(event);
3916 return ret;
3919 static u64 cgroup_clone_children_read(struct cgroup *cgrp,
3920 struct cftype *cft)
3922 return clone_children(cgrp);
3925 static int cgroup_clone_children_write(struct cgroup *cgrp,
3926 struct cftype *cft,
3927 u64 val)
3929 if (val)
3930 set_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
3931 else
3932 clear_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
3933 return 0;
3937 * for the common functions, 'private' gives the type of file
3939 /* for hysterical raisins, we can't put this on the older files */
3940 #define CGROUP_FILE_GENERIC_PREFIX "cgroup."
3941 static struct cftype files[] = {
3943 .name = "tasks",
3944 .open = cgroup_tasks_open,
3945 .write_u64 = cgroup_tasks_write,
3946 .release = cgroup_pidlist_release,
3947 .mode = S_IRUGO | S_IWUSR,
3950 .name = CGROUP_FILE_GENERIC_PREFIX "procs",
3951 .open = cgroup_procs_open,
3952 .write_u64 = cgroup_procs_write,
3953 .release = cgroup_pidlist_release,
3954 .mode = S_IRUGO | S_IWUSR,
3957 .name = "notify_on_release",
3958 .read_u64 = cgroup_read_notify_on_release,
3959 .write_u64 = cgroup_write_notify_on_release,
3962 .name = CGROUP_FILE_GENERIC_PREFIX "event_control",
3963 .write_string = cgroup_write_event_control,
3964 .mode = S_IWUGO,
3967 .name = "cgroup.clone_children",
3968 .read_u64 = cgroup_clone_children_read,
3969 .write_u64 = cgroup_clone_children_write,
3972 .name = "release_agent",
3973 .flags = CFTYPE_ONLY_ON_ROOT,
3974 .read_seq_string = cgroup_release_agent_show,
3975 .write_string = cgroup_release_agent_write,
3976 .max_write_len = PATH_MAX,
3978 { } /* terminate */
3982 * cgroup_populate_dir - selectively creation of files in a directory
3983 * @cgrp: target cgroup
3984 * @base_files: true if the base files should be added
3985 * @subsys_mask: mask of the subsystem ids whose files should be added
3987 static int cgroup_populate_dir(struct cgroup *cgrp, bool base_files,
3988 unsigned long subsys_mask)
3990 int err;
3991 struct cgroup_subsys *ss;
3993 if (base_files) {
3994 err = cgroup_addrm_files(cgrp, NULL, files, true);
3995 if (err < 0)
3996 return err;
3999 /* process cftsets of each subsystem */
4000 for_each_subsys(cgrp->root, ss) {
4001 struct cftype_set *set;
4002 if (!test_bit(ss->subsys_id, &subsys_mask))
4003 continue;
4005 list_for_each_entry(set, &ss->cftsets, node)
4006 cgroup_addrm_files(cgrp, ss, set->cfts, true);
4009 /* This cgroup is ready now */
4010 for_each_subsys(cgrp->root, ss) {
4011 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
4013 * Update id->css pointer and make this css visible from
4014 * CSS ID functions. This pointer will be dereferened
4015 * from RCU-read-side without locks.
4017 if (css->id)
4018 rcu_assign_pointer(css->id->css, css);
4021 return 0;
4024 static void css_dput_fn(struct work_struct *work)
4026 struct cgroup_subsys_state *css =
4027 container_of(work, struct cgroup_subsys_state, dput_work);
4028 struct dentry *dentry = css->cgroup->dentry;
4029 struct super_block *sb = dentry->d_sb;
4031 atomic_inc(&sb->s_active);
4032 dput(dentry);
4033 deactivate_super(sb);
4036 static void init_cgroup_css(struct cgroup_subsys_state *css,
4037 struct cgroup_subsys *ss,
4038 struct cgroup *cgrp)
4040 css->cgroup = cgrp;
4041 atomic_set(&css->refcnt, 1);
4042 css->flags = 0;
4043 css->id = NULL;
4044 if (cgrp == dummytop)
4045 set_bit(CSS_ROOT, &css->flags);
4046 BUG_ON(cgrp->subsys[ss->subsys_id]);
4047 cgrp->subsys[ss->subsys_id] = css;
4050 * css holds an extra ref to @cgrp->dentry which is put on the last
4051 * css_put(). dput() requires process context, which css_put() may
4052 * be called without. @css->dput_work will be used to invoke
4053 * dput() asynchronously from css_put().
4055 INIT_WORK(&css->dput_work, css_dput_fn);
4059 * cgroup_create - create a cgroup
4060 * @parent: cgroup that will be parent of the new cgroup
4061 * @dentry: dentry of the new cgroup
4062 * @mode: mode to set on new inode
4064 * Must be called with the mutex on the parent inode held
4066 static long cgroup_create(struct cgroup *parent, struct dentry *dentry,
4067 umode_t mode)
4069 struct cgroup *cgrp;
4070 struct cgroupfs_root *root = parent->root;
4071 int err = 0;
4072 struct cgroup_subsys *ss;
4073 struct super_block *sb = root->sb;
4075 cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
4076 if (!cgrp)
4077 return -ENOMEM;
4080 * Only live parents can have children. Note that the liveliness
4081 * check isn't strictly necessary because cgroup_mkdir() and
4082 * cgroup_rmdir() are fully synchronized by i_mutex; however, do it
4083 * anyway so that locking is contained inside cgroup proper and we
4084 * don't get nasty surprises if we ever grow another caller.
4086 if (!cgroup_lock_live_group(parent)) {
4087 err = -ENODEV;
4088 goto err_free;
4091 /* Grab a reference on the superblock so the hierarchy doesn't
4092 * get deleted on unmount if there are child cgroups. This
4093 * can be done outside cgroup_mutex, since the sb can't
4094 * disappear while someone has an open control file on the
4095 * fs */
4096 atomic_inc(&sb->s_active);
4098 init_cgroup_housekeeping(cgrp);
4100 cgrp->parent = parent;
4101 cgrp->root = parent->root;
4102 cgrp->top_cgroup = parent->top_cgroup;
4104 if (notify_on_release(parent))
4105 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
4107 if (clone_children(parent))
4108 set_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
4110 for_each_subsys(root, ss) {
4111 struct cgroup_subsys_state *css;
4113 css = ss->create(cgrp);
4114 if (IS_ERR(css)) {
4115 err = PTR_ERR(css);
4116 goto err_destroy;
4118 init_cgroup_css(css, ss, cgrp);
4119 if (ss->use_id) {
4120 err = alloc_css_id(ss, parent, cgrp);
4121 if (err)
4122 goto err_destroy;
4124 /* At error, ->destroy() callback has to free assigned ID. */
4125 if (clone_children(parent) && ss->post_clone)
4126 ss->post_clone(cgrp);
4128 if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
4129 parent->parent) {
4130 pr_warning("cgroup: %s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
4131 current->comm, current->pid, ss->name);
4132 if (!strcmp(ss->name, "memory"))
4133 pr_warning("cgroup: \"memory\" requires setting use_hierarchy to 1 on the root.\n");
4134 ss->warned_broken_hierarchy = true;
4138 list_add_tail_rcu(&cgrp->sibling, &cgrp->parent->children);
4139 root->number_of_cgroups++;
4141 err = cgroup_create_dir(cgrp, dentry, mode);
4142 if (err < 0)
4143 goto err_remove;
4145 for_each_subsys(root, ss) {
4146 /* each css holds a ref to the cgroup's dentry */
4147 dget(dentry);
4149 /* creation succeeded, notify subsystems */
4150 if (ss->post_create)
4151 ss->post_create(cgrp);
4154 /* The cgroup directory was pre-locked for us */
4155 BUG_ON(!mutex_is_locked(&cgrp->dentry->d_inode->i_mutex));
4157 list_add_tail(&cgrp->allcg_node, &root->allcg_list);
4159 err = cgroup_populate_dir(cgrp, true, root->subsys_mask);
4160 /* If err < 0, we have a half-filled directory - oh well ;) */
4162 mutex_unlock(&cgroup_mutex);
4163 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
4165 return 0;
4167 err_remove:
4169 list_del_rcu(&cgrp->sibling);
4170 root->number_of_cgroups--;
4172 err_destroy:
4174 for_each_subsys(root, ss) {
4175 if (cgrp->subsys[ss->subsys_id])
4176 ss->destroy(cgrp);
4179 mutex_unlock(&cgroup_mutex);
4181 /* Release the reference count that we took on the superblock */
4182 deactivate_super(sb);
4183 err_free:
4184 kfree(cgrp);
4185 return err;
4188 static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
4190 struct cgroup *c_parent = dentry->d_parent->d_fsdata;
4192 /* the vfs holds inode->i_mutex already */
4193 return cgroup_create(c_parent, dentry, mode | S_IFDIR);
4197 * Check the reference count on each subsystem. Since we already
4198 * established that there are no tasks in the cgroup, if the css refcount
4199 * is also 1, then there should be no outstanding references, so the
4200 * subsystem is safe to destroy. We scan across all subsystems rather than
4201 * using the per-hierarchy linked list of mounted subsystems since we can
4202 * be called via check_for_release() with no synchronization other than
4203 * RCU, and the subsystem linked list isn't RCU-safe.
4205 static int cgroup_has_css_refs(struct cgroup *cgrp)
4207 int i;
4210 * We won't need to lock the subsys array, because the subsystems
4211 * we're concerned about aren't going anywhere since our cgroup root
4212 * has a reference on them.
4214 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
4215 struct cgroup_subsys *ss = subsys[i];
4216 struct cgroup_subsys_state *css;
4218 /* Skip subsystems not present or not in this hierarchy */
4219 if (ss == NULL || ss->root != cgrp->root)
4220 continue;
4222 css = cgrp->subsys[ss->subsys_id];
4224 * When called from check_for_release() it's possible
4225 * that by this point the cgroup has been removed
4226 * and the css deleted. But a false-positive doesn't
4227 * matter, since it can only happen if the cgroup
4228 * has been deleted and hence no longer needs the
4229 * release agent to be called anyway.
4231 if (css && css_refcnt(css) > 1)
4232 return 1;
4234 return 0;
4237 static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry)
4239 struct cgroup *cgrp = dentry->d_fsdata;
4240 struct dentry *d;
4241 struct cgroup *parent;
4242 DEFINE_WAIT(wait);
4243 struct cgroup_event *event, *tmp;
4244 struct cgroup_subsys *ss;
4246 /* the vfs holds both inode->i_mutex already */
4247 mutex_lock(&cgroup_mutex);
4248 parent = cgrp->parent;
4249 if (atomic_read(&cgrp->count) || !list_empty(&cgrp->children)) {
4250 mutex_unlock(&cgroup_mutex);
4251 return -EBUSY;
4255 * Block new css_tryget() by deactivating refcnt and mark @cgrp
4256 * removed. This makes future css_tryget() and child creation
4257 * attempts fail thus maintaining the removal conditions verified
4258 * above.
4260 for_each_subsys(cgrp->root, ss) {
4261 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
4263 WARN_ON(atomic_read(&css->refcnt) < 0);
4264 atomic_add(CSS_DEACT_BIAS, &css->refcnt);
4266 set_bit(CGRP_REMOVED, &cgrp->flags);
4269 * Tell subsystems to initate destruction. pre_destroy() should be
4270 * called with cgroup_mutex unlocked. See 3fa59dfbc3 ("cgroup: fix
4271 * potential deadlock in pre_destroy") for details.
4273 mutex_unlock(&cgroup_mutex);
4274 for_each_subsys(cgrp->root, ss)
4275 if (ss->pre_destroy)
4276 ss->pre_destroy(cgrp);
4277 mutex_lock(&cgroup_mutex);
4280 * Put all the base refs. Each css holds an extra reference to the
4281 * cgroup's dentry and cgroup removal proceeds regardless of css
4282 * refs. On the last put of each css, whenever that may be, the
4283 * extra dentry ref is put so that dentry destruction happens only
4284 * after all css's are released.
4286 for_each_subsys(cgrp->root, ss)
4287 css_put(cgrp->subsys[ss->subsys_id]);
4289 raw_spin_lock(&release_list_lock);
4290 if (!list_empty(&cgrp->release_list))
4291 list_del_init(&cgrp->release_list);
4292 raw_spin_unlock(&release_list_lock);
4294 /* delete this cgroup from parent->children */
4295 list_del_rcu(&cgrp->sibling);
4297 list_del_init(&cgrp->allcg_node);
4299 d = dget(cgrp->dentry);
4301 cgroup_d_remove_dir(d);
4302 dput(d);
4304 set_bit(CGRP_RELEASABLE, &parent->flags);
4305 check_for_release(parent);
4308 * Unregister events and notify userspace.
4309 * Notify userspace about cgroup removing only after rmdir of cgroup
4310 * directory to avoid race between userspace and kernelspace
4312 spin_lock(&cgrp->event_list_lock);
4313 list_for_each_entry_safe(event, tmp, &cgrp->event_list, list) {
4314 list_del(&event->list);
4315 remove_wait_queue(event->wqh, &event->wait);
4316 eventfd_signal(event->eventfd, 1);
4317 schedule_work(&event->remove);
4319 spin_unlock(&cgrp->event_list_lock);
4321 mutex_unlock(&cgroup_mutex);
4322 return 0;
4325 static void __init_or_module cgroup_init_cftsets(struct cgroup_subsys *ss)
4327 INIT_LIST_HEAD(&ss->cftsets);
4330 * base_cftset is embedded in subsys itself, no need to worry about
4331 * deregistration.
4333 if (ss->base_cftypes) {
4334 ss->base_cftset.cfts = ss->base_cftypes;
4335 list_add_tail(&ss->base_cftset.node, &ss->cftsets);
4339 static void __init cgroup_init_subsys(struct cgroup_subsys *ss)
4341 struct cgroup_subsys_state *css;
4343 printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
4345 /* init base cftset */
4346 cgroup_init_cftsets(ss);
4348 /* Create the top cgroup state for this subsystem */
4349 list_add(&ss->sibling, &rootnode.subsys_list);
4350 ss->root = &rootnode;
4351 css = ss->create(dummytop);
4352 /* We don't handle early failures gracefully */
4353 BUG_ON(IS_ERR(css));
4354 init_cgroup_css(css, ss, dummytop);
4356 /* Update the init_css_set to contain a subsys
4357 * pointer to this state - since the subsystem is
4358 * newly registered, all tasks and hence the
4359 * init_css_set is in the subsystem's top cgroup. */
4360 init_css_set.subsys[ss->subsys_id] = dummytop->subsys[ss->subsys_id];
4362 need_forkexit_callback |= ss->fork || ss->exit;
4364 /* At system boot, before all subsystems have been
4365 * registered, no tasks have been forked, so we don't
4366 * need to invoke fork callbacks here. */
4367 BUG_ON(!list_empty(&init_task.tasks));
4369 ss->active = 1;
4371 if (ss->post_create)
4372 ss->post_create(&ss->root->top_cgroup);
4374 /* this function shouldn't be used with modular subsystems, since they
4375 * need to register a subsys_id, among other things */
4376 BUG_ON(ss->module);
4380 * cgroup_load_subsys: load and register a modular subsystem at runtime
4381 * @ss: the subsystem to load
4383 * This function should be called in a modular subsystem's initcall. If the
4384 * subsystem is built as a module, it will be assigned a new subsys_id and set
4385 * up for use. If the subsystem is built-in anyway, work is delegated to the
4386 * simpler cgroup_init_subsys.
4388 int __init_or_module cgroup_load_subsys(struct cgroup_subsys *ss)
4390 int i;
4391 struct cgroup_subsys_state *css;
4393 /* check name and function validity */
4394 if (ss->name == NULL || strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN ||
4395 ss->create == NULL || ss->destroy == NULL)
4396 return -EINVAL;
4399 * we don't support callbacks in modular subsystems. this check is
4400 * before the ss->module check for consistency; a subsystem that could
4401 * be a module should still have no callbacks even if the user isn't
4402 * compiling it as one.
4404 if (ss->fork || ss->exit)
4405 return -EINVAL;
4408 * an optionally modular subsystem is built-in: we want to do nothing,
4409 * since cgroup_init_subsys will have already taken care of it.
4411 if (ss->module == NULL) {
4412 /* a sanity check */
4413 BUG_ON(subsys[ss->subsys_id] != ss);
4414 return 0;
4417 /* init base cftset */
4418 cgroup_init_cftsets(ss);
4420 mutex_lock(&cgroup_mutex);
4421 subsys[ss->subsys_id] = ss;
4424 * no ss->create seems to need anything important in the ss struct, so
4425 * this can happen first (i.e. before the rootnode attachment).
4427 css = ss->create(dummytop);
4428 if (IS_ERR(css)) {
4429 /* failure case - need to deassign the subsys[] slot. */
4430 subsys[ss->subsys_id] = NULL;
4431 mutex_unlock(&cgroup_mutex);
4432 return PTR_ERR(css);
4435 list_add(&ss->sibling, &rootnode.subsys_list);
4436 ss->root = &rootnode;
4438 /* our new subsystem will be attached to the dummy hierarchy. */
4439 init_cgroup_css(css, ss, dummytop);
4440 /* init_idr must be after init_cgroup_css because it sets css->id. */
4441 if (ss->use_id) {
4442 int ret = cgroup_init_idr(ss, css);
4443 if (ret) {
4444 dummytop->subsys[ss->subsys_id] = NULL;
4445 ss->destroy(dummytop);
4446 subsys[ss->subsys_id] = NULL;
4447 mutex_unlock(&cgroup_mutex);
4448 return ret;
4453 * Now we need to entangle the css into the existing css_sets. unlike
4454 * in cgroup_init_subsys, there are now multiple css_sets, so each one
4455 * will need a new pointer to it; done by iterating the css_set_table.
4456 * furthermore, modifying the existing css_sets will corrupt the hash
4457 * table state, so each changed css_set will need its hash recomputed.
4458 * this is all done under the css_set_lock.
4460 write_lock(&css_set_lock);
4461 for (i = 0; i < CSS_SET_TABLE_SIZE; i++) {
4462 struct css_set *cg;
4463 struct hlist_node *node, *tmp;
4464 struct hlist_head *bucket = &css_set_table[i], *new_bucket;
4466 hlist_for_each_entry_safe(cg, node, tmp, bucket, hlist) {
4467 /* skip entries that we already rehashed */
4468 if (cg->subsys[ss->subsys_id])
4469 continue;
4470 /* remove existing entry */
4471 hlist_del(&cg->hlist);
4472 /* set new value */
4473 cg->subsys[ss->subsys_id] = css;
4474 /* recompute hash and restore entry */
4475 new_bucket = css_set_hash(cg->subsys);
4476 hlist_add_head(&cg->hlist, new_bucket);
4479 write_unlock(&css_set_lock);
4481 ss->active = 1;
4483 if (ss->post_create)
4484 ss->post_create(&ss->root->top_cgroup);
4486 /* success! */
4487 mutex_unlock(&cgroup_mutex);
4488 return 0;
4490 EXPORT_SYMBOL_GPL(cgroup_load_subsys);
4493 * cgroup_unload_subsys: unload a modular subsystem
4494 * @ss: the subsystem to unload
4496 * This function should be called in a modular subsystem's exitcall. When this
4497 * function is invoked, the refcount on the subsystem's module will be 0, so
4498 * the subsystem will not be attached to any hierarchy.
4500 void cgroup_unload_subsys(struct cgroup_subsys *ss)
4502 struct cg_cgroup_link *link;
4503 struct hlist_head *hhead;
4505 BUG_ON(ss->module == NULL);
4508 * we shouldn't be called if the subsystem is in use, and the use of
4509 * try_module_get in parse_cgroupfs_options should ensure that it
4510 * doesn't start being used while we're killing it off.
4512 BUG_ON(ss->root != &rootnode);
4514 mutex_lock(&cgroup_mutex);
4515 /* deassign the subsys_id */
4516 subsys[ss->subsys_id] = NULL;
4518 /* remove subsystem from rootnode's list of subsystems */
4519 list_del_init(&ss->sibling);
4522 * disentangle the css from all css_sets attached to the dummytop. as
4523 * in loading, we need to pay our respects to the hashtable gods.
4525 write_lock(&css_set_lock);
4526 list_for_each_entry(link, &dummytop->css_sets, cgrp_link_list) {
4527 struct css_set *cg = link->cg;
4529 hlist_del(&cg->hlist);
4530 BUG_ON(!cg->subsys[ss->subsys_id]);
4531 cg->subsys[ss->subsys_id] = NULL;
4532 hhead = css_set_hash(cg->subsys);
4533 hlist_add_head(&cg->hlist, hhead);
4535 write_unlock(&css_set_lock);
4538 * remove subsystem's css from the dummytop and free it - need to free
4539 * before marking as null because ss->destroy needs the cgrp->subsys
4540 * pointer to find their state. note that this also takes care of
4541 * freeing the css_id.
4543 ss->destroy(dummytop);
4544 dummytop->subsys[ss->subsys_id] = NULL;
4546 mutex_unlock(&cgroup_mutex);
4548 EXPORT_SYMBOL_GPL(cgroup_unload_subsys);
4551 * cgroup_init_early - cgroup initialization at system boot
4553 * Initialize cgroups at system boot, and initialize any
4554 * subsystems that request early init.
4556 int __init cgroup_init_early(void)
4558 int i;
4559 atomic_set(&init_css_set.refcount, 1);
4560 INIT_LIST_HEAD(&init_css_set.cg_links);
4561 INIT_LIST_HEAD(&init_css_set.tasks);
4562 INIT_HLIST_NODE(&init_css_set.hlist);
4563 css_set_count = 1;
4564 init_cgroup_root(&rootnode);
4565 root_count = 1;
4566 init_task.cgroups = &init_css_set;
4568 init_css_set_link.cg = &init_css_set;
4569 init_css_set_link.cgrp = dummytop;
4570 list_add(&init_css_set_link.cgrp_link_list,
4571 &rootnode.top_cgroup.css_sets);
4572 list_add(&init_css_set_link.cg_link_list,
4573 &init_css_set.cg_links);
4575 for (i = 0; i < CSS_SET_TABLE_SIZE; i++)
4576 INIT_HLIST_HEAD(&css_set_table[i]);
4578 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
4579 struct cgroup_subsys *ss = subsys[i];
4581 /* at bootup time, we don't worry about modular subsystems */
4582 if (!ss || ss->module)
4583 continue;
4585 BUG_ON(!ss->name);
4586 BUG_ON(strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN);
4587 BUG_ON(!ss->create);
4588 BUG_ON(!ss->destroy);
4589 if (ss->subsys_id != i) {
4590 printk(KERN_ERR "cgroup: Subsys %s id == %d\n",
4591 ss->name, ss->subsys_id);
4592 BUG();
4595 if (ss->early_init)
4596 cgroup_init_subsys(ss);
4598 return 0;
4602 * cgroup_init - cgroup initialization
4604 * Register cgroup filesystem and /proc file, and initialize
4605 * any subsystems that didn't request early init.
4607 int __init cgroup_init(void)
4609 int err;
4610 int i;
4611 struct hlist_head *hhead;
4613 err = bdi_init(&cgroup_backing_dev_info);
4614 if (err)
4615 return err;
4617 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
4618 struct cgroup_subsys *ss = subsys[i];
4620 /* at bootup time, we don't worry about modular subsystems */
4621 if (!ss || ss->module)
4622 continue;
4623 if (!ss->early_init)
4624 cgroup_init_subsys(ss);
4625 if (ss->use_id)
4626 cgroup_init_idr(ss, init_css_set.subsys[ss->subsys_id]);
4629 /* Add init_css_set to the hash table */
4630 hhead = css_set_hash(init_css_set.subsys);
4631 hlist_add_head(&init_css_set.hlist, hhead);
4632 BUG_ON(!init_root_id(&rootnode));
4634 cgroup_kobj = kobject_create_and_add("cgroup", fs_kobj);
4635 if (!cgroup_kobj) {
4636 err = -ENOMEM;
4637 goto out;
4640 err = register_filesystem(&cgroup_fs_type);
4641 if (err < 0) {
4642 kobject_put(cgroup_kobj);
4643 goto out;
4646 proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
4648 out:
4649 if (err)
4650 bdi_destroy(&cgroup_backing_dev_info);
4652 return err;
4656 * proc_cgroup_show()
4657 * - Print task's cgroup paths into seq_file, one line for each hierarchy
4658 * - Used for /proc/<pid>/cgroup.
4659 * - No need to task_lock(tsk) on this tsk->cgroup reference, as it
4660 * doesn't really matter if tsk->cgroup changes after we read it,
4661 * and we take cgroup_mutex, keeping cgroup_attach_task() from changing it
4662 * anyway. No need to check that tsk->cgroup != NULL, thanks to
4663 * the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks
4664 * cgroup to top_cgroup.
4667 /* TODO: Use a proper seq_file iterator */
4668 static int proc_cgroup_show(struct seq_file *m, void *v)
4670 struct pid *pid;
4671 struct task_struct *tsk;
4672 char *buf;
4673 int retval;
4674 struct cgroupfs_root *root;
4676 retval = -ENOMEM;
4677 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
4678 if (!buf)
4679 goto out;
4681 retval = -ESRCH;
4682 pid = m->private;
4683 tsk = get_pid_task(pid, PIDTYPE_PID);
4684 if (!tsk)
4685 goto out_free;
4687 retval = 0;
4689 mutex_lock(&cgroup_mutex);
4691 for_each_active_root(root) {
4692 struct cgroup_subsys *ss;
4693 struct cgroup *cgrp;
4694 int count = 0;
4696 seq_printf(m, "%d:", root->hierarchy_id);
4697 for_each_subsys(root, ss)
4698 seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
4699 if (strlen(root->name))
4700 seq_printf(m, "%sname=%s", count ? "," : "",
4701 root->name);
4702 seq_putc(m, ':');
4703 cgrp = task_cgroup_from_root(tsk, root);
4704 retval = cgroup_path(cgrp, buf, PAGE_SIZE);
4705 if (retval < 0)
4706 goto out_unlock;
4707 seq_puts(m, buf);
4708 seq_putc(m, '\n');
4711 out_unlock:
4712 mutex_unlock(&cgroup_mutex);
4713 put_task_struct(tsk);
4714 out_free:
4715 kfree(buf);
4716 out:
4717 return retval;
4720 static int cgroup_open(struct inode *inode, struct file *file)
4722 struct pid *pid = PROC_I(inode)->pid;
4723 return single_open(file, proc_cgroup_show, pid);
4726 const struct file_operations proc_cgroup_operations = {
4727 .open = cgroup_open,
4728 .read = seq_read,
4729 .llseek = seq_lseek,
4730 .release = single_release,
4733 /* Display information about each subsystem and each hierarchy */
4734 static int proc_cgroupstats_show(struct seq_file *m, void *v)
4736 int i;
4738 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
4740 * ideally we don't want subsystems moving around while we do this.
4741 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
4742 * subsys/hierarchy state.
4744 mutex_lock(&cgroup_mutex);
4745 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
4746 struct cgroup_subsys *ss = subsys[i];
4747 if (ss == NULL)
4748 continue;
4749 seq_printf(m, "%s\t%d\t%d\t%d\n",
4750 ss->name, ss->root->hierarchy_id,
4751 ss->root->number_of_cgroups, !ss->disabled);
4753 mutex_unlock(&cgroup_mutex);
4754 return 0;
4757 static int cgroupstats_open(struct inode *inode, struct file *file)
4759 return single_open(file, proc_cgroupstats_show, NULL);
4762 static const struct file_operations proc_cgroupstats_operations = {
4763 .open = cgroupstats_open,
4764 .read = seq_read,
4765 .llseek = seq_lseek,
4766 .release = single_release,
4770 * cgroup_fork - attach newly forked task to its parents cgroup.
4771 * @child: pointer to task_struct of forking parent process.
4773 * Description: A task inherits its parent's cgroup at fork().
4775 * A pointer to the shared css_set was automatically copied in
4776 * fork.c by dup_task_struct(). However, we ignore that copy, since
4777 * it was not made under the protection of RCU or cgroup_mutex, so
4778 * might no longer be a valid cgroup pointer. cgroup_attach_task() might
4779 * have already changed current->cgroups, allowing the previously
4780 * referenced cgroup group to be removed and freed.
4782 * At the point that cgroup_fork() is called, 'current' is the parent
4783 * task, and the passed argument 'child' points to the child task.
4785 void cgroup_fork(struct task_struct *child)
4787 task_lock(current);
4788 child->cgroups = current->cgroups;
4789 get_css_set(child->cgroups);
4790 task_unlock(current);
4791 INIT_LIST_HEAD(&child->cg_list);
4795 * cgroup_post_fork - called on a new task after adding it to the task list
4796 * @child: the task in question
4798 * Adds the task to the list running through its css_set if necessary and
4799 * call the subsystem fork() callbacks. Has to be after the task is
4800 * visible on the task list in case we race with the first call to
4801 * cgroup_iter_start() - to guarantee that the new task ends up on its
4802 * list.
4804 void cgroup_post_fork(struct task_struct *child)
4806 int i;
4809 * use_task_css_set_links is set to 1 before we walk the tasklist
4810 * under the tasklist_lock and we read it here after we added the child
4811 * to the tasklist under the tasklist_lock as well. If the child wasn't
4812 * yet in the tasklist when we walked through it from
4813 * cgroup_enable_task_cg_lists(), then use_task_css_set_links value
4814 * should be visible now due to the paired locking and barriers implied
4815 * by LOCK/UNLOCK: it is written before the tasklist_lock unlock
4816 * in cgroup_enable_task_cg_lists() and read here after the tasklist_lock
4817 * lock on fork.
4819 if (use_task_css_set_links) {
4820 write_lock(&css_set_lock);
4821 task_lock(child);
4822 if (list_empty(&child->cg_list))
4823 list_add(&child->cg_list, &child->cgroups->tasks);
4824 task_unlock(child);
4825 write_unlock(&css_set_lock);
4829 * Call ss->fork(). This must happen after @child is linked on
4830 * css_set; otherwise, @child might change state between ->fork()
4831 * and addition to css_set.
4833 if (need_forkexit_callback) {
4834 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
4835 struct cgroup_subsys *ss = subsys[i];
4838 * fork/exit callbacks are supported only for
4839 * builtin subsystems and we don't need further
4840 * synchronization as they never go away.
4842 if (!ss || ss->module)
4843 continue;
4845 if (ss->fork)
4846 ss->fork(child);
4852 * cgroup_exit - detach cgroup from exiting task
4853 * @tsk: pointer to task_struct of exiting process
4854 * @run_callback: run exit callbacks?
4856 * Description: Detach cgroup from @tsk and release it.
4858 * Note that cgroups marked notify_on_release force every task in
4859 * them to take the global cgroup_mutex mutex when exiting.
4860 * This could impact scaling on very large systems. Be reluctant to
4861 * use notify_on_release cgroups where very high task exit scaling
4862 * is required on large systems.
4864 * the_top_cgroup_hack:
4866 * Set the exiting tasks cgroup to the root cgroup (top_cgroup).
4868 * We call cgroup_exit() while the task is still competent to
4869 * handle notify_on_release(), then leave the task attached to the
4870 * root cgroup in each hierarchy for the remainder of its exit.
4872 * To do this properly, we would increment the reference count on
4873 * top_cgroup, and near the very end of the kernel/exit.c do_exit()
4874 * code we would add a second cgroup function call, to drop that
4875 * reference. This would just create an unnecessary hot spot on
4876 * the top_cgroup reference count, to no avail.
4878 * Normally, holding a reference to a cgroup without bumping its
4879 * count is unsafe. The cgroup could go away, or someone could
4880 * attach us to a different cgroup, decrementing the count on
4881 * the first cgroup that we never incremented. But in this case,
4882 * top_cgroup isn't going away, and either task has PF_EXITING set,
4883 * which wards off any cgroup_attach_task() attempts, or task is a failed
4884 * fork, never visible to cgroup_attach_task.
4886 void cgroup_exit(struct task_struct *tsk, int run_callbacks)
4888 struct css_set *cg;
4889 int i;
4892 * Unlink from the css_set task list if necessary.
4893 * Optimistically check cg_list before taking
4894 * css_set_lock
4896 if (!list_empty(&tsk->cg_list)) {
4897 write_lock(&css_set_lock);
4898 if (!list_empty(&tsk->cg_list))
4899 list_del_init(&tsk->cg_list);
4900 write_unlock(&css_set_lock);
4903 /* Reassign the task to the init_css_set. */
4904 task_lock(tsk);
4905 cg = tsk->cgroups;
4906 tsk->cgroups = &init_css_set;
4908 if (run_callbacks && need_forkexit_callback) {
4909 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
4910 struct cgroup_subsys *ss = subsys[i];
4912 /* modular subsystems can't use callbacks */
4913 if (!ss || ss->module)
4914 continue;
4916 if (ss->exit) {
4917 struct cgroup *old_cgrp =
4918 rcu_dereference_raw(cg->subsys[i])->cgroup;
4919 struct cgroup *cgrp = task_cgroup(tsk, i);
4920 ss->exit(cgrp, old_cgrp, tsk);
4924 task_unlock(tsk);
4926 if (cg)
4927 put_css_set_taskexit(cg);
4931 * cgroup_is_descendant - see if @cgrp is a descendant of @task's cgrp
4932 * @cgrp: the cgroup in question
4933 * @task: the task in question
4935 * See if @cgrp is a descendant of @task's cgroup in the appropriate
4936 * hierarchy.
4938 * If we are sending in dummytop, then presumably we are creating
4939 * the top cgroup in the subsystem.
4941 * Called only by the ns (nsproxy) cgroup.
4943 int cgroup_is_descendant(const struct cgroup *cgrp, struct task_struct *task)
4945 int ret;
4946 struct cgroup *target;
4948 if (cgrp == dummytop)
4949 return 1;
4951 target = task_cgroup_from_root(task, cgrp->root);
4952 while (cgrp != target && cgrp!= cgrp->top_cgroup)
4953 cgrp = cgrp->parent;
4954 ret = (cgrp == target);
4955 return ret;
4958 static void check_for_release(struct cgroup *cgrp)
4960 /* All of these checks rely on RCU to keep the cgroup
4961 * structure alive */
4962 if (cgroup_is_releasable(cgrp) && !atomic_read(&cgrp->count)
4963 && list_empty(&cgrp->children) && !cgroup_has_css_refs(cgrp)) {
4964 /* Control Group is currently removeable. If it's not
4965 * already queued for a userspace notification, queue
4966 * it now */
4967 int need_schedule_work = 0;
4968 raw_spin_lock(&release_list_lock);
4969 if (!cgroup_is_removed(cgrp) &&
4970 list_empty(&cgrp->release_list)) {
4971 list_add(&cgrp->release_list, &release_list);
4972 need_schedule_work = 1;
4974 raw_spin_unlock(&release_list_lock);
4975 if (need_schedule_work)
4976 schedule_work(&release_agent_work);
4980 /* Caller must verify that the css is not for root cgroup */
4981 bool __css_tryget(struct cgroup_subsys_state *css)
4983 while (true) {
4984 int t, v;
4986 v = css_refcnt(css);
4987 t = atomic_cmpxchg(&css->refcnt, v, v + 1);
4988 if (likely(t == v))
4989 return true;
4990 else if (t < 0)
4991 return false;
4992 cpu_relax();
4995 EXPORT_SYMBOL_GPL(__css_tryget);
4997 /* Caller must verify that the css is not for root cgroup */
4998 void __css_put(struct cgroup_subsys_state *css)
5000 struct cgroup *cgrp = css->cgroup;
5001 int v;
5003 rcu_read_lock();
5004 v = css_unbias_refcnt(atomic_dec_return(&css->refcnt));
5006 switch (v) {
5007 case 1:
5008 if (notify_on_release(cgrp)) {
5009 set_bit(CGRP_RELEASABLE, &cgrp->flags);
5010 check_for_release(cgrp);
5012 break;
5013 case 0:
5014 schedule_work(&css->dput_work);
5015 break;
5017 rcu_read_unlock();
5019 EXPORT_SYMBOL_GPL(__css_put);
5022 * Notify userspace when a cgroup is released, by running the
5023 * configured release agent with the name of the cgroup (path
5024 * relative to the root of cgroup file system) as the argument.
5026 * Most likely, this user command will try to rmdir this cgroup.
5028 * This races with the possibility that some other task will be
5029 * attached to this cgroup before it is removed, or that some other
5030 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
5031 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
5032 * unused, and this cgroup will be reprieved from its death sentence,
5033 * to continue to serve a useful existence. Next time it's released,
5034 * we will get notified again, if it still has 'notify_on_release' set.
5036 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
5037 * means only wait until the task is successfully execve()'d. The
5038 * separate release agent task is forked by call_usermodehelper(),
5039 * then control in this thread returns here, without waiting for the
5040 * release agent task. We don't bother to wait because the caller of
5041 * this routine has no use for the exit status of the release agent
5042 * task, so no sense holding our caller up for that.
5044 static void cgroup_release_agent(struct work_struct *work)
5046 BUG_ON(work != &release_agent_work);
5047 mutex_lock(&cgroup_mutex);
5048 raw_spin_lock(&release_list_lock);
5049 while (!list_empty(&release_list)) {
5050 char *argv[3], *envp[3];
5051 int i;
5052 char *pathbuf = NULL, *agentbuf = NULL;
5053 struct cgroup *cgrp = list_entry(release_list.next,
5054 struct cgroup,
5055 release_list);
5056 list_del_init(&cgrp->release_list);
5057 raw_spin_unlock(&release_list_lock);
5058 pathbuf = kmalloc(PAGE_SIZE, GFP_KERNEL);
5059 if (!pathbuf)
5060 goto continue_free;
5061 if (cgroup_path(cgrp, pathbuf, PAGE_SIZE) < 0)
5062 goto continue_free;
5063 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
5064 if (!agentbuf)
5065 goto continue_free;
5067 i = 0;
5068 argv[i++] = agentbuf;
5069 argv[i++] = pathbuf;
5070 argv[i] = NULL;
5072 i = 0;
5073 /* minimal command environment */
5074 envp[i++] = "HOME=/";
5075 envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
5076 envp[i] = NULL;
5078 /* Drop the lock while we invoke the usermode helper,
5079 * since the exec could involve hitting disk and hence
5080 * be a slow process */
5081 mutex_unlock(&cgroup_mutex);
5082 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
5083 mutex_lock(&cgroup_mutex);
5084 continue_free:
5085 kfree(pathbuf);
5086 kfree(agentbuf);
5087 raw_spin_lock(&release_list_lock);
5089 raw_spin_unlock(&release_list_lock);
5090 mutex_unlock(&cgroup_mutex);
5093 static int __init cgroup_disable(char *str)
5095 int i;
5096 char *token;
5098 while ((token = strsep(&str, ",")) != NULL) {
5099 if (!*token)
5100 continue;
5101 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
5102 struct cgroup_subsys *ss = subsys[i];
5105 * cgroup_disable, being at boot time, can't
5106 * know about module subsystems, so we don't
5107 * worry about them.
5109 if (!ss || ss->module)
5110 continue;
5112 if (!strcmp(token, ss->name)) {
5113 ss->disabled = 1;
5114 printk(KERN_INFO "Disabling %s control group"
5115 " subsystem\n", ss->name);
5116 break;
5120 return 1;
5122 __setup("cgroup_disable=", cgroup_disable);
5125 * Functons for CSS ID.
5129 *To get ID other than 0, this should be called when !cgroup_is_removed().
5131 unsigned short css_id(struct cgroup_subsys_state *css)
5133 struct css_id *cssid;
5136 * This css_id() can return correct value when somone has refcnt
5137 * on this or this is under rcu_read_lock(). Once css->id is allocated,
5138 * it's unchanged until freed.
5140 cssid = rcu_dereference_check(css->id, css_refcnt(css));
5142 if (cssid)
5143 return cssid->id;
5144 return 0;
5146 EXPORT_SYMBOL_GPL(css_id);
5148 unsigned short css_depth(struct cgroup_subsys_state *css)
5150 struct css_id *cssid;
5152 cssid = rcu_dereference_check(css->id, css_refcnt(css));
5154 if (cssid)
5155 return cssid->depth;
5156 return 0;
5158 EXPORT_SYMBOL_GPL(css_depth);
5161 * css_is_ancestor - test "root" css is an ancestor of "child"
5162 * @child: the css to be tested.
5163 * @root: the css supporsed to be an ancestor of the child.
5165 * Returns true if "root" is an ancestor of "child" in its hierarchy. Because
5166 * this function reads css->id, the caller must hold rcu_read_lock().
5167 * But, considering usual usage, the csses should be valid objects after test.
5168 * Assuming that the caller will do some action to the child if this returns
5169 * returns true, the caller must take "child";s reference count.
5170 * If "child" is valid object and this returns true, "root" is valid, too.
5173 bool css_is_ancestor(struct cgroup_subsys_state *child,
5174 const struct cgroup_subsys_state *root)
5176 struct css_id *child_id;
5177 struct css_id *root_id;
5179 child_id = rcu_dereference(child->id);
5180 if (!child_id)
5181 return false;
5182 root_id = rcu_dereference(root->id);
5183 if (!root_id)
5184 return false;
5185 if (child_id->depth < root_id->depth)
5186 return false;
5187 if (child_id->stack[root_id->depth] != root_id->id)
5188 return false;
5189 return true;
5192 void free_css_id(struct cgroup_subsys *ss, struct cgroup_subsys_state *css)
5194 struct css_id *id = css->id;
5195 /* When this is called before css_id initialization, id can be NULL */
5196 if (!id)
5197 return;
5199 BUG_ON(!ss->use_id);
5201 rcu_assign_pointer(id->css, NULL);
5202 rcu_assign_pointer(css->id, NULL);
5203 spin_lock(&ss->id_lock);
5204 idr_remove(&ss->idr, id->id);
5205 spin_unlock(&ss->id_lock);
5206 kfree_rcu(id, rcu_head);
5208 EXPORT_SYMBOL_GPL(free_css_id);
5211 * This is called by init or create(). Then, calls to this function are
5212 * always serialized (By cgroup_mutex() at create()).
5215 static struct css_id *get_new_cssid(struct cgroup_subsys *ss, int depth)
5217 struct css_id *newid;
5218 int myid, error, size;
5220 BUG_ON(!ss->use_id);
5222 size = sizeof(*newid) + sizeof(unsigned short) * (depth + 1);
5223 newid = kzalloc(size, GFP_KERNEL);
5224 if (!newid)
5225 return ERR_PTR(-ENOMEM);
5226 /* get id */
5227 if (unlikely(!idr_pre_get(&ss->idr, GFP_KERNEL))) {
5228 error = -ENOMEM;
5229 goto err_out;
5231 spin_lock(&ss->id_lock);
5232 /* Don't use 0. allocates an ID of 1-65535 */
5233 error = idr_get_new_above(&ss->idr, newid, 1, &myid);
5234 spin_unlock(&ss->id_lock);
5236 /* Returns error when there are no free spaces for new ID.*/
5237 if (error) {
5238 error = -ENOSPC;
5239 goto err_out;
5241 if (myid > CSS_ID_MAX)
5242 goto remove_idr;
5244 newid->id = myid;
5245 newid->depth = depth;
5246 return newid;
5247 remove_idr:
5248 error = -ENOSPC;
5249 spin_lock(&ss->id_lock);
5250 idr_remove(&ss->idr, myid);
5251 spin_unlock(&ss->id_lock);
5252 err_out:
5253 kfree(newid);
5254 return ERR_PTR(error);
5258 static int __init_or_module cgroup_init_idr(struct cgroup_subsys *ss,
5259 struct cgroup_subsys_state *rootcss)
5261 struct css_id *newid;
5263 spin_lock_init(&ss->id_lock);
5264 idr_init(&ss->idr);
5266 newid = get_new_cssid(ss, 0);
5267 if (IS_ERR(newid))
5268 return PTR_ERR(newid);
5270 newid->stack[0] = newid->id;
5271 newid->css = rootcss;
5272 rootcss->id = newid;
5273 return 0;
5276 static int alloc_css_id(struct cgroup_subsys *ss, struct cgroup *parent,
5277 struct cgroup *child)
5279 int subsys_id, i, depth = 0;
5280 struct cgroup_subsys_state *parent_css, *child_css;
5281 struct css_id *child_id, *parent_id;
5283 subsys_id = ss->subsys_id;
5284 parent_css = parent->subsys[subsys_id];
5285 child_css = child->subsys[subsys_id];
5286 parent_id = parent_css->id;
5287 depth = parent_id->depth + 1;
5289 child_id = get_new_cssid(ss, depth);
5290 if (IS_ERR(child_id))
5291 return PTR_ERR(child_id);
5293 for (i = 0; i < depth; i++)
5294 child_id->stack[i] = parent_id->stack[i];
5295 child_id->stack[depth] = child_id->id;
5297 * child_id->css pointer will be set after this cgroup is available
5298 * see cgroup_populate_dir()
5300 rcu_assign_pointer(child_css->id, child_id);
5302 return 0;
5306 * css_lookup - lookup css by id
5307 * @ss: cgroup subsys to be looked into.
5308 * @id: the id
5310 * Returns pointer to cgroup_subsys_state if there is valid one with id.
5311 * NULL if not. Should be called under rcu_read_lock()
5313 struct cgroup_subsys_state *css_lookup(struct cgroup_subsys *ss, int id)
5315 struct css_id *cssid = NULL;
5317 BUG_ON(!ss->use_id);
5318 cssid = idr_find(&ss->idr, id);
5320 if (unlikely(!cssid))
5321 return NULL;
5323 return rcu_dereference(cssid->css);
5325 EXPORT_SYMBOL_GPL(css_lookup);
5328 * css_get_next - lookup next cgroup under specified hierarchy.
5329 * @ss: pointer to subsystem
5330 * @id: current position of iteration.
5331 * @root: pointer to css. search tree under this.
5332 * @foundid: position of found object.
5334 * Search next css under the specified hierarchy of rootid. Calling under
5335 * rcu_read_lock() is necessary. Returns NULL if it reaches the end.
5337 struct cgroup_subsys_state *
5338 css_get_next(struct cgroup_subsys *ss, int id,
5339 struct cgroup_subsys_state *root, int *foundid)
5341 struct cgroup_subsys_state *ret = NULL;
5342 struct css_id *tmp;
5343 int tmpid;
5344 int rootid = css_id(root);
5345 int depth = css_depth(root);
5347 if (!rootid)
5348 return NULL;
5350 BUG_ON(!ss->use_id);
5351 WARN_ON_ONCE(!rcu_read_lock_held());
5353 /* fill start point for scan */
5354 tmpid = id;
5355 while (1) {
5357 * scan next entry from bitmap(tree), tmpid is updated after
5358 * idr_get_next().
5360 tmp = idr_get_next(&ss->idr, &tmpid);
5361 if (!tmp)
5362 break;
5363 if (tmp->depth >= depth && tmp->stack[depth] == rootid) {
5364 ret = rcu_dereference(tmp->css);
5365 if (ret) {
5366 *foundid = tmpid;
5367 break;
5370 /* continue to scan from next id */
5371 tmpid = tmpid + 1;
5373 return ret;
5377 * get corresponding css from file open on cgroupfs directory
5379 struct cgroup_subsys_state *cgroup_css_from_dir(struct file *f, int id)
5381 struct cgroup *cgrp;
5382 struct inode *inode;
5383 struct cgroup_subsys_state *css;
5385 inode = f->f_dentry->d_inode;
5386 /* check in cgroup filesystem dir */
5387 if (inode->i_op != &cgroup_dir_inode_operations)
5388 return ERR_PTR(-EBADF);
5390 if (id < 0 || id >= CGROUP_SUBSYS_COUNT)
5391 return ERR_PTR(-EINVAL);
5393 /* get cgroup */
5394 cgrp = __d_cgrp(f->f_dentry);
5395 css = cgrp->subsys[id];
5396 return css ? css : ERR_PTR(-ENOENT);
5399 #ifdef CONFIG_CGROUP_DEBUG
5400 static struct cgroup_subsys_state *debug_create(struct cgroup *cont)
5402 struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
5404 if (!css)
5405 return ERR_PTR(-ENOMEM);
5407 return css;
5410 static void debug_destroy(struct cgroup *cont)
5412 kfree(cont->subsys[debug_subsys_id]);
5415 static u64 cgroup_refcount_read(struct cgroup *cont, struct cftype *cft)
5417 return atomic_read(&cont->count);
5420 static u64 debug_taskcount_read(struct cgroup *cont, struct cftype *cft)
5422 return cgroup_task_count(cont);
5425 static u64 current_css_set_read(struct cgroup *cont, struct cftype *cft)
5427 return (u64)(unsigned long)current->cgroups;
5430 static u64 current_css_set_refcount_read(struct cgroup *cont,
5431 struct cftype *cft)
5433 u64 count;
5435 rcu_read_lock();
5436 count = atomic_read(&current->cgroups->refcount);
5437 rcu_read_unlock();
5438 return count;
5441 static int current_css_set_cg_links_read(struct cgroup *cont,
5442 struct cftype *cft,
5443 struct seq_file *seq)
5445 struct cg_cgroup_link *link;
5446 struct css_set *cg;
5448 read_lock(&css_set_lock);
5449 rcu_read_lock();
5450 cg = rcu_dereference(current->cgroups);
5451 list_for_each_entry(link, &cg->cg_links, cg_link_list) {
5452 struct cgroup *c = link->cgrp;
5453 const char *name;
5455 if (c->dentry)
5456 name = c->dentry->d_name.name;
5457 else
5458 name = "?";
5459 seq_printf(seq, "Root %d group %s\n",
5460 c->root->hierarchy_id, name);
5462 rcu_read_unlock();
5463 read_unlock(&css_set_lock);
5464 return 0;
5467 #define MAX_TASKS_SHOWN_PER_CSS 25
5468 static int cgroup_css_links_read(struct cgroup *cont,
5469 struct cftype *cft,
5470 struct seq_file *seq)
5472 struct cg_cgroup_link *link;
5474 read_lock(&css_set_lock);
5475 list_for_each_entry(link, &cont->css_sets, cgrp_link_list) {
5476 struct css_set *cg = link->cg;
5477 struct task_struct *task;
5478 int count = 0;
5479 seq_printf(seq, "css_set %p\n", cg);
5480 list_for_each_entry(task, &cg->tasks, cg_list) {
5481 if (count++ > MAX_TASKS_SHOWN_PER_CSS) {
5482 seq_puts(seq, " ...\n");
5483 break;
5484 } else {
5485 seq_printf(seq, " task %d\n",
5486 task_pid_vnr(task));
5490 read_unlock(&css_set_lock);
5491 return 0;
5494 static u64 releasable_read(struct cgroup *cgrp, struct cftype *cft)
5496 return test_bit(CGRP_RELEASABLE, &cgrp->flags);
5499 static struct cftype debug_files[] = {
5501 .name = "cgroup_refcount",
5502 .read_u64 = cgroup_refcount_read,
5505 .name = "taskcount",
5506 .read_u64 = debug_taskcount_read,
5510 .name = "current_css_set",
5511 .read_u64 = current_css_set_read,
5515 .name = "current_css_set_refcount",
5516 .read_u64 = current_css_set_refcount_read,
5520 .name = "current_css_set_cg_links",
5521 .read_seq_string = current_css_set_cg_links_read,
5525 .name = "cgroup_css_links",
5526 .read_seq_string = cgroup_css_links_read,
5530 .name = "releasable",
5531 .read_u64 = releasable_read,
5534 { } /* terminate */
5537 struct cgroup_subsys debug_subsys = {
5538 .name = "debug",
5539 .create = debug_create,
5540 .destroy = debug_destroy,
5541 .subsys_id = debug_subsys_id,
5542 .base_cftypes = debug_files,
5544 #endif /* CONFIG_CGROUP_DEBUG */