net: Put flowi_* prefix on AF independent members of struct flowi
[linux-2.6/libata-dev.git] / net / ipv4 / ipmr.c
blob3b72b0a26d7ecd0d1010e1558efac4a986945213
1 /*
2 * IP multicast routing support for mrouted 3.6/3.8
4 * (c) 1995 Alan Cox, <alan@lxorguk.ukuu.org.uk>
5 * Linux Consultancy and Custom Driver Development
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version
10 * 2 of the License, or (at your option) any later version.
12 * Fixes:
13 * Michael Chastain : Incorrect size of copying.
14 * Alan Cox : Added the cache manager code
15 * Alan Cox : Fixed the clone/copy bug and device race.
16 * Mike McLagan : Routing by source
17 * Malcolm Beattie : Buffer handling fixes.
18 * Alexey Kuznetsov : Double buffer free and other fixes.
19 * SVR Anand : Fixed several multicast bugs and problems.
20 * Alexey Kuznetsov : Status, optimisations and more.
21 * Brad Parker : Better behaviour on mrouted upcall
22 * overflow.
23 * Carlos Picoto : PIMv1 Support
24 * Pavlin Ivanov Radoslavov: PIMv2 Registers must checksum only PIM header
25 * Relax this requirement to work with older peers.
29 #include <asm/system.h>
30 #include <asm/uaccess.h>
31 #include <linux/types.h>
32 #include <linux/capability.h>
33 #include <linux/errno.h>
34 #include <linux/timer.h>
35 #include <linux/mm.h>
36 #include <linux/kernel.h>
37 #include <linux/fcntl.h>
38 #include <linux/stat.h>
39 #include <linux/socket.h>
40 #include <linux/in.h>
41 #include <linux/inet.h>
42 #include <linux/netdevice.h>
43 #include <linux/inetdevice.h>
44 #include <linux/igmp.h>
45 #include <linux/proc_fs.h>
46 #include <linux/seq_file.h>
47 #include <linux/mroute.h>
48 #include <linux/init.h>
49 #include <linux/if_ether.h>
50 #include <linux/slab.h>
51 #include <net/net_namespace.h>
52 #include <net/ip.h>
53 #include <net/protocol.h>
54 #include <linux/skbuff.h>
55 #include <net/route.h>
56 #include <net/sock.h>
57 #include <net/icmp.h>
58 #include <net/udp.h>
59 #include <net/raw.h>
60 #include <linux/notifier.h>
61 #include <linux/if_arp.h>
62 #include <linux/netfilter_ipv4.h>
63 #include <linux/compat.h>
64 #include <net/ipip.h>
65 #include <net/checksum.h>
66 #include <net/netlink.h>
67 #include <net/fib_rules.h>
69 #if defined(CONFIG_IP_PIMSM_V1) || defined(CONFIG_IP_PIMSM_V2)
70 #define CONFIG_IP_PIMSM 1
71 #endif
73 struct mr_table {
74 struct list_head list;
75 #ifdef CONFIG_NET_NS
76 struct net *net;
77 #endif
78 u32 id;
79 struct sock __rcu *mroute_sk;
80 struct timer_list ipmr_expire_timer;
81 struct list_head mfc_unres_queue;
82 struct list_head mfc_cache_array[MFC_LINES];
83 struct vif_device vif_table[MAXVIFS];
84 int maxvif;
85 atomic_t cache_resolve_queue_len;
86 int mroute_do_assert;
87 int mroute_do_pim;
88 #if defined(CONFIG_IP_PIMSM_V1) || defined(CONFIG_IP_PIMSM_V2)
89 int mroute_reg_vif_num;
90 #endif
93 struct ipmr_rule {
94 struct fib_rule common;
97 struct ipmr_result {
98 struct mr_table *mrt;
101 /* Big lock, protecting vif table, mrt cache and mroute socket state.
102 * Note that the changes are semaphored via rtnl_lock.
105 static DEFINE_RWLOCK(mrt_lock);
108 * Multicast router control variables
111 #define VIF_EXISTS(_mrt, _idx) ((_mrt)->vif_table[_idx].dev != NULL)
113 /* Special spinlock for queue of unresolved entries */
114 static DEFINE_SPINLOCK(mfc_unres_lock);
116 /* We return to original Alan's scheme. Hash table of resolved
117 * entries is changed only in process context and protected
118 * with weak lock mrt_lock. Queue of unresolved entries is protected
119 * with strong spinlock mfc_unres_lock.
121 * In this case data path is free of exclusive locks at all.
124 static struct kmem_cache *mrt_cachep __read_mostly;
126 static struct mr_table *ipmr_new_table(struct net *net, u32 id);
127 static int ip_mr_forward(struct net *net, struct mr_table *mrt,
128 struct sk_buff *skb, struct mfc_cache *cache,
129 int local);
130 static int ipmr_cache_report(struct mr_table *mrt,
131 struct sk_buff *pkt, vifi_t vifi, int assert);
132 static int __ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
133 struct mfc_cache *c, struct rtmsg *rtm);
134 static void ipmr_expire_process(unsigned long arg);
136 #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
137 #define ipmr_for_each_table(mrt, net) \
138 list_for_each_entry_rcu(mrt, &net->ipv4.mr_tables, list)
140 static struct mr_table *ipmr_get_table(struct net *net, u32 id)
142 struct mr_table *mrt;
144 ipmr_for_each_table(mrt, net) {
145 if (mrt->id == id)
146 return mrt;
148 return NULL;
151 static int ipmr_fib_lookup(struct net *net, struct flowi *flp,
152 struct mr_table **mrt)
154 struct ipmr_result res;
155 struct fib_lookup_arg arg = { .result = &res, };
156 int err;
158 err = fib_rules_lookup(net->ipv4.mr_rules_ops, flp, 0, &arg);
159 if (err < 0)
160 return err;
161 *mrt = res.mrt;
162 return 0;
165 static int ipmr_rule_action(struct fib_rule *rule, struct flowi *flp,
166 int flags, struct fib_lookup_arg *arg)
168 struct ipmr_result *res = arg->result;
169 struct mr_table *mrt;
171 switch (rule->action) {
172 case FR_ACT_TO_TBL:
173 break;
174 case FR_ACT_UNREACHABLE:
175 return -ENETUNREACH;
176 case FR_ACT_PROHIBIT:
177 return -EACCES;
178 case FR_ACT_BLACKHOLE:
179 default:
180 return -EINVAL;
183 mrt = ipmr_get_table(rule->fr_net, rule->table);
184 if (mrt == NULL)
185 return -EAGAIN;
186 res->mrt = mrt;
187 return 0;
190 static int ipmr_rule_match(struct fib_rule *rule, struct flowi *fl, int flags)
192 return 1;
195 static const struct nla_policy ipmr_rule_policy[FRA_MAX + 1] = {
196 FRA_GENERIC_POLICY,
199 static int ipmr_rule_configure(struct fib_rule *rule, struct sk_buff *skb,
200 struct fib_rule_hdr *frh, struct nlattr **tb)
202 return 0;
205 static int ipmr_rule_compare(struct fib_rule *rule, struct fib_rule_hdr *frh,
206 struct nlattr **tb)
208 return 1;
211 static int ipmr_rule_fill(struct fib_rule *rule, struct sk_buff *skb,
212 struct fib_rule_hdr *frh)
214 frh->dst_len = 0;
215 frh->src_len = 0;
216 frh->tos = 0;
217 return 0;
220 static const struct fib_rules_ops __net_initdata ipmr_rules_ops_template = {
221 .family = RTNL_FAMILY_IPMR,
222 .rule_size = sizeof(struct ipmr_rule),
223 .addr_size = sizeof(u32),
224 .action = ipmr_rule_action,
225 .match = ipmr_rule_match,
226 .configure = ipmr_rule_configure,
227 .compare = ipmr_rule_compare,
228 .default_pref = fib_default_rule_pref,
229 .fill = ipmr_rule_fill,
230 .nlgroup = RTNLGRP_IPV4_RULE,
231 .policy = ipmr_rule_policy,
232 .owner = THIS_MODULE,
235 static int __net_init ipmr_rules_init(struct net *net)
237 struct fib_rules_ops *ops;
238 struct mr_table *mrt;
239 int err;
241 ops = fib_rules_register(&ipmr_rules_ops_template, net);
242 if (IS_ERR(ops))
243 return PTR_ERR(ops);
245 INIT_LIST_HEAD(&net->ipv4.mr_tables);
247 mrt = ipmr_new_table(net, RT_TABLE_DEFAULT);
248 if (mrt == NULL) {
249 err = -ENOMEM;
250 goto err1;
253 err = fib_default_rule_add(ops, 0x7fff, RT_TABLE_DEFAULT, 0);
254 if (err < 0)
255 goto err2;
257 net->ipv4.mr_rules_ops = ops;
258 return 0;
260 err2:
261 kfree(mrt);
262 err1:
263 fib_rules_unregister(ops);
264 return err;
267 static void __net_exit ipmr_rules_exit(struct net *net)
269 struct mr_table *mrt, *next;
271 list_for_each_entry_safe(mrt, next, &net->ipv4.mr_tables, list) {
272 list_del(&mrt->list);
273 kfree(mrt);
275 fib_rules_unregister(net->ipv4.mr_rules_ops);
277 #else
278 #define ipmr_for_each_table(mrt, net) \
279 for (mrt = net->ipv4.mrt; mrt; mrt = NULL)
281 static struct mr_table *ipmr_get_table(struct net *net, u32 id)
283 return net->ipv4.mrt;
286 static int ipmr_fib_lookup(struct net *net, struct flowi *flp,
287 struct mr_table **mrt)
289 *mrt = net->ipv4.mrt;
290 return 0;
293 static int __net_init ipmr_rules_init(struct net *net)
295 net->ipv4.mrt = ipmr_new_table(net, RT_TABLE_DEFAULT);
296 return net->ipv4.mrt ? 0 : -ENOMEM;
299 static void __net_exit ipmr_rules_exit(struct net *net)
301 kfree(net->ipv4.mrt);
303 #endif
305 static struct mr_table *ipmr_new_table(struct net *net, u32 id)
307 struct mr_table *mrt;
308 unsigned int i;
310 mrt = ipmr_get_table(net, id);
311 if (mrt != NULL)
312 return mrt;
314 mrt = kzalloc(sizeof(*mrt), GFP_KERNEL);
315 if (mrt == NULL)
316 return NULL;
317 write_pnet(&mrt->net, net);
318 mrt->id = id;
320 /* Forwarding cache */
321 for (i = 0; i < MFC_LINES; i++)
322 INIT_LIST_HEAD(&mrt->mfc_cache_array[i]);
324 INIT_LIST_HEAD(&mrt->mfc_unres_queue);
326 setup_timer(&mrt->ipmr_expire_timer, ipmr_expire_process,
327 (unsigned long)mrt);
329 #ifdef CONFIG_IP_PIMSM
330 mrt->mroute_reg_vif_num = -1;
331 #endif
332 #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
333 list_add_tail_rcu(&mrt->list, &net->ipv4.mr_tables);
334 #endif
335 return mrt;
338 /* Service routines creating virtual interfaces: DVMRP tunnels and PIMREG */
340 static void ipmr_del_tunnel(struct net_device *dev, struct vifctl *v)
342 struct net *net = dev_net(dev);
344 dev_close(dev);
346 dev = __dev_get_by_name(net, "tunl0");
347 if (dev) {
348 const struct net_device_ops *ops = dev->netdev_ops;
349 struct ifreq ifr;
350 struct ip_tunnel_parm p;
352 memset(&p, 0, sizeof(p));
353 p.iph.daddr = v->vifc_rmt_addr.s_addr;
354 p.iph.saddr = v->vifc_lcl_addr.s_addr;
355 p.iph.version = 4;
356 p.iph.ihl = 5;
357 p.iph.protocol = IPPROTO_IPIP;
358 sprintf(p.name, "dvmrp%d", v->vifc_vifi);
359 ifr.ifr_ifru.ifru_data = (__force void __user *)&p;
361 if (ops->ndo_do_ioctl) {
362 mm_segment_t oldfs = get_fs();
364 set_fs(KERNEL_DS);
365 ops->ndo_do_ioctl(dev, &ifr, SIOCDELTUNNEL);
366 set_fs(oldfs);
371 static
372 struct net_device *ipmr_new_tunnel(struct net *net, struct vifctl *v)
374 struct net_device *dev;
376 dev = __dev_get_by_name(net, "tunl0");
378 if (dev) {
379 const struct net_device_ops *ops = dev->netdev_ops;
380 int err;
381 struct ifreq ifr;
382 struct ip_tunnel_parm p;
383 struct in_device *in_dev;
385 memset(&p, 0, sizeof(p));
386 p.iph.daddr = v->vifc_rmt_addr.s_addr;
387 p.iph.saddr = v->vifc_lcl_addr.s_addr;
388 p.iph.version = 4;
389 p.iph.ihl = 5;
390 p.iph.protocol = IPPROTO_IPIP;
391 sprintf(p.name, "dvmrp%d", v->vifc_vifi);
392 ifr.ifr_ifru.ifru_data = (__force void __user *)&p;
394 if (ops->ndo_do_ioctl) {
395 mm_segment_t oldfs = get_fs();
397 set_fs(KERNEL_DS);
398 err = ops->ndo_do_ioctl(dev, &ifr, SIOCADDTUNNEL);
399 set_fs(oldfs);
400 } else {
401 err = -EOPNOTSUPP;
403 dev = NULL;
405 if (err == 0 &&
406 (dev = __dev_get_by_name(net, p.name)) != NULL) {
407 dev->flags |= IFF_MULTICAST;
409 in_dev = __in_dev_get_rtnl(dev);
410 if (in_dev == NULL)
411 goto failure;
413 ipv4_devconf_setall(in_dev);
414 IPV4_DEVCONF(in_dev->cnf, RP_FILTER) = 0;
416 if (dev_open(dev))
417 goto failure;
418 dev_hold(dev);
421 return dev;
423 failure:
424 /* allow the register to be completed before unregistering. */
425 rtnl_unlock();
426 rtnl_lock();
428 unregister_netdevice(dev);
429 return NULL;
432 #ifdef CONFIG_IP_PIMSM
434 static netdev_tx_t reg_vif_xmit(struct sk_buff *skb, struct net_device *dev)
436 struct net *net = dev_net(dev);
437 struct mr_table *mrt;
438 struct flowi fl = {
439 .flowi_oif = dev->ifindex,
440 .flowi_iif = skb->skb_iif,
441 .flowi_mark = skb->mark,
443 int err;
445 err = ipmr_fib_lookup(net, &fl, &mrt);
446 if (err < 0) {
447 kfree_skb(skb);
448 return err;
451 read_lock(&mrt_lock);
452 dev->stats.tx_bytes += skb->len;
453 dev->stats.tx_packets++;
454 ipmr_cache_report(mrt, skb, mrt->mroute_reg_vif_num, IGMPMSG_WHOLEPKT);
455 read_unlock(&mrt_lock);
456 kfree_skb(skb);
457 return NETDEV_TX_OK;
460 static const struct net_device_ops reg_vif_netdev_ops = {
461 .ndo_start_xmit = reg_vif_xmit,
464 static void reg_vif_setup(struct net_device *dev)
466 dev->type = ARPHRD_PIMREG;
467 dev->mtu = ETH_DATA_LEN - sizeof(struct iphdr) - 8;
468 dev->flags = IFF_NOARP;
469 dev->netdev_ops = &reg_vif_netdev_ops,
470 dev->destructor = free_netdev;
471 dev->features |= NETIF_F_NETNS_LOCAL;
474 static struct net_device *ipmr_reg_vif(struct net *net, struct mr_table *mrt)
476 struct net_device *dev;
477 struct in_device *in_dev;
478 char name[IFNAMSIZ];
480 if (mrt->id == RT_TABLE_DEFAULT)
481 sprintf(name, "pimreg");
482 else
483 sprintf(name, "pimreg%u", mrt->id);
485 dev = alloc_netdev(0, name, reg_vif_setup);
487 if (dev == NULL)
488 return NULL;
490 dev_net_set(dev, net);
492 if (register_netdevice(dev)) {
493 free_netdev(dev);
494 return NULL;
496 dev->iflink = 0;
498 rcu_read_lock();
499 in_dev = __in_dev_get_rcu(dev);
500 if (!in_dev) {
501 rcu_read_unlock();
502 goto failure;
505 ipv4_devconf_setall(in_dev);
506 IPV4_DEVCONF(in_dev->cnf, RP_FILTER) = 0;
507 rcu_read_unlock();
509 if (dev_open(dev))
510 goto failure;
512 dev_hold(dev);
514 return dev;
516 failure:
517 /* allow the register to be completed before unregistering. */
518 rtnl_unlock();
519 rtnl_lock();
521 unregister_netdevice(dev);
522 return NULL;
524 #endif
527 * Delete a VIF entry
528 * @notify: Set to 1, if the caller is a notifier_call
531 static int vif_delete(struct mr_table *mrt, int vifi, int notify,
532 struct list_head *head)
534 struct vif_device *v;
535 struct net_device *dev;
536 struct in_device *in_dev;
538 if (vifi < 0 || vifi >= mrt->maxvif)
539 return -EADDRNOTAVAIL;
541 v = &mrt->vif_table[vifi];
543 write_lock_bh(&mrt_lock);
544 dev = v->dev;
545 v->dev = NULL;
547 if (!dev) {
548 write_unlock_bh(&mrt_lock);
549 return -EADDRNOTAVAIL;
552 #ifdef CONFIG_IP_PIMSM
553 if (vifi == mrt->mroute_reg_vif_num)
554 mrt->mroute_reg_vif_num = -1;
555 #endif
557 if (vifi + 1 == mrt->maxvif) {
558 int tmp;
560 for (tmp = vifi - 1; tmp >= 0; tmp--) {
561 if (VIF_EXISTS(mrt, tmp))
562 break;
564 mrt->maxvif = tmp+1;
567 write_unlock_bh(&mrt_lock);
569 dev_set_allmulti(dev, -1);
571 in_dev = __in_dev_get_rtnl(dev);
572 if (in_dev) {
573 IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)--;
574 ip_rt_multicast_event(in_dev);
577 if (v->flags & (VIFF_TUNNEL | VIFF_REGISTER) && !notify)
578 unregister_netdevice_queue(dev, head);
580 dev_put(dev);
581 return 0;
584 static void ipmr_cache_free_rcu(struct rcu_head *head)
586 struct mfc_cache *c = container_of(head, struct mfc_cache, rcu);
588 kmem_cache_free(mrt_cachep, c);
591 static inline void ipmr_cache_free(struct mfc_cache *c)
593 call_rcu(&c->rcu, ipmr_cache_free_rcu);
596 /* Destroy an unresolved cache entry, killing queued skbs
597 * and reporting error to netlink readers.
600 static void ipmr_destroy_unres(struct mr_table *mrt, struct mfc_cache *c)
602 struct net *net = read_pnet(&mrt->net);
603 struct sk_buff *skb;
604 struct nlmsgerr *e;
606 atomic_dec(&mrt->cache_resolve_queue_len);
608 while ((skb = skb_dequeue(&c->mfc_un.unres.unresolved))) {
609 if (ip_hdr(skb)->version == 0) {
610 struct nlmsghdr *nlh = (struct nlmsghdr *)skb_pull(skb, sizeof(struct iphdr));
611 nlh->nlmsg_type = NLMSG_ERROR;
612 nlh->nlmsg_len = NLMSG_LENGTH(sizeof(struct nlmsgerr));
613 skb_trim(skb, nlh->nlmsg_len);
614 e = NLMSG_DATA(nlh);
615 e->error = -ETIMEDOUT;
616 memset(&e->msg, 0, sizeof(e->msg));
618 rtnl_unicast(skb, net, NETLINK_CB(skb).pid);
619 } else {
620 kfree_skb(skb);
624 ipmr_cache_free(c);
628 /* Timer process for the unresolved queue. */
630 static void ipmr_expire_process(unsigned long arg)
632 struct mr_table *mrt = (struct mr_table *)arg;
633 unsigned long now;
634 unsigned long expires;
635 struct mfc_cache *c, *next;
637 if (!spin_trylock(&mfc_unres_lock)) {
638 mod_timer(&mrt->ipmr_expire_timer, jiffies+HZ/10);
639 return;
642 if (list_empty(&mrt->mfc_unres_queue))
643 goto out;
645 now = jiffies;
646 expires = 10*HZ;
648 list_for_each_entry_safe(c, next, &mrt->mfc_unres_queue, list) {
649 if (time_after(c->mfc_un.unres.expires, now)) {
650 unsigned long interval = c->mfc_un.unres.expires - now;
651 if (interval < expires)
652 expires = interval;
653 continue;
656 list_del(&c->list);
657 ipmr_destroy_unres(mrt, c);
660 if (!list_empty(&mrt->mfc_unres_queue))
661 mod_timer(&mrt->ipmr_expire_timer, jiffies + expires);
663 out:
664 spin_unlock(&mfc_unres_lock);
667 /* Fill oifs list. It is called under write locked mrt_lock. */
669 static void ipmr_update_thresholds(struct mr_table *mrt, struct mfc_cache *cache,
670 unsigned char *ttls)
672 int vifi;
674 cache->mfc_un.res.minvif = MAXVIFS;
675 cache->mfc_un.res.maxvif = 0;
676 memset(cache->mfc_un.res.ttls, 255, MAXVIFS);
678 for (vifi = 0; vifi < mrt->maxvif; vifi++) {
679 if (VIF_EXISTS(mrt, vifi) &&
680 ttls[vifi] && ttls[vifi] < 255) {
681 cache->mfc_un.res.ttls[vifi] = ttls[vifi];
682 if (cache->mfc_un.res.minvif > vifi)
683 cache->mfc_un.res.minvif = vifi;
684 if (cache->mfc_un.res.maxvif <= vifi)
685 cache->mfc_un.res.maxvif = vifi + 1;
690 static int vif_add(struct net *net, struct mr_table *mrt,
691 struct vifctl *vifc, int mrtsock)
693 int vifi = vifc->vifc_vifi;
694 struct vif_device *v = &mrt->vif_table[vifi];
695 struct net_device *dev;
696 struct in_device *in_dev;
697 int err;
699 /* Is vif busy ? */
700 if (VIF_EXISTS(mrt, vifi))
701 return -EADDRINUSE;
703 switch (vifc->vifc_flags) {
704 #ifdef CONFIG_IP_PIMSM
705 case VIFF_REGISTER:
707 * Special Purpose VIF in PIM
708 * All the packets will be sent to the daemon
710 if (mrt->mroute_reg_vif_num >= 0)
711 return -EADDRINUSE;
712 dev = ipmr_reg_vif(net, mrt);
713 if (!dev)
714 return -ENOBUFS;
715 err = dev_set_allmulti(dev, 1);
716 if (err) {
717 unregister_netdevice(dev);
718 dev_put(dev);
719 return err;
721 break;
722 #endif
723 case VIFF_TUNNEL:
724 dev = ipmr_new_tunnel(net, vifc);
725 if (!dev)
726 return -ENOBUFS;
727 err = dev_set_allmulti(dev, 1);
728 if (err) {
729 ipmr_del_tunnel(dev, vifc);
730 dev_put(dev);
731 return err;
733 break;
735 case VIFF_USE_IFINDEX:
736 case 0:
737 if (vifc->vifc_flags == VIFF_USE_IFINDEX) {
738 dev = dev_get_by_index(net, vifc->vifc_lcl_ifindex);
739 if (dev && __in_dev_get_rtnl(dev) == NULL) {
740 dev_put(dev);
741 return -EADDRNOTAVAIL;
743 } else {
744 dev = ip_dev_find(net, vifc->vifc_lcl_addr.s_addr);
746 if (!dev)
747 return -EADDRNOTAVAIL;
748 err = dev_set_allmulti(dev, 1);
749 if (err) {
750 dev_put(dev);
751 return err;
753 break;
754 default:
755 return -EINVAL;
758 in_dev = __in_dev_get_rtnl(dev);
759 if (!in_dev) {
760 dev_put(dev);
761 return -EADDRNOTAVAIL;
763 IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)++;
764 ip_rt_multicast_event(in_dev);
766 /* Fill in the VIF structures */
768 v->rate_limit = vifc->vifc_rate_limit;
769 v->local = vifc->vifc_lcl_addr.s_addr;
770 v->remote = vifc->vifc_rmt_addr.s_addr;
771 v->flags = vifc->vifc_flags;
772 if (!mrtsock)
773 v->flags |= VIFF_STATIC;
774 v->threshold = vifc->vifc_threshold;
775 v->bytes_in = 0;
776 v->bytes_out = 0;
777 v->pkt_in = 0;
778 v->pkt_out = 0;
779 v->link = dev->ifindex;
780 if (v->flags & (VIFF_TUNNEL | VIFF_REGISTER))
781 v->link = dev->iflink;
783 /* And finish update writing critical data */
784 write_lock_bh(&mrt_lock);
785 v->dev = dev;
786 #ifdef CONFIG_IP_PIMSM
787 if (v->flags & VIFF_REGISTER)
788 mrt->mroute_reg_vif_num = vifi;
789 #endif
790 if (vifi+1 > mrt->maxvif)
791 mrt->maxvif = vifi+1;
792 write_unlock_bh(&mrt_lock);
793 return 0;
796 /* called with rcu_read_lock() */
797 static struct mfc_cache *ipmr_cache_find(struct mr_table *mrt,
798 __be32 origin,
799 __be32 mcastgrp)
801 int line = MFC_HASH(mcastgrp, origin);
802 struct mfc_cache *c;
804 list_for_each_entry_rcu(c, &mrt->mfc_cache_array[line], list) {
805 if (c->mfc_origin == origin && c->mfc_mcastgrp == mcastgrp)
806 return c;
808 return NULL;
812 * Allocate a multicast cache entry
814 static struct mfc_cache *ipmr_cache_alloc(void)
816 struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_KERNEL);
818 if (c)
819 c->mfc_un.res.minvif = MAXVIFS;
820 return c;
823 static struct mfc_cache *ipmr_cache_alloc_unres(void)
825 struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_ATOMIC);
827 if (c) {
828 skb_queue_head_init(&c->mfc_un.unres.unresolved);
829 c->mfc_un.unres.expires = jiffies + 10*HZ;
831 return c;
835 * A cache entry has gone into a resolved state from queued
838 static void ipmr_cache_resolve(struct net *net, struct mr_table *mrt,
839 struct mfc_cache *uc, struct mfc_cache *c)
841 struct sk_buff *skb;
842 struct nlmsgerr *e;
844 /* Play the pending entries through our router */
846 while ((skb = __skb_dequeue(&uc->mfc_un.unres.unresolved))) {
847 if (ip_hdr(skb)->version == 0) {
848 struct nlmsghdr *nlh = (struct nlmsghdr *)skb_pull(skb, sizeof(struct iphdr));
850 if (__ipmr_fill_mroute(mrt, skb, c, NLMSG_DATA(nlh)) > 0) {
851 nlh->nlmsg_len = skb_tail_pointer(skb) -
852 (u8 *)nlh;
853 } else {
854 nlh->nlmsg_type = NLMSG_ERROR;
855 nlh->nlmsg_len = NLMSG_LENGTH(sizeof(struct nlmsgerr));
856 skb_trim(skb, nlh->nlmsg_len);
857 e = NLMSG_DATA(nlh);
858 e->error = -EMSGSIZE;
859 memset(&e->msg, 0, sizeof(e->msg));
862 rtnl_unicast(skb, net, NETLINK_CB(skb).pid);
863 } else {
864 ip_mr_forward(net, mrt, skb, c, 0);
870 * Bounce a cache query up to mrouted. We could use netlink for this but mrouted
871 * expects the following bizarre scheme.
873 * Called under mrt_lock.
876 static int ipmr_cache_report(struct mr_table *mrt,
877 struct sk_buff *pkt, vifi_t vifi, int assert)
879 struct sk_buff *skb;
880 const int ihl = ip_hdrlen(pkt);
881 struct igmphdr *igmp;
882 struct igmpmsg *msg;
883 struct sock *mroute_sk;
884 int ret;
886 #ifdef CONFIG_IP_PIMSM
887 if (assert == IGMPMSG_WHOLEPKT)
888 skb = skb_realloc_headroom(pkt, sizeof(struct iphdr));
889 else
890 #endif
891 skb = alloc_skb(128, GFP_ATOMIC);
893 if (!skb)
894 return -ENOBUFS;
896 #ifdef CONFIG_IP_PIMSM
897 if (assert == IGMPMSG_WHOLEPKT) {
898 /* Ugly, but we have no choice with this interface.
899 * Duplicate old header, fix ihl, length etc.
900 * And all this only to mangle msg->im_msgtype and
901 * to set msg->im_mbz to "mbz" :-)
903 skb_push(skb, sizeof(struct iphdr));
904 skb_reset_network_header(skb);
905 skb_reset_transport_header(skb);
906 msg = (struct igmpmsg *)skb_network_header(skb);
907 memcpy(msg, skb_network_header(pkt), sizeof(struct iphdr));
908 msg->im_msgtype = IGMPMSG_WHOLEPKT;
909 msg->im_mbz = 0;
910 msg->im_vif = mrt->mroute_reg_vif_num;
911 ip_hdr(skb)->ihl = sizeof(struct iphdr) >> 2;
912 ip_hdr(skb)->tot_len = htons(ntohs(ip_hdr(pkt)->tot_len) +
913 sizeof(struct iphdr));
914 } else
915 #endif
918 /* Copy the IP header */
920 skb->network_header = skb->tail;
921 skb_put(skb, ihl);
922 skb_copy_to_linear_data(skb, pkt->data, ihl);
923 ip_hdr(skb)->protocol = 0; /* Flag to the kernel this is a route add */
924 msg = (struct igmpmsg *)skb_network_header(skb);
925 msg->im_vif = vifi;
926 skb_dst_set(skb, dst_clone(skb_dst(pkt)));
928 /* Add our header */
930 igmp = (struct igmphdr *)skb_put(skb, sizeof(struct igmphdr));
931 igmp->type =
932 msg->im_msgtype = assert;
933 igmp->code = 0;
934 ip_hdr(skb)->tot_len = htons(skb->len); /* Fix the length */
935 skb->transport_header = skb->network_header;
938 rcu_read_lock();
939 mroute_sk = rcu_dereference(mrt->mroute_sk);
940 if (mroute_sk == NULL) {
941 rcu_read_unlock();
942 kfree_skb(skb);
943 return -EINVAL;
946 /* Deliver to mrouted */
948 ret = sock_queue_rcv_skb(mroute_sk, skb);
949 rcu_read_unlock();
950 if (ret < 0) {
951 if (net_ratelimit())
952 printk(KERN_WARNING "mroute: pending queue full, dropping entries.\n");
953 kfree_skb(skb);
956 return ret;
960 * Queue a packet for resolution. It gets locked cache entry!
963 static int
964 ipmr_cache_unresolved(struct mr_table *mrt, vifi_t vifi, struct sk_buff *skb)
966 bool found = false;
967 int err;
968 struct mfc_cache *c;
969 const struct iphdr *iph = ip_hdr(skb);
971 spin_lock_bh(&mfc_unres_lock);
972 list_for_each_entry(c, &mrt->mfc_unres_queue, list) {
973 if (c->mfc_mcastgrp == iph->daddr &&
974 c->mfc_origin == iph->saddr) {
975 found = true;
976 break;
980 if (!found) {
981 /* Create a new entry if allowable */
983 if (atomic_read(&mrt->cache_resolve_queue_len) >= 10 ||
984 (c = ipmr_cache_alloc_unres()) == NULL) {
985 spin_unlock_bh(&mfc_unres_lock);
987 kfree_skb(skb);
988 return -ENOBUFS;
991 /* Fill in the new cache entry */
993 c->mfc_parent = -1;
994 c->mfc_origin = iph->saddr;
995 c->mfc_mcastgrp = iph->daddr;
997 /* Reflect first query at mrouted. */
999 err = ipmr_cache_report(mrt, skb, vifi, IGMPMSG_NOCACHE);
1000 if (err < 0) {
1001 /* If the report failed throw the cache entry
1002 out - Brad Parker
1004 spin_unlock_bh(&mfc_unres_lock);
1006 ipmr_cache_free(c);
1007 kfree_skb(skb);
1008 return err;
1011 atomic_inc(&mrt->cache_resolve_queue_len);
1012 list_add(&c->list, &mrt->mfc_unres_queue);
1014 if (atomic_read(&mrt->cache_resolve_queue_len) == 1)
1015 mod_timer(&mrt->ipmr_expire_timer, c->mfc_un.unres.expires);
1018 /* See if we can append the packet */
1020 if (c->mfc_un.unres.unresolved.qlen > 3) {
1021 kfree_skb(skb);
1022 err = -ENOBUFS;
1023 } else {
1024 skb_queue_tail(&c->mfc_un.unres.unresolved, skb);
1025 err = 0;
1028 spin_unlock_bh(&mfc_unres_lock);
1029 return err;
1033 * MFC cache manipulation by user space mroute daemon
1036 static int ipmr_mfc_delete(struct mr_table *mrt, struct mfcctl *mfc)
1038 int line;
1039 struct mfc_cache *c, *next;
1041 line = MFC_HASH(mfc->mfcc_mcastgrp.s_addr, mfc->mfcc_origin.s_addr);
1043 list_for_each_entry_safe(c, next, &mrt->mfc_cache_array[line], list) {
1044 if (c->mfc_origin == mfc->mfcc_origin.s_addr &&
1045 c->mfc_mcastgrp == mfc->mfcc_mcastgrp.s_addr) {
1046 list_del_rcu(&c->list);
1048 ipmr_cache_free(c);
1049 return 0;
1052 return -ENOENT;
1055 static int ipmr_mfc_add(struct net *net, struct mr_table *mrt,
1056 struct mfcctl *mfc, int mrtsock)
1058 bool found = false;
1059 int line;
1060 struct mfc_cache *uc, *c;
1062 if (mfc->mfcc_parent >= MAXVIFS)
1063 return -ENFILE;
1065 line = MFC_HASH(mfc->mfcc_mcastgrp.s_addr, mfc->mfcc_origin.s_addr);
1067 list_for_each_entry(c, &mrt->mfc_cache_array[line], list) {
1068 if (c->mfc_origin == mfc->mfcc_origin.s_addr &&
1069 c->mfc_mcastgrp == mfc->mfcc_mcastgrp.s_addr) {
1070 found = true;
1071 break;
1075 if (found) {
1076 write_lock_bh(&mrt_lock);
1077 c->mfc_parent = mfc->mfcc_parent;
1078 ipmr_update_thresholds(mrt, c, mfc->mfcc_ttls);
1079 if (!mrtsock)
1080 c->mfc_flags |= MFC_STATIC;
1081 write_unlock_bh(&mrt_lock);
1082 return 0;
1085 if (!ipv4_is_multicast(mfc->mfcc_mcastgrp.s_addr))
1086 return -EINVAL;
1088 c = ipmr_cache_alloc();
1089 if (c == NULL)
1090 return -ENOMEM;
1092 c->mfc_origin = mfc->mfcc_origin.s_addr;
1093 c->mfc_mcastgrp = mfc->mfcc_mcastgrp.s_addr;
1094 c->mfc_parent = mfc->mfcc_parent;
1095 ipmr_update_thresholds(mrt, c, mfc->mfcc_ttls);
1096 if (!mrtsock)
1097 c->mfc_flags |= MFC_STATIC;
1099 list_add_rcu(&c->list, &mrt->mfc_cache_array[line]);
1102 * Check to see if we resolved a queued list. If so we
1103 * need to send on the frames and tidy up.
1105 found = false;
1106 spin_lock_bh(&mfc_unres_lock);
1107 list_for_each_entry(uc, &mrt->mfc_unres_queue, list) {
1108 if (uc->mfc_origin == c->mfc_origin &&
1109 uc->mfc_mcastgrp == c->mfc_mcastgrp) {
1110 list_del(&uc->list);
1111 atomic_dec(&mrt->cache_resolve_queue_len);
1112 found = true;
1113 break;
1116 if (list_empty(&mrt->mfc_unres_queue))
1117 del_timer(&mrt->ipmr_expire_timer);
1118 spin_unlock_bh(&mfc_unres_lock);
1120 if (found) {
1121 ipmr_cache_resolve(net, mrt, uc, c);
1122 ipmr_cache_free(uc);
1124 return 0;
1128 * Close the multicast socket, and clear the vif tables etc
1131 static void mroute_clean_tables(struct mr_table *mrt)
1133 int i;
1134 LIST_HEAD(list);
1135 struct mfc_cache *c, *next;
1137 /* Shut down all active vif entries */
1139 for (i = 0; i < mrt->maxvif; i++) {
1140 if (!(mrt->vif_table[i].flags & VIFF_STATIC))
1141 vif_delete(mrt, i, 0, &list);
1143 unregister_netdevice_many(&list);
1145 /* Wipe the cache */
1147 for (i = 0; i < MFC_LINES; i++) {
1148 list_for_each_entry_safe(c, next, &mrt->mfc_cache_array[i], list) {
1149 if (c->mfc_flags & MFC_STATIC)
1150 continue;
1151 list_del_rcu(&c->list);
1152 ipmr_cache_free(c);
1156 if (atomic_read(&mrt->cache_resolve_queue_len) != 0) {
1157 spin_lock_bh(&mfc_unres_lock);
1158 list_for_each_entry_safe(c, next, &mrt->mfc_unres_queue, list) {
1159 list_del(&c->list);
1160 ipmr_destroy_unres(mrt, c);
1162 spin_unlock_bh(&mfc_unres_lock);
1166 /* called from ip_ra_control(), before an RCU grace period,
1167 * we dont need to call synchronize_rcu() here
1169 static void mrtsock_destruct(struct sock *sk)
1171 struct net *net = sock_net(sk);
1172 struct mr_table *mrt;
1174 rtnl_lock();
1175 ipmr_for_each_table(mrt, net) {
1176 if (sk == rtnl_dereference(mrt->mroute_sk)) {
1177 IPV4_DEVCONF_ALL(net, MC_FORWARDING)--;
1178 rcu_assign_pointer(mrt->mroute_sk, NULL);
1179 mroute_clean_tables(mrt);
1182 rtnl_unlock();
1186 * Socket options and virtual interface manipulation. The whole
1187 * virtual interface system is a complete heap, but unfortunately
1188 * that's how BSD mrouted happens to think. Maybe one day with a proper
1189 * MOSPF/PIM router set up we can clean this up.
1192 int ip_mroute_setsockopt(struct sock *sk, int optname, char __user *optval, unsigned int optlen)
1194 int ret;
1195 struct vifctl vif;
1196 struct mfcctl mfc;
1197 struct net *net = sock_net(sk);
1198 struct mr_table *mrt;
1200 mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1201 if (mrt == NULL)
1202 return -ENOENT;
1204 if (optname != MRT_INIT) {
1205 if (sk != rcu_dereference_raw(mrt->mroute_sk) &&
1206 !capable(CAP_NET_ADMIN))
1207 return -EACCES;
1210 switch (optname) {
1211 case MRT_INIT:
1212 if (sk->sk_type != SOCK_RAW ||
1213 inet_sk(sk)->inet_num != IPPROTO_IGMP)
1214 return -EOPNOTSUPP;
1215 if (optlen != sizeof(int))
1216 return -ENOPROTOOPT;
1218 rtnl_lock();
1219 if (rtnl_dereference(mrt->mroute_sk)) {
1220 rtnl_unlock();
1221 return -EADDRINUSE;
1224 ret = ip_ra_control(sk, 1, mrtsock_destruct);
1225 if (ret == 0) {
1226 rcu_assign_pointer(mrt->mroute_sk, sk);
1227 IPV4_DEVCONF_ALL(net, MC_FORWARDING)++;
1229 rtnl_unlock();
1230 return ret;
1231 case MRT_DONE:
1232 if (sk != rcu_dereference_raw(mrt->mroute_sk))
1233 return -EACCES;
1234 return ip_ra_control(sk, 0, NULL);
1235 case MRT_ADD_VIF:
1236 case MRT_DEL_VIF:
1237 if (optlen != sizeof(vif))
1238 return -EINVAL;
1239 if (copy_from_user(&vif, optval, sizeof(vif)))
1240 return -EFAULT;
1241 if (vif.vifc_vifi >= MAXVIFS)
1242 return -ENFILE;
1243 rtnl_lock();
1244 if (optname == MRT_ADD_VIF) {
1245 ret = vif_add(net, mrt, &vif,
1246 sk == rtnl_dereference(mrt->mroute_sk));
1247 } else {
1248 ret = vif_delete(mrt, vif.vifc_vifi, 0, NULL);
1250 rtnl_unlock();
1251 return ret;
1254 * Manipulate the forwarding caches. These live
1255 * in a sort of kernel/user symbiosis.
1257 case MRT_ADD_MFC:
1258 case MRT_DEL_MFC:
1259 if (optlen != sizeof(mfc))
1260 return -EINVAL;
1261 if (copy_from_user(&mfc, optval, sizeof(mfc)))
1262 return -EFAULT;
1263 rtnl_lock();
1264 if (optname == MRT_DEL_MFC)
1265 ret = ipmr_mfc_delete(mrt, &mfc);
1266 else
1267 ret = ipmr_mfc_add(net, mrt, &mfc,
1268 sk == rtnl_dereference(mrt->mroute_sk));
1269 rtnl_unlock();
1270 return ret;
1272 * Control PIM assert.
1274 case MRT_ASSERT:
1276 int v;
1277 if (get_user(v, (int __user *)optval))
1278 return -EFAULT;
1279 mrt->mroute_do_assert = (v) ? 1 : 0;
1280 return 0;
1282 #ifdef CONFIG_IP_PIMSM
1283 case MRT_PIM:
1285 int v;
1287 if (get_user(v, (int __user *)optval))
1288 return -EFAULT;
1289 v = (v) ? 1 : 0;
1291 rtnl_lock();
1292 ret = 0;
1293 if (v != mrt->mroute_do_pim) {
1294 mrt->mroute_do_pim = v;
1295 mrt->mroute_do_assert = v;
1297 rtnl_unlock();
1298 return ret;
1300 #endif
1301 #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
1302 case MRT_TABLE:
1304 u32 v;
1306 if (optlen != sizeof(u32))
1307 return -EINVAL;
1308 if (get_user(v, (u32 __user *)optval))
1309 return -EFAULT;
1311 rtnl_lock();
1312 ret = 0;
1313 if (sk == rtnl_dereference(mrt->mroute_sk)) {
1314 ret = -EBUSY;
1315 } else {
1316 if (!ipmr_new_table(net, v))
1317 ret = -ENOMEM;
1318 raw_sk(sk)->ipmr_table = v;
1320 rtnl_unlock();
1321 return ret;
1323 #endif
1325 * Spurious command, or MRT_VERSION which you cannot
1326 * set.
1328 default:
1329 return -ENOPROTOOPT;
1334 * Getsock opt support for the multicast routing system.
1337 int ip_mroute_getsockopt(struct sock *sk, int optname, char __user *optval, int __user *optlen)
1339 int olr;
1340 int val;
1341 struct net *net = sock_net(sk);
1342 struct mr_table *mrt;
1344 mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1345 if (mrt == NULL)
1346 return -ENOENT;
1348 if (optname != MRT_VERSION &&
1349 #ifdef CONFIG_IP_PIMSM
1350 optname != MRT_PIM &&
1351 #endif
1352 optname != MRT_ASSERT)
1353 return -ENOPROTOOPT;
1355 if (get_user(olr, optlen))
1356 return -EFAULT;
1358 olr = min_t(unsigned int, olr, sizeof(int));
1359 if (olr < 0)
1360 return -EINVAL;
1362 if (put_user(olr, optlen))
1363 return -EFAULT;
1364 if (optname == MRT_VERSION)
1365 val = 0x0305;
1366 #ifdef CONFIG_IP_PIMSM
1367 else if (optname == MRT_PIM)
1368 val = mrt->mroute_do_pim;
1369 #endif
1370 else
1371 val = mrt->mroute_do_assert;
1372 if (copy_to_user(optval, &val, olr))
1373 return -EFAULT;
1374 return 0;
1378 * The IP multicast ioctl support routines.
1381 int ipmr_ioctl(struct sock *sk, int cmd, void __user *arg)
1383 struct sioc_sg_req sr;
1384 struct sioc_vif_req vr;
1385 struct vif_device *vif;
1386 struct mfc_cache *c;
1387 struct net *net = sock_net(sk);
1388 struct mr_table *mrt;
1390 mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1391 if (mrt == NULL)
1392 return -ENOENT;
1394 switch (cmd) {
1395 case SIOCGETVIFCNT:
1396 if (copy_from_user(&vr, arg, sizeof(vr)))
1397 return -EFAULT;
1398 if (vr.vifi >= mrt->maxvif)
1399 return -EINVAL;
1400 read_lock(&mrt_lock);
1401 vif = &mrt->vif_table[vr.vifi];
1402 if (VIF_EXISTS(mrt, vr.vifi)) {
1403 vr.icount = vif->pkt_in;
1404 vr.ocount = vif->pkt_out;
1405 vr.ibytes = vif->bytes_in;
1406 vr.obytes = vif->bytes_out;
1407 read_unlock(&mrt_lock);
1409 if (copy_to_user(arg, &vr, sizeof(vr)))
1410 return -EFAULT;
1411 return 0;
1413 read_unlock(&mrt_lock);
1414 return -EADDRNOTAVAIL;
1415 case SIOCGETSGCNT:
1416 if (copy_from_user(&sr, arg, sizeof(sr)))
1417 return -EFAULT;
1419 rcu_read_lock();
1420 c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr);
1421 if (c) {
1422 sr.pktcnt = c->mfc_un.res.pkt;
1423 sr.bytecnt = c->mfc_un.res.bytes;
1424 sr.wrong_if = c->mfc_un.res.wrong_if;
1425 rcu_read_unlock();
1427 if (copy_to_user(arg, &sr, sizeof(sr)))
1428 return -EFAULT;
1429 return 0;
1431 rcu_read_unlock();
1432 return -EADDRNOTAVAIL;
1433 default:
1434 return -ENOIOCTLCMD;
1438 #ifdef CONFIG_COMPAT
1439 struct compat_sioc_sg_req {
1440 struct in_addr src;
1441 struct in_addr grp;
1442 compat_ulong_t pktcnt;
1443 compat_ulong_t bytecnt;
1444 compat_ulong_t wrong_if;
1447 struct compat_sioc_vif_req {
1448 vifi_t vifi; /* Which iface */
1449 compat_ulong_t icount;
1450 compat_ulong_t ocount;
1451 compat_ulong_t ibytes;
1452 compat_ulong_t obytes;
1455 int ipmr_compat_ioctl(struct sock *sk, unsigned int cmd, void __user *arg)
1457 struct compat_sioc_sg_req sr;
1458 struct compat_sioc_vif_req vr;
1459 struct vif_device *vif;
1460 struct mfc_cache *c;
1461 struct net *net = sock_net(sk);
1462 struct mr_table *mrt;
1464 mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1465 if (mrt == NULL)
1466 return -ENOENT;
1468 switch (cmd) {
1469 case SIOCGETVIFCNT:
1470 if (copy_from_user(&vr, arg, sizeof(vr)))
1471 return -EFAULT;
1472 if (vr.vifi >= mrt->maxvif)
1473 return -EINVAL;
1474 read_lock(&mrt_lock);
1475 vif = &mrt->vif_table[vr.vifi];
1476 if (VIF_EXISTS(mrt, vr.vifi)) {
1477 vr.icount = vif->pkt_in;
1478 vr.ocount = vif->pkt_out;
1479 vr.ibytes = vif->bytes_in;
1480 vr.obytes = vif->bytes_out;
1481 read_unlock(&mrt_lock);
1483 if (copy_to_user(arg, &vr, sizeof(vr)))
1484 return -EFAULT;
1485 return 0;
1487 read_unlock(&mrt_lock);
1488 return -EADDRNOTAVAIL;
1489 case SIOCGETSGCNT:
1490 if (copy_from_user(&sr, arg, sizeof(sr)))
1491 return -EFAULT;
1493 rcu_read_lock();
1494 c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr);
1495 if (c) {
1496 sr.pktcnt = c->mfc_un.res.pkt;
1497 sr.bytecnt = c->mfc_un.res.bytes;
1498 sr.wrong_if = c->mfc_un.res.wrong_if;
1499 rcu_read_unlock();
1501 if (copy_to_user(arg, &sr, sizeof(sr)))
1502 return -EFAULT;
1503 return 0;
1505 rcu_read_unlock();
1506 return -EADDRNOTAVAIL;
1507 default:
1508 return -ENOIOCTLCMD;
1511 #endif
1514 static int ipmr_device_event(struct notifier_block *this, unsigned long event, void *ptr)
1516 struct net_device *dev = ptr;
1517 struct net *net = dev_net(dev);
1518 struct mr_table *mrt;
1519 struct vif_device *v;
1520 int ct;
1521 LIST_HEAD(list);
1523 if (event != NETDEV_UNREGISTER)
1524 return NOTIFY_DONE;
1526 ipmr_for_each_table(mrt, net) {
1527 v = &mrt->vif_table[0];
1528 for (ct = 0; ct < mrt->maxvif; ct++, v++) {
1529 if (v->dev == dev)
1530 vif_delete(mrt, ct, 1, &list);
1533 unregister_netdevice_many(&list);
1534 return NOTIFY_DONE;
1538 static struct notifier_block ip_mr_notifier = {
1539 .notifier_call = ipmr_device_event,
1543 * Encapsulate a packet by attaching a valid IPIP header to it.
1544 * This avoids tunnel drivers and other mess and gives us the speed so
1545 * important for multicast video.
1548 static void ip_encap(struct sk_buff *skb, __be32 saddr, __be32 daddr)
1550 struct iphdr *iph;
1551 struct iphdr *old_iph = ip_hdr(skb);
1553 skb_push(skb, sizeof(struct iphdr));
1554 skb->transport_header = skb->network_header;
1555 skb_reset_network_header(skb);
1556 iph = ip_hdr(skb);
1558 iph->version = 4;
1559 iph->tos = old_iph->tos;
1560 iph->ttl = old_iph->ttl;
1561 iph->frag_off = 0;
1562 iph->daddr = daddr;
1563 iph->saddr = saddr;
1564 iph->protocol = IPPROTO_IPIP;
1565 iph->ihl = 5;
1566 iph->tot_len = htons(skb->len);
1567 ip_select_ident(iph, skb_dst(skb), NULL);
1568 ip_send_check(iph);
1570 memset(&(IPCB(skb)->opt), 0, sizeof(IPCB(skb)->opt));
1571 nf_reset(skb);
1574 static inline int ipmr_forward_finish(struct sk_buff *skb)
1576 struct ip_options *opt = &(IPCB(skb)->opt);
1578 IP_INC_STATS_BH(dev_net(skb_dst(skb)->dev), IPSTATS_MIB_OUTFORWDATAGRAMS);
1580 if (unlikely(opt->optlen))
1581 ip_forward_options(skb);
1583 return dst_output(skb);
1587 * Processing handlers for ipmr_forward
1590 static void ipmr_queue_xmit(struct net *net, struct mr_table *mrt,
1591 struct sk_buff *skb, struct mfc_cache *c, int vifi)
1593 const struct iphdr *iph = ip_hdr(skb);
1594 struct vif_device *vif = &mrt->vif_table[vifi];
1595 struct net_device *dev;
1596 struct rtable *rt;
1597 int encap = 0;
1599 if (vif->dev == NULL)
1600 goto out_free;
1602 #ifdef CONFIG_IP_PIMSM
1603 if (vif->flags & VIFF_REGISTER) {
1604 vif->pkt_out++;
1605 vif->bytes_out += skb->len;
1606 vif->dev->stats.tx_bytes += skb->len;
1607 vif->dev->stats.tx_packets++;
1608 ipmr_cache_report(mrt, skb, vifi, IGMPMSG_WHOLEPKT);
1609 goto out_free;
1611 #endif
1613 if (vif->flags & VIFF_TUNNEL) {
1614 rt = ip_route_output_ports(net, NULL,
1615 vif->remote, vif->local,
1616 0, 0,
1617 IPPROTO_IPIP,
1618 RT_TOS(iph->tos), vif->link);
1619 if (IS_ERR(rt))
1620 goto out_free;
1621 encap = sizeof(struct iphdr);
1622 } else {
1623 rt = ip_route_output_ports(net, NULL, iph->daddr, 0,
1624 0, 0,
1625 IPPROTO_IPIP,
1626 RT_TOS(iph->tos), vif->link);
1627 if (IS_ERR(rt))
1628 goto out_free;
1631 dev = rt->dst.dev;
1633 if (skb->len+encap > dst_mtu(&rt->dst) && (ntohs(iph->frag_off) & IP_DF)) {
1634 /* Do not fragment multicasts. Alas, IPv4 does not
1635 * allow to send ICMP, so that packets will disappear
1636 * to blackhole.
1639 IP_INC_STATS_BH(dev_net(dev), IPSTATS_MIB_FRAGFAILS);
1640 ip_rt_put(rt);
1641 goto out_free;
1644 encap += LL_RESERVED_SPACE(dev) + rt->dst.header_len;
1646 if (skb_cow(skb, encap)) {
1647 ip_rt_put(rt);
1648 goto out_free;
1651 vif->pkt_out++;
1652 vif->bytes_out += skb->len;
1654 skb_dst_drop(skb);
1655 skb_dst_set(skb, &rt->dst);
1656 ip_decrease_ttl(ip_hdr(skb));
1658 /* FIXME: forward and output firewalls used to be called here.
1659 * What do we do with netfilter? -- RR
1661 if (vif->flags & VIFF_TUNNEL) {
1662 ip_encap(skb, vif->local, vif->remote);
1663 /* FIXME: extra output firewall step used to be here. --RR */
1664 vif->dev->stats.tx_packets++;
1665 vif->dev->stats.tx_bytes += skb->len;
1668 IPCB(skb)->flags |= IPSKB_FORWARDED;
1671 * RFC1584 teaches, that DVMRP/PIM router must deliver packets locally
1672 * not only before forwarding, but after forwarding on all output
1673 * interfaces. It is clear, if mrouter runs a multicasting
1674 * program, it should receive packets not depending to what interface
1675 * program is joined.
1676 * If we will not make it, the program will have to join on all
1677 * interfaces. On the other hand, multihoming host (or router, but
1678 * not mrouter) cannot join to more than one interface - it will
1679 * result in receiving multiple packets.
1681 NF_HOOK(NFPROTO_IPV4, NF_INET_FORWARD, skb, skb->dev, dev,
1682 ipmr_forward_finish);
1683 return;
1685 out_free:
1686 kfree_skb(skb);
1689 static int ipmr_find_vif(struct mr_table *mrt, struct net_device *dev)
1691 int ct;
1693 for (ct = mrt->maxvif-1; ct >= 0; ct--) {
1694 if (mrt->vif_table[ct].dev == dev)
1695 break;
1697 return ct;
1700 /* "local" means that we should preserve one skb (for local delivery) */
1702 static int ip_mr_forward(struct net *net, struct mr_table *mrt,
1703 struct sk_buff *skb, struct mfc_cache *cache,
1704 int local)
1706 int psend = -1;
1707 int vif, ct;
1709 vif = cache->mfc_parent;
1710 cache->mfc_un.res.pkt++;
1711 cache->mfc_un.res.bytes += skb->len;
1714 * Wrong interface: drop packet and (maybe) send PIM assert.
1716 if (mrt->vif_table[vif].dev != skb->dev) {
1717 int true_vifi;
1719 if (rt_is_output_route(skb_rtable(skb))) {
1720 /* It is our own packet, looped back.
1721 * Very complicated situation...
1723 * The best workaround until routing daemons will be
1724 * fixed is not to redistribute packet, if it was
1725 * send through wrong interface. It means, that
1726 * multicast applications WILL NOT work for
1727 * (S,G), which have default multicast route pointing
1728 * to wrong oif. In any case, it is not a good
1729 * idea to use multicasting applications on router.
1731 goto dont_forward;
1734 cache->mfc_un.res.wrong_if++;
1735 true_vifi = ipmr_find_vif(mrt, skb->dev);
1737 if (true_vifi >= 0 && mrt->mroute_do_assert &&
1738 /* pimsm uses asserts, when switching from RPT to SPT,
1739 * so that we cannot check that packet arrived on an oif.
1740 * It is bad, but otherwise we would need to move pretty
1741 * large chunk of pimd to kernel. Ough... --ANK
1743 (mrt->mroute_do_pim ||
1744 cache->mfc_un.res.ttls[true_vifi] < 255) &&
1745 time_after(jiffies,
1746 cache->mfc_un.res.last_assert + MFC_ASSERT_THRESH)) {
1747 cache->mfc_un.res.last_assert = jiffies;
1748 ipmr_cache_report(mrt, skb, true_vifi, IGMPMSG_WRONGVIF);
1750 goto dont_forward;
1753 mrt->vif_table[vif].pkt_in++;
1754 mrt->vif_table[vif].bytes_in += skb->len;
1757 * Forward the frame
1759 for (ct = cache->mfc_un.res.maxvif - 1;
1760 ct >= cache->mfc_un.res.minvif; ct--) {
1761 if (ip_hdr(skb)->ttl > cache->mfc_un.res.ttls[ct]) {
1762 if (psend != -1) {
1763 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1765 if (skb2)
1766 ipmr_queue_xmit(net, mrt, skb2, cache,
1767 psend);
1769 psend = ct;
1772 if (psend != -1) {
1773 if (local) {
1774 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1776 if (skb2)
1777 ipmr_queue_xmit(net, mrt, skb2, cache, psend);
1778 } else {
1779 ipmr_queue_xmit(net, mrt, skb, cache, psend);
1780 return 0;
1784 dont_forward:
1785 if (!local)
1786 kfree_skb(skb);
1787 return 0;
1790 static struct mr_table *ipmr_rt_fib_lookup(struct net *net, struct rtable *rt)
1792 struct flowi fl = {
1793 .fl4_dst = rt->rt_key_dst,
1794 .fl4_src = rt->rt_key_src,
1795 .fl4_tos = rt->rt_tos,
1796 .flowi_oif = rt->rt_oif,
1797 .flowi_iif = rt->rt_iif,
1798 .flowi_mark = rt->rt_mark,
1800 struct mr_table *mrt;
1801 int err;
1803 err = ipmr_fib_lookup(net, &fl, &mrt);
1804 if (err)
1805 return ERR_PTR(err);
1806 return mrt;
1810 * Multicast packets for forwarding arrive here
1811 * Called with rcu_read_lock();
1814 int ip_mr_input(struct sk_buff *skb)
1816 struct mfc_cache *cache;
1817 struct net *net = dev_net(skb->dev);
1818 int local = skb_rtable(skb)->rt_flags & RTCF_LOCAL;
1819 struct mr_table *mrt;
1821 /* Packet is looped back after forward, it should not be
1822 * forwarded second time, but still can be delivered locally.
1824 if (IPCB(skb)->flags & IPSKB_FORWARDED)
1825 goto dont_forward;
1827 mrt = ipmr_rt_fib_lookup(net, skb_rtable(skb));
1828 if (IS_ERR(mrt)) {
1829 kfree_skb(skb);
1830 return PTR_ERR(mrt);
1832 if (!local) {
1833 if (IPCB(skb)->opt.router_alert) {
1834 if (ip_call_ra_chain(skb))
1835 return 0;
1836 } else if (ip_hdr(skb)->protocol == IPPROTO_IGMP) {
1837 /* IGMPv1 (and broken IGMPv2 implementations sort of
1838 * Cisco IOS <= 11.2(8)) do not put router alert
1839 * option to IGMP packets destined to routable
1840 * groups. It is very bad, because it means
1841 * that we can forward NO IGMP messages.
1843 struct sock *mroute_sk;
1845 mroute_sk = rcu_dereference(mrt->mroute_sk);
1846 if (mroute_sk) {
1847 nf_reset(skb);
1848 raw_rcv(mroute_sk, skb);
1849 return 0;
1854 /* already under rcu_read_lock() */
1855 cache = ipmr_cache_find(mrt, ip_hdr(skb)->saddr, ip_hdr(skb)->daddr);
1858 * No usable cache entry
1860 if (cache == NULL) {
1861 int vif;
1863 if (local) {
1864 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1865 ip_local_deliver(skb);
1866 if (skb2 == NULL)
1867 return -ENOBUFS;
1868 skb = skb2;
1871 read_lock(&mrt_lock);
1872 vif = ipmr_find_vif(mrt, skb->dev);
1873 if (vif >= 0) {
1874 int err2 = ipmr_cache_unresolved(mrt, vif, skb);
1875 read_unlock(&mrt_lock);
1877 return err2;
1879 read_unlock(&mrt_lock);
1880 kfree_skb(skb);
1881 return -ENODEV;
1884 read_lock(&mrt_lock);
1885 ip_mr_forward(net, mrt, skb, cache, local);
1886 read_unlock(&mrt_lock);
1888 if (local)
1889 return ip_local_deliver(skb);
1891 return 0;
1893 dont_forward:
1894 if (local)
1895 return ip_local_deliver(skb);
1896 kfree_skb(skb);
1897 return 0;
1900 #ifdef CONFIG_IP_PIMSM
1901 /* called with rcu_read_lock() */
1902 static int __pim_rcv(struct mr_table *mrt, struct sk_buff *skb,
1903 unsigned int pimlen)
1905 struct net_device *reg_dev = NULL;
1906 struct iphdr *encap;
1908 encap = (struct iphdr *)(skb_transport_header(skb) + pimlen);
1910 * Check that:
1911 * a. packet is really sent to a multicast group
1912 * b. packet is not a NULL-REGISTER
1913 * c. packet is not truncated
1915 if (!ipv4_is_multicast(encap->daddr) ||
1916 encap->tot_len == 0 ||
1917 ntohs(encap->tot_len) + pimlen > skb->len)
1918 return 1;
1920 read_lock(&mrt_lock);
1921 if (mrt->mroute_reg_vif_num >= 0)
1922 reg_dev = mrt->vif_table[mrt->mroute_reg_vif_num].dev;
1923 read_unlock(&mrt_lock);
1925 if (reg_dev == NULL)
1926 return 1;
1928 skb->mac_header = skb->network_header;
1929 skb_pull(skb, (u8 *)encap - skb->data);
1930 skb_reset_network_header(skb);
1931 skb->protocol = htons(ETH_P_IP);
1932 skb->ip_summed = CHECKSUM_NONE;
1933 skb->pkt_type = PACKET_HOST;
1935 skb_tunnel_rx(skb, reg_dev);
1937 netif_rx(skb);
1939 return NET_RX_SUCCESS;
1941 #endif
1943 #ifdef CONFIG_IP_PIMSM_V1
1945 * Handle IGMP messages of PIMv1
1948 int pim_rcv_v1(struct sk_buff *skb)
1950 struct igmphdr *pim;
1951 struct net *net = dev_net(skb->dev);
1952 struct mr_table *mrt;
1954 if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr)))
1955 goto drop;
1957 pim = igmp_hdr(skb);
1959 mrt = ipmr_rt_fib_lookup(net, skb_rtable(skb));
1960 if (IS_ERR(mrt))
1961 goto drop;
1962 if (!mrt->mroute_do_pim ||
1963 pim->group != PIM_V1_VERSION || pim->code != PIM_V1_REGISTER)
1964 goto drop;
1966 if (__pim_rcv(mrt, skb, sizeof(*pim))) {
1967 drop:
1968 kfree_skb(skb);
1970 return 0;
1972 #endif
1974 #ifdef CONFIG_IP_PIMSM_V2
1975 static int pim_rcv(struct sk_buff *skb)
1977 struct pimreghdr *pim;
1978 struct net *net = dev_net(skb->dev);
1979 struct mr_table *mrt;
1981 if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr)))
1982 goto drop;
1984 pim = (struct pimreghdr *)skb_transport_header(skb);
1985 if (pim->type != ((PIM_VERSION << 4) | (PIM_REGISTER)) ||
1986 (pim->flags & PIM_NULL_REGISTER) ||
1987 (ip_compute_csum((void *)pim, sizeof(*pim)) != 0 &&
1988 csum_fold(skb_checksum(skb, 0, skb->len, 0))))
1989 goto drop;
1991 mrt = ipmr_rt_fib_lookup(net, skb_rtable(skb));
1992 if (IS_ERR(mrt))
1993 goto drop;
1994 if (__pim_rcv(mrt, skb, sizeof(*pim))) {
1995 drop:
1996 kfree_skb(skb);
1998 return 0;
2000 #endif
2002 static int __ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
2003 struct mfc_cache *c, struct rtmsg *rtm)
2005 int ct;
2006 struct rtnexthop *nhp;
2007 u8 *b = skb_tail_pointer(skb);
2008 struct rtattr *mp_head;
2010 /* If cache is unresolved, don't try to parse IIF and OIF */
2011 if (c->mfc_parent >= MAXVIFS)
2012 return -ENOENT;
2014 if (VIF_EXISTS(mrt, c->mfc_parent))
2015 RTA_PUT(skb, RTA_IIF, 4, &mrt->vif_table[c->mfc_parent].dev->ifindex);
2017 mp_head = (struct rtattr *)skb_put(skb, RTA_LENGTH(0));
2019 for (ct = c->mfc_un.res.minvif; ct < c->mfc_un.res.maxvif; ct++) {
2020 if (VIF_EXISTS(mrt, ct) && c->mfc_un.res.ttls[ct] < 255) {
2021 if (skb_tailroom(skb) < RTA_ALIGN(RTA_ALIGN(sizeof(*nhp)) + 4))
2022 goto rtattr_failure;
2023 nhp = (struct rtnexthop *)skb_put(skb, RTA_ALIGN(sizeof(*nhp)));
2024 nhp->rtnh_flags = 0;
2025 nhp->rtnh_hops = c->mfc_un.res.ttls[ct];
2026 nhp->rtnh_ifindex = mrt->vif_table[ct].dev->ifindex;
2027 nhp->rtnh_len = sizeof(*nhp);
2030 mp_head->rta_type = RTA_MULTIPATH;
2031 mp_head->rta_len = skb_tail_pointer(skb) - (u8 *)mp_head;
2032 rtm->rtm_type = RTN_MULTICAST;
2033 return 1;
2035 rtattr_failure:
2036 nlmsg_trim(skb, b);
2037 return -EMSGSIZE;
2040 int ipmr_get_route(struct net *net,
2041 struct sk_buff *skb, struct rtmsg *rtm, int nowait)
2043 int err;
2044 struct mr_table *mrt;
2045 struct mfc_cache *cache;
2046 struct rtable *rt = skb_rtable(skb);
2048 mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2049 if (mrt == NULL)
2050 return -ENOENT;
2052 rcu_read_lock();
2053 cache = ipmr_cache_find(mrt, rt->rt_src, rt->rt_dst);
2055 if (cache == NULL) {
2056 struct sk_buff *skb2;
2057 struct iphdr *iph;
2058 struct net_device *dev;
2059 int vif = -1;
2061 if (nowait) {
2062 rcu_read_unlock();
2063 return -EAGAIN;
2066 dev = skb->dev;
2067 read_lock(&mrt_lock);
2068 if (dev)
2069 vif = ipmr_find_vif(mrt, dev);
2070 if (vif < 0) {
2071 read_unlock(&mrt_lock);
2072 rcu_read_unlock();
2073 return -ENODEV;
2075 skb2 = skb_clone(skb, GFP_ATOMIC);
2076 if (!skb2) {
2077 read_unlock(&mrt_lock);
2078 rcu_read_unlock();
2079 return -ENOMEM;
2082 skb_push(skb2, sizeof(struct iphdr));
2083 skb_reset_network_header(skb2);
2084 iph = ip_hdr(skb2);
2085 iph->ihl = sizeof(struct iphdr) >> 2;
2086 iph->saddr = rt->rt_src;
2087 iph->daddr = rt->rt_dst;
2088 iph->version = 0;
2089 err = ipmr_cache_unresolved(mrt, vif, skb2);
2090 read_unlock(&mrt_lock);
2091 rcu_read_unlock();
2092 return err;
2095 read_lock(&mrt_lock);
2096 if (!nowait && (rtm->rtm_flags & RTM_F_NOTIFY))
2097 cache->mfc_flags |= MFC_NOTIFY;
2098 err = __ipmr_fill_mroute(mrt, skb, cache, rtm);
2099 read_unlock(&mrt_lock);
2100 rcu_read_unlock();
2101 return err;
2104 static int ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
2105 u32 pid, u32 seq, struct mfc_cache *c)
2107 struct nlmsghdr *nlh;
2108 struct rtmsg *rtm;
2110 nlh = nlmsg_put(skb, pid, seq, RTM_NEWROUTE, sizeof(*rtm), NLM_F_MULTI);
2111 if (nlh == NULL)
2112 return -EMSGSIZE;
2114 rtm = nlmsg_data(nlh);
2115 rtm->rtm_family = RTNL_FAMILY_IPMR;
2116 rtm->rtm_dst_len = 32;
2117 rtm->rtm_src_len = 32;
2118 rtm->rtm_tos = 0;
2119 rtm->rtm_table = mrt->id;
2120 NLA_PUT_U32(skb, RTA_TABLE, mrt->id);
2121 rtm->rtm_type = RTN_MULTICAST;
2122 rtm->rtm_scope = RT_SCOPE_UNIVERSE;
2123 rtm->rtm_protocol = RTPROT_UNSPEC;
2124 rtm->rtm_flags = 0;
2126 NLA_PUT_BE32(skb, RTA_SRC, c->mfc_origin);
2127 NLA_PUT_BE32(skb, RTA_DST, c->mfc_mcastgrp);
2129 if (__ipmr_fill_mroute(mrt, skb, c, rtm) < 0)
2130 goto nla_put_failure;
2132 return nlmsg_end(skb, nlh);
2134 nla_put_failure:
2135 nlmsg_cancel(skb, nlh);
2136 return -EMSGSIZE;
2139 static int ipmr_rtm_dumproute(struct sk_buff *skb, struct netlink_callback *cb)
2141 struct net *net = sock_net(skb->sk);
2142 struct mr_table *mrt;
2143 struct mfc_cache *mfc;
2144 unsigned int t = 0, s_t;
2145 unsigned int h = 0, s_h;
2146 unsigned int e = 0, s_e;
2148 s_t = cb->args[0];
2149 s_h = cb->args[1];
2150 s_e = cb->args[2];
2152 rcu_read_lock();
2153 ipmr_for_each_table(mrt, net) {
2154 if (t < s_t)
2155 goto next_table;
2156 if (t > s_t)
2157 s_h = 0;
2158 for (h = s_h; h < MFC_LINES; h++) {
2159 list_for_each_entry_rcu(mfc, &mrt->mfc_cache_array[h], list) {
2160 if (e < s_e)
2161 goto next_entry;
2162 if (ipmr_fill_mroute(mrt, skb,
2163 NETLINK_CB(cb->skb).pid,
2164 cb->nlh->nlmsg_seq,
2165 mfc) < 0)
2166 goto done;
2167 next_entry:
2168 e++;
2170 e = s_e = 0;
2172 s_h = 0;
2173 next_table:
2174 t++;
2176 done:
2177 rcu_read_unlock();
2179 cb->args[2] = e;
2180 cb->args[1] = h;
2181 cb->args[0] = t;
2183 return skb->len;
2186 #ifdef CONFIG_PROC_FS
2188 * The /proc interfaces to multicast routing :
2189 * /proc/net/ip_mr_cache & /proc/net/ip_mr_vif
2191 struct ipmr_vif_iter {
2192 struct seq_net_private p;
2193 struct mr_table *mrt;
2194 int ct;
2197 static struct vif_device *ipmr_vif_seq_idx(struct net *net,
2198 struct ipmr_vif_iter *iter,
2199 loff_t pos)
2201 struct mr_table *mrt = iter->mrt;
2203 for (iter->ct = 0; iter->ct < mrt->maxvif; ++iter->ct) {
2204 if (!VIF_EXISTS(mrt, iter->ct))
2205 continue;
2206 if (pos-- == 0)
2207 return &mrt->vif_table[iter->ct];
2209 return NULL;
2212 static void *ipmr_vif_seq_start(struct seq_file *seq, loff_t *pos)
2213 __acquires(mrt_lock)
2215 struct ipmr_vif_iter *iter = seq->private;
2216 struct net *net = seq_file_net(seq);
2217 struct mr_table *mrt;
2219 mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2220 if (mrt == NULL)
2221 return ERR_PTR(-ENOENT);
2223 iter->mrt = mrt;
2225 read_lock(&mrt_lock);
2226 return *pos ? ipmr_vif_seq_idx(net, seq->private, *pos - 1)
2227 : SEQ_START_TOKEN;
2230 static void *ipmr_vif_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2232 struct ipmr_vif_iter *iter = seq->private;
2233 struct net *net = seq_file_net(seq);
2234 struct mr_table *mrt = iter->mrt;
2236 ++*pos;
2237 if (v == SEQ_START_TOKEN)
2238 return ipmr_vif_seq_idx(net, iter, 0);
2240 while (++iter->ct < mrt->maxvif) {
2241 if (!VIF_EXISTS(mrt, iter->ct))
2242 continue;
2243 return &mrt->vif_table[iter->ct];
2245 return NULL;
2248 static void ipmr_vif_seq_stop(struct seq_file *seq, void *v)
2249 __releases(mrt_lock)
2251 read_unlock(&mrt_lock);
2254 static int ipmr_vif_seq_show(struct seq_file *seq, void *v)
2256 struct ipmr_vif_iter *iter = seq->private;
2257 struct mr_table *mrt = iter->mrt;
2259 if (v == SEQ_START_TOKEN) {
2260 seq_puts(seq,
2261 "Interface BytesIn PktsIn BytesOut PktsOut Flags Local Remote\n");
2262 } else {
2263 const struct vif_device *vif = v;
2264 const char *name = vif->dev ? vif->dev->name : "none";
2266 seq_printf(seq,
2267 "%2Zd %-10s %8ld %7ld %8ld %7ld %05X %08X %08X\n",
2268 vif - mrt->vif_table,
2269 name, vif->bytes_in, vif->pkt_in,
2270 vif->bytes_out, vif->pkt_out,
2271 vif->flags, vif->local, vif->remote);
2273 return 0;
2276 static const struct seq_operations ipmr_vif_seq_ops = {
2277 .start = ipmr_vif_seq_start,
2278 .next = ipmr_vif_seq_next,
2279 .stop = ipmr_vif_seq_stop,
2280 .show = ipmr_vif_seq_show,
2283 static int ipmr_vif_open(struct inode *inode, struct file *file)
2285 return seq_open_net(inode, file, &ipmr_vif_seq_ops,
2286 sizeof(struct ipmr_vif_iter));
2289 static const struct file_operations ipmr_vif_fops = {
2290 .owner = THIS_MODULE,
2291 .open = ipmr_vif_open,
2292 .read = seq_read,
2293 .llseek = seq_lseek,
2294 .release = seq_release_net,
2297 struct ipmr_mfc_iter {
2298 struct seq_net_private p;
2299 struct mr_table *mrt;
2300 struct list_head *cache;
2301 int ct;
2305 static struct mfc_cache *ipmr_mfc_seq_idx(struct net *net,
2306 struct ipmr_mfc_iter *it, loff_t pos)
2308 struct mr_table *mrt = it->mrt;
2309 struct mfc_cache *mfc;
2311 rcu_read_lock();
2312 for (it->ct = 0; it->ct < MFC_LINES; it->ct++) {
2313 it->cache = &mrt->mfc_cache_array[it->ct];
2314 list_for_each_entry_rcu(mfc, it->cache, list)
2315 if (pos-- == 0)
2316 return mfc;
2318 rcu_read_unlock();
2320 spin_lock_bh(&mfc_unres_lock);
2321 it->cache = &mrt->mfc_unres_queue;
2322 list_for_each_entry(mfc, it->cache, list)
2323 if (pos-- == 0)
2324 return mfc;
2325 spin_unlock_bh(&mfc_unres_lock);
2327 it->cache = NULL;
2328 return NULL;
2332 static void *ipmr_mfc_seq_start(struct seq_file *seq, loff_t *pos)
2334 struct ipmr_mfc_iter *it = seq->private;
2335 struct net *net = seq_file_net(seq);
2336 struct mr_table *mrt;
2338 mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2339 if (mrt == NULL)
2340 return ERR_PTR(-ENOENT);
2342 it->mrt = mrt;
2343 it->cache = NULL;
2344 it->ct = 0;
2345 return *pos ? ipmr_mfc_seq_idx(net, seq->private, *pos - 1)
2346 : SEQ_START_TOKEN;
2349 static void *ipmr_mfc_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2351 struct mfc_cache *mfc = v;
2352 struct ipmr_mfc_iter *it = seq->private;
2353 struct net *net = seq_file_net(seq);
2354 struct mr_table *mrt = it->mrt;
2356 ++*pos;
2358 if (v == SEQ_START_TOKEN)
2359 return ipmr_mfc_seq_idx(net, seq->private, 0);
2361 if (mfc->list.next != it->cache)
2362 return list_entry(mfc->list.next, struct mfc_cache, list);
2364 if (it->cache == &mrt->mfc_unres_queue)
2365 goto end_of_list;
2367 BUG_ON(it->cache != &mrt->mfc_cache_array[it->ct]);
2369 while (++it->ct < MFC_LINES) {
2370 it->cache = &mrt->mfc_cache_array[it->ct];
2371 if (list_empty(it->cache))
2372 continue;
2373 return list_first_entry(it->cache, struct mfc_cache, list);
2376 /* exhausted cache_array, show unresolved */
2377 rcu_read_unlock();
2378 it->cache = &mrt->mfc_unres_queue;
2379 it->ct = 0;
2381 spin_lock_bh(&mfc_unres_lock);
2382 if (!list_empty(it->cache))
2383 return list_first_entry(it->cache, struct mfc_cache, list);
2385 end_of_list:
2386 spin_unlock_bh(&mfc_unres_lock);
2387 it->cache = NULL;
2389 return NULL;
2392 static void ipmr_mfc_seq_stop(struct seq_file *seq, void *v)
2394 struct ipmr_mfc_iter *it = seq->private;
2395 struct mr_table *mrt = it->mrt;
2397 if (it->cache == &mrt->mfc_unres_queue)
2398 spin_unlock_bh(&mfc_unres_lock);
2399 else if (it->cache == &mrt->mfc_cache_array[it->ct])
2400 rcu_read_unlock();
2403 static int ipmr_mfc_seq_show(struct seq_file *seq, void *v)
2405 int n;
2407 if (v == SEQ_START_TOKEN) {
2408 seq_puts(seq,
2409 "Group Origin Iif Pkts Bytes Wrong Oifs\n");
2410 } else {
2411 const struct mfc_cache *mfc = v;
2412 const struct ipmr_mfc_iter *it = seq->private;
2413 const struct mr_table *mrt = it->mrt;
2415 seq_printf(seq, "%08X %08X %-3hd",
2416 (__force u32) mfc->mfc_mcastgrp,
2417 (__force u32) mfc->mfc_origin,
2418 mfc->mfc_parent);
2420 if (it->cache != &mrt->mfc_unres_queue) {
2421 seq_printf(seq, " %8lu %8lu %8lu",
2422 mfc->mfc_un.res.pkt,
2423 mfc->mfc_un.res.bytes,
2424 mfc->mfc_un.res.wrong_if);
2425 for (n = mfc->mfc_un.res.minvif;
2426 n < mfc->mfc_un.res.maxvif; n++) {
2427 if (VIF_EXISTS(mrt, n) &&
2428 mfc->mfc_un.res.ttls[n] < 255)
2429 seq_printf(seq,
2430 " %2d:%-3d",
2431 n, mfc->mfc_un.res.ttls[n]);
2433 } else {
2434 /* unresolved mfc_caches don't contain
2435 * pkt, bytes and wrong_if values
2437 seq_printf(seq, " %8lu %8lu %8lu", 0ul, 0ul, 0ul);
2439 seq_putc(seq, '\n');
2441 return 0;
2444 static const struct seq_operations ipmr_mfc_seq_ops = {
2445 .start = ipmr_mfc_seq_start,
2446 .next = ipmr_mfc_seq_next,
2447 .stop = ipmr_mfc_seq_stop,
2448 .show = ipmr_mfc_seq_show,
2451 static int ipmr_mfc_open(struct inode *inode, struct file *file)
2453 return seq_open_net(inode, file, &ipmr_mfc_seq_ops,
2454 sizeof(struct ipmr_mfc_iter));
2457 static const struct file_operations ipmr_mfc_fops = {
2458 .owner = THIS_MODULE,
2459 .open = ipmr_mfc_open,
2460 .read = seq_read,
2461 .llseek = seq_lseek,
2462 .release = seq_release_net,
2464 #endif
2466 #ifdef CONFIG_IP_PIMSM_V2
2467 static const struct net_protocol pim_protocol = {
2468 .handler = pim_rcv,
2469 .netns_ok = 1,
2471 #endif
2475 * Setup for IP multicast routing
2477 static int __net_init ipmr_net_init(struct net *net)
2479 int err;
2481 err = ipmr_rules_init(net);
2482 if (err < 0)
2483 goto fail;
2485 #ifdef CONFIG_PROC_FS
2486 err = -ENOMEM;
2487 if (!proc_net_fops_create(net, "ip_mr_vif", 0, &ipmr_vif_fops))
2488 goto proc_vif_fail;
2489 if (!proc_net_fops_create(net, "ip_mr_cache", 0, &ipmr_mfc_fops))
2490 goto proc_cache_fail;
2491 #endif
2492 return 0;
2494 #ifdef CONFIG_PROC_FS
2495 proc_cache_fail:
2496 proc_net_remove(net, "ip_mr_vif");
2497 proc_vif_fail:
2498 ipmr_rules_exit(net);
2499 #endif
2500 fail:
2501 return err;
2504 static void __net_exit ipmr_net_exit(struct net *net)
2506 #ifdef CONFIG_PROC_FS
2507 proc_net_remove(net, "ip_mr_cache");
2508 proc_net_remove(net, "ip_mr_vif");
2509 #endif
2510 ipmr_rules_exit(net);
2513 static struct pernet_operations ipmr_net_ops = {
2514 .init = ipmr_net_init,
2515 .exit = ipmr_net_exit,
2518 int __init ip_mr_init(void)
2520 int err;
2522 mrt_cachep = kmem_cache_create("ip_mrt_cache",
2523 sizeof(struct mfc_cache),
2524 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC,
2525 NULL);
2526 if (!mrt_cachep)
2527 return -ENOMEM;
2529 err = register_pernet_subsys(&ipmr_net_ops);
2530 if (err)
2531 goto reg_pernet_fail;
2533 err = register_netdevice_notifier(&ip_mr_notifier);
2534 if (err)
2535 goto reg_notif_fail;
2536 #ifdef CONFIG_IP_PIMSM_V2
2537 if (inet_add_protocol(&pim_protocol, IPPROTO_PIM) < 0) {
2538 printk(KERN_ERR "ip_mr_init: can't add PIM protocol\n");
2539 err = -EAGAIN;
2540 goto add_proto_fail;
2542 #endif
2543 rtnl_register(RTNL_FAMILY_IPMR, RTM_GETROUTE, NULL, ipmr_rtm_dumproute);
2544 return 0;
2546 #ifdef CONFIG_IP_PIMSM_V2
2547 add_proto_fail:
2548 unregister_netdevice_notifier(&ip_mr_notifier);
2549 #endif
2550 reg_notif_fail:
2551 unregister_pernet_subsys(&ipmr_net_ops);
2552 reg_pernet_fail:
2553 kmem_cache_destroy(mrt_cachep);
2554 return err;