libata: HPA support
[linux-2.6/libata-dev.git] / drivers / ata / libata-core.c
blob6d0a946afe84c41d8d2c6e2e6c494fd3a66d67ef
1 /*
2 * libata-core.c - helper library for ATA
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
35 #include <linux/kernel.h>
36 #include <linux/module.h>
37 #include <linux/pci.h>
38 #include <linux/init.h>
39 #include <linux/list.h>
40 #include <linux/mm.h>
41 #include <linux/highmem.h>
42 #include <linux/spinlock.h>
43 #include <linux/blkdev.h>
44 #include <linux/delay.h>
45 #include <linux/timer.h>
46 #include <linux/interrupt.h>
47 #include <linux/completion.h>
48 #include <linux/suspend.h>
49 #include <linux/workqueue.h>
50 #include <linux/jiffies.h>
51 #include <linux/scatterlist.h>
52 #include <scsi/scsi.h>
53 #include <scsi/scsi_cmnd.h>
54 #include <scsi/scsi_host.h>
55 #include <linux/libata.h>
56 #include <asm/io.h>
57 #include <asm/semaphore.h>
58 #include <asm/byteorder.h>
60 #include "libata.h"
62 #define DRV_VERSION "2.20" /* must be exactly four chars */
65 /* debounce timing parameters in msecs { interval, duration, timeout } */
66 const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
67 const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
68 const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
70 static unsigned int ata_dev_init_params(struct ata_device *dev,
71 u16 heads, u16 sectors);
72 static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
73 static void ata_dev_xfermask(struct ata_device *dev);
75 unsigned int ata_print_id = 1;
76 static struct workqueue_struct *ata_wq;
78 struct workqueue_struct *ata_aux_wq;
80 int atapi_enabled = 1;
81 module_param(atapi_enabled, int, 0444);
82 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
84 int atapi_dmadir = 0;
85 module_param(atapi_dmadir, int, 0444);
86 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
88 int libata_fua = 0;
89 module_param_named(fua, libata_fua, int, 0444);
90 MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
92 static int ata_ignore_hpa = 0;
93 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
94 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
96 static int ata_probe_timeout = ATA_TMOUT_INTERNAL / HZ;
97 module_param(ata_probe_timeout, int, 0444);
98 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
100 int libata_noacpi = 1;
101 module_param_named(noacpi, libata_noacpi, int, 0444);
102 MODULE_PARM_DESC(noacpi, "Disables the use of ACPI in suspend/resume when set");
104 MODULE_AUTHOR("Jeff Garzik");
105 MODULE_DESCRIPTION("Library module for ATA devices");
106 MODULE_LICENSE("GPL");
107 MODULE_VERSION(DRV_VERSION);
111 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
112 * @tf: Taskfile to convert
113 * @fis: Buffer into which data will output
114 * @pmp: Port multiplier port
116 * Converts a standard ATA taskfile to a Serial ATA
117 * FIS structure (Register - Host to Device).
119 * LOCKING:
120 * Inherited from caller.
123 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 *fis, u8 pmp)
125 fis[0] = 0x27; /* Register - Host to Device FIS */
126 fis[1] = (pmp & 0xf) | (1 << 7); /* Port multiplier number,
127 bit 7 indicates Command FIS */
128 fis[2] = tf->command;
129 fis[3] = tf->feature;
131 fis[4] = tf->lbal;
132 fis[5] = tf->lbam;
133 fis[6] = tf->lbah;
134 fis[7] = tf->device;
136 fis[8] = tf->hob_lbal;
137 fis[9] = tf->hob_lbam;
138 fis[10] = tf->hob_lbah;
139 fis[11] = tf->hob_feature;
141 fis[12] = tf->nsect;
142 fis[13] = tf->hob_nsect;
143 fis[14] = 0;
144 fis[15] = tf->ctl;
146 fis[16] = 0;
147 fis[17] = 0;
148 fis[18] = 0;
149 fis[19] = 0;
153 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
154 * @fis: Buffer from which data will be input
155 * @tf: Taskfile to output
157 * Converts a serial ATA FIS structure to a standard ATA taskfile.
159 * LOCKING:
160 * Inherited from caller.
163 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
165 tf->command = fis[2]; /* status */
166 tf->feature = fis[3]; /* error */
168 tf->lbal = fis[4];
169 tf->lbam = fis[5];
170 tf->lbah = fis[6];
171 tf->device = fis[7];
173 tf->hob_lbal = fis[8];
174 tf->hob_lbam = fis[9];
175 tf->hob_lbah = fis[10];
177 tf->nsect = fis[12];
178 tf->hob_nsect = fis[13];
181 static const u8 ata_rw_cmds[] = {
182 /* pio multi */
183 ATA_CMD_READ_MULTI,
184 ATA_CMD_WRITE_MULTI,
185 ATA_CMD_READ_MULTI_EXT,
186 ATA_CMD_WRITE_MULTI_EXT,
190 ATA_CMD_WRITE_MULTI_FUA_EXT,
191 /* pio */
192 ATA_CMD_PIO_READ,
193 ATA_CMD_PIO_WRITE,
194 ATA_CMD_PIO_READ_EXT,
195 ATA_CMD_PIO_WRITE_EXT,
200 /* dma */
201 ATA_CMD_READ,
202 ATA_CMD_WRITE,
203 ATA_CMD_READ_EXT,
204 ATA_CMD_WRITE_EXT,
208 ATA_CMD_WRITE_FUA_EXT
212 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
213 * @tf: command to examine and configure
214 * @dev: device tf belongs to
216 * Examine the device configuration and tf->flags to calculate
217 * the proper read/write commands and protocol to use.
219 * LOCKING:
220 * caller.
222 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
224 u8 cmd;
226 int index, fua, lba48, write;
228 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
229 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
230 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
232 if (dev->flags & ATA_DFLAG_PIO) {
233 tf->protocol = ATA_PROT_PIO;
234 index = dev->multi_count ? 0 : 8;
235 } else if (lba48 && (dev->ap->flags & ATA_FLAG_PIO_LBA48)) {
236 /* Unable to use DMA due to host limitation */
237 tf->protocol = ATA_PROT_PIO;
238 index = dev->multi_count ? 0 : 8;
239 } else {
240 tf->protocol = ATA_PROT_DMA;
241 index = 16;
244 cmd = ata_rw_cmds[index + fua + lba48 + write];
245 if (cmd) {
246 tf->command = cmd;
247 return 0;
249 return -1;
253 * ata_tf_read_block - Read block address from ATA taskfile
254 * @tf: ATA taskfile of interest
255 * @dev: ATA device @tf belongs to
257 * LOCKING:
258 * None.
260 * Read block address from @tf. This function can handle all
261 * three address formats - LBA, LBA48 and CHS. tf->protocol and
262 * flags select the address format to use.
264 * RETURNS:
265 * Block address read from @tf.
267 u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
269 u64 block = 0;
271 if (tf->flags & ATA_TFLAG_LBA) {
272 if (tf->flags & ATA_TFLAG_LBA48) {
273 block |= (u64)tf->hob_lbah << 40;
274 block |= (u64)tf->hob_lbam << 32;
275 block |= tf->hob_lbal << 24;
276 } else
277 block |= (tf->device & 0xf) << 24;
279 block |= tf->lbah << 16;
280 block |= tf->lbam << 8;
281 block |= tf->lbal;
282 } else {
283 u32 cyl, head, sect;
285 cyl = tf->lbam | (tf->lbah << 8);
286 head = tf->device & 0xf;
287 sect = tf->lbal;
289 block = (cyl * dev->heads + head) * dev->sectors + sect;
292 return block;
296 * ata_build_rw_tf - Build ATA taskfile for given read/write request
297 * @tf: Target ATA taskfile
298 * @dev: ATA device @tf belongs to
299 * @block: Block address
300 * @n_block: Number of blocks
301 * @tf_flags: RW/FUA etc...
302 * @tag: tag
304 * LOCKING:
305 * None.
307 * Build ATA taskfile @tf for read/write request described by
308 * @block, @n_block, @tf_flags and @tag on @dev.
310 * RETURNS:
312 * 0 on success, -ERANGE if the request is too large for @dev,
313 * -EINVAL if the request is invalid.
315 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
316 u64 block, u32 n_block, unsigned int tf_flags,
317 unsigned int tag)
319 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
320 tf->flags |= tf_flags;
322 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
323 /* yay, NCQ */
324 if (!lba_48_ok(block, n_block))
325 return -ERANGE;
327 tf->protocol = ATA_PROT_NCQ;
328 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
330 if (tf->flags & ATA_TFLAG_WRITE)
331 tf->command = ATA_CMD_FPDMA_WRITE;
332 else
333 tf->command = ATA_CMD_FPDMA_READ;
335 tf->nsect = tag << 3;
336 tf->hob_feature = (n_block >> 8) & 0xff;
337 tf->feature = n_block & 0xff;
339 tf->hob_lbah = (block >> 40) & 0xff;
340 tf->hob_lbam = (block >> 32) & 0xff;
341 tf->hob_lbal = (block >> 24) & 0xff;
342 tf->lbah = (block >> 16) & 0xff;
343 tf->lbam = (block >> 8) & 0xff;
344 tf->lbal = block & 0xff;
346 tf->device = 1 << 6;
347 if (tf->flags & ATA_TFLAG_FUA)
348 tf->device |= 1 << 7;
349 } else if (dev->flags & ATA_DFLAG_LBA) {
350 tf->flags |= ATA_TFLAG_LBA;
352 if (lba_28_ok(block, n_block)) {
353 /* use LBA28 */
354 tf->device |= (block >> 24) & 0xf;
355 } else if (lba_48_ok(block, n_block)) {
356 if (!(dev->flags & ATA_DFLAG_LBA48))
357 return -ERANGE;
359 /* use LBA48 */
360 tf->flags |= ATA_TFLAG_LBA48;
362 tf->hob_nsect = (n_block >> 8) & 0xff;
364 tf->hob_lbah = (block >> 40) & 0xff;
365 tf->hob_lbam = (block >> 32) & 0xff;
366 tf->hob_lbal = (block >> 24) & 0xff;
367 } else
368 /* request too large even for LBA48 */
369 return -ERANGE;
371 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
372 return -EINVAL;
374 tf->nsect = n_block & 0xff;
376 tf->lbah = (block >> 16) & 0xff;
377 tf->lbam = (block >> 8) & 0xff;
378 tf->lbal = block & 0xff;
380 tf->device |= ATA_LBA;
381 } else {
382 /* CHS */
383 u32 sect, head, cyl, track;
385 /* The request -may- be too large for CHS addressing. */
386 if (!lba_28_ok(block, n_block))
387 return -ERANGE;
389 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
390 return -EINVAL;
392 /* Convert LBA to CHS */
393 track = (u32)block / dev->sectors;
394 cyl = track / dev->heads;
395 head = track % dev->heads;
396 sect = (u32)block % dev->sectors + 1;
398 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
399 (u32)block, track, cyl, head, sect);
401 /* Check whether the converted CHS can fit.
402 Cylinder: 0-65535
403 Head: 0-15
404 Sector: 1-255*/
405 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
406 return -ERANGE;
408 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
409 tf->lbal = sect;
410 tf->lbam = cyl;
411 tf->lbah = cyl >> 8;
412 tf->device |= head;
415 return 0;
419 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
420 * @pio_mask: pio_mask
421 * @mwdma_mask: mwdma_mask
422 * @udma_mask: udma_mask
424 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
425 * unsigned int xfer_mask.
427 * LOCKING:
428 * None.
430 * RETURNS:
431 * Packed xfer_mask.
433 static unsigned int ata_pack_xfermask(unsigned int pio_mask,
434 unsigned int mwdma_mask,
435 unsigned int udma_mask)
437 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
438 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
439 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
443 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
444 * @xfer_mask: xfer_mask to unpack
445 * @pio_mask: resulting pio_mask
446 * @mwdma_mask: resulting mwdma_mask
447 * @udma_mask: resulting udma_mask
449 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
450 * Any NULL distination masks will be ignored.
452 static void ata_unpack_xfermask(unsigned int xfer_mask,
453 unsigned int *pio_mask,
454 unsigned int *mwdma_mask,
455 unsigned int *udma_mask)
457 if (pio_mask)
458 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
459 if (mwdma_mask)
460 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
461 if (udma_mask)
462 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
465 static const struct ata_xfer_ent {
466 int shift, bits;
467 u8 base;
468 } ata_xfer_tbl[] = {
469 { ATA_SHIFT_PIO, ATA_BITS_PIO, XFER_PIO_0 },
470 { ATA_SHIFT_MWDMA, ATA_BITS_MWDMA, XFER_MW_DMA_0 },
471 { ATA_SHIFT_UDMA, ATA_BITS_UDMA, XFER_UDMA_0 },
472 { -1, },
476 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
477 * @xfer_mask: xfer_mask of interest
479 * Return matching XFER_* value for @xfer_mask. Only the highest
480 * bit of @xfer_mask is considered.
482 * LOCKING:
483 * None.
485 * RETURNS:
486 * Matching XFER_* value, 0 if no match found.
488 static u8 ata_xfer_mask2mode(unsigned int xfer_mask)
490 int highbit = fls(xfer_mask) - 1;
491 const struct ata_xfer_ent *ent;
493 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
494 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
495 return ent->base + highbit - ent->shift;
496 return 0;
500 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
501 * @xfer_mode: XFER_* of interest
503 * Return matching xfer_mask for @xfer_mode.
505 * LOCKING:
506 * None.
508 * RETURNS:
509 * Matching xfer_mask, 0 if no match found.
511 static unsigned int ata_xfer_mode2mask(u8 xfer_mode)
513 const struct ata_xfer_ent *ent;
515 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
516 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
517 return 1 << (ent->shift + xfer_mode - ent->base);
518 return 0;
522 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
523 * @xfer_mode: XFER_* of interest
525 * Return matching xfer_shift for @xfer_mode.
527 * LOCKING:
528 * None.
530 * RETURNS:
531 * Matching xfer_shift, -1 if no match found.
533 static int ata_xfer_mode2shift(unsigned int xfer_mode)
535 const struct ata_xfer_ent *ent;
537 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
538 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
539 return ent->shift;
540 return -1;
544 * ata_mode_string - convert xfer_mask to string
545 * @xfer_mask: mask of bits supported; only highest bit counts.
547 * Determine string which represents the highest speed
548 * (highest bit in @modemask).
550 * LOCKING:
551 * None.
553 * RETURNS:
554 * Constant C string representing highest speed listed in
555 * @mode_mask, or the constant C string "<n/a>".
557 static const char *ata_mode_string(unsigned int xfer_mask)
559 static const char * const xfer_mode_str[] = {
560 "PIO0",
561 "PIO1",
562 "PIO2",
563 "PIO3",
564 "PIO4",
565 "PIO5",
566 "PIO6",
567 "MWDMA0",
568 "MWDMA1",
569 "MWDMA2",
570 "MWDMA3",
571 "MWDMA4",
572 "UDMA/16",
573 "UDMA/25",
574 "UDMA/33",
575 "UDMA/44",
576 "UDMA/66",
577 "UDMA/100",
578 "UDMA/133",
579 "UDMA7",
581 int highbit;
583 highbit = fls(xfer_mask) - 1;
584 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
585 return xfer_mode_str[highbit];
586 return "<n/a>";
589 static const char *sata_spd_string(unsigned int spd)
591 static const char * const spd_str[] = {
592 "1.5 Gbps",
593 "3.0 Gbps",
596 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
597 return "<unknown>";
598 return spd_str[spd - 1];
601 void ata_dev_disable(struct ata_device *dev)
603 if (ata_dev_enabled(dev) && ata_msg_drv(dev->ap)) {
604 ata_dev_printk(dev, KERN_WARNING, "disabled\n");
605 ata_down_xfermask_limit(dev, ATA_DNXFER_FORCE_PIO0 |
606 ATA_DNXFER_QUIET);
607 dev->class++;
612 * ata_devchk - PATA device presence detection
613 * @ap: ATA channel to examine
614 * @device: Device to examine (starting at zero)
616 * This technique was originally described in
617 * Hale Landis's ATADRVR (www.ata-atapi.com), and
618 * later found its way into the ATA/ATAPI spec.
620 * Write a pattern to the ATA shadow registers,
621 * and if a device is present, it will respond by
622 * correctly storing and echoing back the
623 * ATA shadow register contents.
625 * LOCKING:
626 * caller.
629 static unsigned int ata_devchk(struct ata_port *ap, unsigned int device)
631 struct ata_ioports *ioaddr = &ap->ioaddr;
632 u8 nsect, lbal;
634 ap->ops->dev_select(ap, device);
636 iowrite8(0x55, ioaddr->nsect_addr);
637 iowrite8(0xaa, ioaddr->lbal_addr);
639 iowrite8(0xaa, ioaddr->nsect_addr);
640 iowrite8(0x55, ioaddr->lbal_addr);
642 iowrite8(0x55, ioaddr->nsect_addr);
643 iowrite8(0xaa, ioaddr->lbal_addr);
645 nsect = ioread8(ioaddr->nsect_addr);
646 lbal = ioread8(ioaddr->lbal_addr);
648 if ((nsect == 0x55) && (lbal == 0xaa))
649 return 1; /* we found a device */
651 return 0; /* nothing found */
655 * ata_dev_classify - determine device type based on ATA-spec signature
656 * @tf: ATA taskfile register set for device to be identified
658 * Determine from taskfile register contents whether a device is
659 * ATA or ATAPI, as per "Signature and persistence" section
660 * of ATA/PI spec (volume 1, sect 5.14).
662 * LOCKING:
663 * None.
665 * RETURNS:
666 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
667 * the event of failure.
670 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
672 /* Apple's open source Darwin code hints that some devices only
673 * put a proper signature into the LBA mid/high registers,
674 * So, we only check those. It's sufficient for uniqueness.
677 if (((tf->lbam == 0) && (tf->lbah == 0)) ||
678 ((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) {
679 DPRINTK("found ATA device by sig\n");
680 return ATA_DEV_ATA;
683 if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) ||
684 ((tf->lbam == 0x69) && (tf->lbah == 0x96))) {
685 DPRINTK("found ATAPI device by sig\n");
686 return ATA_DEV_ATAPI;
689 DPRINTK("unknown device\n");
690 return ATA_DEV_UNKNOWN;
694 * ata_dev_try_classify - Parse returned ATA device signature
695 * @ap: ATA channel to examine
696 * @device: Device to examine (starting at zero)
697 * @r_err: Value of error register on completion
699 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
700 * an ATA/ATAPI-defined set of values is placed in the ATA
701 * shadow registers, indicating the results of device detection
702 * and diagnostics.
704 * Select the ATA device, and read the values from the ATA shadow
705 * registers. Then parse according to the Error register value,
706 * and the spec-defined values examined by ata_dev_classify().
708 * LOCKING:
709 * caller.
711 * RETURNS:
712 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
715 unsigned int
716 ata_dev_try_classify(struct ata_port *ap, unsigned int device, u8 *r_err)
718 struct ata_taskfile tf;
719 unsigned int class;
720 u8 err;
722 ap->ops->dev_select(ap, device);
724 memset(&tf, 0, sizeof(tf));
726 ap->ops->tf_read(ap, &tf);
727 err = tf.feature;
728 if (r_err)
729 *r_err = err;
731 /* see if device passed diags: if master then continue and warn later */
732 if (err == 0 && device == 0)
733 /* diagnostic fail : do nothing _YET_ */
734 ap->device[device].horkage |= ATA_HORKAGE_DIAGNOSTIC;
735 else if (err == 1)
736 /* do nothing */ ;
737 else if ((device == 0) && (err == 0x81))
738 /* do nothing */ ;
739 else
740 return ATA_DEV_NONE;
742 /* determine if device is ATA or ATAPI */
743 class = ata_dev_classify(&tf);
745 if (class == ATA_DEV_UNKNOWN)
746 return ATA_DEV_NONE;
747 if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
748 return ATA_DEV_NONE;
749 return class;
753 * ata_id_string - Convert IDENTIFY DEVICE page into string
754 * @id: IDENTIFY DEVICE results we will examine
755 * @s: string into which data is output
756 * @ofs: offset into identify device page
757 * @len: length of string to return. must be an even number.
759 * The strings in the IDENTIFY DEVICE page are broken up into
760 * 16-bit chunks. Run through the string, and output each
761 * 8-bit chunk linearly, regardless of platform.
763 * LOCKING:
764 * caller.
767 void ata_id_string(const u16 *id, unsigned char *s,
768 unsigned int ofs, unsigned int len)
770 unsigned int c;
772 while (len > 0) {
773 c = id[ofs] >> 8;
774 *s = c;
775 s++;
777 c = id[ofs] & 0xff;
778 *s = c;
779 s++;
781 ofs++;
782 len -= 2;
787 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
788 * @id: IDENTIFY DEVICE results we will examine
789 * @s: string into which data is output
790 * @ofs: offset into identify device page
791 * @len: length of string to return. must be an odd number.
793 * This function is identical to ata_id_string except that it
794 * trims trailing spaces and terminates the resulting string with
795 * null. @len must be actual maximum length (even number) + 1.
797 * LOCKING:
798 * caller.
800 void ata_id_c_string(const u16 *id, unsigned char *s,
801 unsigned int ofs, unsigned int len)
803 unsigned char *p;
805 WARN_ON(!(len & 1));
807 ata_id_string(id, s, ofs, len - 1);
809 p = s + strnlen(s, len - 1);
810 while (p > s && p[-1] == ' ')
811 p--;
812 *p = '\0';
815 static u64 ata_tf_to_lba48(struct ata_taskfile *tf)
817 u64 sectors = 0;
819 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
820 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
821 sectors |= (tf->hob_lbal & 0xff) << 24;
822 sectors |= (tf->lbah & 0xff) << 16;
823 sectors |= (tf->lbam & 0xff) << 8;
824 sectors |= (tf->lbal & 0xff);
826 return ++sectors;
829 static u64 ata_tf_to_lba(struct ata_taskfile *tf)
831 u64 sectors = 0;
833 sectors |= (tf->device & 0x0f) << 24;
834 sectors |= (tf->lbah & 0xff) << 16;
835 sectors |= (tf->lbam & 0xff) << 8;
836 sectors |= (tf->lbal & 0xff);
838 return ++sectors;
842 * ata_read_native_max_address_ext - LBA48 native max query
843 * @dev: Device to query
845 * Perform an LBA48 size query upon the device in question. Return the
846 * actual LBA48 size or zero if the command fails.
849 static u64 ata_read_native_max_address_ext(struct ata_device *dev)
851 unsigned int err;
852 struct ata_taskfile tf;
854 ata_tf_init(dev, &tf);
856 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
857 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_LBA48 | ATA_TFLAG_ISADDR;
858 tf.protocol |= ATA_PROT_NODATA;
859 tf.device |= 0x40;
861 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
862 if (err)
863 return 0;
865 return ata_tf_to_lba48(&tf);
869 * ata_read_native_max_address - LBA28 native max query
870 * @dev: Device to query
872 * Performa an LBA28 size query upon the device in question. Return the
873 * actual LBA28 size or zero if the command fails.
876 static u64 ata_read_native_max_address(struct ata_device *dev)
878 unsigned int err;
879 struct ata_taskfile tf;
881 ata_tf_init(dev, &tf);
883 tf.command = ATA_CMD_READ_NATIVE_MAX;
884 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
885 tf.protocol |= ATA_PROT_NODATA;
886 tf.device |= 0x40;
888 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
889 if (err)
890 return 0;
892 return ata_tf_to_lba(&tf);
896 * ata_set_native_max_address_ext - LBA48 native max set
897 * @dev: Device to query
899 * Perform an LBA48 size set max upon the device in question. Return the
900 * actual LBA48 size or zero if the command fails.
903 static u64 ata_set_native_max_address_ext(struct ata_device *dev, u64 new_sectors)
905 unsigned int err;
906 struct ata_taskfile tf;
908 new_sectors--;
910 ata_tf_init(dev, &tf);
912 tf.command = ATA_CMD_SET_MAX_EXT;
913 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_LBA48 | ATA_TFLAG_ISADDR;
914 tf.protocol |= ATA_PROT_NODATA;
915 tf.device |= 0x40;
917 tf.lbal = (new_sectors >> 0) & 0xff;
918 tf.lbam = (new_sectors >> 8) & 0xff;
919 tf.lbah = (new_sectors >> 16) & 0xff;
921 tf.hob_lbal = (new_sectors >> 24) & 0xff;
922 tf.hob_lbam = (new_sectors >> 32) & 0xff;
923 tf.hob_lbah = (new_sectors >> 40) & 0xff;
925 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
926 if (err)
927 return 0;
929 return ata_tf_to_lba48(&tf);
933 * ata_set_native_max_address - LBA28 native max set
934 * @dev: Device to query
936 * Perform an LBA28 size set max upon the device in question. Return the
937 * actual LBA28 size or zero if the command fails.
940 static u64 ata_set_native_max_address(struct ata_device *dev, u64 new_sectors)
942 unsigned int err;
943 struct ata_taskfile tf;
945 new_sectors--;
947 ata_tf_init(dev, &tf);
949 tf.command = ATA_CMD_SET_MAX;
950 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
951 tf.protocol |= ATA_PROT_NODATA;
953 tf.lbal = (new_sectors >> 0) & 0xff;
954 tf.lbam = (new_sectors >> 8) & 0xff;
955 tf.lbah = (new_sectors >> 16) & 0xff;
956 tf.device |= ((new_sectors >> 24) & 0x0f) | 0x40;
958 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
959 if (err)
960 return 0;
962 return ata_tf_to_lba(&tf);
966 * ata_hpa_resize - Resize a device with an HPA set
967 * @dev: Device to resize
969 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
970 * it if required to the full size of the media. The caller must check
971 * the drive has the HPA feature set enabled.
974 static u64 ata_hpa_resize(struct ata_device *dev)
976 u64 sectors = dev->n_sectors;
977 u64 hpa_sectors;
979 if (ata_id_has_lba48(dev->id))
980 hpa_sectors = ata_read_native_max_address_ext(dev);
981 else
982 hpa_sectors = ata_read_native_max_address(dev);
984 /* if no hpa, both should be equal */
985 ata_dev_printk(dev, KERN_INFO, "%s 1: sectors = %lld, hpa_sectors = %lld\n",
986 __FUNCTION__, sectors, hpa_sectors);
988 if (hpa_sectors > sectors) {
989 ata_dev_printk(dev, KERN_INFO,
990 "Host Protected Area detected:\n"
991 "\tcurrent size: %lld sectors\n"
992 "\tnative size: %lld sectors\n",
993 sectors, hpa_sectors);
995 if (ata_ignore_hpa) {
996 if (ata_id_has_lba48(dev->id))
997 hpa_sectors = ata_set_native_max_address_ext(dev, hpa_sectors);
998 else
999 hpa_sectors = ata_set_native_max_address(dev, hpa_sectors);
1001 if (hpa_sectors) {
1002 ata_dev_printk(dev, KERN_INFO,
1003 "native size increased to %lld sectors\n", hpa_sectors);
1004 return hpa_sectors;
1008 return sectors;
1011 static u64 ata_id_n_sectors(const u16 *id)
1013 if (ata_id_has_lba(id)) {
1014 if (ata_id_has_lba48(id))
1015 return ata_id_u64(id, 100);
1016 else
1017 return ata_id_u32(id, 60);
1018 } else {
1019 if (ata_id_current_chs_valid(id))
1020 return ata_id_u32(id, 57);
1021 else
1022 return id[1] * id[3] * id[6];
1027 * ata_id_to_dma_mode - Identify DMA mode from id block
1028 * @dev: device to identify
1029 * @unknown: mode to assume if we cannot tell
1031 * Set up the timing values for the device based upon the identify
1032 * reported values for the DMA mode. This function is used by drivers
1033 * which rely upon firmware configured modes, but wish to report the
1034 * mode correctly when possible.
1036 * In addition we emit similarly formatted messages to the default
1037 * ata_dev_set_mode handler, in order to provide consistency of
1038 * presentation.
1041 void ata_id_to_dma_mode(struct ata_device *dev, u8 unknown)
1043 unsigned int mask;
1044 u8 mode;
1046 /* Pack the DMA modes */
1047 mask = ((dev->id[63] >> 8) << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA;
1048 if (dev->id[53] & 0x04)
1049 mask |= ((dev->id[88] >> 8) << ATA_SHIFT_UDMA) & ATA_MASK_UDMA;
1051 /* Select the mode in use */
1052 mode = ata_xfer_mask2mode(mask);
1054 if (mode != 0) {
1055 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
1056 ata_mode_string(mask));
1057 } else {
1058 /* SWDMA perhaps ? */
1059 mode = unknown;
1060 ata_dev_printk(dev, KERN_INFO, "configured for DMA\n");
1063 /* Configure the device reporting */
1064 dev->xfer_mode = mode;
1065 dev->xfer_shift = ata_xfer_mode2shift(mode);
1069 * ata_noop_dev_select - Select device 0/1 on ATA bus
1070 * @ap: ATA channel to manipulate
1071 * @device: ATA device (numbered from zero) to select
1073 * This function performs no actual function.
1075 * May be used as the dev_select() entry in ata_port_operations.
1077 * LOCKING:
1078 * caller.
1080 void ata_noop_dev_select (struct ata_port *ap, unsigned int device)
1086 * ata_std_dev_select - Select device 0/1 on ATA bus
1087 * @ap: ATA channel to manipulate
1088 * @device: ATA device (numbered from zero) to select
1090 * Use the method defined in the ATA specification to
1091 * make either device 0, or device 1, active on the
1092 * ATA channel. Works with both PIO and MMIO.
1094 * May be used as the dev_select() entry in ata_port_operations.
1096 * LOCKING:
1097 * caller.
1100 void ata_std_dev_select (struct ata_port *ap, unsigned int device)
1102 u8 tmp;
1104 if (device == 0)
1105 tmp = ATA_DEVICE_OBS;
1106 else
1107 tmp = ATA_DEVICE_OBS | ATA_DEV1;
1109 iowrite8(tmp, ap->ioaddr.device_addr);
1110 ata_pause(ap); /* needed; also flushes, for mmio */
1114 * ata_dev_select - Select device 0/1 on ATA bus
1115 * @ap: ATA channel to manipulate
1116 * @device: ATA device (numbered from zero) to select
1117 * @wait: non-zero to wait for Status register BSY bit to clear
1118 * @can_sleep: non-zero if context allows sleeping
1120 * Use the method defined in the ATA specification to
1121 * make either device 0, or device 1, active on the
1122 * ATA channel.
1124 * This is a high-level version of ata_std_dev_select(),
1125 * which additionally provides the services of inserting
1126 * the proper pauses and status polling, where needed.
1128 * LOCKING:
1129 * caller.
1132 void ata_dev_select(struct ata_port *ap, unsigned int device,
1133 unsigned int wait, unsigned int can_sleep)
1135 if (ata_msg_probe(ap))
1136 ata_port_printk(ap, KERN_INFO, "ata_dev_select: ENTER, "
1137 "device %u, wait %u\n", device, wait);
1139 if (wait)
1140 ata_wait_idle(ap);
1142 ap->ops->dev_select(ap, device);
1144 if (wait) {
1145 if (can_sleep && ap->device[device].class == ATA_DEV_ATAPI)
1146 msleep(150);
1147 ata_wait_idle(ap);
1152 * ata_dump_id - IDENTIFY DEVICE info debugging output
1153 * @id: IDENTIFY DEVICE page to dump
1155 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1156 * page.
1158 * LOCKING:
1159 * caller.
1162 static inline void ata_dump_id(const u16 *id)
1164 DPRINTK("49==0x%04x "
1165 "53==0x%04x "
1166 "63==0x%04x "
1167 "64==0x%04x "
1168 "75==0x%04x \n",
1169 id[49],
1170 id[53],
1171 id[63],
1172 id[64],
1173 id[75]);
1174 DPRINTK("80==0x%04x "
1175 "81==0x%04x "
1176 "82==0x%04x "
1177 "83==0x%04x "
1178 "84==0x%04x \n",
1179 id[80],
1180 id[81],
1181 id[82],
1182 id[83],
1183 id[84]);
1184 DPRINTK("88==0x%04x "
1185 "93==0x%04x\n",
1186 id[88],
1187 id[93]);
1191 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1192 * @id: IDENTIFY data to compute xfer mask from
1194 * Compute the xfermask for this device. This is not as trivial
1195 * as it seems if we must consider early devices correctly.
1197 * FIXME: pre IDE drive timing (do we care ?).
1199 * LOCKING:
1200 * None.
1202 * RETURNS:
1203 * Computed xfermask
1205 static unsigned int ata_id_xfermask(const u16 *id)
1207 unsigned int pio_mask, mwdma_mask, udma_mask;
1209 /* Usual case. Word 53 indicates word 64 is valid */
1210 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1211 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1212 pio_mask <<= 3;
1213 pio_mask |= 0x7;
1214 } else {
1215 /* If word 64 isn't valid then Word 51 high byte holds
1216 * the PIO timing number for the maximum. Turn it into
1217 * a mask.
1219 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1220 if (mode < 5) /* Valid PIO range */
1221 pio_mask = (2 << mode) - 1;
1222 else
1223 pio_mask = 1;
1225 /* But wait.. there's more. Design your standards by
1226 * committee and you too can get a free iordy field to
1227 * process. However its the speeds not the modes that
1228 * are supported... Note drivers using the timing API
1229 * will get this right anyway
1233 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1235 if (ata_id_is_cfa(id)) {
1237 * Process compact flash extended modes
1239 int pio = id[163] & 0x7;
1240 int dma = (id[163] >> 3) & 7;
1242 if (pio)
1243 pio_mask |= (1 << 5);
1244 if (pio > 1)
1245 pio_mask |= (1 << 6);
1246 if (dma)
1247 mwdma_mask |= (1 << 3);
1248 if (dma > 1)
1249 mwdma_mask |= (1 << 4);
1252 udma_mask = 0;
1253 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1254 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1256 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1260 * ata_port_queue_task - Queue port_task
1261 * @ap: The ata_port to queue port_task for
1262 * @fn: workqueue function to be scheduled
1263 * @data: data for @fn to use
1264 * @delay: delay time for workqueue function
1266 * Schedule @fn(@data) for execution after @delay jiffies using
1267 * port_task. There is one port_task per port and it's the
1268 * user(low level driver)'s responsibility to make sure that only
1269 * one task is active at any given time.
1271 * libata core layer takes care of synchronization between
1272 * port_task and EH. ata_port_queue_task() may be ignored for EH
1273 * synchronization.
1275 * LOCKING:
1276 * Inherited from caller.
1278 void ata_port_queue_task(struct ata_port *ap, work_func_t fn, void *data,
1279 unsigned long delay)
1281 int rc;
1283 if (ap->pflags & ATA_PFLAG_FLUSH_PORT_TASK)
1284 return;
1286 PREPARE_DELAYED_WORK(&ap->port_task, fn);
1287 ap->port_task_data = data;
1289 rc = queue_delayed_work(ata_wq, &ap->port_task, delay);
1291 /* rc == 0 means that another user is using port task */
1292 WARN_ON(rc == 0);
1296 * ata_port_flush_task - Flush port_task
1297 * @ap: The ata_port to flush port_task for
1299 * After this function completes, port_task is guranteed not to
1300 * be running or scheduled.
1302 * LOCKING:
1303 * Kernel thread context (may sleep)
1305 void ata_port_flush_task(struct ata_port *ap)
1307 unsigned long flags;
1309 DPRINTK("ENTER\n");
1311 spin_lock_irqsave(ap->lock, flags);
1312 ap->pflags |= ATA_PFLAG_FLUSH_PORT_TASK;
1313 spin_unlock_irqrestore(ap->lock, flags);
1315 DPRINTK("flush #1\n");
1316 flush_workqueue(ata_wq);
1319 * At this point, if a task is running, it's guaranteed to see
1320 * the FLUSH flag; thus, it will never queue pio tasks again.
1321 * Cancel and flush.
1323 if (!cancel_delayed_work(&ap->port_task)) {
1324 if (ata_msg_ctl(ap))
1325 ata_port_printk(ap, KERN_DEBUG, "%s: flush #2\n",
1326 __FUNCTION__);
1327 flush_workqueue(ata_wq);
1330 spin_lock_irqsave(ap->lock, flags);
1331 ap->pflags &= ~ATA_PFLAG_FLUSH_PORT_TASK;
1332 spin_unlock_irqrestore(ap->lock, flags);
1334 if (ata_msg_ctl(ap))
1335 ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __FUNCTION__);
1338 static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1340 struct completion *waiting = qc->private_data;
1342 complete(waiting);
1346 * ata_exec_internal_sg - execute libata internal command
1347 * @dev: Device to which the command is sent
1348 * @tf: Taskfile registers for the command and the result
1349 * @cdb: CDB for packet command
1350 * @dma_dir: Data tranfer direction of the command
1351 * @sg: sg list for the data buffer of the command
1352 * @n_elem: Number of sg entries
1354 * Executes libata internal command with timeout. @tf contains
1355 * command on entry and result on return. Timeout and error
1356 * conditions are reported via return value. No recovery action
1357 * is taken after a command times out. It's caller's duty to
1358 * clean up after timeout.
1360 * LOCKING:
1361 * None. Should be called with kernel context, might sleep.
1363 * RETURNS:
1364 * Zero on success, AC_ERR_* mask on failure
1366 unsigned ata_exec_internal_sg(struct ata_device *dev,
1367 struct ata_taskfile *tf, const u8 *cdb,
1368 int dma_dir, struct scatterlist *sg,
1369 unsigned int n_elem)
1371 struct ata_port *ap = dev->ap;
1372 u8 command = tf->command;
1373 struct ata_queued_cmd *qc;
1374 unsigned int tag, preempted_tag;
1375 u32 preempted_sactive, preempted_qc_active;
1376 DECLARE_COMPLETION_ONSTACK(wait);
1377 unsigned long flags;
1378 unsigned int err_mask;
1379 int rc;
1381 spin_lock_irqsave(ap->lock, flags);
1383 /* no internal command while frozen */
1384 if (ap->pflags & ATA_PFLAG_FROZEN) {
1385 spin_unlock_irqrestore(ap->lock, flags);
1386 return AC_ERR_SYSTEM;
1389 /* initialize internal qc */
1391 /* XXX: Tag 0 is used for drivers with legacy EH as some
1392 * drivers choke if any other tag is given. This breaks
1393 * ata_tag_internal() test for those drivers. Don't use new
1394 * EH stuff without converting to it.
1396 if (ap->ops->error_handler)
1397 tag = ATA_TAG_INTERNAL;
1398 else
1399 tag = 0;
1401 if (test_and_set_bit(tag, &ap->qc_allocated))
1402 BUG();
1403 qc = __ata_qc_from_tag(ap, tag);
1405 qc->tag = tag;
1406 qc->scsicmd = NULL;
1407 qc->ap = ap;
1408 qc->dev = dev;
1409 ata_qc_reinit(qc);
1411 preempted_tag = ap->active_tag;
1412 preempted_sactive = ap->sactive;
1413 preempted_qc_active = ap->qc_active;
1414 ap->active_tag = ATA_TAG_POISON;
1415 ap->sactive = 0;
1416 ap->qc_active = 0;
1418 /* prepare & issue qc */
1419 qc->tf = *tf;
1420 if (cdb)
1421 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1422 qc->flags |= ATA_QCFLAG_RESULT_TF;
1423 qc->dma_dir = dma_dir;
1424 if (dma_dir != DMA_NONE) {
1425 unsigned int i, buflen = 0;
1427 for (i = 0; i < n_elem; i++)
1428 buflen += sg[i].length;
1430 ata_sg_init(qc, sg, n_elem);
1431 qc->nbytes = buflen;
1434 qc->private_data = &wait;
1435 qc->complete_fn = ata_qc_complete_internal;
1437 ata_qc_issue(qc);
1439 spin_unlock_irqrestore(ap->lock, flags);
1441 rc = wait_for_completion_timeout(&wait, ata_probe_timeout);
1443 ata_port_flush_task(ap);
1445 if (!rc) {
1446 spin_lock_irqsave(ap->lock, flags);
1448 /* We're racing with irq here. If we lose, the
1449 * following test prevents us from completing the qc
1450 * twice. If we win, the port is frozen and will be
1451 * cleaned up by ->post_internal_cmd().
1453 if (qc->flags & ATA_QCFLAG_ACTIVE) {
1454 qc->err_mask |= AC_ERR_TIMEOUT;
1456 if (ap->ops->error_handler)
1457 ata_port_freeze(ap);
1458 else
1459 ata_qc_complete(qc);
1461 if (ata_msg_warn(ap))
1462 ata_dev_printk(dev, KERN_WARNING,
1463 "qc timeout (cmd 0x%x)\n", command);
1466 spin_unlock_irqrestore(ap->lock, flags);
1469 /* do post_internal_cmd */
1470 if (ap->ops->post_internal_cmd)
1471 ap->ops->post_internal_cmd(qc);
1473 /* perform minimal error analysis */
1474 if (qc->flags & ATA_QCFLAG_FAILED) {
1475 if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1476 qc->err_mask |= AC_ERR_DEV;
1478 if (!qc->err_mask)
1479 qc->err_mask |= AC_ERR_OTHER;
1481 if (qc->err_mask & ~AC_ERR_OTHER)
1482 qc->err_mask &= ~AC_ERR_OTHER;
1485 /* finish up */
1486 spin_lock_irqsave(ap->lock, flags);
1488 *tf = qc->result_tf;
1489 err_mask = qc->err_mask;
1491 ata_qc_free(qc);
1492 ap->active_tag = preempted_tag;
1493 ap->sactive = preempted_sactive;
1494 ap->qc_active = preempted_qc_active;
1496 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1497 * Until those drivers are fixed, we detect the condition
1498 * here, fail the command with AC_ERR_SYSTEM and reenable the
1499 * port.
1501 * Note that this doesn't change any behavior as internal
1502 * command failure results in disabling the device in the
1503 * higher layer for LLDDs without new reset/EH callbacks.
1505 * Kill the following code as soon as those drivers are fixed.
1507 if (ap->flags & ATA_FLAG_DISABLED) {
1508 err_mask |= AC_ERR_SYSTEM;
1509 ata_port_probe(ap);
1512 spin_unlock_irqrestore(ap->lock, flags);
1514 return err_mask;
1518 * ata_exec_internal - execute libata internal command
1519 * @dev: Device to which the command is sent
1520 * @tf: Taskfile registers for the command and the result
1521 * @cdb: CDB for packet command
1522 * @dma_dir: Data tranfer direction of the command
1523 * @buf: Data buffer of the command
1524 * @buflen: Length of data buffer
1526 * Wrapper around ata_exec_internal_sg() which takes simple
1527 * buffer instead of sg list.
1529 * LOCKING:
1530 * None. Should be called with kernel context, might sleep.
1532 * RETURNS:
1533 * Zero on success, AC_ERR_* mask on failure
1535 unsigned ata_exec_internal(struct ata_device *dev,
1536 struct ata_taskfile *tf, const u8 *cdb,
1537 int dma_dir, void *buf, unsigned int buflen)
1539 struct scatterlist *psg = NULL, sg;
1540 unsigned int n_elem = 0;
1542 if (dma_dir != DMA_NONE) {
1543 WARN_ON(!buf);
1544 sg_init_one(&sg, buf, buflen);
1545 psg = &sg;
1546 n_elem++;
1549 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem);
1553 * ata_do_simple_cmd - execute simple internal command
1554 * @dev: Device to which the command is sent
1555 * @cmd: Opcode to execute
1557 * Execute a 'simple' command, that only consists of the opcode
1558 * 'cmd' itself, without filling any other registers
1560 * LOCKING:
1561 * Kernel thread context (may sleep).
1563 * RETURNS:
1564 * Zero on success, AC_ERR_* mask on failure
1566 unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
1568 struct ata_taskfile tf;
1570 ata_tf_init(dev, &tf);
1572 tf.command = cmd;
1573 tf.flags |= ATA_TFLAG_DEVICE;
1574 tf.protocol = ATA_PROT_NODATA;
1576 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
1580 * ata_pio_need_iordy - check if iordy needed
1581 * @adev: ATA device
1583 * Check if the current speed of the device requires IORDY. Used
1584 * by various controllers for chip configuration.
1587 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1589 /* Controller doesn't support IORDY. Probably a pointless check
1590 as the caller should know this */
1591 if (adev->ap->flags & ATA_FLAG_NO_IORDY)
1592 return 0;
1593 /* PIO3 and higher it is mandatory */
1594 if (adev->pio_mode > XFER_PIO_2)
1595 return 1;
1596 /* We turn it on when possible */
1597 if (ata_id_has_iordy(adev->id))
1598 return 1;
1599 return 0;
1603 * ata_pio_mask_no_iordy - Return the non IORDY mask
1604 * @adev: ATA device
1606 * Compute the highest mode possible if we are not using iordy. Return
1607 * -1 if no iordy mode is available.
1610 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1612 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1613 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1614 u16 pio = adev->id[ATA_ID_EIDE_PIO];
1615 /* Is the speed faster than the drive allows non IORDY ? */
1616 if (pio) {
1617 /* This is cycle times not frequency - watch the logic! */
1618 if (pio > 240) /* PIO2 is 240nS per cycle */
1619 return 3 << ATA_SHIFT_PIO;
1620 return 7 << ATA_SHIFT_PIO;
1623 return 3 << ATA_SHIFT_PIO;
1627 * ata_dev_read_id - Read ID data from the specified device
1628 * @dev: target device
1629 * @p_class: pointer to class of the target device (may be changed)
1630 * @flags: ATA_READID_* flags
1631 * @id: buffer to read IDENTIFY data into
1633 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1634 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1635 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1636 * for pre-ATA4 drives.
1638 * LOCKING:
1639 * Kernel thread context (may sleep)
1641 * RETURNS:
1642 * 0 on success, -errno otherwise.
1644 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1645 unsigned int flags, u16 *id)
1647 struct ata_port *ap = dev->ap;
1648 unsigned int class = *p_class;
1649 struct ata_taskfile tf;
1650 unsigned int err_mask = 0;
1651 const char *reason;
1652 int rc;
1654 if (ata_msg_ctl(ap))
1655 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__);
1657 ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
1659 retry:
1660 ata_tf_init(dev, &tf);
1662 switch (class) {
1663 case ATA_DEV_ATA:
1664 tf.command = ATA_CMD_ID_ATA;
1665 break;
1666 case ATA_DEV_ATAPI:
1667 tf.command = ATA_CMD_ID_ATAPI;
1668 break;
1669 default:
1670 rc = -ENODEV;
1671 reason = "unsupported class";
1672 goto err_out;
1675 tf.protocol = ATA_PROT_PIO;
1677 /* Some devices choke if TF registers contain garbage. Make
1678 * sure those are properly initialized.
1680 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1682 /* Device presence detection is unreliable on some
1683 * controllers. Always poll IDENTIFY if available.
1685 tf.flags |= ATA_TFLAG_POLLING;
1687 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
1688 id, sizeof(id[0]) * ATA_ID_WORDS);
1689 if (err_mask) {
1690 if (err_mask & AC_ERR_NODEV_HINT) {
1691 DPRINTK("ata%u.%d: NODEV after polling detection\n",
1692 ap->print_id, dev->devno);
1693 return -ENOENT;
1696 rc = -EIO;
1697 reason = "I/O error";
1698 goto err_out;
1701 swap_buf_le16(id, ATA_ID_WORDS);
1703 /* sanity check */
1704 rc = -EINVAL;
1705 reason = "device reports illegal type";
1707 if (class == ATA_DEV_ATA) {
1708 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1709 goto err_out;
1710 } else {
1711 if (ata_id_is_ata(id))
1712 goto err_out;
1715 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
1717 * The exact sequence expected by certain pre-ATA4 drives is:
1718 * SRST RESET
1719 * IDENTIFY
1720 * INITIALIZE DEVICE PARAMETERS
1721 * anything else..
1722 * Some drives were very specific about that exact sequence.
1724 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
1725 err_mask = ata_dev_init_params(dev, id[3], id[6]);
1726 if (err_mask) {
1727 rc = -EIO;
1728 reason = "INIT_DEV_PARAMS failed";
1729 goto err_out;
1732 /* current CHS translation info (id[53-58]) might be
1733 * changed. reread the identify device info.
1735 flags &= ~ATA_READID_POSTRESET;
1736 goto retry;
1740 *p_class = class;
1742 return 0;
1744 err_out:
1745 if (ata_msg_warn(ap))
1746 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
1747 "(%s, err_mask=0x%x)\n", reason, err_mask);
1748 return rc;
1751 static inline u8 ata_dev_knobble(struct ata_device *dev)
1753 return ((dev->ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
1756 static void ata_dev_config_ncq(struct ata_device *dev,
1757 char *desc, size_t desc_sz)
1759 struct ata_port *ap = dev->ap;
1760 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
1762 if (!ata_id_has_ncq(dev->id)) {
1763 desc[0] = '\0';
1764 return;
1766 if (ata_device_blacklisted(dev) & ATA_HORKAGE_NONCQ) {
1767 snprintf(desc, desc_sz, "NCQ (not used)");
1768 return;
1770 if (ap->flags & ATA_FLAG_NCQ) {
1771 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
1772 dev->flags |= ATA_DFLAG_NCQ;
1775 if (hdepth >= ddepth)
1776 snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth);
1777 else
1778 snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth);
1782 * ata_dev_configure - Configure the specified ATA/ATAPI device
1783 * @dev: Target device to configure
1785 * Configure @dev according to @dev->id. Generic and low-level
1786 * driver specific fixups are also applied.
1788 * LOCKING:
1789 * Kernel thread context (may sleep)
1791 * RETURNS:
1792 * 0 on success, -errno otherwise
1794 int ata_dev_configure(struct ata_device *dev)
1796 struct ata_port *ap = dev->ap;
1797 int print_info = ap->eh_context.i.flags & ATA_EHI_PRINTINFO;
1798 const u16 *id = dev->id;
1799 unsigned int xfer_mask;
1800 char revbuf[7]; /* XYZ-99\0 */
1801 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
1802 char modelbuf[ATA_ID_PROD_LEN+1];
1803 int rc;
1805 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
1806 ata_dev_printk(dev, KERN_INFO, "%s: ENTER/EXIT -- nodev\n",
1807 __FUNCTION__);
1808 return 0;
1811 if (ata_msg_probe(ap))
1812 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__);
1814 /* set _SDD */
1815 rc = ata_acpi_push_id(ap, dev->devno);
1816 if (rc) {
1817 ata_dev_printk(dev, KERN_WARNING, "failed to set _SDD(%d)\n",
1818 rc);
1821 /* retrieve and execute the ATA task file of _GTF */
1822 ata_acpi_exec_tfs(ap);
1824 /* print device capabilities */
1825 if (ata_msg_probe(ap))
1826 ata_dev_printk(dev, KERN_DEBUG,
1827 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
1828 "85:%04x 86:%04x 87:%04x 88:%04x\n",
1829 __FUNCTION__,
1830 id[49], id[82], id[83], id[84],
1831 id[85], id[86], id[87], id[88]);
1833 /* initialize to-be-configured parameters */
1834 dev->flags &= ~ATA_DFLAG_CFG_MASK;
1835 dev->max_sectors = 0;
1836 dev->cdb_len = 0;
1837 dev->n_sectors = 0;
1838 dev->cylinders = 0;
1839 dev->heads = 0;
1840 dev->sectors = 0;
1843 * common ATA, ATAPI feature tests
1846 /* find max transfer mode; for printk only */
1847 xfer_mask = ata_id_xfermask(id);
1849 if (ata_msg_probe(ap))
1850 ata_dump_id(id);
1852 /* ATA-specific feature tests */
1853 if (dev->class == ATA_DEV_ATA) {
1854 if (ata_id_is_cfa(id)) {
1855 if (id[162] & 1) /* CPRM may make this media unusable */
1856 ata_dev_printk(dev, KERN_WARNING,
1857 "supports DRM functions and may "
1858 "not be fully accessable.\n");
1859 snprintf(revbuf, 7, "CFA");
1861 else
1862 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
1864 dev->n_sectors = ata_id_n_sectors(id);
1865 dev->n_sectors_boot = dev->n_sectors;
1867 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
1868 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
1869 sizeof(fwrevbuf));
1871 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
1872 sizeof(modelbuf));
1874 if (dev->id[59] & 0x100)
1875 dev->multi_count = dev->id[59] & 0xff;
1877 if (ata_id_has_lba(id)) {
1878 const char *lba_desc;
1879 char ncq_desc[20];
1881 lba_desc = "LBA";
1882 dev->flags |= ATA_DFLAG_LBA;
1883 if (ata_id_has_lba48(id)) {
1884 dev->flags |= ATA_DFLAG_LBA48;
1885 lba_desc = "LBA48";
1887 if (dev->n_sectors >= (1UL << 28) &&
1888 ata_id_has_flush_ext(id))
1889 dev->flags |= ATA_DFLAG_FLUSH_EXT;
1892 if (ata_id_hpa_enabled(dev->id))
1893 dev->n_sectors = ata_hpa_resize(dev);
1895 /* config NCQ */
1896 ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
1898 /* print device info to dmesg */
1899 if (ata_msg_drv(ap) && print_info) {
1900 ata_dev_printk(dev, KERN_INFO,
1901 "%s: %s, %s, max %s\n",
1902 revbuf, modelbuf, fwrevbuf,
1903 ata_mode_string(xfer_mask));
1904 ata_dev_printk(dev, KERN_INFO,
1905 "%Lu sectors, multi %u: %s %s\n",
1906 (unsigned long long)dev->n_sectors,
1907 dev->multi_count, lba_desc, ncq_desc);
1909 } else {
1910 /* CHS */
1912 /* Default translation */
1913 dev->cylinders = id[1];
1914 dev->heads = id[3];
1915 dev->sectors = id[6];
1917 if (ata_id_current_chs_valid(id)) {
1918 /* Current CHS translation is valid. */
1919 dev->cylinders = id[54];
1920 dev->heads = id[55];
1921 dev->sectors = id[56];
1924 /* print device info to dmesg */
1925 if (ata_msg_drv(ap) && print_info) {
1926 ata_dev_printk(dev, KERN_INFO,
1927 "%s: %s, %s, max %s\n",
1928 revbuf, modelbuf, fwrevbuf,
1929 ata_mode_string(xfer_mask));
1930 ata_dev_printk(dev, KERN_INFO,
1931 "%Lu sectors, multi %u, CHS %u/%u/%u\n",
1932 (unsigned long long)dev->n_sectors,
1933 dev->multi_count, dev->cylinders,
1934 dev->heads, dev->sectors);
1938 dev->cdb_len = 16;
1941 /* ATAPI-specific feature tests */
1942 else if (dev->class == ATA_DEV_ATAPI) {
1943 char *cdb_intr_string = "";
1945 rc = atapi_cdb_len(id);
1946 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
1947 if (ata_msg_warn(ap))
1948 ata_dev_printk(dev, KERN_WARNING,
1949 "unsupported CDB len\n");
1950 rc = -EINVAL;
1951 goto err_out_nosup;
1953 dev->cdb_len = (unsigned int) rc;
1955 if (ata_id_cdb_intr(dev->id)) {
1956 dev->flags |= ATA_DFLAG_CDB_INTR;
1957 cdb_intr_string = ", CDB intr";
1960 /* print device info to dmesg */
1961 if (ata_msg_drv(ap) && print_info)
1962 ata_dev_printk(dev, KERN_INFO, "ATAPI, max %s%s\n",
1963 ata_mode_string(xfer_mask),
1964 cdb_intr_string);
1967 /* determine max_sectors */
1968 dev->max_sectors = ATA_MAX_SECTORS;
1969 if (dev->flags & ATA_DFLAG_LBA48)
1970 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
1972 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
1973 /* Let the user know. We don't want to disallow opens for
1974 rescue purposes, or in case the vendor is just a blithering
1975 idiot */
1976 if (print_info) {
1977 ata_dev_printk(dev, KERN_WARNING,
1978 "Drive reports diagnostics failure. This may indicate a drive\n");
1979 ata_dev_printk(dev, KERN_WARNING,
1980 "fault or invalid emulation. Contact drive vendor for information.\n");
1984 /* limit bridge transfers to udma5, 200 sectors */
1985 if (ata_dev_knobble(dev)) {
1986 if (ata_msg_drv(ap) && print_info)
1987 ata_dev_printk(dev, KERN_INFO,
1988 "applying bridge limits\n");
1989 dev->udma_mask &= ATA_UDMA5;
1990 dev->max_sectors = ATA_MAX_SECTORS;
1993 if (ata_device_blacklisted(dev) & ATA_HORKAGE_MAX_SEC_128)
1994 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
1995 dev->max_sectors);
1997 /* limit ATAPI DMA to R/W commands only */
1998 if (ata_device_blacklisted(dev) & ATA_HORKAGE_DMA_RW_ONLY)
1999 dev->horkage |= ATA_HORKAGE_DMA_RW_ONLY;
2001 if (ap->ops->dev_config)
2002 ap->ops->dev_config(dev);
2004 if (ata_msg_probe(ap))
2005 ata_dev_printk(dev, KERN_DEBUG, "%s: EXIT, drv_stat = 0x%x\n",
2006 __FUNCTION__, ata_chk_status(ap));
2007 return 0;
2009 err_out_nosup:
2010 if (ata_msg_probe(ap))
2011 ata_dev_printk(dev, KERN_DEBUG,
2012 "%s: EXIT, err\n", __FUNCTION__);
2013 return rc;
2017 * ata_cable_40wire - return 40 wire cable type
2018 * @ap: port
2020 * Helper method for drivers which want to hardwire 40 wire cable
2021 * detection.
2024 int ata_cable_40wire(struct ata_port *ap)
2026 return ATA_CBL_PATA40;
2030 * ata_cable_80wire - return 80 wire cable type
2031 * @ap: port
2033 * Helper method for drivers which want to hardwire 80 wire cable
2034 * detection.
2037 int ata_cable_80wire(struct ata_port *ap)
2039 return ATA_CBL_PATA80;
2043 * ata_cable_unknown - return unknown PATA cable.
2044 * @ap: port
2046 * Helper method for drivers which have no PATA cable detection.
2049 int ata_cable_unknown(struct ata_port *ap)
2051 return ATA_CBL_PATA_UNK;
2055 * ata_cable_sata - return SATA cable type
2056 * @ap: port
2058 * Helper method for drivers which have SATA cables
2061 int ata_cable_sata(struct ata_port *ap)
2063 return ATA_CBL_SATA;
2067 * ata_bus_probe - Reset and probe ATA bus
2068 * @ap: Bus to probe
2070 * Master ATA bus probing function. Initiates a hardware-dependent
2071 * bus reset, then attempts to identify any devices found on
2072 * the bus.
2074 * LOCKING:
2075 * PCI/etc. bus probe sem.
2077 * RETURNS:
2078 * Zero on success, negative errno otherwise.
2081 int ata_bus_probe(struct ata_port *ap)
2083 unsigned int classes[ATA_MAX_DEVICES];
2084 int tries[ATA_MAX_DEVICES];
2085 int i, rc;
2086 struct ata_device *dev;
2088 ata_port_probe(ap);
2090 for (i = 0; i < ATA_MAX_DEVICES; i++)
2091 tries[i] = ATA_PROBE_MAX_TRIES;
2093 retry:
2094 /* reset and determine device classes */
2095 ap->ops->phy_reset(ap);
2097 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2098 dev = &ap->device[i];
2100 if (!(ap->flags & ATA_FLAG_DISABLED) &&
2101 dev->class != ATA_DEV_UNKNOWN)
2102 classes[dev->devno] = dev->class;
2103 else
2104 classes[dev->devno] = ATA_DEV_NONE;
2106 dev->class = ATA_DEV_UNKNOWN;
2109 ata_port_probe(ap);
2111 /* after the reset the device state is PIO 0 and the controller
2112 state is undefined. Record the mode */
2114 for (i = 0; i < ATA_MAX_DEVICES; i++)
2115 ap->device[i].pio_mode = XFER_PIO_0;
2117 /* read IDENTIFY page and configure devices. We have to do the identify
2118 specific sequence bass-ackwards so that PDIAG- is released by
2119 the slave device */
2121 for (i = ATA_MAX_DEVICES - 1; i >= 0; i--) {
2122 dev = &ap->device[i];
2124 if (tries[i])
2125 dev->class = classes[i];
2127 if (!ata_dev_enabled(dev))
2128 continue;
2130 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2131 dev->id);
2132 if (rc)
2133 goto fail;
2136 /* Now ask for the cable type as PDIAG- should have been released */
2137 if (ap->ops->cable_detect)
2138 ap->cbl = ap->ops->cable_detect(ap);
2140 /* After the identify sequence we can now set up the devices. We do
2141 this in the normal order so that the user doesn't get confused */
2143 for(i = 0; i < ATA_MAX_DEVICES; i++) {
2144 dev = &ap->device[i];
2145 if (!ata_dev_enabled(dev))
2146 continue;
2148 ap->eh_context.i.flags |= ATA_EHI_PRINTINFO;
2149 rc = ata_dev_configure(dev);
2150 ap->eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
2151 if (rc)
2152 goto fail;
2155 /* configure transfer mode */
2156 rc = ata_set_mode(ap, &dev);
2157 if (rc)
2158 goto fail;
2160 for (i = 0; i < ATA_MAX_DEVICES; i++)
2161 if (ata_dev_enabled(&ap->device[i]))
2162 return 0;
2164 /* no device present, disable port */
2165 ata_port_disable(ap);
2166 ap->ops->port_disable(ap);
2167 return -ENODEV;
2169 fail:
2170 tries[dev->devno]--;
2172 switch (rc) {
2173 case -EINVAL:
2174 /* eeek, something went very wrong, give up */
2175 tries[dev->devno] = 0;
2176 break;
2178 case -ENODEV:
2179 /* give it just one more chance */
2180 tries[dev->devno] = min(tries[dev->devno], 1);
2181 case -EIO:
2182 if (tries[dev->devno] == 1) {
2183 /* This is the last chance, better to slow
2184 * down than lose it.
2186 sata_down_spd_limit(ap);
2187 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2191 if (!tries[dev->devno])
2192 ata_dev_disable(dev);
2194 goto retry;
2198 * ata_port_probe - Mark port as enabled
2199 * @ap: Port for which we indicate enablement
2201 * Modify @ap data structure such that the system
2202 * thinks that the entire port is enabled.
2204 * LOCKING: host lock, or some other form of
2205 * serialization.
2208 void ata_port_probe(struct ata_port *ap)
2210 ap->flags &= ~ATA_FLAG_DISABLED;
2214 * sata_print_link_status - Print SATA link status
2215 * @ap: SATA port to printk link status about
2217 * This function prints link speed and status of a SATA link.
2219 * LOCKING:
2220 * None.
2222 void sata_print_link_status(struct ata_port *ap)
2224 u32 sstatus, scontrol, tmp;
2226 if (sata_scr_read(ap, SCR_STATUS, &sstatus))
2227 return;
2228 sata_scr_read(ap, SCR_CONTROL, &scontrol);
2230 if (ata_port_online(ap)) {
2231 tmp = (sstatus >> 4) & 0xf;
2232 ata_port_printk(ap, KERN_INFO,
2233 "SATA link up %s (SStatus %X SControl %X)\n",
2234 sata_spd_string(tmp), sstatus, scontrol);
2235 } else {
2236 ata_port_printk(ap, KERN_INFO,
2237 "SATA link down (SStatus %X SControl %X)\n",
2238 sstatus, scontrol);
2243 * __sata_phy_reset - Wake/reset a low-level SATA PHY
2244 * @ap: SATA port associated with target SATA PHY.
2246 * This function issues commands to standard SATA Sxxx
2247 * PHY registers, to wake up the phy (and device), and
2248 * clear any reset condition.
2250 * LOCKING:
2251 * PCI/etc. bus probe sem.
2254 void __sata_phy_reset(struct ata_port *ap)
2256 u32 sstatus;
2257 unsigned long timeout = jiffies + (HZ * 5);
2259 if (ap->flags & ATA_FLAG_SATA_RESET) {
2260 /* issue phy wake/reset */
2261 sata_scr_write_flush(ap, SCR_CONTROL, 0x301);
2262 /* Couldn't find anything in SATA I/II specs, but
2263 * AHCI-1.1 10.4.2 says at least 1 ms. */
2264 mdelay(1);
2266 /* phy wake/clear reset */
2267 sata_scr_write_flush(ap, SCR_CONTROL, 0x300);
2269 /* wait for phy to become ready, if necessary */
2270 do {
2271 msleep(200);
2272 sata_scr_read(ap, SCR_STATUS, &sstatus);
2273 if ((sstatus & 0xf) != 1)
2274 break;
2275 } while (time_before(jiffies, timeout));
2277 /* print link status */
2278 sata_print_link_status(ap);
2280 /* TODO: phy layer with polling, timeouts, etc. */
2281 if (!ata_port_offline(ap))
2282 ata_port_probe(ap);
2283 else
2284 ata_port_disable(ap);
2286 if (ap->flags & ATA_FLAG_DISABLED)
2287 return;
2289 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
2290 ata_port_disable(ap);
2291 return;
2294 ap->cbl = ATA_CBL_SATA;
2298 * sata_phy_reset - Reset SATA bus.
2299 * @ap: SATA port associated with target SATA PHY.
2301 * This function resets the SATA bus, and then probes
2302 * the bus for devices.
2304 * LOCKING:
2305 * PCI/etc. bus probe sem.
2308 void sata_phy_reset(struct ata_port *ap)
2310 __sata_phy_reset(ap);
2311 if (ap->flags & ATA_FLAG_DISABLED)
2312 return;
2313 ata_bus_reset(ap);
2317 * ata_dev_pair - return other device on cable
2318 * @adev: device
2320 * Obtain the other device on the same cable, or if none is
2321 * present NULL is returned
2324 struct ata_device *ata_dev_pair(struct ata_device *adev)
2326 struct ata_port *ap = adev->ap;
2327 struct ata_device *pair = &ap->device[1 - adev->devno];
2328 if (!ata_dev_enabled(pair))
2329 return NULL;
2330 return pair;
2334 * ata_port_disable - Disable port.
2335 * @ap: Port to be disabled.
2337 * Modify @ap data structure such that the system
2338 * thinks that the entire port is disabled, and should
2339 * never attempt to probe or communicate with devices
2340 * on this port.
2342 * LOCKING: host lock, or some other form of
2343 * serialization.
2346 void ata_port_disable(struct ata_port *ap)
2348 ap->device[0].class = ATA_DEV_NONE;
2349 ap->device[1].class = ATA_DEV_NONE;
2350 ap->flags |= ATA_FLAG_DISABLED;
2354 * sata_down_spd_limit - adjust SATA spd limit downward
2355 * @ap: Port to adjust SATA spd limit for
2357 * Adjust SATA spd limit of @ap downward. Note that this
2358 * function only adjusts the limit. The change must be applied
2359 * using sata_set_spd().
2361 * LOCKING:
2362 * Inherited from caller.
2364 * RETURNS:
2365 * 0 on success, negative errno on failure
2367 int sata_down_spd_limit(struct ata_port *ap)
2369 u32 sstatus, spd, mask;
2370 int rc, highbit;
2372 rc = sata_scr_read(ap, SCR_STATUS, &sstatus);
2373 if (rc)
2374 return rc;
2376 mask = ap->sata_spd_limit;
2377 if (mask <= 1)
2378 return -EINVAL;
2379 highbit = fls(mask) - 1;
2380 mask &= ~(1 << highbit);
2382 spd = (sstatus >> 4) & 0xf;
2383 if (spd <= 1)
2384 return -EINVAL;
2385 spd--;
2386 mask &= (1 << spd) - 1;
2387 if (!mask)
2388 return -EINVAL;
2390 ap->sata_spd_limit = mask;
2392 ata_port_printk(ap, KERN_WARNING, "limiting SATA link speed to %s\n",
2393 sata_spd_string(fls(mask)));
2395 return 0;
2398 static int __sata_set_spd_needed(struct ata_port *ap, u32 *scontrol)
2400 u32 spd, limit;
2402 if (ap->sata_spd_limit == UINT_MAX)
2403 limit = 0;
2404 else
2405 limit = fls(ap->sata_spd_limit);
2407 spd = (*scontrol >> 4) & 0xf;
2408 *scontrol = (*scontrol & ~0xf0) | ((limit & 0xf) << 4);
2410 return spd != limit;
2414 * sata_set_spd_needed - is SATA spd configuration needed
2415 * @ap: Port in question
2417 * Test whether the spd limit in SControl matches
2418 * @ap->sata_spd_limit. This function is used to determine
2419 * whether hardreset is necessary to apply SATA spd
2420 * configuration.
2422 * LOCKING:
2423 * Inherited from caller.
2425 * RETURNS:
2426 * 1 if SATA spd configuration is needed, 0 otherwise.
2428 int sata_set_spd_needed(struct ata_port *ap)
2430 u32 scontrol;
2432 if (sata_scr_read(ap, SCR_CONTROL, &scontrol))
2433 return 0;
2435 return __sata_set_spd_needed(ap, &scontrol);
2439 * sata_set_spd - set SATA spd according to spd limit
2440 * @ap: Port to set SATA spd for
2442 * Set SATA spd of @ap according to sata_spd_limit.
2444 * LOCKING:
2445 * Inherited from caller.
2447 * RETURNS:
2448 * 0 if spd doesn't need to be changed, 1 if spd has been
2449 * changed. Negative errno if SCR registers are inaccessible.
2451 int sata_set_spd(struct ata_port *ap)
2453 u32 scontrol;
2454 int rc;
2456 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2457 return rc;
2459 if (!__sata_set_spd_needed(ap, &scontrol))
2460 return 0;
2462 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
2463 return rc;
2465 return 1;
2469 * This mode timing computation functionality is ported over from
2470 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
2473 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
2474 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
2475 * for UDMA6, which is currently supported only by Maxtor drives.
2477 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
2480 static const struct ata_timing ata_timing[] = {
2482 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
2483 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
2484 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
2485 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
2487 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 80, 0 },
2488 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 100, 0 },
2489 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
2490 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
2491 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
2493 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
2495 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
2496 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
2497 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
2499 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
2500 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
2501 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
2503 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 80, 0 },
2504 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 100, 0 },
2505 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
2506 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
2508 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
2509 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
2510 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
2512 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
2514 { 0xFF }
2517 #define ENOUGH(v,unit) (((v)-1)/(unit)+1)
2518 #define EZ(v,unit) ((v)?ENOUGH(v,unit):0)
2520 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
2522 q->setup = EZ(t->setup * 1000, T);
2523 q->act8b = EZ(t->act8b * 1000, T);
2524 q->rec8b = EZ(t->rec8b * 1000, T);
2525 q->cyc8b = EZ(t->cyc8b * 1000, T);
2526 q->active = EZ(t->active * 1000, T);
2527 q->recover = EZ(t->recover * 1000, T);
2528 q->cycle = EZ(t->cycle * 1000, T);
2529 q->udma = EZ(t->udma * 1000, UT);
2532 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
2533 struct ata_timing *m, unsigned int what)
2535 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
2536 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
2537 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
2538 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
2539 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
2540 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
2541 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
2542 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
2545 static const struct ata_timing* ata_timing_find_mode(unsigned short speed)
2547 const struct ata_timing *t;
2549 for (t = ata_timing; t->mode != speed; t++)
2550 if (t->mode == 0xFF)
2551 return NULL;
2552 return t;
2555 int ata_timing_compute(struct ata_device *adev, unsigned short speed,
2556 struct ata_timing *t, int T, int UT)
2558 const struct ata_timing *s;
2559 struct ata_timing p;
2562 * Find the mode.
2565 if (!(s = ata_timing_find_mode(speed)))
2566 return -EINVAL;
2568 memcpy(t, s, sizeof(*s));
2571 * If the drive is an EIDE drive, it can tell us it needs extended
2572 * PIO/MW_DMA cycle timing.
2575 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
2576 memset(&p, 0, sizeof(p));
2577 if(speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
2578 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
2579 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
2580 } else if(speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
2581 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
2583 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
2587 * Convert the timing to bus clock counts.
2590 ata_timing_quantize(t, t, T, UT);
2593 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
2594 * S.M.A.R.T * and some other commands. We have to ensure that the
2595 * DMA cycle timing is slower/equal than the fastest PIO timing.
2598 if (speed > XFER_PIO_6) {
2599 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
2600 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
2604 * Lengthen active & recovery time so that cycle time is correct.
2607 if (t->act8b + t->rec8b < t->cyc8b) {
2608 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
2609 t->rec8b = t->cyc8b - t->act8b;
2612 if (t->active + t->recover < t->cycle) {
2613 t->active += (t->cycle - (t->active + t->recover)) / 2;
2614 t->recover = t->cycle - t->active;
2617 return 0;
2621 * ata_down_xfermask_limit - adjust dev xfer masks downward
2622 * @dev: Device to adjust xfer masks
2623 * @sel: ATA_DNXFER_* selector
2625 * Adjust xfer masks of @dev downward. Note that this function
2626 * does not apply the change. Invoking ata_set_mode() afterwards
2627 * will apply the limit.
2629 * LOCKING:
2630 * Inherited from caller.
2632 * RETURNS:
2633 * 0 on success, negative errno on failure
2635 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
2637 char buf[32];
2638 unsigned int orig_mask, xfer_mask;
2639 unsigned int pio_mask, mwdma_mask, udma_mask;
2640 int quiet, highbit;
2642 quiet = !!(sel & ATA_DNXFER_QUIET);
2643 sel &= ~ATA_DNXFER_QUIET;
2645 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
2646 dev->mwdma_mask,
2647 dev->udma_mask);
2648 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
2650 switch (sel) {
2651 case ATA_DNXFER_PIO:
2652 highbit = fls(pio_mask) - 1;
2653 pio_mask &= ~(1 << highbit);
2654 break;
2656 case ATA_DNXFER_DMA:
2657 if (udma_mask) {
2658 highbit = fls(udma_mask) - 1;
2659 udma_mask &= ~(1 << highbit);
2660 if (!udma_mask)
2661 return -ENOENT;
2662 } else if (mwdma_mask) {
2663 highbit = fls(mwdma_mask) - 1;
2664 mwdma_mask &= ~(1 << highbit);
2665 if (!mwdma_mask)
2666 return -ENOENT;
2668 break;
2670 case ATA_DNXFER_40C:
2671 udma_mask &= ATA_UDMA_MASK_40C;
2672 break;
2674 case ATA_DNXFER_FORCE_PIO0:
2675 pio_mask &= 1;
2676 case ATA_DNXFER_FORCE_PIO:
2677 mwdma_mask = 0;
2678 udma_mask = 0;
2679 break;
2681 default:
2682 BUG();
2685 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
2687 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
2688 return -ENOENT;
2690 if (!quiet) {
2691 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
2692 snprintf(buf, sizeof(buf), "%s:%s",
2693 ata_mode_string(xfer_mask),
2694 ata_mode_string(xfer_mask & ATA_MASK_PIO));
2695 else
2696 snprintf(buf, sizeof(buf), "%s",
2697 ata_mode_string(xfer_mask));
2699 ata_dev_printk(dev, KERN_WARNING,
2700 "limiting speed to %s\n", buf);
2703 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
2704 &dev->udma_mask);
2706 return 0;
2709 static int ata_dev_set_mode(struct ata_device *dev)
2711 struct ata_eh_context *ehc = &dev->ap->eh_context;
2712 unsigned int err_mask;
2713 int rc;
2715 dev->flags &= ~ATA_DFLAG_PIO;
2716 if (dev->xfer_shift == ATA_SHIFT_PIO)
2717 dev->flags |= ATA_DFLAG_PIO;
2719 err_mask = ata_dev_set_xfermode(dev);
2720 /* Old CFA may refuse this command, which is just fine */
2721 if (dev->xfer_shift == ATA_SHIFT_PIO && ata_id_is_cfa(dev->id))
2722 err_mask &= ~AC_ERR_DEV;
2724 if (err_mask) {
2725 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
2726 "(err_mask=0x%x)\n", err_mask);
2727 return -EIO;
2730 ehc->i.flags |= ATA_EHI_POST_SETMODE;
2731 rc = ata_dev_revalidate(dev, 0);
2732 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
2733 if (rc)
2734 return rc;
2736 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
2737 dev->xfer_shift, (int)dev->xfer_mode);
2739 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
2740 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)));
2741 return 0;
2745 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
2746 * @ap: port on which timings will be programmed
2747 * @r_failed_dev: out paramter for failed device
2749 * Standard implementation of the function used to tune and set
2750 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
2751 * ata_dev_set_mode() fails, pointer to the failing device is
2752 * returned in @r_failed_dev.
2754 * LOCKING:
2755 * PCI/etc. bus probe sem.
2757 * RETURNS:
2758 * 0 on success, negative errno otherwise
2761 int ata_do_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev)
2763 struct ata_device *dev;
2764 int i, rc = 0, used_dma = 0, found = 0;
2767 /* step 1: calculate xfer_mask */
2768 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2769 unsigned int pio_mask, dma_mask;
2771 dev = &ap->device[i];
2773 if (!ata_dev_enabled(dev))
2774 continue;
2776 ata_dev_xfermask(dev);
2778 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
2779 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
2780 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
2781 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
2783 found = 1;
2784 if (dev->dma_mode)
2785 used_dma = 1;
2787 if (!found)
2788 goto out;
2790 /* step 2: always set host PIO timings */
2791 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2792 dev = &ap->device[i];
2793 if (!ata_dev_enabled(dev))
2794 continue;
2796 if (!dev->pio_mode) {
2797 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
2798 rc = -EINVAL;
2799 goto out;
2802 dev->xfer_mode = dev->pio_mode;
2803 dev->xfer_shift = ATA_SHIFT_PIO;
2804 if (ap->ops->set_piomode)
2805 ap->ops->set_piomode(ap, dev);
2808 /* step 3: set host DMA timings */
2809 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2810 dev = &ap->device[i];
2812 if (!ata_dev_enabled(dev) || !dev->dma_mode)
2813 continue;
2815 dev->xfer_mode = dev->dma_mode;
2816 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
2817 if (ap->ops->set_dmamode)
2818 ap->ops->set_dmamode(ap, dev);
2821 /* step 4: update devices' xfer mode */
2822 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2823 dev = &ap->device[i];
2825 /* don't update suspended devices' xfer mode */
2826 if (!ata_dev_ready(dev))
2827 continue;
2829 rc = ata_dev_set_mode(dev);
2830 if (rc)
2831 goto out;
2834 /* Record simplex status. If we selected DMA then the other
2835 * host channels are not permitted to do so.
2837 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
2838 ap->host->simplex_claimed = ap;
2840 /* step5: chip specific finalisation */
2841 if (ap->ops->post_set_mode)
2842 ap->ops->post_set_mode(ap);
2843 out:
2844 if (rc)
2845 *r_failed_dev = dev;
2846 return rc;
2850 * ata_set_mode - Program timings and issue SET FEATURES - XFER
2851 * @ap: port on which timings will be programmed
2852 * @r_failed_dev: out paramter for failed device
2854 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.). If
2855 * ata_set_mode() fails, pointer to the failing device is
2856 * returned in @r_failed_dev.
2858 * LOCKING:
2859 * PCI/etc. bus probe sem.
2861 * RETURNS:
2862 * 0 on success, negative errno otherwise
2864 int ata_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev)
2866 /* has private set_mode? */
2867 if (ap->ops->set_mode)
2868 return ap->ops->set_mode(ap, r_failed_dev);
2869 return ata_do_set_mode(ap, r_failed_dev);
2873 * ata_tf_to_host - issue ATA taskfile to host controller
2874 * @ap: port to which command is being issued
2875 * @tf: ATA taskfile register set
2877 * Issues ATA taskfile register set to ATA host controller,
2878 * with proper synchronization with interrupt handler and
2879 * other threads.
2881 * LOCKING:
2882 * spin_lock_irqsave(host lock)
2885 static inline void ata_tf_to_host(struct ata_port *ap,
2886 const struct ata_taskfile *tf)
2888 ap->ops->tf_load(ap, tf);
2889 ap->ops->exec_command(ap, tf);
2893 * ata_busy_sleep - sleep until BSY clears, or timeout
2894 * @ap: port containing status register to be polled
2895 * @tmout_pat: impatience timeout
2896 * @tmout: overall timeout
2898 * Sleep until ATA Status register bit BSY clears,
2899 * or a timeout occurs.
2901 * LOCKING:
2902 * Kernel thread context (may sleep).
2904 * RETURNS:
2905 * 0 on success, -errno otherwise.
2907 int ata_busy_sleep(struct ata_port *ap,
2908 unsigned long tmout_pat, unsigned long tmout)
2910 unsigned long timer_start, timeout;
2911 u8 status;
2913 status = ata_busy_wait(ap, ATA_BUSY, 300);
2914 timer_start = jiffies;
2915 timeout = timer_start + tmout_pat;
2916 while (status != 0xff && (status & ATA_BUSY) &&
2917 time_before(jiffies, timeout)) {
2918 msleep(50);
2919 status = ata_busy_wait(ap, ATA_BUSY, 3);
2922 if (status != 0xff && (status & ATA_BUSY))
2923 ata_port_printk(ap, KERN_WARNING,
2924 "port is slow to respond, please be patient "
2925 "(Status 0x%x)\n", status);
2927 timeout = timer_start + tmout;
2928 while (status != 0xff && (status & ATA_BUSY) &&
2929 time_before(jiffies, timeout)) {
2930 msleep(50);
2931 status = ata_chk_status(ap);
2934 if (status == 0xff)
2935 return -ENODEV;
2937 if (status & ATA_BUSY) {
2938 ata_port_printk(ap, KERN_ERR, "port failed to respond "
2939 "(%lu secs, Status 0x%x)\n",
2940 tmout / HZ, status);
2941 return -EBUSY;
2944 return 0;
2947 static void ata_bus_post_reset(struct ata_port *ap, unsigned int devmask)
2949 struct ata_ioports *ioaddr = &ap->ioaddr;
2950 unsigned int dev0 = devmask & (1 << 0);
2951 unsigned int dev1 = devmask & (1 << 1);
2952 unsigned long timeout;
2954 /* if device 0 was found in ata_devchk, wait for its
2955 * BSY bit to clear
2957 if (dev0)
2958 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2960 /* if device 1 was found in ata_devchk, wait for
2961 * register access, then wait for BSY to clear
2963 timeout = jiffies + ATA_TMOUT_BOOT;
2964 while (dev1) {
2965 u8 nsect, lbal;
2967 ap->ops->dev_select(ap, 1);
2968 nsect = ioread8(ioaddr->nsect_addr);
2969 lbal = ioread8(ioaddr->lbal_addr);
2970 if ((nsect == 1) && (lbal == 1))
2971 break;
2972 if (time_after(jiffies, timeout)) {
2973 dev1 = 0;
2974 break;
2976 msleep(50); /* give drive a breather */
2978 if (dev1)
2979 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2981 /* is all this really necessary? */
2982 ap->ops->dev_select(ap, 0);
2983 if (dev1)
2984 ap->ops->dev_select(ap, 1);
2985 if (dev0)
2986 ap->ops->dev_select(ap, 0);
2989 static unsigned int ata_bus_softreset(struct ata_port *ap,
2990 unsigned int devmask)
2992 struct ata_ioports *ioaddr = &ap->ioaddr;
2994 DPRINTK("ata%u: bus reset via SRST\n", ap->print_id);
2996 /* software reset. causes dev0 to be selected */
2997 iowrite8(ap->ctl, ioaddr->ctl_addr);
2998 udelay(20); /* FIXME: flush */
2999 iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
3000 udelay(20); /* FIXME: flush */
3001 iowrite8(ap->ctl, ioaddr->ctl_addr);
3003 /* spec mandates ">= 2ms" before checking status.
3004 * We wait 150ms, because that was the magic delay used for
3005 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
3006 * between when the ATA command register is written, and then
3007 * status is checked. Because waiting for "a while" before
3008 * checking status is fine, post SRST, we perform this magic
3009 * delay here as well.
3011 * Old drivers/ide uses the 2mS rule and then waits for ready
3013 msleep(150);
3015 /* Before we perform post reset processing we want to see if
3016 * the bus shows 0xFF because the odd clown forgets the D7
3017 * pulldown resistor.
3019 if (ata_check_status(ap) == 0xFF)
3020 return 0;
3022 ata_bus_post_reset(ap, devmask);
3024 return 0;
3028 * ata_bus_reset - reset host port and associated ATA channel
3029 * @ap: port to reset
3031 * This is typically the first time we actually start issuing
3032 * commands to the ATA channel. We wait for BSY to clear, then
3033 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
3034 * result. Determine what devices, if any, are on the channel
3035 * by looking at the device 0/1 error register. Look at the signature
3036 * stored in each device's taskfile registers, to determine if
3037 * the device is ATA or ATAPI.
3039 * LOCKING:
3040 * PCI/etc. bus probe sem.
3041 * Obtains host lock.
3043 * SIDE EFFECTS:
3044 * Sets ATA_FLAG_DISABLED if bus reset fails.
3047 void ata_bus_reset(struct ata_port *ap)
3049 struct ata_ioports *ioaddr = &ap->ioaddr;
3050 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
3051 u8 err;
3052 unsigned int dev0, dev1 = 0, devmask = 0;
3054 DPRINTK("ENTER, host %u, port %u\n", ap->print_id, ap->port_no);
3056 /* determine if device 0/1 are present */
3057 if (ap->flags & ATA_FLAG_SATA_RESET)
3058 dev0 = 1;
3059 else {
3060 dev0 = ata_devchk(ap, 0);
3061 if (slave_possible)
3062 dev1 = ata_devchk(ap, 1);
3065 if (dev0)
3066 devmask |= (1 << 0);
3067 if (dev1)
3068 devmask |= (1 << 1);
3070 /* select device 0 again */
3071 ap->ops->dev_select(ap, 0);
3073 /* issue bus reset */
3074 if (ap->flags & ATA_FLAG_SRST)
3075 if (ata_bus_softreset(ap, devmask))
3076 goto err_out;
3079 * determine by signature whether we have ATA or ATAPI devices
3081 ap->device[0].class = ata_dev_try_classify(ap, 0, &err);
3082 if ((slave_possible) && (err != 0x81))
3083 ap->device[1].class = ata_dev_try_classify(ap, 1, &err);
3085 /* re-enable interrupts */
3086 ap->ops->irq_on(ap);
3088 /* is double-select really necessary? */
3089 if (ap->device[1].class != ATA_DEV_NONE)
3090 ap->ops->dev_select(ap, 1);
3091 if (ap->device[0].class != ATA_DEV_NONE)
3092 ap->ops->dev_select(ap, 0);
3094 /* if no devices were detected, disable this port */
3095 if ((ap->device[0].class == ATA_DEV_NONE) &&
3096 (ap->device[1].class == ATA_DEV_NONE))
3097 goto err_out;
3099 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
3100 /* set up device control for ATA_FLAG_SATA_RESET */
3101 iowrite8(ap->ctl, ioaddr->ctl_addr);
3104 DPRINTK("EXIT\n");
3105 return;
3107 err_out:
3108 ata_port_printk(ap, KERN_ERR, "disabling port\n");
3109 ap->ops->port_disable(ap);
3111 DPRINTK("EXIT\n");
3115 * sata_phy_debounce - debounce SATA phy status
3116 * @ap: ATA port to debounce SATA phy status for
3117 * @params: timing parameters { interval, duratinon, timeout } in msec
3119 * Make sure SStatus of @ap reaches stable state, determined by
3120 * holding the same value where DET is not 1 for @duration polled
3121 * every @interval, before @timeout. Timeout constraints the
3122 * beginning of the stable state. Because, after hot unplugging,
3123 * DET gets stuck at 1 on some controllers, this functions waits
3124 * until timeout then returns 0 if DET is stable at 1.
3126 * LOCKING:
3127 * Kernel thread context (may sleep)
3129 * RETURNS:
3130 * 0 on success, -errno on failure.
3132 int sata_phy_debounce(struct ata_port *ap, const unsigned long *params)
3134 unsigned long interval_msec = params[0];
3135 unsigned long duration = params[1] * HZ / 1000;
3136 unsigned long timeout = jiffies + params[2] * HZ / 1000;
3137 unsigned long last_jiffies;
3138 u32 last, cur;
3139 int rc;
3141 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
3142 return rc;
3143 cur &= 0xf;
3145 last = cur;
3146 last_jiffies = jiffies;
3148 while (1) {
3149 msleep(interval_msec);
3150 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
3151 return rc;
3152 cur &= 0xf;
3154 /* DET stable? */
3155 if (cur == last) {
3156 if (cur == 1 && time_before(jiffies, timeout))
3157 continue;
3158 if (time_after(jiffies, last_jiffies + duration))
3159 return 0;
3160 continue;
3163 /* unstable, start over */
3164 last = cur;
3165 last_jiffies = jiffies;
3167 /* check timeout */
3168 if (time_after(jiffies, timeout))
3169 return -EBUSY;
3174 * sata_phy_resume - resume SATA phy
3175 * @ap: ATA port to resume SATA phy for
3176 * @params: timing parameters { interval, duratinon, timeout } in msec
3178 * Resume SATA phy of @ap and debounce it.
3180 * LOCKING:
3181 * Kernel thread context (may sleep)
3183 * RETURNS:
3184 * 0 on success, -errno on failure.
3186 int sata_phy_resume(struct ata_port *ap, const unsigned long *params)
3188 u32 scontrol;
3189 int rc;
3191 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
3192 return rc;
3194 scontrol = (scontrol & 0x0f0) | 0x300;
3196 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
3197 return rc;
3199 /* Some PHYs react badly if SStatus is pounded immediately
3200 * after resuming. Delay 200ms before debouncing.
3202 msleep(200);
3204 return sata_phy_debounce(ap, params);
3207 static void ata_wait_spinup(struct ata_port *ap)
3209 struct ata_eh_context *ehc = &ap->eh_context;
3210 unsigned long end, secs;
3211 int rc;
3213 /* first, debounce phy if SATA */
3214 if (ap->cbl == ATA_CBL_SATA) {
3215 rc = sata_phy_debounce(ap, sata_deb_timing_hotplug);
3217 /* if debounced successfully and offline, no need to wait */
3218 if ((rc == 0 || rc == -EOPNOTSUPP) && ata_port_offline(ap))
3219 return;
3222 /* okay, let's give the drive time to spin up */
3223 end = ehc->i.hotplug_timestamp + ATA_SPINUP_WAIT * HZ / 1000;
3224 secs = ((end - jiffies) + HZ - 1) / HZ;
3226 if (time_after(jiffies, end))
3227 return;
3229 if (secs > 5)
3230 ata_port_printk(ap, KERN_INFO, "waiting for device to spin up "
3231 "(%lu secs)\n", secs);
3233 schedule_timeout_uninterruptible(end - jiffies);
3237 * ata_std_prereset - prepare for reset
3238 * @ap: ATA port to be reset
3240 * @ap is about to be reset. Initialize it.
3242 * LOCKING:
3243 * Kernel thread context (may sleep)
3245 * RETURNS:
3246 * 0 on success, -errno otherwise.
3248 int ata_std_prereset(struct ata_port *ap)
3250 struct ata_eh_context *ehc = &ap->eh_context;
3251 const unsigned long *timing = sata_ehc_deb_timing(ehc);
3252 int rc;
3254 /* handle link resume & hotplug spinup */
3255 if ((ehc->i.flags & ATA_EHI_RESUME_LINK) &&
3256 (ap->flags & ATA_FLAG_HRST_TO_RESUME))
3257 ehc->i.action |= ATA_EH_HARDRESET;
3259 if ((ehc->i.flags & ATA_EHI_HOTPLUGGED) &&
3260 (ap->flags & ATA_FLAG_SKIP_D2H_BSY))
3261 ata_wait_spinup(ap);
3263 /* if we're about to do hardreset, nothing more to do */
3264 if (ehc->i.action & ATA_EH_HARDRESET)
3265 return 0;
3267 /* if SATA, resume phy */
3268 if (ap->cbl == ATA_CBL_SATA) {
3269 rc = sata_phy_resume(ap, timing);
3270 if (rc && rc != -EOPNOTSUPP) {
3271 /* phy resume failed */
3272 ata_port_printk(ap, KERN_WARNING, "failed to resume "
3273 "link for reset (errno=%d)\n", rc);
3274 return rc;
3278 /* Wait for !BSY if the controller can wait for the first D2H
3279 * Reg FIS and we don't know that no device is attached.
3281 if (!(ap->flags & ATA_FLAG_SKIP_D2H_BSY) && !ata_port_offline(ap))
3282 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
3284 return 0;
3288 * ata_std_softreset - reset host port via ATA SRST
3289 * @ap: port to reset
3290 * @classes: resulting classes of attached devices
3292 * Reset host port using ATA SRST.
3294 * LOCKING:
3295 * Kernel thread context (may sleep)
3297 * RETURNS:
3298 * 0 on success, -errno otherwise.
3300 int ata_std_softreset(struct ata_port *ap, unsigned int *classes)
3302 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
3303 unsigned int devmask = 0, err_mask;
3304 u8 err;
3306 DPRINTK("ENTER\n");
3308 if (ata_port_offline(ap)) {
3309 classes[0] = ATA_DEV_NONE;
3310 goto out;
3313 /* determine if device 0/1 are present */
3314 if (ata_devchk(ap, 0))
3315 devmask |= (1 << 0);
3316 if (slave_possible && ata_devchk(ap, 1))
3317 devmask |= (1 << 1);
3319 /* select device 0 again */
3320 ap->ops->dev_select(ap, 0);
3322 /* issue bus reset */
3323 DPRINTK("about to softreset, devmask=%x\n", devmask);
3324 err_mask = ata_bus_softreset(ap, devmask);
3325 if (err_mask) {
3326 ata_port_printk(ap, KERN_ERR, "SRST failed (err_mask=0x%x)\n",
3327 err_mask);
3328 return -EIO;
3331 /* determine by signature whether we have ATA or ATAPI devices */
3332 classes[0] = ata_dev_try_classify(ap, 0, &err);
3333 if (slave_possible && err != 0x81)
3334 classes[1] = ata_dev_try_classify(ap, 1, &err);
3336 out:
3337 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
3338 return 0;
3342 * sata_port_hardreset - reset port via SATA phy reset
3343 * @ap: port to reset
3344 * @timing: timing parameters { interval, duratinon, timeout } in msec
3346 * SATA phy-reset host port using DET bits of SControl register.
3348 * LOCKING:
3349 * Kernel thread context (may sleep)
3351 * RETURNS:
3352 * 0 on success, -errno otherwise.
3354 int sata_port_hardreset(struct ata_port *ap, const unsigned long *timing)
3356 u32 scontrol;
3357 int rc;
3359 DPRINTK("ENTER\n");
3361 if (sata_set_spd_needed(ap)) {
3362 /* SATA spec says nothing about how to reconfigure
3363 * spd. To be on the safe side, turn off phy during
3364 * reconfiguration. This works for at least ICH7 AHCI
3365 * and Sil3124.
3367 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
3368 goto out;
3370 scontrol = (scontrol & 0x0f0) | 0x304;
3372 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
3373 goto out;
3375 sata_set_spd(ap);
3378 /* issue phy wake/reset */
3379 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
3380 goto out;
3382 scontrol = (scontrol & 0x0f0) | 0x301;
3384 if ((rc = sata_scr_write_flush(ap, SCR_CONTROL, scontrol)))
3385 goto out;
3387 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
3388 * 10.4.2 says at least 1 ms.
3390 msleep(1);
3392 /* bring phy back */
3393 rc = sata_phy_resume(ap, timing);
3394 out:
3395 DPRINTK("EXIT, rc=%d\n", rc);
3396 return rc;
3400 * sata_std_hardreset - reset host port via SATA phy reset
3401 * @ap: port to reset
3402 * @class: resulting class of attached device
3404 * SATA phy-reset host port using DET bits of SControl register,
3405 * wait for !BSY and classify the attached device.
3407 * LOCKING:
3408 * Kernel thread context (may sleep)
3410 * RETURNS:
3411 * 0 on success, -errno otherwise.
3413 int sata_std_hardreset(struct ata_port *ap, unsigned int *class)
3415 const unsigned long *timing = sata_ehc_deb_timing(&ap->eh_context);
3416 int rc;
3418 DPRINTK("ENTER\n");
3420 /* do hardreset */
3421 rc = sata_port_hardreset(ap, timing);
3422 if (rc) {
3423 ata_port_printk(ap, KERN_ERR,
3424 "COMRESET failed (errno=%d)\n", rc);
3425 return rc;
3428 /* TODO: phy layer with polling, timeouts, etc. */
3429 if (ata_port_offline(ap)) {
3430 *class = ATA_DEV_NONE;
3431 DPRINTK("EXIT, link offline\n");
3432 return 0;
3435 /* wait a while before checking status, see SRST for more info */
3436 msleep(150);
3438 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
3439 ata_port_printk(ap, KERN_ERR,
3440 "COMRESET failed (device not ready)\n");
3441 return -EIO;
3444 ap->ops->dev_select(ap, 0); /* probably unnecessary */
3446 *class = ata_dev_try_classify(ap, 0, NULL);
3448 DPRINTK("EXIT, class=%u\n", *class);
3449 return 0;
3453 * ata_std_postreset - standard postreset callback
3454 * @ap: the target ata_port
3455 * @classes: classes of attached devices
3457 * This function is invoked after a successful reset. Note that
3458 * the device might have been reset more than once using
3459 * different reset methods before postreset is invoked.
3461 * LOCKING:
3462 * Kernel thread context (may sleep)
3464 void ata_std_postreset(struct ata_port *ap, unsigned int *classes)
3466 u32 serror;
3468 DPRINTK("ENTER\n");
3470 /* print link status */
3471 sata_print_link_status(ap);
3473 /* clear SError */
3474 if (sata_scr_read(ap, SCR_ERROR, &serror) == 0)
3475 sata_scr_write(ap, SCR_ERROR, serror);
3477 /* re-enable interrupts */
3478 if (!ap->ops->error_handler)
3479 ap->ops->irq_on(ap);
3481 /* is double-select really necessary? */
3482 if (classes[0] != ATA_DEV_NONE)
3483 ap->ops->dev_select(ap, 1);
3484 if (classes[1] != ATA_DEV_NONE)
3485 ap->ops->dev_select(ap, 0);
3487 /* bail out if no device is present */
3488 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
3489 DPRINTK("EXIT, no device\n");
3490 return;
3493 /* set up device control */
3494 if (ap->ioaddr.ctl_addr)
3495 iowrite8(ap->ctl, ap->ioaddr.ctl_addr);
3497 DPRINTK("EXIT\n");
3501 * ata_dev_same_device - Determine whether new ID matches configured device
3502 * @dev: device to compare against
3503 * @new_class: class of the new device
3504 * @new_id: IDENTIFY page of the new device
3506 * Compare @new_class and @new_id against @dev and determine
3507 * whether @dev is the device indicated by @new_class and
3508 * @new_id.
3510 * LOCKING:
3511 * None.
3513 * RETURNS:
3514 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
3516 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3517 const u16 *new_id)
3519 const u16 *old_id = dev->id;
3520 unsigned char model[2][ATA_ID_PROD_LEN + 1];
3521 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
3522 u64 new_n_sectors;
3524 if (dev->class != new_class) {
3525 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
3526 dev->class, new_class);
3527 return 0;
3530 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3531 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3532 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3533 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
3534 new_n_sectors = ata_id_n_sectors(new_id);
3536 if (strcmp(model[0], model[1])) {
3537 ata_dev_printk(dev, KERN_INFO, "model number mismatch "
3538 "'%s' != '%s'\n", model[0], model[1]);
3539 return 0;
3542 if (strcmp(serial[0], serial[1])) {
3543 ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
3544 "'%s' != '%s'\n", serial[0], serial[1]);
3545 return 0;
3548 if (dev->class == ATA_DEV_ATA && dev->n_sectors != new_n_sectors) {
3549 ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch "
3550 "%llu != %llu\n",
3551 (unsigned long long)dev->n_sectors,
3552 (unsigned long long)new_n_sectors);
3553 /* Are we the boot time size - if so we appear to be the
3554 same disk at this point and our HPA got reapplied */
3555 if (ata_ignore_hpa && dev->n_sectors_boot == new_n_sectors
3556 && ata_id_hpa_enabled(new_id))
3557 return 1;
3558 return 0;
3561 return 1;
3565 * ata_dev_revalidate - Revalidate ATA device
3566 * @dev: device to revalidate
3567 * @readid_flags: read ID flags
3569 * Re-read IDENTIFY page and make sure @dev is still attached to
3570 * the port.
3572 * LOCKING:
3573 * Kernel thread context (may sleep)
3575 * RETURNS:
3576 * 0 on success, negative errno otherwise
3578 int ata_dev_revalidate(struct ata_device *dev, unsigned int readid_flags)
3580 unsigned int class = dev->class;
3581 u16 *id = (void *)dev->ap->sector_buf;
3582 int rc;
3584 if (!ata_dev_enabled(dev)) {
3585 rc = -ENODEV;
3586 goto fail;
3589 /* read ID data */
3590 rc = ata_dev_read_id(dev, &class, readid_flags, id);
3591 if (rc)
3592 goto fail;
3594 /* is the device still there? */
3595 if (!ata_dev_same_device(dev, class, id)) {
3596 rc = -ENODEV;
3597 goto fail;
3600 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
3602 /* configure device according to the new ID */
3603 rc = ata_dev_configure(dev);
3604 if (rc == 0)
3605 return 0;
3607 fail:
3608 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
3609 return rc;
3612 struct ata_blacklist_entry {
3613 const char *model_num;
3614 const char *model_rev;
3615 unsigned long horkage;
3618 static const struct ata_blacklist_entry ata_device_blacklist [] = {
3619 /* Devices with DMA related problems under Linux */
3620 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
3621 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
3622 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
3623 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
3624 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
3625 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
3626 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
3627 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
3628 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
3629 { "CRD-8480B", NULL, ATA_HORKAGE_NODMA },
3630 { "CRD-8482B", NULL, ATA_HORKAGE_NODMA },
3631 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
3632 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
3633 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
3634 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
3635 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
3636 { "HITACHI CDR-8335", NULL, ATA_HORKAGE_NODMA },
3637 { "HITACHI CDR-8435", NULL, ATA_HORKAGE_NODMA },
3638 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
3639 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
3640 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
3641 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
3642 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
3643 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
3644 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
3645 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
3646 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
3647 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
3648 { "SAMSUNG CD-ROM SN-124","N001", ATA_HORKAGE_NODMA },
3650 /* Weird ATAPI devices */
3651 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 |
3652 ATA_HORKAGE_DMA_RW_ONLY },
3654 /* Devices we expect to fail diagnostics */
3656 /* Devices where NCQ should be avoided */
3657 /* NCQ is slow */
3658 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
3659 /* http://thread.gmane.org/gmane.linux.ide/14907 */
3660 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ },
3661 /* NCQ is broken */
3662 { "Maxtor 6L250S0", "BANC1G10", ATA_HORKAGE_NONCQ },
3663 /* NCQ hard hangs device under heavier load, needs hard power cycle */
3664 { "Maxtor 6B250S0", "BANC1B70", ATA_HORKAGE_NONCQ },
3665 /* Blacklist entries taken from Silicon Image 3124/3132
3666 Windows driver .inf file - also several Linux problem reports */
3667 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, },
3668 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, },
3669 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, },
3671 /* Devices with NCQ limits */
3673 /* End Marker */
3677 unsigned long ata_device_blacklisted(const struct ata_device *dev)
3679 unsigned char model_num[ATA_ID_PROD_LEN + 1];
3680 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
3681 const struct ata_blacklist_entry *ad = ata_device_blacklist;
3683 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
3684 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
3686 while (ad->model_num) {
3687 if (!strcmp(ad->model_num, model_num)) {
3688 if (ad->model_rev == NULL)
3689 return ad->horkage;
3690 if (!strcmp(ad->model_rev, model_rev))
3691 return ad->horkage;
3693 ad++;
3695 return 0;
3698 static int ata_dma_blacklisted(const struct ata_device *dev)
3700 /* We don't support polling DMA.
3701 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
3702 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
3704 if ((dev->ap->flags & ATA_FLAG_PIO_POLLING) &&
3705 (dev->flags & ATA_DFLAG_CDB_INTR))
3706 return 1;
3707 return (ata_device_blacklisted(dev) & ATA_HORKAGE_NODMA) ? 1 : 0;
3711 * ata_dev_xfermask - Compute supported xfermask of the given device
3712 * @dev: Device to compute xfermask for
3714 * Compute supported xfermask of @dev and store it in
3715 * dev->*_mask. This function is responsible for applying all
3716 * known limits including host controller limits, device
3717 * blacklist, etc...
3719 * LOCKING:
3720 * None.
3722 static void ata_dev_xfermask(struct ata_device *dev)
3724 struct ata_port *ap = dev->ap;
3725 struct ata_host *host = ap->host;
3726 unsigned long xfer_mask;
3728 /* controller modes available */
3729 xfer_mask = ata_pack_xfermask(ap->pio_mask,
3730 ap->mwdma_mask, ap->udma_mask);
3732 /* drive modes available */
3733 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
3734 dev->mwdma_mask, dev->udma_mask);
3735 xfer_mask &= ata_id_xfermask(dev->id);
3738 * CFA Advanced TrueIDE timings are not allowed on a shared
3739 * cable
3741 if (ata_dev_pair(dev)) {
3742 /* No PIO5 or PIO6 */
3743 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
3744 /* No MWDMA3 or MWDMA 4 */
3745 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
3748 if (ata_dma_blacklisted(dev)) {
3749 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
3750 ata_dev_printk(dev, KERN_WARNING,
3751 "device is on DMA blacklist, disabling DMA\n");
3754 if ((host->flags & ATA_HOST_SIMPLEX) &&
3755 host->simplex_claimed && host->simplex_claimed != ap) {
3756 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
3757 ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by "
3758 "other device, disabling DMA\n");
3761 if (ap->flags & ATA_FLAG_NO_IORDY)
3762 xfer_mask &= ata_pio_mask_no_iordy(dev);
3764 if (ap->ops->mode_filter)
3765 xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
3767 /* Apply cable rule here. Don't apply it early because when
3768 * we handle hot plug the cable type can itself change.
3769 * Check this last so that we know if the transfer rate was
3770 * solely limited by the cable.
3771 * Unknown or 80 wire cables reported host side are checked
3772 * drive side as well. Cases where we know a 40wire cable
3773 * is used safely for 80 are not checked here.
3775 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
3776 /* UDMA/44 or higher would be available */
3777 if((ap->cbl == ATA_CBL_PATA40) ||
3778 (ata_drive_40wire(dev->id) &&
3779 (ap->cbl == ATA_CBL_PATA_UNK ||
3780 ap->cbl == ATA_CBL_PATA80))) {
3781 ata_dev_printk(dev, KERN_WARNING,
3782 "limited to UDMA/33 due to 40-wire cable\n");
3783 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
3786 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
3787 &dev->mwdma_mask, &dev->udma_mask);
3791 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
3792 * @dev: Device to which command will be sent
3794 * Issue SET FEATURES - XFER MODE command to device @dev
3795 * on port @ap.
3797 * LOCKING:
3798 * PCI/etc. bus probe sem.
3800 * RETURNS:
3801 * 0 on success, AC_ERR_* mask otherwise.
3804 static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
3806 struct ata_taskfile tf;
3807 unsigned int err_mask;
3809 /* set up set-features taskfile */
3810 DPRINTK("set features - xfer mode\n");
3812 ata_tf_init(dev, &tf);
3813 tf.command = ATA_CMD_SET_FEATURES;
3814 tf.feature = SETFEATURES_XFER;
3815 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3816 tf.protocol = ATA_PROT_NODATA;
3817 tf.nsect = dev->xfer_mode;
3819 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
3821 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3822 return err_mask;
3826 * ata_dev_init_params - Issue INIT DEV PARAMS command
3827 * @dev: Device to which command will be sent
3828 * @heads: Number of heads (taskfile parameter)
3829 * @sectors: Number of sectors (taskfile parameter)
3831 * LOCKING:
3832 * Kernel thread context (may sleep)
3834 * RETURNS:
3835 * 0 on success, AC_ERR_* mask otherwise.
3837 static unsigned int ata_dev_init_params(struct ata_device *dev,
3838 u16 heads, u16 sectors)
3840 struct ata_taskfile tf;
3841 unsigned int err_mask;
3843 /* Number of sectors per track 1-255. Number of heads 1-16 */
3844 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
3845 return AC_ERR_INVALID;
3847 /* set up init dev params taskfile */
3848 DPRINTK("init dev params \n");
3850 ata_tf_init(dev, &tf);
3851 tf.command = ATA_CMD_INIT_DEV_PARAMS;
3852 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3853 tf.protocol = ATA_PROT_NODATA;
3854 tf.nsect = sectors;
3855 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
3857 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
3859 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3860 return err_mask;
3864 * ata_sg_clean - Unmap DMA memory associated with command
3865 * @qc: Command containing DMA memory to be released
3867 * Unmap all mapped DMA memory associated with this command.
3869 * LOCKING:
3870 * spin_lock_irqsave(host lock)
3872 void ata_sg_clean(struct ata_queued_cmd *qc)
3874 struct ata_port *ap = qc->ap;
3875 struct scatterlist *sg = qc->__sg;
3876 int dir = qc->dma_dir;
3877 void *pad_buf = NULL;
3879 WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP));
3880 WARN_ON(sg == NULL);
3882 if (qc->flags & ATA_QCFLAG_SINGLE)
3883 WARN_ON(qc->n_elem > 1);
3885 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
3887 /* if we padded the buffer out to 32-bit bound, and data
3888 * xfer direction is from-device, we must copy from the
3889 * pad buffer back into the supplied buffer
3891 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
3892 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3894 if (qc->flags & ATA_QCFLAG_SG) {
3895 if (qc->n_elem)
3896 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
3897 /* restore last sg */
3898 sg[qc->orig_n_elem - 1].length += qc->pad_len;
3899 if (pad_buf) {
3900 struct scatterlist *psg = &qc->pad_sgent;
3901 void *addr = kmap_atomic(psg->page, KM_IRQ0);
3902 memcpy(addr + psg->offset, pad_buf, qc->pad_len);
3903 kunmap_atomic(addr, KM_IRQ0);
3905 } else {
3906 if (qc->n_elem)
3907 dma_unmap_single(ap->dev,
3908 sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
3909 dir);
3910 /* restore sg */
3911 sg->length += qc->pad_len;
3912 if (pad_buf)
3913 memcpy(qc->buf_virt + sg->length - qc->pad_len,
3914 pad_buf, qc->pad_len);
3917 qc->flags &= ~ATA_QCFLAG_DMAMAP;
3918 qc->__sg = NULL;
3922 * ata_fill_sg - Fill PCI IDE PRD table
3923 * @qc: Metadata associated with taskfile to be transferred
3925 * Fill PCI IDE PRD (scatter-gather) table with segments
3926 * associated with the current disk command.
3928 * LOCKING:
3929 * spin_lock_irqsave(host lock)
3932 static void ata_fill_sg(struct ata_queued_cmd *qc)
3934 struct ata_port *ap = qc->ap;
3935 struct scatterlist *sg;
3936 unsigned int idx;
3938 WARN_ON(qc->__sg == NULL);
3939 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
3941 idx = 0;
3942 ata_for_each_sg(sg, qc) {
3943 u32 addr, offset;
3944 u32 sg_len, len;
3946 /* determine if physical DMA addr spans 64K boundary.
3947 * Note h/w doesn't support 64-bit, so we unconditionally
3948 * truncate dma_addr_t to u32.
3950 addr = (u32) sg_dma_address(sg);
3951 sg_len = sg_dma_len(sg);
3953 while (sg_len) {
3954 offset = addr & 0xffff;
3955 len = sg_len;
3956 if ((offset + sg_len) > 0x10000)
3957 len = 0x10000 - offset;
3959 ap->prd[idx].addr = cpu_to_le32(addr);
3960 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
3961 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
3963 idx++;
3964 sg_len -= len;
3965 addr += len;
3969 if (idx)
3970 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
3973 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
3974 * @qc: Metadata associated with taskfile to check
3976 * Allow low-level driver to filter ATA PACKET commands, returning
3977 * a status indicating whether or not it is OK to use DMA for the
3978 * supplied PACKET command.
3980 * LOCKING:
3981 * spin_lock_irqsave(host lock)
3983 * RETURNS: 0 when ATAPI DMA can be used
3984 * nonzero otherwise
3986 int ata_check_atapi_dma(struct ata_queued_cmd *qc)
3988 struct ata_port *ap = qc->ap;
3989 int rc = 0; /* Assume ATAPI DMA is OK by default */
3991 /* some drives can only do ATAPI DMA on read/write */
3992 if (unlikely(qc->dev->horkage & ATA_HORKAGE_DMA_RW_ONLY)) {
3993 struct scsi_cmnd *cmd = qc->scsicmd;
3994 u8 *scsicmd = cmd->cmnd;
3996 switch (scsicmd[0]) {
3997 case READ_10:
3998 case WRITE_10:
3999 case READ_12:
4000 case WRITE_12:
4001 case READ_6:
4002 case WRITE_6:
4003 /* atapi dma maybe ok */
4004 break;
4005 default:
4006 /* turn off atapi dma */
4007 return 1;
4011 if (ap->ops->check_atapi_dma)
4012 rc = ap->ops->check_atapi_dma(qc);
4014 return rc;
4017 * ata_qc_prep - Prepare taskfile for submission
4018 * @qc: Metadata associated with taskfile to be prepared
4020 * Prepare ATA taskfile for submission.
4022 * LOCKING:
4023 * spin_lock_irqsave(host lock)
4025 void ata_qc_prep(struct ata_queued_cmd *qc)
4027 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
4028 return;
4030 ata_fill_sg(qc);
4033 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
4036 * ata_sg_init_one - Associate command with memory buffer
4037 * @qc: Command to be associated
4038 * @buf: Memory buffer
4039 * @buflen: Length of memory buffer, in bytes.
4041 * Initialize the data-related elements of queued_cmd @qc
4042 * to point to a single memory buffer, @buf of byte length @buflen.
4044 * LOCKING:
4045 * spin_lock_irqsave(host lock)
4048 void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
4050 qc->flags |= ATA_QCFLAG_SINGLE;
4052 qc->__sg = &qc->sgent;
4053 qc->n_elem = 1;
4054 qc->orig_n_elem = 1;
4055 qc->buf_virt = buf;
4056 qc->nbytes = buflen;
4058 sg_init_one(&qc->sgent, buf, buflen);
4062 * ata_sg_init - Associate command with scatter-gather table.
4063 * @qc: Command to be associated
4064 * @sg: Scatter-gather table.
4065 * @n_elem: Number of elements in s/g table.
4067 * Initialize the data-related elements of queued_cmd @qc
4068 * to point to a scatter-gather table @sg, containing @n_elem
4069 * elements.
4071 * LOCKING:
4072 * spin_lock_irqsave(host lock)
4075 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4076 unsigned int n_elem)
4078 qc->flags |= ATA_QCFLAG_SG;
4079 qc->__sg = sg;
4080 qc->n_elem = n_elem;
4081 qc->orig_n_elem = n_elem;
4085 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
4086 * @qc: Command with memory buffer to be mapped.
4088 * DMA-map the memory buffer associated with queued_cmd @qc.
4090 * LOCKING:
4091 * spin_lock_irqsave(host lock)
4093 * RETURNS:
4094 * Zero on success, negative on error.
4097 static int ata_sg_setup_one(struct ata_queued_cmd *qc)
4099 struct ata_port *ap = qc->ap;
4100 int dir = qc->dma_dir;
4101 struct scatterlist *sg = qc->__sg;
4102 dma_addr_t dma_address;
4103 int trim_sg = 0;
4105 /* we must lengthen transfers to end on a 32-bit boundary */
4106 qc->pad_len = sg->length & 3;
4107 if (qc->pad_len) {
4108 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4109 struct scatterlist *psg = &qc->pad_sgent;
4111 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
4113 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
4115 if (qc->tf.flags & ATA_TFLAG_WRITE)
4116 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
4117 qc->pad_len);
4119 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
4120 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
4121 /* trim sg */
4122 sg->length -= qc->pad_len;
4123 if (sg->length == 0)
4124 trim_sg = 1;
4126 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
4127 sg->length, qc->pad_len);
4130 if (trim_sg) {
4131 qc->n_elem--;
4132 goto skip_map;
4135 dma_address = dma_map_single(ap->dev, qc->buf_virt,
4136 sg->length, dir);
4137 if (dma_mapping_error(dma_address)) {
4138 /* restore sg */
4139 sg->length += qc->pad_len;
4140 return -1;
4143 sg_dma_address(sg) = dma_address;
4144 sg_dma_len(sg) = sg->length;
4146 skip_map:
4147 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
4148 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4150 return 0;
4154 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4155 * @qc: Command with scatter-gather table to be mapped.
4157 * DMA-map the scatter-gather table associated with queued_cmd @qc.
4159 * LOCKING:
4160 * spin_lock_irqsave(host lock)
4162 * RETURNS:
4163 * Zero on success, negative on error.
4167 static int ata_sg_setup(struct ata_queued_cmd *qc)
4169 struct ata_port *ap = qc->ap;
4170 struct scatterlist *sg = qc->__sg;
4171 struct scatterlist *lsg = &sg[qc->n_elem - 1];
4172 int n_elem, pre_n_elem, dir, trim_sg = 0;
4174 VPRINTK("ENTER, ata%u\n", ap->print_id);
4175 WARN_ON(!(qc->flags & ATA_QCFLAG_SG));
4177 /* we must lengthen transfers to end on a 32-bit boundary */
4178 qc->pad_len = lsg->length & 3;
4179 if (qc->pad_len) {
4180 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4181 struct scatterlist *psg = &qc->pad_sgent;
4182 unsigned int offset;
4184 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
4186 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
4189 * psg->page/offset are used to copy to-be-written
4190 * data in this function or read data in ata_sg_clean.
4192 offset = lsg->offset + lsg->length - qc->pad_len;
4193 psg->page = nth_page(lsg->page, offset >> PAGE_SHIFT);
4194 psg->offset = offset_in_page(offset);
4196 if (qc->tf.flags & ATA_TFLAG_WRITE) {
4197 void *addr = kmap_atomic(psg->page, KM_IRQ0);
4198 memcpy(pad_buf, addr + psg->offset, qc->pad_len);
4199 kunmap_atomic(addr, KM_IRQ0);
4202 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
4203 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
4204 /* trim last sg */
4205 lsg->length -= qc->pad_len;
4206 if (lsg->length == 0)
4207 trim_sg = 1;
4209 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
4210 qc->n_elem - 1, lsg->length, qc->pad_len);
4213 pre_n_elem = qc->n_elem;
4214 if (trim_sg && pre_n_elem)
4215 pre_n_elem--;
4217 if (!pre_n_elem) {
4218 n_elem = 0;
4219 goto skip_map;
4222 dir = qc->dma_dir;
4223 n_elem = dma_map_sg(ap->dev, sg, pre_n_elem, dir);
4224 if (n_elem < 1) {
4225 /* restore last sg */
4226 lsg->length += qc->pad_len;
4227 return -1;
4230 DPRINTK("%d sg elements mapped\n", n_elem);
4232 skip_map:
4233 qc->n_elem = n_elem;
4235 return 0;
4239 * swap_buf_le16 - swap halves of 16-bit words in place
4240 * @buf: Buffer to swap
4241 * @buf_words: Number of 16-bit words in buffer.
4243 * Swap halves of 16-bit words if needed to convert from
4244 * little-endian byte order to native cpu byte order, or
4245 * vice-versa.
4247 * LOCKING:
4248 * Inherited from caller.
4250 void swap_buf_le16(u16 *buf, unsigned int buf_words)
4252 #ifdef __BIG_ENDIAN
4253 unsigned int i;
4255 for (i = 0; i < buf_words; i++)
4256 buf[i] = le16_to_cpu(buf[i]);
4257 #endif /* __BIG_ENDIAN */
4261 * ata_data_xfer - Transfer data by PIO
4262 * @adev: device to target
4263 * @buf: data buffer
4264 * @buflen: buffer length
4265 * @write_data: read/write
4267 * Transfer data from/to the device data register by PIO.
4269 * LOCKING:
4270 * Inherited from caller.
4272 void ata_data_xfer(struct ata_device *adev, unsigned char *buf,
4273 unsigned int buflen, int write_data)
4275 struct ata_port *ap = adev->ap;
4276 unsigned int words = buflen >> 1;
4278 /* Transfer multiple of 2 bytes */
4279 if (write_data)
4280 iowrite16_rep(ap->ioaddr.data_addr, buf, words);
4281 else
4282 ioread16_rep(ap->ioaddr.data_addr, buf, words);
4284 /* Transfer trailing 1 byte, if any. */
4285 if (unlikely(buflen & 0x01)) {
4286 u16 align_buf[1] = { 0 };
4287 unsigned char *trailing_buf = buf + buflen - 1;
4289 if (write_data) {
4290 memcpy(align_buf, trailing_buf, 1);
4291 iowrite16(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
4292 } else {
4293 align_buf[0] = cpu_to_le16(ioread16(ap->ioaddr.data_addr));
4294 memcpy(trailing_buf, align_buf, 1);
4300 * ata_data_xfer_noirq - Transfer data by PIO
4301 * @adev: device to target
4302 * @buf: data buffer
4303 * @buflen: buffer length
4304 * @write_data: read/write
4306 * Transfer data from/to the device data register by PIO. Do the
4307 * transfer with interrupts disabled.
4309 * LOCKING:
4310 * Inherited from caller.
4312 void ata_data_xfer_noirq(struct ata_device *adev, unsigned char *buf,
4313 unsigned int buflen, int write_data)
4315 unsigned long flags;
4316 local_irq_save(flags);
4317 ata_data_xfer(adev, buf, buflen, write_data);
4318 local_irq_restore(flags);
4323 * ata_pio_sector - Transfer a sector of data.
4324 * @qc: Command on going
4326 * Transfer qc->sect_size bytes of data from/to the ATA device.
4328 * LOCKING:
4329 * Inherited from caller.
4332 static void ata_pio_sector(struct ata_queued_cmd *qc)
4334 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
4335 struct scatterlist *sg = qc->__sg;
4336 struct ata_port *ap = qc->ap;
4337 struct page *page;
4338 unsigned int offset;
4339 unsigned char *buf;
4341 if (qc->curbytes == qc->nbytes - qc->sect_size)
4342 ap->hsm_task_state = HSM_ST_LAST;
4344 page = sg[qc->cursg].page;
4345 offset = sg[qc->cursg].offset + qc->cursg_ofs;
4347 /* get the current page and offset */
4348 page = nth_page(page, (offset >> PAGE_SHIFT));
4349 offset %= PAGE_SIZE;
4351 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4353 if (PageHighMem(page)) {
4354 unsigned long flags;
4356 /* FIXME: use a bounce buffer */
4357 local_irq_save(flags);
4358 buf = kmap_atomic(page, KM_IRQ0);
4360 /* do the actual data transfer */
4361 ap->ops->data_xfer(qc->dev, buf + offset, qc->sect_size, do_write);
4363 kunmap_atomic(buf, KM_IRQ0);
4364 local_irq_restore(flags);
4365 } else {
4366 buf = page_address(page);
4367 ap->ops->data_xfer(qc->dev, buf + offset, qc->sect_size, do_write);
4370 qc->curbytes += qc->sect_size;
4371 qc->cursg_ofs += qc->sect_size;
4373 if (qc->cursg_ofs == (&sg[qc->cursg])->length) {
4374 qc->cursg++;
4375 qc->cursg_ofs = 0;
4380 * ata_pio_sectors - Transfer one or many sectors.
4381 * @qc: Command on going
4383 * Transfer one or many sectors of data from/to the
4384 * ATA device for the DRQ request.
4386 * LOCKING:
4387 * Inherited from caller.
4390 static void ata_pio_sectors(struct ata_queued_cmd *qc)
4392 if (is_multi_taskfile(&qc->tf)) {
4393 /* READ/WRITE MULTIPLE */
4394 unsigned int nsect;
4396 WARN_ON(qc->dev->multi_count == 0);
4398 nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size,
4399 qc->dev->multi_count);
4400 while (nsect--)
4401 ata_pio_sector(qc);
4402 } else
4403 ata_pio_sector(qc);
4407 * atapi_send_cdb - Write CDB bytes to hardware
4408 * @ap: Port to which ATAPI device is attached.
4409 * @qc: Taskfile currently active
4411 * When device has indicated its readiness to accept
4412 * a CDB, this function is called. Send the CDB.
4414 * LOCKING:
4415 * caller.
4418 static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
4420 /* send SCSI cdb */
4421 DPRINTK("send cdb\n");
4422 WARN_ON(qc->dev->cdb_len < 12);
4424 ap->ops->data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1);
4425 ata_altstatus(ap); /* flush */
4427 switch (qc->tf.protocol) {
4428 case ATA_PROT_ATAPI:
4429 ap->hsm_task_state = HSM_ST;
4430 break;
4431 case ATA_PROT_ATAPI_NODATA:
4432 ap->hsm_task_state = HSM_ST_LAST;
4433 break;
4434 case ATA_PROT_ATAPI_DMA:
4435 ap->hsm_task_state = HSM_ST_LAST;
4436 /* initiate bmdma */
4437 ap->ops->bmdma_start(qc);
4438 break;
4443 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
4444 * @qc: Command on going
4445 * @bytes: number of bytes
4447 * Transfer Transfer data from/to the ATAPI device.
4449 * LOCKING:
4450 * Inherited from caller.
4454 static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
4456 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
4457 struct scatterlist *sg = qc->__sg;
4458 struct ata_port *ap = qc->ap;
4459 struct page *page;
4460 unsigned char *buf;
4461 unsigned int offset, count;
4463 if (qc->curbytes + bytes >= qc->nbytes)
4464 ap->hsm_task_state = HSM_ST_LAST;
4466 next_sg:
4467 if (unlikely(qc->cursg >= qc->n_elem)) {
4469 * The end of qc->sg is reached and the device expects
4470 * more data to transfer. In order not to overrun qc->sg
4471 * and fulfill length specified in the byte count register,
4472 * - for read case, discard trailing data from the device
4473 * - for write case, padding zero data to the device
4475 u16 pad_buf[1] = { 0 };
4476 unsigned int words = bytes >> 1;
4477 unsigned int i;
4479 if (words) /* warning if bytes > 1 */
4480 ata_dev_printk(qc->dev, KERN_WARNING,
4481 "%u bytes trailing data\n", bytes);
4483 for (i = 0; i < words; i++)
4484 ap->ops->data_xfer(qc->dev, (unsigned char*)pad_buf, 2, do_write);
4486 ap->hsm_task_state = HSM_ST_LAST;
4487 return;
4490 sg = &qc->__sg[qc->cursg];
4492 page = sg->page;
4493 offset = sg->offset + qc->cursg_ofs;
4495 /* get the current page and offset */
4496 page = nth_page(page, (offset >> PAGE_SHIFT));
4497 offset %= PAGE_SIZE;
4499 /* don't overrun current sg */
4500 count = min(sg->length - qc->cursg_ofs, bytes);
4502 /* don't cross page boundaries */
4503 count = min(count, (unsigned int)PAGE_SIZE - offset);
4505 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4507 if (PageHighMem(page)) {
4508 unsigned long flags;
4510 /* FIXME: use bounce buffer */
4511 local_irq_save(flags);
4512 buf = kmap_atomic(page, KM_IRQ0);
4514 /* do the actual data transfer */
4515 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
4517 kunmap_atomic(buf, KM_IRQ0);
4518 local_irq_restore(flags);
4519 } else {
4520 buf = page_address(page);
4521 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
4524 bytes -= count;
4525 qc->curbytes += count;
4526 qc->cursg_ofs += count;
4528 if (qc->cursg_ofs == sg->length) {
4529 qc->cursg++;
4530 qc->cursg_ofs = 0;
4533 if (bytes)
4534 goto next_sg;
4538 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
4539 * @qc: Command on going
4541 * Transfer Transfer data from/to the ATAPI device.
4543 * LOCKING:
4544 * Inherited from caller.
4547 static void atapi_pio_bytes(struct ata_queued_cmd *qc)
4549 struct ata_port *ap = qc->ap;
4550 struct ata_device *dev = qc->dev;
4551 unsigned int ireason, bc_lo, bc_hi, bytes;
4552 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
4554 /* Abuse qc->result_tf for temp storage of intermediate TF
4555 * here to save some kernel stack usage.
4556 * For normal completion, qc->result_tf is not relevant. For
4557 * error, qc->result_tf is later overwritten by ata_qc_complete().
4558 * So, the correctness of qc->result_tf is not affected.
4560 ap->ops->tf_read(ap, &qc->result_tf);
4561 ireason = qc->result_tf.nsect;
4562 bc_lo = qc->result_tf.lbam;
4563 bc_hi = qc->result_tf.lbah;
4564 bytes = (bc_hi << 8) | bc_lo;
4566 /* shall be cleared to zero, indicating xfer of data */
4567 if (ireason & (1 << 0))
4568 goto err_out;
4570 /* make sure transfer direction matches expected */
4571 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
4572 if (do_write != i_write)
4573 goto err_out;
4575 VPRINTK("ata%u: xfering %d bytes\n", ap->print_id, bytes);
4577 __atapi_pio_bytes(qc, bytes);
4579 return;
4581 err_out:
4582 ata_dev_printk(dev, KERN_INFO, "ATAPI check failed\n");
4583 qc->err_mask |= AC_ERR_HSM;
4584 ap->hsm_task_state = HSM_ST_ERR;
4588 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
4589 * @ap: the target ata_port
4590 * @qc: qc on going
4592 * RETURNS:
4593 * 1 if ok in workqueue, 0 otherwise.
4596 static inline int ata_hsm_ok_in_wq(struct ata_port *ap, struct ata_queued_cmd *qc)
4598 if (qc->tf.flags & ATA_TFLAG_POLLING)
4599 return 1;
4601 if (ap->hsm_task_state == HSM_ST_FIRST) {
4602 if (qc->tf.protocol == ATA_PROT_PIO &&
4603 (qc->tf.flags & ATA_TFLAG_WRITE))
4604 return 1;
4606 if (is_atapi_taskfile(&qc->tf) &&
4607 !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
4608 return 1;
4611 return 0;
4615 * ata_hsm_qc_complete - finish a qc running on standard HSM
4616 * @qc: Command to complete
4617 * @in_wq: 1 if called from workqueue, 0 otherwise
4619 * Finish @qc which is running on standard HSM.
4621 * LOCKING:
4622 * If @in_wq is zero, spin_lock_irqsave(host lock).
4623 * Otherwise, none on entry and grabs host lock.
4625 static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
4627 struct ata_port *ap = qc->ap;
4628 unsigned long flags;
4630 if (ap->ops->error_handler) {
4631 if (in_wq) {
4632 spin_lock_irqsave(ap->lock, flags);
4634 /* EH might have kicked in while host lock is
4635 * released.
4637 qc = ata_qc_from_tag(ap, qc->tag);
4638 if (qc) {
4639 if (likely(!(qc->err_mask & AC_ERR_HSM))) {
4640 ap->ops->irq_on(ap);
4641 ata_qc_complete(qc);
4642 } else
4643 ata_port_freeze(ap);
4646 spin_unlock_irqrestore(ap->lock, flags);
4647 } else {
4648 if (likely(!(qc->err_mask & AC_ERR_HSM)))
4649 ata_qc_complete(qc);
4650 else
4651 ata_port_freeze(ap);
4653 } else {
4654 if (in_wq) {
4655 spin_lock_irqsave(ap->lock, flags);
4656 ap->ops->irq_on(ap);
4657 ata_qc_complete(qc);
4658 spin_unlock_irqrestore(ap->lock, flags);
4659 } else
4660 ata_qc_complete(qc);
4663 ata_altstatus(ap); /* flush */
4667 * ata_hsm_move - move the HSM to the next state.
4668 * @ap: the target ata_port
4669 * @qc: qc on going
4670 * @status: current device status
4671 * @in_wq: 1 if called from workqueue, 0 otherwise
4673 * RETURNS:
4674 * 1 when poll next status needed, 0 otherwise.
4676 int ata_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
4677 u8 status, int in_wq)
4679 unsigned long flags = 0;
4680 int poll_next;
4682 WARN_ON((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
4684 /* Make sure ata_qc_issue_prot() does not throw things
4685 * like DMA polling into the workqueue. Notice that
4686 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
4688 WARN_ON(in_wq != ata_hsm_ok_in_wq(ap, qc));
4690 fsm_start:
4691 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
4692 ap->print_id, qc->tf.protocol, ap->hsm_task_state, status);
4694 switch (ap->hsm_task_state) {
4695 case HSM_ST_FIRST:
4696 /* Send first data block or PACKET CDB */
4698 /* If polling, we will stay in the work queue after
4699 * sending the data. Otherwise, interrupt handler
4700 * takes over after sending the data.
4702 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
4704 /* check device status */
4705 if (unlikely((status & ATA_DRQ) == 0)) {
4706 /* handle BSY=0, DRQ=0 as error */
4707 if (likely(status & (ATA_ERR | ATA_DF)))
4708 /* device stops HSM for abort/error */
4709 qc->err_mask |= AC_ERR_DEV;
4710 else
4711 /* HSM violation. Let EH handle this */
4712 qc->err_mask |= AC_ERR_HSM;
4714 ap->hsm_task_state = HSM_ST_ERR;
4715 goto fsm_start;
4718 /* Device should not ask for data transfer (DRQ=1)
4719 * when it finds something wrong.
4720 * We ignore DRQ here and stop the HSM by
4721 * changing hsm_task_state to HSM_ST_ERR and
4722 * let the EH abort the command or reset the device.
4724 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4725 ata_port_printk(ap, KERN_WARNING, "DRQ=1 with device "
4726 "error, dev_stat 0x%X\n", status);
4727 qc->err_mask |= AC_ERR_HSM;
4728 ap->hsm_task_state = HSM_ST_ERR;
4729 goto fsm_start;
4732 /* Send the CDB (atapi) or the first data block (ata pio out).
4733 * During the state transition, interrupt handler shouldn't
4734 * be invoked before the data transfer is complete and
4735 * hsm_task_state is changed. Hence, the following locking.
4737 if (in_wq)
4738 spin_lock_irqsave(ap->lock, flags);
4740 if (qc->tf.protocol == ATA_PROT_PIO) {
4741 /* PIO data out protocol.
4742 * send first data block.
4745 /* ata_pio_sectors() might change the state
4746 * to HSM_ST_LAST. so, the state is changed here
4747 * before ata_pio_sectors().
4749 ap->hsm_task_state = HSM_ST;
4750 ata_pio_sectors(qc);
4751 ata_altstatus(ap); /* flush */
4752 } else
4753 /* send CDB */
4754 atapi_send_cdb(ap, qc);
4756 if (in_wq)
4757 spin_unlock_irqrestore(ap->lock, flags);
4759 /* if polling, ata_pio_task() handles the rest.
4760 * otherwise, interrupt handler takes over from here.
4762 break;
4764 case HSM_ST:
4765 /* complete command or read/write the data register */
4766 if (qc->tf.protocol == ATA_PROT_ATAPI) {
4767 /* ATAPI PIO protocol */
4768 if ((status & ATA_DRQ) == 0) {
4769 /* No more data to transfer or device error.
4770 * Device error will be tagged in HSM_ST_LAST.
4772 ap->hsm_task_state = HSM_ST_LAST;
4773 goto fsm_start;
4776 /* Device should not ask for data transfer (DRQ=1)
4777 * when it finds something wrong.
4778 * We ignore DRQ here and stop the HSM by
4779 * changing hsm_task_state to HSM_ST_ERR and
4780 * let the EH abort the command or reset the device.
4782 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4783 ata_port_printk(ap, KERN_WARNING, "DRQ=1 with "
4784 "device error, dev_stat 0x%X\n",
4785 status);
4786 qc->err_mask |= AC_ERR_HSM;
4787 ap->hsm_task_state = HSM_ST_ERR;
4788 goto fsm_start;
4791 atapi_pio_bytes(qc);
4793 if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
4794 /* bad ireason reported by device */
4795 goto fsm_start;
4797 } else {
4798 /* ATA PIO protocol */
4799 if (unlikely((status & ATA_DRQ) == 0)) {
4800 /* handle BSY=0, DRQ=0 as error */
4801 if (likely(status & (ATA_ERR | ATA_DF)))
4802 /* device stops HSM for abort/error */
4803 qc->err_mask |= AC_ERR_DEV;
4804 else
4805 /* HSM violation. Let EH handle this.
4806 * Phantom devices also trigger this
4807 * condition. Mark hint.
4809 qc->err_mask |= AC_ERR_HSM |
4810 AC_ERR_NODEV_HINT;
4812 ap->hsm_task_state = HSM_ST_ERR;
4813 goto fsm_start;
4816 /* For PIO reads, some devices may ask for
4817 * data transfer (DRQ=1) alone with ERR=1.
4818 * We respect DRQ here and transfer one
4819 * block of junk data before changing the
4820 * hsm_task_state to HSM_ST_ERR.
4822 * For PIO writes, ERR=1 DRQ=1 doesn't make
4823 * sense since the data block has been
4824 * transferred to the device.
4826 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4827 /* data might be corrputed */
4828 qc->err_mask |= AC_ERR_DEV;
4830 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
4831 ata_pio_sectors(qc);
4832 ata_altstatus(ap);
4833 status = ata_wait_idle(ap);
4836 if (status & (ATA_BUSY | ATA_DRQ))
4837 qc->err_mask |= AC_ERR_HSM;
4839 /* ata_pio_sectors() might change the
4840 * state to HSM_ST_LAST. so, the state
4841 * is changed after ata_pio_sectors().
4843 ap->hsm_task_state = HSM_ST_ERR;
4844 goto fsm_start;
4847 ata_pio_sectors(qc);
4849 if (ap->hsm_task_state == HSM_ST_LAST &&
4850 (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
4851 /* all data read */
4852 ata_altstatus(ap);
4853 status = ata_wait_idle(ap);
4854 goto fsm_start;
4858 ata_altstatus(ap); /* flush */
4859 poll_next = 1;
4860 break;
4862 case HSM_ST_LAST:
4863 if (unlikely(!ata_ok(status))) {
4864 qc->err_mask |= __ac_err_mask(status);
4865 ap->hsm_task_state = HSM_ST_ERR;
4866 goto fsm_start;
4869 /* no more data to transfer */
4870 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
4871 ap->print_id, qc->dev->devno, status);
4873 WARN_ON(qc->err_mask);
4875 ap->hsm_task_state = HSM_ST_IDLE;
4877 /* complete taskfile transaction */
4878 ata_hsm_qc_complete(qc, in_wq);
4880 poll_next = 0;
4881 break;
4883 case HSM_ST_ERR:
4884 /* make sure qc->err_mask is available to
4885 * know what's wrong and recover
4887 WARN_ON(qc->err_mask == 0);
4889 ap->hsm_task_state = HSM_ST_IDLE;
4891 /* complete taskfile transaction */
4892 ata_hsm_qc_complete(qc, in_wq);
4894 poll_next = 0;
4895 break;
4896 default:
4897 poll_next = 0;
4898 BUG();
4901 return poll_next;
4904 static void ata_pio_task(struct work_struct *work)
4906 struct ata_port *ap =
4907 container_of(work, struct ata_port, port_task.work);
4908 struct ata_queued_cmd *qc = ap->port_task_data;
4909 u8 status;
4910 int poll_next;
4912 fsm_start:
4913 WARN_ON(ap->hsm_task_state == HSM_ST_IDLE);
4916 * This is purely heuristic. This is a fast path.
4917 * Sometimes when we enter, BSY will be cleared in
4918 * a chk-status or two. If not, the drive is probably seeking
4919 * or something. Snooze for a couple msecs, then
4920 * chk-status again. If still busy, queue delayed work.
4922 status = ata_busy_wait(ap, ATA_BUSY, 5);
4923 if (status & ATA_BUSY) {
4924 msleep(2);
4925 status = ata_busy_wait(ap, ATA_BUSY, 10);
4926 if (status & ATA_BUSY) {
4927 ata_port_queue_task(ap, ata_pio_task, qc, ATA_SHORT_PAUSE);
4928 return;
4932 /* move the HSM */
4933 poll_next = ata_hsm_move(ap, qc, status, 1);
4935 /* another command or interrupt handler
4936 * may be running at this point.
4938 if (poll_next)
4939 goto fsm_start;
4943 * ata_qc_new - Request an available ATA command, for queueing
4944 * @ap: Port associated with device @dev
4945 * @dev: Device from whom we request an available command structure
4947 * LOCKING:
4948 * None.
4951 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
4953 struct ata_queued_cmd *qc = NULL;
4954 unsigned int i;
4956 /* no command while frozen */
4957 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
4958 return NULL;
4960 /* the last tag is reserved for internal command. */
4961 for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
4962 if (!test_and_set_bit(i, &ap->qc_allocated)) {
4963 qc = __ata_qc_from_tag(ap, i);
4964 break;
4967 if (qc)
4968 qc->tag = i;
4970 return qc;
4974 * ata_qc_new_init - Request an available ATA command, and initialize it
4975 * @dev: Device from whom we request an available command structure
4977 * LOCKING:
4978 * None.
4981 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
4983 struct ata_port *ap = dev->ap;
4984 struct ata_queued_cmd *qc;
4986 qc = ata_qc_new(ap);
4987 if (qc) {
4988 qc->scsicmd = NULL;
4989 qc->ap = ap;
4990 qc->dev = dev;
4992 ata_qc_reinit(qc);
4995 return qc;
4999 * ata_qc_free - free unused ata_queued_cmd
5000 * @qc: Command to complete
5002 * Designed to free unused ata_queued_cmd object
5003 * in case something prevents using it.
5005 * LOCKING:
5006 * spin_lock_irqsave(host lock)
5008 void ata_qc_free(struct ata_queued_cmd *qc)
5010 struct ata_port *ap = qc->ap;
5011 unsigned int tag;
5013 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
5015 qc->flags = 0;
5016 tag = qc->tag;
5017 if (likely(ata_tag_valid(tag))) {
5018 qc->tag = ATA_TAG_POISON;
5019 clear_bit(tag, &ap->qc_allocated);
5023 void __ata_qc_complete(struct ata_queued_cmd *qc)
5025 struct ata_port *ap = qc->ap;
5027 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
5028 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
5030 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
5031 ata_sg_clean(qc);
5033 /* command should be marked inactive atomically with qc completion */
5034 if (qc->tf.protocol == ATA_PROT_NCQ)
5035 ap->sactive &= ~(1 << qc->tag);
5036 else
5037 ap->active_tag = ATA_TAG_POISON;
5039 /* atapi: mark qc as inactive to prevent the interrupt handler
5040 * from completing the command twice later, before the error handler
5041 * is called. (when rc != 0 and atapi request sense is needed)
5043 qc->flags &= ~ATA_QCFLAG_ACTIVE;
5044 ap->qc_active &= ~(1 << qc->tag);
5046 /* call completion callback */
5047 qc->complete_fn(qc);
5050 static void fill_result_tf(struct ata_queued_cmd *qc)
5052 struct ata_port *ap = qc->ap;
5054 qc->result_tf.flags = qc->tf.flags;
5055 ap->ops->tf_read(ap, &qc->result_tf);
5059 * ata_qc_complete - Complete an active ATA command
5060 * @qc: Command to complete
5061 * @err_mask: ATA Status register contents
5063 * Indicate to the mid and upper layers that an ATA
5064 * command has completed, with either an ok or not-ok status.
5066 * LOCKING:
5067 * spin_lock_irqsave(host lock)
5069 void ata_qc_complete(struct ata_queued_cmd *qc)
5071 struct ata_port *ap = qc->ap;
5073 /* XXX: New EH and old EH use different mechanisms to
5074 * synchronize EH with regular execution path.
5076 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
5077 * Normal execution path is responsible for not accessing a
5078 * failed qc. libata core enforces the rule by returning NULL
5079 * from ata_qc_from_tag() for failed qcs.
5081 * Old EH depends on ata_qc_complete() nullifying completion
5082 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
5083 * not synchronize with interrupt handler. Only PIO task is
5084 * taken care of.
5086 if (ap->ops->error_handler) {
5087 WARN_ON(ap->pflags & ATA_PFLAG_FROZEN);
5089 if (unlikely(qc->err_mask))
5090 qc->flags |= ATA_QCFLAG_FAILED;
5092 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
5093 if (!ata_tag_internal(qc->tag)) {
5094 /* always fill result TF for failed qc */
5095 fill_result_tf(qc);
5096 ata_qc_schedule_eh(qc);
5097 return;
5101 /* read result TF if requested */
5102 if (qc->flags & ATA_QCFLAG_RESULT_TF)
5103 fill_result_tf(qc);
5105 __ata_qc_complete(qc);
5106 } else {
5107 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
5108 return;
5110 /* read result TF if failed or requested */
5111 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
5112 fill_result_tf(qc);
5114 __ata_qc_complete(qc);
5119 * ata_qc_complete_multiple - Complete multiple qcs successfully
5120 * @ap: port in question
5121 * @qc_active: new qc_active mask
5122 * @finish_qc: LLDD callback invoked before completing a qc
5124 * Complete in-flight commands. This functions is meant to be
5125 * called from low-level driver's interrupt routine to complete
5126 * requests normally. ap->qc_active and @qc_active is compared
5127 * and commands are completed accordingly.
5129 * LOCKING:
5130 * spin_lock_irqsave(host lock)
5132 * RETURNS:
5133 * Number of completed commands on success, -errno otherwise.
5135 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active,
5136 void (*finish_qc)(struct ata_queued_cmd *))
5138 int nr_done = 0;
5139 u32 done_mask;
5140 int i;
5142 done_mask = ap->qc_active ^ qc_active;
5144 if (unlikely(done_mask & qc_active)) {
5145 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
5146 "(%08x->%08x)\n", ap->qc_active, qc_active);
5147 return -EINVAL;
5150 for (i = 0; i < ATA_MAX_QUEUE; i++) {
5151 struct ata_queued_cmd *qc;
5153 if (!(done_mask & (1 << i)))
5154 continue;
5156 if ((qc = ata_qc_from_tag(ap, i))) {
5157 if (finish_qc)
5158 finish_qc(qc);
5159 ata_qc_complete(qc);
5160 nr_done++;
5164 return nr_done;
5167 static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
5169 struct ata_port *ap = qc->ap;
5171 switch (qc->tf.protocol) {
5172 case ATA_PROT_NCQ:
5173 case ATA_PROT_DMA:
5174 case ATA_PROT_ATAPI_DMA:
5175 return 1;
5177 case ATA_PROT_ATAPI:
5178 case ATA_PROT_PIO:
5179 if (ap->flags & ATA_FLAG_PIO_DMA)
5180 return 1;
5182 /* fall through */
5184 default:
5185 return 0;
5188 /* never reached */
5192 * ata_qc_issue - issue taskfile to device
5193 * @qc: command to issue to device
5195 * Prepare an ATA command to submission to device.
5196 * This includes mapping the data into a DMA-able
5197 * area, filling in the S/G table, and finally
5198 * writing the taskfile to hardware, starting the command.
5200 * LOCKING:
5201 * spin_lock_irqsave(host lock)
5203 void ata_qc_issue(struct ata_queued_cmd *qc)
5205 struct ata_port *ap = qc->ap;
5207 /* Make sure only one non-NCQ command is outstanding. The
5208 * check is skipped for old EH because it reuses active qc to
5209 * request ATAPI sense.
5211 WARN_ON(ap->ops->error_handler && ata_tag_valid(ap->active_tag));
5213 if (qc->tf.protocol == ATA_PROT_NCQ) {
5214 WARN_ON(ap->sactive & (1 << qc->tag));
5215 ap->sactive |= 1 << qc->tag;
5216 } else {
5217 WARN_ON(ap->sactive);
5218 ap->active_tag = qc->tag;
5221 qc->flags |= ATA_QCFLAG_ACTIVE;
5222 ap->qc_active |= 1 << qc->tag;
5224 if (ata_should_dma_map(qc)) {
5225 if (qc->flags & ATA_QCFLAG_SG) {
5226 if (ata_sg_setup(qc))
5227 goto sg_err;
5228 } else if (qc->flags & ATA_QCFLAG_SINGLE) {
5229 if (ata_sg_setup_one(qc))
5230 goto sg_err;
5232 } else {
5233 qc->flags &= ~ATA_QCFLAG_DMAMAP;
5236 ap->ops->qc_prep(qc);
5238 qc->err_mask |= ap->ops->qc_issue(qc);
5239 if (unlikely(qc->err_mask))
5240 goto err;
5241 return;
5243 sg_err:
5244 qc->flags &= ~ATA_QCFLAG_DMAMAP;
5245 qc->err_mask |= AC_ERR_SYSTEM;
5246 err:
5247 ata_qc_complete(qc);
5251 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
5252 * @qc: command to issue to device
5254 * Using various libata functions and hooks, this function
5255 * starts an ATA command. ATA commands are grouped into
5256 * classes called "protocols", and issuing each type of protocol
5257 * is slightly different.
5259 * May be used as the qc_issue() entry in ata_port_operations.
5261 * LOCKING:
5262 * spin_lock_irqsave(host lock)
5264 * RETURNS:
5265 * Zero on success, AC_ERR_* mask on failure
5268 unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
5270 struct ata_port *ap = qc->ap;
5272 /* Use polling pio if the LLD doesn't handle
5273 * interrupt driven pio and atapi CDB interrupt.
5275 if (ap->flags & ATA_FLAG_PIO_POLLING) {
5276 switch (qc->tf.protocol) {
5277 case ATA_PROT_PIO:
5278 case ATA_PROT_NODATA:
5279 case ATA_PROT_ATAPI:
5280 case ATA_PROT_ATAPI_NODATA:
5281 qc->tf.flags |= ATA_TFLAG_POLLING;
5282 break;
5283 case ATA_PROT_ATAPI_DMA:
5284 if (qc->dev->flags & ATA_DFLAG_CDB_INTR)
5285 /* see ata_dma_blacklisted() */
5286 BUG();
5287 break;
5288 default:
5289 break;
5293 /* Some controllers show flaky interrupt behavior after
5294 * setting xfer mode. Use polling instead.
5296 if (unlikely(qc->tf.command == ATA_CMD_SET_FEATURES &&
5297 qc->tf.feature == SETFEATURES_XFER) &&
5298 (ap->flags & ATA_FLAG_SETXFER_POLLING))
5299 qc->tf.flags |= ATA_TFLAG_POLLING;
5301 /* select the device */
5302 ata_dev_select(ap, qc->dev->devno, 1, 0);
5304 /* start the command */
5305 switch (qc->tf.protocol) {
5306 case ATA_PROT_NODATA:
5307 if (qc->tf.flags & ATA_TFLAG_POLLING)
5308 ata_qc_set_polling(qc);
5310 ata_tf_to_host(ap, &qc->tf);
5311 ap->hsm_task_state = HSM_ST_LAST;
5313 if (qc->tf.flags & ATA_TFLAG_POLLING)
5314 ata_port_queue_task(ap, ata_pio_task, qc, 0);
5316 break;
5318 case ATA_PROT_DMA:
5319 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
5321 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
5322 ap->ops->bmdma_setup(qc); /* set up bmdma */
5323 ap->ops->bmdma_start(qc); /* initiate bmdma */
5324 ap->hsm_task_state = HSM_ST_LAST;
5325 break;
5327 case ATA_PROT_PIO:
5328 if (qc->tf.flags & ATA_TFLAG_POLLING)
5329 ata_qc_set_polling(qc);
5331 ata_tf_to_host(ap, &qc->tf);
5333 if (qc->tf.flags & ATA_TFLAG_WRITE) {
5334 /* PIO data out protocol */
5335 ap->hsm_task_state = HSM_ST_FIRST;
5336 ata_port_queue_task(ap, ata_pio_task, qc, 0);
5338 /* always send first data block using
5339 * the ata_pio_task() codepath.
5341 } else {
5342 /* PIO data in protocol */
5343 ap->hsm_task_state = HSM_ST;
5345 if (qc->tf.flags & ATA_TFLAG_POLLING)
5346 ata_port_queue_task(ap, ata_pio_task, qc, 0);
5348 /* if polling, ata_pio_task() handles the rest.
5349 * otherwise, interrupt handler takes over from here.
5353 break;
5355 case ATA_PROT_ATAPI:
5356 case ATA_PROT_ATAPI_NODATA:
5357 if (qc->tf.flags & ATA_TFLAG_POLLING)
5358 ata_qc_set_polling(qc);
5360 ata_tf_to_host(ap, &qc->tf);
5362 ap->hsm_task_state = HSM_ST_FIRST;
5364 /* send cdb by polling if no cdb interrupt */
5365 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
5366 (qc->tf.flags & ATA_TFLAG_POLLING))
5367 ata_port_queue_task(ap, ata_pio_task, qc, 0);
5368 break;
5370 case ATA_PROT_ATAPI_DMA:
5371 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
5373 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
5374 ap->ops->bmdma_setup(qc); /* set up bmdma */
5375 ap->hsm_task_state = HSM_ST_FIRST;
5377 /* send cdb by polling if no cdb interrupt */
5378 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
5379 ata_port_queue_task(ap, ata_pio_task, qc, 0);
5380 break;
5382 default:
5383 WARN_ON(1);
5384 return AC_ERR_SYSTEM;
5387 return 0;
5391 * ata_host_intr - Handle host interrupt for given (port, task)
5392 * @ap: Port on which interrupt arrived (possibly...)
5393 * @qc: Taskfile currently active in engine
5395 * Handle host interrupt for given queued command. Currently,
5396 * only DMA interrupts are handled. All other commands are
5397 * handled via polling with interrupts disabled (nIEN bit).
5399 * LOCKING:
5400 * spin_lock_irqsave(host lock)
5402 * RETURNS:
5403 * One if interrupt was handled, zero if not (shared irq).
5406 inline unsigned int ata_host_intr (struct ata_port *ap,
5407 struct ata_queued_cmd *qc)
5409 struct ata_eh_info *ehi = &ap->eh_info;
5410 u8 status, host_stat = 0;
5412 VPRINTK("ata%u: protocol %d task_state %d\n",
5413 ap->print_id, qc->tf.protocol, ap->hsm_task_state);
5415 /* Check whether we are expecting interrupt in this state */
5416 switch (ap->hsm_task_state) {
5417 case HSM_ST_FIRST:
5418 /* Some pre-ATAPI-4 devices assert INTRQ
5419 * at this state when ready to receive CDB.
5422 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
5423 * The flag was turned on only for atapi devices.
5424 * No need to check is_atapi_taskfile(&qc->tf) again.
5426 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
5427 goto idle_irq;
5428 break;
5429 case HSM_ST_LAST:
5430 if (qc->tf.protocol == ATA_PROT_DMA ||
5431 qc->tf.protocol == ATA_PROT_ATAPI_DMA) {
5432 /* check status of DMA engine */
5433 host_stat = ap->ops->bmdma_status(ap);
5434 VPRINTK("ata%u: host_stat 0x%X\n",
5435 ap->print_id, host_stat);
5437 /* if it's not our irq... */
5438 if (!(host_stat & ATA_DMA_INTR))
5439 goto idle_irq;
5441 /* before we do anything else, clear DMA-Start bit */
5442 ap->ops->bmdma_stop(qc);
5444 if (unlikely(host_stat & ATA_DMA_ERR)) {
5445 /* error when transfering data to/from memory */
5446 qc->err_mask |= AC_ERR_HOST_BUS;
5447 ap->hsm_task_state = HSM_ST_ERR;
5450 break;
5451 case HSM_ST:
5452 break;
5453 default:
5454 goto idle_irq;
5457 /* check altstatus */
5458 status = ata_altstatus(ap);
5459 if (status & ATA_BUSY)
5460 goto idle_irq;
5462 /* check main status, clearing INTRQ */
5463 status = ata_chk_status(ap);
5464 if (unlikely(status & ATA_BUSY))
5465 goto idle_irq;
5467 /* ack bmdma irq events */
5468 ap->ops->irq_clear(ap);
5470 ata_hsm_move(ap, qc, status, 0);
5472 if (unlikely(qc->err_mask) && (qc->tf.protocol == ATA_PROT_DMA ||
5473 qc->tf.protocol == ATA_PROT_ATAPI_DMA))
5474 ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
5476 return 1; /* irq handled */
5478 idle_irq:
5479 ap->stats.idle_irq++;
5481 #ifdef ATA_IRQ_TRAP
5482 if ((ap->stats.idle_irq % 1000) == 0) {
5483 ap->ops->irq_ack(ap, 0); /* debug trap */
5484 ata_port_printk(ap, KERN_WARNING, "irq trap\n");
5485 return 1;
5487 #endif
5488 return 0; /* irq not handled */
5492 * ata_interrupt - Default ATA host interrupt handler
5493 * @irq: irq line (unused)
5494 * @dev_instance: pointer to our ata_host information structure
5496 * Default interrupt handler for PCI IDE devices. Calls
5497 * ata_host_intr() for each port that is not disabled.
5499 * LOCKING:
5500 * Obtains host lock during operation.
5502 * RETURNS:
5503 * IRQ_NONE or IRQ_HANDLED.
5506 irqreturn_t ata_interrupt (int irq, void *dev_instance)
5508 struct ata_host *host = dev_instance;
5509 unsigned int i;
5510 unsigned int handled = 0;
5511 unsigned long flags;
5513 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
5514 spin_lock_irqsave(&host->lock, flags);
5516 for (i = 0; i < host->n_ports; i++) {
5517 struct ata_port *ap;
5519 ap = host->ports[i];
5520 if (ap &&
5521 !(ap->flags & ATA_FLAG_DISABLED)) {
5522 struct ata_queued_cmd *qc;
5524 qc = ata_qc_from_tag(ap, ap->active_tag);
5525 if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) &&
5526 (qc->flags & ATA_QCFLAG_ACTIVE))
5527 handled |= ata_host_intr(ap, qc);
5531 spin_unlock_irqrestore(&host->lock, flags);
5533 return IRQ_RETVAL(handled);
5537 * sata_scr_valid - test whether SCRs are accessible
5538 * @ap: ATA port to test SCR accessibility for
5540 * Test whether SCRs are accessible for @ap.
5542 * LOCKING:
5543 * None.
5545 * RETURNS:
5546 * 1 if SCRs are accessible, 0 otherwise.
5548 int sata_scr_valid(struct ata_port *ap)
5550 return ap->cbl == ATA_CBL_SATA && ap->ops->scr_read;
5554 * sata_scr_read - read SCR register of the specified port
5555 * @ap: ATA port to read SCR for
5556 * @reg: SCR to read
5557 * @val: Place to store read value
5559 * Read SCR register @reg of @ap into *@val. This function is
5560 * guaranteed to succeed if the cable type of the port is SATA
5561 * and the port implements ->scr_read.
5563 * LOCKING:
5564 * None.
5566 * RETURNS:
5567 * 0 on success, negative errno on failure.
5569 int sata_scr_read(struct ata_port *ap, int reg, u32 *val)
5571 if (sata_scr_valid(ap)) {
5572 *val = ap->ops->scr_read(ap, reg);
5573 return 0;
5575 return -EOPNOTSUPP;
5579 * sata_scr_write - write SCR register of the specified port
5580 * @ap: ATA port to write SCR for
5581 * @reg: SCR to write
5582 * @val: value to write
5584 * Write @val to SCR register @reg of @ap. This function is
5585 * guaranteed to succeed if the cable type of the port is SATA
5586 * and the port implements ->scr_read.
5588 * LOCKING:
5589 * None.
5591 * RETURNS:
5592 * 0 on success, negative errno on failure.
5594 int sata_scr_write(struct ata_port *ap, int reg, u32 val)
5596 if (sata_scr_valid(ap)) {
5597 ap->ops->scr_write(ap, reg, val);
5598 return 0;
5600 return -EOPNOTSUPP;
5604 * sata_scr_write_flush - write SCR register of the specified port and flush
5605 * @ap: ATA port to write SCR for
5606 * @reg: SCR to write
5607 * @val: value to write
5609 * This function is identical to sata_scr_write() except that this
5610 * function performs flush after writing to the register.
5612 * LOCKING:
5613 * None.
5615 * RETURNS:
5616 * 0 on success, negative errno on failure.
5618 int sata_scr_write_flush(struct ata_port *ap, int reg, u32 val)
5620 if (sata_scr_valid(ap)) {
5621 ap->ops->scr_write(ap, reg, val);
5622 ap->ops->scr_read(ap, reg);
5623 return 0;
5625 return -EOPNOTSUPP;
5629 * ata_port_online - test whether the given port is online
5630 * @ap: ATA port to test
5632 * Test whether @ap is online. Note that this function returns 0
5633 * if online status of @ap cannot be obtained, so
5634 * ata_port_online(ap) != !ata_port_offline(ap).
5636 * LOCKING:
5637 * None.
5639 * RETURNS:
5640 * 1 if the port online status is available and online.
5642 int ata_port_online(struct ata_port *ap)
5644 u32 sstatus;
5646 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) == 0x3)
5647 return 1;
5648 return 0;
5652 * ata_port_offline - test whether the given port is offline
5653 * @ap: ATA port to test
5655 * Test whether @ap is offline. Note that this function returns
5656 * 0 if offline status of @ap cannot be obtained, so
5657 * ata_port_online(ap) != !ata_port_offline(ap).
5659 * LOCKING:
5660 * None.
5662 * RETURNS:
5663 * 1 if the port offline status is available and offline.
5665 int ata_port_offline(struct ata_port *ap)
5667 u32 sstatus;
5669 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) != 0x3)
5670 return 1;
5671 return 0;
5674 int ata_flush_cache(struct ata_device *dev)
5676 unsigned int err_mask;
5677 u8 cmd;
5679 if (!ata_try_flush_cache(dev))
5680 return 0;
5682 if (dev->flags & ATA_DFLAG_FLUSH_EXT)
5683 cmd = ATA_CMD_FLUSH_EXT;
5684 else
5685 cmd = ATA_CMD_FLUSH;
5687 err_mask = ata_do_simple_cmd(dev, cmd);
5688 if (err_mask) {
5689 ata_dev_printk(dev, KERN_ERR, "failed to flush cache\n");
5690 return -EIO;
5693 return 0;
5696 #ifdef CONFIG_PM
5697 static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg,
5698 unsigned int action, unsigned int ehi_flags,
5699 int wait)
5701 unsigned long flags;
5702 int i, rc;
5704 for (i = 0; i < host->n_ports; i++) {
5705 struct ata_port *ap = host->ports[i];
5707 /* Previous resume operation might still be in
5708 * progress. Wait for PM_PENDING to clear.
5710 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5711 ata_port_wait_eh(ap);
5712 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5715 /* request PM ops to EH */
5716 spin_lock_irqsave(ap->lock, flags);
5718 ap->pm_mesg = mesg;
5719 if (wait) {
5720 rc = 0;
5721 ap->pm_result = &rc;
5724 ap->pflags |= ATA_PFLAG_PM_PENDING;
5725 ap->eh_info.action |= action;
5726 ap->eh_info.flags |= ehi_flags;
5728 ata_port_schedule_eh(ap);
5730 spin_unlock_irqrestore(ap->lock, flags);
5732 /* wait and check result */
5733 if (wait) {
5734 ata_port_wait_eh(ap);
5735 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5736 if (rc)
5737 return rc;
5741 return 0;
5745 * ata_host_suspend - suspend host
5746 * @host: host to suspend
5747 * @mesg: PM message
5749 * Suspend @host. Actual operation is performed by EH. This
5750 * function requests EH to perform PM operations and waits for EH
5751 * to finish.
5753 * LOCKING:
5754 * Kernel thread context (may sleep).
5756 * RETURNS:
5757 * 0 on success, -errno on failure.
5759 int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
5761 int i, j, rc;
5763 rc = ata_host_request_pm(host, mesg, 0, ATA_EHI_QUIET, 1);
5764 if (rc)
5765 goto fail;
5767 /* EH is quiescent now. Fail if we have any ready device.
5768 * This happens if hotplug occurs between completion of device
5769 * suspension and here.
5771 for (i = 0; i < host->n_ports; i++) {
5772 struct ata_port *ap = host->ports[i];
5774 for (j = 0; j < ATA_MAX_DEVICES; j++) {
5775 struct ata_device *dev = &ap->device[j];
5777 if (ata_dev_ready(dev)) {
5778 ata_port_printk(ap, KERN_WARNING,
5779 "suspend failed, device %d "
5780 "still active\n", dev->devno);
5781 rc = -EBUSY;
5782 goto fail;
5787 host->dev->power.power_state = mesg;
5788 return 0;
5790 fail:
5791 ata_host_resume(host);
5792 return rc;
5796 * ata_host_resume - resume host
5797 * @host: host to resume
5799 * Resume @host. Actual operation is performed by EH. This
5800 * function requests EH to perform PM operations and returns.
5801 * Note that all resume operations are performed parallely.
5803 * LOCKING:
5804 * Kernel thread context (may sleep).
5806 void ata_host_resume(struct ata_host *host)
5808 ata_host_request_pm(host, PMSG_ON, ATA_EH_SOFTRESET,
5809 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0);
5810 host->dev->power.power_state = PMSG_ON;
5812 #endif
5815 * ata_port_start - Set port up for dma.
5816 * @ap: Port to initialize
5818 * Called just after data structures for each port are
5819 * initialized. Allocates space for PRD table.
5821 * May be used as the port_start() entry in ata_port_operations.
5823 * LOCKING:
5824 * Inherited from caller.
5826 int ata_port_start(struct ata_port *ap)
5828 struct device *dev = ap->dev;
5829 int rc;
5831 ap->prd = dmam_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma,
5832 GFP_KERNEL);
5833 if (!ap->prd)
5834 return -ENOMEM;
5836 rc = ata_pad_alloc(ap, dev);
5837 if (rc)
5838 return rc;
5840 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd,
5841 (unsigned long long)ap->prd_dma);
5842 return 0;
5846 * ata_dev_init - Initialize an ata_device structure
5847 * @dev: Device structure to initialize
5849 * Initialize @dev in preparation for probing.
5851 * LOCKING:
5852 * Inherited from caller.
5854 void ata_dev_init(struct ata_device *dev)
5856 struct ata_port *ap = dev->ap;
5857 unsigned long flags;
5859 /* SATA spd limit is bound to the first device */
5860 ap->sata_spd_limit = ap->hw_sata_spd_limit;
5862 /* High bits of dev->flags are used to record warm plug
5863 * requests which occur asynchronously. Synchronize using
5864 * host lock.
5866 spin_lock_irqsave(ap->lock, flags);
5867 dev->flags &= ~ATA_DFLAG_INIT_MASK;
5868 spin_unlock_irqrestore(ap->lock, flags);
5870 memset((void *)dev + ATA_DEVICE_CLEAR_OFFSET, 0,
5871 sizeof(*dev) - ATA_DEVICE_CLEAR_OFFSET);
5872 dev->pio_mask = UINT_MAX;
5873 dev->mwdma_mask = UINT_MAX;
5874 dev->udma_mask = UINT_MAX;
5878 * ata_port_alloc - allocate and initialize basic ATA port resources
5879 * @host: ATA host this allocated port belongs to
5881 * Allocate and initialize basic ATA port resources.
5883 * RETURNS:
5884 * Allocate ATA port on success, NULL on failure.
5886 * LOCKING:
5887 * Inherited from calling layer (may sleep).
5889 struct ata_port *ata_port_alloc(struct ata_host *host)
5891 struct ata_port *ap;
5892 unsigned int i;
5894 DPRINTK("ENTER\n");
5896 ap = kzalloc(sizeof(*ap), GFP_KERNEL);
5897 if (!ap)
5898 return NULL;
5900 ap->lock = &host->lock;
5901 ap->flags = ATA_FLAG_DISABLED;
5902 ap->print_id = -1;
5903 ap->ctl = ATA_DEVCTL_OBS;
5904 ap->host = host;
5905 ap->dev = host->dev;
5907 ap->hw_sata_spd_limit = UINT_MAX;
5908 ap->active_tag = ATA_TAG_POISON;
5909 ap->last_ctl = 0xFF;
5911 #if defined(ATA_VERBOSE_DEBUG)
5912 /* turn on all debugging levels */
5913 ap->msg_enable = 0x00FF;
5914 #elif defined(ATA_DEBUG)
5915 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
5916 #else
5917 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
5918 #endif
5920 INIT_DELAYED_WORK(&ap->port_task, NULL);
5921 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
5922 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
5923 INIT_LIST_HEAD(&ap->eh_done_q);
5924 init_waitqueue_head(&ap->eh_wait_q);
5926 ap->cbl = ATA_CBL_NONE;
5928 for (i = 0; i < ATA_MAX_DEVICES; i++) {
5929 struct ata_device *dev = &ap->device[i];
5930 dev->ap = ap;
5931 dev->devno = i;
5932 ata_dev_init(dev);
5935 #ifdef ATA_IRQ_TRAP
5936 ap->stats.unhandled_irq = 1;
5937 ap->stats.idle_irq = 1;
5938 #endif
5939 return ap;
5942 static void ata_host_release(struct device *gendev, void *res)
5944 struct ata_host *host = dev_get_drvdata(gendev);
5945 int i;
5947 for (i = 0; i < host->n_ports; i++) {
5948 struct ata_port *ap = host->ports[i];
5950 if (!ap)
5951 continue;
5953 if ((host->flags & ATA_HOST_STARTED) && ap->ops->port_stop)
5954 ap->ops->port_stop(ap);
5957 if ((host->flags & ATA_HOST_STARTED) && host->ops->host_stop)
5958 host->ops->host_stop(host);
5960 for (i = 0; i < host->n_ports; i++) {
5961 struct ata_port *ap = host->ports[i];
5963 if (!ap)
5964 continue;
5966 if (ap->scsi_host)
5967 scsi_host_put(ap->scsi_host);
5969 kfree(ap);
5970 host->ports[i] = NULL;
5973 dev_set_drvdata(gendev, NULL);
5977 * ata_host_alloc - allocate and init basic ATA host resources
5978 * @dev: generic device this host is associated with
5979 * @max_ports: maximum number of ATA ports associated with this host
5981 * Allocate and initialize basic ATA host resources. LLD calls
5982 * this function to allocate a host, initializes it fully and
5983 * attaches it using ata_host_register().
5985 * @max_ports ports are allocated and host->n_ports is
5986 * initialized to @max_ports. The caller is allowed to decrease
5987 * host->n_ports before calling ata_host_register(). The unused
5988 * ports will be automatically freed on registration.
5990 * RETURNS:
5991 * Allocate ATA host on success, NULL on failure.
5993 * LOCKING:
5994 * Inherited from calling layer (may sleep).
5996 struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
5998 struct ata_host *host;
5999 size_t sz;
6000 int i;
6002 DPRINTK("ENTER\n");
6004 if (!devres_open_group(dev, NULL, GFP_KERNEL))
6005 return NULL;
6007 /* alloc a container for our list of ATA ports (buses) */
6008 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
6009 /* alloc a container for our list of ATA ports (buses) */
6010 host = devres_alloc(ata_host_release, sz, GFP_KERNEL);
6011 if (!host)
6012 goto err_out;
6014 devres_add(dev, host);
6015 dev_set_drvdata(dev, host);
6017 spin_lock_init(&host->lock);
6018 host->dev = dev;
6019 host->n_ports = max_ports;
6021 /* allocate ports bound to this host */
6022 for (i = 0; i < max_ports; i++) {
6023 struct ata_port *ap;
6025 ap = ata_port_alloc(host);
6026 if (!ap)
6027 goto err_out;
6029 ap->port_no = i;
6030 host->ports[i] = ap;
6033 devres_remove_group(dev, NULL);
6034 return host;
6036 err_out:
6037 devres_release_group(dev, NULL);
6038 return NULL;
6042 * ata_host_alloc_pinfo - alloc host and init with port_info array
6043 * @dev: generic device this host is associated with
6044 * @ppi: array of ATA port_info to initialize host with
6045 * @n_ports: number of ATA ports attached to this host
6047 * Allocate ATA host and initialize with info from @ppi. If NULL
6048 * terminated, @ppi may contain fewer entries than @n_ports. The
6049 * last entry will be used for the remaining ports.
6051 * RETURNS:
6052 * Allocate ATA host on success, NULL on failure.
6054 * LOCKING:
6055 * Inherited from calling layer (may sleep).
6057 struct ata_host *ata_host_alloc_pinfo(struct device *dev,
6058 const struct ata_port_info * const * ppi,
6059 int n_ports)
6061 const struct ata_port_info *pi;
6062 struct ata_host *host;
6063 int i, j;
6065 host = ata_host_alloc(dev, n_ports);
6066 if (!host)
6067 return NULL;
6069 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
6070 struct ata_port *ap = host->ports[i];
6072 if (ppi[j])
6073 pi = ppi[j++];
6075 ap->pio_mask = pi->pio_mask;
6076 ap->mwdma_mask = pi->mwdma_mask;
6077 ap->udma_mask = pi->udma_mask;
6078 ap->flags |= pi->flags;
6079 ap->ops = pi->port_ops;
6081 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
6082 host->ops = pi->port_ops;
6083 if (!host->private_data && pi->private_data)
6084 host->private_data = pi->private_data;
6087 return host;
6091 * ata_host_start - start and freeze ports of an ATA host
6092 * @host: ATA host to start ports for
6094 * Start and then freeze ports of @host. Started status is
6095 * recorded in host->flags, so this function can be called
6096 * multiple times. Ports are guaranteed to get started only
6097 * once. If host->ops isn't initialized yet, its set to the
6098 * first non-dummy port ops.
6100 * LOCKING:
6101 * Inherited from calling layer (may sleep).
6103 * RETURNS:
6104 * 0 if all ports are started successfully, -errno otherwise.
6106 int ata_host_start(struct ata_host *host)
6108 int i, rc;
6110 if (host->flags & ATA_HOST_STARTED)
6111 return 0;
6113 for (i = 0; i < host->n_ports; i++) {
6114 struct ata_port *ap = host->ports[i];
6116 if (!host->ops && !ata_port_is_dummy(ap))
6117 host->ops = ap->ops;
6119 if (ap->ops->port_start) {
6120 rc = ap->ops->port_start(ap);
6121 if (rc) {
6122 ata_port_printk(ap, KERN_ERR, "failed to "
6123 "start port (errno=%d)\n", rc);
6124 goto err_out;
6128 ata_eh_freeze_port(ap);
6131 host->flags |= ATA_HOST_STARTED;
6132 return 0;
6134 err_out:
6135 while (--i >= 0) {
6136 struct ata_port *ap = host->ports[i];
6138 if (ap->ops->port_stop)
6139 ap->ops->port_stop(ap);
6141 return rc;
6145 * ata_sas_host_init - Initialize a host struct
6146 * @host: host to initialize
6147 * @dev: device host is attached to
6148 * @flags: host flags
6149 * @ops: port_ops
6151 * LOCKING:
6152 * PCI/etc. bus probe sem.
6155 /* KILLME - the only user left is ipr */
6156 void ata_host_init(struct ata_host *host, struct device *dev,
6157 unsigned long flags, const struct ata_port_operations *ops)
6159 spin_lock_init(&host->lock);
6160 host->dev = dev;
6161 host->flags = flags;
6162 host->ops = ops;
6166 * ata_host_register - register initialized ATA host
6167 * @host: ATA host to register
6168 * @sht: template for SCSI host
6170 * Register initialized ATA host. @host is allocated using
6171 * ata_host_alloc() and fully initialized by LLD. This function
6172 * starts ports, registers @host with ATA and SCSI layers and
6173 * probe registered devices.
6175 * LOCKING:
6176 * Inherited from calling layer (may sleep).
6178 * RETURNS:
6179 * 0 on success, -errno otherwise.
6181 int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
6183 int i, rc;
6185 /* host must have been started */
6186 if (!(host->flags & ATA_HOST_STARTED)) {
6187 dev_printk(KERN_ERR, host->dev,
6188 "BUG: trying to register unstarted host\n");
6189 WARN_ON(1);
6190 return -EINVAL;
6193 /* Blow away unused ports. This happens when LLD can't
6194 * determine the exact number of ports to allocate at
6195 * allocation time.
6197 for (i = host->n_ports; host->ports[i]; i++)
6198 kfree(host->ports[i]);
6200 /* give ports names and add SCSI hosts */
6201 for (i = 0; i < host->n_ports; i++)
6202 host->ports[i]->print_id = ata_print_id++;
6204 rc = ata_scsi_add_hosts(host, sht);
6205 if (rc)
6206 return rc;
6208 /* set cable, sata_spd_limit and report */
6209 for (i = 0; i < host->n_ports; i++) {
6210 struct ata_port *ap = host->ports[i];
6211 int irq_line;
6212 u32 scontrol;
6213 unsigned long xfer_mask;
6215 /* set SATA cable type if still unset */
6216 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
6217 ap->cbl = ATA_CBL_SATA;
6219 /* init sata_spd_limit to the current value */
6220 if (sata_scr_read(ap, SCR_CONTROL, &scontrol) == 0) {
6221 int spd = (scontrol >> 4) & 0xf;
6222 ap->hw_sata_spd_limit &= (1 << spd) - 1;
6224 ap->sata_spd_limit = ap->hw_sata_spd_limit;
6226 /* report the secondary IRQ for second channel legacy */
6227 irq_line = host->irq;
6228 if (i == 1 && host->irq2)
6229 irq_line = host->irq2;
6231 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
6232 ap->udma_mask);
6234 /* print per-port info to dmesg */
6235 if (!ata_port_is_dummy(ap))
6236 ata_port_printk(ap, KERN_INFO, "%cATA max %s cmd 0x%p "
6237 "ctl 0x%p bmdma 0x%p irq %d\n",
6238 ap->cbl == ATA_CBL_SATA ? 'S' : 'P',
6239 ata_mode_string(xfer_mask),
6240 ap->ioaddr.cmd_addr,
6241 ap->ioaddr.ctl_addr,
6242 ap->ioaddr.bmdma_addr,
6243 irq_line);
6244 else
6245 ata_port_printk(ap, KERN_INFO, "DUMMY\n");
6248 /* perform each probe synchronously */
6249 DPRINTK("probe begin\n");
6250 for (i = 0; i < host->n_ports; i++) {
6251 struct ata_port *ap = host->ports[i];
6252 int rc;
6254 /* probe */
6255 if (ap->ops->error_handler) {
6256 struct ata_eh_info *ehi = &ap->eh_info;
6257 unsigned long flags;
6259 ata_port_probe(ap);
6261 /* kick EH for boot probing */
6262 spin_lock_irqsave(ap->lock, flags);
6264 ehi->probe_mask = (1 << ATA_MAX_DEVICES) - 1;
6265 ehi->action |= ATA_EH_SOFTRESET;
6266 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
6268 ap->pflags |= ATA_PFLAG_LOADING;
6269 ata_port_schedule_eh(ap);
6271 spin_unlock_irqrestore(ap->lock, flags);
6273 /* wait for EH to finish */
6274 ata_port_wait_eh(ap);
6275 } else {
6276 DPRINTK("ata%u: bus probe begin\n", ap->print_id);
6277 rc = ata_bus_probe(ap);
6278 DPRINTK("ata%u: bus probe end\n", ap->print_id);
6280 if (rc) {
6281 /* FIXME: do something useful here?
6282 * Current libata behavior will
6283 * tear down everything when
6284 * the module is removed
6285 * or the h/w is unplugged.
6291 /* probes are done, now scan each port's disk(s) */
6292 DPRINTK("host probe begin\n");
6293 for (i = 0; i < host->n_ports; i++) {
6294 struct ata_port *ap = host->ports[i];
6296 ata_scsi_scan_host(ap);
6299 return 0;
6303 * ata_host_activate - start host, request IRQ and register it
6304 * @host: target ATA host
6305 * @irq: IRQ to request
6306 * @irq_handler: irq_handler used when requesting IRQ
6307 * @irq_flags: irq_flags used when requesting IRQ
6308 * @sht: scsi_host_template to use when registering the host
6310 * After allocating an ATA host and initializing it, most libata
6311 * LLDs perform three steps to activate the host - start host,
6312 * request IRQ and register it. This helper takes necessasry
6313 * arguments and performs the three steps in one go.
6315 * LOCKING:
6316 * Inherited from calling layer (may sleep).
6318 * RETURNS:
6319 * 0 on success, -errno otherwise.
6321 int ata_host_activate(struct ata_host *host, int irq,
6322 irq_handler_t irq_handler, unsigned long irq_flags,
6323 struct scsi_host_template *sht)
6325 int rc;
6327 rc = ata_host_start(host);
6328 if (rc)
6329 return rc;
6331 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
6332 dev_driver_string(host->dev), host);
6333 if (rc)
6334 return rc;
6336 rc = ata_host_register(host, sht);
6337 /* if failed, just free the IRQ and leave ports alone */
6338 if (rc)
6339 devm_free_irq(host->dev, irq, host);
6341 return rc;
6345 * ata_port_detach - Detach ATA port in prepration of device removal
6346 * @ap: ATA port to be detached
6348 * Detach all ATA devices and the associated SCSI devices of @ap;
6349 * then, remove the associated SCSI host. @ap is guaranteed to
6350 * be quiescent on return from this function.
6352 * LOCKING:
6353 * Kernel thread context (may sleep).
6355 void ata_port_detach(struct ata_port *ap)
6357 unsigned long flags;
6358 int i;
6360 if (!ap->ops->error_handler)
6361 goto skip_eh;
6363 /* tell EH we're leaving & flush EH */
6364 spin_lock_irqsave(ap->lock, flags);
6365 ap->pflags |= ATA_PFLAG_UNLOADING;
6366 spin_unlock_irqrestore(ap->lock, flags);
6368 ata_port_wait_eh(ap);
6370 /* EH is now guaranteed to see UNLOADING, so no new device
6371 * will be attached. Disable all existing devices.
6373 spin_lock_irqsave(ap->lock, flags);
6375 for (i = 0; i < ATA_MAX_DEVICES; i++)
6376 ata_dev_disable(&ap->device[i]);
6378 spin_unlock_irqrestore(ap->lock, flags);
6380 /* Final freeze & EH. All in-flight commands are aborted. EH
6381 * will be skipped and retrials will be terminated with bad
6382 * target.
6384 spin_lock_irqsave(ap->lock, flags);
6385 ata_port_freeze(ap); /* won't be thawed */
6386 spin_unlock_irqrestore(ap->lock, flags);
6388 ata_port_wait_eh(ap);
6390 /* Flush hotplug task. The sequence is similar to
6391 * ata_port_flush_task().
6393 flush_workqueue(ata_aux_wq);
6394 cancel_delayed_work(&ap->hotplug_task);
6395 flush_workqueue(ata_aux_wq);
6397 skip_eh:
6398 /* remove the associated SCSI host */
6399 scsi_remove_host(ap->scsi_host);
6403 * ata_host_detach - Detach all ports of an ATA host
6404 * @host: Host to detach
6406 * Detach all ports of @host.
6408 * LOCKING:
6409 * Kernel thread context (may sleep).
6411 void ata_host_detach(struct ata_host *host)
6413 int i;
6415 for (i = 0; i < host->n_ports; i++)
6416 ata_port_detach(host->ports[i]);
6420 * ata_std_ports - initialize ioaddr with standard port offsets.
6421 * @ioaddr: IO address structure to be initialized
6423 * Utility function which initializes data_addr, error_addr,
6424 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
6425 * device_addr, status_addr, and command_addr to standard offsets
6426 * relative to cmd_addr.
6428 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
6431 void ata_std_ports(struct ata_ioports *ioaddr)
6433 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
6434 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
6435 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
6436 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
6437 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
6438 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
6439 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
6440 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
6441 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
6442 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
6446 #ifdef CONFIG_PCI
6449 * ata_pci_remove_one - PCI layer callback for device removal
6450 * @pdev: PCI device that was removed
6452 * PCI layer indicates to libata via this hook that hot-unplug or
6453 * module unload event has occurred. Detach all ports. Resource
6454 * release is handled via devres.
6456 * LOCKING:
6457 * Inherited from PCI layer (may sleep).
6459 void ata_pci_remove_one(struct pci_dev *pdev)
6461 struct device *dev = pci_dev_to_dev(pdev);
6462 struct ata_host *host = dev_get_drvdata(dev);
6464 ata_host_detach(host);
6467 /* move to PCI subsystem */
6468 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
6470 unsigned long tmp = 0;
6472 switch (bits->width) {
6473 case 1: {
6474 u8 tmp8 = 0;
6475 pci_read_config_byte(pdev, bits->reg, &tmp8);
6476 tmp = tmp8;
6477 break;
6479 case 2: {
6480 u16 tmp16 = 0;
6481 pci_read_config_word(pdev, bits->reg, &tmp16);
6482 tmp = tmp16;
6483 break;
6485 case 4: {
6486 u32 tmp32 = 0;
6487 pci_read_config_dword(pdev, bits->reg, &tmp32);
6488 tmp = tmp32;
6489 break;
6492 default:
6493 return -EINVAL;
6496 tmp &= bits->mask;
6498 return (tmp == bits->val) ? 1 : 0;
6501 #ifdef CONFIG_PM
6502 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
6504 pci_save_state(pdev);
6505 pci_disable_device(pdev);
6507 if (mesg.event == PM_EVENT_SUSPEND)
6508 pci_set_power_state(pdev, PCI_D3hot);
6511 int ata_pci_device_do_resume(struct pci_dev *pdev)
6513 int rc;
6515 pci_set_power_state(pdev, PCI_D0);
6516 pci_restore_state(pdev);
6518 rc = pcim_enable_device(pdev);
6519 if (rc) {
6520 dev_printk(KERN_ERR, &pdev->dev,
6521 "failed to enable device after resume (%d)\n", rc);
6522 return rc;
6525 pci_set_master(pdev);
6526 return 0;
6529 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
6531 struct ata_host *host = dev_get_drvdata(&pdev->dev);
6532 int rc = 0;
6534 rc = ata_host_suspend(host, mesg);
6535 if (rc)
6536 return rc;
6538 ata_pci_device_do_suspend(pdev, mesg);
6540 return 0;
6543 int ata_pci_device_resume(struct pci_dev *pdev)
6545 struct ata_host *host = dev_get_drvdata(&pdev->dev);
6546 int rc;
6548 rc = ata_pci_device_do_resume(pdev);
6549 if (rc == 0)
6550 ata_host_resume(host);
6551 return rc;
6553 #endif /* CONFIG_PM */
6555 #endif /* CONFIG_PCI */
6558 static int __init ata_init(void)
6560 ata_probe_timeout *= HZ;
6561 ata_wq = create_workqueue("ata");
6562 if (!ata_wq)
6563 return -ENOMEM;
6565 ata_aux_wq = create_singlethread_workqueue("ata_aux");
6566 if (!ata_aux_wq) {
6567 destroy_workqueue(ata_wq);
6568 return -ENOMEM;
6571 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6572 return 0;
6575 static void __exit ata_exit(void)
6577 destroy_workqueue(ata_wq);
6578 destroy_workqueue(ata_aux_wq);
6581 subsys_initcall(ata_init);
6582 module_exit(ata_exit);
6584 static unsigned long ratelimit_time;
6585 static DEFINE_SPINLOCK(ata_ratelimit_lock);
6587 int ata_ratelimit(void)
6589 int rc;
6590 unsigned long flags;
6592 spin_lock_irqsave(&ata_ratelimit_lock, flags);
6594 if (time_after(jiffies, ratelimit_time)) {
6595 rc = 1;
6596 ratelimit_time = jiffies + (HZ/5);
6597 } else
6598 rc = 0;
6600 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
6602 return rc;
6606 * ata_wait_register - wait until register value changes
6607 * @reg: IO-mapped register
6608 * @mask: Mask to apply to read register value
6609 * @val: Wait condition
6610 * @interval_msec: polling interval in milliseconds
6611 * @timeout_msec: timeout in milliseconds
6613 * Waiting for some bits of register to change is a common
6614 * operation for ATA controllers. This function reads 32bit LE
6615 * IO-mapped register @reg and tests for the following condition.
6617 * (*@reg & mask) != val
6619 * If the condition is met, it returns; otherwise, the process is
6620 * repeated after @interval_msec until timeout.
6622 * LOCKING:
6623 * Kernel thread context (may sleep)
6625 * RETURNS:
6626 * The final register value.
6628 u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
6629 unsigned long interval_msec,
6630 unsigned long timeout_msec)
6632 unsigned long timeout;
6633 u32 tmp;
6635 tmp = ioread32(reg);
6637 /* Calculate timeout _after_ the first read to make sure
6638 * preceding writes reach the controller before starting to
6639 * eat away the timeout.
6641 timeout = jiffies + (timeout_msec * HZ) / 1000;
6643 while ((tmp & mask) == val && time_before(jiffies, timeout)) {
6644 msleep(interval_msec);
6645 tmp = ioread32(reg);
6648 return tmp;
6652 * Dummy port_ops
6654 static void ata_dummy_noret(struct ata_port *ap) { }
6655 static int ata_dummy_ret0(struct ata_port *ap) { return 0; }
6656 static void ata_dummy_qc_noret(struct ata_queued_cmd *qc) { }
6658 static u8 ata_dummy_check_status(struct ata_port *ap)
6660 return ATA_DRDY;
6663 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6665 return AC_ERR_SYSTEM;
6668 const struct ata_port_operations ata_dummy_port_ops = {
6669 .port_disable = ata_port_disable,
6670 .check_status = ata_dummy_check_status,
6671 .check_altstatus = ata_dummy_check_status,
6672 .dev_select = ata_noop_dev_select,
6673 .qc_prep = ata_noop_qc_prep,
6674 .qc_issue = ata_dummy_qc_issue,
6675 .freeze = ata_dummy_noret,
6676 .thaw = ata_dummy_noret,
6677 .error_handler = ata_dummy_noret,
6678 .post_internal_cmd = ata_dummy_qc_noret,
6679 .irq_clear = ata_dummy_noret,
6680 .port_start = ata_dummy_ret0,
6681 .port_stop = ata_dummy_noret,
6684 const struct ata_port_info ata_dummy_port_info = {
6685 .port_ops = &ata_dummy_port_ops,
6689 * libata is essentially a library of internal helper functions for
6690 * low-level ATA host controller drivers. As such, the API/ABI is
6691 * likely to change as new drivers are added and updated.
6692 * Do not depend on ABI/API stability.
6695 EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
6696 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
6697 EXPORT_SYMBOL_GPL(sata_deb_timing_long);
6698 EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
6699 EXPORT_SYMBOL_GPL(ata_dummy_port_info);
6700 EXPORT_SYMBOL_GPL(ata_std_bios_param);
6701 EXPORT_SYMBOL_GPL(ata_std_ports);
6702 EXPORT_SYMBOL_GPL(ata_host_init);
6703 EXPORT_SYMBOL_GPL(ata_host_alloc);
6704 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
6705 EXPORT_SYMBOL_GPL(ata_host_start);
6706 EXPORT_SYMBOL_GPL(ata_host_register);
6707 EXPORT_SYMBOL_GPL(ata_host_activate);
6708 EXPORT_SYMBOL_GPL(ata_host_detach);
6709 EXPORT_SYMBOL_GPL(ata_sg_init);
6710 EXPORT_SYMBOL_GPL(ata_sg_init_one);
6711 EXPORT_SYMBOL_GPL(ata_hsm_move);
6712 EXPORT_SYMBOL_GPL(ata_qc_complete);
6713 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
6714 EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
6715 EXPORT_SYMBOL_GPL(ata_tf_load);
6716 EXPORT_SYMBOL_GPL(ata_tf_read);
6717 EXPORT_SYMBOL_GPL(ata_noop_dev_select);
6718 EXPORT_SYMBOL_GPL(ata_std_dev_select);
6719 EXPORT_SYMBOL_GPL(sata_print_link_status);
6720 EXPORT_SYMBOL_GPL(ata_tf_to_fis);
6721 EXPORT_SYMBOL_GPL(ata_tf_from_fis);
6722 EXPORT_SYMBOL_GPL(ata_check_status);
6723 EXPORT_SYMBOL_GPL(ata_altstatus);
6724 EXPORT_SYMBOL_GPL(ata_exec_command);
6725 EXPORT_SYMBOL_GPL(ata_port_start);
6726 EXPORT_SYMBOL_GPL(ata_interrupt);
6727 EXPORT_SYMBOL_GPL(ata_do_set_mode);
6728 EXPORT_SYMBOL_GPL(ata_data_xfer);
6729 EXPORT_SYMBOL_GPL(ata_data_xfer_noirq);
6730 EXPORT_SYMBOL_GPL(ata_qc_prep);
6731 EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
6732 EXPORT_SYMBOL_GPL(ata_bmdma_setup);
6733 EXPORT_SYMBOL_GPL(ata_bmdma_start);
6734 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
6735 EXPORT_SYMBOL_GPL(ata_bmdma_status);
6736 EXPORT_SYMBOL_GPL(ata_bmdma_stop);
6737 EXPORT_SYMBOL_GPL(ata_bmdma_freeze);
6738 EXPORT_SYMBOL_GPL(ata_bmdma_thaw);
6739 EXPORT_SYMBOL_GPL(ata_bmdma_drive_eh);
6740 EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
6741 EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
6742 EXPORT_SYMBOL_GPL(ata_port_probe);
6743 EXPORT_SYMBOL_GPL(ata_dev_disable);
6744 EXPORT_SYMBOL_GPL(sata_set_spd);
6745 EXPORT_SYMBOL_GPL(sata_phy_debounce);
6746 EXPORT_SYMBOL_GPL(sata_phy_resume);
6747 EXPORT_SYMBOL_GPL(sata_phy_reset);
6748 EXPORT_SYMBOL_GPL(__sata_phy_reset);
6749 EXPORT_SYMBOL_GPL(ata_bus_reset);
6750 EXPORT_SYMBOL_GPL(ata_std_prereset);
6751 EXPORT_SYMBOL_GPL(ata_std_softreset);
6752 EXPORT_SYMBOL_GPL(sata_port_hardreset);
6753 EXPORT_SYMBOL_GPL(sata_std_hardreset);
6754 EXPORT_SYMBOL_GPL(ata_std_postreset);
6755 EXPORT_SYMBOL_GPL(ata_dev_classify);
6756 EXPORT_SYMBOL_GPL(ata_dev_pair);
6757 EXPORT_SYMBOL_GPL(ata_port_disable);
6758 EXPORT_SYMBOL_GPL(ata_ratelimit);
6759 EXPORT_SYMBOL_GPL(ata_wait_register);
6760 EXPORT_SYMBOL_GPL(ata_busy_sleep);
6761 EXPORT_SYMBOL_GPL(ata_port_queue_task);
6762 EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
6763 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
6764 EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
6765 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
6766 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
6767 EXPORT_SYMBOL_GPL(ata_host_intr);
6768 EXPORT_SYMBOL_GPL(sata_scr_valid);
6769 EXPORT_SYMBOL_GPL(sata_scr_read);
6770 EXPORT_SYMBOL_GPL(sata_scr_write);
6771 EXPORT_SYMBOL_GPL(sata_scr_write_flush);
6772 EXPORT_SYMBOL_GPL(ata_port_online);
6773 EXPORT_SYMBOL_GPL(ata_port_offline);
6774 #ifdef CONFIG_PM
6775 EXPORT_SYMBOL_GPL(ata_host_suspend);
6776 EXPORT_SYMBOL_GPL(ata_host_resume);
6777 #endif /* CONFIG_PM */
6778 EXPORT_SYMBOL_GPL(ata_id_string);
6779 EXPORT_SYMBOL_GPL(ata_id_c_string);
6780 EXPORT_SYMBOL_GPL(ata_id_to_dma_mode);
6781 EXPORT_SYMBOL_GPL(ata_device_blacklisted);
6782 EXPORT_SYMBOL_GPL(ata_scsi_simulate);
6784 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
6785 EXPORT_SYMBOL_GPL(ata_timing_compute);
6786 EXPORT_SYMBOL_GPL(ata_timing_merge);
6788 #ifdef CONFIG_PCI
6789 EXPORT_SYMBOL_GPL(pci_test_config_bits);
6790 EXPORT_SYMBOL_GPL(ata_pci_init_native_host);
6791 EXPORT_SYMBOL_GPL(ata_pci_prepare_native_host);
6792 EXPORT_SYMBOL_GPL(ata_pci_init_one);
6793 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6794 #ifdef CONFIG_PM
6795 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6796 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
6797 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6798 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6799 #endif /* CONFIG_PM */
6800 EXPORT_SYMBOL_GPL(ata_pci_default_filter);
6801 EXPORT_SYMBOL_GPL(ata_pci_clear_simplex);
6802 #endif /* CONFIG_PCI */
6804 #ifdef CONFIG_PM
6805 EXPORT_SYMBOL_GPL(ata_scsi_device_suspend);
6806 EXPORT_SYMBOL_GPL(ata_scsi_device_resume);
6807 #endif /* CONFIG_PM */
6809 EXPORT_SYMBOL_GPL(ata_eng_timeout);
6810 EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
6811 EXPORT_SYMBOL_GPL(ata_port_abort);
6812 EXPORT_SYMBOL_GPL(ata_port_freeze);
6813 EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
6814 EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
6815 EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
6816 EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
6817 EXPORT_SYMBOL_GPL(ata_do_eh);
6818 EXPORT_SYMBOL_GPL(ata_irq_on);
6819 EXPORT_SYMBOL_GPL(ata_dummy_irq_on);
6820 EXPORT_SYMBOL_GPL(ata_irq_ack);
6821 EXPORT_SYMBOL_GPL(ata_dummy_irq_ack);
6822 EXPORT_SYMBOL_GPL(ata_dev_try_classify);
6824 EXPORT_SYMBOL_GPL(ata_cable_40wire);
6825 EXPORT_SYMBOL_GPL(ata_cable_80wire);
6826 EXPORT_SYMBOL_GPL(ata_cable_unknown);
6827 EXPORT_SYMBOL_GPL(ata_cable_sata);