6 * Address space accounting code <alan@lxorguk.ukuu.org.uk>
9 #include <linux/slab.h>
10 #include <linux/backing-dev.h>
12 #include <linux/shm.h>
13 #include <linux/mman.h>
14 #include <linux/pagemap.h>
15 #include <linux/swap.h>
16 #include <linux/syscalls.h>
17 #include <linux/capability.h>
18 #include <linux/init.h>
19 #include <linux/file.h>
21 #include <linux/personality.h>
22 #include <linux/security.h>
23 #include <linux/hugetlb.h>
24 #include <linux/profile.h>
25 #include <linux/export.h>
26 #include <linux/mount.h>
27 #include <linux/mempolicy.h>
28 #include <linux/rmap.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/perf_event.h>
31 #include <linux/audit.h>
32 #include <linux/khugepaged.h>
34 #include <asm/uaccess.h>
35 #include <asm/cacheflush.h>
37 #include <asm/mmu_context.h>
41 #ifndef arch_mmap_check
42 #define arch_mmap_check(addr, len, flags) (0)
45 #ifndef arch_rebalance_pgtables
46 #define arch_rebalance_pgtables(addr, len) (addr)
49 static void unmap_region(struct mm_struct
*mm
,
50 struct vm_area_struct
*vma
, struct vm_area_struct
*prev
,
51 unsigned long start
, unsigned long end
);
54 * WARNING: the debugging will use recursive algorithms so never enable this
55 * unless you know what you are doing.
59 /* description of effects of mapping type and prot in current implementation.
60 * this is due to the limited x86 page protection hardware. The expected
61 * behavior is in parens:
64 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC
65 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes
66 * w: (no) no w: (no) no w: (yes) yes w: (no) no
67 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
69 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes
70 * w: (no) no w: (no) no w: (copy) copy w: (no) no
71 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
74 pgprot_t protection_map
[16] = {
75 __P000
, __P001
, __P010
, __P011
, __P100
, __P101
, __P110
, __P111
,
76 __S000
, __S001
, __S010
, __S011
, __S100
, __S101
, __S110
, __S111
79 pgprot_t
vm_get_page_prot(unsigned long vm_flags
)
81 return __pgprot(pgprot_val(protection_map
[vm_flags
&
82 (VM_READ
|VM_WRITE
|VM_EXEC
|VM_SHARED
)]) |
83 pgprot_val(arch_vm_get_page_prot(vm_flags
)));
85 EXPORT_SYMBOL(vm_get_page_prot
);
87 int sysctl_overcommit_memory __read_mostly
= OVERCOMMIT_GUESS
; /* heuristic overcommit */
88 int sysctl_overcommit_ratio __read_mostly
= 50; /* default is 50% */
89 int sysctl_max_map_count __read_mostly
= DEFAULT_MAX_MAP_COUNT
;
91 * Make sure vm_committed_as in one cacheline and not cacheline shared with
92 * other variables. It can be updated by several CPUs frequently.
94 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp
;
97 * Check that a process has enough memory to allocate a new virtual
98 * mapping. 0 means there is enough memory for the allocation to
99 * succeed and -ENOMEM implies there is not.
101 * We currently support three overcommit policies, which are set via the
102 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting
104 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
105 * Additional code 2002 Jul 20 by Robert Love.
107 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
109 * Note this is a helper function intended to be used by LSMs which
110 * wish to use this logic.
112 int __vm_enough_memory(struct mm_struct
*mm
, long pages
, int cap_sys_admin
)
114 unsigned long free
, allowed
;
116 vm_acct_memory(pages
);
119 * Sometimes we want to use more memory than we have
121 if (sysctl_overcommit_memory
== OVERCOMMIT_ALWAYS
)
124 if (sysctl_overcommit_memory
== OVERCOMMIT_GUESS
) {
125 free
= global_page_state(NR_FREE_PAGES
);
126 free
+= global_page_state(NR_FILE_PAGES
);
129 * shmem pages shouldn't be counted as free in this
130 * case, they can't be purged, only swapped out, and
131 * that won't affect the overall amount of available
132 * memory in the system.
134 free
-= global_page_state(NR_SHMEM
);
136 free
+= nr_swap_pages
;
139 * Any slabs which are created with the
140 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
141 * which are reclaimable, under pressure. The dentry
142 * cache and most inode caches should fall into this
144 free
+= global_page_state(NR_SLAB_RECLAIMABLE
);
147 * Leave reserved pages. The pages are not for anonymous pages.
149 if (free
<= totalreserve_pages
)
152 free
-= totalreserve_pages
;
155 * Leave the last 3% for root
166 allowed
= (totalram_pages
- hugetlb_total_pages())
167 * sysctl_overcommit_ratio
/ 100;
169 * Leave the last 3% for root
172 allowed
-= allowed
/ 32;
173 allowed
+= total_swap_pages
;
175 /* Don't let a single process grow too big:
176 leave 3% of the size of this process for other processes */
178 allowed
-= mm
->total_vm
/ 32;
180 if (percpu_counter_read_positive(&vm_committed_as
) < allowed
)
183 vm_unacct_memory(pages
);
189 * Requires inode->i_mapping->i_mmap_mutex
191 static void __remove_shared_vm_struct(struct vm_area_struct
*vma
,
192 struct file
*file
, struct address_space
*mapping
)
194 if (vma
->vm_flags
& VM_DENYWRITE
)
195 atomic_inc(&file
->f_path
.dentry
->d_inode
->i_writecount
);
196 if (vma
->vm_flags
& VM_SHARED
)
197 mapping
->i_mmap_writable
--;
199 flush_dcache_mmap_lock(mapping
);
200 if (unlikely(vma
->vm_flags
& VM_NONLINEAR
))
201 list_del_init(&vma
->shared
.vm_set
.list
);
203 vma_prio_tree_remove(vma
, &mapping
->i_mmap
);
204 flush_dcache_mmap_unlock(mapping
);
208 * Unlink a file-based vm structure from its prio_tree, to hide
209 * vma from rmap and vmtruncate before freeing its page tables.
211 void unlink_file_vma(struct vm_area_struct
*vma
)
213 struct file
*file
= vma
->vm_file
;
216 struct address_space
*mapping
= file
->f_mapping
;
217 mutex_lock(&mapping
->i_mmap_mutex
);
218 __remove_shared_vm_struct(vma
, file
, mapping
);
219 mutex_unlock(&mapping
->i_mmap_mutex
);
224 * Close a vm structure and free it, returning the next.
226 static struct vm_area_struct
*remove_vma(struct vm_area_struct
*vma
)
228 struct vm_area_struct
*next
= vma
->vm_next
;
231 if (vma
->vm_ops
&& vma
->vm_ops
->close
)
232 vma
->vm_ops
->close(vma
);
235 if (vma
->vm_flags
& VM_EXECUTABLE
)
236 removed_exe_file_vma(vma
->vm_mm
);
238 mpol_put(vma_policy(vma
));
239 kmem_cache_free(vm_area_cachep
, vma
);
243 SYSCALL_DEFINE1(brk
, unsigned long, brk
)
245 unsigned long rlim
, retval
;
246 unsigned long newbrk
, oldbrk
;
247 struct mm_struct
*mm
= current
->mm
;
248 unsigned long min_brk
;
250 down_write(&mm
->mmap_sem
);
252 #ifdef CONFIG_COMPAT_BRK
254 * CONFIG_COMPAT_BRK can still be overridden by setting
255 * randomize_va_space to 2, which will still cause mm->start_brk
256 * to be arbitrarily shifted
258 if (current
->brk_randomized
)
259 min_brk
= mm
->start_brk
;
261 min_brk
= mm
->end_data
;
263 min_brk
= mm
->start_brk
;
269 * Check against rlimit here. If this check is done later after the test
270 * of oldbrk with newbrk then it can escape the test and let the data
271 * segment grow beyond its set limit the in case where the limit is
272 * not page aligned -Ram Gupta
274 rlim
= rlimit(RLIMIT_DATA
);
275 if (rlim
< RLIM_INFINITY
&& (brk
- mm
->start_brk
) +
276 (mm
->end_data
- mm
->start_data
) > rlim
)
279 newbrk
= PAGE_ALIGN(brk
);
280 oldbrk
= PAGE_ALIGN(mm
->brk
);
281 if (oldbrk
== newbrk
)
284 /* Always allow shrinking brk. */
285 if (brk
<= mm
->brk
) {
286 if (!do_munmap(mm
, newbrk
, oldbrk
-newbrk
))
291 /* Check against existing mmap mappings. */
292 if (find_vma_intersection(mm
, oldbrk
, newbrk
+PAGE_SIZE
))
295 /* Ok, looks good - let it rip. */
296 if (do_brk(oldbrk
, newbrk
-oldbrk
) != oldbrk
)
302 up_write(&mm
->mmap_sem
);
307 static int browse_rb(struct rb_root
*root
)
310 struct rb_node
*nd
, *pn
= NULL
;
311 unsigned long prev
= 0, pend
= 0;
313 for (nd
= rb_first(root
); nd
; nd
= rb_next(nd
)) {
314 struct vm_area_struct
*vma
;
315 vma
= rb_entry(nd
, struct vm_area_struct
, vm_rb
);
316 if (vma
->vm_start
< prev
)
317 printk("vm_start %lx prev %lx\n", vma
->vm_start
, prev
), i
= -1;
318 if (vma
->vm_start
< pend
)
319 printk("vm_start %lx pend %lx\n", vma
->vm_start
, pend
);
320 if (vma
->vm_start
> vma
->vm_end
)
321 printk("vm_end %lx < vm_start %lx\n", vma
->vm_end
, vma
->vm_start
);
324 prev
= vma
->vm_start
;
328 for (nd
= pn
; nd
; nd
= rb_prev(nd
)) {
332 printk("backwards %d, forwards %d\n", j
, i
), i
= 0;
336 void validate_mm(struct mm_struct
*mm
)
340 struct vm_area_struct
*tmp
= mm
->mmap
;
345 if (i
!= mm
->map_count
)
346 printk("map_count %d vm_next %d\n", mm
->map_count
, i
), bug
= 1;
347 i
= browse_rb(&mm
->mm_rb
);
348 if (i
!= mm
->map_count
)
349 printk("map_count %d rb %d\n", mm
->map_count
, i
), bug
= 1;
353 #define validate_mm(mm) do { } while (0)
356 static struct vm_area_struct
*
357 find_vma_prepare(struct mm_struct
*mm
, unsigned long addr
,
358 struct vm_area_struct
**pprev
, struct rb_node
***rb_link
,
359 struct rb_node
** rb_parent
)
361 struct vm_area_struct
* vma
;
362 struct rb_node
** __rb_link
, * __rb_parent
, * rb_prev
;
364 __rb_link
= &mm
->mm_rb
.rb_node
;
365 rb_prev
= __rb_parent
= NULL
;
369 struct vm_area_struct
*vma_tmp
;
371 __rb_parent
= *__rb_link
;
372 vma_tmp
= rb_entry(__rb_parent
, struct vm_area_struct
, vm_rb
);
374 if (vma_tmp
->vm_end
> addr
) {
376 if (vma_tmp
->vm_start
<= addr
)
378 __rb_link
= &__rb_parent
->rb_left
;
380 rb_prev
= __rb_parent
;
381 __rb_link
= &__rb_parent
->rb_right
;
387 *pprev
= rb_entry(rb_prev
, struct vm_area_struct
, vm_rb
);
388 *rb_link
= __rb_link
;
389 *rb_parent
= __rb_parent
;
393 void __vma_link_rb(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
394 struct rb_node
**rb_link
, struct rb_node
*rb_parent
)
396 rb_link_node(&vma
->vm_rb
, rb_parent
, rb_link
);
397 rb_insert_color(&vma
->vm_rb
, &mm
->mm_rb
);
400 static void __vma_link_file(struct vm_area_struct
*vma
)
406 struct address_space
*mapping
= file
->f_mapping
;
408 if (vma
->vm_flags
& VM_DENYWRITE
)
409 atomic_dec(&file
->f_path
.dentry
->d_inode
->i_writecount
);
410 if (vma
->vm_flags
& VM_SHARED
)
411 mapping
->i_mmap_writable
++;
413 flush_dcache_mmap_lock(mapping
);
414 if (unlikely(vma
->vm_flags
& VM_NONLINEAR
))
415 vma_nonlinear_insert(vma
, &mapping
->i_mmap_nonlinear
);
417 vma_prio_tree_insert(vma
, &mapping
->i_mmap
);
418 flush_dcache_mmap_unlock(mapping
);
423 __vma_link(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
424 struct vm_area_struct
*prev
, struct rb_node
**rb_link
,
425 struct rb_node
*rb_parent
)
427 __vma_link_list(mm
, vma
, prev
, rb_parent
);
428 __vma_link_rb(mm
, vma
, rb_link
, rb_parent
);
431 static void vma_link(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
432 struct vm_area_struct
*prev
, struct rb_node
**rb_link
,
433 struct rb_node
*rb_parent
)
435 struct address_space
*mapping
= NULL
;
438 mapping
= vma
->vm_file
->f_mapping
;
441 mutex_lock(&mapping
->i_mmap_mutex
);
443 __vma_link(mm
, vma
, prev
, rb_link
, rb_parent
);
444 __vma_link_file(vma
);
447 mutex_unlock(&mapping
->i_mmap_mutex
);
454 * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
455 * mm's list and rbtree. It has already been inserted into the prio_tree.
457 static void __insert_vm_struct(struct mm_struct
*mm
, struct vm_area_struct
*vma
)
459 struct vm_area_struct
*__vma
, *prev
;
460 struct rb_node
**rb_link
, *rb_parent
;
462 __vma
= find_vma_prepare(mm
, vma
->vm_start
,&prev
, &rb_link
, &rb_parent
);
463 BUG_ON(__vma
&& __vma
->vm_start
< vma
->vm_end
);
464 __vma_link(mm
, vma
, prev
, rb_link
, rb_parent
);
469 __vma_unlink(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
470 struct vm_area_struct
*prev
)
472 struct vm_area_struct
*next
= vma
->vm_next
;
474 prev
->vm_next
= next
;
476 next
->vm_prev
= prev
;
477 rb_erase(&vma
->vm_rb
, &mm
->mm_rb
);
478 if (mm
->mmap_cache
== vma
)
479 mm
->mmap_cache
= prev
;
483 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
484 * is already present in an i_mmap tree without adjusting the tree.
485 * The following helper function should be used when such adjustments
486 * are necessary. The "insert" vma (if any) is to be inserted
487 * before we drop the necessary locks.
489 int vma_adjust(struct vm_area_struct
*vma
, unsigned long start
,
490 unsigned long end
, pgoff_t pgoff
, struct vm_area_struct
*insert
)
492 struct mm_struct
*mm
= vma
->vm_mm
;
493 struct vm_area_struct
*next
= vma
->vm_next
;
494 struct vm_area_struct
*importer
= NULL
;
495 struct address_space
*mapping
= NULL
;
496 struct prio_tree_root
*root
= NULL
;
497 struct anon_vma
*anon_vma
= NULL
;
498 struct file
*file
= vma
->vm_file
;
499 long adjust_next
= 0;
502 if (next
&& !insert
) {
503 struct vm_area_struct
*exporter
= NULL
;
505 if (end
>= next
->vm_end
) {
507 * vma expands, overlapping all the next, and
508 * perhaps the one after too (mprotect case 6).
510 again
: remove_next
= 1 + (end
> next
->vm_end
);
514 } else if (end
> next
->vm_start
) {
516 * vma expands, overlapping part of the next:
517 * mprotect case 5 shifting the boundary up.
519 adjust_next
= (end
- next
->vm_start
) >> PAGE_SHIFT
;
522 } else if (end
< vma
->vm_end
) {
524 * vma shrinks, and !insert tells it's not
525 * split_vma inserting another: so it must be
526 * mprotect case 4 shifting the boundary down.
528 adjust_next
= - ((vma
->vm_end
- end
) >> PAGE_SHIFT
);
534 * Easily overlooked: when mprotect shifts the boundary,
535 * make sure the expanding vma has anon_vma set if the
536 * shrinking vma had, to cover any anon pages imported.
538 if (exporter
&& exporter
->anon_vma
&& !importer
->anon_vma
) {
539 if (anon_vma_clone(importer
, exporter
))
541 importer
->anon_vma
= exporter
->anon_vma
;
546 mapping
= file
->f_mapping
;
547 if (!(vma
->vm_flags
& VM_NONLINEAR
))
548 root
= &mapping
->i_mmap
;
549 mutex_lock(&mapping
->i_mmap_mutex
);
552 * Put into prio_tree now, so instantiated pages
553 * are visible to arm/parisc __flush_dcache_page
554 * throughout; but we cannot insert into address
555 * space until vma start or end is updated.
557 __vma_link_file(insert
);
561 vma_adjust_trans_huge(vma
, start
, end
, adjust_next
);
564 * When changing only vma->vm_end, we don't really need anon_vma
565 * lock. This is a fairly rare case by itself, but the anon_vma
566 * lock may be shared between many sibling processes. Skipping
567 * the lock for brk adjustments makes a difference sometimes.
569 if (vma
->anon_vma
&& (importer
|| start
!= vma
->vm_start
)) {
570 anon_vma
= vma
->anon_vma
;
571 anon_vma_lock(anon_vma
);
575 flush_dcache_mmap_lock(mapping
);
576 vma_prio_tree_remove(vma
, root
);
578 vma_prio_tree_remove(next
, root
);
581 vma
->vm_start
= start
;
583 vma
->vm_pgoff
= pgoff
;
585 next
->vm_start
+= adjust_next
<< PAGE_SHIFT
;
586 next
->vm_pgoff
+= adjust_next
;
591 vma_prio_tree_insert(next
, root
);
592 vma_prio_tree_insert(vma
, root
);
593 flush_dcache_mmap_unlock(mapping
);
598 * vma_merge has merged next into vma, and needs
599 * us to remove next before dropping the locks.
601 __vma_unlink(mm
, next
, vma
);
603 __remove_shared_vm_struct(next
, file
, mapping
);
606 * split_vma has split insert from vma, and needs
607 * us to insert it before dropping the locks
608 * (it may either follow vma or precede it).
610 __insert_vm_struct(mm
, insert
);
614 anon_vma_unlock(anon_vma
);
616 mutex_unlock(&mapping
->i_mmap_mutex
);
621 if (next
->vm_flags
& VM_EXECUTABLE
)
622 removed_exe_file_vma(mm
);
625 anon_vma_merge(vma
, next
);
627 mpol_put(vma_policy(next
));
628 kmem_cache_free(vm_area_cachep
, next
);
630 * In mprotect's case 6 (see comments on vma_merge),
631 * we must remove another next too. It would clutter
632 * up the code too much to do both in one go.
634 if (remove_next
== 2) {
646 * If the vma has a ->close operation then the driver probably needs to release
647 * per-vma resources, so we don't attempt to merge those.
649 static inline int is_mergeable_vma(struct vm_area_struct
*vma
,
650 struct file
*file
, unsigned long vm_flags
)
652 /* VM_CAN_NONLINEAR may get set later by f_op->mmap() */
653 if ((vma
->vm_flags
^ vm_flags
) & ~VM_CAN_NONLINEAR
)
655 if (vma
->vm_file
!= file
)
657 if (vma
->vm_ops
&& vma
->vm_ops
->close
)
662 static inline int is_mergeable_anon_vma(struct anon_vma
*anon_vma1
,
663 struct anon_vma
*anon_vma2
,
664 struct vm_area_struct
*vma
)
667 * The list_is_singular() test is to avoid merging VMA cloned from
668 * parents. This can improve scalability caused by anon_vma lock.
670 if ((!anon_vma1
|| !anon_vma2
) && (!vma
||
671 list_is_singular(&vma
->anon_vma_chain
)))
673 return anon_vma1
== anon_vma2
;
677 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
678 * in front of (at a lower virtual address and file offset than) the vma.
680 * We cannot merge two vmas if they have differently assigned (non-NULL)
681 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
683 * We don't check here for the merged mmap wrapping around the end of pagecache
684 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
685 * wrap, nor mmaps which cover the final page at index -1UL.
688 can_vma_merge_before(struct vm_area_struct
*vma
, unsigned long vm_flags
,
689 struct anon_vma
*anon_vma
, struct file
*file
, pgoff_t vm_pgoff
)
691 if (is_mergeable_vma(vma
, file
, vm_flags
) &&
692 is_mergeable_anon_vma(anon_vma
, vma
->anon_vma
, vma
)) {
693 if (vma
->vm_pgoff
== vm_pgoff
)
700 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
701 * beyond (at a higher virtual address and file offset than) the vma.
703 * We cannot merge two vmas if they have differently assigned (non-NULL)
704 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
707 can_vma_merge_after(struct vm_area_struct
*vma
, unsigned long vm_flags
,
708 struct anon_vma
*anon_vma
, struct file
*file
, pgoff_t vm_pgoff
)
710 if (is_mergeable_vma(vma
, file
, vm_flags
) &&
711 is_mergeable_anon_vma(anon_vma
, vma
->anon_vma
, vma
)) {
713 vm_pglen
= (vma
->vm_end
- vma
->vm_start
) >> PAGE_SHIFT
;
714 if (vma
->vm_pgoff
+ vm_pglen
== vm_pgoff
)
721 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
722 * whether that can be merged with its predecessor or its successor.
723 * Or both (it neatly fills a hole).
725 * In most cases - when called for mmap, brk or mremap - [addr,end) is
726 * certain not to be mapped by the time vma_merge is called; but when
727 * called for mprotect, it is certain to be already mapped (either at
728 * an offset within prev, or at the start of next), and the flags of
729 * this area are about to be changed to vm_flags - and the no-change
730 * case has already been eliminated.
732 * The following mprotect cases have to be considered, where AAAA is
733 * the area passed down from mprotect_fixup, never extending beyond one
734 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
736 * AAAA AAAA AAAA AAAA
737 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN PPPPNNNNXXXX
738 * cannot merge might become might become might become
739 * PPNNNNNNNNNN PPPPPPPPPPNN PPPPPPPPPPPP 6 or
740 * mmap, brk or case 4 below case 5 below PPPPPPPPXXXX 7 or
741 * mremap move: PPPPNNNNNNNN 8
743 * PPPP NNNN PPPPPPPPPPPP PPPPPPPPNNNN PPPPNNNNNNNN
744 * might become case 1 below case 2 below case 3 below
746 * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
747 * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
749 struct vm_area_struct
*vma_merge(struct mm_struct
*mm
,
750 struct vm_area_struct
*prev
, unsigned long addr
,
751 unsigned long end
, unsigned long vm_flags
,
752 struct anon_vma
*anon_vma
, struct file
*file
,
753 pgoff_t pgoff
, struct mempolicy
*policy
)
755 pgoff_t pglen
= (end
- addr
) >> PAGE_SHIFT
;
756 struct vm_area_struct
*area
, *next
;
760 * We later require that vma->vm_flags == vm_flags,
761 * so this tests vma->vm_flags & VM_SPECIAL, too.
763 if (vm_flags
& VM_SPECIAL
)
767 next
= prev
->vm_next
;
771 if (next
&& next
->vm_end
== end
) /* cases 6, 7, 8 */
772 next
= next
->vm_next
;
775 * Can it merge with the predecessor?
777 if (prev
&& prev
->vm_end
== addr
&&
778 mpol_equal(vma_policy(prev
), policy
) &&
779 can_vma_merge_after(prev
, vm_flags
,
780 anon_vma
, file
, pgoff
)) {
782 * OK, it can. Can we now merge in the successor as well?
784 if (next
&& end
== next
->vm_start
&&
785 mpol_equal(policy
, vma_policy(next
)) &&
786 can_vma_merge_before(next
, vm_flags
,
787 anon_vma
, file
, pgoff
+pglen
) &&
788 is_mergeable_anon_vma(prev
->anon_vma
,
789 next
->anon_vma
, NULL
)) {
791 err
= vma_adjust(prev
, prev
->vm_start
,
792 next
->vm_end
, prev
->vm_pgoff
, NULL
);
793 } else /* cases 2, 5, 7 */
794 err
= vma_adjust(prev
, prev
->vm_start
,
795 end
, prev
->vm_pgoff
, NULL
);
798 khugepaged_enter_vma_merge(prev
);
803 * Can this new request be merged in front of next?
805 if (next
&& end
== next
->vm_start
&&
806 mpol_equal(policy
, vma_policy(next
)) &&
807 can_vma_merge_before(next
, vm_flags
,
808 anon_vma
, file
, pgoff
+pglen
)) {
809 if (prev
&& addr
< prev
->vm_end
) /* case 4 */
810 err
= vma_adjust(prev
, prev
->vm_start
,
811 addr
, prev
->vm_pgoff
, NULL
);
812 else /* cases 3, 8 */
813 err
= vma_adjust(area
, addr
, next
->vm_end
,
814 next
->vm_pgoff
- pglen
, NULL
);
817 khugepaged_enter_vma_merge(area
);
825 * Rough compatbility check to quickly see if it's even worth looking
826 * at sharing an anon_vma.
828 * They need to have the same vm_file, and the flags can only differ
829 * in things that mprotect may change.
831 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
832 * we can merge the two vma's. For example, we refuse to merge a vma if
833 * there is a vm_ops->close() function, because that indicates that the
834 * driver is doing some kind of reference counting. But that doesn't
835 * really matter for the anon_vma sharing case.
837 static int anon_vma_compatible(struct vm_area_struct
*a
, struct vm_area_struct
*b
)
839 return a
->vm_end
== b
->vm_start
&&
840 mpol_equal(vma_policy(a
), vma_policy(b
)) &&
841 a
->vm_file
== b
->vm_file
&&
842 !((a
->vm_flags
^ b
->vm_flags
) & ~(VM_READ
|VM_WRITE
|VM_EXEC
)) &&
843 b
->vm_pgoff
== a
->vm_pgoff
+ ((b
->vm_start
- a
->vm_start
) >> PAGE_SHIFT
);
847 * Do some basic sanity checking to see if we can re-use the anon_vma
848 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
849 * the same as 'old', the other will be the new one that is trying
850 * to share the anon_vma.
852 * NOTE! This runs with mm_sem held for reading, so it is possible that
853 * the anon_vma of 'old' is concurrently in the process of being set up
854 * by another page fault trying to merge _that_. But that's ok: if it
855 * is being set up, that automatically means that it will be a singleton
856 * acceptable for merging, so we can do all of this optimistically. But
857 * we do that ACCESS_ONCE() to make sure that we never re-load the pointer.
859 * IOW: that the "list_is_singular()" test on the anon_vma_chain only
860 * matters for the 'stable anon_vma' case (ie the thing we want to avoid
861 * is to return an anon_vma that is "complex" due to having gone through
864 * We also make sure that the two vma's are compatible (adjacent,
865 * and with the same memory policies). That's all stable, even with just
866 * a read lock on the mm_sem.
868 static struct anon_vma
*reusable_anon_vma(struct vm_area_struct
*old
, struct vm_area_struct
*a
, struct vm_area_struct
*b
)
870 if (anon_vma_compatible(a
, b
)) {
871 struct anon_vma
*anon_vma
= ACCESS_ONCE(old
->anon_vma
);
873 if (anon_vma
&& list_is_singular(&old
->anon_vma_chain
))
880 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
881 * neighbouring vmas for a suitable anon_vma, before it goes off
882 * to allocate a new anon_vma. It checks because a repetitive
883 * sequence of mprotects and faults may otherwise lead to distinct
884 * anon_vmas being allocated, preventing vma merge in subsequent
887 struct anon_vma
*find_mergeable_anon_vma(struct vm_area_struct
*vma
)
889 struct anon_vma
*anon_vma
;
890 struct vm_area_struct
*near
;
896 anon_vma
= reusable_anon_vma(near
, vma
, near
);
904 anon_vma
= reusable_anon_vma(near
, near
, vma
);
909 * There's no absolute need to look only at touching neighbours:
910 * we could search further afield for "compatible" anon_vmas.
911 * But it would probably just be a waste of time searching,
912 * or lead to too many vmas hanging off the same anon_vma.
913 * We're trying to allow mprotect remerging later on,
914 * not trying to minimize memory used for anon_vmas.
919 #ifdef CONFIG_PROC_FS
920 void vm_stat_account(struct mm_struct
*mm
, unsigned long flags
,
921 struct file
*file
, long pages
)
923 const unsigned long stack_flags
924 = VM_STACK_FLAGS
& (VM_GROWSUP
|VM_GROWSDOWN
);
927 mm
->shared_vm
+= pages
;
928 if ((flags
& (VM_EXEC
|VM_WRITE
)) == VM_EXEC
)
929 mm
->exec_vm
+= pages
;
930 } else if (flags
& stack_flags
)
931 mm
->stack_vm
+= pages
;
932 if (flags
& (VM_RESERVED
|VM_IO
))
933 mm
->reserved_vm
+= pages
;
935 #endif /* CONFIG_PROC_FS */
938 * If a hint addr is less than mmap_min_addr change hint to be as
939 * low as possible but still greater than mmap_min_addr
941 static inline unsigned long round_hint_to_min(unsigned long hint
)
944 if (((void *)hint
!= NULL
) &&
945 (hint
< mmap_min_addr
))
946 return PAGE_ALIGN(mmap_min_addr
);
951 * The caller must hold down_write(¤t->mm->mmap_sem).
954 unsigned long do_mmap_pgoff(struct file
*file
, unsigned long addr
,
955 unsigned long len
, unsigned long prot
,
956 unsigned long flags
, unsigned long pgoff
)
958 struct mm_struct
* mm
= current
->mm
;
962 unsigned long reqprot
= prot
;
965 * Does the application expect PROT_READ to imply PROT_EXEC?
967 * (the exception is when the underlying filesystem is noexec
968 * mounted, in which case we dont add PROT_EXEC.)
970 if ((prot
& PROT_READ
) && (current
->personality
& READ_IMPLIES_EXEC
))
971 if (!(file
&& (file
->f_path
.mnt
->mnt_flags
& MNT_NOEXEC
)))
977 if (!(flags
& MAP_FIXED
))
978 addr
= round_hint_to_min(addr
);
980 /* Careful about overflows.. */
981 len
= PAGE_ALIGN(len
);
985 /* offset overflow? */
986 if ((pgoff
+ (len
>> PAGE_SHIFT
)) < pgoff
)
989 /* Too many mappings? */
990 if (mm
->map_count
> sysctl_max_map_count
)
993 /* Obtain the address to map to. we verify (or select) it and ensure
994 * that it represents a valid section of the address space.
996 addr
= get_unmapped_area(file
, addr
, len
, pgoff
, flags
);
997 if (addr
& ~PAGE_MASK
)
1000 /* Do simple checking here so the lower-level routines won't have
1001 * to. we assume access permissions have been handled by the open
1002 * of the memory object, so we don't do any here.
1004 vm_flags
= calc_vm_prot_bits(prot
) | calc_vm_flag_bits(flags
) |
1005 mm
->def_flags
| VM_MAYREAD
| VM_MAYWRITE
| VM_MAYEXEC
;
1007 if (flags
& MAP_LOCKED
)
1008 if (!can_do_mlock())
1011 /* mlock MCL_FUTURE? */
1012 if (vm_flags
& VM_LOCKED
) {
1013 unsigned long locked
, lock_limit
;
1014 locked
= len
>> PAGE_SHIFT
;
1015 locked
+= mm
->locked_vm
;
1016 lock_limit
= rlimit(RLIMIT_MEMLOCK
);
1017 lock_limit
>>= PAGE_SHIFT
;
1018 if (locked
> lock_limit
&& !capable(CAP_IPC_LOCK
))
1022 inode
= file
? file
->f_path
.dentry
->d_inode
: NULL
;
1025 switch (flags
& MAP_TYPE
) {
1027 if ((prot
&PROT_WRITE
) && !(file
->f_mode
&FMODE_WRITE
))
1031 * Make sure we don't allow writing to an append-only
1034 if (IS_APPEND(inode
) && (file
->f_mode
& FMODE_WRITE
))
1038 * Make sure there are no mandatory locks on the file.
1040 if (locks_verify_locked(inode
))
1043 vm_flags
|= VM_SHARED
| VM_MAYSHARE
;
1044 if (!(file
->f_mode
& FMODE_WRITE
))
1045 vm_flags
&= ~(VM_MAYWRITE
| VM_SHARED
);
1049 if (!(file
->f_mode
& FMODE_READ
))
1051 if (file
->f_path
.mnt
->mnt_flags
& MNT_NOEXEC
) {
1052 if (vm_flags
& VM_EXEC
)
1054 vm_flags
&= ~VM_MAYEXEC
;
1057 if (!file
->f_op
|| !file
->f_op
->mmap
)
1065 switch (flags
& MAP_TYPE
) {
1071 vm_flags
|= VM_SHARED
| VM_MAYSHARE
;
1075 * Set pgoff according to addr for anon_vma.
1077 pgoff
= addr
>> PAGE_SHIFT
;
1084 error
= security_file_mmap(file
, reqprot
, prot
, flags
, addr
, 0);
1088 return mmap_region(file
, addr
, len
, flags
, vm_flags
, pgoff
);
1090 EXPORT_SYMBOL(do_mmap_pgoff
);
1092 SYSCALL_DEFINE6(mmap_pgoff
, unsigned long, addr
, unsigned long, len
,
1093 unsigned long, prot
, unsigned long, flags
,
1094 unsigned long, fd
, unsigned long, pgoff
)
1096 struct file
*file
= NULL
;
1097 unsigned long retval
= -EBADF
;
1099 if (!(flags
& MAP_ANONYMOUS
)) {
1100 audit_mmap_fd(fd
, flags
);
1101 if (unlikely(flags
& MAP_HUGETLB
))
1106 } else if (flags
& MAP_HUGETLB
) {
1107 struct user_struct
*user
= NULL
;
1109 * VM_NORESERVE is used because the reservations will be
1110 * taken when vm_ops->mmap() is called
1111 * A dummy user value is used because we are not locking
1112 * memory so no accounting is necessary
1114 file
= hugetlb_file_setup(HUGETLB_ANON_FILE
, addr
, len
,
1115 VM_NORESERVE
, &user
,
1116 HUGETLB_ANONHUGE_INODE
);
1118 return PTR_ERR(file
);
1121 flags
&= ~(MAP_EXECUTABLE
| MAP_DENYWRITE
);
1123 down_write(¤t
->mm
->mmap_sem
);
1124 retval
= do_mmap_pgoff(file
, addr
, len
, prot
, flags
, pgoff
);
1125 up_write(¤t
->mm
->mmap_sem
);
1133 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1134 struct mmap_arg_struct
{
1138 unsigned long flags
;
1140 unsigned long offset
;
1143 SYSCALL_DEFINE1(old_mmap
, struct mmap_arg_struct __user
*, arg
)
1145 struct mmap_arg_struct a
;
1147 if (copy_from_user(&a
, arg
, sizeof(a
)))
1149 if (a
.offset
& ~PAGE_MASK
)
1152 return sys_mmap_pgoff(a
.addr
, a
.len
, a
.prot
, a
.flags
, a
.fd
,
1153 a
.offset
>> PAGE_SHIFT
);
1155 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1158 * Some shared mappigns will want the pages marked read-only
1159 * to track write events. If so, we'll downgrade vm_page_prot
1160 * to the private version (using protection_map[] without the
1163 int vma_wants_writenotify(struct vm_area_struct
*vma
)
1165 vm_flags_t vm_flags
= vma
->vm_flags
;
1167 /* If it was private or non-writable, the write bit is already clear */
1168 if ((vm_flags
& (VM_WRITE
|VM_SHARED
)) != ((VM_WRITE
|VM_SHARED
)))
1171 /* The backer wishes to know when pages are first written to? */
1172 if (vma
->vm_ops
&& vma
->vm_ops
->page_mkwrite
)
1175 /* The open routine did something to the protections already? */
1176 if (pgprot_val(vma
->vm_page_prot
) !=
1177 pgprot_val(vm_get_page_prot(vm_flags
)))
1180 /* Specialty mapping? */
1181 if (vm_flags
& (VM_PFNMAP
|VM_INSERTPAGE
))
1184 /* Can the mapping track the dirty pages? */
1185 return vma
->vm_file
&& vma
->vm_file
->f_mapping
&&
1186 mapping_cap_account_dirty(vma
->vm_file
->f_mapping
);
1190 * We account for memory if it's a private writeable mapping,
1191 * not hugepages and VM_NORESERVE wasn't set.
1193 static inline int accountable_mapping(struct file
*file
, vm_flags_t vm_flags
)
1196 * hugetlb has its own accounting separate from the core VM
1197 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1199 if (file
&& is_file_hugepages(file
))
1202 return (vm_flags
& (VM_NORESERVE
| VM_SHARED
| VM_WRITE
)) == VM_WRITE
;
1205 unsigned long mmap_region(struct file
*file
, unsigned long addr
,
1206 unsigned long len
, unsigned long flags
,
1207 vm_flags_t vm_flags
, unsigned long pgoff
)
1209 struct mm_struct
*mm
= current
->mm
;
1210 struct vm_area_struct
*vma
, *prev
;
1211 int correct_wcount
= 0;
1213 struct rb_node
**rb_link
, *rb_parent
;
1214 unsigned long charged
= 0;
1215 struct inode
*inode
= file
? file
->f_path
.dentry
->d_inode
: NULL
;
1217 /* Clear old maps */
1220 vma
= find_vma_prepare(mm
, addr
, &prev
, &rb_link
, &rb_parent
);
1221 if (vma
&& vma
->vm_start
< addr
+ len
) {
1222 if (do_munmap(mm
, addr
, len
))
1227 /* Check against address space limit. */
1228 if (!may_expand_vm(mm
, len
>> PAGE_SHIFT
))
1232 * Set 'VM_NORESERVE' if we should not account for the
1233 * memory use of this mapping.
1235 if ((flags
& MAP_NORESERVE
)) {
1236 /* We honor MAP_NORESERVE if allowed to overcommit */
1237 if (sysctl_overcommit_memory
!= OVERCOMMIT_NEVER
)
1238 vm_flags
|= VM_NORESERVE
;
1240 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1241 if (file
&& is_file_hugepages(file
))
1242 vm_flags
|= VM_NORESERVE
;
1246 * Private writable mapping: check memory availability
1248 if (accountable_mapping(file
, vm_flags
)) {
1249 charged
= len
>> PAGE_SHIFT
;
1250 if (security_vm_enough_memory_mm(mm
, charged
))
1252 vm_flags
|= VM_ACCOUNT
;
1256 * Can we just expand an old mapping?
1258 vma
= vma_merge(mm
, prev
, addr
, addr
+ len
, vm_flags
, NULL
, file
, pgoff
, NULL
);
1263 * Determine the object being mapped and call the appropriate
1264 * specific mapper. the address has already been validated, but
1265 * not unmapped, but the maps are removed from the list.
1267 vma
= kmem_cache_zalloc(vm_area_cachep
, GFP_KERNEL
);
1274 vma
->vm_start
= addr
;
1275 vma
->vm_end
= addr
+ len
;
1276 vma
->vm_flags
= vm_flags
;
1277 vma
->vm_page_prot
= vm_get_page_prot(vm_flags
);
1278 vma
->vm_pgoff
= pgoff
;
1279 INIT_LIST_HEAD(&vma
->anon_vma_chain
);
1281 error
= -EINVAL
; /* when rejecting VM_GROWSDOWN|VM_GROWSUP */
1284 if (vm_flags
& (VM_GROWSDOWN
|VM_GROWSUP
))
1286 if (vm_flags
& VM_DENYWRITE
) {
1287 error
= deny_write_access(file
);
1292 vma
->vm_file
= file
;
1294 error
= file
->f_op
->mmap(file
, vma
);
1296 goto unmap_and_free_vma
;
1297 if (vm_flags
& VM_EXECUTABLE
)
1298 added_exe_file_vma(mm
);
1300 /* Can addr have changed??
1302 * Answer: Yes, several device drivers can do it in their
1303 * f_op->mmap method. -DaveM
1305 addr
= vma
->vm_start
;
1306 pgoff
= vma
->vm_pgoff
;
1307 vm_flags
= vma
->vm_flags
;
1308 } else if (vm_flags
& VM_SHARED
) {
1309 if (unlikely(vm_flags
& (VM_GROWSDOWN
|VM_GROWSUP
)))
1311 error
= shmem_zero_setup(vma
);
1316 if (vma_wants_writenotify(vma
)) {
1317 pgprot_t pprot
= vma
->vm_page_prot
;
1319 /* Can vma->vm_page_prot have changed??
1321 * Answer: Yes, drivers may have changed it in their
1322 * f_op->mmap method.
1324 * Ensures that vmas marked as uncached stay that way.
1326 vma
->vm_page_prot
= vm_get_page_prot(vm_flags
& ~VM_SHARED
);
1327 if (pgprot_val(pprot
) == pgprot_val(pgprot_noncached(pprot
)))
1328 vma
->vm_page_prot
= pgprot_noncached(vma
->vm_page_prot
);
1331 vma_link(mm
, vma
, prev
, rb_link
, rb_parent
);
1332 file
= vma
->vm_file
;
1334 /* Once vma denies write, undo our temporary denial count */
1336 atomic_inc(&inode
->i_writecount
);
1338 perf_event_mmap(vma
);
1340 mm
->total_vm
+= len
>> PAGE_SHIFT
;
1341 vm_stat_account(mm
, vm_flags
, file
, len
>> PAGE_SHIFT
);
1342 if (vm_flags
& VM_LOCKED
) {
1343 if (!mlock_vma_pages_range(vma
, addr
, addr
+ len
))
1344 mm
->locked_vm
+= (len
>> PAGE_SHIFT
);
1345 } else if ((flags
& MAP_POPULATE
) && !(flags
& MAP_NONBLOCK
))
1346 make_pages_present(addr
, addr
+ len
);
1351 atomic_inc(&inode
->i_writecount
);
1352 vma
->vm_file
= NULL
;
1355 /* Undo any partial mapping done by a device driver. */
1356 unmap_region(mm
, vma
, prev
, vma
->vm_start
, vma
->vm_end
);
1359 kmem_cache_free(vm_area_cachep
, vma
);
1362 vm_unacct_memory(charged
);
1366 /* Get an address range which is currently unmapped.
1367 * For shmat() with addr=0.
1369 * Ugly calling convention alert:
1370 * Return value with the low bits set means error value,
1372 * if (ret & ~PAGE_MASK)
1375 * This function "knows" that -ENOMEM has the bits set.
1377 #ifndef HAVE_ARCH_UNMAPPED_AREA
1379 arch_get_unmapped_area(struct file
*filp
, unsigned long addr
,
1380 unsigned long len
, unsigned long pgoff
, unsigned long flags
)
1382 struct mm_struct
*mm
= current
->mm
;
1383 struct vm_area_struct
*vma
;
1384 unsigned long start_addr
;
1386 if (len
> TASK_SIZE
)
1389 if (flags
& MAP_FIXED
)
1393 addr
= PAGE_ALIGN(addr
);
1394 vma
= find_vma(mm
, addr
);
1395 if (TASK_SIZE
- len
>= addr
&&
1396 (!vma
|| addr
+ len
<= vma
->vm_start
))
1399 if (len
> mm
->cached_hole_size
) {
1400 start_addr
= addr
= mm
->free_area_cache
;
1402 start_addr
= addr
= TASK_UNMAPPED_BASE
;
1403 mm
->cached_hole_size
= 0;
1407 for (vma
= find_vma(mm
, addr
); ; vma
= vma
->vm_next
) {
1408 /* At this point: (!vma || addr < vma->vm_end). */
1409 if (TASK_SIZE
- len
< addr
) {
1411 * Start a new search - just in case we missed
1414 if (start_addr
!= TASK_UNMAPPED_BASE
) {
1415 addr
= TASK_UNMAPPED_BASE
;
1417 mm
->cached_hole_size
= 0;
1422 if (!vma
|| addr
+ len
<= vma
->vm_start
) {
1424 * Remember the place where we stopped the search:
1426 mm
->free_area_cache
= addr
+ len
;
1429 if (addr
+ mm
->cached_hole_size
< vma
->vm_start
)
1430 mm
->cached_hole_size
= vma
->vm_start
- addr
;
1436 void arch_unmap_area(struct mm_struct
*mm
, unsigned long addr
)
1439 * Is this a new hole at the lowest possible address?
1441 if (addr
>= TASK_UNMAPPED_BASE
&& addr
< mm
->free_area_cache
)
1442 mm
->free_area_cache
= addr
;
1446 * This mmap-allocator allocates new areas top-down from below the
1447 * stack's low limit (the base):
1449 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1451 arch_get_unmapped_area_topdown(struct file
*filp
, const unsigned long addr0
,
1452 const unsigned long len
, const unsigned long pgoff
,
1453 const unsigned long flags
)
1455 struct vm_area_struct
*vma
;
1456 struct mm_struct
*mm
= current
->mm
;
1457 unsigned long addr
= addr0
, start_addr
;
1459 /* requested length too big for entire address space */
1460 if (len
> TASK_SIZE
)
1463 if (flags
& MAP_FIXED
)
1466 /* requesting a specific address */
1468 addr
= PAGE_ALIGN(addr
);
1469 vma
= find_vma(mm
, addr
);
1470 if (TASK_SIZE
- len
>= addr
&&
1471 (!vma
|| addr
+ len
<= vma
->vm_start
))
1475 /* check if free_area_cache is useful for us */
1476 if (len
<= mm
->cached_hole_size
) {
1477 mm
->cached_hole_size
= 0;
1478 mm
->free_area_cache
= mm
->mmap_base
;
1482 /* either no address requested or can't fit in requested address hole */
1483 start_addr
= addr
= mm
->free_area_cache
;
1491 * Lookup failure means no vma is above this address,
1492 * else if new region fits below vma->vm_start,
1493 * return with success:
1495 vma
= find_vma(mm
, addr
);
1496 if (!vma
|| addr
+len
<= vma
->vm_start
)
1497 /* remember the address as a hint for next time */
1498 return (mm
->free_area_cache
= addr
);
1500 /* remember the largest hole we saw so far */
1501 if (addr
+ mm
->cached_hole_size
< vma
->vm_start
)
1502 mm
->cached_hole_size
= vma
->vm_start
- addr
;
1504 /* try just below the current vma->vm_start */
1505 addr
= vma
->vm_start
-len
;
1506 } while (len
< vma
->vm_start
);
1510 * if hint left us with no space for the requested
1511 * mapping then try again:
1513 * Note: this is different with the case of bottomup
1514 * which does the fully line-search, but we use find_vma
1515 * here that causes some holes skipped.
1517 if (start_addr
!= mm
->mmap_base
) {
1518 mm
->free_area_cache
= mm
->mmap_base
;
1519 mm
->cached_hole_size
= 0;
1524 * A failed mmap() very likely causes application failure,
1525 * so fall back to the bottom-up function here. This scenario
1526 * can happen with large stack limits and large mmap()
1529 mm
->cached_hole_size
= ~0UL;
1530 mm
->free_area_cache
= TASK_UNMAPPED_BASE
;
1531 addr
= arch_get_unmapped_area(filp
, addr0
, len
, pgoff
, flags
);
1533 * Restore the topdown base:
1535 mm
->free_area_cache
= mm
->mmap_base
;
1536 mm
->cached_hole_size
= ~0UL;
1542 void arch_unmap_area_topdown(struct mm_struct
*mm
, unsigned long addr
)
1545 * Is this a new hole at the highest possible address?
1547 if (addr
> mm
->free_area_cache
)
1548 mm
->free_area_cache
= addr
;
1550 /* dont allow allocations above current base */
1551 if (mm
->free_area_cache
> mm
->mmap_base
)
1552 mm
->free_area_cache
= mm
->mmap_base
;
1556 get_unmapped_area(struct file
*file
, unsigned long addr
, unsigned long len
,
1557 unsigned long pgoff
, unsigned long flags
)
1559 unsigned long (*get_area
)(struct file
*, unsigned long,
1560 unsigned long, unsigned long, unsigned long);
1562 unsigned long error
= arch_mmap_check(addr
, len
, flags
);
1566 /* Careful about overflows.. */
1567 if (len
> TASK_SIZE
)
1570 get_area
= current
->mm
->get_unmapped_area
;
1571 if (file
&& file
->f_op
&& file
->f_op
->get_unmapped_area
)
1572 get_area
= file
->f_op
->get_unmapped_area
;
1573 addr
= get_area(file
, addr
, len
, pgoff
, flags
);
1574 if (IS_ERR_VALUE(addr
))
1577 if (addr
> TASK_SIZE
- len
)
1579 if (addr
& ~PAGE_MASK
)
1582 return arch_rebalance_pgtables(addr
, len
);
1585 EXPORT_SYMBOL(get_unmapped_area
);
1587 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
1588 struct vm_area_struct
*find_vma(struct mm_struct
*mm
, unsigned long addr
)
1590 struct vm_area_struct
*vma
= NULL
;
1593 /* Check the cache first. */
1594 /* (Cache hit rate is typically around 35%.) */
1595 vma
= mm
->mmap_cache
;
1596 if (!(vma
&& vma
->vm_end
> addr
&& vma
->vm_start
<= addr
)) {
1597 struct rb_node
* rb_node
;
1599 rb_node
= mm
->mm_rb
.rb_node
;
1603 struct vm_area_struct
* vma_tmp
;
1605 vma_tmp
= rb_entry(rb_node
,
1606 struct vm_area_struct
, vm_rb
);
1608 if (vma_tmp
->vm_end
> addr
) {
1610 if (vma_tmp
->vm_start
<= addr
)
1612 rb_node
= rb_node
->rb_left
;
1614 rb_node
= rb_node
->rb_right
;
1617 mm
->mmap_cache
= vma
;
1623 EXPORT_SYMBOL(find_vma
);
1626 * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
1628 struct vm_area_struct
*
1629 find_vma_prev(struct mm_struct
*mm
, unsigned long addr
,
1630 struct vm_area_struct
**pprev
)
1632 struct vm_area_struct
*vma
;
1634 vma
= find_vma(mm
, addr
);
1636 *pprev
= vma
->vm_prev
;
1638 struct rb_node
*rb_node
= mm
->mm_rb
.rb_node
;
1641 *pprev
= rb_entry(rb_node
, struct vm_area_struct
, vm_rb
);
1642 rb_node
= rb_node
->rb_right
;
1649 * Verify that the stack growth is acceptable and
1650 * update accounting. This is shared with both the
1651 * grow-up and grow-down cases.
1653 static int acct_stack_growth(struct vm_area_struct
*vma
, unsigned long size
, unsigned long grow
)
1655 struct mm_struct
*mm
= vma
->vm_mm
;
1656 struct rlimit
*rlim
= current
->signal
->rlim
;
1657 unsigned long new_start
;
1659 /* address space limit tests */
1660 if (!may_expand_vm(mm
, grow
))
1663 /* Stack limit test */
1664 if (size
> ACCESS_ONCE(rlim
[RLIMIT_STACK
].rlim_cur
))
1667 /* mlock limit tests */
1668 if (vma
->vm_flags
& VM_LOCKED
) {
1669 unsigned long locked
;
1670 unsigned long limit
;
1671 locked
= mm
->locked_vm
+ grow
;
1672 limit
= ACCESS_ONCE(rlim
[RLIMIT_MEMLOCK
].rlim_cur
);
1673 limit
>>= PAGE_SHIFT
;
1674 if (locked
> limit
&& !capable(CAP_IPC_LOCK
))
1678 /* Check to ensure the stack will not grow into a hugetlb-only region */
1679 new_start
= (vma
->vm_flags
& VM_GROWSUP
) ? vma
->vm_start
:
1681 if (is_hugepage_only_range(vma
->vm_mm
, new_start
, size
))
1685 * Overcommit.. This must be the final test, as it will
1686 * update security statistics.
1688 if (security_vm_enough_memory_mm(mm
, grow
))
1691 /* Ok, everything looks good - let it rip */
1692 mm
->total_vm
+= grow
;
1693 if (vma
->vm_flags
& VM_LOCKED
)
1694 mm
->locked_vm
+= grow
;
1695 vm_stat_account(mm
, vma
->vm_flags
, vma
->vm_file
, grow
);
1699 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
1701 * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
1702 * vma is the last one with address > vma->vm_end. Have to extend vma.
1704 int expand_upwards(struct vm_area_struct
*vma
, unsigned long address
)
1708 if (!(vma
->vm_flags
& VM_GROWSUP
))
1712 * We must make sure the anon_vma is allocated
1713 * so that the anon_vma locking is not a noop.
1715 if (unlikely(anon_vma_prepare(vma
)))
1717 vma_lock_anon_vma(vma
);
1720 * vma->vm_start/vm_end cannot change under us because the caller
1721 * is required to hold the mmap_sem in read mode. We need the
1722 * anon_vma lock to serialize against concurrent expand_stacks.
1723 * Also guard against wrapping around to address 0.
1725 if (address
< PAGE_ALIGN(address
+4))
1726 address
= PAGE_ALIGN(address
+4);
1728 vma_unlock_anon_vma(vma
);
1733 /* Somebody else might have raced and expanded it already */
1734 if (address
> vma
->vm_end
) {
1735 unsigned long size
, grow
;
1737 size
= address
- vma
->vm_start
;
1738 grow
= (address
- vma
->vm_end
) >> PAGE_SHIFT
;
1741 if (vma
->vm_pgoff
+ (size
>> PAGE_SHIFT
) >= vma
->vm_pgoff
) {
1742 error
= acct_stack_growth(vma
, size
, grow
);
1744 vma
->vm_end
= address
;
1745 perf_event_mmap(vma
);
1749 vma_unlock_anon_vma(vma
);
1750 khugepaged_enter_vma_merge(vma
);
1753 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
1756 * vma is the first one with address < vma->vm_start. Have to extend vma.
1758 int expand_downwards(struct vm_area_struct
*vma
,
1759 unsigned long address
)
1764 * We must make sure the anon_vma is allocated
1765 * so that the anon_vma locking is not a noop.
1767 if (unlikely(anon_vma_prepare(vma
)))
1770 address
&= PAGE_MASK
;
1771 error
= security_file_mmap(NULL
, 0, 0, 0, address
, 1);
1775 vma_lock_anon_vma(vma
);
1778 * vma->vm_start/vm_end cannot change under us because the caller
1779 * is required to hold the mmap_sem in read mode. We need the
1780 * anon_vma lock to serialize against concurrent expand_stacks.
1783 /* Somebody else might have raced and expanded it already */
1784 if (address
< vma
->vm_start
) {
1785 unsigned long size
, grow
;
1787 size
= vma
->vm_end
- address
;
1788 grow
= (vma
->vm_start
- address
) >> PAGE_SHIFT
;
1791 if (grow
<= vma
->vm_pgoff
) {
1792 error
= acct_stack_growth(vma
, size
, grow
);
1794 vma
->vm_start
= address
;
1795 vma
->vm_pgoff
-= grow
;
1796 perf_event_mmap(vma
);
1800 vma_unlock_anon_vma(vma
);
1801 khugepaged_enter_vma_merge(vma
);
1805 #ifdef CONFIG_STACK_GROWSUP
1806 int expand_stack(struct vm_area_struct
*vma
, unsigned long address
)
1808 return expand_upwards(vma
, address
);
1811 struct vm_area_struct
*
1812 find_extend_vma(struct mm_struct
*mm
, unsigned long addr
)
1814 struct vm_area_struct
*vma
, *prev
;
1817 vma
= find_vma_prev(mm
, addr
, &prev
);
1818 if (vma
&& (vma
->vm_start
<= addr
))
1820 if (!prev
|| expand_stack(prev
, addr
))
1822 if (prev
->vm_flags
& VM_LOCKED
) {
1823 mlock_vma_pages_range(prev
, addr
, prev
->vm_end
);
1828 int expand_stack(struct vm_area_struct
*vma
, unsigned long address
)
1830 return expand_downwards(vma
, address
);
1833 struct vm_area_struct
*
1834 find_extend_vma(struct mm_struct
* mm
, unsigned long addr
)
1836 struct vm_area_struct
* vma
;
1837 unsigned long start
;
1840 vma
= find_vma(mm
,addr
);
1843 if (vma
->vm_start
<= addr
)
1845 if (!(vma
->vm_flags
& VM_GROWSDOWN
))
1847 start
= vma
->vm_start
;
1848 if (expand_stack(vma
, addr
))
1850 if (vma
->vm_flags
& VM_LOCKED
) {
1851 mlock_vma_pages_range(vma
, addr
, start
);
1858 * Ok - we have the memory areas we should free on the vma list,
1859 * so release them, and do the vma updates.
1861 * Called with the mm semaphore held.
1863 static void remove_vma_list(struct mm_struct
*mm
, struct vm_area_struct
*vma
)
1865 /* Update high watermark before we lower total_vm */
1866 update_hiwater_vm(mm
);
1868 long nrpages
= vma_pages(vma
);
1870 mm
->total_vm
-= nrpages
;
1871 vm_stat_account(mm
, vma
->vm_flags
, vma
->vm_file
, -nrpages
);
1872 vma
= remove_vma(vma
);
1878 * Get rid of page table information in the indicated region.
1880 * Called with the mm semaphore held.
1882 static void unmap_region(struct mm_struct
*mm
,
1883 struct vm_area_struct
*vma
, struct vm_area_struct
*prev
,
1884 unsigned long start
, unsigned long end
)
1886 struct vm_area_struct
*next
= prev
? prev
->vm_next
: mm
->mmap
;
1887 struct mmu_gather tlb
;
1888 unsigned long nr_accounted
= 0;
1891 tlb_gather_mmu(&tlb
, mm
, 0);
1892 update_hiwater_rss(mm
);
1893 unmap_vmas(&tlb
, vma
, start
, end
, &nr_accounted
, NULL
);
1894 vm_unacct_memory(nr_accounted
);
1895 free_pgtables(&tlb
, vma
, prev
? prev
->vm_end
: FIRST_USER_ADDRESS
,
1896 next
? next
->vm_start
: 0);
1897 tlb_finish_mmu(&tlb
, start
, end
);
1901 * Create a list of vma's touched by the unmap, removing them from the mm's
1902 * vma list as we go..
1905 detach_vmas_to_be_unmapped(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
1906 struct vm_area_struct
*prev
, unsigned long end
)
1908 struct vm_area_struct
**insertion_point
;
1909 struct vm_area_struct
*tail_vma
= NULL
;
1912 insertion_point
= (prev
? &prev
->vm_next
: &mm
->mmap
);
1913 vma
->vm_prev
= NULL
;
1915 rb_erase(&vma
->vm_rb
, &mm
->mm_rb
);
1919 } while (vma
&& vma
->vm_start
< end
);
1920 *insertion_point
= vma
;
1922 vma
->vm_prev
= prev
;
1923 tail_vma
->vm_next
= NULL
;
1924 if (mm
->unmap_area
== arch_unmap_area
)
1925 addr
= prev
? prev
->vm_end
: mm
->mmap_base
;
1927 addr
= vma
? vma
->vm_start
: mm
->mmap_base
;
1928 mm
->unmap_area(mm
, addr
);
1929 mm
->mmap_cache
= NULL
; /* Kill the cache. */
1933 * __split_vma() bypasses sysctl_max_map_count checking. We use this on the
1934 * munmap path where it doesn't make sense to fail.
1936 static int __split_vma(struct mm_struct
* mm
, struct vm_area_struct
* vma
,
1937 unsigned long addr
, int new_below
)
1939 struct mempolicy
*pol
;
1940 struct vm_area_struct
*new;
1943 if (is_vm_hugetlb_page(vma
) && (addr
&
1944 ~(huge_page_mask(hstate_vma(vma
)))))
1947 new = kmem_cache_alloc(vm_area_cachep
, GFP_KERNEL
);
1951 /* most fields are the same, copy all, and then fixup */
1954 INIT_LIST_HEAD(&new->anon_vma_chain
);
1959 new->vm_start
= addr
;
1960 new->vm_pgoff
+= ((addr
- vma
->vm_start
) >> PAGE_SHIFT
);
1963 pol
= mpol_dup(vma_policy(vma
));
1968 vma_set_policy(new, pol
);
1970 if (anon_vma_clone(new, vma
))
1974 get_file(new->vm_file
);
1975 if (vma
->vm_flags
& VM_EXECUTABLE
)
1976 added_exe_file_vma(mm
);
1979 if (new->vm_ops
&& new->vm_ops
->open
)
1980 new->vm_ops
->open(new);
1983 err
= vma_adjust(vma
, addr
, vma
->vm_end
, vma
->vm_pgoff
+
1984 ((addr
- new->vm_start
) >> PAGE_SHIFT
), new);
1986 err
= vma_adjust(vma
, vma
->vm_start
, addr
, vma
->vm_pgoff
, new);
1992 /* Clean everything up if vma_adjust failed. */
1993 if (new->vm_ops
&& new->vm_ops
->close
)
1994 new->vm_ops
->close(new);
1996 if (vma
->vm_flags
& VM_EXECUTABLE
)
1997 removed_exe_file_vma(mm
);
2000 unlink_anon_vmas(new);
2004 kmem_cache_free(vm_area_cachep
, new);
2010 * Split a vma into two pieces at address 'addr', a new vma is allocated
2011 * either for the first part or the tail.
2013 int split_vma(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2014 unsigned long addr
, int new_below
)
2016 if (mm
->map_count
>= sysctl_max_map_count
)
2019 return __split_vma(mm
, vma
, addr
, new_below
);
2022 /* Munmap is split into 2 main parts -- this part which finds
2023 * what needs doing, and the areas themselves, which do the
2024 * work. This now handles partial unmappings.
2025 * Jeremy Fitzhardinge <jeremy@goop.org>
2027 int do_munmap(struct mm_struct
*mm
, unsigned long start
, size_t len
)
2030 struct vm_area_struct
*vma
, *prev
, *last
;
2032 if ((start
& ~PAGE_MASK
) || start
> TASK_SIZE
|| len
> TASK_SIZE
-start
)
2035 if ((len
= PAGE_ALIGN(len
)) == 0)
2038 /* Find the first overlapping VMA */
2039 vma
= find_vma(mm
, start
);
2042 prev
= vma
->vm_prev
;
2043 /* we have start < vma->vm_end */
2045 /* if it doesn't overlap, we have nothing.. */
2047 if (vma
->vm_start
>= end
)
2051 * If we need to split any vma, do it now to save pain later.
2053 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2054 * unmapped vm_area_struct will remain in use: so lower split_vma
2055 * places tmp vma above, and higher split_vma places tmp vma below.
2057 if (start
> vma
->vm_start
) {
2061 * Make sure that map_count on return from munmap() will
2062 * not exceed its limit; but let map_count go just above
2063 * its limit temporarily, to help free resources as expected.
2065 if (end
< vma
->vm_end
&& mm
->map_count
>= sysctl_max_map_count
)
2068 error
= __split_vma(mm
, vma
, start
, 0);
2074 /* Does it split the last one? */
2075 last
= find_vma(mm
, end
);
2076 if (last
&& end
> last
->vm_start
) {
2077 int error
= __split_vma(mm
, last
, end
, 1);
2081 vma
= prev
? prev
->vm_next
: mm
->mmap
;
2084 * unlock any mlock()ed ranges before detaching vmas
2086 if (mm
->locked_vm
) {
2087 struct vm_area_struct
*tmp
= vma
;
2088 while (tmp
&& tmp
->vm_start
< end
) {
2089 if (tmp
->vm_flags
& VM_LOCKED
) {
2090 mm
->locked_vm
-= vma_pages(tmp
);
2091 munlock_vma_pages_all(tmp
);
2098 * Remove the vma's, and unmap the actual pages
2100 detach_vmas_to_be_unmapped(mm
, vma
, prev
, end
);
2101 unmap_region(mm
, vma
, prev
, start
, end
);
2103 /* Fix up all other VM information */
2104 remove_vma_list(mm
, vma
);
2109 EXPORT_SYMBOL(do_munmap
);
2111 SYSCALL_DEFINE2(munmap
, unsigned long, addr
, size_t, len
)
2114 struct mm_struct
*mm
= current
->mm
;
2116 profile_munmap(addr
);
2118 down_write(&mm
->mmap_sem
);
2119 ret
= do_munmap(mm
, addr
, len
);
2120 up_write(&mm
->mmap_sem
);
2124 static inline void verify_mm_writelocked(struct mm_struct
*mm
)
2126 #ifdef CONFIG_DEBUG_VM
2127 if (unlikely(down_read_trylock(&mm
->mmap_sem
))) {
2129 up_read(&mm
->mmap_sem
);
2135 * this is really a simplified "do_mmap". it only handles
2136 * anonymous maps. eventually we may be able to do some
2137 * brk-specific accounting here.
2139 unsigned long do_brk(unsigned long addr
, unsigned long len
)
2141 struct mm_struct
* mm
= current
->mm
;
2142 struct vm_area_struct
* vma
, * prev
;
2143 unsigned long flags
;
2144 struct rb_node
** rb_link
, * rb_parent
;
2145 pgoff_t pgoff
= addr
>> PAGE_SHIFT
;
2148 len
= PAGE_ALIGN(len
);
2152 error
= security_file_mmap(NULL
, 0, 0, 0, addr
, 1);
2156 flags
= VM_DATA_DEFAULT_FLAGS
| VM_ACCOUNT
| mm
->def_flags
;
2158 error
= get_unmapped_area(NULL
, addr
, len
, 0, MAP_FIXED
);
2159 if (error
& ~PAGE_MASK
)
2165 if (mm
->def_flags
& VM_LOCKED
) {
2166 unsigned long locked
, lock_limit
;
2167 locked
= len
>> PAGE_SHIFT
;
2168 locked
+= mm
->locked_vm
;
2169 lock_limit
= rlimit(RLIMIT_MEMLOCK
);
2170 lock_limit
>>= PAGE_SHIFT
;
2171 if (locked
> lock_limit
&& !capable(CAP_IPC_LOCK
))
2176 * mm->mmap_sem is required to protect against another thread
2177 * changing the mappings in case we sleep.
2179 verify_mm_writelocked(mm
);
2182 * Clear old maps. this also does some error checking for us
2185 vma
= find_vma_prepare(mm
, addr
, &prev
, &rb_link
, &rb_parent
);
2186 if (vma
&& vma
->vm_start
< addr
+ len
) {
2187 if (do_munmap(mm
, addr
, len
))
2192 /* Check against address space limits *after* clearing old maps... */
2193 if (!may_expand_vm(mm
, len
>> PAGE_SHIFT
))
2196 if (mm
->map_count
> sysctl_max_map_count
)
2199 if (security_vm_enough_memory_mm(mm
, len
>> PAGE_SHIFT
))
2202 /* Can we just expand an old private anonymous mapping? */
2203 vma
= vma_merge(mm
, prev
, addr
, addr
+ len
, flags
,
2204 NULL
, NULL
, pgoff
, NULL
);
2209 * create a vma struct for an anonymous mapping
2211 vma
= kmem_cache_zalloc(vm_area_cachep
, GFP_KERNEL
);
2213 vm_unacct_memory(len
>> PAGE_SHIFT
);
2217 INIT_LIST_HEAD(&vma
->anon_vma_chain
);
2219 vma
->vm_start
= addr
;
2220 vma
->vm_end
= addr
+ len
;
2221 vma
->vm_pgoff
= pgoff
;
2222 vma
->vm_flags
= flags
;
2223 vma
->vm_page_prot
= vm_get_page_prot(flags
);
2224 vma_link(mm
, vma
, prev
, rb_link
, rb_parent
);
2226 perf_event_mmap(vma
);
2227 mm
->total_vm
+= len
>> PAGE_SHIFT
;
2228 if (flags
& VM_LOCKED
) {
2229 if (!mlock_vma_pages_range(vma
, addr
, addr
+ len
))
2230 mm
->locked_vm
+= (len
>> PAGE_SHIFT
);
2235 EXPORT_SYMBOL(do_brk
);
2237 /* Release all mmaps. */
2238 void exit_mmap(struct mm_struct
*mm
)
2240 struct mmu_gather tlb
;
2241 struct vm_area_struct
*vma
;
2242 unsigned long nr_accounted
= 0;
2244 /* mm's last user has gone, and its about to be pulled down */
2245 mmu_notifier_release(mm
);
2247 if (mm
->locked_vm
) {
2250 if (vma
->vm_flags
& VM_LOCKED
)
2251 munlock_vma_pages_all(vma
);
2259 if (!vma
) /* Can happen if dup_mmap() received an OOM */
2264 tlb_gather_mmu(&tlb
, mm
, 1);
2265 /* update_hiwater_rss(mm) here? but nobody should be looking */
2266 /* Use -1 here to ensure all VMAs in the mm are unmapped */
2267 unmap_vmas(&tlb
, vma
, 0, -1, &nr_accounted
, NULL
);
2268 vm_unacct_memory(nr_accounted
);
2270 free_pgtables(&tlb
, vma
, FIRST_USER_ADDRESS
, 0);
2271 tlb_finish_mmu(&tlb
, 0, -1);
2274 * Walk the list again, actually closing and freeing it,
2275 * with preemption enabled, without holding any MM locks.
2278 vma
= remove_vma(vma
);
2280 BUG_ON(mm
->nr_ptes
> (FIRST_USER_ADDRESS
+PMD_SIZE
-1)>>PMD_SHIFT
);
2283 /* Insert vm structure into process list sorted by address
2284 * and into the inode's i_mmap tree. If vm_file is non-NULL
2285 * then i_mmap_mutex is taken here.
2287 int insert_vm_struct(struct mm_struct
* mm
, struct vm_area_struct
* vma
)
2289 struct vm_area_struct
* __vma
, * prev
;
2290 struct rb_node
** rb_link
, * rb_parent
;
2293 * The vm_pgoff of a purely anonymous vma should be irrelevant
2294 * until its first write fault, when page's anon_vma and index
2295 * are set. But now set the vm_pgoff it will almost certainly
2296 * end up with (unless mremap moves it elsewhere before that
2297 * first wfault), so /proc/pid/maps tells a consistent story.
2299 * By setting it to reflect the virtual start address of the
2300 * vma, merges and splits can happen in a seamless way, just
2301 * using the existing file pgoff checks and manipulations.
2302 * Similarly in do_mmap_pgoff and in do_brk.
2304 if (!vma
->vm_file
) {
2305 BUG_ON(vma
->anon_vma
);
2306 vma
->vm_pgoff
= vma
->vm_start
>> PAGE_SHIFT
;
2308 __vma
= find_vma_prepare(mm
,vma
->vm_start
,&prev
,&rb_link
,&rb_parent
);
2309 if (__vma
&& __vma
->vm_start
< vma
->vm_end
)
2311 if ((vma
->vm_flags
& VM_ACCOUNT
) &&
2312 security_vm_enough_memory_mm(mm
, vma_pages(vma
)))
2314 vma_link(mm
, vma
, prev
, rb_link
, rb_parent
);
2319 * Copy the vma structure to a new location in the same mm,
2320 * prior to moving page table entries, to effect an mremap move.
2322 struct vm_area_struct
*copy_vma(struct vm_area_struct
**vmap
,
2323 unsigned long addr
, unsigned long len
, pgoff_t pgoff
)
2325 struct vm_area_struct
*vma
= *vmap
;
2326 unsigned long vma_start
= vma
->vm_start
;
2327 struct mm_struct
*mm
= vma
->vm_mm
;
2328 struct vm_area_struct
*new_vma
, *prev
;
2329 struct rb_node
**rb_link
, *rb_parent
;
2330 struct mempolicy
*pol
;
2331 bool faulted_in_anon_vma
= true;
2334 * If anonymous vma has not yet been faulted, update new pgoff
2335 * to match new location, to increase its chance of merging.
2337 if (unlikely(!vma
->vm_file
&& !vma
->anon_vma
)) {
2338 pgoff
= addr
>> PAGE_SHIFT
;
2339 faulted_in_anon_vma
= false;
2342 find_vma_prepare(mm
, addr
, &prev
, &rb_link
, &rb_parent
);
2343 new_vma
= vma_merge(mm
, prev
, addr
, addr
+ len
, vma
->vm_flags
,
2344 vma
->anon_vma
, vma
->vm_file
, pgoff
, vma_policy(vma
));
2347 * Source vma may have been merged into new_vma
2349 if (unlikely(vma_start
>= new_vma
->vm_start
&&
2350 vma_start
< new_vma
->vm_end
)) {
2352 * The only way we can get a vma_merge with
2353 * self during an mremap is if the vma hasn't
2354 * been faulted in yet and we were allowed to
2355 * reset the dst vma->vm_pgoff to the
2356 * destination address of the mremap to allow
2357 * the merge to happen. mremap must change the
2358 * vm_pgoff linearity between src and dst vmas
2359 * (in turn preventing a vma_merge) to be
2360 * safe. It is only safe to keep the vm_pgoff
2361 * linear if there are no pages mapped yet.
2363 VM_BUG_ON(faulted_in_anon_vma
);
2366 anon_vma_moveto_tail(new_vma
);
2368 new_vma
= kmem_cache_alloc(vm_area_cachep
, GFP_KERNEL
);
2371 pol
= mpol_dup(vma_policy(vma
));
2374 INIT_LIST_HEAD(&new_vma
->anon_vma_chain
);
2375 if (anon_vma_clone(new_vma
, vma
))
2376 goto out_free_mempol
;
2377 vma_set_policy(new_vma
, pol
);
2378 new_vma
->vm_start
= addr
;
2379 new_vma
->vm_end
= addr
+ len
;
2380 new_vma
->vm_pgoff
= pgoff
;
2381 if (new_vma
->vm_file
) {
2382 get_file(new_vma
->vm_file
);
2383 if (vma
->vm_flags
& VM_EXECUTABLE
)
2384 added_exe_file_vma(mm
);
2386 if (new_vma
->vm_ops
&& new_vma
->vm_ops
->open
)
2387 new_vma
->vm_ops
->open(new_vma
);
2388 vma_link(mm
, new_vma
, prev
, rb_link
, rb_parent
);
2396 kmem_cache_free(vm_area_cachep
, new_vma
);
2401 * Return true if the calling process may expand its vm space by the passed
2404 int may_expand_vm(struct mm_struct
*mm
, unsigned long npages
)
2406 unsigned long cur
= mm
->total_vm
; /* pages */
2409 lim
= rlimit(RLIMIT_AS
) >> PAGE_SHIFT
;
2411 if (cur
+ npages
> lim
)
2417 static int special_mapping_fault(struct vm_area_struct
*vma
,
2418 struct vm_fault
*vmf
)
2421 struct page
**pages
;
2424 * special mappings have no vm_file, and in that case, the mm
2425 * uses vm_pgoff internally. So we have to subtract it from here.
2426 * We are allowed to do this because we are the mm; do not copy
2427 * this code into drivers!
2429 pgoff
= vmf
->pgoff
- vma
->vm_pgoff
;
2431 for (pages
= vma
->vm_private_data
; pgoff
&& *pages
; ++pages
)
2435 struct page
*page
= *pages
;
2441 return VM_FAULT_SIGBUS
;
2445 * Having a close hook prevents vma merging regardless of flags.
2447 static void special_mapping_close(struct vm_area_struct
*vma
)
2451 static const struct vm_operations_struct special_mapping_vmops
= {
2452 .close
= special_mapping_close
,
2453 .fault
= special_mapping_fault
,
2457 * Called with mm->mmap_sem held for writing.
2458 * Insert a new vma covering the given region, with the given flags.
2459 * Its pages are supplied by the given array of struct page *.
2460 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
2461 * The region past the last page supplied will always produce SIGBUS.
2462 * The array pointer and the pages it points to are assumed to stay alive
2463 * for as long as this mapping might exist.
2465 int install_special_mapping(struct mm_struct
*mm
,
2466 unsigned long addr
, unsigned long len
,
2467 unsigned long vm_flags
, struct page
**pages
)
2470 struct vm_area_struct
*vma
;
2472 vma
= kmem_cache_zalloc(vm_area_cachep
, GFP_KERNEL
);
2473 if (unlikely(vma
== NULL
))
2476 INIT_LIST_HEAD(&vma
->anon_vma_chain
);
2478 vma
->vm_start
= addr
;
2479 vma
->vm_end
= addr
+ len
;
2481 vma
->vm_flags
= vm_flags
| mm
->def_flags
| VM_DONTEXPAND
;
2482 vma
->vm_page_prot
= vm_get_page_prot(vma
->vm_flags
);
2484 vma
->vm_ops
= &special_mapping_vmops
;
2485 vma
->vm_private_data
= pages
;
2487 ret
= security_file_mmap(NULL
, 0, 0, 0, vma
->vm_start
, 1);
2491 ret
= insert_vm_struct(mm
, vma
);
2495 mm
->total_vm
+= len
>> PAGE_SHIFT
;
2497 perf_event_mmap(vma
);
2502 kmem_cache_free(vm_area_cachep
, vma
);
2506 static DEFINE_MUTEX(mm_all_locks_mutex
);
2508 static void vm_lock_anon_vma(struct mm_struct
*mm
, struct anon_vma
*anon_vma
)
2510 if (!test_bit(0, (unsigned long *) &anon_vma
->root
->head
.next
)) {
2512 * The LSB of head.next can't change from under us
2513 * because we hold the mm_all_locks_mutex.
2515 mutex_lock_nest_lock(&anon_vma
->root
->mutex
, &mm
->mmap_sem
);
2517 * We can safely modify head.next after taking the
2518 * anon_vma->root->mutex. If some other vma in this mm shares
2519 * the same anon_vma we won't take it again.
2521 * No need of atomic instructions here, head.next
2522 * can't change from under us thanks to the
2523 * anon_vma->root->mutex.
2525 if (__test_and_set_bit(0, (unsigned long *)
2526 &anon_vma
->root
->head
.next
))
2531 static void vm_lock_mapping(struct mm_struct
*mm
, struct address_space
*mapping
)
2533 if (!test_bit(AS_MM_ALL_LOCKS
, &mapping
->flags
)) {
2535 * AS_MM_ALL_LOCKS can't change from under us because
2536 * we hold the mm_all_locks_mutex.
2538 * Operations on ->flags have to be atomic because
2539 * even if AS_MM_ALL_LOCKS is stable thanks to the
2540 * mm_all_locks_mutex, there may be other cpus
2541 * changing other bitflags in parallel to us.
2543 if (test_and_set_bit(AS_MM_ALL_LOCKS
, &mapping
->flags
))
2545 mutex_lock_nest_lock(&mapping
->i_mmap_mutex
, &mm
->mmap_sem
);
2550 * This operation locks against the VM for all pte/vma/mm related
2551 * operations that could ever happen on a certain mm. This includes
2552 * vmtruncate, try_to_unmap, and all page faults.
2554 * The caller must take the mmap_sem in write mode before calling
2555 * mm_take_all_locks(). The caller isn't allowed to release the
2556 * mmap_sem until mm_drop_all_locks() returns.
2558 * mmap_sem in write mode is required in order to block all operations
2559 * that could modify pagetables and free pages without need of
2560 * altering the vma layout (for example populate_range() with
2561 * nonlinear vmas). It's also needed in write mode to avoid new
2562 * anon_vmas to be associated with existing vmas.
2564 * A single task can't take more than one mm_take_all_locks() in a row
2565 * or it would deadlock.
2567 * The LSB in anon_vma->head.next and the AS_MM_ALL_LOCKS bitflag in
2568 * mapping->flags avoid to take the same lock twice, if more than one
2569 * vma in this mm is backed by the same anon_vma or address_space.
2571 * We can take all the locks in random order because the VM code
2572 * taking i_mmap_mutex or anon_vma->mutex outside the mmap_sem never
2573 * takes more than one of them in a row. Secondly we're protected
2574 * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex.
2576 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
2577 * that may have to take thousand of locks.
2579 * mm_take_all_locks() can fail if it's interrupted by signals.
2581 int mm_take_all_locks(struct mm_struct
*mm
)
2583 struct vm_area_struct
*vma
;
2584 struct anon_vma_chain
*avc
;
2586 BUG_ON(down_read_trylock(&mm
->mmap_sem
));
2588 mutex_lock(&mm_all_locks_mutex
);
2590 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
2591 if (signal_pending(current
))
2593 if (vma
->vm_file
&& vma
->vm_file
->f_mapping
)
2594 vm_lock_mapping(mm
, vma
->vm_file
->f_mapping
);
2597 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
2598 if (signal_pending(current
))
2601 list_for_each_entry(avc
, &vma
->anon_vma_chain
, same_vma
)
2602 vm_lock_anon_vma(mm
, avc
->anon_vma
);
2608 mm_drop_all_locks(mm
);
2612 static void vm_unlock_anon_vma(struct anon_vma
*anon_vma
)
2614 if (test_bit(0, (unsigned long *) &anon_vma
->root
->head
.next
)) {
2616 * The LSB of head.next can't change to 0 from under
2617 * us because we hold the mm_all_locks_mutex.
2619 * We must however clear the bitflag before unlocking
2620 * the vma so the users using the anon_vma->head will
2621 * never see our bitflag.
2623 * No need of atomic instructions here, head.next
2624 * can't change from under us until we release the
2625 * anon_vma->root->mutex.
2627 if (!__test_and_clear_bit(0, (unsigned long *)
2628 &anon_vma
->root
->head
.next
))
2630 anon_vma_unlock(anon_vma
);
2634 static void vm_unlock_mapping(struct address_space
*mapping
)
2636 if (test_bit(AS_MM_ALL_LOCKS
, &mapping
->flags
)) {
2638 * AS_MM_ALL_LOCKS can't change to 0 from under us
2639 * because we hold the mm_all_locks_mutex.
2641 mutex_unlock(&mapping
->i_mmap_mutex
);
2642 if (!test_and_clear_bit(AS_MM_ALL_LOCKS
,
2649 * The mmap_sem cannot be released by the caller until
2650 * mm_drop_all_locks() returns.
2652 void mm_drop_all_locks(struct mm_struct
*mm
)
2654 struct vm_area_struct
*vma
;
2655 struct anon_vma_chain
*avc
;
2657 BUG_ON(down_read_trylock(&mm
->mmap_sem
));
2658 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex
));
2660 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
2662 list_for_each_entry(avc
, &vma
->anon_vma_chain
, same_vma
)
2663 vm_unlock_anon_vma(avc
->anon_vma
);
2664 if (vma
->vm_file
&& vma
->vm_file
->f_mapping
)
2665 vm_unlock_mapping(vma
->vm_file
->f_mapping
);
2668 mutex_unlock(&mm_all_locks_mutex
);
2672 * initialise the VMA slab
2674 void __init
mmap_init(void)
2678 ret
= percpu_counter_init(&vm_committed_as
, 0);