4 * Copyright (C) 1993 Linus Torvalds
5 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
6 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
7 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
8 * Numa awareness, Christoph Lameter, SGI, June 2005
11 #include <linux/vmalloc.h>
13 #include <linux/module.h>
14 #include <linux/highmem.h>
15 #include <linux/sched.h>
16 #include <linux/slab.h>
17 #include <linux/spinlock.h>
18 #include <linux/interrupt.h>
19 #include <linux/proc_fs.h>
20 #include <linux/seq_file.h>
21 #include <linux/debugobjects.h>
22 #include <linux/kallsyms.h>
23 #include <linux/list.h>
24 #include <linux/rbtree.h>
25 #include <linux/radix-tree.h>
26 #include <linux/rcupdate.h>
27 #include <linux/pfn.h>
28 #include <linux/kmemleak.h>
29 #include <linux/atomic.h>
30 #include <asm/uaccess.h>
31 #include <asm/tlbflush.h>
32 #include <asm/shmparam.h>
34 /*** Page table manipulation functions ***/
36 static void vunmap_pte_range(pmd_t
*pmd
, unsigned long addr
, unsigned long end
)
40 pte
= pte_offset_kernel(pmd
, addr
);
42 pte_t ptent
= ptep_get_and_clear(&init_mm
, addr
, pte
);
43 WARN_ON(!pte_none(ptent
) && !pte_present(ptent
));
44 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
47 static void vunmap_pmd_range(pud_t
*pud
, unsigned long addr
, unsigned long end
)
52 pmd
= pmd_offset(pud
, addr
);
54 next
= pmd_addr_end(addr
, end
);
55 if (pmd_none_or_clear_bad(pmd
))
57 vunmap_pte_range(pmd
, addr
, next
);
58 } while (pmd
++, addr
= next
, addr
!= end
);
61 static void vunmap_pud_range(pgd_t
*pgd
, unsigned long addr
, unsigned long end
)
66 pud
= pud_offset(pgd
, addr
);
68 next
= pud_addr_end(addr
, end
);
69 if (pud_none_or_clear_bad(pud
))
71 vunmap_pmd_range(pud
, addr
, next
);
72 } while (pud
++, addr
= next
, addr
!= end
);
75 static void vunmap_page_range(unsigned long addr
, unsigned long end
)
81 pgd
= pgd_offset_k(addr
);
83 next
= pgd_addr_end(addr
, end
);
84 if (pgd_none_or_clear_bad(pgd
))
86 vunmap_pud_range(pgd
, addr
, next
);
87 } while (pgd
++, addr
= next
, addr
!= end
);
90 static int vmap_pte_range(pmd_t
*pmd
, unsigned long addr
,
91 unsigned long end
, pgprot_t prot
, struct page
**pages
, int *nr
)
96 * nr is a running index into the array which helps higher level
97 * callers keep track of where we're up to.
100 pte
= pte_alloc_kernel(pmd
, addr
);
104 struct page
*page
= pages
[*nr
];
106 if (WARN_ON(!pte_none(*pte
)))
110 set_pte_at(&init_mm
, addr
, pte
, mk_pte(page
, prot
));
112 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
116 static int vmap_pmd_range(pud_t
*pud
, unsigned long addr
,
117 unsigned long end
, pgprot_t prot
, struct page
**pages
, int *nr
)
122 pmd
= pmd_alloc(&init_mm
, pud
, addr
);
126 next
= pmd_addr_end(addr
, end
);
127 if (vmap_pte_range(pmd
, addr
, next
, prot
, pages
, nr
))
129 } while (pmd
++, addr
= next
, addr
!= end
);
133 static int vmap_pud_range(pgd_t
*pgd
, unsigned long addr
,
134 unsigned long end
, pgprot_t prot
, struct page
**pages
, int *nr
)
139 pud
= pud_alloc(&init_mm
, pgd
, addr
);
143 next
= pud_addr_end(addr
, end
);
144 if (vmap_pmd_range(pud
, addr
, next
, prot
, pages
, nr
))
146 } while (pud
++, addr
= next
, addr
!= end
);
151 * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
152 * will have pfns corresponding to the "pages" array.
154 * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
156 static int vmap_page_range_noflush(unsigned long start
, unsigned long end
,
157 pgprot_t prot
, struct page
**pages
)
161 unsigned long addr
= start
;
166 pgd
= pgd_offset_k(addr
);
168 next
= pgd_addr_end(addr
, end
);
169 err
= vmap_pud_range(pgd
, addr
, next
, prot
, pages
, &nr
);
172 } while (pgd
++, addr
= next
, addr
!= end
);
177 static int vmap_page_range(unsigned long start
, unsigned long end
,
178 pgprot_t prot
, struct page
**pages
)
182 ret
= vmap_page_range_noflush(start
, end
, prot
, pages
);
183 flush_cache_vmap(start
, end
);
187 int is_vmalloc_or_module_addr(const void *x
)
190 * ARM, x86-64 and sparc64 put modules in a special place,
191 * and fall back on vmalloc() if that fails. Others
192 * just put it in the vmalloc space.
194 #if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
195 unsigned long addr
= (unsigned long)x
;
196 if (addr
>= MODULES_VADDR
&& addr
< MODULES_END
)
199 return is_vmalloc_addr(x
);
203 * Walk a vmap address to the struct page it maps.
205 struct page
*vmalloc_to_page(const void *vmalloc_addr
)
207 unsigned long addr
= (unsigned long) vmalloc_addr
;
208 struct page
*page
= NULL
;
209 pgd_t
*pgd
= pgd_offset_k(addr
);
212 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
213 * architectures that do not vmalloc module space
215 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr
));
217 if (!pgd_none(*pgd
)) {
218 pud_t
*pud
= pud_offset(pgd
, addr
);
219 if (!pud_none(*pud
)) {
220 pmd_t
*pmd
= pmd_offset(pud
, addr
);
221 if (!pmd_none(*pmd
)) {
224 ptep
= pte_offset_map(pmd
, addr
);
226 if (pte_present(pte
))
227 page
= pte_page(pte
);
234 EXPORT_SYMBOL(vmalloc_to_page
);
237 * Map a vmalloc()-space virtual address to the physical page frame number.
239 unsigned long vmalloc_to_pfn(const void *vmalloc_addr
)
241 return page_to_pfn(vmalloc_to_page(vmalloc_addr
));
243 EXPORT_SYMBOL(vmalloc_to_pfn
);
246 /*** Global kva allocator ***/
248 #define VM_LAZY_FREE 0x01
249 #define VM_LAZY_FREEING 0x02
250 #define VM_VM_AREA 0x04
253 unsigned long va_start
;
254 unsigned long va_end
;
256 struct rb_node rb_node
; /* address sorted rbtree */
257 struct list_head list
; /* address sorted list */
258 struct list_head purge_list
; /* "lazy purge" list */
259 struct vm_struct
*vm
;
260 struct rcu_head rcu_head
;
263 static DEFINE_SPINLOCK(vmap_area_lock
);
264 static LIST_HEAD(vmap_area_list
);
265 static struct rb_root vmap_area_root
= RB_ROOT
;
267 /* The vmap cache globals are protected by vmap_area_lock */
268 static struct rb_node
*free_vmap_cache
;
269 static unsigned long cached_hole_size
;
270 static unsigned long cached_vstart
;
271 static unsigned long cached_align
;
273 static unsigned long vmap_area_pcpu_hole
;
275 static struct vmap_area
*__find_vmap_area(unsigned long addr
)
277 struct rb_node
*n
= vmap_area_root
.rb_node
;
280 struct vmap_area
*va
;
282 va
= rb_entry(n
, struct vmap_area
, rb_node
);
283 if (addr
< va
->va_start
)
285 else if (addr
> va
->va_start
)
294 static void __insert_vmap_area(struct vmap_area
*va
)
296 struct rb_node
**p
= &vmap_area_root
.rb_node
;
297 struct rb_node
*parent
= NULL
;
301 struct vmap_area
*tmp_va
;
304 tmp_va
= rb_entry(parent
, struct vmap_area
, rb_node
);
305 if (va
->va_start
< tmp_va
->va_end
)
307 else if (va
->va_end
> tmp_va
->va_start
)
313 rb_link_node(&va
->rb_node
, parent
, p
);
314 rb_insert_color(&va
->rb_node
, &vmap_area_root
);
316 /* address-sort this list so it is usable like the vmlist */
317 tmp
= rb_prev(&va
->rb_node
);
319 struct vmap_area
*prev
;
320 prev
= rb_entry(tmp
, struct vmap_area
, rb_node
);
321 list_add_rcu(&va
->list
, &prev
->list
);
323 list_add_rcu(&va
->list
, &vmap_area_list
);
326 static void purge_vmap_area_lazy(void);
329 * Allocate a region of KVA of the specified size and alignment, within the
332 static struct vmap_area
*alloc_vmap_area(unsigned long size
,
334 unsigned long vstart
, unsigned long vend
,
335 int node
, gfp_t gfp_mask
)
337 struct vmap_area
*va
;
341 struct vmap_area
*first
;
344 BUG_ON(size
& ~PAGE_MASK
);
345 BUG_ON(!is_power_of_2(align
));
347 va
= kmalloc_node(sizeof(struct vmap_area
),
348 gfp_mask
& GFP_RECLAIM_MASK
, node
);
350 return ERR_PTR(-ENOMEM
);
353 spin_lock(&vmap_area_lock
);
355 * Invalidate cache if we have more permissive parameters.
356 * cached_hole_size notes the largest hole noticed _below_
357 * the vmap_area cached in free_vmap_cache: if size fits
358 * into that hole, we want to scan from vstart to reuse
359 * the hole instead of allocating above free_vmap_cache.
360 * Note that __free_vmap_area may update free_vmap_cache
361 * without updating cached_hole_size or cached_align.
363 if (!free_vmap_cache
||
364 size
< cached_hole_size
||
365 vstart
< cached_vstart
||
366 align
< cached_align
) {
368 cached_hole_size
= 0;
369 free_vmap_cache
= NULL
;
371 /* record if we encounter less permissive parameters */
372 cached_vstart
= vstart
;
373 cached_align
= align
;
375 /* find starting point for our search */
376 if (free_vmap_cache
) {
377 first
= rb_entry(free_vmap_cache
, struct vmap_area
, rb_node
);
378 addr
= ALIGN(first
->va_end
, align
);
381 if (addr
+ size
- 1 < addr
)
385 addr
= ALIGN(vstart
, align
);
386 if (addr
+ size
- 1 < addr
)
389 n
= vmap_area_root
.rb_node
;
393 struct vmap_area
*tmp
;
394 tmp
= rb_entry(n
, struct vmap_area
, rb_node
);
395 if (tmp
->va_end
>= addr
) {
397 if (tmp
->va_start
<= addr
)
408 /* from the starting point, walk areas until a suitable hole is found */
409 while (addr
+ size
> first
->va_start
&& addr
+ size
<= vend
) {
410 if (addr
+ cached_hole_size
< first
->va_start
)
411 cached_hole_size
= first
->va_start
- addr
;
412 addr
= ALIGN(first
->va_end
, align
);
413 if (addr
+ size
- 1 < addr
)
416 n
= rb_next(&first
->rb_node
);
418 first
= rb_entry(n
, struct vmap_area
, rb_node
);
424 if (addr
+ size
> vend
)
428 va
->va_end
= addr
+ size
;
430 __insert_vmap_area(va
);
431 free_vmap_cache
= &va
->rb_node
;
432 spin_unlock(&vmap_area_lock
);
434 BUG_ON(va
->va_start
& (align
-1));
435 BUG_ON(va
->va_start
< vstart
);
436 BUG_ON(va
->va_end
> vend
);
441 spin_unlock(&vmap_area_lock
);
443 purge_vmap_area_lazy();
447 if (printk_ratelimit())
449 "vmap allocation for size %lu failed: "
450 "use vmalloc=<size> to increase size.\n", size
);
452 return ERR_PTR(-EBUSY
);
455 static void __free_vmap_area(struct vmap_area
*va
)
457 BUG_ON(RB_EMPTY_NODE(&va
->rb_node
));
459 if (free_vmap_cache
) {
460 if (va
->va_end
< cached_vstart
) {
461 free_vmap_cache
= NULL
;
463 struct vmap_area
*cache
;
464 cache
= rb_entry(free_vmap_cache
, struct vmap_area
, rb_node
);
465 if (va
->va_start
<= cache
->va_start
) {
466 free_vmap_cache
= rb_prev(&va
->rb_node
);
468 * We don't try to update cached_hole_size or
469 * cached_align, but it won't go very wrong.
474 rb_erase(&va
->rb_node
, &vmap_area_root
);
475 RB_CLEAR_NODE(&va
->rb_node
);
476 list_del_rcu(&va
->list
);
479 * Track the highest possible candidate for pcpu area
480 * allocation. Areas outside of vmalloc area can be returned
481 * here too, consider only end addresses which fall inside
482 * vmalloc area proper.
484 if (va
->va_end
> VMALLOC_START
&& va
->va_end
<= VMALLOC_END
)
485 vmap_area_pcpu_hole
= max(vmap_area_pcpu_hole
, va
->va_end
);
487 kfree_rcu(va
, rcu_head
);
491 * Free a region of KVA allocated by alloc_vmap_area
493 static void free_vmap_area(struct vmap_area
*va
)
495 spin_lock(&vmap_area_lock
);
496 __free_vmap_area(va
);
497 spin_unlock(&vmap_area_lock
);
501 * Clear the pagetable entries of a given vmap_area
503 static void unmap_vmap_area(struct vmap_area
*va
)
505 vunmap_page_range(va
->va_start
, va
->va_end
);
508 static void vmap_debug_free_range(unsigned long start
, unsigned long end
)
511 * Unmap page tables and force a TLB flush immediately if
512 * CONFIG_DEBUG_PAGEALLOC is set. This catches use after free
513 * bugs similarly to those in linear kernel virtual address
514 * space after a page has been freed.
516 * All the lazy freeing logic is still retained, in order to
517 * minimise intrusiveness of this debugging feature.
519 * This is going to be *slow* (linear kernel virtual address
520 * debugging doesn't do a broadcast TLB flush so it is a lot
523 #ifdef CONFIG_DEBUG_PAGEALLOC
524 vunmap_page_range(start
, end
);
525 flush_tlb_kernel_range(start
, end
);
530 * lazy_max_pages is the maximum amount of virtual address space we gather up
531 * before attempting to purge with a TLB flush.
533 * There is a tradeoff here: a larger number will cover more kernel page tables
534 * and take slightly longer to purge, but it will linearly reduce the number of
535 * global TLB flushes that must be performed. It would seem natural to scale
536 * this number up linearly with the number of CPUs (because vmapping activity
537 * could also scale linearly with the number of CPUs), however it is likely
538 * that in practice, workloads might be constrained in other ways that mean
539 * vmap activity will not scale linearly with CPUs. Also, I want to be
540 * conservative and not introduce a big latency on huge systems, so go with
541 * a less aggressive log scale. It will still be an improvement over the old
542 * code, and it will be simple to change the scale factor if we find that it
543 * becomes a problem on bigger systems.
545 static unsigned long lazy_max_pages(void)
549 log
= fls(num_online_cpus());
551 return log
* (32UL * 1024 * 1024 / PAGE_SIZE
);
554 static atomic_t vmap_lazy_nr
= ATOMIC_INIT(0);
556 /* for per-CPU blocks */
557 static void purge_fragmented_blocks_allcpus(void);
560 * called before a call to iounmap() if the caller wants vm_area_struct's
563 void set_iounmap_nonlazy(void)
565 atomic_set(&vmap_lazy_nr
, lazy_max_pages()+1);
569 * Purges all lazily-freed vmap areas.
571 * If sync is 0 then don't purge if there is already a purge in progress.
572 * If force_flush is 1, then flush kernel TLBs between *start and *end even
573 * if we found no lazy vmap areas to unmap (callers can use this to optimise
574 * their own TLB flushing).
575 * Returns with *start = min(*start, lowest purged address)
576 * *end = max(*end, highest purged address)
578 static void __purge_vmap_area_lazy(unsigned long *start
, unsigned long *end
,
579 int sync
, int force_flush
)
581 static DEFINE_SPINLOCK(purge_lock
);
583 struct vmap_area
*va
;
584 struct vmap_area
*n_va
;
588 * If sync is 0 but force_flush is 1, we'll go sync anyway but callers
589 * should not expect such behaviour. This just simplifies locking for
590 * the case that isn't actually used at the moment anyway.
592 if (!sync
&& !force_flush
) {
593 if (!spin_trylock(&purge_lock
))
596 spin_lock(&purge_lock
);
599 purge_fragmented_blocks_allcpus();
602 list_for_each_entry_rcu(va
, &vmap_area_list
, list
) {
603 if (va
->flags
& VM_LAZY_FREE
) {
604 if (va
->va_start
< *start
)
605 *start
= va
->va_start
;
606 if (va
->va_end
> *end
)
608 nr
+= (va
->va_end
- va
->va_start
) >> PAGE_SHIFT
;
609 list_add_tail(&va
->purge_list
, &valist
);
610 va
->flags
|= VM_LAZY_FREEING
;
611 va
->flags
&= ~VM_LAZY_FREE
;
617 atomic_sub(nr
, &vmap_lazy_nr
);
619 if (nr
|| force_flush
)
620 flush_tlb_kernel_range(*start
, *end
);
623 spin_lock(&vmap_area_lock
);
624 list_for_each_entry_safe(va
, n_va
, &valist
, purge_list
)
625 __free_vmap_area(va
);
626 spin_unlock(&vmap_area_lock
);
628 spin_unlock(&purge_lock
);
632 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
633 * is already purging.
635 static void try_purge_vmap_area_lazy(void)
637 unsigned long start
= ULONG_MAX
, end
= 0;
639 __purge_vmap_area_lazy(&start
, &end
, 0, 0);
643 * Kick off a purge of the outstanding lazy areas.
645 static void purge_vmap_area_lazy(void)
647 unsigned long start
= ULONG_MAX
, end
= 0;
649 __purge_vmap_area_lazy(&start
, &end
, 1, 0);
653 * Free a vmap area, caller ensuring that the area has been unmapped
654 * and flush_cache_vunmap had been called for the correct range
657 static void free_vmap_area_noflush(struct vmap_area
*va
)
659 va
->flags
|= VM_LAZY_FREE
;
660 atomic_add((va
->va_end
- va
->va_start
) >> PAGE_SHIFT
, &vmap_lazy_nr
);
661 if (unlikely(atomic_read(&vmap_lazy_nr
) > lazy_max_pages()))
662 try_purge_vmap_area_lazy();
666 * Free and unmap a vmap area, caller ensuring flush_cache_vunmap had been
667 * called for the correct range previously.
669 static void free_unmap_vmap_area_noflush(struct vmap_area
*va
)
672 free_vmap_area_noflush(va
);
676 * Free and unmap a vmap area
678 static void free_unmap_vmap_area(struct vmap_area
*va
)
680 flush_cache_vunmap(va
->va_start
, va
->va_end
);
681 free_unmap_vmap_area_noflush(va
);
684 static struct vmap_area
*find_vmap_area(unsigned long addr
)
686 struct vmap_area
*va
;
688 spin_lock(&vmap_area_lock
);
689 va
= __find_vmap_area(addr
);
690 spin_unlock(&vmap_area_lock
);
695 static void free_unmap_vmap_area_addr(unsigned long addr
)
697 struct vmap_area
*va
;
699 va
= find_vmap_area(addr
);
701 free_unmap_vmap_area(va
);
705 /*** Per cpu kva allocator ***/
708 * vmap space is limited especially on 32 bit architectures. Ensure there is
709 * room for at least 16 percpu vmap blocks per CPU.
712 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
713 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess
714 * instead (we just need a rough idea)
716 #if BITS_PER_LONG == 32
717 #define VMALLOC_SPACE (128UL*1024*1024)
719 #define VMALLOC_SPACE (128UL*1024*1024*1024)
722 #define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE)
723 #define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */
724 #define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */
725 #define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2)
726 #define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */
727 #define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */
728 #define VMAP_BBMAP_BITS \
729 VMAP_MIN(VMAP_BBMAP_BITS_MAX, \
730 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \
731 VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
733 #define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE)
735 static bool vmap_initialized __read_mostly
= false;
737 struct vmap_block_queue
{
739 struct list_head free
;
744 struct vmap_area
*va
;
745 struct vmap_block_queue
*vbq
;
746 unsigned long free
, dirty
;
747 DECLARE_BITMAP(alloc_map
, VMAP_BBMAP_BITS
);
748 DECLARE_BITMAP(dirty_map
, VMAP_BBMAP_BITS
);
749 struct list_head free_list
;
750 struct rcu_head rcu_head
;
751 struct list_head purge
;
754 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
755 static DEFINE_PER_CPU(struct vmap_block_queue
, vmap_block_queue
);
758 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
759 * in the free path. Could get rid of this if we change the API to return a
760 * "cookie" from alloc, to be passed to free. But no big deal yet.
762 static DEFINE_SPINLOCK(vmap_block_tree_lock
);
763 static RADIX_TREE(vmap_block_tree
, GFP_ATOMIC
);
766 * We should probably have a fallback mechanism to allocate virtual memory
767 * out of partially filled vmap blocks. However vmap block sizing should be
768 * fairly reasonable according to the vmalloc size, so it shouldn't be a
772 static unsigned long addr_to_vb_idx(unsigned long addr
)
774 addr
-= VMALLOC_START
& ~(VMAP_BLOCK_SIZE
-1);
775 addr
/= VMAP_BLOCK_SIZE
;
779 static struct vmap_block
*new_vmap_block(gfp_t gfp_mask
)
781 struct vmap_block_queue
*vbq
;
782 struct vmap_block
*vb
;
783 struct vmap_area
*va
;
784 unsigned long vb_idx
;
787 node
= numa_node_id();
789 vb
= kmalloc_node(sizeof(struct vmap_block
),
790 gfp_mask
& GFP_RECLAIM_MASK
, node
);
792 return ERR_PTR(-ENOMEM
);
794 va
= alloc_vmap_area(VMAP_BLOCK_SIZE
, VMAP_BLOCK_SIZE
,
795 VMALLOC_START
, VMALLOC_END
,
802 err
= radix_tree_preload(gfp_mask
);
809 spin_lock_init(&vb
->lock
);
811 vb
->free
= VMAP_BBMAP_BITS
;
813 bitmap_zero(vb
->alloc_map
, VMAP_BBMAP_BITS
);
814 bitmap_zero(vb
->dirty_map
, VMAP_BBMAP_BITS
);
815 INIT_LIST_HEAD(&vb
->free_list
);
817 vb_idx
= addr_to_vb_idx(va
->va_start
);
818 spin_lock(&vmap_block_tree_lock
);
819 err
= radix_tree_insert(&vmap_block_tree
, vb_idx
, vb
);
820 spin_unlock(&vmap_block_tree_lock
);
822 radix_tree_preload_end();
824 vbq
= &get_cpu_var(vmap_block_queue
);
826 spin_lock(&vbq
->lock
);
827 list_add_rcu(&vb
->free_list
, &vbq
->free
);
828 spin_unlock(&vbq
->lock
);
829 put_cpu_var(vmap_block_queue
);
834 static void free_vmap_block(struct vmap_block
*vb
)
836 struct vmap_block
*tmp
;
837 unsigned long vb_idx
;
839 vb_idx
= addr_to_vb_idx(vb
->va
->va_start
);
840 spin_lock(&vmap_block_tree_lock
);
841 tmp
= radix_tree_delete(&vmap_block_tree
, vb_idx
);
842 spin_unlock(&vmap_block_tree_lock
);
845 free_vmap_area_noflush(vb
->va
);
846 kfree_rcu(vb
, rcu_head
);
849 static void purge_fragmented_blocks(int cpu
)
852 struct vmap_block
*vb
;
853 struct vmap_block
*n_vb
;
854 struct vmap_block_queue
*vbq
= &per_cpu(vmap_block_queue
, cpu
);
857 list_for_each_entry_rcu(vb
, &vbq
->free
, free_list
) {
859 if (!(vb
->free
+ vb
->dirty
== VMAP_BBMAP_BITS
&& vb
->dirty
!= VMAP_BBMAP_BITS
))
862 spin_lock(&vb
->lock
);
863 if (vb
->free
+ vb
->dirty
== VMAP_BBMAP_BITS
&& vb
->dirty
!= VMAP_BBMAP_BITS
) {
864 vb
->free
= 0; /* prevent further allocs after releasing lock */
865 vb
->dirty
= VMAP_BBMAP_BITS
; /* prevent purging it again */
866 bitmap_fill(vb
->alloc_map
, VMAP_BBMAP_BITS
);
867 bitmap_fill(vb
->dirty_map
, VMAP_BBMAP_BITS
);
868 spin_lock(&vbq
->lock
);
869 list_del_rcu(&vb
->free_list
);
870 spin_unlock(&vbq
->lock
);
871 spin_unlock(&vb
->lock
);
872 list_add_tail(&vb
->purge
, &purge
);
874 spin_unlock(&vb
->lock
);
878 list_for_each_entry_safe(vb
, n_vb
, &purge
, purge
) {
879 list_del(&vb
->purge
);
884 static void purge_fragmented_blocks_thiscpu(void)
886 purge_fragmented_blocks(smp_processor_id());
889 static void purge_fragmented_blocks_allcpus(void)
893 for_each_possible_cpu(cpu
)
894 purge_fragmented_blocks(cpu
);
897 static void *vb_alloc(unsigned long size
, gfp_t gfp_mask
)
899 struct vmap_block_queue
*vbq
;
900 struct vmap_block
*vb
;
901 unsigned long addr
= 0;
905 BUG_ON(size
& ~PAGE_MASK
);
906 BUG_ON(size
> PAGE_SIZE
*VMAP_MAX_ALLOC
);
907 order
= get_order(size
);
911 vbq
= &get_cpu_var(vmap_block_queue
);
912 list_for_each_entry_rcu(vb
, &vbq
->free
, free_list
) {
915 spin_lock(&vb
->lock
);
916 if (vb
->free
< 1UL << order
)
919 i
= bitmap_find_free_region(vb
->alloc_map
,
920 VMAP_BBMAP_BITS
, order
);
923 if (vb
->free
+ vb
->dirty
== VMAP_BBMAP_BITS
) {
924 /* fragmented and no outstanding allocations */
925 BUG_ON(vb
->dirty
!= VMAP_BBMAP_BITS
);
930 addr
= vb
->va
->va_start
+ (i
<< PAGE_SHIFT
);
931 BUG_ON(addr_to_vb_idx(addr
) !=
932 addr_to_vb_idx(vb
->va
->va_start
));
933 vb
->free
-= 1UL << order
;
935 spin_lock(&vbq
->lock
);
936 list_del_rcu(&vb
->free_list
);
937 spin_unlock(&vbq
->lock
);
939 spin_unlock(&vb
->lock
);
942 spin_unlock(&vb
->lock
);
946 purge_fragmented_blocks_thiscpu();
948 put_cpu_var(vmap_block_queue
);
952 vb
= new_vmap_block(gfp_mask
);
961 static void vb_free(const void *addr
, unsigned long size
)
963 unsigned long offset
;
964 unsigned long vb_idx
;
966 struct vmap_block
*vb
;
968 BUG_ON(size
& ~PAGE_MASK
);
969 BUG_ON(size
> PAGE_SIZE
*VMAP_MAX_ALLOC
);
971 flush_cache_vunmap((unsigned long)addr
, (unsigned long)addr
+ size
);
973 order
= get_order(size
);
975 offset
= (unsigned long)addr
& (VMAP_BLOCK_SIZE
- 1);
977 vb_idx
= addr_to_vb_idx((unsigned long)addr
);
979 vb
= radix_tree_lookup(&vmap_block_tree
, vb_idx
);
983 vunmap_page_range((unsigned long)addr
, (unsigned long)addr
+ size
);
985 spin_lock(&vb
->lock
);
986 BUG_ON(bitmap_allocate_region(vb
->dirty_map
, offset
>> PAGE_SHIFT
, order
));
988 vb
->dirty
+= 1UL << order
;
989 if (vb
->dirty
== VMAP_BBMAP_BITS
) {
991 spin_unlock(&vb
->lock
);
994 spin_unlock(&vb
->lock
);
998 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
1000 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
1001 * to amortize TLB flushing overheads. What this means is that any page you
1002 * have now, may, in a former life, have been mapped into kernel virtual
1003 * address by the vmap layer and so there might be some CPUs with TLB entries
1004 * still referencing that page (additional to the regular 1:1 kernel mapping).
1006 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
1007 * be sure that none of the pages we have control over will have any aliases
1008 * from the vmap layer.
1010 void vm_unmap_aliases(void)
1012 unsigned long start
= ULONG_MAX
, end
= 0;
1016 if (unlikely(!vmap_initialized
))
1019 for_each_possible_cpu(cpu
) {
1020 struct vmap_block_queue
*vbq
= &per_cpu(vmap_block_queue
, cpu
);
1021 struct vmap_block
*vb
;
1024 list_for_each_entry_rcu(vb
, &vbq
->free
, free_list
) {
1027 spin_lock(&vb
->lock
);
1028 i
= find_first_bit(vb
->dirty_map
, VMAP_BBMAP_BITS
);
1029 while (i
< VMAP_BBMAP_BITS
) {
1032 j
= find_next_zero_bit(vb
->dirty_map
,
1033 VMAP_BBMAP_BITS
, i
);
1035 s
= vb
->va
->va_start
+ (i
<< PAGE_SHIFT
);
1036 e
= vb
->va
->va_start
+ (j
<< PAGE_SHIFT
);
1045 i
= find_next_bit(vb
->dirty_map
,
1046 VMAP_BBMAP_BITS
, i
);
1048 spin_unlock(&vb
->lock
);
1053 __purge_vmap_area_lazy(&start
, &end
, 1, flush
);
1055 EXPORT_SYMBOL_GPL(vm_unmap_aliases
);
1058 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
1059 * @mem: the pointer returned by vm_map_ram
1060 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
1062 void vm_unmap_ram(const void *mem
, unsigned int count
)
1064 unsigned long size
= count
<< PAGE_SHIFT
;
1065 unsigned long addr
= (unsigned long)mem
;
1068 BUG_ON(addr
< VMALLOC_START
);
1069 BUG_ON(addr
> VMALLOC_END
);
1070 BUG_ON(addr
& (PAGE_SIZE
-1));
1072 debug_check_no_locks_freed(mem
, size
);
1073 vmap_debug_free_range(addr
, addr
+size
);
1075 if (likely(count
<= VMAP_MAX_ALLOC
))
1078 free_unmap_vmap_area_addr(addr
);
1080 EXPORT_SYMBOL(vm_unmap_ram
);
1083 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
1084 * @pages: an array of pointers to the pages to be mapped
1085 * @count: number of pages
1086 * @node: prefer to allocate data structures on this node
1087 * @prot: memory protection to use. PAGE_KERNEL for regular RAM
1089 * Returns: a pointer to the address that has been mapped, or %NULL on failure
1091 void *vm_map_ram(struct page
**pages
, unsigned int count
, int node
, pgprot_t prot
)
1093 unsigned long size
= count
<< PAGE_SHIFT
;
1097 if (likely(count
<= VMAP_MAX_ALLOC
)) {
1098 mem
= vb_alloc(size
, GFP_KERNEL
);
1101 addr
= (unsigned long)mem
;
1103 struct vmap_area
*va
;
1104 va
= alloc_vmap_area(size
, PAGE_SIZE
,
1105 VMALLOC_START
, VMALLOC_END
, node
, GFP_KERNEL
);
1109 addr
= va
->va_start
;
1112 if (vmap_page_range(addr
, addr
+ size
, prot
, pages
) < 0) {
1113 vm_unmap_ram(mem
, count
);
1118 EXPORT_SYMBOL(vm_map_ram
);
1121 * vm_area_add_early - add vmap area early during boot
1122 * @vm: vm_struct to add
1124 * This function is used to add fixed kernel vm area to vmlist before
1125 * vmalloc_init() is called. @vm->addr, @vm->size, and @vm->flags
1126 * should contain proper values and the other fields should be zero.
1128 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1130 void __init
vm_area_add_early(struct vm_struct
*vm
)
1132 struct vm_struct
*tmp
, **p
;
1134 BUG_ON(vmap_initialized
);
1135 for (p
= &vmlist
; (tmp
= *p
) != NULL
; p
= &tmp
->next
) {
1136 if (tmp
->addr
>= vm
->addr
) {
1137 BUG_ON(tmp
->addr
< vm
->addr
+ vm
->size
);
1140 BUG_ON(tmp
->addr
+ tmp
->size
> vm
->addr
);
1147 * vm_area_register_early - register vmap area early during boot
1148 * @vm: vm_struct to register
1149 * @align: requested alignment
1151 * This function is used to register kernel vm area before
1152 * vmalloc_init() is called. @vm->size and @vm->flags should contain
1153 * proper values on entry and other fields should be zero. On return,
1154 * vm->addr contains the allocated address.
1156 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1158 void __init
vm_area_register_early(struct vm_struct
*vm
, size_t align
)
1160 static size_t vm_init_off __initdata
;
1163 addr
= ALIGN(VMALLOC_START
+ vm_init_off
, align
);
1164 vm_init_off
= PFN_ALIGN(addr
+ vm
->size
) - VMALLOC_START
;
1166 vm
->addr
= (void *)addr
;
1168 vm_area_add_early(vm
);
1171 void __init
vmalloc_init(void)
1173 struct vmap_area
*va
;
1174 struct vm_struct
*tmp
;
1177 for_each_possible_cpu(i
) {
1178 struct vmap_block_queue
*vbq
;
1180 vbq
= &per_cpu(vmap_block_queue
, i
);
1181 spin_lock_init(&vbq
->lock
);
1182 INIT_LIST_HEAD(&vbq
->free
);
1185 /* Import existing vmlist entries. */
1186 for (tmp
= vmlist
; tmp
; tmp
= tmp
->next
) {
1187 va
= kzalloc(sizeof(struct vmap_area
), GFP_NOWAIT
);
1188 va
->flags
= tmp
->flags
| VM_VM_AREA
;
1189 va
->va_start
= (unsigned long)tmp
->addr
;
1190 va
->va_end
= va
->va_start
+ tmp
->size
;
1191 __insert_vmap_area(va
);
1194 vmap_area_pcpu_hole
= VMALLOC_END
;
1196 vmap_initialized
= true;
1200 * map_kernel_range_noflush - map kernel VM area with the specified pages
1201 * @addr: start of the VM area to map
1202 * @size: size of the VM area to map
1203 * @prot: page protection flags to use
1204 * @pages: pages to map
1206 * Map PFN_UP(@size) pages at @addr. The VM area @addr and @size
1207 * specify should have been allocated using get_vm_area() and its
1211 * This function does NOT do any cache flushing. The caller is
1212 * responsible for calling flush_cache_vmap() on to-be-mapped areas
1213 * before calling this function.
1216 * The number of pages mapped on success, -errno on failure.
1218 int map_kernel_range_noflush(unsigned long addr
, unsigned long size
,
1219 pgprot_t prot
, struct page
**pages
)
1221 return vmap_page_range_noflush(addr
, addr
+ size
, prot
, pages
);
1225 * unmap_kernel_range_noflush - unmap kernel VM area
1226 * @addr: start of the VM area to unmap
1227 * @size: size of the VM area to unmap
1229 * Unmap PFN_UP(@size) pages at @addr. The VM area @addr and @size
1230 * specify should have been allocated using get_vm_area() and its
1234 * This function does NOT do any cache flushing. The caller is
1235 * responsible for calling flush_cache_vunmap() on to-be-mapped areas
1236 * before calling this function and flush_tlb_kernel_range() after.
1238 void unmap_kernel_range_noflush(unsigned long addr
, unsigned long size
)
1240 vunmap_page_range(addr
, addr
+ size
);
1242 EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush
);
1245 * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
1246 * @addr: start of the VM area to unmap
1247 * @size: size of the VM area to unmap
1249 * Similar to unmap_kernel_range_noflush() but flushes vcache before
1250 * the unmapping and tlb after.
1252 void unmap_kernel_range(unsigned long addr
, unsigned long size
)
1254 unsigned long end
= addr
+ size
;
1256 flush_cache_vunmap(addr
, end
);
1257 vunmap_page_range(addr
, end
);
1258 flush_tlb_kernel_range(addr
, end
);
1261 int map_vm_area(struct vm_struct
*area
, pgprot_t prot
, struct page
***pages
)
1263 unsigned long addr
= (unsigned long)area
->addr
;
1264 unsigned long end
= addr
+ area
->size
- PAGE_SIZE
;
1267 err
= vmap_page_range(addr
, end
, prot
, *pages
);
1275 EXPORT_SYMBOL_GPL(map_vm_area
);
1277 /*** Old vmalloc interfaces ***/
1278 DEFINE_RWLOCK(vmlist_lock
);
1279 struct vm_struct
*vmlist
;
1281 static void setup_vmalloc_vm(struct vm_struct
*vm
, struct vmap_area
*va
,
1282 unsigned long flags
, void *caller
)
1285 vm
->addr
= (void *)va
->va_start
;
1286 vm
->size
= va
->va_end
- va
->va_start
;
1287 vm
->caller
= caller
;
1289 va
->flags
|= VM_VM_AREA
;
1292 static void insert_vmalloc_vmlist(struct vm_struct
*vm
)
1294 struct vm_struct
*tmp
, **p
;
1296 vm
->flags
&= ~VM_UNLIST
;
1297 write_lock(&vmlist_lock
);
1298 for (p
= &vmlist
; (tmp
= *p
) != NULL
; p
= &tmp
->next
) {
1299 if (tmp
->addr
>= vm
->addr
)
1304 write_unlock(&vmlist_lock
);
1307 static void insert_vmalloc_vm(struct vm_struct
*vm
, struct vmap_area
*va
,
1308 unsigned long flags
, void *caller
)
1310 setup_vmalloc_vm(vm
, va
, flags
, caller
);
1311 insert_vmalloc_vmlist(vm
);
1314 static struct vm_struct
*__get_vm_area_node(unsigned long size
,
1315 unsigned long align
, unsigned long flags
, unsigned long start
,
1316 unsigned long end
, int node
, gfp_t gfp_mask
, void *caller
)
1318 struct vmap_area
*va
;
1319 struct vm_struct
*area
;
1321 BUG_ON(in_interrupt());
1322 if (flags
& VM_IOREMAP
) {
1323 int bit
= fls(size
);
1325 if (bit
> IOREMAP_MAX_ORDER
)
1326 bit
= IOREMAP_MAX_ORDER
;
1327 else if (bit
< PAGE_SHIFT
)
1333 size
= PAGE_ALIGN(size
);
1334 if (unlikely(!size
))
1337 area
= kzalloc_node(sizeof(*area
), gfp_mask
& GFP_RECLAIM_MASK
, node
);
1338 if (unlikely(!area
))
1342 * We always allocate a guard page.
1346 va
= alloc_vmap_area(size
, align
, start
, end
, node
, gfp_mask
);
1353 * When this function is called from __vmalloc_node_range,
1354 * we do not add vm_struct to vmlist here to avoid
1355 * accessing uninitialized members of vm_struct such as
1356 * pages and nr_pages fields. They will be set later.
1357 * To distinguish it from others, we use a VM_UNLIST flag.
1359 if (flags
& VM_UNLIST
)
1360 setup_vmalloc_vm(area
, va
, flags
, caller
);
1362 insert_vmalloc_vm(area
, va
, flags
, caller
);
1367 struct vm_struct
*__get_vm_area(unsigned long size
, unsigned long flags
,
1368 unsigned long start
, unsigned long end
)
1370 return __get_vm_area_node(size
, 1, flags
, start
, end
, -1, GFP_KERNEL
,
1371 __builtin_return_address(0));
1373 EXPORT_SYMBOL_GPL(__get_vm_area
);
1375 struct vm_struct
*__get_vm_area_caller(unsigned long size
, unsigned long flags
,
1376 unsigned long start
, unsigned long end
,
1379 return __get_vm_area_node(size
, 1, flags
, start
, end
, -1, GFP_KERNEL
,
1384 * get_vm_area - reserve a contiguous kernel virtual area
1385 * @size: size of the area
1386 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC
1388 * Search an area of @size in the kernel virtual mapping area,
1389 * and reserved it for out purposes. Returns the area descriptor
1390 * on success or %NULL on failure.
1392 struct vm_struct
*get_vm_area(unsigned long size
, unsigned long flags
)
1394 return __get_vm_area_node(size
, 1, flags
, VMALLOC_START
, VMALLOC_END
,
1395 -1, GFP_KERNEL
, __builtin_return_address(0));
1398 struct vm_struct
*get_vm_area_caller(unsigned long size
, unsigned long flags
,
1401 return __get_vm_area_node(size
, 1, flags
, VMALLOC_START
, VMALLOC_END
,
1402 -1, GFP_KERNEL
, caller
);
1405 static struct vm_struct
*find_vm_area(const void *addr
)
1407 struct vmap_area
*va
;
1409 va
= find_vmap_area((unsigned long)addr
);
1410 if (va
&& va
->flags
& VM_VM_AREA
)
1417 * remove_vm_area - find and remove a continuous kernel virtual area
1418 * @addr: base address
1420 * Search for the kernel VM area starting at @addr, and remove it.
1421 * This function returns the found VM area, but using it is NOT safe
1422 * on SMP machines, except for its size or flags.
1424 struct vm_struct
*remove_vm_area(const void *addr
)
1426 struct vmap_area
*va
;
1428 va
= find_vmap_area((unsigned long)addr
);
1429 if (va
&& va
->flags
& VM_VM_AREA
) {
1430 struct vm_struct
*vm
= va
->vm
;
1432 if (!(vm
->flags
& VM_UNLIST
)) {
1433 struct vm_struct
*tmp
, **p
;
1435 * remove from list and disallow access to
1436 * this vm_struct before unmap. (address range
1437 * confliction is maintained by vmap.)
1439 write_lock(&vmlist_lock
);
1440 for (p
= &vmlist
; (tmp
= *p
) != vm
; p
= &tmp
->next
)
1443 write_unlock(&vmlist_lock
);
1446 vmap_debug_free_range(va
->va_start
, va
->va_end
);
1447 free_unmap_vmap_area(va
);
1448 vm
->size
-= PAGE_SIZE
;
1455 static void __vunmap(const void *addr
, int deallocate_pages
)
1457 struct vm_struct
*area
;
1462 if ((PAGE_SIZE
-1) & (unsigned long)addr
) {
1463 WARN(1, KERN_ERR
"Trying to vfree() bad address (%p)\n", addr
);
1467 area
= remove_vm_area(addr
);
1468 if (unlikely(!area
)) {
1469 WARN(1, KERN_ERR
"Trying to vfree() nonexistent vm area (%p)\n",
1474 debug_check_no_locks_freed(addr
, area
->size
);
1475 debug_check_no_obj_freed(addr
, area
->size
);
1477 if (deallocate_pages
) {
1480 for (i
= 0; i
< area
->nr_pages
; i
++) {
1481 struct page
*page
= area
->pages
[i
];
1487 if (area
->flags
& VM_VPAGES
)
1498 * vfree - release memory allocated by vmalloc()
1499 * @addr: memory base address
1501 * Free the virtually continuous memory area starting at @addr, as
1502 * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
1503 * NULL, no operation is performed.
1505 * Must not be called in interrupt context.
1507 void vfree(const void *addr
)
1509 BUG_ON(in_interrupt());
1511 kmemleak_free(addr
);
1515 EXPORT_SYMBOL(vfree
);
1518 * vunmap - release virtual mapping obtained by vmap()
1519 * @addr: memory base address
1521 * Free the virtually contiguous memory area starting at @addr,
1522 * which was created from the page array passed to vmap().
1524 * Must not be called in interrupt context.
1526 void vunmap(const void *addr
)
1528 BUG_ON(in_interrupt());
1532 EXPORT_SYMBOL(vunmap
);
1535 * vmap - map an array of pages into virtually contiguous space
1536 * @pages: array of page pointers
1537 * @count: number of pages to map
1538 * @flags: vm_area->flags
1539 * @prot: page protection for the mapping
1541 * Maps @count pages from @pages into contiguous kernel virtual
1544 void *vmap(struct page
**pages
, unsigned int count
,
1545 unsigned long flags
, pgprot_t prot
)
1547 struct vm_struct
*area
;
1551 if (count
> totalram_pages
)
1554 area
= get_vm_area_caller((count
<< PAGE_SHIFT
), flags
,
1555 __builtin_return_address(0));
1559 if (map_vm_area(area
, prot
, &pages
)) {
1566 EXPORT_SYMBOL(vmap
);
1568 static void *__vmalloc_node(unsigned long size
, unsigned long align
,
1569 gfp_t gfp_mask
, pgprot_t prot
,
1570 int node
, void *caller
);
1571 static void *__vmalloc_area_node(struct vm_struct
*area
, gfp_t gfp_mask
,
1572 pgprot_t prot
, int node
, void *caller
)
1574 const int order
= 0;
1575 struct page
**pages
;
1576 unsigned int nr_pages
, array_size
, i
;
1577 gfp_t nested_gfp
= (gfp_mask
& GFP_RECLAIM_MASK
) | __GFP_ZERO
;
1579 nr_pages
= (area
->size
- PAGE_SIZE
) >> PAGE_SHIFT
;
1580 array_size
= (nr_pages
* sizeof(struct page
*));
1582 area
->nr_pages
= nr_pages
;
1583 /* Please note that the recursion is strictly bounded. */
1584 if (array_size
> PAGE_SIZE
) {
1585 pages
= __vmalloc_node(array_size
, 1, nested_gfp
|__GFP_HIGHMEM
,
1586 PAGE_KERNEL
, node
, caller
);
1587 area
->flags
|= VM_VPAGES
;
1589 pages
= kmalloc_node(array_size
, nested_gfp
, node
);
1591 area
->pages
= pages
;
1592 area
->caller
= caller
;
1594 remove_vm_area(area
->addr
);
1599 for (i
= 0; i
< area
->nr_pages
; i
++) {
1601 gfp_t tmp_mask
= gfp_mask
| __GFP_NOWARN
;
1604 page
= alloc_page(tmp_mask
);
1606 page
= alloc_pages_node(node
, tmp_mask
, order
);
1608 if (unlikely(!page
)) {
1609 /* Successfully allocated i pages, free them in __vunmap() */
1613 area
->pages
[i
] = page
;
1616 if (map_vm_area(area
, prot
, &pages
))
1621 warn_alloc_failed(gfp_mask
, order
,
1622 "vmalloc: allocation failure, allocated %ld of %ld bytes\n",
1623 (area
->nr_pages
*PAGE_SIZE
), area
->size
);
1629 * __vmalloc_node_range - allocate virtually contiguous memory
1630 * @size: allocation size
1631 * @align: desired alignment
1632 * @start: vm area range start
1633 * @end: vm area range end
1634 * @gfp_mask: flags for the page level allocator
1635 * @prot: protection mask for the allocated pages
1636 * @node: node to use for allocation or -1
1637 * @caller: caller's return address
1639 * Allocate enough pages to cover @size from the page level
1640 * allocator with @gfp_mask flags. Map them into contiguous
1641 * kernel virtual space, using a pagetable protection of @prot.
1643 void *__vmalloc_node_range(unsigned long size
, unsigned long align
,
1644 unsigned long start
, unsigned long end
, gfp_t gfp_mask
,
1645 pgprot_t prot
, int node
, void *caller
)
1647 struct vm_struct
*area
;
1649 unsigned long real_size
= size
;
1651 size
= PAGE_ALIGN(size
);
1652 if (!size
|| (size
>> PAGE_SHIFT
) > totalram_pages
)
1655 area
= __get_vm_area_node(size
, align
, VM_ALLOC
| VM_UNLIST
,
1656 start
, end
, node
, gfp_mask
, caller
);
1660 addr
= __vmalloc_area_node(area
, gfp_mask
, prot
, node
, caller
);
1665 * In this function, newly allocated vm_struct is not added
1666 * to vmlist at __get_vm_area_node(). so, it is added here.
1668 insert_vmalloc_vmlist(area
);
1671 * A ref_count = 3 is needed because the vm_struct and vmap_area
1672 * structures allocated in the __get_vm_area_node() function contain
1673 * references to the virtual address of the vmalloc'ed block.
1675 kmemleak_alloc(addr
, real_size
, 3, gfp_mask
);
1680 warn_alloc_failed(gfp_mask
, 0,
1681 "vmalloc: allocation failure: %lu bytes\n",
1687 * __vmalloc_node - allocate virtually contiguous memory
1688 * @size: allocation size
1689 * @align: desired alignment
1690 * @gfp_mask: flags for the page level allocator
1691 * @prot: protection mask for the allocated pages
1692 * @node: node to use for allocation or -1
1693 * @caller: caller's return address
1695 * Allocate enough pages to cover @size from the page level
1696 * allocator with @gfp_mask flags. Map them into contiguous
1697 * kernel virtual space, using a pagetable protection of @prot.
1699 static void *__vmalloc_node(unsigned long size
, unsigned long align
,
1700 gfp_t gfp_mask
, pgprot_t prot
,
1701 int node
, void *caller
)
1703 return __vmalloc_node_range(size
, align
, VMALLOC_START
, VMALLOC_END
,
1704 gfp_mask
, prot
, node
, caller
);
1707 void *__vmalloc(unsigned long size
, gfp_t gfp_mask
, pgprot_t prot
)
1709 return __vmalloc_node(size
, 1, gfp_mask
, prot
, -1,
1710 __builtin_return_address(0));
1712 EXPORT_SYMBOL(__vmalloc
);
1714 static inline void *__vmalloc_node_flags(unsigned long size
,
1715 int node
, gfp_t flags
)
1717 return __vmalloc_node(size
, 1, flags
, PAGE_KERNEL
,
1718 node
, __builtin_return_address(0));
1722 * vmalloc - allocate virtually contiguous memory
1723 * @size: allocation size
1724 * Allocate enough pages to cover @size from the page level
1725 * allocator and map them into contiguous kernel virtual space.
1727 * For tight control over page level allocator and protection flags
1728 * use __vmalloc() instead.
1730 void *vmalloc(unsigned long size
)
1732 return __vmalloc_node_flags(size
, -1, GFP_KERNEL
| __GFP_HIGHMEM
);
1734 EXPORT_SYMBOL(vmalloc
);
1737 * vzalloc - allocate virtually contiguous memory with zero fill
1738 * @size: allocation size
1739 * Allocate enough pages to cover @size from the page level
1740 * allocator and map them into contiguous kernel virtual space.
1741 * The memory allocated is set to zero.
1743 * For tight control over page level allocator and protection flags
1744 * use __vmalloc() instead.
1746 void *vzalloc(unsigned long size
)
1748 return __vmalloc_node_flags(size
, -1,
1749 GFP_KERNEL
| __GFP_HIGHMEM
| __GFP_ZERO
);
1751 EXPORT_SYMBOL(vzalloc
);
1754 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
1755 * @size: allocation size
1757 * The resulting memory area is zeroed so it can be mapped to userspace
1758 * without leaking data.
1760 void *vmalloc_user(unsigned long size
)
1762 struct vm_struct
*area
;
1765 ret
= __vmalloc_node(size
, SHMLBA
,
1766 GFP_KERNEL
| __GFP_HIGHMEM
| __GFP_ZERO
,
1767 PAGE_KERNEL
, -1, __builtin_return_address(0));
1769 area
= find_vm_area(ret
);
1770 area
->flags
|= VM_USERMAP
;
1774 EXPORT_SYMBOL(vmalloc_user
);
1777 * vmalloc_node - allocate memory on a specific node
1778 * @size: allocation size
1781 * Allocate enough pages to cover @size from the page level
1782 * allocator and map them into contiguous kernel virtual space.
1784 * For tight control over page level allocator and protection flags
1785 * use __vmalloc() instead.
1787 void *vmalloc_node(unsigned long size
, int node
)
1789 return __vmalloc_node(size
, 1, GFP_KERNEL
| __GFP_HIGHMEM
, PAGE_KERNEL
,
1790 node
, __builtin_return_address(0));
1792 EXPORT_SYMBOL(vmalloc_node
);
1795 * vzalloc_node - allocate memory on a specific node with zero fill
1796 * @size: allocation size
1799 * Allocate enough pages to cover @size from the page level
1800 * allocator and map them into contiguous kernel virtual space.
1801 * The memory allocated is set to zero.
1803 * For tight control over page level allocator and protection flags
1804 * use __vmalloc_node() instead.
1806 void *vzalloc_node(unsigned long size
, int node
)
1808 return __vmalloc_node_flags(size
, node
,
1809 GFP_KERNEL
| __GFP_HIGHMEM
| __GFP_ZERO
);
1811 EXPORT_SYMBOL(vzalloc_node
);
1813 #ifndef PAGE_KERNEL_EXEC
1814 # define PAGE_KERNEL_EXEC PAGE_KERNEL
1818 * vmalloc_exec - allocate virtually contiguous, executable memory
1819 * @size: allocation size
1821 * Kernel-internal function to allocate enough pages to cover @size
1822 * the page level allocator and map them into contiguous and
1823 * executable kernel virtual space.
1825 * For tight control over page level allocator and protection flags
1826 * use __vmalloc() instead.
1829 void *vmalloc_exec(unsigned long size
)
1831 return __vmalloc_node(size
, 1, GFP_KERNEL
| __GFP_HIGHMEM
, PAGE_KERNEL_EXEC
,
1832 -1, __builtin_return_address(0));
1835 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
1836 #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
1837 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
1838 #define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL
1840 #define GFP_VMALLOC32 GFP_KERNEL
1844 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
1845 * @size: allocation size
1847 * Allocate enough 32bit PA addressable pages to cover @size from the
1848 * page level allocator and map them into contiguous kernel virtual space.
1850 void *vmalloc_32(unsigned long size
)
1852 return __vmalloc_node(size
, 1, GFP_VMALLOC32
, PAGE_KERNEL
,
1853 -1, __builtin_return_address(0));
1855 EXPORT_SYMBOL(vmalloc_32
);
1858 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
1859 * @size: allocation size
1861 * The resulting memory area is 32bit addressable and zeroed so it can be
1862 * mapped to userspace without leaking data.
1864 void *vmalloc_32_user(unsigned long size
)
1866 struct vm_struct
*area
;
1869 ret
= __vmalloc_node(size
, 1, GFP_VMALLOC32
| __GFP_ZERO
, PAGE_KERNEL
,
1870 -1, __builtin_return_address(0));
1872 area
= find_vm_area(ret
);
1873 area
->flags
|= VM_USERMAP
;
1877 EXPORT_SYMBOL(vmalloc_32_user
);
1880 * small helper routine , copy contents to buf from addr.
1881 * If the page is not present, fill zero.
1884 static int aligned_vread(char *buf
, char *addr
, unsigned long count
)
1890 unsigned long offset
, length
;
1892 offset
= (unsigned long)addr
& ~PAGE_MASK
;
1893 length
= PAGE_SIZE
- offset
;
1896 p
= vmalloc_to_page(addr
);
1898 * To do safe access to this _mapped_ area, we need
1899 * lock. But adding lock here means that we need to add
1900 * overhead of vmalloc()/vfree() calles for this _debug_
1901 * interface, rarely used. Instead of that, we'll use
1902 * kmap() and get small overhead in this access function.
1906 * we can expect USER0 is not used (see vread/vwrite's
1907 * function description)
1909 void *map
= kmap_atomic(p
);
1910 memcpy(buf
, map
+ offset
, length
);
1913 memset(buf
, 0, length
);
1923 static int aligned_vwrite(char *buf
, char *addr
, unsigned long count
)
1929 unsigned long offset
, length
;
1931 offset
= (unsigned long)addr
& ~PAGE_MASK
;
1932 length
= PAGE_SIZE
- offset
;
1935 p
= vmalloc_to_page(addr
);
1937 * To do safe access to this _mapped_ area, we need
1938 * lock. But adding lock here means that we need to add
1939 * overhead of vmalloc()/vfree() calles for this _debug_
1940 * interface, rarely used. Instead of that, we'll use
1941 * kmap() and get small overhead in this access function.
1945 * we can expect USER0 is not used (see vread/vwrite's
1946 * function description)
1948 void *map
= kmap_atomic(p
);
1949 memcpy(map
+ offset
, buf
, length
);
1961 * vread() - read vmalloc area in a safe way.
1962 * @buf: buffer for reading data
1963 * @addr: vm address.
1964 * @count: number of bytes to be read.
1966 * Returns # of bytes which addr and buf should be increased.
1967 * (same number to @count). Returns 0 if [addr...addr+count) doesn't
1968 * includes any intersect with alive vmalloc area.
1970 * This function checks that addr is a valid vmalloc'ed area, and
1971 * copy data from that area to a given buffer. If the given memory range
1972 * of [addr...addr+count) includes some valid address, data is copied to
1973 * proper area of @buf. If there are memory holes, they'll be zero-filled.
1974 * IOREMAP area is treated as memory hole and no copy is done.
1976 * If [addr...addr+count) doesn't includes any intersects with alive
1977 * vm_struct area, returns 0.
1978 * @buf should be kernel's buffer. Because this function uses KM_USER0,
1979 * the caller should guarantee KM_USER0 is not used.
1981 * Note: In usual ops, vread() is never necessary because the caller
1982 * should know vmalloc() area is valid and can use memcpy().
1983 * This is for routines which have to access vmalloc area without
1984 * any informaion, as /dev/kmem.
1988 long vread(char *buf
, char *addr
, unsigned long count
)
1990 struct vm_struct
*tmp
;
1991 char *vaddr
, *buf_start
= buf
;
1992 unsigned long buflen
= count
;
1995 /* Don't allow overflow */
1996 if ((unsigned long) addr
+ count
< count
)
1997 count
= -(unsigned long) addr
;
1999 read_lock(&vmlist_lock
);
2000 for (tmp
= vmlist
; count
&& tmp
; tmp
= tmp
->next
) {
2001 vaddr
= (char *) tmp
->addr
;
2002 if (addr
>= vaddr
+ tmp
->size
- PAGE_SIZE
)
2004 while (addr
< vaddr
) {
2012 n
= vaddr
+ tmp
->size
- PAGE_SIZE
- addr
;
2015 if (!(tmp
->flags
& VM_IOREMAP
))
2016 aligned_vread(buf
, addr
, n
);
2017 else /* IOREMAP area is treated as memory hole */
2024 read_unlock(&vmlist_lock
);
2026 if (buf
== buf_start
)
2028 /* zero-fill memory holes */
2029 if (buf
!= buf_start
+ buflen
)
2030 memset(buf
, 0, buflen
- (buf
- buf_start
));
2036 * vwrite() - write vmalloc area in a safe way.
2037 * @buf: buffer for source data
2038 * @addr: vm address.
2039 * @count: number of bytes to be read.
2041 * Returns # of bytes which addr and buf should be incresed.
2042 * (same number to @count).
2043 * If [addr...addr+count) doesn't includes any intersect with valid
2044 * vmalloc area, returns 0.
2046 * This function checks that addr is a valid vmalloc'ed area, and
2047 * copy data from a buffer to the given addr. If specified range of
2048 * [addr...addr+count) includes some valid address, data is copied from
2049 * proper area of @buf. If there are memory holes, no copy to hole.
2050 * IOREMAP area is treated as memory hole and no copy is done.
2052 * If [addr...addr+count) doesn't includes any intersects with alive
2053 * vm_struct area, returns 0.
2054 * @buf should be kernel's buffer. Because this function uses KM_USER0,
2055 * the caller should guarantee KM_USER0 is not used.
2057 * Note: In usual ops, vwrite() is never necessary because the caller
2058 * should know vmalloc() area is valid and can use memcpy().
2059 * This is for routines which have to access vmalloc area without
2060 * any informaion, as /dev/kmem.
2063 long vwrite(char *buf
, char *addr
, unsigned long count
)
2065 struct vm_struct
*tmp
;
2067 unsigned long n
, buflen
;
2070 /* Don't allow overflow */
2071 if ((unsigned long) addr
+ count
< count
)
2072 count
= -(unsigned long) addr
;
2075 read_lock(&vmlist_lock
);
2076 for (tmp
= vmlist
; count
&& tmp
; tmp
= tmp
->next
) {
2077 vaddr
= (char *) tmp
->addr
;
2078 if (addr
>= vaddr
+ tmp
->size
- PAGE_SIZE
)
2080 while (addr
< vaddr
) {
2087 n
= vaddr
+ tmp
->size
- PAGE_SIZE
- addr
;
2090 if (!(tmp
->flags
& VM_IOREMAP
)) {
2091 aligned_vwrite(buf
, addr
, n
);
2099 read_unlock(&vmlist_lock
);
2106 * remap_vmalloc_range - map vmalloc pages to userspace
2107 * @vma: vma to cover (map full range of vma)
2108 * @addr: vmalloc memory
2109 * @pgoff: number of pages into addr before first page to map
2111 * Returns: 0 for success, -Exxx on failure
2113 * This function checks that addr is a valid vmalloc'ed area, and
2114 * that it is big enough to cover the vma. Will return failure if
2115 * that criteria isn't met.
2117 * Similar to remap_pfn_range() (see mm/memory.c)
2119 int remap_vmalloc_range(struct vm_area_struct
*vma
, void *addr
,
2120 unsigned long pgoff
)
2122 struct vm_struct
*area
;
2123 unsigned long uaddr
= vma
->vm_start
;
2124 unsigned long usize
= vma
->vm_end
- vma
->vm_start
;
2126 if ((PAGE_SIZE
-1) & (unsigned long)addr
)
2129 area
= find_vm_area(addr
);
2133 if (!(area
->flags
& VM_USERMAP
))
2136 if (usize
+ (pgoff
<< PAGE_SHIFT
) > area
->size
- PAGE_SIZE
)
2139 addr
+= pgoff
<< PAGE_SHIFT
;
2141 struct page
*page
= vmalloc_to_page(addr
);
2144 ret
= vm_insert_page(vma
, uaddr
, page
);
2151 } while (usize
> 0);
2153 /* Prevent "things" like memory migration? VM_flags need a cleanup... */
2154 vma
->vm_flags
|= VM_RESERVED
;
2158 EXPORT_SYMBOL(remap_vmalloc_range
);
2161 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
2164 void __attribute__((weak
)) vmalloc_sync_all(void)
2169 static int f(pte_t
*pte
, pgtable_t table
, unsigned long addr
, void *data
)
2181 * alloc_vm_area - allocate a range of kernel address space
2182 * @size: size of the area
2183 * @ptes: returns the PTEs for the address space
2185 * Returns: NULL on failure, vm_struct on success
2187 * This function reserves a range of kernel address space, and
2188 * allocates pagetables to map that range. No actual mappings
2191 * If @ptes is non-NULL, pointers to the PTEs (in init_mm)
2192 * allocated for the VM area are returned.
2194 struct vm_struct
*alloc_vm_area(size_t size
, pte_t
**ptes
)
2196 struct vm_struct
*area
;
2198 area
= get_vm_area_caller(size
, VM_IOREMAP
,
2199 __builtin_return_address(0));
2204 * This ensures that page tables are constructed for this region
2205 * of kernel virtual address space and mapped into init_mm.
2207 if (apply_to_page_range(&init_mm
, (unsigned long)area
->addr
,
2208 size
, f
, ptes
? &ptes
: NULL
)) {
2215 EXPORT_SYMBOL_GPL(alloc_vm_area
);
2217 void free_vm_area(struct vm_struct
*area
)
2219 struct vm_struct
*ret
;
2220 ret
= remove_vm_area(area
->addr
);
2221 BUG_ON(ret
!= area
);
2224 EXPORT_SYMBOL_GPL(free_vm_area
);
2227 static struct vmap_area
*node_to_va(struct rb_node
*n
)
2229 return n
? rb_entry(n
, struct vmap_area
, rb_node
) : NULL
;
2233 * pvm_find_next_prev - find the next and prev vmap_area surrounding @end
2234 * @end: target address
2235 * @pnext: out arg for the next vmap_area
2236 * @pprev: out arg for the previous vmap_area
2238 * Returns: %true if either or both of next and prev are found,
2239 * %false if no vmap_area exists
2241 * Find vmap_areas end addresses of which enclose @end. ie. if not
2242 * NULL, *pnext->va_end > @end and *pprev->va_end <= @end.
2244 static bool pvm_find_next_prev(unsigned long end
,
2245 struct vmap_area
**pnext
,
2246 struct vmap_area
**pprev
)
2248 struct rb_node
*n
= vmap_area_root
.rb_node
;
2249 struct vmap_area
*va
= NULL
;
2252 va
= rb_entry(n
, struct vmap_area
, rb_node
);
2253 if (end
< va
->va_end
)
2255 else if (end
> va
->va_end
)
2264 if (va
->va_end
> end
) {
2266 *pprev
= node_to_va(rb_prev(&(*pnext
)->rb_node
));
2269 *pnext
= node_to_va(rb_next(&(*pprev
)->rb_node
));
2275 * pvm_determine_end - find the highest aligned address between two vmap_areas
2276 * @pnext: in/out arg for the next vmap_area
2277 * @pprev: in/out arg for the previous vmap_area
2280 * Returns: determined end address
2282 * Find the highest aligned address between *@pnext and *@pprev below
2283 * VMALLOC_END. *@pnext and *@pprev are adjusted so that the aligned
2284 * down address is between the end addresses of the two vmap_areas.
2286 * Please note that the address returned by this function may fall
2287 * inside *@pnext vmap_area. The caller is responsible for checking
2290 static unsigned long pvm_determine_end(struct vmap_area
**pnext
,
2291 struct vmap_area
**pprev
,
2292 unsigned long align
)
2294 const unsigned long vmalloc_end
= VMALLOC_END
& ~(align
- 1);
2298 addr
= min((*pnext
)->va_start
& ~(align
- 1), vmalloc_end
);
2302 while (*pprev
&& (*pprev
)->va_end
> addr
) {
2304 *pprev
= node_to_va(rb_prev(&(*pnext
)->rb_node
));
2311 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
2312 * @offsets: array containing offset of each area
2313 * @sizes: array containing size of each area
2314 * @nr_vms: the number of areas to allocate
2315 * @align: alignment, all entries in @offsets and @sizes must be aligned to this
2317 * Returns: kmalloc'd vm_struct pointer array pointing to allocated
2318 * vm_structs on success, %NULL on failure
2320 * Percpu allocator wants to use congruent vm areas so that it can
2321 * maintain the offsets among percpu areas. This function allocates
2322 * congruent vmalloc areas for it with GFP_KERNEL. These areas tend to
2323 * be scattered pretty far, distance between two areas easily going up
2324 * to gigabytes. To avoid interacting with regular vmallocs, these
2325 * areas are allocated from top.
2327 * Despite its complicated look, this allocator is rather simple. It
2328 * does everything top-down and scans areas from the end looking for
2329 * matching slot. While scanning, if any of the areas overlaps with
2330 * existing vmap_area, the base address is pulled down to fit the
2331 * area. Scanning is repeated till all the areas fit and then all
2332 * necessary data structres are inserted and the result is returned.
2334 struct vm_struct
**pcpu_get_vm_areas(const unsigned long *offsets
,
2335 const size_t *sizes
, int nr_vms
,
2338 const unsigned long vmalloc_start
= ALIGN(VMALLOC_START
, align
);
2339 const unsigned long vmalloc_end
= VMALLOC_END
& ~(align
- 1);
2340 struct vmap_area
**vas
, *prev
, *next
;
2341 struct vm_struct
**vms
;
2342 int area
, area2
, last_area
, term_area
;
2343 unsigned long base
, start
, end
, last_end
;
2344 bool purged
= false;
2346 /* verify parameters and allocate data structures */
2347 BUG_ON(align
& ~PAGE_MASK
|| !is_power_of_2(align
));
2348 for (last_area
= 0, area
= 0; area
< nr_vms
; area
++) {
2349 start
= offsets
[area
];
2350 end
= start
+ sizes
[area
];
2352 /* is everything aligned properly? */
2353 BUG_ON(!IS_ALIGNED(offsets
[area
], align
));
2354 BUG_ON(!IS_ALIGNED(sizes
[area
], align
));
2356 /* detect the area with the highest address */
2357 if (start
> offsets
[last_area
])
2360 for (area2
= 0; area2
< nr_vms
; area2
++) {
2361 unsigned long start2
= offsets
[area2
];
2362 unsigned long end2
= start2
+ sizes
[area2
];
2367 BUG_ON(start2
>= start
&& start2
< end
);
2368 BUG_ON(end2
<= end
&& end2
> start
);
2371 last_end
= offsets
[last_area
] + sizes
[last_area
];
2373 if (vmalloc_end
- vmalloc_start
< last_end
) {
2378 vms
= kzalloc(sizeof(vms
[0]) * nr_vms
, GFP_KERNEL
);
2379 vas
= kzalloc(sizeof(vas
[0]) * nr_vms
, GFP_KERNEL
);
2383 for (area
= 0; area
< nr_vms
; area
++) {
2384 vas
[area
] = kzalloc(sizeof(struct vmap_area
), GFP_KERNEL
);
2385 vms
[area
] = kzalloc(sizeof(struct vm_struct
), GFP_KERNEL
);
2386 if (!vas
[area
] || !vms
[area
])
2390 spin_lock(&vmap_area_lock
);
2392 /* start scanning - we scan from the top, begin with the last area */
2393 area
= term_area
= last_area
;
2394 start
= offsets
[area
];
2395 end
= start
+ sizes
[area
];
2397 if (!pvm_find_next_prev(vmap_area_pcpu_hole
, &next
, &prev
)) {
2398 base
= vmalloc_end
- last_end
;
2401 base
= pvm_determine_end(&next
, &prev
, align
) - end
;
2404 BUG_ON(next
&& next
->va_end
<= base
+ end
);
2405 BUG_ON(prev
&& prev
->va_end
> base
+ end
);
2408 * base might have underflowed, add last_end before
2411 if (base
+ last_end
< vmalloc_start
+ last_end
) {
2412 spin_unlock(&vmap_area_lock
);
2414 purge_vmap_area_lazy();
2422 * If next overlaps, move base downwards so that it's
2423 * right below next and then recheck.
2425 if (next
&& next
->va_start
< base
+ end
) {
2426 base
= pvm_determine_end(&next
, &prev
, align
) - end
;
2432 * If prev overlaps, shift down next and prev and move
2433 * base so that it's right below new next and then
2436 if (prev
&& prev
->va_end
> base
+ start
) {
2438 prev
= node_to_va(rb_prev(&next
->rb_node
));
2439 base
= pvm_determine_end(&next
, &prev
, align
) - end
;
2445 * This area fits, move on to the previous one. If
2446 * the previous one is the terminal one, we're done.
2448 area
= (area
+ nr_vms
- 1) % nr_vms
;
2449 if (area
== term_area
)
2451 start
= offsets
[area
];
2452 end
= start
+ sizes
[area
];
2453 pvm_find_next_prev(base
+ end
, &next
, &prev
);
2456 /* we've found a fitting base, insert all va's */
2457 for (area
= 0; area
< nr_vms
; area
++) {
2458 struct vmap_area
*va
= vas
[area
];
2460 va
->va_start
= base
+ offsets
[area
];
2461 va
->va_end
= va
->va_start
+ sizes
[area
];
2462 __insert_vmap_area(va
);
2465 vmap_area_pcpu_hole
= base
+ offsets
[last_area
];
2467 spin_unlock(&vmap_area_lock
);
2469 /* insert all vm's */
2470 for (area
= 0; area
< nr_vms
; area
++)
2471 insert_vmalloc_vm(vms
[area
], vas
[area
], VM_ALLOC
,
2478 for (area
= 0; area
< nr_vms
; area
++) {
2489 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
2490 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
2491 * @nr_vms: the number of allocated areas
2493 * Free vm_structs and the array allocated by pcpu_get_vm_areas().
2495 void pcpu_free_vm_areas(struct vm_struct
**vms
, int nr_vms
)
2499 for (i
= 0; i
< nr_vms
; i
++)
2500 free_vm_area(vms
[i
]);
2503 #endif /* CONFIG_SMP */
2505 #ifdef CONFIG_PROC_FS
2506 static void *s_start(struct seq_file
*m
, loff_t
*pos
)
2507 __acquires(&vmlist_lock
)
2510 struct vm_struct
*v
;
2512 read_lock(&vmlist_lock
);
2514 while (n
> 0 && v
) {
2525 static void *s_next(struct seq_file
*m
, void *p
, loff_t
*pos
)
2527 struct vm_struct
*v
= p
;
2533 static void s_stop(struct seq_file
*m
, void *p
)
2534 __releases(&vmlist_lock
)
2536 read_unlock(&vmlist_lock
);
2539 static void show_numa_info(struct seq_file
*m
, struct vm_struct
*v
)
2542 unsigned int nr
, *counters
= m
->private;
2547 memset(counters
, 0, nr_node_ids
* sizeof(unsigned int));
2549 for (nr
= 0; nr
< v
->nr_pages
; nr
++)
2550 counters
[page_to_nid(v
->pages
[nr
])]++;
2552 for_each_node_state(nr
, N_HIGH_MEMORY
)
2554 seq_printf(m
, " N%u=%u", nr
, counters
[nr
]);
2558 static int s_show(struct seq_file
*m
, void *p
)
2560 struct vm_struct
*v
= p
;
2562 seq_printf(m
, "0x%p-0x%p %7ld",
2563 v
->addr
, v
->addr
+ v
->size
, v
->size
);
2566 seq_printf(m
, " %pS", v
->caller
);
2569 seq_printf(m
, " pages=%d", v
->nr_pages
);
2572 seq_printf(m
, " phys=%llx", (unsigned long long)v
->phys_addr
);
2574 if (v
->flags
& VM_IOREMAP
)
2575 seq_printf(m
, " ioremap");
2577 if (v
->flags
& VM_ALLOC
)
2578 seq_printf(m
, " vmalloc");
2580 if (v
->flags
& VM_MAP
)
2581 seq_printf(m
, " vmap");
2583 if (v
->flags
& VM_USERMAP
)
2584 seq_printf(m
, " user");
2586 if (v
->flags
& VM_VPAGES
)
2587 seq_printf(m
, " vpages");
2589 show_numa_info(m
, v
);
2594 static const struct seq_operations vmalloc_op
= {
2601 static int vmalloc_open(struct inode
*inode
, struct file
*file
)
2603 unsigned int *ptr
= NULL
;
2607 ptr
= kmalloc(nr_node_ids
* sizeof(unsigned int), GFP_KERNEL
);
2611 ret
= seq_open(file
, &vmalloc_op
);
2613 struct seq_file
*m
= file
->private_data
;
2620 static const struct file_operations proc_vmalloc_operations
= {
2621 .open
= vmalloc_open
,
2623 .llseek
= seq_lseek
,
2624 .release
= seq_release_private
,
2627 static int __init
proc_vmalloc_init(void)
2629 proc_create("vmallocinfo", S_IRUSR
, NULL
, &proc_vmalloc_operations
);
2632 module_init(proc_vmalloc_init
);