tmpfs: support SEEK_DATA and SEEK_HOLE (reprise)
[linux-2.6/libata-dev.git] / kernel / exit.c
blob50d2e93c36ea6ff421192e7fb0f92a3cb0df6e63
1 /*
2 * linux/kernel/exit.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
7 #include <linux/mm.h>
8 #include <linux/slab.h>
9 #include <linux/interrupt.h>
10 #include <linux/module.h>
11 #include <linux/capability.h>
12 #include <linux/completion.h>
13 #include <linux/personality.h>
14 #include <linux/tty.h>
15 #include <linux/iocontext.h>
16 #include <linux/key.h>
17 #include <linux/security.h>
18 #include <linux/cpu.h>
19 #include <linux/acct.h>
20 #include <linux/tsacct_kern.h>
21 #include <linux/file.h>
22 #include <linux/fdtable.h>
23 #include <linux/binfmts.h>
24 #include <linux/nsproxy.h>
25 #include <linux/pid_namespace.h>
26 #include <linux/ptrace.h>
27 #include <linux/profile.h>
28 #include <linux/mount.h>
29 #include <linux/proc_fs.h>
30 #include <linux/kthread.h>
31 #include <linux/mempolicy.h>
32 #include <linux/taskstats_kern.h>
33 #include <linux/delayacct.h>
34 #include <linux/freezer.h>
35 #include <linux/cgroup.h>
36 #include <linux/syscalls.h>
37 #include <linux/signal.h>
38 #include <linux/posix-timers.h>
39 #include <linux/cn_proc.h>
40 #include <linux/mutex.h>
41 #include <linux/futex.h>
42 #include <linux/pipe_fs_i.h>
43 #include <linux/audit.h> /* for audit_free() */
44 #include <linux/resource.h>
45 #include <linux/blkdev.h>
46 #include <linux/task_io_accounting_ops.h>
47 #include <linux/tracehook.h>
48 #include <linux/fs_struct.h>
49 #include <linux/init_task.h>
50 #include <linux/perf_event.h>
51 #include <trace/events/sched.h>
52 #include <linux/hw_breakpoint.h>
53 #include <linux/oom.h>
54 #include <linux/writeback.h>
55 #include <linux/shm.h>
57 #include <asm/uaccess.h>
58 #include <asm/unistd.h>
59 #include <asm/pgtable.h>
60 #include <asm/mmu_context.h>
62 static void exit_mm(struct task_struct * tsk);
64 static void __unhash_process(struct task_struct *p, bool group_dead)
66 nr_threads--;
67 detach_pid(p, PIDTYPE_PID);
68 if (group_dead) {
69 detach_pid(p, PIDTYPE_PGID);
70 detach_pid(p, PIDTYPE_SID);
72 list_del_rcu(&p->tasks);
73 list_del_init(&p->sibling);
74 __this_cpu_dec(process_counts);
76 * If we are the last child process in a pid namespace to be
77 * reaped, notify the reaper sleeping zap_pid_ns_processes().
79 if (IS_ENABLED(CONFIG_PID_NS)) {
80 struct task_struct *parent = p->real_parent;
82 if ((task_active_pid_ns(parent)->child_reaper == parent) &&
83 list_empty(&parent->children) &&
84 (parent->flags & PF_EXITING))
85 wake_up_process(parent);
88 list_del_rcu(&p->thread_group);
92 * This function expects the tasklist_lock write-locked.
94 static void __exit_signal(struct task_struct *tsk)
96 struct signal_struct *sig = tsk->signal;
97 bool group_dead = thread_group_leader(tsk);
98 struct sighand_struct *sighand;
99 struct tty_struct *uninitialized_var(tty);
101 sighand = rcu_dereference_check(tsk->sighand,
102 lockdep_tasklist_lock_is_held());
103 spin_lock(&sighand->siglock);
105 posix_cpu_timers_exit(tsk);
106 if (group_dead) {
107 posix_cpu_timers_exit_group(tsk);
108 tty = sig->tty;
109 sig->tty = NULL;
110 } else {
112 * This can only happen if the caller is de_thread().
113 * FIXME: this is the temporary hack, we should teach
114 * posix-cpu-timers to handle this case correctly.
116 if (unlikely(has_group_leader_pid(tsk)))
117 posix_cpu_timers_exit_group(tsk);
120 * If there is any task waiting for the group exit
121 * then notify it:
123 if (sig->notify_count > 0 && !--sig->notify_count)
124 wake_up_process(sig->group_exit_task);
126 if (tsk == sig->curr_target)
127 sig->curr_target = next_thread(tsk);
129 * Accumulate here the counters for all threads but the
130 * group leader as they die, so they can be added into
131 * the process-wide totals when those are taken.
132 * The group leader stays around as a zombie as long
133 * as there are other threads. When it gets reaped,
134 * the exit.c code will add its counts into these totals.
135 * We won't ever get here for the group leader, since it
136 * will have been the last reference on the signal_struct.
138 sig->utime += tsk->utime;
139 sig->stime += tsk->stime;
140 sig->gtime += tsk->gtime;
141 sig->min_flt += tsk->min_flt;
142 sig->maj_flt += tsk->maj_flt;
143 sig->nvcsw += tsk->nvcsw;
144 sig->nivcsw += tsk->nivcsw;
145 sig->inblock += task_io_get_inblock(tsk);
146 sig->oublock += task_io_get_oublock(tsk);
147 task_io_accounting_add(&sig->ioac, &tsk->ioac);
148 sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
151 sig->nr_threads--;
152 __unhash_process(tsk, group_dead);
155 * Do this under ->siglock, we can race with another thread
156 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
158 flush_sigqueue(&tsk->pending);
159 tsk->sighand = NULL;
160 spin_unlock(&sighand->siglock);
162 __cleanup_sighand(sighand);
163 clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
164 if (group_dead) {
165 flush_sigqueue(&sig->shared_pending);
166 tty_kref_put(tty);
170 static void delayed_put_task_struct(struct rcu_head *rhp)
172 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
174 perf_event_delayed_put(tsk);
175 trace_sched_process_free(tsk);
176 put_task_struct(tsk);
180 void release_task(struct task_struct * p)
182 struct task_struct *leader;
183 int zap_leader;
184 repeat:
185 /* don't need to get the RCU readlock here - the process is dead and
186 * can't be modifying its own credentials. But shut RCU-lockdep up */
187 rcu_read_lock();
188 atomic_dec(&__task_cred(p)->user->processes);
189 rcu_read_unlock();
191 proc_flush_task(p);
193 write_lock_irq(&tasklist_lock);
194 ptrace_release_task(p);
195 __exit_signal(p);
198 * If we are the last non-leader member of the thread
199 * group, and the leader is zombie, then notify the
200 * group leader's parent process. (if it wants notification.)
202 zap_leader = 0;
203 leader = p->group_leader;
204 if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) {
206 * If we were the last child thread and the leader has
207 * exited already, and the leader's parent ignores SIGCHLD,
208 * then we are the one who should release the leader.
210 zap_leader = do_notify_parent(leader, leader->exit_signal);
211 if (zap_leader)
212 leader->exit_state = EXIT_DEAD;
215 write_unlock_irq(&tasklist_lock);
216 release_thread(p);
217 call_rcu(&p->rcu, delayed_put_task_struct);
219 p = leader;
220 if (unlikely(zap_leader))
221 goto repeat;
225 * This checks not only the pgrp, but falls back on the pid if no
226 * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
227 * without this...
229 * The caller must hold rcu lock or the tasklist lock.
231 struct pid *session_of_pgrp(struct pid *pgrp)
233 struct task_struct *p;
234 struct pid *sid = NULL;
236 p = pid_task(pgrp, PIDTYPE_PGID);
237 if (p == NULL)
238 p = pid_task(pgrp, PIDTYPE_PID);
239 if (p != NULL)
240 sid = task_session(p);
242 return sid;
246 * Determine if a process group is "orphaned", according to the POSIX
247 * definition in 2.2.2.52. Orphaned process groups are not to be affected
248 * by terminal-generated stop signals. Newly orphaned process groups are
249 * to receive a SIGHUP and a SIGCONT.
251 * "I ask you, have you ever known what it is to be an orphan?"
253 static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task)
255 struct task_struct *p;
257 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
258 if ((p == ignored_task) ||
259 (p->exit_state && thread_group_empty(p)) ||
260 is_global_init(p->real_parent))
261 continue;
263 if (task_pgrp(p->real_parent) != pgrp &&
264 task_session(p->real_parent) == task_session(p))
265 return 0;
266 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
268 return 1;
271 int is_current_pgrp_orphaned(void)
273 int retval;
275 read_lock(&tasklist_lock);
276 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
277 read_unlock(&tasklist_lock);
279 return retval;
282 static bool has_stopped_jobs(struct pid *pgrp)
284 struct task_struct *p;
286 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
287 if (p->signal->flags & SIGNAL_STOP_STOPPED)
288 return true;
289 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
291 return false;
295 * Check to see if any process groups have become orphaned as
296 * a result of our exiting, and if they have any stopped jobs,
297 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
299 static void
300 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
302 struct pid *pgrp = task_pgrp(tsk);
303 struct task_struct *ignored_task = tsk;
305 if (!parent)
306 /* exit: our father is in a different pgrp than
307 * we are and we were the only connection outside.
309 parent = tsk->real_parent;
310 else
311 /* reparent: our child is in a different pgrp than
312 * we are, and it was the only connection outside.
314 ignored_task = NULL;
316 if (task_pgrp(parent) != pgrp &&
317 task_session(parent) == task_session(tsk) &&
318 will_become_orphaned_pgrp(pgrp, ignored_task) &&
319 has_stopped_jobs(pgrp)) {
320 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
321 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
325 void __set_special_pids(struct pid *pid)
327 struct task_struct *curr = current->group_leader;
329 if (task_session(curr) != pid)
330 change_pid(curr, PIDTYPE_SID, pid);
332 if (task_pgrp(curr) != pid)
333 change_pid(curr, PIDTYPE_PGID, pid);
337 * Let kernel threads use this to say that they allow a certain signal.
338 * Must not be used if kthread was cloned with CLONE_SIGHAND.
340 int allow_signal(int sig)
342 if (!valid_signal(sig) || sig < 1)
343 return -EINVAL;
345 spin_lock_irq(&current->sighand->siglock);
346 /* This is only needed for daemonize()'ed kthreads */
347 sigdelset(&current->blocked, sig);
349 * Kernel threads handle their own signals. Let the signal code
350 * know it'll be handled, so that they don't get converted to
351 * SIGKILL or just silently dropped.
353 current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2;
354 recalc_sigpending();
355 spin_unlock_irq(&current->sighand->siglock);
356 return 0;
359 EXPORT_SYMBOL(allow_signal);
361 int disallow_signal(int sig)
363 if (!valid_signal(sig) || sig < 1)
364 return -EINVAL;
366 spin_lock_irq(&current->sighand->siglock);
367 current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN;
368 recalc_sigpending();
369 spin_unlock_irq(&current->sighand->siglock);
370 return 0;
373 EXPORT_SYMBOL(disallow_signal);
375 #ifdef CONFIG_MM_OWNER
377 * A task is exiting. If it owned this mm, find a new owner for the mm.
379 void mm_update_next_owner(struct mm_struct *mm)
381 struct task_struct *c, *g, *p = current;
383 retry:
385 * If the exiting or execing task is not the owner, it's
386 * someone else's problem.
388 if (mm->owner != p)
389 return;
391 * The current owner is exiting/execing and there are no other
392 * candidates. Do not leave the mm pointing to a possibly
393 * freed task structure.
395 if (atomic_read(&mm->mm_users) <= 1) {
396 mm->owner = NULL;
397 return;
400 read_lock(&tasklist_lock);
402 * Search in the children
404 list_for_each_entry(c, &p->children, sibling) {
405 if (c->mm == mm)
406 goto assign_new_owner;
410 * Search in the siblings
412 list_for_each_entry(c, &p->real_parent->children, sibling) {
413 if (c->mm == mm)
414 goto assign_new_owner;
418 * Search through everything else. We should not get
419 * here often
421 do_each_thread(g, c) {
422 if (c->mm == mm)
423 goto assign_new_owner;
424 } while_each_thread(g, c);
426 read_unlock(&tasklist_lock);
428 * We found no owner yet mm_users > 1: this implies that we are
429 * most likely racing with swapoff (try_to_unuse()) or /proc or
430 * ptrace or page migration (get_task_mm()). Mark owner as NULL.
432 mm->owner = NULL;
433 return;
435 assign_new_owner:
436 BUG_ON(c == p);
437 get_task_struct(c);
439 * The task_lock protects c->mm from changing.
440 * We always want mm->owner->mm == mm
442 task_lock(c);
444 * Delay read_unlock() till we have the task_lock()
445 * to ensure that c does not slip away underneath us
447 read_unlock(&tasklist_lock);
448 if (c->mm != mm) {
449 task_unlock(c);
450 put_task_struct(c);
451 goto retry;
453 mm->owner = c;
454 task_unlock(c);
455 put_task_struct(c);
457 #endif /* CONFIG_MM_OWNER */
460 * Turn us into a lazy TLB process if we
461 * aren't already..
463 static void exit_mm(struct task_struct * tsk)
465 struct mm_struct *mm = tsk->mm;
466 struct core_state *core_state;
468 mm_release(tsk, mm);
469 if (!mm)
470 return;
471 sync_mm_rss(mm);
473 * Serialize with any possible pending coredump.
474 * We must hold mmap_sem around checking core_state
475 * and clearing tsk->mm. The core-inducing thread
476 * will increment ->nr_threads for each thread in the
477 * group with ->mm != NULL.
479 down_read(&mm->mmap_sem);
480 core_state = mm->core_state;
481 if (core_state) {
482 struct core_thread self;
483 up_read(&mm->mmap_sem);
485 self.task = tsk;
486 self.next = xchg(&core_state->dumper.next, &self);
488 * Implies mb(), the result of xchg() must be visible
489 * to core_state->dumper.
491 if (atomic_dec_and_test(&core_state->nr_threads))
492 complete(&core_state->startup);
494 for (;;) {
495 set_task_state(tsk, TASK_UNINTERRUPTIBLE);
496 if (!self.task) /* see coredump_finish() */
497 break;
498 schedule();
500 __set_task_state(tsk, TASK_RUNNING);
501 down_read(&mm->mmap_sem);
503 atomic_inc(&mm->mm_count);
504 BUG_ON(mm != tsk->active_mm);
505 /* more a memory barrier than a real lock */
506 task_lock(tsk);
507 tsk->mm = NULL;
508 up_read(&mm->mmap_sem);
509 enter_lazy_tlb(mm, current);
510 task_unlock(tsk);
511 mm_update_next_owner(mm);
512 mmput(mm);
516 * When we die, we re-parent all our children, and try to:
517 * 1. give them to another thread in our thread group, if such a member exists
518 * 2. give it to the first ancestor process which prctl'd itself as a
519 * child_subreaper for its children (like a service manager)
520 * 3. give it to the init process (PID 1) in our pid namespace
522 static struct task_struct *find_new_reaper(struct task_struct *father)
523 __releases(&tasklist_lock)
524 __acquires(&tasklist_lock)
526 struct pid_namespace *pid_ns = task_active_pid_ns(father);
527 struct task_struct *thread;
529 thread = father;
530 while_each_thread(father, thread) {
531 if (thread->flags & PF_EXITING)
532 continue;
533 if (unlikely(pid_ns->child_reaper == father))
534 pid_ns->child_reaper = thread;
535 return thread;
538 if (unlikely(pid_ns->child_reaper == father)) {
539 write_unlock_irq(&tasklist_lock);
540 if (unlikely(pid_ns == &init_pid_ns)) {
541 panic("Attempted to kill init! exitcode=0x%08x\n",
542 father->signal->group_exit_code ?:
543 father->exit_code);
546 zap_pid_ns_processes(pid_ns);
547 write_lock_irq(&tasklist_lock);
548 } else if (father->signal->has_child_subreaper) {
549 struct task_struct *reaper;
552 * Find the first ancestor marked as child_subreaper.
553 * Note that the code below checks same_thread_group(reaper,
554 * pid_ns->child_reaper). This is what we need to DTRT in a
555 * PID namespace. However we still need the check above, see
556 * http://marc.info/?l=linux-kernel&m=131385460420380
558 for (reaper = father->real_parent;
559 reaper != &init_task;
560 reaper = reaper->real_parent) {
561 if (same_thread_group(reaper, pid_ns->child_reaper))
562 break;
563 if (!reaper->signal->is_child_subreaper)
564 continue;
565 thread = reaper;
566 do {
567 if (!(thread->flags & PF_EXITING))
568 return reaper;
569 } while_each_thread(reaper, thread);
573 return pid_ns->child_reaper;
577 * Any that need to be release_task'd are put on the @dead list.
579 static void reparent_leader(struct task_struct *father, struct task_struct *p,
580 struct list_head *dead)
582 list_move_tail(&p->sibling, &p->real_parent->children);
584 if (p->exit_state == EXIT_DEAD)
585 return;
587 * If this is a threaded reparent there is no need to
588 * notify anyone anything has happened.
590 if (same_thread_group(p->real_parent, father))
591 return;
593 /* We don't want people slaying init. */
594 p->exit_signal = SIGCHLD;
596 /* If it has exited notify the new parent about this child's death. */
597 if (!p->ptrace &&
598 p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
599 if (do_notify_parent(p, p->exit_signal)) {
600 p->exit_state = EXIT_DEAD;
601 list_move_tail(&p->sibling, dead);
605 kill_orphaned_pgrp(p, father);
608 static void forget_original_parent(struct task_struct *father)
610 struct task_struct *p, *n, *reaper;
611 LIST_HEAD(dead_children);
613 write_lock_irq(&tasklist_lock);
615 * Note that exit_ptrace() and find_new_reaper() might
616 * drop tasklist_lock and reacquire it.
618 exit_ptrace(father);
619 reaper = find_new_reaper(father);
621 list_for_each_entry_safe(p, n, &father->children, sibling) {
622 struct task_struct *t = p;
623 do {
624 t->real_parent = reaper;
625 if (t->parent == father) {
626 BUG_ON(t->ptrace);
627 t->parent = t->real_parent;
629 if (t->pdeath_signal)
630 group_send_sig_info(t->pdeath_signal,
631 SEND_SIG_NOINFO, t);
632 } while_each_thread(p, t);
633 reparent_leader(father, p, &dead_children);
635 write_unlock_irq(&tasklist_lock);
637 BUG_ON(!list_empty(&father->children));
639 list_for_each_entry_safe(p, n, &dead_children, sibling) {
640 list_del_init(&p->sibling);
641 release_task(p);
646 * Send signals to all our closest relatives so that they know
647 * to properly mourn us..
649 static void exit_notify(struct task_struct *tsk, int group_dead)
651 bool autoreap;
654 * This does two things:
656 * A. Make init inherit all the child processes
657 * B. Check to see if any process groups have become orphaned
658 * as a result of our exiting, and if they have any stopped
659 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
661 forget_original_parent(tsk);
662 exit_task_namespaces(tsk);
664 write_lock_irq(&tasklist_lock);
665 if (group_dead)
666 kill_orphaned_pgrp(tsk->group_leader, NULL);
668 if (unlikely(tsk->ptrace)) {
669 int sig = thread_group_leader(tsk) &&
670 thread_group_empty(tsk) &&
671 !ptrace_reparented(tsk) ?
672 tsk->exit_signal : SIGCHLD;
673 autoreap = do_notify_parent(tsk, sig);
674 } else if (thread_group_leader(tsk)) {
675 autoreap = thread_group_empty(tsk) &&
676 do_notify_parent(tsk, tsk->exit_signal);
677 } else {
678 autoreap = true;
681 tsk->exit_state = autoreap ? EXIT_DEAD : EXIT_ZOMBIE;
683 /* mt-exec, de_thread() is waiting for group leader */
684 if (unlikely(tsk->signal->notify_count < 0))
685 wake_up_process(tsk->signal->group_exit_task);
686 write_unlock_irq(&tasklist_lock);
688 /* If the process is dead, release it - nobody will wait for it */
689 if (autoreap)
690 release_task(tsk);
693 #ifdef CONFIG_DEBUG_STACK_USAGE
694 static void check_stack_usage(void)
696 static DEFINE_SPINLOCK(low_water_lock);
697 static int lowest_to_date = THREAD_SIZE;
698 unsigned long free;
700 free = stack_not_used(current);
702 if (free >= lowest_to_date)
703 return;
705 spin_lock(&low_water_lock);
706 if (free < lowest_to_date) {
707 printk(KERN_WARNING "%s (%d) used greatest stack depth: "
708 "%lu bytes left\n",
709 current->comm, task_pid_nr(current), free);
710 lowest_to_date = free;
712 spin_unlock(&low_water_lock);
714 #else
715 static inline void check_stack_usage(void) {}
716 #endif
718 void do_exit(long code)
720 struct task_struct *tsk = current;
721 int group_dead;
723 profile_task_exit(tsk);
725 WARN_ON(blk_needs_flush_plug(tsk));
727 if (unlikely(in_interrupt()))
728 panic("Aiee, killing interrupt handler!");
729 if (unlikely(!tsk->pid))
730 panic("Attempted to kill the idle task!");
733 * If do_exit is called because this processes oopsed, it's possible
734 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before
735 * continuing. Amongst other possible reasons, this is to prevent
736 * mm_release()->clear_child_tid() from writing to a user-controlled
737 * kernel address.
739 set_fs(USER_DS);
741 ptrace_event(PTRACE_EVENT_EXIT, code);
743 validate_creds_for_do_exit(tsk);
746 * We're taking recursive faults here in do_exit. Safest is to just
747 * leave this task alone and wait for reboot.
749 if (unlikely(tsk->flags & PF_EXITING)) {
750 printk(KERN_ALERT
751 "Fixing recursive fault but reboot is needed!\n");
753 * We can do this unlocked here. The futex code uses
754 * this flag just to verify whether the pi state
755 * cleanup has been done or not. In the worst case it
756 * loops once more. We pretend that the cleanup was
757 * done as there is no way to return. Either the
758 * OWNER_DIED bit is set by now or we push the blocked
759 * task into the wait for ever nirwana as well.
761 tsk->flags |= PF_EXITPIDONE;
762 set_current_state(TASK_UNINTERRUPTIBLE);
763 schedule();
766 exit_signals(tsk); /* sets PF_EXITING */
768 * tsk->flags are checked in the futex code to protect against
769 * an exiting task cleaning up the robust pi futexes.
771 smp_mb();
772 raw_spin_unlock_wait(&tsk->pi_lock);
774 if (unlikely(in_atomic()))
775 printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n",
776 current->comm, task_pid_nr(current),
777 preempt_count());
779 acct_update_integrals(tsk);
780 /* sync mm's RSS info before statistics gathering */
781 if (tsk->mm)
782 sync_mm_rss(tsk->mm);
783 group_dead = atomic_dec_and_test(&tsk->signal->live);
784 if (group_dead) {
785 hrtimer_cancel(&tsk->signal->real_timer);
786 exit_itimers(tsk->signal);
787 if (tsk->mm)
788 setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
790 acct_collect(code, group_dead);
791 if (group_dead)
792 tty_audit_exit();
793 audit_free(tsk);
795 tsk->exit_code = code;
796 taskstats_exit(tsk, group_dead);
798 exit_mm(tsk);
800 if (group_dead)
801 acct_process();
802 trace_sched_process_exit(tsk);
804 exit_sem(tsk);
805 exit_shm(tsk);
806 exit_files(tsk);
807 exit_fs(tsk);
808 exit_task_work(tsk);
809 check_stack_usage();
810 exit_thread();
813 * Flush inherited counters to the parent - before the parent
814 * gets woken up by child-exit notifications.
816 * because of cgroup mode, must be called before cgroup_exit()
818 perf_event_exit_task(tsk);
820 cgroup_exit(tsk, 1);
822 if (group_dead)
823 disassociate_ctty(1);
825 module_put(task_thread_info(tsk)->exec_domain->module);
827 proc_exit_connector(tsk);
830 * FIXME: do that only when needed, using sched_exit tracepoint
832 ptrace_put_breakpoints(tsk);
834 exit_notify(tsk, group_dead);
835 #ifdef CONFIG_NUMA
836 task_lock(tsk);
837 mpol_put(tsk->mempolicy);
838 tsk->mempolicy = NULL;
839 task_unlock(tsk);
840 #endif
841 #ifdef CONFIG_FUTEX
842 if (unlikely(current->pi_state_cache))
843 kfree(current->pi_state_cache);
844 #endif
846 * Make sure we are holding no locks:
848 debug_check_no_locks_held(tsk);
850 * We can do this unlocked here. The futex code uses this flag
851 * just to verify whether the pi state cleanup has been done
852 * or not. In the worst case it loops once more.
854 tsk->flags |= PF_EXITPIDONE;
856 if (tsk->io_context)
857 exit_io_context(tsk);
859 if (tsk->splice_pipe)
860 __free_pipe_info(tsk->splice_pipe);
862 if (tsk->task_frag.page)
863 put_page(tsk->task_frag.page);
865 validate_creds_for_do_exit(tsk);
867 preempt_disable();
868 if (tsk->nr_dirtied)
869 __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
870 exit_rcu();
873 * The setting of TASK_RUNNING by try_to_wake_up() may be delayed
874 * when the following two conditions become true.
875 * - There is race condition of mmap_sem (It is acquired by
876 * exit_mm()), and
877 * - SMI occurs before setting TASK_RUNINNG.
878 * (or hypervisor of virtual machine switches to other guest)
879 * As a result, we may become TASK_RUNNING after becoming TASK_DEAD
881 * To avoid it, we have to wait for releasing tsk->pi_lock which
882 * is held by try_to_wake_up()
884 smp_mb();
885 raw_spin_unlock_wait(&tsk->pi_lock);
887 /* causes final put_task_struct in finish_task_switch(). */
888 tsk->state = TASK_DEAD;
889 tsk->flags |= PF_NOFREEZE; /* tell freezer to ignore us */
890 schedule();
891 BUG();
892 /* Avoid "noreturn function does return". */
893 for (;;)
894 cpu_relax(); /* For when BUG is null */
897 EXPORT_SYMBOL_GPL(do_exit);
899 void complete_and_exit(struct completion *comp, long code)
901 if (comp)
902 complete(comp);
904 do_exit(code);
907 EXPORT_SYMBOL(complete_and_exit);
909 SYSCALL_DEFINE1(exit, int, error_code)
911 do_exit((error_code&0xff)<<8);
915 * Take down every thread in the group. This is called by fatal signals
916 * as well as by sys_exit_group (below).
918 void
919 do_group_exit(int exit_code)
921 struct signal_struct *sig = current->signal;
923 BUG_ON(exit_code & 0x80); /* core dumps don't get here */
925 if (signal_group_exit(sig))
926 exit_code = sig->group_exit_code;
927 else if (!thread_group_empty(current)) {
928 struct sighand_struct *const sighand = current->sighand;
929 spin_lock_irq(&sighand->siglock);
930 if (signal_group_exit(sig))
931 /* Another thread got here before we took the lock. */
932 exit_code = sig->group_exit_code;
933 else {
934 sig->group_exit_code = exit_code;
935 sig->flags = SIGNAL_GROUP_EXIT;
936 zap_other_threads(current);
938 spin_unlock_irq(&sighand->siglock);
941 do_exit(exit_code);
942 /* NOTREACHED */
946 * this kills every thread in the thread group. Note that any externally
947 * wait4()-ing process will get the correct exit code - even if this
948 * thread is not the thread group leader.
950 SYSCALL_DEFINE1(exit_group, int, error_code)
952 do_group_exit((error_code & 0xff) << 8);
953 /* NOTREACHED */
954 return 0;
957 struct wait_opts {
958 enum pid_type wo_type;
959 int wo_flags;
960 struct pid *wo_pid;
962 struct siginfo __user *wo_info;
963 int __user *wo_stat;
964 struct rusage __user *wo_rusage;
966 wait_queue_t child_wait;
967 int notask_error;
970 static inline
971 struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
973 if (type != PIDTYPE_PID)
974 task = task->group_leader;
975 return task->pids[type].pid;
978 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
980 return wo->wo_type == PIDTYPE_MAX ||
981 task_pid_type(p, wo->wo_type) == wo->wo_pid;
984 static int eligible_child(struct wait_opts *wo, struct task_struct *p)
986 if (!eligible_pid(wo, p))
987 return 0;
988 /* Wait for all children (clone and not) if __WALL is set;
989 * otherwise, wait for clone children *only* if __WCLONE is
990 * set; otherwise, wait for non-clone children *only*. (Note:
991 * A "clone" child here is one that reports to its parent
992 * using a signal other than SIGCHLD.) */
993 if (((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
994 && !(wo->wo_flags & __WALL))
995 return 0;
997 return 1;
1000 static int wait_noreap_copyout(struct wait_opts *wo, struct task_struct *p,
1001 pid_t pid, uid_t uid, int why, int status)
1003 struct siginfo __user *infop;
1004 int retval = wo->wo_rusage
1005 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1007 put_task_struct(p);
1008 infop = wo->wo_info;
1009 if (infop) {
1010 if (!retval)
1011 retval = put_user(SIGCHLD, &infop->si_signo);
1012 if (!retval)
1013 retval = put_user(0, &infop->si_errno);
1014 if (!retval)
1015 retval = put_user((short)why, &infop->si_code);
1016 if (!retval)
1017 retval = put_user(pid, &infop->si_pid);
1018 if (!retval)
1019 retval = put_user(uid, &infop->si_uid);
1020 if (!retval)
1021 retval = put_user(status, &infop->si_status);
1023 if (!retval)
1024 retval = pid;
1025 return retval;
1029 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold
1030 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1031 * the lock and this task is uninteresting. If we return nonzero, we have
1032 * released the lock and the system call should return.
1034 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
1036 unsigned long state;
1037 int retval, status, traced;
1038 pid_t pid = task_pid_vnr(p);
1039 uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
1040 struct siginfo __user *infop;
1042 if (!likely(wo->wo_flags & WEXITED))
1043 return 0;
1045 if (unlikely(wo->wo_flags & WNOWAIT)) {
1046 int exit_code = p->exit_code;
1047 int why;
1049 get_task_struct(p);
1050 read_unlock(&tasklist_lock);
1051 if ((exit_code & 0x7f) == 0) {
1052 why = CLD_EXITED;
1053 status = exit_code >> 8;
1054 } else {
1055 why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1056 status = exit_code & 0x7f;
1058 return wait_noreap_copyout(wo, p, pid, uid, why, status);
1062 * Try to move the task's state to DEAD
1063 * only one thread is allowed to do this:
1065 state = xchg(&p->exit_state, EXIT_DEAD);
1066 if (state != EXIT_ZOMBIE) {
1067 BUG_ON(state != EXIT_DEAD);
1068 return 0;
1071 traced = ptrace_reparented(p);
1073 * It can be ptraced but not reparented, check
1074 * thread_group_leader() to filter out sub-threads.
1076 if (likely(!traced) && thread_group_leader(p)) {
1077 struct signal_struct *psig;
1078 struct signal_struct *sig;
1079 unsigned long maxrss;
1080 cputime_t tgutime, tgstime;
1083 * The resource counters for the group leader are in its
1084 * own task_struct. Those for dead threads in the group
1085 * are in its signal_struct, as are those for the child
1086 * processes it has previously reaped. All these
1087 * accumulate in the parent's signal_struct c* fields.
1089 * We don't bother to take a lock here to protect these
1090 * p->signal fields, because they are only touched by
1091 * __exit_signal, which runs with tasklist_lock
1092 * write-locked anyway, and so is excluded here. We do
1093 * need to protect the access to parent->signal fields,
1094 * as other threads in the parent group can be right
1095 * here reaping other children at the same time.
1097 * We use thread_group_cputime_adjusted() to get times for the thread
1098 * group, which consolidates times for all threads in the
1099 * group including the group leader.
1101 thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1102 spin_lock_irq(&p->real_parent->sighand->siglock);
1103 psig = p->real_parent->signal;
1104 sig = p->signal;
1105 psig->cutime += tgutime + sig->cutime;
1106 psig->cstime += tgstime + sig->cstime;
1107 psig->cgtime += p->gtime + sig->gtime + sig->cgtime;
1108 psig->cmin_flt +=
1109 p->min_flt + sig->min_flt + sig->cmin_flt;
1110 psig->cmaj_flt +=
1111 p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1112 psig->cnvcsw +=
1113 p->nvcsw + sig->nvcsw + sig->cnvcsw;
1114 psig->cnivcsw +=
1115 p->nivcsw + sig->nivcsw + sig->cnivcsw;
1116 psig->cinblock +=
1117 task_io_get_inblock(p) +
1118 sig->inblock + sig->cinblock;
1119 psig->coublock +=
1120 task_io_get_oublock(p) +
1121 sig->oublock + sig->coublock;
1122 maxrss = max(sig->maxrss, sig->cmaxrss);
1123 if (psig->cmaxrss < maxrss)
1124 psig->cmaxrss = maxrss;
1125 task_io_accounting_add(&psig->ioac, &p->ioac);
1126 task_io_accounting_add(&psig->ioac, &sig->ioac);
1127 spin_unlock_irq(&p->real_parent->sighand->siglock);
1131 * Now we are sure this task is interesting, and no other
1132 * thread can reap it because we set its state to EXIT_DEAD.
1134 read_unlock(&tasklist_lock);
1136 retval = wo->wo_rusage
1137 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1138 status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1139 ? p->signal->group_exit_code : p->exit_code;
1140 if (!retval && wo->wo_stat)
1141 retval = put_user(status, wo->wo_stat);
1143 infop = wo->wo_info;
1144 if (!retval && infop)
1145 retval = put_user(SIGCHLD, &infop->si_signo);
1146 if (!retval && infop)
1147 retval = put_user(0, &infop->si_errno);
1148 if (!retval && infop) {
1149 int why;
1151 if ((status & 0x7f) == 0) {
1152 why = CLD_EXITED;
1153 status >>= 8;
1154 } else {
1155 why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1156 status &= 0x7f;
1158 retval = put_user((short)why, &infop->si_code);
1159 if (!retval)
1160 retval = put_user(status, &infop->si_status);
1162 if (!retval && infop)
1163 retval = put_user(pid, &infop->si_pid);
1164 if (!retval && infop)
1165 retval = put_user(uid, &infop->si_uid);
1166 if (!retval)
1167 retval = pid;
1169 if (traced) {
1170 write_lock_irq(&tasklist_lock);
1171 /* We dropped tasklist, ptracer could die and untrace */
1172 ptrace_unlink(p);
1174 * If this is not a sub-thread, notify the parent.
1175 * If parent wants a zombie, don't release it now.
1177 if (thread_group_leader(p) &&
1178 !do_notify_parent(p, p->exit_signal)) {
1179 p->exit_state = EXIT_ZOMBIE;
1180 p = NULL;
1182 write_unlock_irq(&tasklist_lock);
1184 if (p != NULL)
1185 release_task(p);
1187 return retval;
1190 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1192 if (ptrace) {
1193 if (task_is_stopped_or_traced(p) &&
1194 !(p->jobctl & JOBCTL_LISTENING))
1195 return &p->exit_code;
1196 } else {
1197 if (p->signal->flags & SIGNAL_STOP_STOPPED)
1198 return &p->signal->group_exit_code;
1200 return NULL;
1204 * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1205 * @wo: wait options
1206 * @ptrace: is the wait for ptrace
1207 * @p: task to wait for
1209 * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1211 * CONTEXT:
1212 * read_lock(&tasklist_lock), which is released if return value is
1213 * non-zero. Also, grabs and releases @p->sighand->siglock.
1215 * RETURNS:
1216 * 0 if wait condition didn't exist and search for other wait conditions
1217 * should continue. Non-zero return, -errno on failure and @p's pid on
1218 * success, implies that tasklist_lock is released and wait condition
1219 * search should terminate.
1221 static int wait_task_stopped(struct wait_opts *wo,
1222 int ptrace, struct task_struct *p)
1224 struct siginfo __user *infop;
1225 int retval, exit_code, *p_code, why;
1226 uid_t uid = 0; /* unneeded, required by compiler */
1227 pid_t pid;
1230 * Traditionally we see ptrace'd stopped tasks regardless of options.
1232 if (!ptrace && !(wo->wo_flags & WUNTRACED))
1233 return 0;
1235 if (!task_stopped_code(p, ptrace))
1236 return 0;
1238 exit_code = 0;
1239 spin_lock_irq(&p->sighand->siglock);
1241 p_code = task_stopped_code(p, ptrace);
1242 if (unlikely(!p_code))
1243 goto unlock_sig;
1245 exit_code = *p_code;
1246 if (!exit_code)
1247 goto unlock_sig;
1249 if (!unlikely(wo->wo_flags & WNOWAIT))
1250 *p_code = 0;
1252 uid = from_kuid_munged(current_user_ns(), task_uid(p));
1253 unlock_sig:
1254 spin_unlock_irq(&p->sighand->siglock);
1255 if (!exit_code)
1256 return 0;
1259 * Now we are pretty sure this task is interesting.
1260 * Make sure it doesn't get reaped out from under us while we
1261 * give up the lock and then examine it below. We don't want to
1262 * keep holding onto the tasklist_lock while we call getrusage and
1263 * possibly take page faults for user memory.
1265 get_task_struct(p);
1266 pid = task_pid_vnr(p);
1267 why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1268 read_unlock(&tasklist_lock);
1270 if (unlikely(wo->wo_flags & WNOWAIT))
1271 return wait_noreap_copyout(wo, p, pid, uid, why, exit_code);
1273 retval = wo->wo_rusage
1274 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1275 if (!retval && wo->wo_stat)
1276 retval = put_user((exit_code << 8) | 0x7f, wo->wo_stat);
1278 infop = wo->wo_info;
1279 if (!retval && infop)
1280 retval = put_user(SIGCHLD, &infop->si_signo);
1281 if (!retval && infop)
1282 retval = put_user(0, &infop->si_errno);
1283 if (!retval && infop)
1284 retval = put_user((short)why, &infop->si_code);
1285 if (!retval && infop)
1286 retval = put_user(exit_code, &infop->si_status);
1287 if (!retval && infop)
1288 retval = put_user(pid, &infop->si_pid);
1289 if (!retval && infop)
1290 retval = put_user(uid, &infop->si_uid);
1291 if (!retval)
1292 retval = pid;
1293 put_task_struct(p);
1295 BUG_ON(!retval);
1296 return retval;
1300 * Handle do_wait work for one task in a live, non-stopped state.
1301 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1302 * the lock and this task is uninteresting. If we return nonzero, we have
1303 * released the lock and the system call should return.
1305 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1307 int retval;
1308 pid_t pid;
1309 uid_t uid;
1311 if (!unlikely(wo->wo_flags & WCONTINUED))
1312 return 0;
1314 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1315 return 0;
1317 spin_lock_irq(&p->sighand->siglock);
1318 /* Re-check with the lock held. */
1319 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1320 spin_unlock_irq(&p->sighand->siglock);
1321 return 0;
1323 if (!unlikely(wo->wo_flags & WNOWAIT))
1324 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1325 uid = from_kuid_munged(current_user_ns(), task_uid(p));
1326 spin_unlock_irq(&p->sighand->siglock);
1328 pid = task_pid_vnr(p);
1329 get_task_struct(p);
1330 read_unlock(&tasklist_lock);
1332 if (!wo->wo_info) {
1333 retval = wo->wo_rusage
1334 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1335 put_task_struct(p);
1336 if (!retval && wo->wo_stat)
1337 retval = put_user(0xffff, wo->wo_stat);
1338 if (!retval)
1339 retval = pid;
1340 } else {
1341 retval = wait_noreap_copyout(wo, p, pid, uid,
1342 CLD_CONTINUED, SIGCONT);
1343 BUG_ON(retval == 0);
1346 return retval;
1350 * Consider @p for a wait by @parent.
1352 * -ECHILD should be in ->notask_error before the first call.
1353 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1354 * Returns zero if the search for a child should continue;
1355 * then ->notask_error is 0 if @p is an eligible child,
1356 * or another error from security_task_wait(), or still -ECHILD.
1358 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1359 struct task_struct *p)
1361 int ret = eligible_child(wo, p);
1362 if (!ret)
1363 return ret;
1365 ret = security_task_wait(p);
1366 if (unlikely(ret < 0)) {
1368 * If we have not yet seen any eligible child,
1369 * then let this error code replace -ECHILD.
1370 * A permission error will give the user a clue
1371 * to look for security policy problems, rather
1372 * than for mysterious wait bugs.
1374 if (wo->notask_error)
1375 wo->notask_error = ret;
1376 return 0;
1379 /* dead body doesn't have much to contribute */
1380 if (unlikely(p->exit_state == EXIT_DEAD)) {
1382 * But do not ignore this task until the tracer does
1383 * wait_task_zombie()->do_notify_parent().
1385 if (likely(!ptrace) && unlikely(ptrace_reparented(p)))
1386 wo->notask_error = 0;
1387 return 0;
1390 /* slay zombie? */
1391 if (p->exit_state == EXIT_ZOMBIE) {
1393 * A zombie ptracee is only visible to its ptracer.
1394 * Notification and reaping will be cascaded to the real
1395 * parent when the ptracer detaches.
1397 if (likely(!ptrace) && unlikely(p->ptrace)) {
1398 /* it will become visible, clear notask_error */
1399 wo->notask_error = 0;
1400 return 0;
1403 /* we don't reap group leaders with subthreads */
1404 if (!delay_group_leader(p))
1405 return wait_task_zombie(wo, p);
1408 * Allow access to stopped/continued state via zombie by
1409 * falling through. Clearing of notask_error is complex.
1411 * When !@ptrace:
1413 * If WEXITED is set, notask_error should naturally be
1414 * cleared. If not, subset of WSTOPPED|WCONTINUED is set,
1415 * so, if there are live subthreads, there are events to
1416 * wait for. If all subthreads are dead, it's still safe
1417 * to clear - this function will be called again in finite
1418 * amount time once all the subthreads are released and
1419 * will then return without clearing.
1421 * When @ptrace:
1423 * Stopped state is per-task and thus can't change once the
1424 * target task dies. Only continued and exited can happen.
1425 * Clear notask_error if WCONTINUED | WEXITED.
1427 if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1428 wo->notask_error = 0;
1429 } else {
1431 * If @p is ptraced by a task in its real parent's group,
1432 * hide group stop/continued state when looking at @p as
1433 * the real parent; otherwise, a single stop can be
1434 * reported twice as group and ptrace stops.
1436 * If a ptracer wants to distinguish the two events for its
1437 * own children, it should create a separate process which
1438 * takes the role of real parent.
1440 if (likely(!ptrace) && p->ptrace && !ptrace_reparented(p))
1441 return 0;
1444 * @p is alive and it's gonna stop, continue or exit, so
1445 * there always is something to wait for.
1447 wo->notask_error = 0;
1451 * Wait for stopped. Depending on @ptrace, different stopped state
1452 * is used and the two don't interact with each other.
1454 ret = wait_task_stopped(wo, ptrace, p);
1455 if (ret)
1456 return ret;
1459 * Wait for continued. There's only one continued state and the
1460 * ptracer can consume it which can confuse the real parent. Don't
1461 * use WCONTINUED from ptracer. You don't need or want it.
1463 return wait_task_continued(wo, p);
1467 * Do the work of do_wait() for one thread in the group, @tsk.
1469 * -ECHILD should be in ->notask_error before the first call.
1470 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1471 * Returns zero if the search for a child should continue; then
1472 * ->notask_error is 0 if there were any eligible children,
1473 * or another error from security_task_wait(), or still -ECHILD.
1475 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1477 struct task_struct *p;
1479 list_for_each_entry(p, &tsk->children, sibling) {
1480 int ret = wait_consider_task(wo, 0, p);
1481 if (ret)
1482 return ret;
1485 return 0;
1488 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1490 struct task_struct *p;
1492 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1493 int ret = wait_consider_task(wo, 1, p);
1494 if (ret)
1495 return ret;
1498 return 0;
1501 static int child_wait_callback(wait_queue_t *wait, unsigned mode,
1502 int sync, void *key)
1504 struct wait_opts *wo = container_of(wait, struct wait_opts,
1505 child_wait);
1506 struct task_struct *p = key;
1508 if (!eligible_pid(wo, p))
1509 return 0;
1511 if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1512 return 0;
1514 return default_wake_function(wait, mode, sync, key);
1517 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1519 __wake_up_sync_key(&parent->signal->wait_chldexit,
1520 TASK_INTERRUPTIBLE, 1, p);
1523 static long do_wait(struct wait_opts *wo)
1525 struct task_struct *tsk;
1526 int retval;
1528 trace_sched_process_wait(wo->wo_pid);
1530 init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1531 wo->child_wait.private = current;
1532 add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1533 repeat:
1535 * If there is nothing that can match our critiera just get out.
1536 * We will clear ->notask_error to zero if we see any child that
1537 * might later match our criteria, even if we are not able to reap
1538 * it yet.
1540 wo->notask_error = -ECHILD;
1541 if ((wo->wo_type < PIDTYPE_MAX) &&
1542 (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type])))
1543 goto notask;
1545 set_current_state(TASK_INTERRUPTIBLE);
1546 read_lock(&tasklist_lock);
1547 tsk = current;
1548 do {
1549 retval = do_wait_thread(wo, tsk);
1550 if (retval)
1551 goto end;
1553 retval = ptrace_do_wait(wo, tsk);
1554 if (retval)
1555 goto end;
1557 if (wo->wo_flags & __WNOTHREAD)
1558 break;
1559 } while_each_thread(current, tsk);
1560 read_unlock(&tasklist_lock);
1562 notask:
1563 retval = wo->notask_error;
1564 if (!retval && !(wo->wo_flags & WNOHANG)) {
1565 retval = -ERESTARTSYS;
1566 if (!signal_pending(current)) {
1567 schedule();
1568 goto repeat;
1571 end:
1572 __set_current_state(TASK_RUNNING);
1573 remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1574 return retval;
1577 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1578 infop, int, options, struct rusage __user *, ru)
1580 struct wait_opts wo;
1581 struct pid *pid = NULL;
1582 enum pid_type type;
1583 long ret;
1585 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
1586 return -EINVAL;
1587 if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1588 return -EINVAL;
1590 switch (which) {
1591 case P_ALL:
1592 type = PIDTYPE_MAX;
1593 break;
1594 case P_PID:
1595 type = PIDTYPE_PID;
1596 if (upid <= 0)
1597 return -EINVAL;
1598 break;
1599 case P_PGID:
1600 type = PIDTYPE_PGID;
1601 if (upid <= 0)
1602 return -EINVAL;
1603 break;
1604 default:
1605 return -EINVAL;
1608 if (type < PIDTYPE_MAX)
1609 pid = find_get_pid(upid);
1611 wo.wo_type = type;
1612 wo.wo_pid = pid;
1613 wo.wo_flags = options;
1614 wo.wo_info = infop;
1615 wo.wo_stat = NULL;
1616 wo.wo_rusage = ru;
1617 ret = do_wait(&wo);
1619 if (ret > 0) {
1620 ret = 0;
1621 } else if (infop) {
1623 * For a WNOHANG return, clear out all the fields
1624 * we would set so the user can easily tell the
1625 * difference.
1627 if (!ret)
1628 ret = put_user(0, &infop->si_signo);
1629 if (!ret)
1630 ret = put_user(0, &infop->si_errno);
1631 if (!ret)
1632 ret = put_user(0, &infop->si_code);
1633 if (!ret)
1634 ret = put_user(0, &infop->si_pid);
1635 if (!ret)
1636 ret = put_user(0, &infop->si_uid);
1637 if (!ret)
1638 ret = put_user(0, &infop->si_status);
1641 put_pid(pid);
1643 /* avoid REGPARM breakage on x86: */
1644 asmlinkage_protect(5, ret, which, upid, infop, options, ru);
1645 return ret;
1648 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1649 int, options, struct rusage __user *, ru)
1651 struct wait_opts wo;
1652 struct pid *pid = NULL;
1653 enum pid_type type;
1654 long ret;
1656 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1657 __WNOTHREAD|__WCLONE|__WALL))
1658 return -EINVAL;
1660 if (upid == -1)
1661 type = PIDTYPE_MAX;
1662 else if (upid < 0) {
1663 type = PIDTYPE_PGID;
1664 pid = find_get_pid(-upid);
1665 } else if (upid == 0) {
1666 type = PIDTYPE_PGID;
1667 pid = get_task_pid(current, PIDTYPE_PGID);
1668 } else /* upid > 0 */ {
1669 type = PIDTYPE_PID;
1670 pid = find_get_pid(upid);
1673 wo.wo_type = type;
1674 wo.wo_pid = pid;
1675 wo.wo_flags = options | WEXITED;
1676 wo.wo_info = NULL;
1677 wo.wo_stat = stat_addr;
1678 wo.wo_rusage = ru;
1679 ret = do_wait(&wo);
1680 put_pid(pid);
1682 /* avoid REGPARM breakage on x86: */
1683 asmlinkage_protect(4, ret, upid, stat_addr, options, ru);
1684 return ret;
1687 #ifdef __ARCH_WANT_SYS_WAITPID
1690 * sys_waitpid() remains for compatibility. waitpid() should be
1691 * implemented by calling sys_wait4() from libc.a.
1693 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1695 return sys_wait4(pid, stat_addr, options, NULL);
1698 #endif