md/raid10: unify handling of write completion.
[linux-2.6/libata-dev.git] / drivers / md / raid10.c
blobf6873fc8e5ee3103b94ceaf5fd379de682ee50cd
1 /*
2 * raid10.c : Multiple Devices driver for Linux
4 * Copyright (C) 2000-2004 Neil Brown
6 * RAID-10 support for md.
8 * Base on code in raid1.c. See raid1.c for further copyright information.
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 #include <linux/slab.h>
22 #include <linux/delay.h>
23 #include <linux/blkdev.h>
24 #include <linux/seq_file.h>
25 #include <linux/ratelimit.h>
26 #include "md.h"
27 #include "raid10.h"
28 #include "raid0.h"
29 #include "bitmap.h"
32 * RAID10 provides a combination of RAID0 and RAID1 functionality.
33 * The layout of data is defined by
34 * chunk_size
35 * raid_disks
36 * near_copies (stored in low byte of layout)
37 * far_copies (stored in second byte of layout)
38 * far_offset (stored in bit 16 of layout )
40 * The data to be stored is divided into chunks using chunksize.
41 * Each device is divided into far_copies sections.
42 * In each section, chunks are laid out in a style similar to raid0, but
43 * near_copies copies of each chunk is stored (each on a different drive).
44 * The starting device for each section is offset near_copies from the starting
45 * device of the previous section.
46 * Thus they are (near_copies*far_copies) of each chunk, and each is on a different
47 * drive.
48 * near_copies and far_copies must be at least one, and their product is at most
49 * raid_disks.
51 * If far_offset is true, then the far_copies are handled a bit differently.
52 * The copies are still in different stripes, but instead of be very far apart
53 * on disk, there are adjacent stripes.
57 * Number of guaranteed r10bios in case of extreme VM load:
59 #define NR_RAID10_BIOS 256
61 static void allow_barrier(conf_t *conf);
62 static void lower_barrier(conf_t *conf);
64 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
66 conf_t *conf = data;
67 int size = offsetof(struct r10bio_s, devs[conf->copies]);
69 /* allocate a r10bio with room for raid_disks entries in the bios array */
70 return kzalloc(size, gfp_flags);
73 static void r10bio_pool_free(void *r10_bio, void *data)
75 kfree(r10_bio);
78 /* Maximum size of each resync request */
79 #define RESYNC_BLOCK_SIZE (64*1024)
80 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
81 /* amount of memory to reserve for resync requests */
82 #define RESYNC_WINDOW (1024*1024)
83 /* maximum number of concurrent requests, memory permitting */
84 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
87 * When performing a resync, we need to read and compare, so
88 * we need as many pages are there are copies.
89 * When performing a recovery, we need 2 bios, one for read,
90 * one for write (we recover only one drive per r10buf)
93 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
95 conf_t *conf = data;
96 struct page *page;
97 r10bio_t *r10_bio;
98 struct bio *bio;
99 int i, j;
100 int nalloc;
102 r10_bio = r10bio_pool_alloc(gfp_flags, conf);
103 if (!r10_bio)
104 return NULL;
106 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery))
107 nalloc = conf->copies; /* resync */
108 else
109 nalloc = 2; /* recovery */
112 * Allocate bios.
114 for (j = nalloc ; j-- ; ) {
115 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
116 if (!bio)
117 goto out_free_bio;
118 r10_bio->devs[j].bio = bio;
121 * Allocate RESYNC_PAGES data pages and attach them
122 * where needed.
124 for (j = 0 ; j < nalloc; j++) {
125 bio = r10_bio->devs[j].bio;
126 for (i = 0; i < RESYNC_PAGES; i++) {
127 if (j == 1 && !test_bit(MD_RECOVERY_SYNC,
128 &conf->mddev->recovery)) {
129 /* we can share bv_page's during recovery */
130 struct bio *rbio = r10_bio->devs[0].bio;
131 page = rbio->bi_io_vec[i].bv_page;
132 get_page(page);
133 } else
134 page = alloc_page(gfp_flags);
135 if (unlikely(!page))
136 goto out_free_pages;
138 bio->bi_io_vec[i].bv_page = page;
142 return r10_bio;
144 out_free_pages:
145 for ( ; i > 0 ; i--)
146 safe_put_page(bio->bi_io_vec[i-1].bv_page);
147 while (j--)
148 for (i = 0; i < RESYNC_PAGES ; i++)
149 safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page);
150 j = -1;
151 out_free_bio:
152 while ( ++j < nalloc )
153 bio_put(r10_bio->devs[j].bio);
154 r10bio_pool_free(r10_bio, conf);
155 return NULL;
158 static void r10buf_pool_free(void *__r10_bio, void *data)
160 int i;
161 conf_t *conf = data;
162 r10bio_t *r10bio = __r10_bio;
163 int j;
165 for (j=0; j < conf->copies; j++) {
166 struct bio *bio = r10bio->devs[j].bio;
167 if (bio) {
168 for (i = 0; i < RESYNC_PAGES; i++) {
169 safe_put_page(bio->bi_io_vec[i].bv_page);
170 bio->bi_io_vec[i].bv_page = NULL;
172 bio_put(bio);
175 r10bio_pool_free(r10bio, conf);
178 static void put_all_bios(conf_t *conf, r10bio_t *r10_bio)
180 int i;
182 for (i = 0; i < conf->copies; i++) {
183 struct bio **bio = & r10_bio->devs[i].bio;
184 if (!BIO_SPECIAL(*bio))
185 bio_put(*bio);
186 *bio = NULL;
190 static void free_r10bio(r10bio_t *r10_bio)
192 conf_t *conf = r10_bio->mddev->private;
194 put_all_bios(conf, r10_bio);
195 mempool_free(r10_bio, conf->r10bio_pool);
198 static void put_buf(r10bio_t *r10_bio)
200 conf_t *conf = r10_bio->mddev->private;
202 mempool_free(r10_bio, conf->r10buf_pool);
204 lower_barrier(conf);
207 static void reschedule_retry(r10bio_t *r10_bio)
209 unsigned long flags;
210 mddev_t *mddev = r10_bio->mddev;
211 conf_t *conf = mddev->private;
213 spin_lock_irqsave(&conf->device_lock, flags);
214 list_add(&r10_bio->retry_list, &conf->retry_list);
215 conf->nr_queued ++;
216 spin_unlock_irqrestore(&conf->device_lock, flags);
218 /* wake up frozen array... */
219 wake_up(&conf->wait_barrier);
221 md_wakeup_thread(mddev->thread);
225 * raid_end_bio_io() is called when we have finished servicing a mirrored
226 * operation and are ready to return a success/failure code to the buffer
227 * cache layer.
229 static void raid_end_bio_io(r10bio_t *r10_bio)
231 struct bio *bio = r10_bio->master_bio;
232 int done;
233 conf_t *conf = r10_bio->mddev->private;
235 if (bio->bi_phys_segments) {
236 unsigned long flags;
237 spin_lock_irqsave(&conf->device_lock, flags);
238 bio->bi_phys_segments--;
239 done = (bio->bi_phys_segments == 0);
240 spin_unlock_irqrestore(&conf->device_lock, flags);
241 } else
242 done = 1;
243 if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
244 clear_bit(BIO_UPTODATE, &bio->bi_flags);
245 if (done) {
246 bio_endio(bio, 0);
248 * Wake up any possible resync thread that waits for the device
249 * to go idle.
251 allow_barrier(conf);
253 free_r10bio(r10_bio);
257 * Update disk head position estimator based on IRQ completion info.
259 static inline void update_head_pos(int slot, r10bio_t *r10_bio)
261 conf_t *conf = r10_bio->mddev->private;
263 conf->mirrors[r10_bio->devs[slot].devnum].head_position =
264 r10_bio->devs[slot].addr + (r10_bio->sectors);
268 * Find the disk number which triggered given bio
270 static int find_bio_disk(conf_t *conf, r10bio_t *r10_bio,
271 struct bio *bio, int *slotp)
273 int slot;
275 for (slot = 0; slot < conf->copies; slot++)
276 if (r10_bio->devs[slot].bio == bio)
277 break;
279 BUG_ON(slot == conf->copies);
280 update_head_pos(slot, r10_bio);
282 if (slotp)
283 *slotp = slot;
284 return r10_bio->devs[slot].devnum;
287 static void raid10_end_read_request(struct bio *bio, int error)
289 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
290 r10bio_t *r10_bio = bio->bi_private;
291 int slot, dev;
292 conf_t *conf = r10_bio->mddev->private;
295 slot = r10_bio->read_slot;
296 dev = r10_bio->devs[slot].devnum;
298 * this branch is our 'one mirror IO has finished' event handler:
300 update_head_pos(slot, r10_bio);
302 if (uptodate) {
304 * Set R10BIO_Uptodate in our master bio, so that
305 * we will return a good error code to the higher
306 * levels even if IO on some other mirrored buffer fails.
308 * The 'master' represents the composite IO operation to
309 * user-side. So if something waits for IO, then it will
310 * wait for the 'master' bio.
312 set_bit(R10BIO_Uptodate, &r10_bio->state);
313 raid_end_bio_io(r10_bio);
314 rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev);
315 } else {
317 * oops, read error - keep the refcount on the rdev
319 char b[BDEVNAME_SIZE];
320 printk_ratelimited(KERN_ERR
321 "md/raid10:%s: %s: rescheduling sector %llu\n",
322 mdname(conf->mddev),
323 bdevname(conf->mirrors[dev].rdev->bdev, b),
324 (unsigned long long)r10_bio->sector);
325 set_bit(R10BIO_ReadError, &r10_bio->state);
326 reschedule_retry(r10_bio);
330 static void close_write(r10bio_t *r10_bio)
332 /* clear the bitmap if all writes complete successfully */
333 bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
334 r10_bio->sectors,
335 !test_bit(R10BIO_Degraded, &r10_bio->state),
337 md_write_end(r10_bio->mddev);
340 static void one_write_done(r10bio_t *r10_bio)
342 if (atomic_dec_and_test(&r10_bio->remaining)) {
343 if (test_bit(R10BIO_WriteError, &r10_bio->state))
344 reschedule_retry(r10_bio);
345 else {
346 close_write(r10_bio);
347 if (test_bit(R10BIO_MadeGood, &r10_bio->state))
348 reschedule_retry(r10_bio);
349 else
350 raid_end_bio_io(r10_bio);
355 static void raid10_end_write_request(struct bio *bio, int error)
357 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
358 r10bio_t *r10_bio = bio->bi_private;
359 int dev;
360 int dec_rdev = 1;
361 conf_t *conf = r10_bio->mddev->private;
362 int slot;
364 dev = find_bio_disk(conf, r10_bio, bio, &slot);
367 * this branch is our 'one mirror IO has finished' event handler:
369 if (!uptodate) {
370 set_bit(WriteErrorSeen, &conf->mirrors[dev].rdev->flags);
371 set_bit(R10BIO_WriteError, &r10_bio->state);
372 dec_rdev = 0;
373 } else {
375 * Set R10BIO_Uptodate in our master bio, so that
376 * we will return a good error code for to the higher
377 * levels even if IO on some other mirrored buffer fails.
379 * The 'master' represents the composite IO operation to
380 * user-side. So if something waits for IO, then it will
381 * wait for the 'master' bio.
383 sector_t first_bad;
384 int bad_sectors;
386 set_bit(R10BIO_Uptodate, &r10_bio->state);
388 /* Maybe we can clear some bad blocks. */
389 if (is_badblock(conf->mirrors[dev].rdev,
390 r10_bio->devs[slot].addr,
391 r10_bio->sectors,
392 &first_bad, &bad_sectors)) {
393 bio_put(bio);
394 r10_bio->devs[slot].bio = IO_MADE_GOOD;
395 dec_rdev = 0;
396 set_bit(R10BIO_MadeGood, &r10_bio->state);
402 * Let's see if all mirrored write operations have finished
403 * already.
405 one_write_done(r10_bio);
406 if (dec_rdev)
407 rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev);
412 * RAID10 layout manager
413 * As well as the chunksize and raid_disks count, there are two
414 * parameters: near_copies and far_copies.
415 * near_copies * far_copies must be <= raid_disks.
416 * Normally one of these will be 1.
417 * If both are 1, we get raid0.
418 * If near_copies == raid_disks, we get raid1.
420 * Chunks are laid out in raid0 style with near_copies copies of the
421 * first chunk, followed by near_copies copies of the next chunk and
422 * so on.
423 * If far_copies > 1, then after 1/far_copies of the array has been assigned
424 * as described above, we start again with a device offset of near_copies.
425 * So we effectively have another copy of the whole array further down all
426 * the drives, but with blocks on different drives.
427 * With this layout, and block is never stored twice on the one device.
429 * raid10_find_phys finds the sector offset of a given virtual sector
430 * on each device that it is on.
432 * raid10_find_virt does the reverse mapping, from a device and a
433 * sector offset to a virtual address
436 static void raid10_find_phys(conf_t *conf, r10bio_t *r10bio)
438 int n,f;
439 sector_t sector;
440 sector_t chunk;
441 sector_t stripe;
442 int dev;
444 int slot = 0;
446 /* now calculate first sector/dev */
447 chunk = r10bio->sector >> conf->chunk_shift;
448 sector = r10bio->sector & conf->chunk_mask;
450 chunk *= conf->near_copies;
451 stripe = chunk;
452 dev = sector_div(stripe, conf->raid_disks);
453 if (conf->far_offset)
454 stripe *= conf->far_copies;
456 sector += stripe << conf->chunk_shift;
458 /* and calculate all the others */
459 for (n=0; n < conf->near_copies; n++) {
460 int d = dev;
461 sector_t s = sector;
462 r10bio->devs[slot].addr = sector;
463 r10bio->devs[slot].devnum = d;
464 slot++;
466 for (f = 1; f < conf->far_copies; f++) {
467 d += conf->near_copies;
468 if (d >= conf->raid_disks)
469 d -= conf->raid_disks;
470 s += conf->stride;
471 r10bio->devs[slot].devnum = d;
472 r10bio->devs[slot].addr = s;
473 slot++;
475 dev++;
476 if (dev >= conf->raid_disks) {
477 dev = 0;
478 sector += (conf->chunk_mask + 1);
481 BUG_ON(slot != conf->copies);
484 static sector_t raid10_find_virt(conf_t *conf, sector_t sector, int dev)
486 sector_t offset, chunk, vchunk;
488 offset = sector & conf->chunk_mask;
489 if (conf->far_offset) {
490 int fc;
491 chunk = sector >> conf->chunk_shift;
492 fc = sector_div(chunk, conf->far_copies);
493 dev -= fc * conf->near_copies;
494 if (dev < 0)
495 dev += conf->raid_disks;
496 } else {
497 while (sector >= conf->stride) {
498 sector -= conf->stride;
499 if (dev < conf->near_copies)
500 dev += conf->raid_disks - conf->near_copies;
501 else
502 dev -= conf->near_copies;
504 chunk = sector >> conf->chunk_shift;
506 vchunk = chunk * conf->raid_disks + dev;
507 sector_div(vchunk, conf->near_copies);
508 return (vchunk << conf->chunk_shift) + offset;
512 * raid10_mergeable_bvec -- tell bio layer if a two requests can be merged
513 * @q: request queue
514 * @bvm: properties of new bio
515 * @biovec: the request that could be merged to it.
517 * Return amount of bytes we can accept at this offset
518 * If near_copies == raid_disk, there are no striping issues,
519 * but in that case, the function isn't called at all.
521 static int raid10_mergeable_bvec(struct request_queue *q,
522 struct bvec_merge_data *bvm,
523 struct bio_vec *biovec)
525 mddev_t *mddev = q->queuedata;
526 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
527 int max;
528 unsigned int chunk_sectors = mddev->chunk_sectors;
529 unsigned int bio_sectors = bvm->bi_size >> 9;
531 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
532 if (max < 0) max = 0; /* bio_add cannot handle a negative return */
533 if (max <= biovec->bv_len && bio_sectors == 0)
534 return biovec->bv_len;
535 else
536 return max;
540 * This routine returns the disk from which the requested read should
541 * be done. There is a per-array 'next expected sequential IO' sector
542 * number - if this matches on the next IO then we use the last disk.
543 * There is also a per-disk 'last know head position' sector that is
544 * maintained from IRQ contexts, both the normal and the resync IO
545 * completion handlers update this position correctly. If there is no
546 * perfect sequential match then we pick the disk whose head is closest.
548 * If there are 2 mirrors in the same 2 devices, performance degrades
549 * because position is mirror, not device based.
551 * The rdev for the device selected will have nr_pending incremented.
555 * FIXME: possibly should rethink readbalancing and do it differently
556 * depending on near_copies / far_copies geometry.
558 static int read_balance(conf_t *conf, r10bio_t *r10_bio, int *max_sectors)
560 const sector_t this_sector = r10_bio->sector;
561 int disk, slot;
562 int sectors = r10_bio->sectors;
563 int best_good_sectors;
564 sector_t new_distance, best_dist;
565 mdk_rdev_t *rdev;
566 int do_balance;
567 int best_slot;
569 raid10_find_phys(conf, r10_bio);
570 rcu_read_lock();
571 retry:
572 sectors = r10_bio->sectors;
573 best_slot = -1;
574 best_dist = MaxSector;
575 best_good_sectors = 0;
576 do_balance = 1;
578 * Check if we can balance. We can balance on the whole
579 * device if no resync is going on (recovery is ok), or below
580 * the resync window. We take the first readable disk when
581 * above the resync window.
583 if (conf->mddev->recovery_cp < MaxSector
584 && (this_sector + sectors >= conf->next_resync))
585 do_balance = 0;
587 for (slot = 0; slot < conf->copies ; slot++) {
588 sector_t first_bad;
589 int bad_sectors;
590 sector_t dev_sector;
592 if (r10_bio->devs[slot].bio == IO_BLOCKED)
593 continue;
594 disk = r10_bio->devs[slot].devnum;
595 rdev = rcu_dereference(conf->mirrors[disk].rdev);
596 if (rdev == NULL)
597 continue;
598 if (!test_bit(In_sync, &rdev->flags))
599 continue;
601 dev_sector = r10_bio->devs[slot].addr;
602 if (is_badblock(rdev, dev_sector, sectors,
603 &first_bad, &bad_sectors)) {
604 if (best_dist < MaxSector)
605 /* Already have a better slot */
606 continue;
607 if (first_bad <= dev_sector) {
608 /* Cannot read here. If this is the
609 * 'primary' device, then we must not read
610 * beyond 'bad_sectors' from another device.
612 bad_sectors -= (dev_sector - first_bad);
613 if (!do_balance && sectors > bad_sectors)
614 sectors = bad_sectors;
615 if (best_good_sectors > sectors)
616 best_good_sectors = sectors;
617 } else {
618 sector_t good_sectors =
619 first_bad - dev_sector;
620 if (good_sectors > best_good_sectors) {
621 best_good_sectors = good_sectors;
622 best_slot = slot;
624 if (!do_balance)
625 /* Must read from here */
626 break;
628 continue;
629 } else
630 best_good_sectors = sectors;
632 if (!do_balance)
633 break;
635 /* This optimisation is debatable, and completely destroys
636 * sequential read speed for 'far copies' arrays. So only
637 * keep it for 'near' arrays, and review those later.
639 if (conf->near_copies > 1 && !atomic_read(&rdev->nr_pending))
640 break;
642 /* for far > 1 always use the lowest address */
643 if (conf->far_copies > 1)
644 new_distance = r10_bio->devs[slot].addr;
645 else
646 new_distance = abs(r10_bio->devs[slot].addr -
647 conf->mirrors[disk].head_position);
648 if (new_distance < best_dist) {
649 best_dist = new_distance;
650 best_slot = slot;
653 if (slot == conf->copies)
654 slot = best_slot;
656 if (slot >= 0) {
657 disk = r10_bio->devs[slot].devnum;
658 rdev = rcu_dereference(conf->mirrors[disk].rdev);
659 if (!rdev)
660 goto retry;
661 atomic_inc(&rdev->nr_pending);
662 if (test_bit(Faulty, &rdev->flags)) {
663 /* Cannot risk returning a device that failed
664 * before we inc'ed nr_pending
666 rdev_dec_pending(rdev, conf->mddev);
667 goto retry;
669 r10_bio->read_slot = slot;
670 } else
671 disk = -1;
672 rcu_read_unlock();
673 *max_sectors = best_good_sectors;
675 return disk;
678 static int raid10_congested(void *data, int bits)
680 mddev_t *mddev = data;
681 conf_t *conf = mddev->private;
682 int i, ret = 0;
684 if (mddev_congested(mddev, bits))
685 return 1;
686 rcu_read_lock();
687 for (i = 0; i < conf->raid_disks && ret == 0; i++) {
688 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
689 if (rdev && !test_bit(Faulty, &rdev->flags)) {
690 struct request_queue *q = bdev_get_queue(rdev->bdev);
692 ret |= bdi_congested(&q->backing_dev_info, bits);
695 rcu_read_unlock();
696 return ret;
699 static void flush_pending_writes(conf_t *conf)
701 /* Any writes that have been queued but are awaiting
702 * bitmap updates get flushed here.
704 spin_lock_irq(&conf->device_lock);
706 if (conf->pending_bio_list.head) {
707 struct bio *bio;
708 bio = bio_list_get(&conf->pending_bio_list);
709 spin_unlock_irq(&conf->device_lock);
710 /* flush any pending bitmap writes to disk
711 * before proceeding w/ I/O */
712 bitmap_unplug(conf->mddev->bitmap);
714 while (bio) { /* submit pending writes */
715 struct bio *next = bio->bi_next;
716 bio->bi_next = NULL;
717 generic_make_request(bio);
718 bio = next;
720 } else
721 spin_unlock_irq(&conf->device_lock);
724 /* Barriers....
725 * Sometimes we need to suspend IO while we do something else,
726 * either some resync/recovery, or reconfigure the array.
727 * To do this we raise a 'barrier'.
728 * The 'barrier' is a counter that can be raised multiple times
729 * to count how many activities are happening which preclude
730 * normal IO.
731 * We can only raise the barrier if there is no pending IO.
732 * i.e. if nr_pending == 0.
733 * We choose only to raise the barrier if no-one is waiting for the
734 * barrier to go down. This means that as soon as an IO request
735 * is ready, no other operations which require a barrier will start
736 * until the IO request has had a chance.
738 * So: regular IO calls 'wait_barrier'. When that returns there
739 * is no backgroup IO happening, It must arrange to call
740 * allow_barrier when it has finished its IO.
741 * backgroup IO calls must call raise_barrier. Once that returns
742 * there is no normal IO happeing. It must arrange to call
743 * lower_barrier when the particular background IO completes.
746 static void raise_barrier(conf_t *conf, int force)
748 BUG_ON(force && !conf->barrier);
749 spin_lock_irq(&conf->resync_lock);
751 /* Wait until no block IO is waiting (unless 'force') */
752 wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
753 conf->resync_lock, );
755 /* block any new IO from starting */
756 conf->barrier++;
758 /* Now wait for all pending IO to complete */
759 wait_event_lock_irq(conf->wait_barrier,
760 !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
761 conf->resync_lock, );
763 spin_unlock_irq(&conf->resync_lock);
766 static void lower_barrier(conf_t *conf)
768 unsigned long flags;
769 spin_lock_irqsave(&conf->resync_lock, flags);
770 conf->barrier--;
771 spin_unlock_irqrestore(&conf->resync_lock, flags);
772 wake_up(&conf->wait_barrier);
775 static void wait_barrier(conf_t *conf)
777 spin_lock_irq(&conf->resync_lock);
778 if (conf->barrier) {
779 conf->nr_waiting++;
780 wait_event_lock_irq(conf->wait_barrier, !conf->barrier,
781 conf->resync_lock,
783 conf->nr_waiting--;
785 conf->nr_pending++;
786 spin_unlock_irq(&conf->resync_lock);
789 static void allow_barrier(conf_t *conf)
791 unsigned long flags;
792 spin_lock_irqsave(&conf->resync_lock, flags);
793 conf->nr_pending--;
794 spin_unlock_irqrestore(&conf->resync_lock, flags);
795 wake_up(&conf->wait_barrier);
798 static void freeze_array(conf_t *conf)
800 /* stop syncio and normal IO and wait for everything to
801 * go quiet.
802 * We increment barrier and nr_waiting, and then
803 * wait until nr_pending match nr_queued+1
804 * This is called in the context of one normal IO request
805 * that has failed. Thus any sync request that might be pending
806 * will be blocked by nr_pending, and we need to wait for
807 * pending IO requests to complete or be queued for re-try.
808 * Thus the number queued (nr_queued) plus this request (1)
809 * must match the number of pending IOs (nr_pending) before
810 * we continue.
812 spin_lock_irq(&conf->resync_lock);
813 conf->barrier++;
814 conf->nr_waiting++;
815 wait_event_lock_irq(conf->wait_barrier,
816 conf->nr_pending == conf->nr_queued+1,
817 conf->resync_lock,
818 flush_pending_writes(conf));
820 spin_unlock_irq(&conf->resync_lock);
823 static void unfreeze_array(conf_t *conf)
825 /* reverse the effect of the freeze */
826 spin_lock_irq(&conf->resync_lock);
827 conf->barrier--;
828 conf->nr_waiting--;
829 wake_up(&conf->wait_barrier);
830 spin_unlock_irq(&conf->resync_lock);
833 static int make_request(mddev_t *mddev, struct bio * bio)
835 conf_t *conf = mddev->private;
836 mirror_info_t *mirror;
837 r10bio_t *r10_bio;
838 struct bio *read_bio;
839 int i;
840 int chunk_sects = conf->chunk_mask + 1;
841 const int rw = bio_data_dir(bio);
842 const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
843 const unsigned long do_fua = (bio->bi_rw & REQ_FUA);
844 unsigned long flags;
845 mdk_rdev_t *blocked_rdev;
846 int plugged;
847 int sectors_handled;
848 int max_sectors;
850 if (unlikely(bio->bi_rw & REQ_FLUSH)) {
851 md_flush_request(mddev, bio);
852 return 0;
855 /* If this request crosses a chunk boundary, we need to
856 * split it. This will only happen for 1 PAGE (or less) requests.
858 if (unlikely( (bio->bi_sector & conf->chunk_mask) + (bio->bi_size >> 9)
859 > chunk_sects &&
860 conf->near_copies < conf->raid_disks)) {
861 struct bio_pair *bp;
862 /* Sanity check -- queue functions should prevent this happening */
863 if (bio->bi_vcnt != 1 ||
864 bio->bi_idx != 0)
865 goto bad_map;
866 /* This is a one page bio that upper layers
867 * refuse to split for us, so we need to split it.
869 bp = bio_split(bio,
870 chunk_sects - (bio->bi_sector & (chunk_sects - 1)) );
872 /* Each of these 'make_request' calls will call 'wait_barrier'.
873 * If the first succeeds but the second blocks due to the resync
874 * thread raising the barrier, we will deadlock because the
875 * IO to the underlying device will be queued in generic_make_request
876 * and will never complete, so will never reduce nr_pending.
877 * So increment nr_waiting here so no new raise_barriers will
878 * succeed, and so the second wait_barrier cannot block.
880 spin_lock_irq(&conf->resync_lock);
881 conf->nr_waiting++;
882 spin_unlock_irq(&conf->resync_lock);
884 if (make_request(mddev, &bp->bio1))
885 generic_make_request(&bp->bio1);
886 if (make_request(mddev, &bp->bio2))
887 generic_make_request(&bp->bio2);
889 spin_lock_irq(&conf->resync_lock);
890 conf->nr_waiting--;
891 wake_up(&conf->wait_barrier);
892 spin_unlock_irq(&conf->resync_lock);
894 bio_pair_release(bp);
895 return 0;
896 bad_map:
897 printk("md/raid10:%s: make_request bug: can't convert block across chunks"
898 " or bigger than %dk %llu %d\n", mdname(mddev), chunk_sects/2,
899 (unsigned long long)bio->bi_sector, bio->bi_size >> 10);
901 bio_io_error(bio);
902 return 0;
905 md_write_start(mddev, bio);
908 * Register the new request and wait if the reconstruction
909 * thread has put up a bar for new requests.
910 * Continue immediately if no resync is active currently.
912 wait_barrier(conf);
914 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
916 r10_bio->master_bio = bio;
917 r10_bio->sectors = bio->bi_size >> 9;
919 r10_bio->mddev = mddev;
920 r10_bio->sector = bio->bi_sector;
921 r10_bio->state = 0;
923 /* We might need to issue multiple reads to different
924 * devices if there are bad blocks around, so we keep
925 * track of the number of reads in bio->bi_phys_segments.
926 * If this is 0, there is only one r10_bio and no locking
927 * will be needed when the request completes. If it is
928 * non-zero, then it is the number of not-completed requests.
930 bio->bi_phys_segments = 0;
931 clear_bit(BIO_SEG_VALID, &bio->bi_flags);
933 if (rw == READ) {
935 * read balancing logic:
937 int disk;
938 int slot;
940 read_again:
941 disk = read_balance(conf, r10_bio, &max_sectors);
942 slot = r10_bio->read_slot;
943 if (disk < 0) {
944 raid_end_bio_io(r10_bio);
945 return 0;
947 mirror = conf->mirrors + disk;
949 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
950 md_trim_bio(read_bio, r10_bio->sector - bio->bi_sector,
951 max_sectors);
953 r10_bio->devs[slot].bio = read_bio;
955 read_bio->bi_sector = r10_bio->devs[slot].addr +
956 mirror->rdev->data_offset;
957 read_bio->bi_bdev = mirror->rdev->bdev;
958 read_bio->bi_end_io = raid10_end_read_request;
959 read_bio->bi_rw = READ | do_sync;
960 read_bio->bi_private = r10_bio;
962 if (max_sectors < r10_bio->sectors) {
963 /* Could not read all from this device, so we will
964 * need another r10_bio.
966 sectors_handled = (r10_bio->sectors + max_sectors
967 - bio->bi_sector);
968 r10_bio->sectors = max_sectors;
969 spin_lock_irq(&conf->device_lock);
970 if (bio->bi_phys_segments == 0)
971 bio->bi_phys_segments = 2;
972 else
973 bio->bi_phys_segments++;
974 spin_unlock(&conf->device_lock);
975 /* Cannot call generic_make_request directly
976 * as that will be queued in __generic_make_request
977 * and subsequent mempool_alloc might block
978 * waiting for it. so hand bio over to raid10d.
980 reschedule_retry(r10_bio);
982 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
984 r10_bio->master_bio = bio;
985 r10_bio->sectors = ((bio->bi_size >> 9)
986 - sectors_handled);
987 r10_bio->state = 0;
988 r10_bio->mddev = mddev;
989 r10_bio->sector = bio->bi_sector + sectors_handled;
990 goto read_again;
991 } else
992 generic_make_request(read_bio);
993 return 0;
997 * WRITE:
999 /* first select target devices under rcu_lock and
1000 * inc refcount on their rdev. Record them by setting
1001 * bios[x] to bio
1002 * If there are known/acknowledged bad blocks on any device
1003 * on which we have seen a write error, we want to avoid
1004 * writing to those blocks. This potentially requires several
1005 * writes to write around the bad blocks. Each set of writes
1006 * gets its own r10_bio with a set of bios attached. The number
1007 * of r10_bios is recored in bio->bi_phys_segments just as with
1008 * the read case.
1010 plugged = mddev_check_plugged(mddev);
1012 raid10_find_phys(conf, r10_bio);
1013 retry_write:
1014 blocked_rdev = NULL;
1015 rcu_read_lock();
1016 max_sectors = r10_bio->sectors;
1018 for (i = 0; i < conf->copies; i++) {
1019 int d = r10_bio->devs[i].devnum;
1020 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[d].rdev);
1021 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1022 atomic_inc(&rdev->nr_pending);
1023 blocked_rdev = rdev;
1024 break;
1026 r10_bio->devs[i].bio = NULL;
1027 if (!rdev || test_bit(Faulty, &rdev->flags)) {
1028 set_bit(R10BIO_Degraded, &r10_bio->state);
1029 continue;
1031 if (test_bit(WriteErrorSeen, &rdev->flags)) {
1032 sector_t first_bad;
1033 sector_t dev_sector = r10_bio->devs[i].addr;
1034 int bad_sectors;
1035 int is_bad;
1037 is_bad = is_badblock(rdev, dev_sector,
1038 max_sectors,
1039 &first_bad, &bad_sectors);
1040 if (is_bad < 0) {
1041 /* Mustn't write here until the bad block
1042 * is acknowledged
1044 atomic_inc(&rdev->nr_pending);
1045 set_bit(BlockedBadBlocks, &rdev->flags);
1046 blocked_rdev = rdev;
1047 break;
1049 if (is_bad && first_bad <= dev_sector) {
1050 /* Cannot write here at all */
1051 bad_sectors -= (dev_sector - first_bad);
1052 if (bad_sectors < max_sectors)
1053 /* Mustn't write more than bad_sectors
1054 * to other devices yet
1056 max_sectors = bad_sectors;
1057 /* We don't set R10BIO_Degraded as that
1058 * only applies if the disk is missing,
1059 * so it might be re-added, and we want to
1060 * know to recover this chunk.
1061 * In this case the device is here, and the
1062 * fact that this chunk is not in-sync is
1063 * recorded in the bad block log.
1065 continue;
1067 if (is_bad) {
1068 int good_sectors = first_bad - dev_sector;
1069 if (good_sectors < max_sectors)
1070 max_sectors = good_sectors;
1073 r10_bio->devs[i].bio = bio;
1074 atomic_inc(&rdev->nr_pending);
1076 rcu_read_unlock();
1078 if (unlikely(blocked_rdev)) {
1079 /* Have to wait for this device to get unblocked, then retry */
1080 int j;
1081 int d;
1083 for (j = 0; j < i; j++)
1084 if (r10_bio->devs[j].bio) {
1085 d = r10_bio->devs[j].devnum;
1086 rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1088 allow_barrier(conf);
1089 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1090 wait_barrier(conf);
1091 goto retry_write;
1094 if (max_sectors < r10_bio->sectors) {
1095 /* We are splitting this into multiple parts, so
1096 * we need to prepare for allocating another r10_bio.
1098 r10_bio->sectors = max_sectors;
1099 spin_lock_irq(&conf->device_lock);
1100 if (bio->bi_phys_segments == 0)
1101 bio->bi_phys_segments = 2;
1102 else
1103 bio->bi_phys_segments++;
1104 spin_unlock_irq(&conf->device_lock);
1106 sectors_handled = r10_bio->sector + max_sectors - bio->bi_sector;
1108 atomic_set(&r10_bio->remaining, 1);
1109 bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
1111 for (i = 0; i < conf->copies; i++) {
1112 struct bio *mbio;
1113 int d = r10_bio->devs[i].devnum;
1114 if (!r10_bio->devs[i].bio)
1115 continue;
1117 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1118 md_trim_bio(mbio, r10_bio->sector - bio->bi_sector,
1119 max_sectors);
1120 r10_bio->devs[i].bio = mbio;
1122 mbio->bi_sector = (r10_bio->devs[i].addr+
1123 conf->mirrors[d].rdev->data_offset);
1124 mbio->bi_bdev = conf->mirrors[d].rdev->bdev;
1125 mbio->bi_end_io = raid10_end_write_request;
1126 mbio->bi_rw = WRITE | do_sync | do_fua;
1127 mbio->bi_private = r10_bio;
1129 atomic_inc(&r10_bio->remaining);
1130 spin_lock_irqsave(&conf->device_lock, flags);
1131 bio_list_add(&conf->pending_bio_list, mbio);
1132 spin_unlock_irqrestore(&conf->device_lock, flags);
1135 /* Remove the bias on 'remaining' */
1136 one_write_done(r10_bio);
1138 /* In case raid10d snuck in to freeze_array */
1139 wake_up(&conf->wait_barrier);
1141 if (sectors_handled < (bio->bi_size >> 9)) {
1142 /* We need another r10_bio. It has already been counted
1143 * in bio->bi_phys_segments.
1145 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1147 r10_bio->master_bio = bio;
1148 r10_bio->sectors = (bio->bi_size >> 9) - sectors_handled;
1150 r10_bio->mddev = mddev;
1151 r10_bio->sector = bio->bi_sector + sectors_handled;
1152 r10_bio->state = 0;
1153 goto retry_write;
1156 if (do_sync || !mddev->bitmap || !plugged)
1157 md_wakeup_thread(mddev->thread);
1158 return 0;
1161 static void status(struct seq_file *seq, mddev_t *mddev)
1163 conf_t *conf = mddev->private;
1164 int i;
1166 if (conf->near_copies < conf->raid_disks)
1167 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1168 if (conf->near_copies > 1)
1169 seq_printf(seq, " %d near-copies", conf->near_copies);
1170 if (conf->far_copies > 1) {
1171 if (conf->far_offset)
1172 seq_printf(seq, " %d offset-copies", conf->far_copies);
1173 else
1174 seq_printf(seq, " %d far-copies", conf->far_copies);
1176 seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1177 conf->raid_disks - mddev->degraded);
1178 for (i = 0; i < conf->raid_disks; i++)
1179 seq_printf(seq, "%s",
1180 conf->mirrors[i].rdev &&
1181 test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_");
1182 seq_printf(seq, "]");
1185 /* check if there are enough drives for
1186 * every block to appear on atleast one.
1187 * Don't consider the device numbered 'ignore'
1188 * as we might be about to remove it.
1190 static int enough(conf_t *conf, int ignore)
1192 int first = 0;
1194 do {
1195 int n = conf->copies;
1196 int cnt = 0;
1197 while (n--) {
1198 if (conf->mirrors[first].rdev &&
1199 first != ignore)
1200 cnt++;
1201 first = (first+1) % conf->raid_disks;
1203 if (cnt == 0)
1204 return 0;
1205 } while (first != 0);
1206 return 1;
1209 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
1211 char b[BDEVNAME_SIZE];
1212 conf_t *conf = mddev->private;
1215 * If it is not operational, then we have already marked it as dead
1216 * else if it is the last working disks, ignore the error, let the
1217 * next level up know.
1218 * else mark the drive as failed
1220 if (test_bit(In_sync, &rdev->flags)
1221 && !enough(conf, rdev->raid_disk))
1223 * Don't fail the drive, just return an IO error.
1225 return;
1226 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1227 unsigned long flags;
1228 spin_lock_irqsave(&conf->device_lock, flags);
1229 mddev->degraded++;
1230 spin_unlock_irqrestore(&conf->device_lock, flags);
1232 * if recovery is running, make sure it aborts.
1234 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1236 set_bit(Blocked, &rdev->flags);
1237 set_bit(Faulty, &rdev->flags);
1238 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1239 printk(KERN_ALERT
1240 "md/raid10:%s: Disk failure on %s, disabling device.\n"
1241 "md/raid10:%s: Operation continuing on %d devices.\n",
1242 mdname(mddev), bdevname(rdev->bdev, b),
1243 mdname(mddev), conf->raid_disks - mddev->degraded);
1246 static void print_conf(conf_t *conf)
1248 int i;
1249 mirror_info_t *tmp;
1251 printk(KERN_DEBUG "RAID10 conf printout:\n");
1252 if (!conf) {
1253 printk(KERN_DEBUG "(!conf)\n");
1254 return;
1256 printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1257 conf->raid_disks);
1259 for (i = 0; i < conf->raid_disks; i++) {
1260 char b[BDEVNAME_SIZE];
1261 tmp = conf->mirrors + i;
1262 if (tmp->rdev)
1263 printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1264 i, !test_bit(In_sync, &tmp->rdev->flags),
1265 !test_bit(Faulty, &tmp->rdev->flags),
1266 bdevname(tmp->rdev->bdev,b));
1270 static void close_sync(conf_t *conf)
1272 wait_barrier(conf);
1273 allow_barrier(conf);
1275 mempool_destroy(conf->r10buf_pool);
1276 conf->r10buf_pool = NULL;
1279 static int raid10_spare_active(mddev_t *mddev)
1281 int i;
1282 conf_t *conf = mddev->private;
1283 mirror_info_t *tmp;
1284 int count = 0;
1285 unsigned long flags;
1288 * Find all non-in_sync disks within the RAID10 configuration
1289 * and mark them in_sync
1291 for (i = 0; i < conf->raid_disks; i++) {
1292 tmp = conf->mirrors + i;
1293 if (tmp->rdev
1294 && !test_bit(Faulty, &tmp->rdev->flags)
1295 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
1296 count++;
1297 sysfs_notify_dirent(tmp->rdev->sysfs_state);
1300 spin_lock_irqsave(&conf->device_lock, flags);
1301 mddev->degraded -= count;
1302 spin_unlock_irqrestore(&conf->device_lock, flags);
1304 print_conf(conf);
1305 return count;
1309 static int raid10_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
1311 conf_t *conf = mddev->private;
1312 int err = -EEXIST;
1313 int mirror;
1314 int first = 0;
1315 int last = conf->raid_disks - 1;
1317 if (mddev->recovery_cp < MaxSector)
1318 /* only hot-add to in-sync arrays, as recovery is
1319 * very different from resync
1321 return -EBUSY;
1322 if (!enough(conf, -1))
1323 return -EINVAL;
1325 if (rdev->raid_disk >= 0)
1326 first = last = rdev->raid_disk;
1328 if (rdev->saved_raid_disk >= first &&
1329 conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1330 mirror = rdev->saved_raid_disk;
1331 else
1332 mirror = first;
1333 for ( ; mirror <= last ; mirror++) {
1334 mirror_info_t *p = &conf->mirrors[mirror];
1335 if (p->recovery_disabled == mddev->recovery_disabled)
1336 continue;
1337 if (!p->rdev)
1338 continue;
1340 disk_stack_limits(mddev->gendisk, rdev->bdev,
1341 rdev->data_offset << 9);
1342 /* as we don't honour merge_bvec_fn, we must
1343 * never risk violating it, so limit
1344 * ->max_segments to one lying with a single
1345 * page, as a one page request is never in
1346 * violation.
1348 if (rdev->bdev->bd_disk->queue->merge_bvec_fn) {
1349 blk_queue_max_segments(mddev->queue, 1);
1350 blk_queue_segment_boundary(mddev->queue,
1351 PAGE_CACHE_SIZE - 1);
1354 p->head_position = 0;
1355 rdev->raid_disk = mirror;
1356 err = 0;
1357 if (rdev->saved_raid_disk != mirror)
1358 conf->fullsync = 1;
1359 rcu_assign_pointer(p->rdev, rdev);
1360 break;
1363 md_integrity_add_rdev(rdev, mddev);
1364 print_conf(conf);
1365 return err;
1368 static int raid10_remove_disk(mddev_t *mddev, int number)
1370 conf_t *conf = mddev->private;
1371 int err = 0;
1372 mdk_rdev_t *rdev;
1373 mirror_info_t *p = conf->mirrors+ number;
1375 print_conf(conf);
1376 rdev = p->rdev;
1377 if (rdev) {
1378 if (test_bit(In_sync, &rdev->flags) ||
1379 atomic_read(&rdev->nr_pending)) {
1380 err = -EBUSY;
1381 goto abort;
1383 /* Only remove faulty devices in recovery
1384 * is not possible.
1386 if (!test_bit(Faulty, &rdev->flags) &&
1387 mddev->recovery_disabled != p->recovery_disabled &&
1388 enough(conf, -1)) {
1389 err = -EBUSY;
1390 goto abort;
1392 p->rdev = NULL;
1393 synchronize_rcu();
1394 if (atomic_read(&rdev->nr_pending)) {
1395 /* lost the race, try later */
1396 err = -EBUSY;
1397 p->rdev = rdev;
1398 goto abort;
1400 err = md_integrity_register(mddev);
1402 abort:
1404 print_conf(conf);
1405 return err;
1409 static void end_sync_read(struct bio *bio, int error)
1411 r10bio_t *r10_bio = bio->bi_private;
1412 conf_t *conf = r10_bio->mddev->private;
1413 int d;
1415 d = find_bio_disk(conf, r10_bio, bio, NULL);
1417 if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1418 set_bit(R10BIO_Uptodate, &r10_bio->state);
1419 else
1420 /* The write handler will notice the lack of
1421 * R10BIO_Uptodate and record any errors etc
1423 atomic_add(r10_bio->sectors,
1424 &conf->mirrors[d].rdev->corrected_errors);
1426 /* for reconstruct, we always reschedule after a read.
1427 * for resync, only after all reads
1429 rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1430 if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1431 atomic_dec_and_test(&r10_bio->remaining)) {
1432 /* we have read all the blocks,
1433 * do the comparison in process context in raid10d
1435 reschedule_retry(r10_bio);
1439 static void end_sync_request(r10bio_t *r10_bio)
1441 mddev_t *mddev = r10_bio->mddev;
1443 while (atomic_dec_and_test(&r10_bio->remaining)) {
1444 if (r10_bio->master_bio == NULL) {
1445 /* the primary of several recovery bios */
1446 sector_t s = r10_bio->sectors;
1447 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1448 test_bit(R10BIO_WriteError, &r10_bio->state))
1449 reschedule_retry(r10_bio);
1450 else
1451 put_buf(r10_bio);
1452 md_done_sync(mddev, s, 1);
1453 break;
1454 } else {
1455 r10bio_t *r10_bio2 = (r10bio_t *)r10_bio->master_bio;
1456 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1457 test_bit(R10BIO_WriteError, &r10_bio->state))
1458 reschedule_retry(r10_bio);
1459 else
1460 put_buf(r10_bio);
1461 r10_bio = r10_bio2;
1466 static void end_sync_write(struct bio *bio, int error)
1468 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1469 r10bio_t *r10_bio = bio->bi_private;
1470 mddev_t *mddev = r10_bio->mddev;
1471 conf_t *conf = mddev->private;
1472 int d;
1473 sector_t first_bad;
1474 int bad_sectors;
1475 int slot;
1477 d = find_bio_disk(conf, r10_bio, bio, &slot);
1479 if (!uptodate) {
1480 set_bit(WriteErrorSeen, &conf->mirrors[d].rdev->flags);
1481 set_bit(R10BIO_WriteError, &r10_bio->state);
1482 } else if (is_badblock(conf->mirrors[d].rdev,
1483 r10_bio->devs[slot].addr,
1484 r10_bio->sectors,
1485 &first_bad, &bad_sectors))
1486 set_bit(R10BIO_MadeGood, &r10_bio->state);
1488 rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1490 end_sync_request(r10_bio);
1494 * Note: sync and recover and handled very differently for raid10
1495 * This code is for resync.
1496 * For resync, we read through virtual addresses and read all blocks.
1497 * If there is any error, we schedule a write. The lowest numbered
1498 * drive is authoritative.
1499 * However requests come for physical address, so we need to map.
1500 * For every physical address there are raid_disks/copies virtual addresses,
1501 * which is always are least one, but is not necessarly an integer.
1502 * This means that a physical address can span multiple chunks, so we may
1503 * have to submit multiple io requests for a single sync request.
1506 * We check if all blocks are in-sync and only write to blocks that
1507 * aren't in sync
1509 static void sync_request_write(mddev_t *mddev, r10bio_t *r10_bio)
1511 conf_t *conf = mddev->private;
1512 int i, first;
1513 struct bio *tbio, *fbio;
1515 atomic_set(&r10_bio->remaining, 1);
1517 /* find the first device with a block */
1518 for (i=0; i<conf->copies; i++)
1519 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags))
1520 break;
1522 if (i == conf->copies)
1523 goto done;
1525 first = i;
1526 fbio = r10_bio->devs[i].bio;
1528 /* now find blocks with errors */
1529 for (i=0 ; i < conf->copies ; i++) {
1530 int j, d;
1531 int vcnt = r10_bio->sectors >> (PAGE_SHIFT-9);
1533 tbio = r10_bio->devs[i].bio;
1535 if (tbio->bi_end_io != end_sync_read)
1536 continue;
1537 if (i == first)
1538 continue;
1539 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) {
1540 /* We know that the bi_io_vec layout is the same for
1541 * both 'first' and 'i', so we just compare them.
1542 * All vec entries are PAGE_SIZE;
1544 for (j = 0; j < vcnt; j++)
1545 if (memcmp(page_address(fbio->bi_io_vec[j].bv_page),
1546 page_address(tbio->bi_io_vec[j].bv_page),
1547 PAGE_SIZE))
1548 break;
1549 if (j == vcnt)
1550 continue;
1551 mddev->resync_mismatches += r10_bio->sectors;
1552 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
1553 /* Don't fix anything. */
1554 continue;
1556 /* Ok, we need to write this bio, either to correct an
1557 * inconsistency or to correct an unreadable block.
1558 * First we need to fixup bv_offset, bv_len and
1559 * bi_vecs, as the read request might have corrupted these
1561 tbio->bi_vcnt = vcnt;
1562 tbio->bi_size = r10_bio->sectors << 9;
1563 tbio->bi_idx = 0;
1564 tbio->bi_phys_segments = 0;
1565 tbio->bi_flags &= ~(BIO_POOL_MASK - 1);
1566 tbio->bi_flags |= 1 << BIO_UPTODATE;
1567 tbio->bi_next = NULL;
1568 tbio->bi_rw = WRITE;
1569 tbio->bi_private = r10_bio;
1570 tbio->bi_sector = r10_bio->devs[i].addr;
1572 for (j=0; j < vcnt ; j++) {
1573 tbio->bi_io_vec[j].bv_offset = 0;
1574 tbio->bi_io_vec[j].bv_len = PAGE_SIZE;
1576 memcpy(page_address(tbio->bi_io_vec[j].bv_page),
1577 page_address(fbio->bi_io_vec[j].bv_page),
1578 PAGE_SIZE);
1580 tbio->bi_end_io = end_sync_write;
1582 d = r10_bio->devs[i].devnum;
1583 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1584 atomic_inc(&r10_bio->remaining);
1585 md_sync_acct(conf->mirrors[d].rdev->bdev, tbio->bi_size >> 9);
1587 tbio->bi_sector += conf->mirrors[d].rdev->data_offset;
1588 tbio->bi_bdev = conf->mirrors[d].rdev->bdev;
1589 generic_make_request(tbio);
1592 done:
1593 if (atomic_dec_and_test(&r10_bio->remaining)) {
1594 md_done_sync(mddev, r10_bio->sectors, 1);
1595 put_buf(r10_bio);
1600 * Now for the recovery code.
1601 * Recovery happens across physical sectors.
1602 * We recover all non-is_sync drives by finding the virtual address of
1603 * each, and then choose a working drive that also has that virt address.
1604 * There is a separate r10_bio for each non-in_sync drive.
1605 * Only the first two slots are in use. The first for reading,
1606 * The second for writing.
1609 static void fix_recovery_read_error(r10bio_t *r10_bio)
1611 /* We got a read error during recovery.
1612 * We repeat the read in smaller page-sized sections.
1613 * If a read succeeds, write it to the new device or record
1614 * a bad block if we cannot.
1615 * If a read fails, record a bad block on both old and
1616 * new devices.
1618 mddev_t *mddev = r10_bio->mddev;
1619 conf_t *conf = mddev->private;
1620 struct bio *bio = r10_bio->devs[0].bio;
1621 sector_t sect = 0;
1622 int sectors = r10_bio->sectors;
1623 int idx = 0;
1624 int dr = r10_bio->devs[0].devnum;
1625 int dw = r10_bio->devs[1].devnum;
1627 while (sectors) {
1628 int s = sectors;
1629 mdk_rdev_t *rdev;
1630 sector_t addr;
1631 int ok;
1633 if (s > (PAGE_SIZE>>9))
1634 s = PAGE_SIZE >> 9;
1636 rdev = conf->mirrors[dr].rdev;
1637 addr = r10_bio->devs[0].addr + sect,
1638 ok = sync_page_io(rdev,
1639 addr,
1640 s << 9,
1641 bio->bi_io_vec[idx].bv_page,
1642 READ, false);
1643 if (ok) {
1644 rdev = conf->mirrors[dw].rdev;
1645 addr = r10_bio->devs[1].addr + sect;
1646 ok = sync_page_io(rdev,
1647 addr,
1648 s << 9,
1649 bio->bi_io_vec[idx].bv_page,
1650 WRITE, false);
1651 if (!ok)
1652 set_bit(WriteErrorSeen, &rdev->flags);
1654 if (!ok) {
1655 /* We don't worry if we cannot set a bad block -
1656 * it really is bad so there is no loss in not
1657 * recording it yet
1659 rdev_set_badblocks(rdev, addr, s, 0);
1661 if (rdev != conf->mirrors[dw].rdev) {
1662 /* need bad block on destination too */
1663 mdk_rdev_t *rdev2 = conf->mirrors[dw].rdev;
1664 addr = r10_bio->devs[1].addr + sect;
1665 ok = rdev_set_badblocks(rdev2, addr, s, 0);
1666 if (!ok) {
1667 /* just abort the recovery */
1668 printk(KERN_NOTICE
1669 "md/raid10:%s: recovery aborted"
1670 " due to read error\n",
1671 mdname(mddev));
1673 conf->mirrors[dw].recovery_disabled
1674 = mddev->recovery_disabled;
1675 set_bit(MD_RECOVERY_INTR,
1676 &mddev->recovery);
1677 break;
1682 sectors -= s;
1683 sect += s;
1684 idx++;
1688 static void recovery_request_write(mddev_t *mddev, r10bio_t *r10_bio)
1690 conf_t *conf = mddev->private;
1691 int d;
1692 struct bio *wbio;
1694 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
1695 fix_recovery_read_error(r10_bio);
1696 end_sync_request(r10_bio);
1697 return;
1701 * share the pages with the first bio
1702 * and submit the write request
1704 wbio = r10_bio->devs[1].bio;
1705 d = r10_bio->devs[1].devnum;
1707 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1708 md_sync_acct(conf->mirrors[d].rdev->bdev, wbio->bi_size >> 9);
1709 generic_make_request(wbio);
1714 * Used by fix_read_error() to decay the per rdev read_errors.
1715 * We halve the read error count for every hour that has elapsed
1716 * since the last recorded read error.
1719 static void check_decay_read_errors(mddev_t *mddev, mdk_rdev_t *rdev)
1721 struct timespec cur_time_mon;
1722 unsigned long hours_since_last;
1723 unsigned int read_errors = atomic_read(&rdev->read_errors);
1725 ktime_get_ts(&cur_time_mon);
1727 if (rdev->last_read_error.tv_sec == 0 &&
1728 rdev->last_read_error.tv_nsec == 0) {
1729 /* first time we've seen a read error */
1730 rdev->last_read_error = cur_time_mon;
1731 return;
1734 hours_since_last = (cur_time_mon.tv_sec -
1735 rdev->last_read_error.tv_sec) / 3600;
1737 rdev->last_read_error = cur_time_mon;
1740 * if hours_since_last is > the number of bits in read_errors
1741 * just set read errors to 0. We do this to avoid
1742 * overflowing the shift of read_errors by hours_since_last.
1744 if (hours_since_last >= 8 * sizeof(read_errors))
1745 atomic_set(&rdev->read_errors, 0);
1746 else
1747 atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
1750 static int r10_sync_page_io(mdk_rdev_t *rdev, sector_t sector,
1751 int sectors, struct page *page, int rw)
1753 sector_t first_bad;
1754 int bad_sectors;
1756 if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
1757 && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags)))
1758 return -1;
1759 if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
1760 /* success */
1761 return 1;
1762 if (rw == WRITE)
1763 set_bit(WriteErrorSeen, &rdev->flags);
1764 /* need to record an error - either for the block or the device */
1765 if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1766 md_error(rdev->mddev, rdev);
1767 return 0;
1771 * This is a kernel thread which:
1773 * 1. Retries failed read operations on working mirrors.
1774 * 2. Updates the raid superblock when problems encounter.
1775 * 3. Performs writes following reads for array synchronising.
1778 static void fix_read_error(conf_t *conf, mddev_t *mddev, r10bio_t *r10_bio)
1780 int sect = 0; /* Offset from r10_bio->sector */
1781 int sectors = r10_bio->sectors;
1782 mdk_rdev_t*rdev;
1783 int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
1784 int d = r10_bio->devs[r10_bio->read_slot].devnum;
1786 /* still own a reference to this rdev, so it cannot
1787 * have been cleared recently.
1789 rdev = conf->mirrors[d].rdev;
1791 if (test_bit(Faulty, &rdev->flags))
1792 /* drive has already been failed, just ignore any
1793 more fix_read_error() attempts */
1794 return;
1796 check_decay_read_errors(mddev, rdev);
1797 atomic_inc(&rdev->read_errors);
1798 if (atomic_read(&rdev->read_errors) > max_read_errors) {
1799 char b[BDEVNAME_SIZE];
1800 bdevname(rdev->bdev, b);
1802 printk(KERN_NOTICE
1803 "md/raid10:%s: %s: Raid device exceeded "
1804 "read_error threshold [cur %d:max %d]\n",
1805 mdname(mddev), b,
1806 atomic_read(&rdev->read_errors), max_read_errors);
1807 printk(KERN_NOTICE
1808 "md/raid10:%s: %s: Failing raid device\n",
1809 mdname(mddev), b);
1810 md_error(mddev, conf->mirrors[d].rdev);
1811 return;
1814 while(sectors) {
1815 int s = sectors;
1816 int sl = r10_bio->read_slot;
1817 int success = 0;
1818 int start;
1820 if (s > (PAGE_SIZE>>9))
1821 s = PAGE_SIZE >> 9;
1823 rcu_read_lock();
1824 do {
1825 sector_t first_bad;
1826 int bad_sectors;
1828 d = r10_bio->devs[sl].devnum;
1829 rdev = rcu_dereference(conf->mirrors[d].rdev);
1830 if (rdev &&
1831 test_bit(In_sync, &rdev->flags) &&
1832 is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
1833 &first_bad, &bad_sectors) == 0) {
1834 atomic_inc(&rdev->nr_pending);
1835 rcu_read_unlock();
1836 success = sync_page_io(rdev,
1837 r10_bio->devs[sl].addr +
1838 sect,
1839 s<<9,
1840 conf->tmppage, READ, false);
1841 rdev_dec_pending(rdev, mddev);
1842 rcu_read_lock();
1843 if (success)
1844 break;
1846 sl++;
1847 if (sl == conf->copies)
1848 sl = 0;
1849 } while (!success && sl != r10_bio->read_slot);
1850 rcu_read_unlock();
1852 if (!success) {
1853 /* Cannot read from anywhere, just mark the block
1854 * as bad on the first device to discourage future
1855 * reads.
1857 int dn = r10_bio->devs[r10_bio->read_slot].devnum;
1858 rdev = conf->mirrors[dn].rdev;
1860 if (!rdev_set_badblocks(
1861 rdev,
1862 r10_bio->devs[r10_bio->read_slot].addr
1863 + sect,
1864 s, 0))
1865 md_error(mddev, rdev);
1866 break;
1869 start = sl;
1870 /* write it back and re-read */
1871 rcu_read_lock();
1872 while (sl != r10_bio->read_slot) {
1873 char b[BDEVNAME_SIZE];
1875 if (sl==0)
1876 sl = conf->copies;
1877 sl--;
1878 d = r10_bio->devs[sl].devnum;
1879 rdev = rcu_dereference(conf->mirrors[d].rdev);
1880 if (!rdev ||
1881 !test_bit(In_sync, &rdev->flags))
1882 continue;
1884 atomic_inc(&rdev->nr_pending);
1885 rcu_read_unlock();
1886 if (r10_sync_page_io(rdev,
1887 r10_bio->devs[sl].addr +
1888 sect,
1889 s<<9, conf->tmppage, WRITE)
1890 == 0) {
1891 /* Well, this device is dead */
1892 printk(KERN_NOTICE
1893 "md/raid10:%s: read correction "
1894 "write failed"
1895 " (%d sectors at %llu on %s)\n",
1896 mdname(mddev), s,
1897 (unsigned long long)(
1898 sect + rdev->data_offset),
1899 bdevname(rdev->bdev, b));
1900 printk(KERN_NOTICE "md/raid10:%s: %s: failing "
1901 "drive\n",
1902 mdname(mddev),
1903 bdevname(rdev->bdev, b));
1905 rdev_dec_pending(rdev, mddev);
1906 rcu_read_lock();
1908 sl = start;
1909 while (sl != r10_bio->read_slot) {
1910 char b[BDEVNAME_SIZE];
1912 if (sl==0)
1913 sl = conf->copies;
1914 sl--;
1915 d = r10_bio->devs[sl].devnum;
1916 rdev = rcu_dereference(conf->mirrors[d].rdev);
1917 if (!rdev ||
1918 !test_bit(In_sync, &rdev->flags))
1919 continue;
1921 atomic_inc(&rdev->nr_pending);
1922 rcu_read_unlock();
1923 switch (r10_sync_page_io(rdev,
1924 r10_bio->devs[sl].addr +
1925 sect,
1926 s<<9, conf->tmppage,
1927 READ)) {
1928 case 0:
1929 /* Well, this device is dead */
1930 printk(KERN_NOTICE
1931 "md/raid10:%s: unable to read back "
1932 "corrected sectors"
1933 " (%d sectors at %llu on %s)\n",
1934 mdname(mddev), s,
1935 (unsigned long long)(
1936 sect + rdev->data_offset),
1937 bdevname(rdev->bdev, b));
1938 printk(KERN_NOTICE "md/raid10:%s: %s: failing "
1939 "drive\n",
1940 mdname(mddev),
1941 bdevname(rdev->bdev, b));
1942 break;
1943 case 1:
1944 printk(KERN_INFO
1945 "md/raid10:%s: read error corrected"
1946 " (%d sectors at %llu on %s)\n",
1947 mdname(mddev), s,
1948 (unsigned long long)(
1949 sect + rdev->data_offset),
1950 bdevname(rdev->bdev, b));
1951 atomic_add(s, &rdev->corrected_errors);
1954 rdev_dec_pending(rdev, mddev);
1955 rcu_read_lock();
1957 rcu_read_unlock();
1959 sectors -= s;
1960 sect += s;
1964 static void bi_complete(struct bio *bio, int error)
1966 complete((struct completion *)bio->bi_private);
1969 static int submit_bio_wait(int rw, struct bio *bio)
1971 struct completion event;
1972 rw |= REQ_SYNC;
1974 init_completion(&event);
1975 bio->bi_private = &event;
1976 bio->bi_end_io = bi_complete;
1977 submit_bio(rw, bio);
1978 wait_for_completion(&event);
1980 return test_bit(BIO_UPTODATE, &bio->bi_flags);
1983 static int narrow_write_error(r10bio_t *r10_bio, int i)
1985 struct bio *bio = r10_bio->master_bio;
1986 mddev_t *mddev = r10_bio->mddev;
1987 conf_t *conf = mddev->private;
1988 mdk_rdev_t *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
1989 /* bio has the data to be written to slot 'i' where
1990 * we just recently had a write error.
1991 * We repeatedly clone the bio and trim down to one block,
1992 * then try the write. Where the write fails we record
1993 * a bad block.
1994 * It is conceivable that the bio doesn't exactly align with
1995 * blocks. We must handle this.
1997 * We currently own a reference to the rdev.
2000 int block_sectors;
2001 sector_t sector;
2002 int sectors;
2003 int sect_to_write = r10_bio->sectors;
2004 int ok = 1;
2006 if (rdev->badblocks.shift < 0)
2007 return 0;
2009 block_sectors = 1 << rdev->badblocks.shift;
2010 sector = r10_bio->sector;
2011 sectors = ((r10_bio->sector + block_sectors)
2012 & ~(sector_t)(block_sectors - 1))
2013 - sector;
2015 while (sect_to_write) {
2016 struct bio *wbio;
2017 if (sectors > sect_to_write)
2018 sectors = sect_to_write;
2019 /* Write at 'sector' for 'sectors' */
2020 wbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
2021 md_trim_bio(wbio, sector - bio->bi_sector, sectors);
2022 wbio->bi_sector = (r10_bio->devs[i].addr+
2023 rdev->data_offset+
2024 (sector - r10_bio->sector));
2025 wbio->bi_bdev = rdev->bdev;
2026 if (submit_bio_wait(WRITE, wbio) == 0)
2027 /* Failure! */
2028 ok = rdev_set_badblocks(rdev, sector,
2029 sectors, 0)
2030 && ok;
2032 bio_put(wbio);
2033 sect_to_write -= sectors;
2034 sector += sectors;
2035 sectors = block_sectors;
2037 return ok;
2040 static void handle_read_error(mddev_t *mddev, r10bio_t *r10_bio)
2042 int slot = r10_bio->read_slot;
2043 int mirror = r10_bio->devs[slot].devnum;
2044 struct bio *bio;
2045 conf_t *conf = mddev->private;
2046 mdk_rdev_t *rdev;
2047 char b[BDEVNAME_SIZE];
2048 unsigned long do_sync;
2049 int max_sectors;
2051 /* we got a read error. Maybe the drive is bad. Maybe just
2052 * the block and we can fix it.
2053 * We freeze all other IO, and try reading the block from
2054 * other devices. When we find one, we re-write
2055 * and check it that fixes the read error.
2056 * This is all done synchronously while the array is
2057 * frozen.
2059 if (mddev->ro == 0) {
2060 freeze_array(conf);
2061 fix_read_error(conf, mddev, r10_bio);
2062 unfreeze_array(conf);
2064 rdev_dec_pending(conf->mirrors[mirror].rdev, mddev);
2066 bio = r10_bio->devs[slot].bio;
2067 bdevname(bio->bi_bdev, b);
2068 r10_bio->devs[slot].bio =
2069 mddev->ro ? IO_BLOCKED : NULL;
2070 read_more:
2071 mirror = read_balance(conf, r10_bio, &max_sectors);
2072 if (mirror == -1) {
2073 printk(KERN_ALERT "md/raid10:%s: %s: unrecoverable I/O"
2074 " read error for block %llu\n",
2075 mdname(mddev), b,
2076 (unsigned long long)r10_bio->sector);
2077 raid_end_bio_io(r10_bio);
2078 bio_put(bio);
2079 return;
2082 do_sync = (r10_bio->master_bio->bi_rw & REQ_SYNC);
2083 if (bio)
2084 bio_put(bio);
2085 slot = r10_bio->read_slot;
2086 rdev = conf->mirrors[mirror].rdev;
2087 printk_ratelimited(
2088 KERN_ERR
2089 "md/raid10:%s: %s: redirecting"
2090 "sector %llu to another mirror\n",
2091 mdname(mddev),
2092 bdevname(rdev->bdev, b),
2093 (unsigned long long)r10_bio->sector);
2094 bio = bio_clone_mddev(r10_bio->master_bio,
2095 GFP_NOIO, mddev);
2096 md_trim_bio(bio,
2097 r10_bio->sector - bio->bi_sector,
2098 max_sectors);
2099 r10_bio->devs[slot].bio = bio;
2100 bio->bi_sector = r10_bio->devs[slot].addr
2101 + rdev->data_offset;
2102 bio->bi_bdev = rdev->bdev;
2103 bio->bi_rw = READ | do_sync;
2104 bio->bi_private = r10_bio;
2105 bio->bi_end_io = raid10_end_read_request;
2106 if (max_sectors < r10_bio->sectors) {
2107 /* Drat - have to split this up more */
2108 struct bio *mbio = r10_bio->master_bio;
2109 int sectors_handled =
2110 r10_bio->sector + max_sectors
2111 - mbio->bi_sector;
2112 r10_bio->sectors = max_sectors;
2113 spin_lock_irq(&conf->device_lock);
2114 if (mbio->bi_phys_segments == 0)
2115 mbio->bi_phys_segments = 2;
2116 else
2117 mbio->bi_phys_segments++;
2118 spin_unlock_irq(&conf->device_lock);
2119 generic_make_request(bio);
2120 bio = NULL;
2122 r10_bio = mempool_alloc(conf->r10bio_pool,
2123 GFP_NOIO);
2124 r10_bio->master_bio = mbio;
2125 r10_bio->sectors = (mbio->bi_size >> 9)
2126 - sectors_handled;
2127 r10_bio->state = 0;
2128 set_bit(R10BIO_ReadError,
2129 &r10_bio->state);
2130 r10_bio->mddev = mddev;
2131 r10_bio->sector = mbio->bi_sector
2132 + sectors_handled;
2134 goto read_more;
2135 } else
2136 generic_make_request(bio);
2139 static void handle_write_completed(conf_t *conf, r10bio_t *r10_bio)
2141 /* Some sort of write request has finished and it
2142 * succeeded in writing where we thought there was a
2143 * bad block. So forget the bad block.
2144 * Or possibly if failed and we need to record
2145 * a bad block.
2147 int m;
2148 mdk_rdev_t *rdev;
2150 if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2151 test_bit(R10BIO_IsRecover, &r10_bio->state)) {
2152 for (m = 0; m < conf->copies; m++) {
2153 int dev = r10_bio->devs[m].devnum;
2154 rdev = conf->mirrors[dev].rdev;
2155 if (r10_bio->devs[m].bio == NULL)
2156 continue;
2157 if (test_bit(BIO_UPTODATE,
2158 &r10_bio->devs[m].bio->bi_flags)) {
2159 rdev_clear_badblocks(
2160 rdev,
2161 r10_bio->devs[m].addr,
2162 r10_bio->sectors);
2163 } else {
2164 if (!rdev_set_badblocks(
2165 rdev,
2166 r10_bio->devs[m].addr,
2167 r10_bio->sectors, 0))
2168 md_error(conf->mddev, rdev);
2171 put_buf(r10_bio);
2172 } else {
2173 for (m = 0; m < conf->copies; m++) {
2174 int dev = r10_bio->devs[m].devnum;
2175 struct bio *bio = r10_bio->devs[m].bio;
2176 rdev = conf->mirrors[dev].rdev;
2177 if (bio == IO_MADE_GOOD) {
2178 rdev_clear_badblocks(
2179 rdev,
2180 r10_bio->devs[m].addr,
2181 r10_bio->sectors);
2182 rdev_dec_pending(rdev, conf->mddev);
2183 } else if (bio != NULL &&
2184 !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
2185 if (!narrow_write_error(r10_bio, m)) {
2186 md_error(conf->mddev, rdev);
2187 set_bit(R10BIO_Degraded,
2188 &r10_bio->state);
2190 rdev_dec_pending(rdev, conf->mddev);
2193 if (test_bit(R10BIO_WriteError,
2194 &r10_bio->state))
2195 close_write(r10_bio);
2196 raid_end_bio_io(r10_bio);
2200 static void raid10d(mddev_t *mddev)
2202 r10bio_t *r10_bio;
2203 unsigned long flags;
2204 conf_t *conf = mddev->private;
2205 struct list_head *head = &conf->retry_list;
2206 struct blk_plug plug;
2208 md_check_recovery(mddev);
2210 blk_start_plug(&plug);
2211 for (;;) {
2213 flush_pending_writes(conf);
2215 spin_lock_irqsave(&conf->device_lock, flags);
2216 if (list_empty(head)) {
2217 spin_unlock_irqrestore(&conf->device_lock, flags);
2218 break;
2220 r10_bio = list_entry(head->prev, r10bio_t, retry_list);
2221 list_del(head->prev);
2222 conf->nr_queued--;
2223 spin_unlock_irqrestore(&conf->device_lock, flags);
2225 mddev = r10_bio->mddev;
2226 conf = mddev->private;
2227 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2228 test_bit(R10BIO_WriteError, &r10_bio->state))
2229 handle_write_completed(conf, r10_bio);
2230 else if (test_bit(R10BIO_IsSync, &r10_bio->state))
2231 sync_request_write(mddev, r10_bio);
2232 else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
2233 recovery_request_write(mddev, r10_bio);
2234 else if (test_bit(R10BIO_ReadError, &r10_bio->state))
2235 handle_read_error(mddev, r10_bio);
2236 else {
2237 /* just a partial read to be scheduled from a
2238 * separate context
2240 int slot = r10_bio->read_slot;
2241 generic_make_request(r10_bio->devs[slot].bio);
2244 cond_resched();
2245 if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2246 md_check_recovery(mddev);
2248 blk_finish_plug(&plug);
2252 static int init_resync(conf_t *conf)
2254 int buffs;
2256 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2257 BUG_ON(conf->r10buf_pool);
2258 conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
2259 if (!conf->r10buf_pool)
2260 return -ENOMEM;
2261 conf->next_resync = 0;
2262 return 0;
2266 * perform a "sync" on one "block"
2268 * We need to make sure that no normal I/O request - particularly write
2269 * requests - conflict with active sync requests.
2271 * This is achieved by tracking pending requests and a 'barrier' concept
2272 * that can be installed to exclude normal IO requests.
2274 * Resync and recovery are handled very differently.
2275 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
2277 * For resync, we iterate over virtual addresses, read all copies,
2278 * and update if there are differences. If only one copy is live,
2279 * skip it.
2280 * For recovery, we iterate over physical addresses, read a good
2281 * value for each non-in_sync drive, and over-write.
2283 * So, for recovery we may have several outstanding complex requests for a
2284 * given address, one for each out-of-sync device. We model this by allocating
2285 * a number of r10_bio structures, one for each out-of-sync device.
2286 * As we setup these structures, we collect all bio's together into a list
2287 * which we then process collectively to add pages, and then process again
2288 * to pass to generic_make_request.
2290 * The r10_bio structures are linked using a borrowed master_bio pointer.
2291 * This link is counted in ->remaining. When the r10_bio that points to NULL
2292 * has its remaining count decremented to 0, the whole complex operation
2293 * is complete.
2297 static sector_t sync_request(mddev_t *mddev, sector_t sector_nr,
2298 int *skipped, int go_faster)
2300 conf_t *conf = mddev->private;
2301 r10bio_t *r10_bio;
2302 struct bio *biolist = NULL, *bio;
2303 sector_t max_sector, nr_sectors;
2304 int i;
2305 int max_sync;
2306 sector_t sync_blocks;
2307 sector_t sectors_skipped = 0;
2308 int chunks_skipped = 0;
2310 if (!conf->r10buf_pool)
2311 if (init_resync(conf))
2312 return 0;
2314 skipped:
2315 max_sector = mddev->dev_sectors;
2316 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2317 max_sector = mddev->resync_max_sectors;
2318 if (sector_nr >= max_sector) {
2319 /* If we aborted, we need to abort the
2320 * sync on the 'current' bitmap chucks (there can
2321 * be several when recovering multiple devices).
2322 * as we may have started syncing it but not finished.
2323 * We can find the current address in
2324 * mddev->curr_resync, but for recovery,
2325 * we need to convert that to several
2326 * virtual addresses.
2328 if (mddev->curr_resync < max_sector) { /* aborted */
2329 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2330 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2331 &sync_blocks, 1);
2332 else for (i=0; i<conf->raid_disks; i++) {
2333 sector_t sect =
2334 raid10_find_virt(conf, mddev->curr_resync, i);
2335 bitmap_end_sync(mddev->bitmap, sect,
2336 &sync_blocks, 1);
2338 } else /* completed sync */
2339 conf->fullsync = 0;
2341 bitmap_close_sync(mddev->bitmap);
2342 close_sync(conf);
2343 *skipped = 1;
2344 return sectors_skipped;
2346 if (chunks_skipped >= conf->raid_disks) {
2347 /* if there has been nothing to do on any drive,
2348 * then there is nothing to do at all..
2350 *skipped = 1;
2351 return (max_sector - sector_nr) + sectors_skipped;
2354 if (max_sector > mddev->resync_max)
2355 max_sector = mddev->resync_max; /* Don't do IO beyond here */
2357 /* make sure whole request will fit in a chunk - if chunks
2358 * are meaningful
2360 if (conf->near_copies < conf->raid_disks &&
2361 max_sector > (sector_nr | conf->chunk_mask))
2362 max_sector = (sector_nr | conf->chunk_mask) + 1;
2364 * If there is non-resync activity waiting for us then
2365 * put in a delay to throttle resync.
2367 if (!go_faster && conf->nr_waiting)
2368 msleep_interruptible(1000);
2370 /* Again, very different code for resync and recovery.
2371 * Both must result in an r10bio with a list of bios that
2372 * have bi_end_io, bi_sector, bi_bdev set,
2373 * and bi_private set to the r10bio.
2374 * For recovery, we may actually create several r10bios
2375 * with 2 bios in each, that correspond to the bios in the main one.
2376 * In this case, the subordinate r10bios link back through a
2377 * borrowed master_bio pointer, and the counter in the master
2378 * includes a ref from each subordinate.
2380 /* First, we decide what to do and set ->bi_end_io
2381 * To end_sync_read if we want to read, and
2382 * end_sync_write if we will want to write.
2385 max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
2386 if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2387 /* recovery... the complicated one */
2388 int j;
2389 r10_bio = NULL;
2391 for (i=0 ; i<conf->raid_disks; i++) {
2392 int still_degraded;
2393 r10bio_t *rb2;
2394 sector_t sect;
2395 int must_sync;
2396 int any_working;
2398 if (conf->mirrors[i].rdev == NULL ||
2399 test_bit(In_sync, &conf->mirrors[i].rdev->flags))
2400 continue;
2402 still_degraded = 0;
2403 /* want to reconstruct this device */
2404 rb2 = r10_bio;
2405 sect = raid10_find_virt(conf, sector_nr, i);
2406 /* Unless we are doing a full sync, we only need
2407 * to recover the block if it is set in the bitmap
2409 must_sync = bitmap_start_sync(mddev->bitmap, sect,
2410 &sync_blocks, 1);
2411 if (sync_blocks < max_sync)
2412 max_sync = sync_blocks;
2413 if (!must_sync &&
2414 !conf->fullsync) {
2415 /* yep, skip the sync_blocks here, but don't assume
2416 * that there will never be anything to do here
2418 chunks_skipped = -1;
2419 continue;
2422 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
2423 raise_barrier(conf, rb2 != NULL);
2424 atomic_set(&r10_bio->remaining, 0);
2426 r10_bio->master_bio = (struct bio*)rb2;
2427 if (rb2)
2428 atomic_inc(&rb2->remaining);
2429 r10_bio->mddev = mddev;
2430 set_bit(R10BIO_IsRecover, &r10_bio->state);
2431 r10_bio->sector = sect;
2433 raid10_find_phys(conf, r10_bio);
2435 /* Need to check if the array will still be
2436 * degraded
2438 for (j=0; j<conf->raid_disks; j++)
2439 if (conf->mirrors[j].rdev == NULL ||
2440 test_bit(Faulty, &conf->mirrors[j].rdev->flags)) {
2441 still_degraded = 1;
2442 break;
2445 must_sync = bitmap_start_sync(mddev->bitmap, sect,
2446 &sync_blocks, still_degraded);
2448 any_working = 0;
2449 for (j=0; j<conf->copies;j++) {
2450 int k;
2451 int d = r10_bio->devs[j].devnum;
2452 sector_t from_addr, to_addr;
2453 mdk_rdev_t *rdev;
2454 sector_t sector, first_bad;
2455 int bad_sectors;
2456 if (!conf->mirrors[d].rdev ||
2457 !test_bit(In_sync, &conf->mirrors[d].rdev->flags))
2458 continue;
2459 /* This is where we read from */
2460 any_working = 1;
2461 rdev = conf->mirrors[d].rdev;
2462 sector = r10_bio->devs[j].addr;
2464 if (is_badblock(rdev, sector, max_sync,
2465 &first_bad, &bad_sectors)) {
2466 if (first_bad > sector)
2467 max_sync = first_bad - sector;
2468 else {
2469 bad_sectors -= (sector
2470 - first_bad);
2471 if (max_sync > bad_sectors)
2472 max_sync = bad_sectors;
2473 continue;
2476 bio = r10_bio->devs[0].bio;
2477 bio->bi_next = biolist;
2478 biolist = bio;
2479 bio->bi_private = r10_bio;
2480 bio->bi_end_io = end_sync_read;
2481 bio->bi_rw = READ;
2482 from_addr = r10_bio->devs[j].addr;
2483 bio->bi_sector = from_addr +
2484 conf->mirrors[d].rdev->data_offset;
2485 bio->bi_bdev = conf->mirrors[d].rdev->bdev;
2486 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2487 atomic_inc(&r10_bio->remaining);
2488 /* and we write to 'i' */
2490 for (k=0; k<conf->copies; k++)
2491 if (r10_bio->devs[k].devnum == i)
2492 break;
2493 BUG_ON(k == conf->copies);
2494 bio = r10_bio->devs[1].bio;
2495 bio->bi_next = biolist;
2496 biolist = bio;
2497 bio->bi_private = r10_bio;
2498 bio->bi_end_io = end_sync_write;
2499 bio->bi_rw = WRITE;
2500 to_addr = r10_bio->devs[k].addr;
2501 bio->bi_sector = to_addr +
2502 conf->mirrors[i].rdev->data_offset;
2503 bio->bi_bdev = conf->mirrors[i].rdev->bdev;
2505 r10_bio->devs[0].devnum = d;
2506 r10_bio->devs[0].addr = from_addr;
2507 r10_bio->devs[1].devnum = i;
2508 r10_bio->devs[1].addr = to_addr;
2510 break;
2512 if (j == conf->copies) {
2513 /* Cannot recover, so abort the recovery or
2514 * record a bad block */
2515 put_buf(r10_bio);
2516 if (rb2)
2517 atomic_dec(&rb2->remaining);
2518 r10_bio = rb2;
2519 if (any_working) {
2520 /* problem is that there are bad blocks
2521 * on other device(s)
2523 int k;
2524 for (k = 0; k < conf->copies; k++)
2525 if (r10_bio->devs[k].devnum == i)
2526 break;
2527 if (!rdev_set_badblocks(
2528 conf->mirrors[i].rdev,
2529 r10_bio->devs[k].addr,
2530 max_sync, 0))
2531 any_working = 0;
2533 if (!any_working) {
2534 if (!test_and_set_bit(MD_RECOVERY_INTR,
2535 &mddev->recovery))
2536 printk(KERN_INFO "md/raid10:%s: insufficient "
2537 "working devices for recovery.\n",
2538 mdname(mddev));
2539 conf->mirrors[i].recovery_disabled
2540 = mddev->recovery_disabled;
2542 break;
2545 if (biolist == NULL) {
2546 while (r10_bio) {
2547 r10bio_t *rb2 = r10_bio;
2548 r10_bio = (r10bio_t*) rb2->master_bio;
2549 rb2->master_bio = NULL;
2550 put_buf(rb2);
2552 goto giveup;
2554 } else {
2555 /* resync. Schedule a read for every block at this virt offset */
2556 int count = 0;
2558 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
2560 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
2561 &sync_blocks, mddev->degraded) &&
2562 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
2563 &mddev->recovery)) {
2564 /* We can skip this block */
2565 *skipped = 1;
2566 return sync_blocks + sectors_skipped;
2568 if (sync_blocks < max_sync)
2569 max_sync = sync_blocks;
2570 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
2572 r10_bio->mddev = mddev;
2573 atomic_set(&r10_bio->remaining, 0);
2574 raise_barrier(conf, 0);
2575 conf->next_resync = sector_nr;
2577 r10_bio->master_bio = NULL;
2578 r10_bio->sector = sector_nr;
2579 set_bit(R10BIO_IsSync, &r10_bio->state);
2580 raid10_find_phys(conf, r10_bio);
2581 r10_bio->sectors = (sector_nr | conf->chunk_mask) - sector_nr +1;
2583 for (i=0; i<conf->copies; i++) {
2584 int d = r10_bio->devs[i].devnum;
2585 sector_t first_bad, sector;
2586 int bad_sectors;
2588 bio = r10_bio->devs[i].bio;
2589 bio->bi_end_io = NULL;
2590 clear_bit(BIO_UPTODATE, &bio->bi_flags);
2591 if (conf->mirrors[d].rdev == NULL ||
2592 test_bit(Faulty, &conf->mirrors[d].rdev->flags))
2593 continue;
2594 sector = r10_bio->devs[i].addr;
2595 if (is_badblock(conf->mirrors[d].rdev,
2596 sector, max_sync,
2597 &first_bad, &bad_sectors)) {
2598 if (first_bad > sector)
2599 max_sync = first_bad - sector;
2600 else {
2601 bad_sectors -= (sector - first_bad);
2602 if (max_sync > bad_sectors)
2603 max_sync = max_sync;
2604 continue;
2607 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2608 atomic_inc(&r10_bio->remaining);
2609 bio->bi_next = biolist;
2610 biolist = bio;
2611 bio->bi_private = r10_bio;
2612 bio->bi_end_io = end_sync_read;
2613 bio->bi_rw = READ;
2614 bio->bi_sector = sector +
2615 conf->mirrors[d].rdev->data_offset;
2616 bio->bi_bdev = conf->mirrors[d].rdev->bdev;
2617 count++;
2620 if (count < 2) {
2621 for (i=0; i<conf->copies; i++) {
2622 int d = r10_bio->devs[i].devnum;
2623 if (r10_bio->devs[i].bio->bi_end_io)
2624 rdev_dec_pending(conf->mirrors[d].rdev,
2625 mddev);
2627 put_buf(r10_bio);
2628 biolist = NULL;
2629 goto giveup;
2633 for (bio = biolist; bio ; bio=bio->bi_next) {
2635 bio->bi_flags &= ~(BIO_POOL_MASK - 1);
2636 if (bio->bi_end_io)
2637 bio->bi_flags |= 1 << BIO_UPTODATE;
2638 bio->bi_vcnt = 0;
2639 bio->bi_idx = 0;
2640 bio->bi_phys_segments = 0;
2641 bio->bi_size = 0;
2644 nr_sectors = 0;
2645 if (sector_nr + max_sync < max_sector)
2646 max_sector = sector_nr + max_sync;
2647 do {
2648 struct page *page;
2649 int len = PAGE_SIZE;
2650 if (sector_nr + (len>>9) > max_sector)
2651 len = (max_sector - sector_nr) << 9;
2652 if (len == 0)
2653 break;
2654 for (bio= biolist ; bio ; bio=bio->bi_next) {
2655 struct bio *bio2;
2656 page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
2657 if (bio_add_page(bio, page, len, 0))
2658 continue;
2660 /* stop here */
2661 bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
2662 for (bio2 = biolist;
2663 bio2 && bio2 != bio;
2664 bio2 = bio2->bi_next) {
2665 /* remove last page from this bio */
2666 bio2->bi_vcnt--;
2667 bio2->bi_size -= len;
2668 bio2->bi_flags &= ~(1<< BIO_SEG_VALID);
2670 goto bio_full;
2672 nr_sectors += len>>9;
2673 sector_nr += len>>9;
2674 } while (biolist->bi_vcnt < RESYNC_PAGES);
2675 bio_full:
2676 r10_bio->sectors = nr_sectors;
2678 while (biolist) {
2679 bio = biolist;
2680 biolist = biolist->bi_next;
2682 bio->bi_next = NULL;
2683 r10_bio = bio->bi_private;
2684 r10_bio->sectors = nr_sectors;
2686 if (bio->bi_end_io == end_sync_read) {
2687 md_sync_acct(bio->bi_bdev, nr_sectors);
2688 generic_make_request(bio);
2692 if (sectors_skipped)
2693 /* pretend they weren't skipped, it makes
2694 * no important difference in this case
2696 md_done_sync(mddev, sectors_skipped, 1);
2698 return sectors_skipped + nr_sectors;
2699 giveup:
2700 /* There is nowhere to write, so all non-sync
2701 * drives must be failed or in resync, all drives
2702 * have a bad block, so try the next chunk...
2704 if (sector_nr + max_sync < max_sector)
2705 max_sector = sector_nr + max_sync;
2707 sectors_skipped += (max_sector - sector_nr);
2708 chunks_skipped ++;
2709 sector_nr = max_sector;
2710 goto skipped;
2713 static sector_t
2714 raid10_size(mddev_t *mddev, sector_t sectors, int raid_disks)
2716 sector_t size;
2717 conf_t *conf = mddev->private;
2719 if (!raid_disks)
2720 raid_disks = conf->raid_disks;
2721 if (!sectors)
2722 sectors = conf->dev_sectors;
2724 size = sectors >> conf->chunk_shift;
2725 sector_div(size, conf->far_copies);
2726 size = size * raid_disks;
2727 sector_div(size, conf->near_copies);
2729 return size << conf->chunk_shift;
2733 static conf_t *setup_conf(mddev_t *mddev)
2735 conf_t *conf = NULL;
2736 int nc, fc, fo;
2737 sector_t stride, size;
2738 int err = -EINVAL;
2740 if (mddev->new_chunk_sectors < (PAGE_SIZE >> 9) ||
2741 !is_power_of_2(mddev->new_chunk_sectors)) {
2742 printk(KERN_ERR "md/raid10:%s: chunk size must be "
2743 "at least PAGE_SIZE(%ld) and be a power of 2.\n",
2744 mdname(mddev), PAGE_SIZE);
2745 goto out;
2748 nc = mddev->new_layout & 255;
2749 fc = (mddev->new_layout >> 8) & 255;
2750 fo = mddev->new_layout & (1<<16);
2752 if ((nc*fc) <2 || (nc*fc) > mddev->raid_disks ||
2753 (mddev->new_layout >> 17)) {
2754 printk(KERN_ERR "md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
2755 mdname(mddev), mddev->new_layout);
2756 goto out;
2759 err = -ENOMEM;
2760 conf = kzalloc(sizeof(conf_t), GFP_KERNEL);
2761 if (!conf)
2762 goto out;
2764 conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks,
2765 GFP_KERNEL);
2766 if (!conf->mirrors)
2767 goto out;
2769 conf->tmppage = alloc_page(GFP_KERNEL);
2770 if (!conf->tmppage)
2771 goto out;
2774 conf->raid_disks = mddev->raid_disks;
2775 conf->near_copies = nc;
2776 conf->far_copies = fc;
2777 conf->copies = nc*fc;
2778 conf->far_offset = fo;
2779 conf->chunk_mask = mddev->new_chunk_sectors - 1;
2780 conf->chunk_shift = ffz(~mddev->new_chunk_sectors);
2782 conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
2783 r10bio_pool_free, conf);
2784 if (!conf->r10bio_pool)
2785 goto out;
2787 size = mddev->dev_sectors >> conf->chunk_shift;
2788 sector_div(size, fc);
2789 size = size * conf->raid_disks;
2790 sector_div(size, nc);
2791 /* 'size' is now the number of chunks in the array */
2792 /* calculate "used chunks per device" in 'stride' */
2793 stride = size * conf->copies;
2795 /* We need to round up when dividing by raid_disks to
2796 * get the stride size.
2798 stride += conf->raid_disks - 1;
2799 sector_div(stride, conf->raid_disks);
2801 conf->dev_sectors = stride << conf->chunk_shift;
2803 if (fo)
2804 stride = 1;
2805 else
2806 sector_div(stride, fc);
2807 conf->stride = stride << conf->chunk_shift;
2810 spin_lock_init(&conf->device_lock);
2811 INIT_LIST_HEAD(&conf->retry_list);
2813 spin_lock_init(&conf->resync_lock);
2814 init_waitqueue_head(&conf->wait_barrier);
2816 conf->thread = md_register_thread(raid10d, mddev, NULL);
2817 if (!conf->thread)
2818 goto out;
2820 conf->mddev = mddev;
2821 return conf;
2823 out:
2824 printk(KERN_ERR "md/raid10:%s: couldn't allocate memory.\n",
2825 mdname(mddev));
2826 if (conf) {
2827 if (conf->r10bio_pool)
2828 mempool_destroy(conf->r10bio_pool);
2829 kfree(conf->mirrors);
2830 safe_put_page(conf->tmppage);
2831 kfree(conf);
2833 return ERR_PTR(err);
2836 static int run(mddev_t *mddev)
2838 conf_t *conf;
2839 int i, disk_idx, chunk_size;
2840 mirror_info_t *disk;
2841 mdk_rdev_t *rdev;
2842 sector_t size;
2845 * copy the already verified devices into our private RAID10
2846 * bookkeeping area. [whatever we allocate in run(),
2847 * should be freed in stop()]
2850 if (mddev->private == NULL) {
2851 conf = setup_conf(mddev);
2852 if (IS_ERR(conf))
2853 return PTR_ERR(conf);
2854 mddev->private = conf;
2856 conf = mddev->private;
2857 if (!conf)
2858 goto out;
2860 mddev->thread = conf->thread;
2861 conf->thread = NULL;
2863 chunk_size = mddev->chunk_sectors << 9;
2864 blk_queue_io_min(mddev->queue, chunk_size);
2865 if (conf->raid_disks % conf->near_copies)
2866 blk_queue_io_opt(mddev->queue, chunk_size * conf->raid_disks);
2867 else
2868 blk_queue_io_opt(mddev->queue, chunk_size *
2869 (conf->raid_disks / conf->near_copies));
2871 list_for_each_entry(rdev, &mddev->disks, same_set) {
2873 disk_idx = rdev->raid_disk;
2874 if (disk_idx >= conf->raid_disks
2875 || disk_idx < 0)
2876 continue;
2877 disk = conf->mirrors + disk_idx;
2879 disk->rdev = rdev;
2880 disk_stack_limits(mddev->gendisk, rdev->bdev,
2881 rdev->data_offset << 9);
2882 /* as we don't honour merge_bvec_fn, we must never risk
2883 * violating it, so limit max_segments to 1 lying
2884 * within a single page.
2886 if (rdev->bdev->bd_disk->queue->merge_bvec_fn) {
2887 blk_queue_max_segments(mddev->queue, 1);
2888 blk_queue_segment_boundary(mddev->queue,
2889 PAGE_CACHE_SIZE - 1);
2892 disk->head_position = 0;
2894 /* need to check that every block has at least one working mirror */
2895 if (!enough(conf, -1)) {
2896 printk(KERN_ERR "md/raid10:%s: not enough operational mirrors.\n",
2897 mdname(mddev));
2898 goto out_free_conf;
2901 mddev->degraded = 0;
2902 for (i = 0; i < conf->raid_disks; i++) {
2904 disk = conf->mirrors + i;
2906 if (!disk->rdev ||
2907 !test_bit(In_sync, &disk->rdev->flags)) {
2908 disk->head_position = 0;
2909 mddev->degraded++;
2910 if (disk->rdev)
2911 conf->fullsync = 1;
2915 if (mddev->recovery_cp != MaxSector)
2916 printk(KERN_NOTICE "md/raid10:%s: not clean"
2917 " -- starting background reconstruction\n",
2918 mdname(mddev));
2919 printk(KERN_INFO
2920 "md/raid10:%s: active with %d out of %d devices\n",
2921 mdname(mddev), conf->raid_disks - mddev->degraded,
2922 conf->raid_disks);
2924 * Ok, everything is just fine now
2926 mddev->dev_sectors = conf->dev_sectors;
2927 size = raid10_size(mddev, 0, 0);
2928 md_set_array_sectors(mddev, size);
2929 mddev->resync_max_sectors = size;
2931 mddev->queue->backing_dev_info.congested_fn = raid10_congested;
2932 mddev->queue->backing_dev_info.congested_data = mddev;
2934 /* Calculate max read-ahead size.
2935 * We need to readahead at least twice a whole stripe....
2936 * maybe...
2939 int stripe = conf->raid_disks *
2940 ((mddev->chunk_sectors << 9) / PAGE_SIZE);
2941 stripe /= conf->near_copies;
2942 if (mddev->queue->backing_dev_info.ra_pages < 2* stripe)
2943 mddev->queue->backing_dev_info.ra_pages = 2* stripe;
2946 if (conf->near_copies < conf->raid_disks)
2947 blk_queue_merge_bvec(mddev->queue, raid10_mergeable_bvec);
2949 if (md_integrity_register(mddev))
2950 goto out_free_conf;
2952 return 0;
2954 out_free_conf:
2955 md_unregister_thread(mddev->thread);
2956 if (conf->r10bio_pool)
2957 mempool_destroy(conf->r10bio_pool);
2958 safe_put_page(conf->tmppage);
2959 kfree(conf->mirrors);
2960 kfree(conf);
2961 mddev->private = NULL;
2962 out:
2963 return -EIO;
2966 static int stop(mddev_t *mddev)
2968 conf_t *conf = mddev->private;
2970 raise_barrier(conf, 0);
2971 lower_barrier(conf);
2973 md_unregister_thread(mddev->thread);
2974 mddev->thread = NULL;
2975 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
2976 if (conf->r10bio_pool)
2977 mempool_destroy(conf->r10bio_pool);
2978 kfree(conf->mirrors);
2979 kfree(conf);
2980 mddev->private = NULL;
2981 return 0;
2984 static void raid10_quiesce(mddev_t *mddev, int state)
2986 conf_t *conf = mddev->private;
2988 switch(state) {
2989 case 1:
2990 raise_barrier(conf, 0);
2991 break;
2992 case 0:
2993 lower_barrier(conf);
2994 break;
2998 static void *raid10_takeover_raid0(mddev_t *mddev)
3000 mdk_rdev_t *rdev;
3001 conf_t *conf;
3003 if (mddev->degraded > 0) {
3004 printk(KERN_ERR "md/raid10:%s: Error: degraded raid0!\n",
3005 mdname(mddev));
3006 return ERR_PTR(-EINVAL);
3009 /* Set new parameters */
3010 mddev->new_level = 10;
3011 /* new layout: far_copies = 1, near_copies = 2 */
3012 mddev->new_layout = (1<<8) + 2;
3013 mddev->new_chunk_sectors = mddev->chunk_sectors;
3014 mddev->delta_disks = mddev->raid_disks;
3015 mddev->raid_disks *= 2;
3016 /* make sure it will be not marked as dirty */
3017 mddev->recovery_cp = MaxSector;
3019 conf = setup_conf(mddev);
3020 if (!IS_ERR(conf)) {
3021 list_for_each_entry(rdev, &mddev->disks, same_set)
3022 if (rdev->raid_disk >= 0)
3023 rdev->new_raid_disk = rdev->raid_disk * 2;
3024 conf->barrier = 1;
3027 return conf;
3030 static void *raid10_takeover(mddev_t *mddev)
3032 struct raid0_private_data *raid0_priv;
3034 /* raid10 can take over:
3035 * raid0 - providing it has only two drives
3037 if (mddev->level == 0) {
3038 /* for raid0 takeover only one zone is supported */
3039 raid0_priv = mddev->private;
3040 if (raid0_priv->nr_strip_zones > 1) {
3041 printk(KERN_ERR "md/raid10:%s: cannot takeover raid 0"
3042 " with more than one zone.\n",
3043 mdname(mddev));
3044 return ERR_PTR(-EINVAL);
3046 return raid10_takeover_raid0(mddev);
3048 return ERR_PTR(-EINVAL);
3051 static struct mdk_personality raid10_personality =
3053 .name = "raid10",
3054 .level = 10,
3055 .owner = THIS_MODULE,
3056 .make_request = make_request,
3057 .run = run,
3058 .stop = stop,
3059 .status = status,
3060 .error_handler = error,
3061 .hot_add_disk = raid10_add_disk,
3062 .hot_remove_disk= raid10_remove_disk,
3063 .spare_active = raid10_spare_active,
3064 .sync_request = sync_request,
3065 .quiesce = raid10_quiesce,
3066 .size = raid10_size,
3067 .takeover = raid10_takeover,
3070 static int __init raid_init(void)
3072 return register_md_personality(&raid10_personality);
3075 static void raid_exit(void)
3077 unregister_md_personality(&raid10_personality);
3080 module_init(raid_init);
3081 module_exit(raid_exit);
3082 MODULE_LICENSE("GPL");
3083 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
3084 MODULE_ALIAS("md-personality-9"); /* RAID10 */
3085 MODULE_ALIAS("md-raid10");
3086 MODULE_ALIAS("md-level-10");