mm/vmscan: push lruvec pointer into shrink_list()
[linux-2.6/libata-dev.git] / mm / vmscan.c
blob6dbf2c2082e7ae82036ad8e6b8926c76701c7ca5
1 /*
2 * linux/mm/vmscan.c
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/gfp.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmstat.h>
23 #include <linux/file.h>
24 #include <linux/writeback.h>
25 #include <linux/blkdev.h>
26 #include <linux/buffer_head.h> /* for try_to_release_page(),
27 buffer_heads_over_limit */
28 #include <linux/mm_inline.h>
29 #include <linux/backing-dev.h>
30 #include <linux/rmap.h>
31 #include <linux/topology.h>
32 #include <linux/cpu.h>
33 #include <linux/cpuset.h>
34 #include <linux/compaction.h>
35 #include <linux/notifier.h>
36 #include <linux/rwsem.h>
37 #include <linux/delay.h>
38 #include <linux/kthread.h>
39 #include <linux/freezer.h>
40 #include <linux/memcontrol.h>
41 #include <linux/delayacct.h>
42 #include <linux/sysctl.h>
43 #include <linux/oom.h>
44 #include <linux/prefetch.h>
46 #include <asm/tlbflush.h>
47 #include <asm/div64.h>
49 #include <linux/swapops.h>
51 #include "internal.h"
53 #define CREATE_TRACE_POINTS
54 #include <trace/events/vmscan.h>
56 struct scan_control {
57 /* Incremented by the number of inactive pages that were scanned */
58 unsigned long nr_scanned;
60 /* Number of pages freed so far during a call to shrink_zones() */
61 unsigned long nr_reclaimed;
63 /* How many pages shrink_list() should reclaim */
64 unsigned long nr_to_reclaim;
66 unsigned long hibernation_mode;
68 /* This context's GFP mask */
69 gfp_t gfp_mask;
71 int may_writepage;
73 /* Can mapped pages be reclaimed? */
74 int may_unmap;
76 /* Can pages be swapped as part of reclaim? */
77 int may_swap;
79 int order;
81 /* Scan (total_size >> priority) pages at once */
82 int priority;
85 * The memory cgroup that hit its limit and as a result is the
86 * primary target of this reclaim invocation.
88 struct mem_cgroup *target_mem_cgroup;
91 * Nodemask of nodes allowed by the caller. If NULL, all nodes
92 * are scanned.
94 nodemask_t *nodemask;
97 struct mem_cgroup_zone {
98 struct mem_cgroup *mem_cgroup;
99 struct zone *zone;
102 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
104 #ifdef ARCH_HAS_PREFETCH
105 #define prefetch_prev_lru_page(_page, _base, _field) \
106 do { \
107 if ((_page)->lru.prev != _base) { \
108 struct page *prev; \
110 prev = lru_to_page(&(_page->lru)); \
111 prefetch(&prev->_field); \
113 } while (0)
114 #else
115 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
116 #endif
118 #ifdef ARCH_HAS_PREFETCHW
119 #define prefetchw_prev_lru_page(_page, _base, _field) \
120 do { \
121 if ((_page)->lru.prev != _base) { \
122 struct page *prev; \
124 prev = lru_to_page(&(_page->lru)); \
125 prefetchw(&prev->_field); \
127 } while (0)
128 #else
129 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
130 #endif
133 * From 0 .. 100. Higher means more swappy.
135 int vm_swappiness = 60;
136 long vm_total_pages; /* The total number of pages which the VM controls */
138 static LIST_HEAD(shrinker_list);
139 static DECLARE_RWSEM(shrinker_rwsem);
141 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
142 static bool global_reclaim(struct scan_control *sc)
144 return !sc->target_mem_cgroup;
146 #else
147 static bool global_reclaim(struct scan_control *sc)
149 return true;
151 #endif
153 static struct zone_reclaim_stat *get_reclaim_stat(struct mem_cgroup_zone *mz)
155 return &mem_cgroup_zone_lruvec(mz->zone, mz->mem_cgroup)->reclaim_stat;
158 static unsigned long get_lruvec_size(struct lruvec *lruvec, enum lru_list lru)
160 if (!mem_cgroup_disabled())
161 return mem_cgroup_get_lruvec_size(lruvec, lru);
163 return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru);
167 * Add a shrinker callback to be called from the vm
169 void register_shrinker(struct shrinker *shrinker)
171 atomic_long_set(&shrinker->nr_in_batch, 0);
172 down_write(&shrinker_rwsem);
173 list_add_tail(&shrinker->list, &shrinker_list);
174 up_write(&shrinker_rwsem);
176 EXPORT_SYMBOL(register_shrinker);
179 * Remove one
181 void unregister_shrinker(struct shrinker *shrinker)
183 down_write(&shrinker_rwsem);
184 list_del(&shrinker->list);
185 up_write(&shrinker_rwsem);
187 EXPORT_SYMBOL(unregister_shrinker);
189 static inline int do_shrinker_shrink(struct shrinker *shrinker,
190 struct shrink_control *sc,
191 unsigned long nr_to_scan)
193 sc->nr_to_scan = nr_to_scan;
194 return (*shrinker->shrink)(shrinker, sc);
197 #define SHRINK_BATCH 128
199 * Call the shrink functions to age shrinkable caches
201 * Here we assume it costs one seek to replace a lru page and that it also
202 * takes a seek to recreate a cache object. With this in mind we age equal
203 * percentages of the lru and ageable caches. This should balance the seeks
204 * generated by these structures.
206 * If the vm encountered mapped pages on the LRU it increase the pressure on
207 * slab to avoid swapping.
209 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
211 * `lru_pages' represents the number of on-LRU pages in all the zones which
212 * are eligible for the caller's allocation attempt. It is used for balancing
213 * slab reclaim versus page reclaim.
215 * Returns the number of slab objects which we shrunk.
217 unsigned long shrink_slab(struct shrink_control *shrink,
218 unsigned long nr_pages_scanned,
219 unsigned long lru_pages)
221 struct shrinker *shrinker;
222 unsigned long ret = 0;
224 if (nr_pages_scanned == 0)
225 nr_pages_scanned = SWAP_CLUSTER_MAX;
227 if (!down_read_trylock(&shrinker_rwsem)) {
228 /* Assume we'll be able to shrink next time */
229 ret = 1;
230 goto out;
233 list_for_each_entry(shrinker, &shrinker_list, list) {
234 unsigned long long delta;
235 long total_scan;
236 long max_pass;
237 int shrink_ret = 0;
238 long nr;
239 long new_nr;
240 long batch_size = shrinker->batch ? shrinker->batch
241 : SHRINK_BATCH;
243 max_pass = do_shrinker_shrink(shrinker, shrink, 0);
244 if (max_pass <= 0)
245 continue;
248 * copy the current shrinker scan count into a local variable
249 * and zero it so that other concurrent shrinker invocations
250 * don't also do this scanning work.
252 nr = atomic_long_xchg(&shrinker->nr_in_batch, 0);
254 total_scan = nr;
255 delta = (4 * nr_pages_scanned) / shrinker->seeks;
256 delta *= max_pass;
257 do_div(delta, lru_pages + 1);
258 total_scan += delta;
259 if (total_scan < 0) {
260 printk(KERN_ERR "shrink_slab: %pF negative objects to "
261 "delete nr=%ld\n",
262 shrinker->shrink, total_scan);
263 total_scan = max_pass;
267 * We need to avoid excessive windup on filesystem shrinkers
268 * due to large numbers of GFP_NOFS allocations causing the
269 * shrinkers to return -1 all the time. This results in a large
270 * nr being built up so when a shrink that can do some work
271 * comes along it empties the entire cache due to nr >>>
272 * max_pass. This is bad for sustaining a working set in
273 * memory.
275 * Hence only allow the shrinker to scan the entire cache when
276 * a large delta change is calculated directly.
278 if (delta < max_pass / 4)
279 total_scan = min(total_scan, max_pass / 2);
282 * Avoid risking looping forever due to too large nr value:
283 * never try to free more than twice the estimate number of
284 * freeable entries.
286 if (total_scan > max_pass * 2)
287 total_scan = max_pass * 2;
289 trace_mm_shrink_slab_start(shrinker, shrink, nr,
290 nr_pages_scanned, lru_pages,
291 max_pass, delta, total_scan);
293 while (total_scan >= batch_size) {
294 int nr_before;
296 nr_before = do_shrinker_shrink(shrinker, shrink, 0);
297 shrink_ret = do_shrinker_shrink(shrinker, shrink,
298 batch_size);
299 if (shrink_ret == -1)
300 break;
301 if (shrink_ret < nr_before)
302 ret += nr_before - shrink_ret;
303 count_vm_events(SLABS_SCANNED, batch_size);
304 total_scan -= batch_size;
306 cond_resched();
310 * move the unused scan count back into the shrinker in a
311 * manner that handles concurrent updates. If we exhausted the
312 * scan, there is no need to do an update.
314 if (total_scan > 0)
315 new_nr = atomic_long_add_return(total_scan,
316 &shrinker->nr_in_batch);
317 else
318 new_nr = atomic_long_read(&shrinker->nr_in_batch);
320 trace_mm_shrink_slab_end(shrinker, shrink_ret, nr, new_nr);
322 up_read(&shrinker_rwsem);
323 out:
324 cond_resched();
325 return ret;
328 static inline int is_page_cache_freeable(struct page *page)
331 * A freeable page cache page is referenced only by the caller
332 * that isolated the page, the page cache radix tree and
333 * optional buffer heads at page->private.
335 return page_count(page) - page_has_private(page) == 2;
338 static int may_write_to_queue(struct backing_dev_info *bdi,
339 struct scan_control *sc)
341 if (current->flags & PF_SWAPWRITE)
342 return 1;
343 if (!bdi_write_congested(bdi))
344 return 1;
345 if (bdi == current->backing_dev_info)
346 return 1;
347 return 0;
351 * We detected a synchronous write error writing a page out. Probably
352 * -ENOSPC. We need to propagate that into the address_space for a subsequent
353 * fsync(), msync() or close().
355 * The tricky part is that after writepage we cannot touch the mapping: nothing
356 * prevents it from being freed up. But we have a ref on the page and once
357 * that page is locked, the mapping is pinned.
359 * We're allowed to run sleeping lock_page() here because we know the caller has
360 * __GFP_FS.
362 static void handle_write_error(struct address_space *mapping,
363 struct page *page, int error)
365 lock_page(page);
366 if (page_mapping(page) == mapping)
367 mapping_set_error(mapping, error);
368 unlock_page(page);
371 /* possible outcome of pageout() */
372 typedef enum {
373 /* failed to write page out, page is locked */
374 PAGE_KEEP,
375 /* move page to the active list, page is locked */
376 PAGE_ACTIVATE,
377 /* page has been sent to the disk successfully, page is unlocked */
378 PAGE_SUCCESS,
379 /* page is clean and locked */
380 PAGE_CLEAN,
381 } pageout_t;
384 * pageout is called by shrink_page_list() for each dirty page.
385 * Calls ->writepage().
387 static pageout_t pageout(struct page *page, struct address_space *mapping,
388 struct scan_control *sc)
391 * If the page is dirty, only perform writeback if that write
392 * will be non-blocking. To prevent this allocation from being
393 * stalled by pagecache activity. But note that there may be
394 * stalls if we need to run get_block(). We could test
395 * PagePrivate for that.
397 * If this process is currently in __generic_file_aio_write() against
398 * this page's queue, we can perform writeback even if that
399 * will block.
401 * If the page is swapcache, write it back even if that would
402 * block, for some throttling. This happens by accident, because
403 * swap_backing_dev_info is bust: it doesn't reflect the
404 * congestion state of the swapdevs. Easy to fix, if needed.
406 if (!is_page_cache_freeable(page))
407 return PAGE_KEEP;
408 if (!mapping) {
410 * Some data journaling orphaned pages can have
411 * page->mapping == NULL while being dirty with clean buffers.
413 if (page_has_private(page)) {
414 if (try_to_free_buffers(page)) {
415 ClearPageDirty(page);
416 printk("%s: orphaned page\n", __func__);
417 return PAGE_CLEAN;
420 return PAGE_KEEP;
422 if (mapping->a_ops->writepage == NULL)
423 return PAGE_ACTIVATE;
424 if (!may_write_to_queue(mapping->backing_dev_info, sc))
425 return PAGE_KEEP;
427 if (clear_page_dirty_for_io(page)) {
428 int res;
429 struct writeback_control wbc = {
430 .sync_mode = WB_SYNC_NONE,
431 .nr_to_write = SWAP_CLUSTER_MAX,
432 .range_start = 0,
433 .range_end = LLONG_MAX,
434 .for_reclaim = 1,
437 SetPageReclaim(page);
438 res = mapping->a_ops->writepage(page, &wbc);
439 if (res < 0)
440 handle_write_error(mapping, page, res);
441 if (res == AOP_WRITEPAGE_ACTIVATE) {
442 ClearPageReclaim(page);
443 return PAGE_ACTIVATE;
446 if (!PageWriteback(page)) {
447 /* synchronous write or broken a_ops? */
448 ClearPageReclaim(page);
450 trace_mm_vmscan_writepage(page, trace_reclaim_flags(page));
451 inc_zone_page_state(page, NR_VMSCAN_WRITE);
452 return PAGE_SUCCESS;
455 return PAGE_CLEAN;
459 * Same as remove_mapping, but if the page is removed from the mapping, it
460 * gets returned with a refcount of 0.
462 static int __remove_mapping(struct address_space *mapping, struct page *page)
464 BUG_ON(!PageLocked(page));
465 BUG_ON(mapping != page_mapping(page));
467 spin_lock_irq(&mapping->tree_lock);
469 * The non racy check for a busy page.
471 * Must be careful with the order of the tests. When someone has
472 * a ref to the page, it may be possible that they dirty it then
473 * drop the reference. So if PageDirty is tested before page_count
474 * here, then the following race may occur:
476 * get_user_pages(&page);
477 * [user mapping goes away]
478 * write_to(page);
479 * !PageDirty(page) [good]
480 * SetPageDirty(page);
481 * put_page(page);
482 * !page_count(page) [good, discard it]
484 * [oops, our write_to data is lost]
486 * Reversing the order of the tests ensures such a situation cannot
487 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
488 * load is not satisfied before that of page->_count.
490 * Note that if SetPageDirty is always performed via set_page_dirty,
491 * and thus under tree_lock, then this ordering is not required.
493 if (!page_freeze_refs(page, 2))
494 goto cannot_free;
495 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
496 if (unlikely(PageDirty(page))) {
497 page_unfreeze_refs(page, 2);
498 goto cannot_free;
501 if (PageSwapCache(page)) {
502 swp_entry_t swap = { .val = page_private(page) };
503 __delete_from_swap_cache(page);
504 spin_unlock_irq(&mapping->tree_lock);
505 swapcache_free(swap, page);
506 } else {
507 void (*freepage)(struct page *);
509 freepage = mapping->a_ops->freepage;
511 __delete_from_page_cache(page);
512 spin_unlock_irq(&mapping->tree_lock);
513 mem_cgroup_uncharge_cache_page(page);
515 if (freepage != NULL)
516 freepage(page);
519 return 1;
521 cannot_free:
522 spin_unlock_irq(&mapping->tree_lock);
523 return 0;
527 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
528 * someone else has a ref on the page, abort and return 0. If it was
529 * successfully detached, return 1. Assumes the caller has a single ref on
530 * this page.
532 int remove_mapping(struct address_space *mapping, struct page *page)
534 if (__remove_mapping(mapping, page)) {
536 * Unfreezing the refcount with 1 rather than 2 effectively
537 * drops the pagecache ref for us without requiring another
538 * atomic operation.
540 page_unfreeze_refs(page, 1);
541 return 1;
543 return 0;
547 * putback_lru_page - put previously isolated page onto appropriate LRU list
548 * @page: page to be put back to appropriate lru list
550 * Add previously isolated @page to appropriate LRU list.
551 * Page may still be unevictable for other reasons.
553 * lru_lock must not be held, interrupts must be enabled.
555 void putback_lru_page(struct page *page)
557 int lru;
558 int active = !!TestClearPageActive(page);
559 int was_unevictable = PageUnevictable(page);
561 VM_BUG_ON(PageLRU(page));
563 redo:
564 ClearPageUnevictable(page);
566 if (page_evictable(page, NULL)) {
568 * For evictable pages, we can use the cache.
569 * In event of a race, worst case is we end up with an
570 * unevictable page on [in]active list.
571 * We know how to handle that.
573 lru = active + page_lru_base_type(page);
574 lru_cache_add_lru(page, lru);
575 } else {
577 * Put unevictable pages directly on zone's unevictable
578 * list.
580 lru = LRU_UNEVICTABLE;
581 add_page_to_unevictable_list(page);
583 * When racing with an mlock or AS_UNEVICTABLE clearing
584 * (page is unlocked) make sure that if the other thread
585 * does not observe our setting of PG_lru and fails
586 * isolation/check_move_unevictable_pages,
587 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
588 * the page back to the evictable list.
590 * The other side is TestClearPageMlocked() or shmem_lock().
592 smp_mb();
596 * page's status can change while we move it among lru. If an evictable
597 * page is on unevictable list, it never be freed. To avoid that,
598 * check after we added it to the list, again.
600 if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
601 if (!isolate_lru_page(page)) {
602 put_page(page);
603 goto redo;
605 /* This means someone else dropped this page from LRU
606 * So, it will be freed or putback to LRU again. There is
607 * nothing to do here.
611 if (was_unevictable && lru != LRU_UNEVICTABLE)
612 count_vm_event(UNEVICTABLE_PGRESCUED);
613 else if (!was_unevictable && lru == LRU_UNEVICTABLE)
614 count_vm_event(UNEVICTABLE_PGCULLED);
616 put_page(page); /* drop ref from isolate */
619 enum page_references {
620 PAGEREF_RECLAIM,
621 PAGEREF_RECLAIM_CLEAN,
622 PAGEREF_KEEP,
623 PAGEREF_ACTIVATE,
626 static enum page_references page_check_references(struct page *page,
627 struct scan_control *sc)
629 int referenced_ptes, referenced_page;
630 unsigned long vm_flags;
632 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
633 &vm_flags);
634 referenced_page = TestClearPageReferenced(page);
637 * Mlock lost the isolation race with us. Let try_to_unmap()
638 * move the page to the unevictable list.
640 if (vm_flags & VM_LOCKED)
641 return PAGEREF_RECLAIM;
643 if (referenced_ptes) {
644 if (PageSwapBacked(page))
645 return PAGEREF_ACTIVATE;
647 * All mapped pages start out with page table
648 * references from the instantiating fault, so we need
649 * to look twice if a mapped file page is used more
650 * than once.
652 * Mark it and spare it for another trip around the
653 * inactive list. Another page table reference will
654 * lead to its activation.
656 * Note: the mark is set for activated pages as well
657 * so that recently deactivated but used pages are
658 * quickly recovered.
660 SetPageReferenced(page);
662 if (referenced_page || referenced_ptes > 1)
663 return PAGEREF_ACTIVATE;
666 * Activate file-backed executable pages after first usage.
668 if (vm_flags & VM_EXEC)
669 return PAGEREF_ACTIVATE;
671 return PAGEREF_KEEP;
674 /* Reclaim if clean, defer dirty pages to writeback */
675 if (referenced_page && !PageSwapBacked(page))
676 return PAGEREF_RECLAIM_CLEAN;
678 return PAGEREF_RECLAIM;
682 * shrink_page_list() returns the number of reclaimed pages
684 static unsigned long shrink_page_list(struct list_head *page_list,
685 struct zone *zone,
686 struct scan_control *sc,
687 unsigned long *ret_nr_dirty,
688 unsigned long *ret_nr_writeback)
690 LIST_HEAD(ret_pages);
691 LIST_HEAD(free_pages);
692 int pgactivate = 0;
693 unsigned long nr_dirty = 0;
694 unsigned long nr_congested = 0;
695 unsigned long nr_reclaimed = 0;
696 unsigned long nr_writeback = 0;
698 cond_resched();
700 while (!list_empty(page_list)) {
701 enum page_references references;
702 struct address_space *mapping;
703 struct page *page;
704 int may_enter_fs;
706 cond_resched();
708 page = lru_to_page(page_list);
709 list_del(&page->lru);
711 if (!trylock_page(page))
712 goto keep;
714 VM_BUG_ON(PageActive(page));
715 VM_BUG_ON(page_zone(page) != zone);
717 sc->nr_scanned++;
719 if (unlikely(!page_evictable(page, NULL)))
720 goto cull_mlocked;
722 if (!sc->may_unmap && page_mapped(page))
723 goto keep_locked;
725 /* Double the slab pressure for mapped and swapcache pages */
726 if (page_mapped(page) || PageSwapCache(page))
727 sc->nr_scanned++;
729 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
730 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
732 if (PageWriteback(page)) {
733 nr_writeback++;
734 unlock_page(page);
735 goto keep;
738 references = page_check_references(page, sc);
739 switch (references) {
740 case PAGEREF_ACTIVATE:
741 goto activate_locked;
742 case PAGEREF_KEEP:
743 goto keep_locked;
744 case PAGEREF_RECLAIM:
745 case PAGEREF_RECLAIM_CLEAN:
746 ; /* try to reclaim the page below */
750 * Anonymous process memory has backing store?
751 * Try to allocate it some swap space here.
753 if (PageAnon(page) && !PageSwapCache(page)) {
754 if (!(sc->gfp_mask & __GFP_IO))
755 goto keep_locked;
756 if (!add_to_swap(page))
757 goto activate_locked;
758 may_enter_fs = 1;
761 mapping = page_mapping(page);
764 * The page is mapped into the page tables of one or more
765 * processes. Try to unmap it here.
767 if (page_mapped(page) && mapping) {
768 switch (try_to_unmap(page, TTU_UNMAP)) {
769 case SWAP_FAIL:
770 goto activate_locked;
771 case SWAP_AGAIN:
772 goto keep_locked;
773 case SWAP_MLOCK:
774 goto cull_mlocked;
775 case SWAP_SUCCESS:
776 ; /* try to free the page below */
780 if (PageDirty(page)) {
781 nr_dirty++;
784 * Only kswapd can writeback filesystem pages to
785 * avoid risk of stack overflow but do not writeback
786 * unless under significant pressure.
788 if (page_is_file_cache(page) &&
789 (!current_is_kswapd() ||
790 sc->priority >= DEF_PRIORITY - 2)) {
792 * Immediately reclaim when written back.
793 * Similar in principal to deactivate_page()
794 * except we already have the page isolated
795 * and know it's dirty
797 inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
798 SetPageReclaim(page);
800 goto keep_locked;
803 if (references == PAGEREF_RECLAIM_CLEAN)
804 goto keep_locked;
805 if (!may_enter_fs)
806 goto keep_locked;
807 if (!sc->may_writepage)
808 goto keep_locked;
810 /* Page is dirty, try to write it out here */
811 switch (pageout(page, mapping, sc)) {
812 case PAGE_KEEP:
813 nr_congested++;
814 goto keep_locked;
815 case PAGE_ACTIVATE:
816 goto activate_locked;
817 case PAGE_SUCCESS:
818 if (PageWriteback(page))
819 goto keep;
820 if (PageDirty(page))
821 goto keep;
824 * A synchronous write - probably a ramdisk. Go
825 * ahead and try to reclaim the page.
827 if (!trylock_page(page))
828 goto keep;
829 if (PageDirty(page) || PageWriteback(page))
830 goto keep_locked;
831 mapping = page_mapping(page);
832 case PAGE_CLEAN:
833 ; /* try to free the page below */
838 * If the page has buffers, try to free the buffer mappings
839 * associated with this page. If we succeed we try to free
840 * the page as well.
842 * We do this even if the page is PageDirty().
843 * try_to_release_page() does not perform I/O, but it is
844 * possible for a page to have PageDirty set, but it is actually
845 * clean (all its buffers are clean). This happens if the
846 * buffers were written out directly, with submit_bh(). ext3
847 * will do this, as well as the blockdev mapping.
848 * try_to_release_page() will discover that cleanness and will
849 * drop the buffers and mark the page clean - it can be freed.
851 * Rarely, pages can have buffers and no ->mapping. These are
852 * the pages which were not successfully invalidated in
853 * truncate_complete_page(). We try to drop those buffers here
854 * and if that worked, and the page is no longer mapped into
855 * process address space (page_count == 1) it can be freed.
856 * Otherwise, leave the page on the LRU so it is swappable.
858 if (page_has_private(page)) {
859 if (!try_to_release_page(page, sc->gfp_mask))
860 goto activate_locked;
861 if (!mapping && page_count(page) == 1) {
862 unlock_page(page);
863 if (put_page_testzero(page))
864 goto free_it;
865 else {
867 * rare race with speculative reference.
868 * the speculative reference will free
869 * this page shortly, so we may
870 * increment nr_reclaimed here (and
871 * leave it off the LRU).
873 nr_reclaimed++;
874 continue;
879 if (!mapping || !__remove_mapping(mapping, page))
880 goto keep_locked;
883 * At this point, we have no other references and there is
884 * no way to pick any more up (removed from LRU, removed
885 * from pagecache). Can use non-atomic bitops now (and
886 * we obviously don't have to worry about waking up a process
887 * waiting on the page lock, because there are no references.
889 __clear_page_locked(page);
890 free_it:
891 nr_reclaimed++;
894 * Is there need to periodically free_page_list? It would
895 * appear not as the counts should be low
897 list_add(&page->lru, &free_pages);
898 continue;
900 cull_mlocked:
901 if (PageSwapCache(page))
902 try_to_free_swap(page);
903 unlock_page(page);
904 putback_lru_page(page);
905 continue;
907 activate_locked:
908 /* Not a candidate for swapping, so reclaim swap space. */
909 if (PageSwapCache(page) && vm_swap_full())
910 try_to_free_swap(page);
911 VM_BUG_ON(PageActive(page));
912 SetPageActive(page);
913 pgactivate++;
914 keep_locked:
915 unlock_page(page);
916 keep:
917 list_add(&page->lru, &ret_pages);
918 VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
922 * Tag a zone as congested if all the dirty pages encountered were
923 * backed by a congested BDI. In this case, reclaimers should just
924 * back off and wait for congestion to clear because further reclaim
925 * will encounter the same problem
927 if (nr_dirty && nr_dirty == nr_congested && global_reclaim(sc))
928 zone_set_flag(zone, ZONE_CONGESTED);
930 free_hot_cold_page_list(&free_pages, 1);
932 list_splice(&ret_pages, page_list);
933 count_vm_events(PGACTIVATE, pgactivate);
934 *ret_nr_dirty += nr_dirty;
935 *ret_nr_writeback += nr_writeback;
936 return nr_reclaimed;
940 * Attempt to remove the specified page from its LRU. Only take this page
941 * if it is of the appropriate PageActive status. Pages which are being
942 * freed elsewhere are also ignored.
944 * page: page to consider
945 * mode: one of the LRU isolation modes defined above
947 * returns 0 on success, -ve errno on failure.
949 int __isolate_lru_page(struct page *page, isolate_mode_t mode)
951 int ret = -EINVAL;
953 /* Only take pages on the LRU. */
954 if (!PageLRU(page))
955 return ret;
957 /* Do not give back unevictable pages for compaction */
958 if (PageUnevictable(page))
959 return ret;
961 ret = -EBUSY;
964 * To minimise LRU disruption, the caller can indicate that it only
965 * wants to isolate pages it will be able to operate on without
966 * blocking - clean pages for the most part.
968 * ISOLATE_CLEAN means that only clean pages should be isolated. This
969 * is used by reclaim when it is cannot write to backing storage
971 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
972 * that it is possible to migrate without blocking
974 if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
975 /* All the caller can do on PageWriteback is block */
976 if (PageWriteback(page))
977 return ret;
979 if (PageDirty(page)) {
980 struct address_space *mapping;
982 /* ISOLATE_CLEAN means only clean pages */
983 if (mode & ISOLATE_CLEAN)
984 return ret;
987 * Only pages without mappings or that have a
988 * ->migratepage callback are possible to migrate
989 * without blocking
991 mapping = page_mapping(page);
992 if (mapping && !mapping->a_ops->migratepage)
993 return ret;
997 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
998 return ret;
1000 if (likely(get_page_unless_zero(page))) {
1002 * Be careful not to clear PageLRU until after we're
1003 * sure the page is not being freed elsewhere -- the
1004 * page release code relies on it.
1006 ClearPageLRU(page);
1007 ret = 0;
1010 return ret;
1014 * zone->lru_lock is heavily contended. Some of the functions that
1015 * shrink the lists perform better by taking out a batch of pages
1016 * and working on them outside the LRU lock.
1018 * For pagecache intensive workloads, this function is the hottest
1019 * spot in the kernel (apart from copy_*_user functions).
1021 * Appropriate locks must be held before calling this function.
1023 * @nr_to_scan: The number of pages to look through on the list.
1024 * @lruvec: The LRU vector to pull pages from.
1025 * @dst: The temp list to put pages on to.
1026 * @nr_scanned: The number of pages that were scanned.
1027 * @sc: The scan_control struct for this reclaim session
1028 * @mode: One of the LRU isolation modes
1029 * @lru: LRU list id for isolating
1031 * returns how many pages were moved onto *@dst.
1033 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1034 struct lruvec *lruvec, struct list_head *dst,
1035 unsigned long *nr_scanned, struct scan_control *sc,
1036 isolate_mode_t mode, enum lru_list lru)
1038 struct list_head *src;
1039 unsigned long nr_taken = 0;
1040 unsigned long scan;
1041 int file = is_file_lru(lru);
1043 src = &lruvec->lists[lru];
1045 for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
1046 struct page *page;
1048 page = lru_to_page(src);
1049 prefetchw_prev_lru_page(page, src, flags);
1051 VM_BUG_ON(!PageLRU(page));
1053 switch (__isolate_lru_page(page, mode)) {
1054 case 0:
1055 mem_cgroup_lru_del_list(page, lru);
1056 list_move(&page->lru, dst);
1057 nr_taken += hpage_nr_pages(page);
1058 break;
1060 case -EBUSY:
1061 /* else it is being freed elsewhere */
1062 list_move(&page->lru, src);
1063 continue;
1065 default:
1066 BUG();
1070 *nr_scanned = scan;
1072 trace_mm_vmscan_lru_isolate(sc->order,
1073 nr_to_scan, scan,
1074 nr_taken,
1075 mode, file);
1076 return nr_taken;
1080 * isolate_lru_page - tries to isolate a page from its LRU list
1081 * @page: page to isolate from its LRU list
1083 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1084 * vmstat statistic corresponding to whatever LRU list the page was on.
1086 * Returns 0 if the page was removed from an LRU list.
1087 * Returns -EBUSY if the page was not on an LRU list.
1089 * The returned page will have PageLRU() cleared. If it was found on
1090 * the active list, it will have PageActive set. If it was found on
1091 * the unevictable list, it will have the PageUnevictable bit set. That flag
1092 * may need to be cleared by the caller before letting the page go.
1094 * The vmstat statistic corresponding to the list on which the page was
1095 * found will be decremented.
1097 * Restrictions:
1098 * (1) Must be called with an elevated refcount on the page. This is a
1099 * fundamentnal difference from isolate_lru_pages (which is called
1100 * without a stable reference).
1101 * (2) the lru_lock must not be held.
1102 * (3) interrupts must be enabled.
1104 int isolate_lru_page(struct page *page)
1106 int ret = -EBUSY;
1108 VM_BUG_ON(!page_count(page));
1110 if (PageLRU(page)) {
1111 struct zone *zone = page_zone(page);
1113 spin_lock_irq(&zone->lru_lock);
1114 if (PageLRU(page)) {
1115 int lru = page_lru(page);
1116 ret = 0;
1117 get_page(page);
1118 ClearPageLRU(page);
1120 del_page_from_lru_list(zone, page, lru);
1122 spin_unlock_irq(&zone->lru_lock);
1124 return ret;
1128 * Are there way too many processes in the direct reclaim path already?
1130 static int too_many_isolated(struct zone *zone, int file,
1131 struct scan_control *sc)
1133 unsigned long inactive, isolated;
1135 if (current_is_kswapd())
1136 return 0;
1138 if (!global_reclaim(sc))
1139 return 0;
1141 if (file) {
1142 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1143 isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1144 } else {
1145 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1146 isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1149 return isolated > inactive;
1152 static noinline_for_stack void
1153 putback_inactive_pages(struct lruvec *lruvec,
1154 struct list_head *page_list)
1156 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1157 struct zone *zone = lruvec_zone(lruvec);
1158 LIST_HEAD(pages_to_free);
1161 * Put back any unfreeable pages.
1163 while (!list_empty(page_list)) {
1164 struct page *page = lru_to_page(page_list);
1165 int lru;
1167 VM_BUG_ON(PageLRU(page));
1168 list_del(&page->lru);
1169 if (unlikely(!page_evictable(page, NULL))) {
1170 spin_unlock_irq(&zone->lru_lock);
1171 putback_lru_page(page);
1172 spin_lock_irq(&zone->lru_lock);
1173 continue;
1175 SetPageLRU(page);
1176 lru = page_lru(page);
1177 add_page_to_lru_list(zone, page, lru);
1178 if (is_active_lru(lru)) {
1179 int file = is_file_lru(lru);
1180 int numpages = hpage_nr_pages(page);
1181 reclaim_stat->recent_rotated[file] += numpages;
1183 if (put_page_testzero(page)) {
1184 __ClearPageLRU(page);
1185 __ClearPageActive(page);
1186 del_page_from_lru_list(zone, page, lru);
1188 if (unlikely(PageCompound(page))) {
1189 spin_unlock_irq(&zone->lru_lock);
1190 (*get_compound_page_dtor(page))(page);
1191 spin_lock_irq(&zone->lru_lock);
1192 } else
1193 list_add(&page->lru, &pages_to_free);
1198 * To save our caller's stack, now use input list for pages to free.
1200 list_splice(&pages_to_free, page_list);
1204 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
1205 * of reclaimed pages
1207 static noinline_for_stack unsigned long
1208 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1209 struct scan_control *sc, enum lru_list lru)
1211 LIST_HEAD(page_list);
1212 unsigned long nr_scanned;
1213 unsigned long nr_reclaimed = 0;
1214 unsigned long nr_taken;
1215 unsigned long nr_dirty = 0;
1216 unsigned long nr_writeback = 0;
1217 isolate_mode_t isolate_mode = 0;
1218 int file = is_file_lru(lru);
1219 struct zone *zone = lruvec_zone(lruvec);
1220 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1222 while (unlikely(too_many_isolated(zone, file, sc))) {
1223 congestion_wait(BLK_RW_ASYNC, HZ/10);
1225 /* We are about to die and free our memory. Return now. */
1226 if (fatal_signal_pending(current))
1227 return SWAP_CLUSTER_MAX;
1230 lru_add_drain();
1232 if (!sc->may_unmap)
1233 isolate_mode |= ISOLATE_UNMAPPED;
1234 if (!sc->may_writepage)
1235 isolate_mode |= ISOLATE_CLEAN;
1237 spin_lock_irq(&zone->lru_lock);
1239 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1240 &nr_scanned, sc, isolate_mode, lru);
1242 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1243 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1245 if (global_reclaim(sc)) {
1246 zone->pages_scanned += nr_scanned;
1247 if (current_is_kswapd())
1248 __count_zone_vm_events(PGSCAN_KSWAPD, zone,
1249 nr_scanned);
1250 else
1251 __count_zone_vm_events(PGSCAN_DIRECT, zone,
1252 nr_scanned);
1254 spin_unlock_irq(&zone->lru_lock);
1256 if (nr_taken == 0)
1257 return 0;
1259 nr_reclaimed = shrink_page_list(&page_list, zone, sc,
1260 &nr_dirty, &nr_writeback);
1262 spin_lock_irq(&zone->lru_lock);
1264 reclaim_stat->recent_scanned[file] += nr_taken;
1266 if (global_reclaim(sc)) {
1267 if (current_is_kswapd())
1268 __count_zone_vm_events(PGSTEAL_KSWAPD, zone,
1269 nr_reclaimed);
1270 else
1271 __count_zone_vm_events(PGSTEAL_DIRECT, zone,
1272 nr_reclaimed);
1275 putback_inactive_pages(lruvec, &page_list);
1277 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1279 spin_unlock_irq(&zone->lru_lock);
1281 free_hot_cold_page_list(&page_list, 1);
1284 * If reclaim is isolating dirty pages under writeback, it implies
1285 * that the long-lived page allocation rate is exceeding the page
1286 * laundering rate. Either the global limits are not being effective
1287 * at throttling processes due to the page distribution throughout
1288 * zones or there is heavy usage of a slow backing device. The
1289 * only option is to throttle from reclaim context which is not ideal
1290 * as there is no guarantee the dirtying process is throttled in the
1291 * same way balance_dirty_pages() manages.
1293 * This scales the number of dirty pages that must be under writeback
1294 * before throttling depending on priority. It is a simple backoff
1295 * function that has the most effect in the range DEF_PRIORITY to
1296 * DEF_PRIORITY-2 which is the priority reclaim is considered to be
1297 * in trouble and reclaim is considered to be in trouble.
1299 * DEF_PRIORITY 100% isolated pages must be PageWriteback to throttle
1300 * DEF_PRIORITY-1 50% must be PageWriteback
1301 * DEF_PRIORITY-2 25% must be PageWriteback, kswapd in trouble
1302 * ...
1303 * DEF_PRIORITY-6 For SWAP_CLUSTER_MAX isolated pages, throttle if any
1304 * isolated page is PageWriteback
1306 if (nr_writeback && nr_writeback >=
1307 (nr_taken >> (DEF_PRIORITY - sc->priority)))
1308 wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
1310 trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1311 zone_idx(zone),
1312 nr_scanned, nr_reclaimed,
1313 sc->priority,
1314 trace_shrink_flags(file));
1315 return nr_reclaimed;
1319 * This moves pages from the active list to the inactive list.
1321 * We move them the other way if the page is referenced by one or more
1322 * processes, from rmap.
1324 * If the pages are mostly unmapped, the processing is fast and it is
1325 * appropriate to hold zone->lru_lock across the whole operation. But if
1326 * the pages are mapped, the processing is slow (page_referenced()) so we
1327 * should drop zone->lru_lock around each page. It's impossible to balance
1328 * this, so instead we remove the pages from the LRU while processing them.
1329 * It is safe to rely on PG_active against the non-LRU pages in here because
1330 * nobody will play with that bit on a non-LRU page.
1332 * The downside is that we have to touch page->_count against each page.
1333 * But we had to alter page->flags anyway.
1336 static void move_active_pages_to_lru(struct zone *zone,
1337 struct list_head *list,
1338 struct list_head *pages_to_free,
1339 enum lru_list lru)
1341 unsigned long pgmoved = 0;
1342 struct page *page;
1344 while (!list_empty(list)) {
1345 struct lruvec *lruvec;
1347 page = lru_to_page(list);
1349 VM_BUG_ON(PageLRU(page));
1350 SetPageLRU(page);
1352 lruvec = mem_cgroup_lru_add_list(zone, page, lru);
1353 list_move(&page->lru, &lruvec->lists[lru]);
1354 pgmoved += hpage_nr_pages(page);
1356 if (put_page_testzero(page)) {
1357 __ClearPageLRU(page);
1358 __ClearPageActive(page);
1359 del_page_from_lru_list(zone, page, lru);
1361 if (unlikely(PageCompound(page))) {
1362 spin_unlock_irq(&zone->lru_lock);
1363 (*get_compound_page_dtor(page))(page);
1364 spin_lock_irq(&zone->lru_lock);
1365 } else
1366 list_add(&page->lru, pages_to_free);
1369 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1370 if (!is_active_lru(lru))
1371 __count_vm_events(PGDEACTIVATE, pgmoved);
1374 static void shrink_active_list(unsigned long nr_to_scan,
1375 struct lruvec *lruvec,
1376 struct scan_control *sc,
1377 enum lru_list lru)
1379 unsigned long nr_taken;
1380 unsigned long nr_scanned;
1381 unsigned long vm_flags;
1382 LIST_HEAD(l_hold); /* The pages which were snipped off */
1383 LIST_HEAD(l_active);
1384 LIST_HEAD(l_inactive);
1385 struct page *page;
1386 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1387 unsigned long nr_rotated = 0;
1388 isolate_mode_t isolate_mode = 0;
1389 int file = is_file_lru(lru);
1390 struct zone *zone = lruvec_zone(lruvec);
1392 lru_add_drain();
1394 if (!sc->may_unmap)
1395 isolate_mode |= ISOLATE_UNMAPPED;
1396 if (!sc->may_writepage)
1397 isolate_mode |= ISOLATE_CLEAN;
1399 spin_lock_irq(&zone->lru_lock);
1401 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
1402 &nr_scanned, sc, isolate_mode, lru);
1403 if (global_reclaim(sc))
1404 zone->pages_scanned += nr_scanned;
1406 reclaim_stat->recent_scanned[file] += nr_taken;
1408 __count_zone_vm_events(PGREFILL, zone, nr_scanned);
1409 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1410 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1411 spin_unlock_irq(&zone->lru_lock);
1413 while (!list_empty(&l_hold)) {
1414 cond_resched();
1415 page = lru_to_page(&l_hold);
1416 list_del(&page->lru);
1418 if (unlikely(!page_evictable(page, NULL))) {
1419 putback_lru_page(page);
1420 continue;
1423 if (unlikely(buffer_heads_over_limit)) {
1424 if (page_has_private(page) && trylock_page(page)) {
1425 if (page_has_private(page))
1426 try_to_release_page(page, 0);
1427 unlock_page(page);
1431 if (page_referenced(page, 0, sc->target_mem_cgroup,
1432 &vm_flags)) {
1433 nr_rotated += hpage_nr_pages(page);
1435 * Identify referenced, file-backed active pages and
1436 * give them one more trip around the active list. So
1437 * that executable code get better chances to stay in
1438 * memory under moderate memory pressure. Anon pages
1439 * are not likely to be evicted by use-once streaming
1440 * IO, plus JVM can create lots of anon VM_EXEC pages,
1441 * so we ignore them here.
1443 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1444 list_add(&page->lru, &l_active);
1445 continue;
1449 ClearPageActive(page); /* we are de-activating */
1450 list_add(&page->lru, &l_inactive);
1454 * Move pages back to the lru list.
1456 spin_lock_irq(&zone->lru_lock);
1458 * Count referenced pages from currently used mappings as rotated,
1459 * even though only some of them are actually re-activated. This
1460 * helps balance scan pressure between file and anonymous pages in
1461 * get_scan_ratio.
1463 reclaim_stat->recent_rotated[file] += nr_rotated;
1465 move_active_pages_to_lru(zone, &l_active, &l_hold, lru);
1466 move_active_pages_to_lru(zone, &l_inactive, &l_hold, lru - LRU_ACTIVE);
1467 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1468 spin_unlock_irq(&zone->lru_lock);
1470 free_hot_cold_page_list(&l_hold, 1);
1473 #ifdef CONFIG_SWAP
1474 static int inactive_anon_is_low_global(struct zone *zone)
1476 unsigned long active, inactive;
1478 active = zone_page_state(zone, NR_ACTIVE_ANON);
1479 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1481 if (inactive * zone->inactive_ratio < active)
1482 return 1;
1484 return 0;
1488 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1489 * @lruvec: LRU vector to check
1491 * Returns true if the zone does not have enough inactive anon pages,
1492 * meaning some active anon pages need to be deactivated.
1494 static int inactive_anon_is_low(struct lruvec *lruvec)
1497 * If we don't have swap space, anonymous page deactivation
1498 * is pointless.
1500 if (!total_swap_pages)
1501 return 0;
1503 if (!mem_cgroup_disabled())
1504 return mem_cgroup_inactive_anon_is_low(lruvec);
1506 return inactive_anon_is_low_global(lruvec_zone(lruvec));
1508 #else
1509 static inline int inactive_anon_is_low(struct lruvec *lruvec)
1511 return 0;
1513 #endif
1515 static int inactive_file_is_low_global(struct zone *zone)
1517 unsigned long active, inactive;
1519 active = zone_page_state(zone, NR_ACTIVE_FILE);
1520 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1522 return (active > inactive);
1526 * inactive_file_is_low - check if file pages need to be deactivated
1527 * @lruvec: LRU vector to check
1529 * When the system is doing streaming IO, memory pressure here
1530 * ensures that active file pages get deactivated, until more
1531 * than half of the file pages are on the inactive list.
1533 * Once we get to that situation, protect the system's working
1534 * set from being evicted by disabling active file page aging.
1536 * This uses a different ratio than the anonymous pages, because
1537 * the page cache uses a use-once replacement algorithm.
1539 static int inactive_file_is_low(struct lruvec *lruvec)
1541 if (!mem_cgroup_disabled())
1542 return mem_cgroup_inactive_file_is_low(lruvec);
1544 return inactive_file_is_low_global(lruvec_zone(lruvec));
1547 static int inactive_list_is_low(struct lruvec *lruvec, int file)
1549 if (file)
1550 return inactive_file_is_low(lruvec);
1551 else
1552 return inactive_anon_is_low(lruvec);
1555 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1556 struct lruvec *lruvec, struct scan_control *sc)
1558 int file = is_file_lru(lru);
1560 if (is_active_lru(lru)) {
1561 if (inactive_list_is_low(lruvec, file))
1562 shrink_active_list(nr_to_scan, lruvec, sc, lru);
1563 return 0;
1566 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
1569 static int vmscan_swappiness(struct scan_control *sc)
1571 if (global_reclaim(sc))
1572 return vm_swappiness;
1573 return mem_cgroup_swappiness(sc->target_mem_cgroup);
1577 * Determine how aggressively the anon and file LRU lists should be
1578 * scanned. The relative value of each set of LRU lists is determined
1579 * by looking at the fraction of the pages scanned we did rotate back
1580 * onto the active list instead of evict.
1582 * nr[0] = anon pages to scan; nr[1] = file pages to scan
1584 static void get_scan_count(struct mem_cgroup_zone *mz, struct scan_control *sc,
1585 unsigned long *nr)
1587 unsigned long anon, file, free;
1588 unsigned long anon_prio, file_prio;
1589 unsigned long ap, fp;
1590 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(mz);
1591 u64 fraction[2], denominator;
1592 enum lru_list lru;
1593 int noswap = 0;
1594 bool force_scan = false;
1595 struct lruvec *lruvec;
1597 lruvec = mem_cgroup_zone_lruvec(mz->zone, mz->mem_cgroup);
1600 * If the zone or memcg is small, nr[l] can be 0. This
1601 * results in no scanning on this priority and a potential
1602 * priority drop. Global direct reclaim can go to the next
1603 * zone and tends to have no problems. Global kswapd is for
1604 * zone balancing and it needs to scan a minimum amount. When
1605 * reclaiming for a memcg, a priority drop can cause high
1606 * latencies, so it's better to scan a minimum amount there as
1607 * well.
1609 if (current_is_kswapd() && mz->zone->all_unreclaimable)
1610 force_scan = true;
1611 if (!global_reclaim(sc))
1612 force_scan = true;
1614 /* If we have no swap space, do not bother scanning anon pages. */
1615 if (!sc->may_swap || (nr_swap_pages <= 0)) {
1616 noswap = 1;
1617 fraction[0] = 0;
1618 fraction[1] = 1;
1619 denominator = 1;
1620 goto out;
1623 anon = get_lruvec_size(lruvec, LRU_ACTIVE_ANON) +
1624 get_lruvec_size(lruvec, LRU_INACTIVE_ANON);
1625 file = get_lruvec_size(lruvec, LRU_ACTIVE_FILE) +
1626 get_lruvec_size(lruvec, LRU_INACTIVE_FILE);
1628 if (global_reclaim(sc)) {
1629 free = zone_page_state(mz->zone, NR_FREE_PAGES);
1630 /* If we have very few page cache pages,
1631 force-scan anon pages. */
1632 if (unlikely(file + free <= high_wmark_pages(mz->zone))) {
1633 fraction[0] = 1;
1634 fraction[1] = 0;
1635 denominator = 1;
1636 goto out;
1641 * With swappiness at 100, anonymous and file have the same priority.
1642 * This scanning priority is essentially the inverse of IO cost.
1644 anon_prio = vmscan_swappiness(sc);
1645 file_prio = 200 - vmscan_swappiness(sc);
1648 * OK, so we have swap space and a fair amount of page cache
1649 * pages. We use the recently rotated / recently scanned
1650 * ratios to determine how valuable each cache is.
1652 * Because workloads change over time (and to avoid overflow)
1653 * we keep these statistics as a floating average, which ends
1654 * up weighing recent references more than old ones.
1656 * anon in [0], file in [1]
1658 spin_lock_irq(&mz->zone->lru_lock);
1659 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1660 reclaim_stat->recent_scanned[0] /= 2;
1661 reclaim_stat->recent_rotated[0] /= 2;
1664 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1665 reclaim_stat->recent_scanned[1] /= 2;
1666 reclaim_stat->recent_rotated[1] /= 2;
1670 * The amount of pressure on anon vs file pages is inversely
1671 * proportional to the fraction of recently scanned pages on
1672 * each list that were recently referenced and in active use.
1674 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
1675 ap /= reclaim_stat->recent_rotated[0] + 1;
1677 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
1678 fp /= reclaim_stat->recent_rotated[1] + 1;
1679 spin_unlock_irq(&mz->zone->lru_lock);
1681 fraction[0] = ap;
1682 fraction[1] = fp;
1683 denominator = ap + fp + 1;
1684 out:
1685 for_each_evictable_lru(lru) {
1686 int file = is_file_lru(lru);
1687 unsigned long scan;
1689 scan = get_lruvec_size(lruvec, lru);
1690 if (sc->priority || noswap || !vmscan_swappiness(sc)) {
1691 scan >>= sc->priority;
1692 if (!scan && force_scan)
1693 scan = SWAP_CLUSTER_MAX;
1694 scan = div64_u64(scan * fraction[file], denominator);
1696 nr[lru] = scan;
1700 /* Use reclaim/compaction for costly allocs or under memory pressure */
1701 static bool in_reclaim_compaction(struct scan_control *sc)
1703 if (COMPACTION_BUILD && sc->order &&
1704 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
1705 sc->priority < DEF_PRIORITY - 2))
1706 return true;
1708 return false;
1712 * Reclaim/compaction is used for high-order allocation requests. It reclaims
1713 * order-0 pages before compacting the zone. should_continue_reclaim() returns
1714 * true if more pages should be reclaimed such that when the page allocator
1715 * calls try_to_compact_zone() that it will have enough free pages to succeed.
1716 * It will give up earlier than that if there is difficulty reclaiming pages.
1718 static inline bool should_continue_reclaim(struct mem_cgroup_zone *mz,
1719 unsigned long nr_reclaimed,
1720 unsigned long nr_scanned,
1721 struct scan_control *sc)
1723 unsigned long pages_for_compaction;
1724 unsigned long inactive_lru_pages;
1725 struct lruvec *lruvec;
1727 /* If not in reclaim/compaction mode, stop */
1728 if (!in_reclaim_compaction(sc))
1729 return false;
1731 /* Consider stopping depending on scan and reclaim activity */
1732 if (sc->gfp_mask & __GFP_REPEAT) {
1734 * For __GFP_REPEAT allocations, stop reclaiming if the
1735 * full LRU list has been scanned and we are still failing
1736 * to reclaim pages. This full LRU scan is potentially
1737 * expensive but a __GFP_REPEAT caller really wants to succeed
1739 if (!nr_reclaimed && !nr_scanned)
1740 return false;
1741 } else {
1743 * For non-__GFP_REPEAT allocations which can presumably
1744 * fail without consequence, stop if we failed to reclaim
1745 * any pages from the last SWAP_CLUSTER_MAX number of
1746 * pages that were scanned. This will return to the
1747 * caller faster at the risk reclaim/compaction and
1748 * the resulting allocation attempt fails
1750 if (!nr_reclaimed)
1751 return false;
1755 * If we have not reclaimed enough pages for compaction and the
1756 * inactive lists are large enough, continue reclaiming
1758 lruvec = mem_cgroup_zone_lruvec(mz->zone, mz->mem_cgroup);
1759 pages_for_compaction = (2UL << sc->order);
1760 inactive_lru_pages = get_lruvec_size(lruvec, LRU_INACTIVE_FILE);
1761 if (nr_swap_pages > 0)
1762 inactive_lru_pages += get_lruvec_size(lruvec,
1763 LRU_INACTIVE_ANON);
1764 if (sc->nr_reclaimed < pages_for_compaction &&
1765 inactive_lru_pages > pages_for_compaction)
1766 return true;
1768 /* If compaction would go ahead or the allocation would succeed, stop */
1769 switch (compaction_suitable(mz->zone, sc->order)) {
1770 case COMPACT_PARTIAL:
1771 case COMPACT_CONTINUE:
1772 return false;
1773 default:
1774 return true;
1779 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
1781 static void shrink_mem_cgroup_zone(struct mem_cgroup_zone *mz,
1782 struct scan_control *sc)
1784 unsigned long nr[NR_LRU_LISTS];
1785 unsigned long nr_to_scan;
1786 enum lru_list lru;
1787 unsigned long nr_reclaimed, nr_scanned;
1788 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
1789 struct blk_plug plug;
1790 struct lruvec *lruvec;
1792 lruvec = mem_cgroup_zone_lruvec(mz->zone, mz->mem_cgroup);
1794 restart:
1795 nr_reclaimed = 0;
1796 nr_scanned = sc->nr_scanned;
1797 get_scan_count(mz, sc, nr);
1799 blk_start_plug(&plug);
1800 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
1801 nr[LRU_INACTIVE_FILE]) {
1802 for_each_evictable_lru(lru) {
1803 if (nr[lru]) {
1804 nr_to_scan = min_t(unsigned long,
1805 nr[lru], SWAP_CLUSTER_MAX);
1806 nr[lru] -= nr_to_scan;
1808 nr_reclaimed += shrink_list(lru, nr_to_scan,
1809 lruvec, sc);
1813 * On large memory systems, scan >> priority can become
1814 * really large. This is fine for the starting priority;
1815 * we want to put equal scanning pressure on each zone.
1816 * However, if the VM has a harder time of freeing pages,
1817 * with multiple processes reclaiming pages, the total
1818 * freeing target can get unreasonably large.
1820 if (nr_reclaimed >= nr_to_reclaim &&
1821 sc->priority < DEF_PRIORITY)
1822 break;
1824 blk_finish_plug(&plug);
1825 sc->nr_reclaimed += nr_reclaimed;
1828 * Even if we did not try to evict anon pages at all, we want to
1829 * rebalance the anon lru active/inactive ratio.
1831 if (inactive_anon_is_low(lruvec))
1832 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
1833 sc, LRU_ACTIVE_ANON);
1835 /* reclaim/compaction might need reclaim to continue */
1836 if (should_continue_reclaim(mz, nr_reclaimed,
1837 sc->nr_scanned - nr_scanned, sc))
1838 goto restart;
1840 throttle_vm_writeout(sc->gfp_mask);
1843 static void shrink_zone(struct zone *zone, struct scan_control *sc)
1845 struct mem_cgroup *root = sc->target_mem_cgroup;
1846 struct mem_cgroup_reclaim_cookie reclaim = {
1847 .zone = zone,
1848 .priority = sc->priority,
1850 struct mem_cgroup *memcg;
1852 memcg = mem_cgroup_iter(root, NULL, &reclaim);
1853 do {
1854 struct mem_cgroup_zone mz = {
1855 .mem_cgroup = memcg,
1856 .zone = zone,
1859 shrink_mem_cgroup_zone(&mz, sc);
1861 * Limit reclaim has historically picked one memcg and
1862 * scanned it with decreasing priority levels until
1863 * nr_to_reclaim had been reclaimed. This priority
1864 * cycle is thus over after a single memcg.
1866 * Direct reclaim and kswapd, on the other hand, have
1867 * to scan all memory cgroups to fulfill the overall
1868 * scan target for the zone.
1870 if (!global_reclaim(sc)) {
1871 mem_cgroup_iter_break(root, memcg);
1872 break;
1874 memcg = mem_cgroup_iter(root, memcg, &reclaim);
1875 } while (memcg);
1878 /* Returns true if compaction should go ahead for a high-order request */
1879 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
1881 unsigned long balance_gap, watermark;
1882 bool watermark_ok;
1884 /* Do not consider compaction for orders reclaim is meant to satisfy */
1885 if (sc->order <= PAGE_ALLOC_COSTLY_ORDER)
1886 return false;
1889 * Compaction takes time to run and there are potentially other
1890 * callers using the pages just freed. Continue reclaiming until
1891 * there is a buffer of free pages available to give compaction
1892 * a reasonable chance of completing and allocating the page
1894 balance_gap = min(low_wmark_pages(zone),
1895 (zone->present_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
1896 KSWAPD_ZONE_BALANCE_GAP_RATIO);
1897 watermark = high_wmark_pages(zone) + balance_gap + (2UL << sc->order);
1898 watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0);
1901 * If compaction is deferred, reclaim up to a point where
1902 * compaction will have a chance of success when re-enabled
1904 if (compaction_deferred(zone, sc->order))
1905 return watermark_ok;
1907 /* If compaction is not ready to start, keep reclaiming */
1908 if (!compaction_suitable(zone, sc->order))
1909 return false;
1911 return watermark_ok;
1915 * This is the direct reclaim path, for page-allocating processes. We only
1916 * try to reclaim pages from zones which will satisfy the caller's allocation
1917 * request.
1919 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
1920 * Because:
1921 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
1922 * allocation or
1923 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
1924 * must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
1925 * zone defense algorithm.
1927 * If a zone is deemed to be full of pinned pages then just give it a light
1928 * scan then give up on it.
1930 * This function returns true if a zone is being reclaimed for a costly
1931 * high-order allocation and compaction is ready to begin. This indicates to
1932 * the caller that it should consider retrying the allocation instead of
1933 * further reclaim.
1935 static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
1937 struct zoneref *z;
1938 struct zone *zone;
1939 unsigned long nr_soft_reclaimed;
1940 unsigned long nr_soft_scanned;
1941 bool aborted_reclaim = false;
1944 * If the number of buffer_heads in the machine exceeds the maximum
1945 * allowed level, force direct reclaim to scan the highmem zone as
1946 * highmem pages could be pinning lowmem pages storing buffer_heads
1948 if (buffer_heads_over_limit)
1949 sc->gfp_mask |= __GFP_HIGHMEM;
1951 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1952 gfp_zone(sc->gfp_mask), sc->nodemask) {
1953 if (!populated_zone(zone))
1954 continue;
1956 * Take care memory controller reclaiming has small influence
1957 * to global LRU.
1959 if (global_reclaim(sc)) {
1960 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1961 continue;
1962 if (zone->all_unreclaimable &&
1963 sc->priority != DEF_PRIORITY)
1964 continue; /* Let kswapd poll it */
1965 if (COMPACTION_BUILD) {
1967 * If we already have plenty of memory free for
1968 * compaction in this zone, don't free any more.
1969 * Even though compaction is invoked for any
1970 * non-zero order, only frequent costly order
1971 * reclamation is disruptive enough to become a
1972 * noticeable problem, like transparent huge
1973 * page allocations.
1975 if (compaction_ready(zone, sc)) {
1976 aborted_reclaim = true;
1977 continue;
1981 * This steals pages from memory cgroups over softlimit
1982 * and returns the number of reclaimed pages and
1983 * scanned pages. This works for global memory pressure
1984 * and balancing, not for a memcg's limit.
1986 nr_soft_scanned = 0;
1987 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
1988 sc->order, sc->gfp_mask,
1989 &nr_soft_scanned);
1990 sc->nr_reclaimed += nr_soft_reclaimed;
1991 sc->nr_scanned += nr_soft_scanned;
1992 /* need some check for avoid more shrink_zone() */
1995 shrink_zone(zone, sc);
1998 return aborted_reclaim;
2001 static bool zone_reclaimable(struct zone *zone)
2003 return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
2006 /* All zones in zonelist are unreclaimable? */
2007 static bool all_unreclaimable(struct zonelist *zonelist,
2008 struct scan_control *sc)
2010 struct zoneref *z;
2011 struct zone *zone;
2013 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2014 gfp_zone(sc->gfp_mask), sc->nodemask) {
2015 if (!populated_zone(zone))
2016 continue;
2017 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2018 continue;
2019 if (!zone->all_unreclaimable)
2020 return false;
2023 return true;
2027 * This is the main entry point to direct page reclaim.
2029 * If a full scan of the inactive list fails to free enough memory then we
2030 * are "out of memory" and something needs to be killed.
2032 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2033 * high - the zone may be full of dirty or under-writeback pages, which this
2034 * caller can't do much about. We kick the writeback threads and take explicit
2035 * naps in the hope that some of these pages can be written. But if the
2036 * allocating task holds filesystem locks which prevent writeout this might not
2037 * work, and the allocation attempt will fail.
2039 * returns: 0, if no pages reclaimed
2040 * else, the number of pages reclaimed
2042 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2043 struct scan_control *sc,
2044 struct shrink_control *shrink)
2046 unsigned long total_scanned = 0;
2047 struct reclaim_state *reclaim_state = current->reclaim_state;
2048 struct zoneref *z;
2049 struct zone *zone;
2050 unsigned long writeback_threshold;
2051 bool aborted_reclaim;
2053 delayacct_freepages_start();
2055 if (global_reclaim(sc))
2056 count_vm_event(ALLOCSTALL);
2058 do {
2059 sc->nr_scanned = 0;
2060 aborted_reclaim = shrink_zones(zonelist, sc);
2063 * Don't shrink slabs when reclaiming memory from
2064 * over limit cgroups
2066 if (global_reclaim(sc)) {
2067 unsigned long lru_pages = 0;
2068 for_each_zone_zonelist(zone, z, zonelist,
2069 gfp_zone(sc->gfp_mask)) {
2070 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2071 continue;
2073 lru_pages += zone_reclaimable_pages(zone);
2076 shrink_slab(shrink, sc->nr_scanned, lru_pages);
2077 if (reclaim_state) {
2078 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2079 reclaim_state->reclaimed_slab = 0;
2082 total_scanned += sc->nr_scanned;
2083 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2084 goto out;
2087 * Try to write back as many pages as we just scanned. This
2088 * tends to cause slow streaming writers to write data to the
2089 * disk smoothly, at the dirtying rate, which is nice. But
2090 * that's undesirable in laptop mode, where we *want* lumpy
2091 * writeout. So in laptop mode, write out the whole world.
2093 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2094 if (total_scanned > writeback_threshold) {
2095 wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2096 WB_REASON_TRY_TO_FREE_PAGES);
2097 sc->may_writepage = 1;
2100 /* Take a nap, wait for some writeback to complete */
2101 if (!sc->hibernation_mode && sc->nr_scanned &&
2102 sc->priority < DEF_PRIORITY - 2) {
2103 struct zone *preferred_zone;
2105 first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask),
2106 &cpuset_current_mems_allowed,
2107 &preferred_zone);
2108 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10);
2110 } while (--sc->priority >= 0);
2112 out:
2113 delayacct_freepages_end();
2115 if (sc->nr_reclaimed)
2116 return sc->nr_reclaimed;
2119 * As hibernation is going on, kswapd is freezed so that it can't mark
2120 * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
2121 * check.
2123 if (oom_killer_disabled)
2124 return 0;
2126 /* Aborted reclaim to try compaction? don't OOM, then */
2127 if (aborted_reclaim)
2128 return 1;
2130 /* top priority shrink_zones still had more to do? don't OOM, then */
2131 if (global_reclaim(sc) && !all_unreclaimable(zonelist, sc))
2132 return 1;
2134 return 0;
2137 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2138 gfp_t gfp_mask, nodemask_t *nodemask)
2140 unsigned long nr_reclaimed;
2141 struct scan_control sc = {
2142 .gfp_mask = gfp_mask,
2143 .may_writepage = !laptop_mode,
2144 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2145 .may_unmap = 1,
2146 .may_swap = 1,
2147 .order = order,
2148 .priority = DEF_PRIORITY,
2149 .target_mem_cgroup = NULL,
2150 .nodemask = nodemask,
2152 struct shrink_control shrink = {
2153 .gfp_mask = sc.gfp_mask,
2156 trace_mm_vmscan_direct_reclaim_begin(order,
2157 sc.may_writepage,
2158 gfp_mask);
2160 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2162 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2164 return nr_reclaimed;
2167 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
2169 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
2170 gfp_t gfp_mask, bool noswap,
2171 struct zone *zone,
2172 unsigned long *nr_scanned)
2174 struct scan_control sc = {
2175 .nr_scanned = 0,
2176 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2177 .may_writepage = !laptop_mode,
2178 .may_unmap = 1,
2179 .may_swap = !noswap,
2180 .order = 0,
2181 .priority = 0,
2182 .target_mem_cgroup = memcg,
2184 struct mem_cgroup_zone mz = {
2185 .mem_cgroup = memcg,
2186 .zone = zone,
2189 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2190 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2192 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
2193 sc.may_writepage,
2194 sc.gfp_mask);
2197 * NOTE: Although we can get the priority field, using it
2198 * here is not a good idea, since it limits the pages we can scan.
2199 * if we don't reclaim here, the shrink_zone from balance_pgdat
2200 * will pick up pages from other mem cgroup's as well. We hack
2201 * the priority and make it zero.
2203 shrink_mem_cgroup_zone(&mz, &sc);
2205 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2207 *nr_scanned = sc.nr_scanned;
2208 return sc.nr_reclaimed;
2211 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
2212 gfp_t gfp_mask,
2213 bool noswap)
2215 struct zonelist *zonelist;
2216 unsigned long nr_reclaimed;
2217 int nid;
2218 struct scan_control sc = {
2219 .may_writepage = !laptop_mode,
2220 .may_unmap = 1,
2221 .may_swap = !noswap,
2222 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2223 .order = 0,
2224 .priority = DEF_PRIORITY,
2225 .target_mem_cgroup = memcg,
2226 .nodemask = NULL, /* we don't care the placement */
2227 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2228 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2230 struct shrink_control shrink = {
2231 .gfp_mask = sc.gfp_mask,
2235 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2236 * take care of from where we get pages. So the node where we start the
2237 * scan does not need to be the current node.
2239 nid = mem_cgroup_select_victim_node(memcg);
2241 zonelist = NODE_DATA(nid)->node_zonelists;
2243 trace_mm_vmscan_memcg_reclaim_begin(0,
2244 sc.may_writepage,
2245 sc.gfp_mask);
2247 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2249 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2251 return nr_reclaimed;
2253 #endif
2255 static void age_active_anon(struct zone *zone, struct scan_control *sc)
2257 struct mem_cgroup *memcg;
2259 if (!total_swap_pages)
2260 return;
2262 memcg = mem_cgroup_iter(NULL, NULL, NULL);
2263 do {
2264 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2266 if (inactive_anon_is_low(lruvec))
2267 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2268 sc, LRU_ACTIVE_ANON);
2270 memcg = mem_cgroup_iter(NULL, memcg, NULL);
2271 } while (memcg);
2275 * pgdat_balanced is used when checking if a node is balanced for high-order
2276 * allocations. Only zones that meet watermarks and are in a zone allowed
2277 * by the callers classzone_idx are added to balanced_pages. The total of
2278 * balanced pages must be at least 25% of the zones allowed by classzone_idx
2279 * for the node to be considered balanced. Forcing all zones to be balanced
2280 * for high orders can cause excessive reclaim when there are imbalanced zones.
2281 * The choice of 25% is due to
2282 * o a 16M DMA zone that is balanced will not balance a zone on any
2283 * reasonable sized machine
2284 * o On all other machines, the top zone must be at least a reasonable
2285 * percentage of the middle zones. For example, on 32-bit x86, highmem
2286 * would need to be at least 256M for it to be balance a whole node.
2287 * Similarly, on x86-64 the Normal zone would need to be at least 1G
2288 * to balance a node on its own. These seemed like reasonable ratios.
2290 static bool pgdat_balanced(pg_data_t *pgdat, unsigned long balanced_pages,
2291 int classzone_idx)
2293 unsigned long present_pages = 0;
2294 int i;
2296 for (i = 0; i <= classzone_idx; i++)
2297 present_pages += pgdat->node_zones[i].present_pages;
2299 /* A special case here: if zone has no page, we think it's balanced */
2300 return balanced_pages >= (present_pages >> 2);
2303 /* is kswapd sleeping prematurely? */
2304 static bool sleeping_prematurely(pg_data_t *pgdat, int order, long remaining,
2305 int classzone_idx)
2307 int i;
2308 unsigned long balanced = 0;
2309 bool all_zones_ok = true;
2311 /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2312 if (remaining)
2313 return true;
2315 /* Check the watermark levels */
2316 for (i = 0; i <= classzone_idx; i++) {
2317 struct zone *zone = pgdat->node_zones + i;
2319 if (!populated_zone(zone))
2320 continue;
2323 * balance_pgdat() skips over all_unreclaimable after
2324 * DEF_PRIORITY. Effectively, it considers them balanced so
2325 * they must be considered balanced here as well if kswapd
2326 * is to sleep
2328 if (zone->all_unreclaimable) {
2329 balanced += zone->present_pages;
2330 continue;
2333 if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone),
2334 i, 0))
2335 all_zones_ok = false;
2336 else
2337 balanced += zone->present_pages;
2341 * For high-order requests, the balanced zones must contain at least
2342 * 25% of the nodes pages for kswapd to sleep. For order-0, all zones
2343 * must be balanced
2345 if (order)
2346 return !pgdat_balanced(pgdat, balanced, classzone_idx);
2347 else
2348 return !all_zones_ok;
2352 * For kswapd, balance_pgdat() will work across all this node's zones until
2353 * they are all at high_wmark_pages(zone).
2355 * Returns the final order kswapd was reclaiming at
2357 * There is special handling here for zones which are full of pinned pages.
2358 * This can happen if the pages are all mlocked, or if they are all used by
2359 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
2360 * What we do is to detect the case where all pages in the zone have been
2361 * scanned twice and there has been zero successful reclaim. Mark the zone as
2362 * dead and from now on, only perform a short scan. Basically we're polling
2363 * the zone for when the problem goes away.
2365 * kswapd scans the zones in the highmem->normal->dma direction. It skips
2366 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2367 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2368 * lower zones regardless of the number of free pages in the lower zones. This
2369 * interoperates with the page allocator fallback scheme to ensure that aging
2370 * of pages is balanced across the zones.
2372 static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
2373 int *classzone_idx)
2375 int all_zones_ok;
2376 unsigned long balanced;
2377 int i;
2378 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */
2379 unsigned long total_scanned;
2380 struct reclaim_state *reclaim_state = current->reclaim_state;
2381 unsigned long nr_soft_reclaimed;
2382 unsigned long nr_soft_scanned;
2383 struct scan_control sc = {
2384 .gfp_mask = GFP_KERNEL,
2385 .may_unmap = 1,
2386 .may_swap = 1,
2388 * kswapd doesn't want to be bailed out while reclaim. because
2389 * we want to put equal scanning pressure on each zone.
2391 .nr_to_reclaim = ULONG_MAX,
2392 .order = order,
2393 .target_mem_cgroup = NULL,
2395 struct shrink_control shrink = {
2396 .gfp_mask = sc.gfp_mask,
2398 loop_again:
2399 total_scanned = 0;
2400 sc.priority = DEF_PRIORITY;
2401 sc.nr_reclaimed = 0;
2402 sc.may_writepage = !laptop_mode;
2403 count_vm_event(PAGEOUTRUN);
2405 do {
2406 unsigned long lru_pages = 0;
2407 int has_under_min_watermark_zone = 0;
2409 all_zones_ok = 1;
2410 balanced = 0;
2413 * Scan in the highmem->dma direction for the highest
2414 * zone which needs scanning
2416 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2417 struct zone *zone = pgdat->node_zones + i;
2419 if (!populated_zone(zone))
2420 continue;
2422 if (zone->all_unreclaimable &&
2423 sc.priority != DEF_PRIORITY)
2424 continue;
2427 * Do some background aging of the anon list, to give
2428 * pages a chance to be referenced before reclaiming.
2430 age_active_anon(zone, &sc);
2433 * If the number of buffer_heads in the machine
2434 * exceeds the maximum allowed level and this node
2435 * has a highmem zone, force kswapd to reclaim from
2436 * it to relieve lowmem pressure.
2438 if (buffer_heads_over_limit && is_highmem_idx(i)) {
2439 end_zone = i;
2440 break;
2443 if (!zone_watermark_ok_safe(zone, order,
2444 high_wmark_pages(zone), 0, 0)) {
2445 end_zone = i;
2446 break;
2447 } else {
2448 /* If balanced, clear the congested flag */
2449 zone_clear_flag(zone, ZONE_CONGESTED);
2452 if (i < 0)
2453 goto out;
2455 for (i = 0; i <= end_zone; i++) {
2456 struct zone *zone = pgdat->node_zones + i;
2458 lru_pages += zone_reclaimable_pages(zone);
2462 * Now scan the zone in the dma->highmem direction, stopping
2463 * at the last zone which needs scanning.
2465 * We do this because the page allocator works in the opposite
2466 * direction. This prevents the page allocator from allocating
2467 * pages behind kswapd's direction of progress, which would
2468 * cause too much scanning of the lower zones.
2470 for (i = 0; i <= end_zone; i++) {
2471 struct zone *zone = pgdat->node_zones + i;
2472 int nr_slab, testorder;
2473 unsigned long balance_gap;
2475 if (!populated_zone(zone))
2476 continue;
2478 if (zone->all_unreclaimable &&
2479 sc.priority != DEF_PRIORITY)
2480 continue;
2482 sc.nr_scanned = 0;
2484 nr_soft_scanned = 0;
2486 * Call soft limit reclaim before calling shrink_zone.
2488 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2489 order, sc.gfp_mask,
2490 &nr_soft_scanned);
2491 sc.nr_reclaimed += nr_soft_reclaimed;
2492 total_scanned += nr_soft_scanned;
2495 * We put equal pressure on every zone, unless
2496 * one zone has way too many pages free
2497 * already. The "too many pages" is defined
2498 * as the high wmark plus a "gap" where the
2499 * gap is either the low watermark or 1%
2500 * of the zone, whichever is smaller.
2502 balance_gap = min(low_wmark_pages(zone),
2503 (zone->present_pages +
2504 KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2505 KSWAPD_ZONE_BALANCE_GAP_RATIO);
2507 * Kswapd reclaims only single pages with compaction
2508 * enabled. Trying too hard to reclaim until contiguous
2509 * free pages have become available can hurt performance
2510 * by evicting too much useful data from memory.
2511 * Do not reclaim more than needed for compaction.
2513 testorder = order;
2514 if (COMPACTION_BUILD && order &&
2515 compaction_suitable(zone, order) !=
2516 COMPACT_SKIPPED)
2517 testorder = 0;
2519 if ((buffer_heads_over_limit && is_highmem_idx(i)) ||
2520 !zone_watermark_ok_safe(zone, testorder,
2521 high_wmark_pages(zone) + balance_gap,
2522 end_zone, 0)) {
2523 shrink_zone(zone, &sc);
2525 reclaim_state->reclaimed_slab = 0;
2526 nr_slab = shrink_slab(&shrink, sc.nr_scanned, lru_pages);
2527 sc.nr_reclaimed += reclaim_state->reclaimed_slab;
2528 total_scanned += sc.nr_scanned;
2530 if (nr_slab == 0 && !zone_reclaimable(zone))
2531 zone->all_unreclaimable = 1;
2535 * If we've done a decent amount of scanning and
2536 * the reclaim ratio is low, start doing writepage
2537 * even in laptop mode
2539 if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
2540 total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
2541 sc.may_writepage = 1;
2543 if (zone->all_unreclaimable) {
2544 if (end_zone && end_zone == i)
2545 end_zone--;
2546 continue;
2549 if (!zone_watermark_ok_safe(zone, testorder,
2550 high_wmark_pages(zone), end_zone, 0)) {
2551 all_zones_ok = 0;
2553 * We are still under min water mark. This
2554 * means that we have a GFP_ATOMIC allocation
2555 * failure risk. Hurry up!
2557 if (!zone_watermark_ok_safe(zone, order,
2558 min_wmark_pages(zone), end_zone, 0))
2559 has_under_min_watermark_zone = 1;
2560 } else {
2562 * If a zone reaches its high watermark,
2563 * consider it to be no longer congested. It's
2564 * possible there are dirty pages backed by
2565 * congested BDIs but as pressure is relieved,
2566 * spectulatively avoid congestion waits
2568 zone_clear_flag(zone, ZONE_CONGESTED);
2569 if (i <= *classzone_idx)
2570 balanced += zone->present_pages;
2574 if (all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))
2575 break; /* kswapd: all done */
2577 * OK, kswapd is getting into trouble. Take a nap, then take
2578 * another pass across the zones.
2580 if (total_scanned && (sc.priority < DEF_PRIORITY - 2)) {
2581 if (has_under_min_watermark_zone)
2582 count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT);
2583 else
2584 congestion_wait(BLK_RW_ASYNC, HZ/10);
2588 * We do this so kswapd doesn't build up large priorities for
2589 * example when it is freeing in parallel with allocators. It
2590 * matches the direct reclaim path behaviour in terms of impact
2591 * on zone->*_priority.
2593 if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
2594 break;
2595 } while (--sc.priority >= 0);
2596 out:
2599 * order-0: All zones must meet high watermark for a balanced node
2600 * high-order: Balanced zones must make up at least 25% of the node
2601 * for the node to be balanced
2603 if (!(all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))) {
2604 cond_resched();
2606 try_to_freeze();
2609 * Fragmentation may mean that the system cannot be
2610 * rebalanced for high-order allocations in all zones.
2611 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
2612 * it means the zones have been fully scanned and are still
2613 * not balanced. For high-order allocations, there is
2614 * little point trying all over again as kswapd may
2615 * infinite loop.
2617 * Instead, recheck all watermarks at order-0 as they
2618 * are the most important. If watermarks are ok, kswapd will go
2619 * back to sleep. High-order users can still perform direct
2620 * reclaim if they wish.
2622 if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
2623 order = sc.order = 0;
2625 goto loop_again;
2629 * If kswapd was reclaiming at a higher order, it has the option of
2630 * sleeping without all zones being balanced. Before it does, it must
2631 * ensure that the watermarks for order-0 on *all* zones are met and
2632 * that the congestion flags are cleared. The congestion flag must
2633 * be cleared as kswapd is the only mechanism that clears the flag
2634 * and it is potentially going to sleep here.
2636 if (order) {
2637 int zones_need_compaction = 1;
2639 for (i = 0; i <= end_zone; i++) {
2640 struct zone *zone = pgdat->node_zones + i;
2642 if (!populated_zone(zone))
2643 continue;
2645 if (zone->all_unreclaimable &&
2646 sc.priority != DEF_PRIORITY)
2647 continue;
2649 /* Would compaction fail due to lack of free memory? */
2650 if (COMPACTION_BUILD &&
2651 compaction_suitable(zone, order) == COMPACT_SKIPPED)
2652 goto loop_again;
2654 /* Confirm the zone is balanced for order-0 */
2655 if (!zone_watermark_ok(zone, 0,
2656 high_wmark_pages(zone), 0, 0)) {
2657 order = sc.order = 0;
2658 goto loop_again;
2661 /* Check if the memory needs to be defragmented. */
2662 if (zone_watermark_ok(zone, order,
2663 low_wmark_pages(zone), *classzone_idx, 0))
2664 zones_need_compaction = 0;
2666 /* If balanced, clear the congested flag */
2667 zone_clear_flag(zone, ZONE_CONGESTED);
2670 if (zones_need_compaction)
2671 compact_pgdat(pgdat, order);
2675 * Return the order we were reclaiming at so sleeping_prematurely()
2676 * makes a decision on the order we were last reclaiming at. However,
2677 * if another caller entered the allocator slow path while kswapd
2678 * was awake, order will remain at the higher level
2680 *classzone_idx = end_zone;
2681 return order;
2684 static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
2686 long remaining = 0;
2687 DEFINE_WAIT(wait);
2689 if (freezing(current) || kthread_should_stop())
2690 return;
2692 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2694 /* Try to sleep for a short interval */
2695 if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2696 remaining = schedule_timeout(HZ/10);
2697 finish_wait(&pgdat->kswapd_wait, &wait);
2698 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2702 * After a short sleep, check if it was a premature sleep. If not, then
2703 * go fully to sleep until explicitly woken up.
2705 if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2706 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
2709 * vmstat counters are not perfectly accurate and the estimated
2710 * value for counters such as NR_FREE_PAGES can deviate from the
2711 * true value by nr_online_cpus * threshold. To avoid the zone
2712 * watermarks being breached while under pressure, we reduce the
2713 * per-cpu vmstat threshold while kswapd is awake and restore
2714 * them before going back to sleep.
2716 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
2717 schedule();
2718 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
2719 } else {
2720 if (remaining)
2721 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
2722 else
2723 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
2725 finish_wait(&pgdat->kswapd_wait, &wait);
2729 * The background pageout daemon, started as a kernel thread
2730 * from the init process.
2732 * This basically trickles out pages so that we have _some_
2733 * free memory available even if there is no other activity
2734 * that frees anything up. This is needed for things like routing
2735 * etc, where we otherwise might have all activity going on in
2736 * asynchronous contexts that cannot page things out.
2738 * If there are applications that are active memory-allocators
2739 * (most normal use), this basically shouldn't matter.
2741 static int kswapd(void *p)
2743 unsigned long order, new_order;
2744 unsigned balanced_order;
2745 int classzone_idx, new_classzone_idx;
2746 int balanced_classzone_idx;
2747 pg_data_t *pgdat = (pg_data_t*)p;
2748 struct task_struct *tsk = current;
2750 struct reclaim_state reclaim_state = {
2751 .reclaimed_slab = 0,
2753 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2755 lockdep_set_current_reclaim_state(GFP_KERNEL);
2757 if (!cpumask_empty(cpumask))
2758 set_cpus_allowed_ptr(tsk, cpumask);
2759 current->reclaim_state = &reclaim_state;
2762 * Tell the memory management that we're a "memory allocator",
2763 * and that if we need more memory we should get access to it
2764 * regardless (see "__alloc_pages()"). "kswapd" should
2765 * never get caught in the normal page freeing logic.
2767 * (Kswapd normally doesn't need memory anyway, but sometimes
2768 * you need a small amount of memory in order to be able to
2769 * page out something else, and this flag essentially protects
2770 * us from recursively trying to free more memory as we're
2771 * trying to free the first piece of memory in the first place).
2773 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
2774 set_freezable();
2776 order = new_order = 0;
2777 balanced_order = 0;
2778 classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
2779 balanced_classzone_idx = classzone_idx;
2780 for ( ; ; ) {
2781 int ret;
2784 * If the last balance_pgdat was unsuccessful it's unlikely a
2785 * new request of a similar or harder type will succeed soon
2786 * so consider going to sleep on the basis we reclaimed at
2788 if (balanced_classzone_idx >= new_classzone_idx &&
2789 balanced_order == new_order) {
2790 new_order = pgdat->kswapd_max_order;
2791 new_classzone_idx = pgdat->classzone_idx;
2792 pgdat->kswapd_max_order = 0;
2793 pgdat->classzone_idx = pgdat->nr_zones - 1;
2796 if (order < new_order || classzone_idx > new_classzone_idx) {
2798 * Don't sleep if someone wants a larger 'order'
2799 * allocation or has tigher zone constraints
2801 order = new_order;
2802 classzone_idx = new_classzone_idx;
2803 } else {
2804 kswapd_try_to_sleep(pgdat, balanced_order,
2805 balanced_classzone_idx);
2806 order = pgdat->kswapd_max_order;
2807 classzone_idx = pgdat->classzone_idx;
2808 new_order = order;
2809 new_classzone_idx = classzone_idx;
2810 pgdat->kswapd_max_order = 0;
2811 pgdat->classzone_idx = pgdat->nr_zones - 1;
2814 ret = try_to_freeze();
2815 if (kthread_should_stop())
2816 break;
2819 * We can speed up thawing tasks if we don't call balance_pgdat
2820 * after returning from the refrigerator
2822 if (!ret) {
2823 trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
2824 balanced_classzone_idx = classzone_idx;
2825 balanced_order = balance_pgdat(pgdat, order,
2826 &balanced_classzone_idx);
2829 return 0;
2833 * A zone is low on free memory, so wake its kswapd task to service it.
2835 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
2837 pg_data_t *pgdat;
2839 if (!populated_zone(zone))
2840 return;
2842 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2843 return;
2844 pgdat = zone->zone_pgdat;
2845 if (pgdat->kswapd_max_order < order) {
2846 pgdat->kswapd_max_order = order;
2847 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
2849 if (!waitqueue_active(&pgdat->kswapd_wait))
2850 return;
2851 if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
2852 return;
2854 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
2855 wake_up_interruptible(&pgdat->kswapd_wait);
2859 * The reclaimable count would be mostly accurate.
2860 * The less reclaimable pages may be
2861 * - mlocked pages, which will be moved to unevictable list when encountered
2862 * - mapped pages, which may require several travels to be reclaimed
2863 * - dirty pages, which is not "instantly" reclaimable
2865 unsigned long global_reclaimable_pages(void)
2867 int nr;
2869 nr = global_page_state(NR_ACTIVE_FILE) +
2870 global_page_state(NR_INACTIVE_FILE);
2872 if (nr_swap_pages > 0)
2873 nr += global_page_state(NR_ACTIVE_ANON) +
2874 global_page_state(NR_INACTIVE_ANON);
2876 return nr;
2879 unsigned long zone_reclaimable_pages(struct zone *zone)
2881 int nr;
2883 nr = zone_page_state(zone, NR_ACTIVE_FILE) +
2884 zone_page_state(zone, NR_INACTIVE_FILE);
2886 if (nr_swap_pages > 0)
2887 nr += zone_page_state(zone, NR_ACTIVE_ANON) +
2888 zone_page_state(zone, NR_INACTIVE_ANON);
2890 return nr;
2893 #ifdef CONFIG_HIBERNATION
2895 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
2896 * freed pages.
2898 * Rather than trying to age LRUs the aim is to preserve the overall
2899 * LRU order by reclaiming preferentially
2900 * inactive > active > active referenced > active mapped
2902 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
2904 struct reclaim_state reclaim_state;
2905 struct scan_control sc = {
2906 .gfp_mask = GFP_HIGHUSER_MOVABLE,
2907 .may_swap = 1,
2908 .may_unmap = 1,
2909 .may_writepage = 1,
2910 .nr_to_reclaim = nr_to_reclaim,
2911 .hibernation_mode = 1,
2912 .order = 0,
2913 .priority = DEF_PRIORITY,
2915 struct shrink_control shrink = {
2916 .gfp_mask = sc.gfp_mask,
2918 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
2919 struct task_struct *p = current;
2920 unsigned long nr_reclaimed;
2922 p->flags |= PF_MEMALLOC;
2923 lockdep_set_current_reclaim_state(sc.gfp_mask);
2924 reclaim_state.reclaimed_slab = 0;
2925 p->reclaim_state = &reclaim_state;
2927 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2929 p->reclaim_state = NULL;
2930 lockdep_clear_current_reclaim_state();
2931 p->flags &= ~PF_MEMALLOC;
2933 return nr_reclaimed;
2935 #endif /* CONFIG_HIBERNATION */
2937 /* It's optimal to keep kswapds on the same CPUs as their memory, but
2938 not required for correctness. So if the last cpu in a node goes
2939 away, we get changed to run anywhere: as the first one comes back,
2940 restore their cpu bindings. */
2941 static int __devinit cpu_callback(struct notifier_block *nfb,
2942 unsigned long action, void *hcpu)
2944 int nid;
2946 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
2947 for_each_node_state(nid, N_HIGH_MEMORY) {
2948 pg_data_t *pgdat = NODE_DATA(nid);
2949 const struct cpumask *mask;
2951 mask = cpumask_of_node(pgdat->node_id);
2953 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
2954 /* One of our CPUs online: restore mask */
2955 set_cpus_allowed_ptr(pgdat->kswapd, mask);
2958 return NOTIFY_OK;
2962 * This kswapd start function will be called by init and node-hot-add.
2963 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
2965 int kswapd_run(int nid)
2967 pg_data_t *pgdat = NODE_DATA(nid);
2968 int ret = 0;
2970 if (pgdat->kswapd)
2971 return 0;
2973 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
2974 if (IS_ERR(pgdat->kswapd)) {
2975 /* failure at boot is fatal */
2976 BUG_ON(system_state == SYSTEM_BOOTING);
2977 printk("Failed to start kswapd on node %d\n",nid);
2978 ret = -1;
2980 return ret;
2984 * Called by memory hotplug when all memory in a node is offlined.
2986 void kswapd_stop(int nid)
2988 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
2990 if (kswapd)
2991 kthread_stop(kswapd);
2994 static int __init kswapd_init(void)
2996 int nid;
2998 swap_setup();
2999 for_each_node_state(nid, N_HIGH_MEMORY)
3000 kswapd_run(nid);
3001 hotcpu_notifier(cpu_callback, 0);
3002 return 0;
3005 module_init(kswapd_init)
3007 #ifdef CONFIG_NUMA
3009 * Zone reclaim mode
3011 * If non-zero call zone_reclaim when the number of free pages falls below
3012 * the watermarks.
3014 int zone_reclaim_mode __read_mostly;
3016 #define RECLAIM_OFF 0
3017 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
3018 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
3019 #define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */
3022 * Priority for ZONE_RECLAIM. This determines the fraction of pages
3023 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3024 * a zone.
3026 #define ZONE_RECLAIM_PRIORITY 4
3029 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3030 * occur.
3032 int sysctl_min_unmapped_ratio = 1;
3035 * If the number of slab pages in a zone grows beyond this percentage then
3036 * slab reclaim needs to occur.
3038 int sysctl_min_slab_ratio = 5;
3040 static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3042 unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3043 unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3044 zone_page_state(zone, NR_ACTIVE_FILE);
3047 * It's possible for there to be more file mapped pages than
3048 * accounted for by the pages on the file LRU lists because
3049 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3051 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3054 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
3055 static long zone_pagecache_reclaimable(struct zone *zone)
3057 long nr_pagecache_reclaimable;
3058 long delta = 0;
3061 * If RECLAIM_SWAP is set, then all file pages are considered
3062 * potentially reclaimable. Otherwise, we have to worry about
3063 * pages like swapcache and zone_unmapped_file_pages() provides
3064 * a better estimate
3066 if (zone_reclaim_mode & RECLAIM_SWAP)
3067 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3068 else
3069 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3071 /* If we can't clean pages, remove dirty pages from consideration */
3072 if (!(zone_reclaim_mode & RECLAIM_WRITE))
3073 delta += zone_page_state(zone, NR_FILE_DIRTY);
3075 /* Watch for any possible underflows due to delta */
3076 if (unlikely(delta > nr_pagecache_reclaimable))
3077 delta = nr_pagecache_reclaimable;
3079 return nr_pagecache_reclaimable - delta;
3083 * Try to free up some pages from this zone through reclaim.
3085 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3087 /* Minimum pages needed in order to stay on node */
3088 const unsigned long nr_pages = 1 << order;
3089 struct task_struct *p = current;
3090 struct reclaim_state reclaim_state;
3091 struct scan_control sc = {
3092 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3093 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
3094 .may_swap = 1,
3095 .nr_to_reclaim = max_t(unsigned long, nr_pages,
3096 SWAP_CLUSTER_MAX),
3097 .gfp_mask = gfp_mask,
3098 .order = order,
3099 .priority = ZONE_RECLAIM_PRIORITY,
3101 struct shrink_control shrink = {
3102 .gfp_mask = sc.gfp_mask,
3104 unsigned long nr_slab_pages0, nr_slab_pages1;
3106 cond_resched();
3108 * We need to be able to allocate from the reserves for RECLAIM_SWAP
3109 * and we also need to be able to write out pages for RECLAIM_WRITE
3110 * and RECLAIM_SWAP.
3112 p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3113 lockdep_set_current_reclaim_state(gfp_mask);
3114 reclaim_state.reclaimed_slab = 0;
3115 p->reclaim_state = &reclaim_state;
3117 if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3119 * Free memory by calling shrink zone with increasing
3120 * priorities until we have enough memory freed.
3122 do {
3123 shrink_zone(zone, &sc);
3124 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3127 nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3128 if (nr_slab_pages0 > zone->min_slab_pages) {
3130 * shrink_slab() does not currently allow us to determine how
3131 * many pages were freed in this zone. So we take the current
3132 * number of slab pages and shake the slab until it is reduced
3133 * by the same nr_pages that we used for reclaiming unmapped
3134 * pages.
3136 * Note that shrink_slab will free memory on all zones and may
3137 * take a long time.
3139 for (;;) {
3140 unsigned long lru_pages = zone_reclaimable_pages(zone);
3142 /* No reclaimable slab or very low memory pressure */
3143 if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
3144 break;
3146 /* Freed enough memory */
3147 nr_slab_pages1 = zone_page_state(zone,
3148 NR_SLAB_RECLAIMABLE);
3149 if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
3150 break;
3154 * Update nr_reclaimed by the number of slab pages we
3155 * reclaimed from this zone.
3157 nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3158 if (nr_slab_pages1 < nr_slab_pages0)
3159 sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
3162 p->reclaim_state = NULL;
3163 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3164 lockdep_clear_current_reclaim_state();
3165 return sc.nr_reclaimed >= nr_pages;
3168 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3170 int node_id;
3171 int ret;
3174 * Zone reclaim reclaims unmapped file backed pages and
3175 * slab pages if we are over the defined limits.
3177 * A small portion of unmapped file backed pages is needed for
3178 * file I/O otherwise pages read by file I/O will be immediately
3179 * thrown out if the zone is overallocated. So we do not reclaim
3180 * if less than a specified percentage of the zone is used by
3181 * unmapped file backed pages.
3183 if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3184 zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3185 return ZONE_RECLAIM_FULL;
3187 if (zone->all_unreclaimable)
3188 return ZONE_RECLAIM_FULL;
3191 * Do not scan if the allocation should not be delayed.
3193 if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3194 return ZONE_RECLAIM_NOSCAN;
3197 * Only run zone reclaim on the local zone or on zones that do not
3198 * have associated processors. This will favor the local processor
3199 * over remote processors and spread off node memory allocations
3200 * as wide as possible.
3202 node_id = zone_to_nid(zone);
3203 if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3204 return ZONE_RECLAIM_NOSCAN;
3206 if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
3207 return ZONE_RECLAIM_NOSCAN;
3209 ret = __zone_reclaim(zone, gfp_mask, order);
3210 zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
3212 if (!ret)
3213 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3215 return ret;
3217 #endif
3220 * page_evictable - test whether a page is evictable
3221 * @page: the page to test
3222 * @vma: the VMA in which the page is or will be mapped, may be NULL
3224 * Test whether page is evictable--i.e., should be placed on active/inactive
3225 * lists vs unevictable list. The vma argument is !NULL when called from the
3226 * fault path to determine how to instantate a new page.
3228 * Reasons page might not be evictable:
3229 * (1) page's mapping marked unevictable
3230 * (2) page is part of an mlocked VMA
3233 int page_evictable(struct page *page, struct vm_area_struct *vma)
3236 if (mapping_unevictable(page_mapping(page)))
3237 return 0;
3239 if (PageMlocked(page) || (vma && mlocked_vma_newpage(vma, page)))
3240 return 0;
3242 return 1;
3245 #ifdef CONFIG_SHMEM
3247 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3248 * @pages: array of pages to check
3249 * @nr_pages: number of pages to check
3251 * Checks pages for evictability and moves them to the appropriate lru list.
3253 * This function is only used for SysV IPC SHM_UNLOCK.
3255 void check_move_unevictable_pages(struct page **pages, int nr_pages)
3257 struct lruvec *lruvec;
3258 struct zone *zone = NULL;
3259 int pgscanned = 0;
3260 int pgrescued = 0;
3261 int i;
3263 for (i = 0; i < nr_pages; i++) {
3264 struct page *page = pages[i];
3265 struct zone *pagezone;
3267 pgscanned++;
3268 pagezone = page_zone(page);
3269 if (pagezone != zone) {
3270 if (zone)
3271 spin_unlock_irq(&zone->lru_lock);
3272 zone = pagezone;
3273 spin_lock_irq(&zone->lru_lock);
3276 if (!PageLRU(page) || !PageUnevictable(page))
3277 continue;
3279 if (page_evictable(page, NULL)) {
3280 enum lru_list lru = page_lru_base_type(page);
3282 VM_BUG_ON(PageActive(page));
3283 ClearPageUnevictable(page);
3284 __dec_zone_state(zone, NR_UNEVICTABLE);
3285 lruvec = mem_cgroup_lru_move_lists(zone, page,
3286 LRU_UNEVICTABLE, lru);
3287 list_move(&page->lru, &lruvec->lists[lru]);
3288 __inc_zone_state(zone, NR_INACTIVE_ANON + lru);
3289 pgrescued++;
3293 if (zone) {
3294 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3295 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3296 spin_unlock_irq(&zone->lru_lock);
3299 #endif /* CONFIG_SHMEM */
3301 static void warn_scan_unevictable_pages(void)
3303 printk_once(KERN_WARNING
3304 "%s: The scan_unevictable_pages sysctl/node-interface has been "
3305 "disabled for lack of a legitimate use case. If you have "
3306 "one, please send an email to linux-mm@kvack.org.\n",
3307 current->comm);
3311 * scan_unevictable_pages [vm] sysctl handler. On demand re-scan of
3312 * all nodes' unevictable lists for evictable pages
3314 unsigned long scan_unevictable_pages;
3316 int scan_unevictable_handler(struct ctl_table *table, int write,
3317 void __user *buffer,
3318 size_t *length, loff_t *ppos)
3320 warn_scan_unevictable_pages();
3321 proc_doulongvec_minmax(table, write, buffer, length, ppos);
3322 scan_unevictable_pages = 0;
3323 return 0;
3326 #ifdef CONFIG_NUMA
3328 * per node 'scan_unevictable_pages' attribute. On demand re-scan of
3329 * a specified node's per zone unevictable lists for evictable pages.
3332 static ssize_t read_scan_unevictable_node(struct device *dev,
3333 struct device_attribute *attr,
3334 char *buf)
3336 warn_scan_unevictable_pages();
3337 return sprintf(buf, "0\n"); /* always zero; should fit... */
3340 static ssize_t write_scan_unevictable_node(struct device *dev,
3341 struct device_attribute *attr,
3342 const char *buf, size_t count)
3344 warn_scan_unevictable_pages();
3345 return 1;
3349 static DEVICE_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3350 read_scan_unevictable_node,
3351 write_scan_unevictable_node);
3353 int scan_unevictable_register_node(struct node *node)
3355 return device_create_file(&node->dev, &dev_attr_scan_unevictable_pages);
3358 void scan_unevictable_unregister_node(struct node *node)
3360 device_remove_file(&node->dev, &dev_attr_scan_unevictable_pages);
3362 #endif