4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 * Swap reorganised 29.12.95, Stephen Tweedie
9 #include <linux/hugetlb.h>
10 #include <linux/mman.h>
11 #include <linux/slab.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/swap.h>
14 #include <linux/vmalloc.h>
15 #include <linux/pagemap.h>
16 #include <linux/namei.h>
17 #include <linux/shmem_fs.h>
18 #include <linux/blkdev.h>
19 #include <linux/random.h>
20 #include <linux/writeback.h>
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/init.h>
24 #include <linux/ksm.h>
25 #include <linux/rmap.h>
26 #include <linux/security.h>
27 #include <linux/backing-dev.h>
28 #include <linux/mutex.h>
29 #include <linux/capability.h>
30 #include <linux/syscalls.h>
31 #include <linux/memcontrol.h>
32 #include <linux/poll.h>
33 #include <linux/oom.h>
35 #include <asm/pgtable.h>
36 #include <asm/tlbflush.h>
37 #include <linux/swapops.h>
38 #include <linux/page_cgroup.h>
40 static bool swap_count_continued(struct swap_info_struct
*, pgoff_t
,
42 static void free_swap_count_continuations(struct swap_info_struct
*);
43 static sector_t
map_swap_entry(swp_entry_t
, struct block_device
**);
45 static DEFINE_SPINLOCK(swap_lock
);
46 static unsigned int nr_swapfiles
;
48 long total_swap_pages
;
49 static int least_priority
;
51 static const char Bad_file
[] = "Bad swap file entry ";
52 static const char Unused_file
[] = "Unused swap file entry ";
53 static const char Bad_offset
[] = "Bad swap offset entry ";
54 static const char Unused_offset
[] = "Unused swap offset entry ";
56 static struct swap_list_t swap_list
= {-1, -1};
58 static struct swap_info_struct
*swap_info
[MAX_SWAPFILES
];
60 static DEFINE_MUTEX(swapon_mutex
);
62 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait
);
63 /* Activity counter to indicate that a swapon or swapoff has occurred */
64 static atomic_t proc_poll_event
= ATOMIC_INIT(0);
66 static inline unsigned char swap_count(unsigned char ent
)
68 return ent
& ~SWAP_HAS_CACHE
; /* may include SWAP_HAS_CONT flag */
71 /* returns 1 if swap entry is freed */
73 __try_to_reclaim_swap(struct swap_info_struct
*si
, unsigned long offset
)
75 swp_entry_t entry
= swp_entry(si
->type
, offset
);
79 page
= find_get_page(&swapper_space
, entry
.val
);
83 * This function is called from scan_swap_map() and it's called
84 * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
85 * We have to use trylock for avoiding deadlock. This is a special
86 * case and you should use try_to_free_swap() with explicit lock_page()
87 * in usual operations.
89 if (trylock_page(page
)) {
90 ret
= try_to_free_swap(page
);
93 page_cache_release(page
);
98 * swapon tell device that all the old swap contents can be discarded,
99 * to allow the swap device to optimize its wear-levelling.
101 static int discard_swap(struct swap_info_struct
*si
)
103 struct swap_extent
*se
;
104 sector_t start_block
;
108 /* Do not discard the swap header page! */
109 se
= &si
->first_swap_extent
;
110 start_block
= (se
->start_block
+ 1) << (PAGE_SHIFT
- 9);
111 nr_blocks
= ((sector_t
)se
->nr_pages
- 1) << (PAGE_SHIFT
- 9);
113 err
= blkdev_issue_discard(si
->bdev
, start_block
,
114 nr_blocks
, GFP_KERNEL
, 0);
120 list_for_each_entry(se
, &si
->first_swap_extent
.list
, list
) {
121 start_block
= se
->start_block
<< (PAGE_SHIFT
- 9);
122 nr_blocks
= (sector_t
)se
->nr_pages
<< (PAGE_SHIFT
- 9);
124 err
= blkdev_issue_discard(si
->bdev
, start_block
,
125 nr_blocks
, GFP_KERNEL
, 0);
131 return err
; /* That will often be -EOPNOTSUPP */
135 * swap allocation tell device that a cluster of swap can now be discarded,
136 * to allow the swap device to optimize its wear-levelling.
138 static void discard_swap_cluster(struct swap_info_struct
*si
,
139 pgoff_t start_page
, pgoff_t nr_pages
)
141 struct swap_extent
*se
= si
->curr_swap_extent
;
142 int found_extent
= 0;
145 struct list_head
*lh
;
147 if (se
->start_page
<= start_page
&&
148 start_page
< se
->start_page
+ se
->nr_pages
) {
149 pgoff_t offset
= start_page
- se
->start_page
;
150 sector_t start_block
= se
->start_block
+ offset
;
151 sector_t nr_blocks
= se
->nr_pages
- offset
;
153 if (nr_blocks
> nr_pages
)
154 nr_blocks
= nr_pages
;
155 start_page
+= nr_blocks
;
156 nr_pages
-= nr_blocks
;
159 si
->curr_swap_extent
= se
;
161 start_block
<<= PAGE_SHIFT
- 9;
162 nr_blocks
<<= PAGE_SHIFT
- 9;
163 if (blkdev_issue_discard(si
->bdev
, start_block
,
164 nr_blocks
, GFP_NOIO
, 0))
169 se
= list_entry(lh
, struct swap_extent
, list
);
173 static int wait_for_discard(void *word
)
179 #define SWAPFILE_CLUSTER 256
180 #define LATENCY_LIMIT 256
182 static unsigned long scan_swap_map(struct swap_info_struct
*si
,
185 unsigned long offset
;
186 unsigned long scan_base
;
187 unsigned long last_in_cluster
= 0;
188 int latency_ration
= LATENCY_LIMIT
;
189 int found_free_cluster
= 0;
192 * We try to cluster swap pages by allocating them sequentially
193 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this
194 * way, however, we resort to first-free allocation, starting
195 * a new cluster. This prevents us from scattering swap pages
196 * all over the entire swap partition, so that we reduce
197 * overall disk seek times between swap pages. -- sct
198 * But we do now try to find an empty cluster. -Andrea
199 * And we let swap pages go all over an SSD partition. Hugh
202 si
->flags
+= SWP_SCANNING
;
203 scan_base
= offset
= si
->cluster_next
;
205 if (unlikely(!si
->cluster_nr
--)) {
206 if (si
->pages
- si
->inuse_pages
< SWAPFILE_CLUSTER
) {
207 si
->cluster_nr
= SWAPFILE_CLUSTER
- 1;
210 if (si
->flags
& SWP_DISCARDABLE
) {
212 * Start range check on racing allocations, in case
213 * they overlap the cluster we eventually decide on
214 * (we scan without swap_lock to allow preemption).
215 * It's hardly conceivable that cluster_nr could be
216 * wrapped during our scan, but don't depend on it.
218 if (si
->lowest_alloc
)
220 si
->lowest_alloc
= si
->max
;
221 si
->highest_alloc
= 0;
223 spin_unlock(&swap_lock
);
226 * If seek is expensive, start searching for new cluster from
227 * start of partition, to minimize the span of allocated swap.
228 * But if seek is cheap, search from our current position, so
229 * that swap is allocated from all over the partition: if the
230 * Flash Translation Layer only remaps within limited zones,
231 * we don't want to wear out the first zone too quickly.
233 if (!(si
->flags
& SWP_SOLIDSTATE
))
234 scan_base
= offset
= si
->lowest_bit
;
235 last_in_cluster
= offset
+ SWAPFILE_CLUSTER
- 1;
237 /* Locate the first empty (unaligned) cluster */
238 for (; last_in_cluster
<= si
->highest_bit
; offset
++) {
239 if (si
->swap_map
[offset
])
240 last_in_cluster
= offset
+ SWAPFILE_CLUSTER
;
241 else if (offset
== last_in_cluster
) {
242 spin_lock(&swap_lock
);
243 offset
-= SWAPFILE_CLUSTER
- 1;
244 si
->cluster_next
= offset
;
245 si
->cluster_nr
= SWAPFILE_CLUSTER
- 1;
246 found_free_cluster
= 1;
249 if (unlikely(--latency_ration
< 0)) {
251 latency_ration
= LATENCY_LIMIT
;
255 offset
= si
->lowest_bit
;
256 last_in_cluster
= offset
+ SWAPFILE_CLUSTER
- 1;
258 /* Locate the first empty (unaligned) cluster */
259 for (; last_in_cluster
< scan_base
; offset
++) {
260 if (si
->swap_map
[offset
])
261 last_in_cluster
= offset
+ SWAPFILE_CLUSTER
;
262 else if (offset
== last_in_cluster
) {
263 spin_lock(&swap_lock
);
264 offset
-= SWAPFILE_CLUSTER
- 1;
265 si
->cluster_next
= offset
;
266 si
->cluster_nr
= SWAPFILE_CLUSTER
- 1;
267 found_free_cluster
= 1;
270 if (unlikely(--latency_ration
< 0)) {
272 latency_ration
= LATENCY_LIMIT
;
277 spin_lock(&swap_lock
);
278 si
->cluster_nr
= SWAPFILE_CLUSTER
- 1;
279 si
->lowest_alloc
= 0;
283 if (!(si
->flags
& SWP_WRITEOK
))
285 if (!si
->highest_bit
)
287 if (offset
> si
->highest_bit
)
288 scan_base
= offset
= si
->lowest_bit
;
290 /* reuse swap entry of cache-only swap if not busy. */
291 if (vm_swap_full() && si
->swap_map
[offset
] == SWAP_HAS_CACHE
) {
293 spin_unlock(&swap_lock
);
294 swap_was_freed
= __try_to_reclaim_swap(si
, offset
);
295 spin_lock(&swap_lock
);
296 /* entry was freed successfully, try to use this again */
299 goto scan
; /* check next one */
302 if (si
->swap_map
[offset
])
305 if (offset
== si
->lowest_bit
)
307 if (offset
== si
->highest_bit
)
310 if (si
->inuse_pages
== si
->pages
) {
311 si
->lowest_bit
= si
->max
;
314 si
->swap_map
[offset
] = usage
;
315 si
->cluster_next
= offset
+ 1;
316 si
->flags
-= SWP_SCANNING
;
318 if (si
->lowest_alloc
) {
320 * Only set when SWP_DISCARDABLE, and there's a scan
321 * for a free cluster in progress or just completed.
323 if (found_free_cluster
) {
325 * To optimize wear-levelling, discard the
326 * old data of the cluster, taking care not to
327 * discard any of its pages that have already
328 * been allocated by racing tasks (offset has
329 * already stepped over any at the beginning).
331 if (offset
< si
->highest_alloc
&&
332 si
->lowest_alloc
<= last_in_cluster
)
333 last_in_cluster
= si
->lowest_alloc
- 1;
334 si
->flags
|= SWP_DISCARDING
;
335 spin_unlock(&swap_lock
);
337 if (offset
< last_in_cluster
)
338 discard_swap_cluster(si
, offset
,
339 last_in_cluster
- offset
+ 1);
341 spin_lock(&swap_lock
);
342 si
->lowest_alloc
= 0;
343 si
->flags
&= ~SWP_DISCARDING
;
345 smp_mb(); /* wake_up_bit advises this */
346 wake_up_bit(&si
->flags
, ilog2(SWP_DISCARDING
));
348 } else if (si
->flags
& SWP_DISCARDING
) {
350 * Delay using pages allocated by racing tasks
351 * until the whole discard has been issued. We
352 * could defer that delay until swap_writepage,
353 * but it's easier to keep this self-contained.
355 spin_unlock(&swap_lock
);
356 wait_on_bit(&si
->flags
, ilog2(SWP_DISCARDING
),
357 wait_for_discard
, TASK_UNINTERRUPTIBLE
);
358 spin_lock(&swap_lock
);
361 * Note pages allocated by racing tasks while
362 * scan for a free cluster is in progress, so
363 * that its final discard can exclude them.
365 if (offset
< si
->lowest_alloc
)
366 si
->lowest_alloc
= offset
;
367 if (offset
> si
->highest_alloc
)
368 si
->highest_alloc
= offset
;
374 spin_unlock(&swap_lock
);
375 while (++offset
<= si
->highest_bit
) {
376 if (!si
->swap_map
[offset
]) {
377 spin_lock(&swap_lock
);
380 if (vm_swap_full() && si
->swap_map
[offset
] == SWAP_HAS_CACHE
) {
381 spin_lock(&swap_lock
);
384 if (unlikely(--latency_ration
< 0)) {
386 latency_ration
= LATENCY_LIMIT
;
389 offset
= si
->lowest_bit
;
390 while (++offset
< scan_base
) {
391 if (!si
->swap_map
[offset
]) {
392 spin_lock(&swap_lock
);
395 if (vm_swap_full() && si
->swap_map
[offset
] == SWAP_HAS_CACHE
) {
396 spin_lock(&swap_lock
);
399 if (unlikely(--latency_ration
< 0)) {
401 latency_ration
= LATENCY_LIMIT
;
404 spin_lock(&swap_lock
);
407 si
->flags
-= SWP_SCANNING
;
411 swp_entry_t
get_swap_page(void)
413 struct swap_info_struct
*si
;
418 spin_lock(&swap_lock
);
419 if (nr_swap_pages
<= 0)
423 for (type
= swap_list
.next
; type
>= 0 && wrapped
< 2; type
= next
) {
424 si
= swap_info
[type
];
427 (!wrapped
&& si
->prio
!= swap_info
[next
]->prio
)) {
428 next
= swap_list
.head
;
432 if (!si
->highest_bit
)
434 if (!(si
->flags
& SWP_WRITEOK
))
437 swap_list
.next
= next
;
438 /* This is called for allocating swap entry for cache */
439 offset
= scan_swap_map(si
, SWAP_HAS_CACHE
);
441 spin_unlock(&swap_lock
);
442 return swp_entry(type
, offset
);
444 next
= swap_list
.next
;
449 spin_unlock(&swap_lock
);
450 return (swp_entry_t
) {0};
453 /* The only caller of this function is now susupend routine */
454 swp_entry_t
get_swap_page_of_type(int type
)
456 struct swap_info_struct
*si
;
459 spin_lock(&swap_lock
);
460 si
= swap_info
[type
];
461 if (si
&& (si
->flags
& SWP_WRITEOK
)) {
463 /* This is called for allocating swap entry, not cache */
464 offset
= scan_swap_map(si
, 1);
466 spin_unlock(&swap_lock
);
467 return swp_entry(type
, offset
);
471 spin_unlock(&swap_lock
);
472 return (swp_entry_t
) {0};
475 static struct swap_info_struct
*swap_info_get(swp_entry_t entry
)
477 struct swap_info_struct
*p
;
478 unsigned long offset
, type
;
482 type
= swp_type(entry
);
483 if (type
>= nr_swapfiles
)
486 if (!(p
->flags
& SWP_USED
))
488 offset
= swp_offset(entry
);
489 if (offset
>= p
->max
)
491 if (!p
->swap_map
[offset
])
493 spin_lock(&swap_lock
);
497 printk(KERN_ERR
"swap_free: %s%08lx\n", Unused_offset
, entry
.val
);
500 printk(KERN_ERR
"swap_free: %s%08lx\n", Bad_offset
, entry
.val
);
503 printk(KERN_ERR
"swap_free: %s%08lx\n", Unused_file
, entry
.val
);
506 printk(KERN_ERR
"swap_free: %s%08lx\n", Bad_file
, entry
.val
);
511 static unsigned char swap_entry_free(struct swap_info_struct
*p
,
512 swp_entry_t entry
, unsigned char usage
)
514 unsigned long offset
= swp_offset(entry
);
516 unsigned char has_cache
;
518 count
= p
->swap_map
[offset
];
519 has_cache
= count
& SWAP_HAS_CACHE
;
520 count
&= ~SWAP_HAS_CACHE
;
522 if (usage
== SWAP_HAS_CACHE
) {
523 VM_BUG_ON(!has_cache
);
525 } else if (count
== SWAP_MAP_SHMEM
) {
527 * Or we could insist on shmem.c using a special
528 * swap_shmem_free() and free_shmem_swap_and_cache()...
531 } else if ((count
& ~COUNT_CONTINUED
) <= SWAP_MAP_MAX
) {
532 if (count
== COUNT_CONTINUED
) {
533 if (swap_count_continued(p
, offset
, count
))
534 count
= SWAP_MAP_MAX
| COUNT_CONTINUED
;
536 count
= SWAP_MAP_MAX
;
542 mem_cgroup_uncharge_swap(entry
);
544 usage
= count
| has_cache
;
545 p
->swap_map
[offset
] = usage
;
547 /* free if no reference */
549 struct gendisk
*disk
= p
->bdev
->bd_disk
;
550 if (offset
< p
->lowest_bit
)
551 p
->lowest_bit
= offset
;
552 if (offset
> p
->highest_bit
)
553 p
->highest_bit
= offset
;
554 if (swap_list
.next
>= 0 &&
555 p
->prio
> swap_info
[swap_list
.next
]->prio
)
556 swap_list
.next
= p
->type
;
559 if ((p
->flags
& SWP_BLKDEV
) &&
560 disk
->fops
->swap_slot_free_notify
)
561 disk
->fops
->swap_slot_free_notify(p
->bdev
, offset
);
568 * Caller has made sure that the swapdevice corresponding to entry
569 * is still around or has not been recycled.
571 void swap_free(swp_entry_t entry
)
573 struct swap_info_struct
*p
;
575 p
= swap_info_get(entry
);
577 swap_entry_free(p
, entry
, 1);
578 spin_unlock(&swap_lock
);
583 * Called after dropping swapcache to decrease refcnt to swap entries.
585 void swapcache_free(swp_entry_t entry
, struct page
*page
)
587 struct swap_info_struct
*p
;
590 p
= swap_info_get(entry
);
592 count
= swap_entry_free(p
, entry
, SWAP_HAS_CACHE
);
594 mem_cgroup_uncharge_swapcache(page
, entry
, count
!= 0);
595 spin_unlock(&swap_lock
);
600 * How many references to page are currently swapped out?
601 * This does not give an exact answer when swap count is continued,
602 * but does include the high COUNT_CONTINUED flag to allow for that.
604 static inline int page_swapcount(struct page
*page
)
607 struct swap_info_struct
*p
;
610 entry
.val
= page_private(page
);
611 p
= swap_info_get(entry
);
613 count
= swap_count(p
->swap_map
[swp_offset(entry
)]);
614 spin_unlock(&swap_lock
);
620 * We can write to an anon page without COW if there are no other references
621 * to it. And as a side-effect, free up its swap: because the old content
622 * on disk will never be read, and seeking back there to write new content
623 * later would only waste time away from clustering.
625 int reuse_swap_page(struct page
*page
)
629 VM_BUG_ON(!PageLocked(page
));
630 if (unlikely(PageKsm(page
)))
632 count
= page_mapcount(page
);
633 if (count
<= 1 && PageSwapCache(page
)) {
634 count
+= page_swapcount(page
);
635 if (count
== 1 && !PageWriteback(page
)) {
636 delete_from_swap_cache(page
);
644 * If swap is getting full, or if there are no more mappings of this page,
645 * then try_to_free_swap is called to free its swap space.
647 int try_to_free_swap(struct page
*page
)
649 VM_BUG_ON(!PageLocked(page
));
651 if (!PageSwapCache(page
))
653 if (PageWriteback(page
))
655 if (page_swapcount(page
))
659 * Once hibernation has begun to create its image of memory,
660 * there's a danger that one of the calls to try_to_free_swap()
661 * - most probably a call from __try_to_reclaim_swap() while
662 * hibernation is allocating its own swap pages for the image,
663 * but conceivably even a call from memory reclaim - will free
664 * the swap from a page which has already been recorded in the
665 * image as a clean swapcache page, and then reuse its swap for
666 * another page of the image. On waking from hibernation, the
667 * original page might be freed under memory pressure, then
668 * later read back in from swap, now with the wrong data.
670 * Hibration suspends storage while it is writing the image
671 * to disk so check that here.
673 if (pm_suspended_storage())
676 delete_from_swap_cache(page
);
682 * Free the swap entry like above, but also try to
683 * free the page cache entry if it is the last user.
685 int free_swap_and_cache(swp_entry_t entry
)
687 struct swap_info_struct
*p
;
688 struct page
*page
= NULL
;
690 if (non_swap_entry(entry
))
693 p
= swap_info_get(entry
);
695 if (swap_entry_free(p
, entry
, 1) == SWAP_HAS_CACHE
) {
696 page
= find_get_page(&swapper_space
, entry
.val
);
697 if (page
&& !trylock_page(page
)) {
698 page_cache_release(page
);
702 spin_unlock(&swap_lock
);
706 * Not mapped elsewhere, or swap space full? Free it!
707 * Also recheck PageSwapCache now page is locked (above).
709 if (PageSwapCache(page
) && !PageWriteback(page
) &&
710 (!page_mapped(page
) || vm_swap_full())) {
711 delete_from_swap_cache(page
);
715 page_cache_release(page
);
720 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
722 * mem_cgroup_count_swap_user - count the user of a swap entry
723 * @ent: the swap entry to be checked
724 * @pagep: the pointer for the swap cache page of the entry to be stored
726 * Returns the number of the user of the swap entry. The number is valid only
727 * for swaps of anonymous pages.
728 * If the entry is found on swap cache, the page is stored to pagep with
729 * refcount of it being incremented.
731 int mem_cgroup_count_swap_user(swp_entry_t ent
, struct page
**pagep
)
734 struct swap_info_struct
*p
;
737 page
= find_get_page(&swapper_space
, ent
.val
);
739 count
+= page_mapcount(page
);
740 p
= swap_info_get(ent
);
742 count
+= swap_count(p
->swap_map
[swp_offset(ent
)]);
743 spin_unlock(&swap_lock
);
751 #ifdef CONFIG_HIBERNATION
753 * Find the swap type that corresponds to given device (if any).
755 * @offset - number of the PAGE_SIZE-sized block of the device, starting
756 * from 0, in which the swap header is expected to be located.
758 * This is needed for the suspend to disk (aka swsusp).
760 int swap_type_of(dev_t device
, sector_t offset
, struct block_device
**bdev_p
)
762 struct block_device
*bdev
= NULL
;
766 bdev
= bdget(device
);
768 spin_lock(&swap_lock
);
769 for (type
= 0; type
< nr_swapfiles
; type
++) {
770 struct swap_info_struct
*sis
= swap_info
[type
];
772 if (!(sis
->flags
& SWP_WRITEOK
))
777 *bdev_p
= bdgrab(sis
->bdev
);
779 spin_unlock(&swap_lock
);
782 if (bdev
== sis
->bdev
) {
783 struct swap_extent
*se
= &sis
->first_swap_extent
;
785 if (se
->start_block
== offset
) {
787 *bdev_p
= bdgrab(sis
->bdev
);
789 spin_unlock(&swap_lock
);
795 spin_unlock(&swap_lock
);
803 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
804 * corresponding to given index in swap_info (swap type).
806 sector_t
swapdev_block(int type
, pgoff_t offset
)
808 struct block_device
*bdev
;
810 if ((unsigned int)type
>= nr_swapfiles
)
812 if (!(swap_info
[type
]->flags
& SWP_WRITEOK
))
814 return map_swap_entry(swp_entry(type
, offset
), &bdev
);
818 * Return either the total number of swap pages of given type, or the number
819 * of free pages of that type (depending on @free)
821 * This is needed for software suspend
823 unsigned int count_swap_pages(int type
, int free
)
827 spin_lock(&swap_lock
);
828 if ((unsigned int)type
< nr_swapfiles
) {
829 struct swap_info_struct
*sis
= swap_info
[type
];
831 if (sis
->flags
& SWP_WRITEOK
) {
834 n
-= sis
->inuse_pages
;
837 spin_unlock(&swap_lock
);
840 #endif /* CONFIG_HIBERNATION */
843 * No need to decide whether this PTE shares the swap entry with others,
844 * just let do_wp_page work it out if a write is requested later - to
845 * force COW, vm_page_prot omits write permission from any private vma.
847 static int unuse_pte(struct vm_area_struct
*vma
, pmd_t
*pmd
,
848 unsigned long addr
, swp_entry_t entry
, struct page
*page
)
850 struct mem_cgroup
*memcg
;
855 if (mem_cgroup_try_charge_swapin(vma
->vm_mm
, page
,
856 GFP_KERNEL
, &memcg
)) {
861 pte
= pte_offset_map_lock(vma
->vm_mm
, pmd
, addr
, &ptl
);
862 if (unlikely(!pte_same(*pte
, swp_entry_to_pte(entry
)))) {
864 mem_cgroup_cancel_charge_swapin(memcg
);
869 dec_mm_counter(vma
->vm_mm
, MM_SWAPENTS
);
870 inc_mm_counter(vma
->vm_mm
, MM_ANONPAGES
);
872 set_pte_at(vma
->vm_mm
, addr
, pte
,
873 pte_mkold(mk_pte(page
, vma
->vm_page_prot
)));
874 page_add_anon_rmap(page
, vma
, addr
);
875 mem_cgroup_commit_charge_swapin(page
, memcg
);
878 * Move the page to the active list so it is not
879 * immediately swapped out again after swapon.
883 pte_unmap_unlock(pte
, ptl
);
888 static int unuse_pte_range(struct vm_area_struct
*vma
, pmd_t
*pmd
,
889 unsigned long addr
, unsigned long end
,
890 swp_entry_t entry
, struct page
*page
)
892 pte_t swp_pte
= swp_entry_to_pte(entry
);
897 * We don't actually need pte lock while scanning for swp_pte: since
898 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
899 * page table while we're scanning; though it could get zapped, and on
900 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
901 * of unmatched parts which look like swp_pte, so unuse_pte must
902 * recheck under pte lock. Scanning without pte lock lets it be
903 * preemptible whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
905 pte
= pte_offset_map(pmd
, addr
);
908 * swapoff spends a _lot_ of time in this loop!
909 * Test inline before going to call unuse_pte.
911 if (unlikely(pte_same(*pte
, swp_pte
))) {
913 ret
= unuse_pte(vma
, pmd
, addr
, entry
, page
);
916 pte
= pte_offset_map(pmd
, addr
);
918 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
924 static inline int unuse_pmd_range(struct vm_area_struct
*vma
, pud_t
*pud
,
925 unsigned long addr
, unsigned long end
,
926 swp_entry_t entry
, struct page
*page
)
932 pmd
= pmd_offset(pud
, addr
);
934 next
= pmd_addr_end(addr
, end
);
935 if (pmd_none_or_trans_huge_or_clear_bad(pmd
))
937 ret
= unuse_pte_range(vma
, pmd
, addr
, next
, entry
, page
);
940 } while (pmd
++, addr
= next
, addr
!= end
);
944 static inline int unuse_pud_range(struct vm_area_struct
*vma
, pgd_t
*pgd
,
945 unsigned long addr
, unsigned long end
,
946 swp_entry_t entry
, struct page
*page
)
952 pud
= pud_offset(pgd
, addr
);
954 next
= pud_addr_end(addr
, end
);
955 if (pud_none_or_clear_bad(pud
))
957 ret
= unuse_pmd_range(vma
, pud
, addr
, next
, entry
, page
);
960 } while (pud
++, addr
= next
, addr
!= end
);
964 static int unuse_vma(struct vm_area_struct
*vma
,
965 swp_entry_t entry
, struct page
*page
)
968 unsigned long addr
, end
, next
;
971 if (page_anon_vma(page
)) {
972 addr
= page_address_in_vma(page
, vma
);
976 end
= addr
+ PAGE_SIZE
;
978 addr
= vma
->vm_start
;
982 pgd
= pgd_offset(vma
->vm_mm
, addr
);
984 next
= pgd_addr_end(addr
, end
);
985 if (pgd_none_or_clear_bad(pgd
))
987 ret
= unuse_pud_range(vma
, pgd
, addr
, next
, entry
, page
);
990 } while (pgd
++, addr
= next
, addr
!= end
);
994 static int unuse_mm(struct mm_struct
*mm
,
995 swp_entry_t entry
, struct page
*page
)
997 struct vm_area_struct
*vma
;
1000 if (!down_read_trylock(&mm
->mmap_sem
)) {
1002 * Activate page so shrink_inactive_list is unlikely to unmap
1003 * its ptes while lock is dropped, so swapoff can make progress.
1005 activate_page(page
);
1007 down_read(&mm
->mmap_sem
);
1010 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
1011 if (vma
->anon_vma
&& (ret
= unuse_vma(vma
, entry
, page
)))
1014 up_read(&mm
->mmap_sem
);
1015 return (ret
< 0)? ret
: 0;
1019 * Scan swap_map from current position to next entry still in use.
1020 * Recycle to start on reaching the end, returning 0 when empty.
1022 static unsigned int find_next_to_unuse(struct swap_info_struct
*si
,
1025 unsigned int max
= si
->max
;
1026 unsigned int i
= prev
;
1027 unsigned char count
;
1030 * No need for swap_lock here: we're just looking
1031 * for whether an entry is in use, not modifying it; false
1032 * hits are okay, and sys_swapoff() has already prevented new
1033 * allocations from this area (while holding swap_lock).
1042 * No entries in use at top of swap_map,
1043 * loop back to start and recheck there.
1049 count
= si
->swap_map
[i
];
1050 if (count
&& swap_count(count
) != SWAP_MAP_BAD
)
1057 * We completely avoid races by reading each swap page in advance,
1058 * and then search for the process using it. All the necessary
1059 * page table adjustments can then be made atomically.
1061 static int try_to_unuse(unsigned int type
)
1063 struct swap_info_struct
*si
= swap_info
[type
];
1064 struct mm_struct
*start_mm
;
1065 unsigned char *swap_map
;
1066 unsigned char swcount
;
1073 * When searching mms for an entry, a good strategy is to
1074 * start at the first mm we freed the previous entry from
1075 * (though actually we don't notice whether we or coincidence
1076 * freed the entry). Initialize this start_mm with a hold.
1078 * A simpler strategy would be to start at the last mm we
1079 * freed the previous entry from; but that would take less
1080 * advantage of mmlist ordering, which clusters forked mms
1081 * together, child after parent. If we race with dup_mmap(), we
1082 * prefer to resolve parent before child, lest we miss entries
1083 * duplicated after we scanned child: using last mm would invert
1086 start_mm
= &init_mm
;
1087 atomic_inc(&init_mm
.mm_users
);
1090 * Keep on scanning until all entries have gone. Usually,
1091 * one pass through swap_map is enough, but not necessarily:
1092 * there are races when an instance of an entry might be missed.
1094 while ((i
= find_next_to_unuse(si
, i
)) != 0) {
1095 if (signal_pending(current
)) {
1101 * Get a page for the entry, using the existing swap
1102 * cache page if there is one. Otherwise, get a clean
1103 * page and read the swap into it.
1105 swap_map
= &si
->swap_map
[i
];
1106 entry
= swp_entry(type
, i
);
1107 page
= read_swap_cache_async(entry
,
1108 GFP_HIGHUSER_MOVABLE
, NULL
, 0);
1111 * Either swap_duplicate() failed because entry
1112 * has been freed independently, and will not be
1113 * reused since sys_swapoff() already disabled
1114 * allocation from here, or alloc_page() failed.
1123 * Don't hold on to start_mm if it looks like exiting.
1125 if (atomic_read(&start_mm
->mm_users
) == 1) {
1127 start_mm
= &init_mm
;
1128 atomic_inc(&init_mm
.mm_users
);
1132 * Wait for and lock page. When do_swap_page races with
1133 * try_to_unuse, do_swap_page can handle the fault much
1134 * faster than try_to_unuse can locate the entry. This
1135 * apparently redundant "wait_on_page_locked" lets try_to_unuse
1136 * defer to do_swap_page in such a case - in some tests,
1137 * do_swap_page and try_to_unuse repeatedly compete.
1139 wait_on_page_locked(page
);
1140 wait_on_page_writeback(page
);
1142 wait_on_page_writeback(page
);
1145 * Remove all references to entry.
1147 swcount
= *swap_map
;
1148 if (swap_count(swcount
) == SWAP_MAP_SHMEM
) {
1149 retval
= shmem_unuse(entry
, page
);
1150 /* page has already been unlocked and released */
1155 if (swap_count(swcount
) && start_mm
!= &init_mm
)
1156 retval
= unuse_mm(start_mm
, entry
, page
);
1158 if (swap_count(*swap_map
)) {
1159 int set_start_mm
= (*swap_map
>= swcount
);
1160 struct list_head
*p
= &start_mm
->mmlist
;
1161 struct mm_struct
*new_start_mm
= start_mm
;
1162 struct mm_struct
*prev_mm
= start_mm
;
1163 struct mm_struct
*mm
;
1165 atomic_inc(&new_start_mm
->mm_users
);
1166 atomic_inc(&prev_mm
->mm_users
);
1167 spin_lock(&mmlist_lock
);
1168 while (swap_count(*swap_map
) && !retval
&&
1169 (p
= p
->next
) != &start_mm
->mmlist
) {
1170 mm
= list_entry(p
, struct mm_struct
, mmlist
);
1171 if (!atomic_inc_not_zero(&mm
->mm_users
))
1173 spin_unlock(&mmlist_lock
);
1179 swcount
= *swap_map
;
1180 if (!swap_count(swcount
)) /* any usage ? */
1182 else if (mm
== &init_mm
)
1185 retval
= unuse_mm(mm
, entry
, page
);
1187 if (set_start_mm
&& *swap_map
< swcount
) {
1188 mmput(new_start_mm
);
1189 atomic_inc(&mm
->mm_users
);
1193 spin_lock(&mmlist_lock
);
1195 spin_unlock(&mmlist_lock
);
1198 start_mm
= new_start_mm
;
1202 page_cache_release(page
);
1207 * If a reference remains (rare), we would like to leave
1208 * the page in the swap cache; but try_to_unmap could
1209 * then re-duplicate the entry once we drop page lock,
1210 * so we might loop indefinitely; also, that page could
1211 * not be swapped out to other storage meanwhile. So:
1212 * delete from cache even if there's another reference,
1213 * after ensuring that the data has been saved to disk -
1214 * since if the reference remains (rarer), it will be
1215 * read from disk into another page. Splitting into two
1216 * pages would be incorrect if swap supported "shared
1217 * private" pages, but they are handled by tmpfs files.
1219 * Given how unuse_vma() targets one particular offset
1220 * in an anon_vma, once the anon_vma has been determined,
1221 * this splitting happens to be just what is needed to
1222 * handle where KSM pages have been swapped out: re-reading
1223 * is unnecessarily slow, but we can fix that later on.
1225 if (swap_count(*swap_map
) &&
1226 PageDirty(page
) && PageSwapCache(page
)) {
1227 struct writeback_control wbc
= {
1228 .sync_mode
= WB_SYNC_NONE
,
1231 swap_writepage(page
, &wbc
);
1233 wait_on_page_writeback(page
);
1237 * It is conceivable that a racing task removed this page from
1238 * swap cache just before we acquired the page lock at the top,
1239 * or while we dropped it in unuse_mm(). The page might even
1240 * be back in swap cache on another swap area: that we must not
1241 * delete, since it may not have been written out to swap yet.
1243 if (PageSwapCache(page
) &&
1244 likely(page_private(page
) == entry
.val
))
1245 delete_from_swap_cache(page
);
1248 * So we could skip searching mms once swap count went
1249 * to 1, we did not mark any present ptes as dirty: must
1250 * mark page dirty so shrink_page_list will preserve it.
1254 page_cache_release(page
);
1257 * Make sure that we aren't completely killing
1258 * interactive performance.
1268 * After a successful try_to_unuse, if no swap is now in use, we know
1269 * we can empty the mmlist. swap_lock must be held on entry and exit.
1270 * Note that mmlist_lock nests inside swap_lock, and an mm must be
1271 * added to the mmlist just after page_duplicate - before would be racy.
1273 static void drain_mmlist(void)
1275 struct list_head
*p
, *next
;
1278 for (type
= 0; type
< nr_swapfiles
; type
++)
1279 if (swap_info
[type
]->inuse_pages
)
1281 spin_lock(&mmlist_lock
);
1282 list_for_each_safe(p
, next
, &init_mm
.mmlist
)
1284 spin_unlock(&mmlist_lock
);
1288 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
1289 * corresponds to page offset for the specified swap entry.
1290 * Note that the type of this function is sector_t, but it returns page offset
1291 * into the bdev, not sector offset.
1293 static sector_t
map_swap_entry(swp_entry_t entry
, struct block_device
**bdev
)
1295 struct swap_info_struct
*sis
;
1296 struct swap_extent
*start_se
;
1297 struct swap_extent
*se
;
1300 sis
= swap_info
[swp_type(entry
)];
1303 offset
= swp_offset(entry
);
1304 start_se
= sis
->curr_swap_extent
;
1308 struct list_head
*lh
;
1310 if (se
->start_page
<= offset
&&
1311 offset
< (se
->start_page
+ se
->nr_pages
)) {
1312 return se
->start_block
+ (offset
- se
->start_page
);
1315 se
= list_entry(lh
, struct swap_extent
, list
);
1316 sis
->curr_swap_extent
= se
;
1317 BUG_ON(se
== start_se
); /* It *must* be present */
1322 * Returns the page offset into bdev for the specified page's swap entry.
1324 sector_t
map_swap_page(struct page
*page
, struct block_device
**bdev
)
1327 entry
.val
= page_private(page
);
1328 return map_swap_entry(entry
, bdev
);
1332 * Free all of a swapdev's extent information
1334 static void destroy_swap_extents(struct swap_info_struct
*sis
)
1336 while (!list_empty(&sis
->first_swap_extent
.list
)) {
1337 struct swap_extent
*se
;
1339 se
= list_entry(sis
->first_swap_extent
.list
.next
,
1340 struct swap_extent
, list
);
1341 list_del(&se
->list
);
1347 * Add a block range (and the corresponding page range) into this swapdev's
1348 * extent list. The extent list is kept sorted in page order.
1350 * This function rather assumes that it is called in ascending page order.
1353 add_swap_extent(struct swap_info_struct
*sis
, unsigned long start_page
,
1354 unsigned long nr_pages
, sector_t start_block
)
1356 struct swap_extent
*se
;
1357 struct swap_extent
*new_se
;
1358 struct list_head
*lh
;
1360 if (start_page
== 0) {
1361 se
= &sis
->first_swap_extent
;
1362 sis
->curr_swap_extent
= se
;
1364 se
->nr_pages
= nr_pages
;
1365 se
->start_block
= start_block
;
1368 lh
= sis
->first_swap_extent
.list
.prev
; /* Highest extent */
1369 se
= list_entry(lh
, struct swap_extent
, list
);
1370 BUG_ON(se
->start_page
+ se
->nr_pages
!= start_page
);
1371 if (se
->start_block
+ se
->nr_pages
== start_block
) {
1373 se
->nr_pages
+= nr_pages
;
1379 * No merge. Insert a new extent, preserving ordering.
1381 new_se
= kmalloc(sizeof(*se
), GFP_KERNEL
);
1384 new_se
->start_page
= start_page
;
1385 new_se
->nr_pages
= nr_pages
;
1386 new_se
->start_block
= start_block
;
1388 list_add_tail(&new_se
->list
, &sis
->first_swap_extent
.list
);
1393 * A `swap extent' is a simple thing which maps a contiguous range of pages
1394 * onto a contiguous range of disk blocks. An ordered list of swap extents
1395 * is built at swapon time and is then used at swap_writepage/swap_readpage
1396 * time for locating where on disk a page belongs.
1398 * If the swapfile is an S_ISBLK block device, a single extent is installed.
1399 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
1400 * swap files identically.
1402 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
1403 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK
1404 * swapfiles are handled *identically* after swapon time.
1406 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
1407 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If
1408 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
1409 * requirements, they are simply tossed out - we will never use those blocks
1412 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon. This
1413 * prevents root from shooting her foot off by ftruncating an in-use swapfile,
1414 * which will scribble on the fs.
1416 * The amount of disk space which a single swap extent represents varies.
1417 * Typically it is in the 1-4 megabyte range. So we can have hundreds of
1418 * extents in the list. To avoid much list walking, we cache the previous
1419 * search location in `curr_swap_extent', and start new searches from there.
1420 * This is extremely effective. The average number of iterations in
1421 * map_swap_page() has been measured at about 0.3 per page. - akpm.
1423 static int setup_swap_extents(struct swap_info_struct
*sis
, sector_t
*span
)
1425 struct inode
*inode
;
1426 unsigned blocks_per_page
;
1427 unsigned long page_no
;
1429 sector_t probe_block
;
1430 sector_t last_block
;
1431 sector_t lowest_block
= -1;
1432 sector_t highest_block
= 0;
1436 inode
= sis
->swap_file
->f_mapping
->host
;
1437 if (S_ISBLK(inode
->i_mode
)) {
1438 ret
= add_swap_extent(sis
, 0, sis
->max
, 0);
1443 blkbits
= inode
->i_blkbits
;
1444 blocks_per_page
= PAGE_SIZE
>> blkbits
;
1447 * Map all the blocks into the extent list. This code doesn't try
1452 last_block
= i_size_read(inode
) >> blkbits
;
1453 while ((probe_block
+ blocks_per_page
) <= last_block
&&
1454 page_no
< sis
->max
) {
1455 unsigned block_in_page
;
1456 sector_t first_block
;
1458 first_block
= bmap(inode
, probe_block
);
1459 if (first_block
== 0)
1463 * It must be PAGE_SIZE aligned on-disk
1465 if (first_block
& (blocks_per_page
- 1)) {
1470 for (block_in_page
= 1; block_in_page
< blocks_per_page
;
1474 block
= bmap(inode
, probe_block
+ block_in_page
);
1477 if (block
!= first_block
+ block_in_page
) {
1484 first_block
>>= (PAGE_SHIFT
- blkbits
);
1485 if (page_no
) { /* exclude the header page */
1486 if (first_block
< lowest_block
)
1487 lowest_block
= first_block
;
1488 if (first_block
> highest_block
)
1489 highest_block
= first_block
;
1493 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
1495 ret
= add_swap_extent(sis
, page_no
, 1, first_block
);
1500 probe_block
+= blocks_per_page
;
1505 *span
= 1 + highest_block
- lowest_block
;
1507 page_no
= 1; /* force Empty message */
1509 sis
->pages
= page_no
- 1;
1510 sis
->highest_bit
= page_no
- 1;
1514 printk(KERN_ERR
"swapon: swapfile has holes\n");
1519 static void enable_swap_info(struct swap_info_struct
*p
, int prio
,
1520 unsigned char *swap_map
)
1524 spin_lock(&swap_lock
);
1528 p
->prio
= --least_priority
;
1529 p
->swap_map
= swap_map
;
1530 p
->flags
|= SWP_WRITEOK
;
1531 nr_swap_pages
+= p
->pages
;
1532 total_swap_pages
+= p
->pages
;
1534 /* insert swap space into swap_list: */
1536 for (i
= swap_list
.head
; i
>= 0; i
= swap_info
[i
]->next
) {
1537 if (p
->prio
>= swap_info
[i
]->prio
)
1543 swap_list
.head
= swap_list
.next
= p
->type
;
1545 swap_info
[prev
]->next
= p
->type
;
1546 spin_unlock(&swap_lock
);
1549 SYSCALL_DEFINE1(swapoff
, const char __user
*, specialfile
)
1551 struct swap_info_struct
*p
= NULL
;
1552 unsigned char *swap_map
;
1553 struct file
*swap_file
, *victim
;
1554 struct address_space
*mapping
;
1555 struct inode
*inode
;
1561 if (!capable(CAP_SYS_ADMIN
))
1564 BUG_ON(!current
->mm
);
1566 pathname
= getname(specialfile
);
1567 err
= PTR_ERR(pathname
);
1568 if (IS_ERR(pathname
))
1571 victim
= filp_open(pathname
, O_RDWR
|O_LARGEFILE
, 0);
1573 err
= PTR_ERR(victim
);
1577 mapping
= victim
->f_mapping
;
1579 spin_lock(&swap_lock
);
1580 for (type
= swap_list
.head
; type
>= 0; type
= swap_info
[type
]->next
) {
1581 p
= swap_info
[type
];
1582 if (p
->flags
& SWP_WRITEOK
) {
1583 if (p
->swap_file
->f_mapping
== mapping
)
1590 spin_unlock(&swap_lock
);
1593 if (!security_vm_enough_memory_mm(current
->mm
, p
->pages
))
1594 vm_unacct_memory(p
->pages
);
1597 spin_unlock(&swap_lock
);
1601 swap_list
.head
= p
->next
;
1603 swap_info
[prev
]->next
= p
->next
;
1604 if (type
== swap_list
.next
) {
1605 /* just pick something that's safe... */
1606 swap_list
.next
= swap_list
.head
;
1609 for (i
= p
->next
; i
>= 0; i
= swap_info
[i
]->next
)
1610 swap_info
[i
]->prio
= p
->prio
--;
1613 nr_swap_pages
-= p
->pages
;
1614 total_swap_pages
-= p
->pages
;
1615 p
->flags
&= ~SWP_WRITEOK
;
1616 spin_unlock(&swap_lock
);
1618 oom_score_adj
= test_set_oom_score_adj(OOM_SCORE_ADJ_MAX
);
1619 err
= try_to_unuse(type
);
1620 compare_swap_oom_score_adj(OOM_SCORE_ADJ_MAX
, oom_score_adj
);
1624 * reading p->prio and p->swap_map outside the lock is
1625 * safe here because only sys_swapon and sys_swapoff
1626 * change them, and there can be no other sys_swapon or
1627 * sys_swapoff for this swap_info_struct at this point.
1629 /* re-insert swap space back into swap_list */
1630 enable_swap_info(p
, p
->prio
, p
->swap_map
);
1634 destroy_swap_extents(p
);
1635 if (p
->flags
& SWP_CONTINUED
)
1636 free_swap_count_continuations(p
);
1638 mutex_lock(&swapon_mutex
);
1639 spin_lock(&swap_lock
);
1642 /* wait for anyone still in scan_swap_map */
1643 p
->highest_bit
= 0; /* cuts scans short */
1644 while (p
->flags
>= SWP_SCANNING
) {
1645 spin_unlock(&swap_lock
);
1646 schedule_timeout_uninterruptible(1);
1647 spin_lock(&swap_lock
);
1650 swap_file
= p
->swap_file
;
1651 p
->swap_file
= NULL
;
1653 swap_map
= p
->swap_map
;
1656 spin_unlock(&swap_lock
);
1657 mutex_unlock(&swapon_mutex
);
1659 /* Destroy swap account informatin */
1660 swap_cgroup_swapoff(type
);
1662 inode
= mapping
->host
;
1663 if (S_ISBLK(inode
->i_mode
)) {
1664 struct block_device
*bdev
= I_BDEV(inode
);
1665 set_blocksize(bdev
, p
->old_block_size
);
1666 blkdev_put(bdev
, FMODE_READ
| FMODE_WRITE
| FMODE_EXCL
);
1668 mutex_lock(&inode
->i_mutex
);
1669 inode
->i_flags
&= ~S_SWAPFILE
;
1670 mutex_unlock(&inode
->i_mutex
);
1672 filp_close(swap_file
, NULL
);
1674 atomic_inc(&proc_poll_event
);
1675 wake_up_interruptible(&proc_poll_wait
);
1678 filp_close(victim
, NULL
);
1683 #ifdef CONFIG_PROC_FS
1684 static unsigned swaps_poll(struct file
*file
, poll_table
*wait
)
1686 struct seq_file
*seq
= file
->private_data
;
1688 poll_wait(file
, &proc_poll_wait
, wait
);
1690 if (seq
->poll_event
!= atomic_read(&proc_poll_event
)) {
1691 seq
->poll_event
= atomic_read(&proc_poll_event
);
1692 return POLLIN
| POLLRDNORM
| POLLERR
| POLLPRI
;
1695 return POLLIN
| POLLRDNORM
;
1699 static void *swap_start(struct seq_file
*swap
, loff_t
*pos
)
1701 struct swap_info_struct
*si
;
1705 mutex_lock(&swapon_mutex
);
1708 return SEQ_START_TOKEN
;
1710 for (type
= 0; type
< nr_swapfiles
; type
++) {
1711 smp_rmb(); /* read nr_swapfiles before swap_info[type] */
1712 si
= swap_info
[type
];
1713 if (!(si
->flags
& SWP_USED
) || !si
->swap_map
)
1722 static void *swap_next(struct seq_file
*swap
, void *v
, loff_t
*pos
)
1724 struct swap_info_struct
*si
= v
;
1727 if (v
== SEQ_START_TOKEN
)
1730 type
= si
->type
+ 1;
1732 for (; type
< nr_swapfiles
; type
++) {
1733 smp_rmb(); /* read nr_swapfiles before swap_info[type] */
1734 si
= swap_info
[type
];
1735 if (!(si
->flags
& SWP_USED
) || !si
->swap_map
)
1744 static void swap_stop(struct seq_file
*swap
, void *v
)
1746 mutex_unlock(&swapon_mutex
);
1749 static int swap_show(struct seq_file
*swap
, void *v
)
1751 struct swap_info_struct
*si
= v
;
1755 if (si
== SEQ_START_TOKEN
) {
1756 seq_puts(swap
,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
1760 file
= si
->swap_file
;
1761 len
= seq_path(swap
, &file
->f_path
, " \t\n\\");
1762 seq_printf(swap
, "%*s%s\t%u\t%u\t%d\n",
1763 len
< 40 ? 40 - len
: 1, " ",
1764 S_ISBLK(file
->f_path
.dentry
->d_inode
->i_mode
) ?
1765 "partition" : "file\t",
1766 si
->pages
<< (PAGE_SHIFT
- 10),
1767 si
->inuse_pages
<< (PAGE_SHIFT
- 10),
1772 static const struct seq_operations swaps_op
= {
1773 .start
= swap_start
,
1779 static int swaps_open(struct inode
*inode
, struct file
*file
)
1781 struct seq_file
*seq
;
1784 ret
= seq_open(file
, &swaps_op
);
1788 seq
= file
->private_data
;
1789 seq
->poll_event
= atomic_read(&proc_poll_event
);
1793 static const struct file_operations proc_swaps_operations
= {
1796 .llseek
= seq_lseek
,
1797 .release
= seq_release
,
1801 static int __init
procswaps_init(void)
1803 proc_create("swaps", 0, NULL
, &proc_swaps_operations
);
1806 __initcall(procswaps_init
);
1807 #endif /* CONFIG_PROC_FS */
1809 #ifdef MAX_SWAPFILES_CHECK
1810 static int __init
max_swapfiles_check(void)
1812 MAX_SWAPFILES_CHECK();
1815 late_initcall(max_swapfiles_check
);
1818 static struct swap_info_struct
*alloc_swap_info(void)
1820 struct swap_info_struct
*p
;
1823 p
= kzalloc(sizeof(*p
), GFP_KERNEL
);
1825 return ERR_PTR(-ENOMEM
);
1827 spin_lock(&swap_lock
);
1828 for (type
= 0; type
< nr_swapfiles
; type
++) {
1829 if (!(swap_info
[type
]->flags
& SWP_USED
))
1832 if (type
>= MAX_SWAPFILES
) {
1833 spin_unlock(&swap_lock
);
1835 return ERR_PTR(-EPERM
);
1837 if (type
>= nr_swapfiles
) {
1839 swap_info
[type
] = p
;
1841 * Write swap_info[type] before nr_swapfiles, in case a
1842 * racing procfs swap_start() or swap_next() is reading them.
1843 * (We never shrink nr_swapfiles, we never free this entry.)
1849 p
= swap_info
[type
];
1851 * Do not memset this entry: a racing procfs swap_next()
1852 * would be relying on p->type to remain valid.
1855 INIT_LIST_HEAD(&p
->first_swap_extent
.list
);
1856 p
->flags
= SWP_USED
;
1858 spin_unlock(&swap_lock
);
1863 static int claim_swapfile(struct swap_info_struct
*p
, struct inode
*inode
)
1867 if (S_ISBLK(inode
->i_mode
)) {
1868 p
->bdev
= bdgrab(I_BDEV(inode
));
1869 error
= blkdev_get(p
->bdev
,
1870 FMODE_READ
| FMODE_WRITE
| FMODE_EXCL
,
1876 p
->old_block_size
= block_size(p
->bdev
);
1877 error
= set_blocksize(p
->bdev
, PAGE_SIZE
);
1880 p
->flags
|= SWP_BLKDEV
;
1881 } else if (S_ISREG(inode
->i_mode
)) {
1882 p
->bdev
= inode
->i_sb
->s_bdev
;
1883 mutex_lock(&inode
->i_mutex
);
1884 if (IS_SWAPFILE(inode
))
1892 static unsigned long read_swap_header(struct swap_info_struct
*p
,
1893 union swap_header
*swap_header
,
1894 struct inode
*inode
)
1897 unsigned long maxpages
;
1898 unsigned long swapfilepages
;
1900 if (memcmp("SWAPSPACE2", swap_header
->magic
.magic
, 10)) {
1901 printk(KERN_ERR
"Unable to find swap-space signature\n");
1905 /* swap partition endianess hack... */
1906 if (swab32(swap_header
->info
.version
) == 1) {
1907 swab32s(&swap_header
->info
.version
);
1908 swab32s(&swap_header
->info
.last_page
);
1909 swab32s(&swap_header
->info
.nr_badpages
);
1910 for (i
= 0; i
< swap_header
->info
.nr_badpages
; i
++)
1911 swab32s(&swap_header
->info
.badpages
[i
]);
1913 /* Check the swap header's sub-version */
1914 if (swap_header
->info
.version
!= 1) {
1916 "Unable to handle swap header version %d\n",
1917 swap_header
->info
.version
);
1922 p
->cluster_next
= 1;
1926 * Find out how many pages are allowed for a single swap
1927 * device. There are three limiting factors: 1) the number
1928 * of bits for the swap offset in the swp_entry_t type, and
1929 * 2) the number of bits in the swap pte as defined by the
1930 * the different architectures, and 3) the number of free bits
1931 * in an exceptional radix_tree entry. In order to find the
1932 * largest possible bit mask, a swap entry with swap type 0
1933 * and swap offset ~0UL is created, encoded to a swap pte,
1934 * decoded to a swp_entry_t again, and finally the swap
1935 * offset is extracted. This will mask all the bits from
1936 * the initial ~0UL mask that can't be encoded in either
1937 * the swp_entry_t or the architecture definition of a
1938 * swap pte. Then the same is done for a radix_tree entry.
1940 maxpages
= swp_offset(pte_to_swp_entry(
1941 swp_entry_to_pte(swp_entry(0, ~0UL))));
1942 maxpages
= swp_offset(radix_to_swp_entry(
1943 swp_to_radix_entry(swp_entry(0, maxpages
)))) + 1;
1945 if (maxpages
> swap_header
->info
.last_page
) {
1946 maxpages
= swap_header
->info
.last_page
+ 1;
1947 /* p->max is an unsigned int: don't overflow it */
1948 if ((unsigned int)maxpages
== 0)
1949 maxpages
= UINT_MAX
;
1951 p
->highest_bit
= maxpages
- 1;
1955 swapfilepages
= i_size_read(inode
) >> PAGE_SHIFT
;
1956 if (swapfilepages
&& maxpages
> swapfilepages
) {
1958 "Swap area shorter than signature indicates\n");
1961 if (swap_header
->info
.nr_badpages
&& S_ISREG(inode
->i_mode
))
1963 if (swap_header
->info
.nr_badpages
> MAX_SWAP_BADPAGES
)
1969 static int setup_swap_map_and_extents(struct swap_info_struct
*p
,
1970 union swap_header
*swap_header
,
1971 unsigned char *swap_map
,
1972 unsigned long maxpages
,
1976 unsigned int nr_good_pages
;
1979 nr_good_pages
= maxpages
- 1; /* omit header page */
1981 for (i
= 0; i
< swap_header
->info
.nr_badpages
; i
++) {
1982 unsigned int page_nr
= swap_header
->info
.badpages
[i
];
1983 if (page_nr
== 0 || page_nr
> swap_header
->info
.last_page
)
1985 if (page_nr
< maxpages
) {
1986 swap_map
[page_nr
] = SWAP_MAP_BAD
;
1991 if (nr_good_pages
) {
1992 swap_map
[0] = SWAP_MAP_BAD
;
1994 p
->pages
= nr_good_pages
;
1995 nr_extents
= setup_swap_extents(p
, span
);
1998 nr_good_pages
= p
->pages
;
2000 if (!nr_good_pages
) {
2001 printk(KERN_WARNING
"Empty swap-file\n");
2008 SYSCALL_DEFINE2(swapon
, const char __user
*, specialfile
, int, swap_flags
)
2010 struct swap_info_struct
*p
;
2012 struct file
*swap_file
= NULL
;
2013 struct address_space
*mapping
;
2017 union swap_header
*swap_header
;
2020 unsigned long maxpages
;
2021 unsigned char *swap_map
= NULL
;
2022 struct page
*page
= NULL
;
2023 struct inode
*inode
= NULL
;
2025 if (!capable(CAP_SYS_ADMIN
))
2028 p
= alloc_swap_info();
2032 name
= getname(specialfile
);
2034 error
= PTR_ERR(name
);
2038 swap_file
= filp_open(name
, O_RDWR
|O_LARGEFILE
, 0);
2039 if (IS_ERR(swap_file
)) {
2040 error
= PTR_ERR(swap_file
);
2045 p
->swap_file
= swap_file
;
2046 mapping
= swap_file
->f_mapping
;
2048 for (i
= 0; i
< nr_swapfiles
; i
++) {
2049 struct swap_info_struct
*q
= swap_info
[i
];
2051 if (q
== p
|| !q
->swap_file
)
2053 if (mapping
== q
->swap_file
->f_mapping
) {
2059 inode
= mapping
->host
;
2060 /* If S_ISREG(inode->i_mode) will do mutex_lock(&inode->i_mutex); */
2061 error
= claim_swapfile(p
, inode
);
2062 if (unlikely(error
))
2066 * Read the swap header.
2068 if (!mapping
->a_ops
->readpage
) {
2072 page
= read_mapping_page(mapping
, 0, swap_file
);
2074 error
= PTR_ERR(page
);
2077 swap_header
= kmap(page
);
2079 maxpages
= read_swap_header(p
, swap_header
, inode
);
2080 if (unlikely(!maxpages
)) {
2085 /* OK, set up the swap map and apply the bad block list */
2086 swap_map
= vzalloc(maxpages
);
2092 error
= swap_cgroup_swapon(p
->type
, maxpages
);
2096 nr_extents
= setup_swap_map_and_extents(p
, swap_header
, swap_map
,
2098 if (unlikely(nr_extents
< 0)) {
2104 if (blk_queue_nonrot(bdev_get_queue(p
->bdev
))) {
2105 p
->flags
|= SWP_SOLIDSTATE
;
2106 p
->cluster_next
= 1 + (random32() % p
->highest_bit
);
2108 if ((swap_flags
& SWAP_FLAG_DISCARD
) && discard_swap(p
) == 0)
2109 p
->flags
|= SWP_DISCARDABLE
;
2112 mutex_lock(&swapon_mutex
);
2114 if (swap_flags
& SWAP_FLAG_PREFER
)
2116 (swap_flags
& SWAP_FLAG_PRIO_MASK
) >> SWAP_FLAG_PRIO_SHIFT
;
2117 enable_swap_info(p
, prio
, swap_map
);
2119 printk(KERN_INFO
"Adding %uk swap on %s. "
2120 "Priority:%d extents:%d across:%lluk %s%s\n",
2121 p
->pages
<<(PAGE_SHIFT
-10), name
, p
->prio
,
2122 nr_extents
, (unsigned long long)span
<<(PAGE_SHIFT
-10),
2123 (p
->flags
& SWP_SOLIDSTATE
) ? "SS" : "",
2124 (p
->flags
& SWP_DISCARDABLE
) ? "D" : "");
2126 mutex_unlock(&swapon_mutex
);
2127 atomic_inc(&proc_poll_event
);
2128 wake_up_interruptible(&proc_poll_wait
);
2130 if (S_ISREG(inode
->i_mode
))
2131 inode
->i_flags
|= S_SWAPFILE
;
2135 if (inode
&& S_ISBLK(inode
->i_mode
) && p
->bdev
) {
2136 set_blocksize(p
->bdev
, p
->old_block_size
);
2137 blkdev_put(p
->bdev
, FMODE_READ
| FMODE_WRITE
| FMODE_EXCL
);
2139 destroy_swap_extents(p
);
2140 swap_cgroup_swapoff(p
->type
);
2141 spin_lock(&swap_lock
);
2142 p
->swap_file
= NULL
;
2144 spin_unlock(&swap_lock
);
2147 if (inode
&& S_ISREG(inode
->i_mode
)) {
2148 mutex_unlock(&inode
->i_mutex
);
2151 filp_close(swap_file
, NULL
);
2154 if (page
&& !IS_ERR(page
)) {
2156 page_cache_release(page
);
2160 if (inode
&& S_ISREG(inode
->i_mode
))
2161 mutex_unlock(&inode
->i_mutex
);
2165 void si_swapinfo(struct sysinfo
*val
)
2168 unsigned long nr_to_be_unused
= 0;
2170 spin_lock(&swap_lock
);
2171 for (type
= 0; type
< nr_swapfiles
; type
++) {
2172 struct swap_info_struct
*si
= swap_info
[type
];
2174 if ((si
->flags
& SWP_USED
) && !(si
->flags
& SWP_WRITEOK
))
2175 nr_to_be_unused
+= si
->inuse_pages
;
2177 val
->freeswap
= nr_swap_pages
+ nr_to_be_unused
;
2178 val
->totalswap
= total_swap_pages
+ nr_to_be_unused
;
2179 spin_unlock(&swap_lock
);
2183 * Verify that a swap entry is valid and increment its swap map count.
2185 * Returns error code in following case.
2187 * - swp_entry is invalid -> EINVAL
2188 * - swp_entry is migration entry -> EINVAL
2189 * - swap-cache reference is requested but there is already one. -> EEXIST
2190 * - swap-cache reference is requested but the entry is not used. -> ENOENT
2191 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
2193 static int __swap_duplicate(swp_entry_t entry
, unsigned char usage
)
2195 struct swap_info_struct
*p
;
2196 unsigned long offset
, type
;
2197 unsigned char count
;
2198 unsigned char has_cache
;
2201 if (non_swap_entry(entry
))
2204 type
= swp_type(entry
);
2205 if (type
>= nr_swapfiles
)
2207 p
= swap_info
[type
];
2208 offset
= swp_offset(entry
);
2210 spin_lock(&swap_lock
);
2211 if (unlikely(offset
>= p
->max
))
2214 count
= p
->swap_map
[offset
];
2215 has_cache
= count
& SWAP_HAS_CACHE
;
2216 count
&= ~SWAP_HAS_CACHE
;
2219 if (usage
== SWAP_HAS_CACHE
) {
2221 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
2222 if (!has_cache
&& count
)
2223 has_cache
= SWAP_HAS_CACHE
;
2224 else if (has_cache
) /* someone else added cache */
2226 else /* no users remaining */
2229 } else if (count
|| has_cache
) {
2231 if ((count
& ~COUNT_CONTINUED
) < SWAP_MAP_MAX
)
2233 else if ((count
& ~COUNT_CONTINUED
) > SWAP_MAP_MAX
)
2235 else if (swap_count_continued(p
, offset
, count
))
2236 count
= COUNT_CONTINUED
;
2240 err
= -ENOENT
; /* unused swap entry */
2242 p
->swap_map
[offset
] = count
| has_cache
;
2245 spin_unlock(&swap_lock
);
2250 printk(KERN_ERR
"swap_dup: %s%08lx\n", Bad_file
, entry
.val
);
2255 * Help swapoff by noting that swap entry belongs to shmem/tmpfs
2256 * (in which case its reference count is never incremented).
2258 void swap_shmem_alloc(swp_entry_t entry
)
2260 __swap_duplicate(entry
, SWAP_MAP_SHMEM
);
2264 * Increase reference count of swap entry by 1.
2265 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
2266 * but could not be atomically allocated. Returns 0, just as if it succeeded,
2267 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
2268 * might occur if a page table entry has got corrupted.
2270 int swap_duplicate(swp_entry_t entry
)
2274 while (!err
&& __swap_duplicate(entry
, 1) == -ENOMEM
)
2275 err
= add_swap_count_continuation(entry
, GFP_ATOMIC
);
2280 * @entry: swap entry for which we allocate swap cache.
2282 * Called when allocating swap cache for existing swap entry,
2283 * This can return error codes. Returns 0 at success.
2284 * -EBUSY means there is a swap cache.
2285 * Note: return code is different from swap_duplicate().
2287 int swapcache_prepare(swp_entry_t entry
)
2289 return __swap_duplicate(entry
, SWAP_HAS_CACHE
);
2293 * add_swap_count_continuation - called when a swap count is duplicated
2294 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
2295 * page of the original vmalloc'ed swap_map, to hold the continuation count
2296 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called
2297 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
2299 * These continuation pages are seldom referenced: the common paths all work
2300 * on the original swap_map, only referring to a continuation page when the
2301 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
2303 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
2304 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
2305 * can be called after dropping locks.
2307 int add_swap_count_continuation(swp_entry_t entry
, gfp_t gfp_mask
)
2309 struct swap_info_struct
*si
;
2312 struct page
*list_page
;
2314 unsigned char count
;
2317 * When debugging, it's easier to use __GFP_ZERO here; but it's better
2318 * for latency not to zero a page while GFP_ATOMIC and holding locks.
2320 page
= alloc_page(gfp_mask
| __GFP_HIGHMEM
);
2322 si
= swap_info_get(entry
);
2325 * An acceptable race has occurred since the failing
2326 * __swap_duplicate(): the swap entry has been freed,
2327 * perhaps even the whole swap_map cleared for swapoff.
2332 offset
= swp_offset(entry
);
2333 count
= si
->swap_map
[offset
] & ~SWAP_HAS_CACHE
;
2335 if ((count
& ~COUNT_CONTINUED
) != SWAP_MAP_MAX
) {
2337 * The higher the swap count, the more likely it is that tasks
2338 * will race to add swap count continuation: we need to avoid
2339 * over-provisioning.
2345 spin_unlock(&swap_lock
);
2350 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
2351 * no architecture is using highmem pages for kernel pagetables: so it
2352 * will not corrupt the GFP_ATOMIC caller's atomic pagetable kmaps.
2354 head
= vmalloc_to_page(si
->swap_map
+ offset
);
2355 offset
&= ~PAGE_MASK
;
2358 * Page allocation does not initialize the page's lru field,
2359 * but it does always reset its private field.
2361 if (!page_private(head
)) {
2362 BUG_ON(count
& COUNT_CONTINUED
);
2363 INIT_LIST_HEAD(&head
->lru
);
2364 set_page_private(head
, SWP_CONTINUED
);
2365 si
->flags
|= SWP_CONTINUED
;
2368 list_for_each_entry(list_page
, &head
->lru
, lru
) {
2372 * If the previous map said no continuation, but we've found
2373 * a continuation page, free our allocation and use this one.
2375 if (!(count
& COUNT_CONTINUED
))
2378 map
= kmap_atomic(list_page
) + offset
;
2383 * If this continuation count now has some space in it,
2384 * free our allocation and use this one.
2386 if ((count
& ~COUNT_CONTINUED
) != SWAP_CONT_MAX
)
2390 list_add_tail(&page
->lru
, &head
->lru
);
2391 page
= NULL
; /* now it's attached, don't free it */
2393 spin_unlock(&swap_lock
);
2401 * swap_count_continued - when the original swap_map count is incremented
2402 * from SWAP_MAP_MAX, check if there is already a continuation page to carry
2403 * into, carry if so, or else fail until a new continuation page is allocated;
2404 * when the original swap_map count is decremented from 0 with continuation,
2405 * borrow from the continuation and report whether it still holds more.
2406 * Called while __swap_duplicate() or swap_entry_free() holds swap_lock.
2408 static bool swap_count_continued(struct swap_info_struct
*si
,
2409 pgoff_t offset
, unsigned char count
)
2415 head
= vmalloc_to_page(si
->swap_map
+ offset
);
2416 if (page_private(head
) != SWP_CONTINUED
) {
2417 BUG_ON(count
& COUNT_CONTINUED
);
2418 return false; /* need to add count continuation */
2421 offset
&= ~PAGE_MASK
;
2422 page
= list_entry(head
->lru
.next
, struct page
, lru
);
2423 map
= kmap_atomic(page
) + offset
;
2425 if (count
== SWAP_MAP_MAX
) /* initial increment from swap_map */
2426 goto init_map
; /* jump over SWAP_CONT_MAX checks */
2428 if (count
== (SWAP_MAP_MAX
| COUNT_CONTINUED
)) { /* incrementing */
2430 * Think of how you add 1 to 999
2432 while (*map
== (SWAP_CONT_MAX
| COUNT_CONTINUED
)) {
2434 page
= list_entry(page
->lru
.next
, struct page
, lru
);
2435 BUG_ON(page
== head
);
2436 map
= kmap_atomic(page
) + offset
;
2438 if (*map
== SWAP_CONT_MAX
) {
2440 page
= list_entry(page
->lru
.next
, struct page
, lru
);
2442 return false; /* add count continuation */
2443 map
= kmap_atomic(page
) + offset
;
2444 init_map
: *map
= 0; /* we didn't zero the page */
2448 page
= list_entry(page
->lru
.prev
, struct page
, lru
);
2449 while (page
!= head
) {
2450 map
= kmap_atomic(page
) + offset
;
2451 *map
= COUNT_CONTINUED
;
2453 page
= list_entry(page
->lru
.prev
, struct page
, lru
);
2455 return true; /* incremented */
2457 } else { /* decrementing */
2459 * Think of how you subtract 1 from 1000
2461 BUG_ON(count
!= COUNT_CONTINUED
);
2462 while (*map
== COUNT_CONTINUED
) {
2464 page
= list_entry(page
->lru
.next
, struct page
, lru
);
2465 BUG_ON(page
== head
);
2466 map
= kmap_atomic(page
) + offset
;
2473 page
= list_entry(page
->lru
.prev
, struct page
, lru
);
2474 while (page
!= head
) {
2475 map
= kmap_atomic(page
) + offset
;
2476 *map
= SWAP_CONT_MAX
| count
;
2477 count
= COUNT_CONTINUED
;
2479 page
= list_entry(page
->lru
.prev
, struct page
, lru
);
2481 return count
== COUNT_CONTINUED
;
2486 * free_swap_count_continuations - swapoff free all the continuation pages
2487 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
2489 static void free_swap_count_continuations(struct swap_info_struct
*si
)
2493 for (offset
= 0; offset
< si
->max
; offset
+= PAGE_SIZE
) {
2495 head
= vmalloc_to_page(si
->swap_map
+ offset
);
2496 if (page_private(head
)) {
2497 struct list_head
*this, *next
;
2498 list_for_each_safe(this, next
, &head
->lru
) {
2500 page
= list_entry(this, struct page
, lru
);