2 * linux/kernel/time/tick-broadcast.c
4 * This file contains functions which emulate a local clock-event
5 * device via a broadcast event source.
7 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
8 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
9 * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner
11 * This code is licenced under the GPL version 2. For details see
12 * kernel-base/COPYING.
14 #include <linux/cpu.h>
15 #include <linux/err.h>
16 #include <linux/hrtimer.h>
17 #include <linux/interrupt.h>
18 #include <linux/percpu.h>
19 #include <linux/profile.h>
20 #include <linux/sched.h>
22 #include "tick-internal.h"
25 * Broadcast support for broken x86 hardware, where the local apic
26 * timer stops in C3 state.
29 static struct tick_device tick_broadcast_device
;
30 /* FIXME: Use cpumask_var_t. */
31 static DECLARE_BITMAP(tick_broadcast_mask
, NR_CPUS
);
32 static DECLARE_BITMAP(tmpmask
, NR_CPUS
);
33 static DEFINE_RAW_SPINLOCK(tick_broadcast_lock
);
34 static int tick_broadcast_force
;
36 #ifdef CONFIG_TICK_ONESHOT
37 static void tick_broadcast_clear_oneshot(int cpu
);
39 static inline void tick_broadcast_clear_oneshot(int cpu
) { }
43 * Debugging: see timer_list.c
45 struct tick_device
*tick_get_broadcast_device(void)
47 return &tick_broadcast_device
;
50 struct cpumask
*tick_get_broadcast_mask(void)
52 return to_cpumask(tick_broadcast_mask
);
56 * Start the device in periodic mode
58 static void tick_broadcast_start_periodic(struct clock_event_device
*bc
)
61 tick_setup_periodic(bc
, 1);
65 * Check, if the device can be utilized as broadcast device:
67 int tick_check_broadcast_device(struct clock_event_device
*dev
)
69 if ((tick_broadcast_device
.evtdev
&&
70 tick_broadcast_device
.evtdev
->rating
>= dev
->rating
) ||
71 (dev
->features
& CLOCK_EVT_FEAT_C3STOP
))
74 clockevents_exchange_device(tick_broadcast_device
.evtdev
, dev
);
75 tick_broadcast_device
.evtdev
= dev
;
76 if (!cpumask_empty(tick_get_broadcast_mask()))
77 tick_broadcast_start_periodic(dev
);
82 * Check, if the device is the broadcast device
84 int tick_is_broadcast_device(struct clock_event_device
*dev
)
86 return (dev
&& tick_broadcast_device
.evtdev
== dev
);
90 * Check, if the device is disfunctional and a place holder, which
91 * needs to be handled by the broadcast device.
93 int tick_device_uses_broadcast(struct clock_event_device
*dev
, int cpu
)
98 raw_spin_lock_irqsave(&tick_broadcast_lock
, flags
);
101 * Devices might be registered with both periodic and oneshot
102 * mode disabled. This signals, that the device needs to be
103 * operated from the broadcast device and is a placeholder for
104 * the cpu local device.
106 if (!tick_device_is_functional(dev
)) {
107 dev
->event_handler
= tick_handle_periodic
;
108 cpumask_set_cpu(cpu
, tick_get_broadcast_mask());
109 tick_broadcast_start_periodic(tick_broadcast_device
.evtdev
);
113 * When the new device is not affected by the stop
114 * feature and the cpu is marked in the broadcast mask
115 * then clear the broadcast bit.
117 if (!(dev
->features
& CLOCK_EVT_FEAT_C3STOP
)) {
118 int cpu
= smp_processor_id();
120 cpumask_clear_cpu(cpu
, tick_get_broadcast_mask());
121 tick_broadcast_clear_oneshot(cpu
);
124 raw_spin_unlock_irqrestore(&tick_broadcast_lock
, flags
);
129 * Broadcast the event to the cpus, which are set in the mask (mangled).
131 static void tick_do_broadcast(struct cpumask
*mask
)
133 int cpu
= smp_processor_id();
134 struct tick_device
*td
;
137 * Check, if the current cpu is in the mask
139 if (cpumask_test_cpu(cpu
, mask
)) {
140 cpumask_clear_cpu(cpu
, mask
);
141 td
= &per_cpu(tick_cpu_device
, cpu
);
142 td
->evtdev
->event_handler(td
->evtdev
);
145 if (!cpumask_empty(mask
)) {
147 * It might be necessary to actually check whether the devices
148 * have different broadcast functions. For now, just use the
149 * one of the first device. This works as long as we have this
150 * misfeature only on x86 (lapic)
152 td
= &per_cpu(tick_cpu_device
, cpumask_first(mask
));
153 td
->evtdev
->broadcast(mask
);
158 * Periodic broadcast:
159 * - invoke the broadcast handlers
161 static void tick_do_periodic_broadcast(void)
163 raw_spin_lock(&tick_broadcast_lock
);
165 cpumask_and(to_cpumask(tmpmask
),
166 cpu_online_mask
, tick_get_broadcast_mask());
167 tick_do_broadcast(to_cpumask(tmpmask
));
169 raw_spin_unlock(&tick_broadcast_lock
);
173 * Event handler for periodic broadcast ticks
175 static void tick_handle_periodic_broadcast(struct clock_event_device
*dev
)
179 tick_do_periodic_broadcast();
182 * The device is in periodic mode. No reprogramming necessary:
184 if (dev
->mode
== CLOCK_EVT_MODE_PERIODIC
)
188 * Setup the next period for devices, which do not have
189 * periodic mode. We read dev->next_event first and add to it
190 * when the event already expired. clockevents_program_event()
191 * sets dev->next_event only when the event is really
192 * programmed to the device.
194 for (next
= dev
->next_event
; ;) {
195 next
= ktime_add(next
, tick_period
);
197 if (!clockevents_program_event(dev
, next
, false))
199 tick_do_periodic_broadcast();
204 * Powerstate information: The system enters/leaves a state, where
205 * affected devices might stop
207 static void tick_do_broadcast_on_off(unsigned long *reason
)
209 struct clock_event_device
*bc
, *dev
;
210 struct tick_device
*td
;
214 raw_spin_lock_irqsave(&tick_broadcast_lock
, flags
);
216 cpu
= smp_processor_id();
217 td
= &per_cpu(tick_cpu_device
, cpu
);
219 bc
= tick_broadcast_device
.evtdev
;
222 * Is the device not affected by the powerstate ?
224 if (!dev
|| !(dev
->features
& CLOCK_EVT_FEAT_C3STOP
))
227 if (!tick_device_is_functional(dev
))
230 bc_stopped
= cpumask_empty(tick_get_broadcast_mask());
233 case CLOCK_EVT_NOTIFY_BROADCAST_ON
:
234 case CLOCK_EVT_NOTIFY_BROADCAST_FORCE
:
235 if (!cpumask_test_cpu(cpu
, tick_get_broadcast_mask())) {
236 cpumask_set_cpu(cpu
, tick_get_broadcast_mask());
237 if (tick_broadcast_device
.mode
==
238 TICKDEV_MODE_PERIODIC
)
239 clockevents_shutdown(dev
);
241 if (*reason
== CLOCK_EVT_NOTIFY_BROADCAST_FORCE
)
242 tick_broadcast_force
= 1;
244 case CLOCK_EVT_NOTIFY_BROADCAST_OFF
:
245 if (!tick_broadcast_force
&&
246 cpumask_test_cpu(cpu
, tick_get_broadcast_mask())) {
247 cpumask_clear_cpu(cpu
, tick_get_broadcast_mask());
248 if (tick_broadcast_device
.mode
==
249 TICKDEV_MODE_PERIODIC
)
250 tick_setup_periodic(dev
, 0);
255 if (cpumask_empty(tick_get_broadcast_mask())) {
257 clockevents_shutdown(bc
);
258 } else if (bc_stopped
) {
259 if (tick_broadcast_device
.mode
== TICKDEV_MODE_PERIODIC
)
260 tick_broadcast_start_periodic(bc
);
262 tick_broadcast_setup_oneshot(bc
);
265 raw_spin_unlock_irqrestore(&tick_broadcast_lock
, flags
);
269 * Powerstate information: The system enters/leaves a state, where
270 * affected devices might stop.
272 void tick_broadcast_on_off(unsigned long reason
, int *oncpu
)
274 if (!cpumask_test_cpu(*oncpu
, cpu_online_mask
))
275 printk(KERN_ERR
"tick-broadcast: ignoring broadcast for "
276 "offline CPU #%d\n", *oncpu
);
278 tick_do_broadcast_on_off(&reason
);
282 * Set the periodic handler depending on broadcast on/off
284 void tick_set_periodic_handler(struct clock_event_device
*dev
, int broadcast
)
287 dev
->event_handler
= tick_handle_periodic
;
289 dev
->event_handler
= tick_handle_periodic_broadcast
;
293 * Remove a CPU from broadcasting
295 void tick_shutdown_broadcast(unsigned int *cpup
)
297 struct clock_event_device
*bc
;
299 unsigned int cpu
= *cpup
;
301 raw_spin_lock_irqsave(&tick_broadcast_lock
, flags
);
303 bc
= tick_broadcast_device
.evtdev
;
304 cpumask_clear_cpu(cpu
, tick_get_broadcast_mask());
306 if (tick_broadcast_device
.mode
== TICKDEV_MODE_PERIODIC
) {
307 if (bc
&& cpumask_empty(tick_get_broadcast_mask()))
308 clockevents_shutdown(bc
);
311 raw_spin_unlock_irqrestore(&tick_broadcast_lock
, flags
);
314 void tick_suspend_broadcast(void)
316 struct clock_event_device
*bc
;
319 raw_spin_lock_irqsave(&tick_broadcast_lock
, flags
);
321 bc
= tick_broadcast_device
.evtdev
;
323 clockevents_shutdown(bc
);
325 raw_spin_unlock_irqrestore(&tick_broadcast_lock
, flags
);
328 int tick_resume_broadcast(void)
330 struct clock_event_device
*bc
;
334 raw_spin_lock_irqsave(&tick_broadcast_lock
, flags
);
336 bc
= tick_broadcast_device
.evtdev
;
339 clockevents_set_mode(bc
, CLOCK_EVT_MODE_RESUME
);
341 switch (tick_broadcast_device
.mode
) {
342 case TICKDEV_MODE_PERIODIC
:
343 if (!cpumask_empty(tick_get_broadcast_mask()))
344 tick_broadcast_start_periodic(bc
);
345 broadcast
= cpumask_test_cpu(smp_processor_id(),
346 tick_get_broadcast_mask());
348 case TICKDEV_MODE_ONESHOT
:
349 if (!cpumask_empty(tick_get_broadcast_mask()))
350 broadcast
= tick_resume_broadcast_oneshot(bc
);
354 raw_spin_unlock_irqrestore(&tick_broadcast_lock
, flags
);
360 #ifdef CONFIG_TICK_ONESHOT
362 /* FIXME: use cpumask_var_t. */
363 static DECLARE_BITMAP(tick_broadcast_oneshot_mask
, NR_CPUS
);
366 * Exposed for debugging: see timer_list.c
368 struct cpumask
*tick_get_broadcast_oneshot_mask(void)
370 return to_cpumask(tick_broadcast_oneshot_mask
);
373 static int tick_broadcast_set_event(ktime_t expires
, int force
)
375 struct clock_event_device
*bc
= tick_broadcast_device
.evtdev
;
377 if (bc
->mode
!= CLOCK_EVT_MODE_ONESHOT
)
378 clockevents_set_mode(bc
, CLOCK_EVT_MODE_ONESHOT
);
380 return clockevents_program_event(bc
, expires
, force
);
383 int tick_resume_broadcast_oneshot(struct clock_event_device
*bc
)
385 clockevents_set_mode(bc
, CLOCK_EVT_MODE_ONESHOT
);
390 * Called from irq_enter() when idle was interrupted to reenable the
393 void tick_check_oneshot_broadcast(int cpu
)
395 if (cpumask_test_cpu(cpu
, to_cpumask(tick_broadcast_oneshot_mask
))) {
396 struct tick_device
*td
= &per_cpu(tick_cpu_device
, cpu
);
398 clockevents_set_mode(td
->evtdev
, CLOCK_EVT_MODE_ONESHOT
);
403 * Handle oneshot mode broadcasting
405 static void tick_handle_oneshot_broadcast(struct clock_event_device
*dev
)
407 struct tick_device
*td
;
408 ktime_t now
, next_event
;
411 raw_spin_lock(&tick_broadcast_lock
);
413 dev
->next_event
.tv64
= KTIME_MAX
;
414 next_event
.tv64
= KTIME_MAX
;
415 cpumask_clear(to_cpumask(tmpmask
));
417 /* Find all expired events */
418 for_each_cpu(cpu
, tick_get_broadcast_oneshot_mask()) {
419 td
= &per_cpu(tick_cpu_device
, cpu
);
420 if (td
->evtdev
->next_event
.tv64
<= now
.tv64
)
421 cpumask_set_cpu(cpu
, to_cpumask(tmpmask
));
422 else if (td
->evtdev
->next_event
.tv64
< next_event
.tv64
)
423 next_event
.tv64
= td
->evtdev
->next_event
.tv64
;
427 * Wakeup the cpus which have an expired event.
429 tick_do_broadcast(to_cpumask(tmpmask
));
432 * Two reasons for reprogram:
434 * - The global event did not expire any CPU local
435 * events. This happens in dyntick mode, as the maximum PIT
436 * delta is quite small.
438 * - There are pending events on sleeping CPUs which were not
441 if (next_event
.tv64
!= KTIME_MAX
) {
443 * Rearm the broadcast device. If event expired,
446 if (tick_broadcast_set_event(next_event
, 0))
449 raw_spin_unlock(&tick_broadcast_lock
);
453 * Powerstate information: The system enters/leaves a state, where
454 * affected devices might stop
456 void tick_broadcast_oneshot_control(unsigned long reason
)
458 struct clock_event_device
*bc
, *dev
;
459 struct tick_device
*td
;
464 * Periodic mode does not care about the enter/exit of power
467 if (tick_broadcast_device
.mode
== TICKDEV_MODE_PERIODIC
)
471 * We are called with preemtion disabled from the depth of the
472 * idle code, so we can't be moved away.
474 cpu
= smp_processor_id();
475 td
= &per_cpu(tick_cpu_device
, cpu
);
478 if (!(dev
->features
& CLOCK_EVT_FEAT_C3STOP
))
481 bc
= tick_broadcast_device
.evtdev
;
483 raw_spin_lock_irqsave(&tick_broadcast_lock
, flags
);
484 if (reason
== CLOCK_EVT_NOTIFY_BROADCAST_ENTER
) {
485 if (!cpumask_test_cpu(cpu
, tick_get_broadcast_oneshot_mask())) {
486 cpumask_set_cpu(cpu
, tick_get_broadcast_oneshot_mask());
487 clockevents_set_mode(dev
, CLOCK_EVT_MODE_SHUTDOWN
);
488 if (dev
->next_event
.tv64
< bc
->next_event
.tv64
)
489 tick_broadcast_set_event(dev
->next_event
, 1);
492 if (cpumask_test_cpu(cpu
, tick_get_broadcast_oneshot_mask())) {
493 cpumask_clear_cpu(cpu
,
494 tick_get_broadcast_oneshot_mask());
495 clockevents_set_mode(dev
, CLOCK_EVT_MODE_ONESHOT
);
496 if (dev
->next_event
.tv64
!= KTIME_MAX
)
497 tick_program_event(dev
->next_event
, 1);
500 raw_spin_unlock_irqrestore(&tick_broadcast_lock
, flags
);
504 * Reset the one shot broadcast for a cpu
506 * Called with tick_broadcast_lock held
508 static void tick_broadcast_clear_oneshot(int cpu
)
510 cpumask_clear_cpu(cpu
, tick_get_broadcast_oneshot_mask());
513 static void tick_broadcast_init_next_event(struct cpumask
*mask
,
516 struct tick_device
*td
;
519 for_each_cpu(cpu
, mask
) {
520 td
= &per_cpu(tick_cpu_device
, cpu
);
522 td
->evtdev
->next_event
= expires
;
527 * tick_broadcast_setup_oneshot - setup the broadcast device
529 void tick_broadcast_setup_oneshot(struct clock_event_device
*bc
)
531 int cpu
= smp_processor_id();
533 /* Set it up only once ! */
534 if (bc
->event_handler
!= tick_handle_oneshot_broadcast
) {
535 int was_periodic
= bc
->mode
== CLOCK_EVT_MODE_PERIODIC
;
537 bc
->event_handler
= tick_handle_oneshot_broadcast
;
539 /* Take the do_timer update */
540 tick_do_timer_cpu
= cpu
;
543 * We must be careful here. There might be other CPUs
544 * waiting for periodic broadcast. We need to set the
545 * oneshot_mask bits for those and program the
546 * broadcast device to fire.
548 cpumask_copy(to_cpumask(tmpmask
), tick_get_broadcast_mask());
549 cpumask_clear_cpu(cpu
, to_cpumask(tmpmask
));
550 cpumask_or(tick_get_broadcast_oneshot_mask(),
551 tick_get_broadcast_oneshot_mask(),
552 to_cpumask(tmpmask
));
554 if (was_periodic
&& !cpumask_empty(to_cpumask(tmpmask
))) {
555 clockevents_set_mode(bc
, CLOCK_EVT_MODE_ONESHOT
);
556 tick_broadcast_init_next_event(to_cpumask(tmpmask
),
558 tick_broadcast_set_event(tick_next_period
, 1);
560 bc
->next_event
.tv64
= KTIME_MAX
;
563 * The first cpu which switches to oneshot mode sets
564 * the bit for all other cpus which are in the general
565 * (periodic) broadcast mask. So the bit is set and
566 * would prevent the first broadcast enter after this
567 * to program the bc device.
569 tick_broadcast_clear_oneshot(cpu
);
574 * Select oneshot operating mode for the broadcast device
576 void tick_broadcast_switch_to_oneshot(void)
578 struct clock_event_device
*bc
;
581 raw_spin_lock_irqsave(&tick_broadcast_lock
, flags
);
583 tick_broadcast_device
.mode
= TICKDEV_MODE_ONESHOT
;
584 bc
= tick_broadcast_device
.evtdev
;
586 tick_broadcast_setup_oneshot(bc
);
588 raw_spin_unlock_irqrestore(&tick_broadcast_lock
, flags
);
593 * Remove a dead CPU from broadcasting
595 void tick_shutdown_broadcast_oneshot(unsigned int *cpup
)
598 unsigned int cpu
= *cpup
;
600 raw_spin_lock_irqsave(&tick_broadcast_lock
, flags
);
603 * Clear the broadcast mask flag for the dead cpu, but do not
604 * stop the broadcast device!
606 cpumask_clear_cpu(cpu
, tick_get_broadcast_oneshot_mask());
608 raw_spin_unlock_irqrestore(&tick_broadcast_lock
, flags
);
612 * Check, whether the broadcast device is in one shot mode
614 int tick_broadcast_oneshot_active(void)
616 return tick_broadcast_device
.mode
== TICKDEV_MODE_ONESHOT
;
620 * Check whether the broadcast device supports oneshot.
622 bool tick_broadcast_oneshot_available(void)
624 struct clock_event_device
*bc
= tick_broadcast_device
.evtdev
;
626 return bc
? bc
->features
& CLOCK_EVT_FEAT_ONESHOT
: false;