foundations of per-cgroup memory pressure controlling.
[linux-2.6/libata-dev.git] / net / core / sock.c
bloba3d4205e7238a9ab38f8302355a87415d3c82782
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Generic socket support routines. Memory allocators, socket lock/release
7 * handler for protocols to use and generic option handler.
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Alan Cox, <A.Cox@swansea.ac.uk>
15 * Fixes:
16 * Alan Cox : Numerous verify_area() problems
17 * Alan Cox : Connecting on a connecting socket
18 * now returns an error for tcp.
19 * Alan Cox : sock->protocol is set correctly.
20 * and is not sometimes left as 0.
21 * Alan Cox : connect handles icmp errors on a
22 * connect properly. Unfortunately there
23 * is a restart syscall nasty there. I
24 * can't match BSD without hacking the C
25 * library. Ideas urgently sought!
26 * Alan Cox : Disallow bind() to addresses that are
27 * not ours - especially broadcast ones!!
28 * Alan Cox : Socket 1024 _IS_ ok for users. (fencepost)
29 * Alan Cox : sock_wfree/sock_rfree don't destroy sockets,
30 * instead they leave that for the DESTROY timer.
31 * Alan Cox : Clean up error flag in accept
32 * Alan Cox : TCP ack handling is buggy, the DESTROY timer
33 * was buggy. Put a remove_sock() in the handler
34 * for memory when we hit 0. Also altered the timer
35 * code. The ACK stuff can wait and needs major
36 * TCP layer surgery.
37 * Alan Cox : Fixed TCP ack bug, removed remove sock
38 * and fixed timer/inet_bh race.
39 * Alan Cox : Added zapped flag for TCP
40 * Alan Cox : Move kfree_skb into skbuff.c and tidied up surplus code
41 * Alan Cox : for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
42 * Alan Cox : kfree_s calls now are kfree_skbmem so we can track skb resources
43 * Alan Cox : Supports socket option broadcast now as does udp. Packet and raw need fixing.
44 * Alan Cox : Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
45 * Rick Sladkey : Relaxed UDP rules for matching packets.
46 * C.E.Hawkins : IFF_PROMISC/SIOCGHWADDR support
47 * Pauline Middelink : identd support
48 * Alan Cox : Fixed connect() taking signals I think.
49 * Alan Cox : SO_LINGER supported
50 * Alan Cox : Error reporting fixes
51 * Anonymous : inet_create tidied up (sk->reuse setting)
52 * Alan Cox : inet sockets don't set sk->type!
53 * Alan Cox : Split socket option code
54 * Alan Cox : Callbacks
55 * Alan Cox : Nagle flag for Charles & Johannes stuff
56 * Alex : Removed restriction on inet fioctl
57 * Alan Cox : Splitting INET from NET core
58 * Alan Cox : Fixed bogus SO_TYPE handling in getsockopt()
59 * Adam Caldwell : Missing return in SO_DONTROUTE/SO_DEBUG code
60 * Alan Cox : Split IP from generic code
61 * Alan Cox : New kfree_skbmem()
62 * Alan Cox : Make SO_DEBUG superuser only.
63 * Alan Cox : Allow anyone to clear SO_DEBUG
64 * (compatibility fix)
65 * Alan Cox : Added optimistic memory grabbing for AF_UNIX throughput.
66 * Alan Cox : Allocator for a socket is settable.
67 * Alan Cox : SO_ERROR includes soft errors.
68 * Alan Cox : Allow NULL arguments on some SO_ opts
69 * Alan Cox : Generic socket allocation to make hooks
70 * easier (suggested by Craig Metz).
71 * Michael Pall : SO_ERROR returns positive errno again
72 * Steve Whitehouse: Added default destructor to free
73 * protocol private data.
74 * Steve Whitehouse: Added various other default routines
75 * common to several socket families.
76 * Chris Evans : Call suser() check last on F_SETOWN
77 * Jay Schulist : Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
78 * Andi Kleen : Add sock_kmalloc()/sock_kfree_s()
79 * Andi Kleen : Fix write_space callback
80 * Chris Evans : Security fixes - signedness again
81 * Arnaldo C. Melo : cleanups, use skb_queue_purge
83 * To Fix:
86 * This program is free software; you can redistribute it and/or
87 * modify it under the terms of the GNU General Public License
88 * as published by the Free Software Foundation; either version
89 * 2 of the License, or (at your option) any later version.
92 #include <linux/capability.h>
93 #include <linux/errno.h>
94 #include <linux/types.h>
95 #include <linux/socket.h>
96 #include <linux/in.h>
97 #include <linux/kernel.h>
98 #include <linux/module.h>
99 #include <linux/proc_fs.h>
100 #include <linux/seq_file.h>
101 #include <linux/sched.h>
102 #include <linux/timer.h>
103 #include <linux/string.h>
104 #include <linux/sockios.h>
105 #include <linux/net.h>
106 #include <linux/mm.h>
107 #include <linux/slab.h>
108 #include <linux/interrupt.h>
109 #include <linux/poll.h>
110 #include <linux/tcp.h>
111 #include <linux/init.h>
112 #include <linux/highmem.h>
113 #include <linux/user_namespace.h>
115 #include <asm/uaccess.h>
116 #include <asm/system.h>
118 #include <linux/netdevice.h>
119 #include <net/protocol.h>
120 #include <linux/skbuff.h>
121 #include <net/net_namespace.h>
122 #include <net/request_sock.h>
123 #include <net/sock.h>
124 #include <linux/net_tstamp.h>
125 #include <net/xfrm.h>
126 #include <linux/ipsec.h>
127 #include <net/cls_cgroup.h>
128 #include <net/netprio_cgroup.h>
130 #include <linux/filter.h>
132 #include <trace/events/sock.h>
134 #ifdef CONFIG_INET
135 #include <net/tcp.h>
136 #endif
139 * Each address family might have different locking rules, so we have
140 * one slock key per address family:
142 static struct lock_class_key af_family_keys[AF_MAX];
143 static struct lock_class_key af_family_slock_keys[AF_MAX];
146 * Make lock validator output more readable. (we pre-construct these
147 * strings build-time, so that runtime initialization of socket
148 * locks is fast):
150 static const char *const af_family_key_strings[AF_MAX+1] = {
151 "sk_lock-AF_UNSPEC", "sk_lock-AF_UNIX" , "sk_lock-AF_INET" ,
152 "sk_lock-AF_AX25" , "sk_lock-AF_IPX" , "sk_lock-AF_APPLETALK",
153 "sk_lock-AF_NETROM", "sk_lock-AF_BRIDGE" , "sk_lock-AF_ATMPVC" ,
154 "sk_lock-AF_X25" , "sk_lock-AF_INET6" , "sk_lock-AF_ROSE" ,
155 "sk_lock-AF_DECnet", "sk_lock-AF_NETBEUI" , "sk_lock-AF_SECURITY" ,
156 "sk_lock-AF_KEY" , "sk_lock-AF_NETLINK" , "sk_lock-AF_PACKET" ,
157 "sk_lock-AF_ASH" , "sk_lock-AF_ECONET" , "sk_lock-AF_ATMSVC" ,
158 "sk_lock-AF_RDS" , "sk_lock-AF_SNA" , "sk_lock-AF_IRDA" ,
159 "sk_lock-AF_PPPOX" , "sk_lock-AF_WANPIPE" , "sk_lock-AF_LLC" ,
160 "sk_lock-27" , "sk_lock-28" , "sk_lock-AF_CAN" ,
161 "sk_lock-AF_TIPC" , "sk_lock-AF_BLUETOOTH", "sk_lock-IUCV" ,
162 "sk_lock-AF_RXRPC" , "sk_lock-AF_ISDN" , "sk_lock-AF_PHONET" ,
163 "sk_lock-AF_IEEE802154", "sk_lock-AF_CAIF" , "sk_lock-AF_ALG" ,
164 "sk_lock-AF_NFC" , "sk_lock-AF_MAX"
166 static const char *const af_family_slock_key_strings[AF_MAX+1] = {
167 "slock-AF_UNSPEC", "slock-AF_UNIX" , "slock-AF_INET" ,
168 "slock-AF_AX25" , "slock-AF_IPX" , "slock-AF_APPLETALK",
169 "slock-AF_NETROM", "slock-AF_BRIDGE" , "slock-AF_ATMPVC" ,
170 "slock-AF_X25" , "slock-AF_INET6" , "slock-AF_ROSE" ,
171 "slock-AF_DECnet", "slock-AF_NETBEUI" , "slock-AF_SECURITY" ,
172 "slock-AF_KEY" , "slock-AF_NETLINK" , "slock-AF_PACKET" ,
173 "slock-AF_ASH" , "slock-AF_ECONET" , "slock-AF_ATMSVC" ,
174 "slock-AF_RDS" , "slock-AF_SNA" , "slock-AF_IRDA" ,
175 "slock-AF_PPPOX" , "slock-AF_WANPIPE" , "slock-AF_LLC" ,
176 "slock-27" , "slock-28" , "slock-AF_CAN" ,
177 "slock-AF_TIPC" , "slock-AF_BLUETOOTH", "slock-AF_IUCV" ,
178 "slock-AF_RXRPC" , "slock-AF_ISDN" , "slock-AF_PHONET" ,
179 "slock-AF_IEEE802154", "slock-AF_CAIF" , "slock-AF_ALG" ,
180 "slock-AF_NFC" , "slock-AF_MAX"
182 static const char *const af_family_clock_key_strings[AF_MAX+1] = {
183 "clock-AF_UNSPEC", "clock-AF_UNIX" , "clock-AF_INET" ,
184 "clock-AF_AX25" , "clock-AF_IPX" , "clock-AF_APPLETALK",
185 "clock-AF_NETROM", "clock-AF_BRIDGE" , "clock-AF_ATMPVC" ,
186 "clock-AF_X25" , "clock-AF_INET6" , "clock-AF_ROSE" ,
187 "clock-AF_DECnet", "clock-AF_NETBEUI" , "clock-AF_SECURITY" ,
188 "clock-AF_KEY" , "clock-AF_NETLINK" , "clock-AF_PACKET" ,
189 "clock-AF_ASH" , "clock-AF_ECONET" , "clock-AF_ATMSVC" ,
190 "clock-AF_RDS" , "clock-AF_SNA" , "clock-AF_IRDA" ,
191 "clock-AF_PPPOX" , "clock-AF_WANPIPE" , "clock-AF_LLC" ,
192 "clock-27" , "clock-28" , "clock-AF_CAN" ,
193 "clock-AF_TIPC" , "clock-AF_BLUETOOTH", "clock-AF_IUCV" ,
194 "clock-AF_RXRPC" , "clock-AF_ISDN" , "clock-AF_PHONET" ,
195 "clock-AF_IEEE802154", "clock-AF_CAIF" , "clock-AF_ALG" ,
196 "clock-AF_NFC" , "clock-AF_MAX"
200 * sk_callback_lock locking rules are per-address-family,
201 * so split the lock classes by using a per-AF key:
203 static struct lock_class_key af_callback_keys[AF_MAX];
205 /* Take into consideration the size of the struct sk_buff overhead in the
206 * determination of these values, since that is non-constant across
207 * platforms. This makes socket queueing behavior and performance
208 * not depend upon such differences.
210 #define _SK_MEM_PACKETS 256
211 #define _SK_MEM_OVERHEAD SKB_TRUESIZE(256)
212 #define SK_WMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
213 #define SK_RMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
215 /* Run time adjustable parameters. */
216 __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
217 __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
218 __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
219 __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
221 /* Maximal space eaten by iovec or ancillary data plus some space */
222 int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
223 EXPORT_SYMBOL(sysctl_optmem_max);
225 #if defined(CONFIG_CGROUPS)
226 #if !defined(CONFIG_NET_CLS_CGROUP)
227 int net_cls_subsys_id = -1;
228 EXPORT_SYMBOL_GPL(net_cls_subsys_id);
229 #endif
230 #if !defined(CONFIG_NETPRIO_CGROUP)
231 int net_prio_subsys_id = -1;
232 EXPORT_SYMBOL_GPL(net_prio_subsys_id);
233 #endif
234 #endif
236 static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen)
238 struct timeval tv;
240 if (optlen < sizeof(tv))
241 return -EINVAL;
242 if (copy_from_user(&tv, optval, sizeof(tv)))
243 return -EFAULT;
244 if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
245 return -EDOM;
247 if (tv.tv_sec < 0) {
248 static int warned __read_mostly;
250 *timeo_p = 0;
251 if (warned < 10 && net_ratelimit()) {
252 warned++;
253 printk(KERN_INFO "sock_set_timeout: `%s' (pid %d) "
254 "tries to set negative timeout\n",
255 current->comm, task_pid_nr(current));
257 return 0;
259 *timeo_p = MAX_SCHEDULE_TIMEOUT;
260 if (tv.tv_sec == 0 && tv.tv_usec == 0)
261 return 0;
262 if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1))
263 *timeo_p = tv.tv_sec*HZ + (tv.tv_usec+(1000000/HZ-1))/(1000000/HZ);
264 return 0;
267 static void sock_warn_obsolete_bsdism(const char *name)
269 static int warned;
270 static char warncomm[TASK_COMM_LEN];
271 if (strcmp(warncomm, current->comm) && warned < 5) {
272 strcpy(warncomm, current->comm);
273 printk(KERN_WARNING "process `%s' is using obsolete "
274 "%s SO_BSDCOMPAT\n", warncomm, name);
275 warned++;
279 #define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
281 static void sock_disable_timestamp(struct sock *sk, unsigned long flags)
283 if (sk->sk_flags & flags) {
284 sk->sk_flags &= ~flags;
285 if (!(sk->sk_flags & SK_FLAGS_TIMESTAMP))
286 net_disable_timestamp();
291 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
293 int err;
294 int skb_len;
295 unsigned long flags;
296 struct sk_buff_head *list = &sk->sk_receive_queue;
298 /* Cast sk->rcvbuf to unsigned... It's pointless, but reduces
299 number of warnings when compiling with -W --ANK
301 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
302 (unsigned)sk->sk_rcvbuf) {
303 atomic_inc(&sk->sk_drops);
304 trace_sock_rcvqueue_full(sk, skb);
305 return -ENOMEM;
308 err = sk_filter(sk, skb);
309 if (err)
310 return err;
312 if (!sk_rmem_schedule(sk, skb->truesize)) {
313 atomic_inc(&sk->sk_drops);
314 return -ENOBUFS;
317 skb->dev = NULL;
318 skb_set_owner_r(skb, sk);
320 /* Cache the SKB length before we tack it onto the receive
321 * queue. Once it is added it no longer belongs to us and
322 * may be freed by other threads of control pulling packets
323 * from the queue.
325 skb_len = skb->len;
327 /* we escape from rcu protected region, make sure we dont leak
328 * a norefcounted dst
330 skb_dst_force(skb);
332 spin_lock_irqsave(&list->lock, flags);
333 skb->dropcount = atomic_read(&sk->sk_drops);
334 __skb_queue_tail(list, skb);
335 spin_unlock_irqrestore(&list->lock, flags);
337 if (!sock_flag(sk, SOCK_DEAD))
338 sk->sk_data_ready(sk, skb_len);
339 return 0;
341 EXPORT_SYMBOL(sock_queue_rcv_skb);
343 int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested)
345 int rc = NET_RX_SUCCESS;
347 if (sk_filter(sk, skb))
348 goto discard_and_relse;
350 skb->dev = NULL;
352 if (sk_rcvqueues_full(sk, skb)) {
353 atomic_inc(&sk->sk_drops);
354 goto discard_and_relse;
356 if (nested)
357 bh_lock_sock_nested(sk);
358 else
359 bh_lock_sock(sk);
360 if (!sock_owned_by_user(sk)) {
362 * trylock + unlock semantics:
364 mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
366 rc = sk_backlog_rcv(sk, skb);
368 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
369 } else if (sk_add_backlog(sk, skb)) {
370 bh_unlock_sock(sk);
371 atomic_inc(&sk->sk_drops);
372 goto discard_and_relse;
375 bh_unlock_sock(sk);
376 out:
377 sock_put(sk);
378 return rc;
379 discard_and_relse:
380 kfree_skb(skb);
381 goto out;
383 EXPORT_SYMBOL(sk_receive_skb);
385 void sk_reset_txq(struct sock *sk)
387 sk_tx_queue_clear(sk);
389 EXPORT_SYMBOL(sk_reset_txq);
391 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
393 struct dst_entry *dst = __sk_dst_get(sk);
395 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
396 sk_tx_queue_clear(sk);
397 RCU_INIT_POINTER(sk->sk_dst_cache, NULL);
398 dst_release(dst);
399 return NULL;
402 return dst;
404 EXPORT_SYMBOL(__sk_dst_check);
406 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
408 struct dst_entry *dst = sk_dst_get(sk);
410 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
411 sk_dst_reset(sk);
412 dst_release(dst);
413 return NULL;
416 return dst;
418 EXPORT_SYMBOL(sk_dst_check);
420 static int sock_bindtodevice(struct sock *sk, char __user *optval, int optlen)
422 int ret = -ENOPROTOOPT;
423 #ifdef CONFIG_NETDEVICES
424 struct net *net = sock_net(sk);
425 char devname[IFNAMSIZ];
426 int index;
428 /* Sorry... */
429 ret = -EPERM;
430 if (!capable(CAP_NET_RAW))
431 goto out;
433 ret = -EINVAL;
434 if (optlen < 0)
435 goto out;
437 /* Bind this socket to a particular device like "eth0",
438 * as specified in the passed interface name. If the
439 * name is "" or the option length is zero the socket
440 * is not bound.
442 if (optlen > IFNAMSIZ - 1)
443 optlen = IFNAMSIZ - 1;
444 memset(devname, 0, sizeof(devname));
446 ret = -EFAULT;
447 if (copy_from_user(devname, optval, optlen))
448 goto out;
450 index = 0;
451 if (devname[0] != '\0') {
452 struct net_device *dev;
454 rcu_read_lock();
455 dev = dev_get_by_name_rcu(net, devname);
456 if (dev)
457 index = dev->ifindex;
458 rcu_read_unlock();
459 ret = -ENODEV;
460 if (!dev)
461 goto out;
464 lock_sock(sk);
465 sk->sk_bound_dev_if = index;
466 sk_dst_reset(sk);
467 release_sock(sk);
469 ret = 0;
471 out:
472 #endif
474 return ret;
477 static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool)
479 if (valbool)
480 sock_set_flag(sk, bit);
481 else
482 sock_reset_flag(sk, bit);
486 * This is meant for all protocols to use and covers goings on
487 * at the socket level. Everything here is generic.
490 int sock_setsockopt(struct socket *sock, int level, int optname,
491 char __user *optval, unsigned int optlen)
493 struct sock *sk = sock->sk;
494 int val;
495 int valbool;
496 struct linger ling;
497 int ret = 0;
500 * Options without arguments
503 if (optname == SO_BINDTODEVICE)
504 return sock_bindtodevice(sk, optval, optlen);
506 if (optlen < sizeof(int))
507 return -EINVAL;
509 if (get_user(val, (int __user *)optval))
510 return -EFAULT;
512 valbool = val ? 1 : 0;
514 lock_sock(sk);
516 switch (optname) {
517 case SO_DEBUG:
518 if (val && !capable(CAP_NET_ADMIN))
519 ret = -EACCES;
520 else
521 sock_valbool_flag(sk, SOCK_DBG, valbool);
522 break;
523 case SO_REUSEADDR:
524 sk->sk_reuse = valbool;
525 break;
526 case SO_TYPE:
527 case SO_PROTOCOL:
528 case SO_DOMAIN:
529 case SO_ERROR:
530 ret = -ENOPROTOOPT;
531 break;
532 case SO_DONTROUTE:
533 sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
534 break;
535 case SO_BROADCAST:
536 sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
537 break;
538 case SO_SNDBUF:
539 /* Don't error on this BSD doesn't and if you think
540 about it this is right. Otherwise apps have to
541 play 'guess the biggest size' games. RCVBUF/SNDBUF
542 are treated in BSD as hints */
544 if (val > sysctl_wmem_max)
545 val = sysctl_wmem_max;
546 set_sndbuf:
547 sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
548 if ((val * 2) < SOCK_MIN_SNDBUF)
549 sk->sk_sndbuf = SOCK_MIN_SNDBUF;
550 else
551 sk->sk_sndbuf = val * 2;
554 * Wake up sending tasks if we
555 * upped the value.
557 sk->sk_write_space(sk);
558 break;
560 case SO_SNDBUFFORCE:
561 if (!capable(CAP_NET_ADMIN)) {
562 ret = -EPERM;
563 break;
565 goto set_sndbuf;
567 case SO_RCVBUF:
568 /* Don't error on this BSD doesn't and if you think
569 about it this is right. Otherwise apps have to
570 play 'guess the biggest size' games. RCVBUF/SNDBUF
571 are treated in BSD as hints */
573 if (val > sysctl_rmem_max)
574 val = sysctl_rmem_max;
575 set_rcvbuf:
576 sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
578 * We double it on the way in to account for
579 * "struct sk_buff" etc. overhead. Applications
580 * assume that the SO_RCVBUF setting they make will
581 * allow that much actual data to be received on that
582 * socket.
584 * Applications are unaware that "struct sk_buff" and
585 * other overheads allocate from the receive buffer
586 * during socket buffer allocation.
588 * And after considering the possible alternatives,
589 * returning the value we actually used in getsockopt
590 * is the most desirable behavior.
592 if ((val * 2) < SOCK_MIN_RCVBUF)
593 sk->sk_rcvbuf = SOCK_MIN_RCVBUF;
594 else
595 sk->sk_rcvbuf = val * 2;
596 break;
598 case SO_RCVBUFFORCE:
599 if (!capable(CAP_NET_ADMIN)) {
600 ret = -EPERM;
601 break;
603 goto set_rcvbuf;
605 case SO_KEEPALIVE:
606 #ifdef CONFIG_INET
607 if (sk->sk_protocol == IPPROTO_TCP)
608 tcp_set_keepalive(sk, valbool);
609 #endif
610 sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
611 break;
613 case SO_OOBINLINE:
614 sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
615 break;
617 case SO_NO_CHECK:
618 sk->sk_no_check = valbool;
619 break;
621 case SO_PRIORITY:
622 if ((val >= 0 && val <= 6) || capable(CAP_NET_ADMIN))
623 sk->sk_priority = val;
624 else
625 ret = -EPERM;
626 break;
628 case SO_LINGER:
629 if (optlen < sizeof(ling)) {
630 ret = -EINVAL; /* 1003.1g */
631 break;
633 if (copy_from_user(&ling, optval, sizeof(ling))) {
634 ret = -EFAULT;
635 break;
637 if (!ling.l_onoff)
638 sock_reset_flag(sk, SOCK_LINGER);
639 else {
640 #if (BITS_PER_LONG == 32)
641 if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
642 sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
643 else
644 #endif
645 sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
646 sock_set_flag(sk, SOCK_LINGER);
648 break;
650 case SO_BSDCOMPAT:
651 sock_warn_obsolete_bsdism("setsockopt");
652 break;
654 case SO_PASSCRED:
655 if (valbool)
656 set_bit(SOCK_PASSCRED, &sock->flags);
657 else
658 clear_bit(SOCK_PASSCRED, &sock->flags);
659 break;
661 case SO_TIMESTAMP:
662 case SO_TIMESTAMPNS:
663 if (valbool) {
664 if (optname == SO_TIMESTAMP)
665 sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
666 else
667 sock_set_flag(sk, SOCK_RCVTSTAMPNS);
668 sock_set_flag(sk, SOCK_RCVTSTAMP);
669 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
670 } else {
671 sock_reset_flag(sk, SOCK_RCVTSTAMP);
672 sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
674 break;
676 case SO_TIMESTAMPING:
677 if (val & ~SOF_TIMESTAMPING_MASK) {
678 ret = -EINVAL;
679 break;
681 sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE,
682 val & SOF_TIMESTAMPING_TX_HARDWARE);
683 sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE,
684 val & SOF_TIMESTAMPING_TX_SOFTWARE);
685 sock_valbool_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE,
686 val & SOF_TIMESTAMPING_RX_HARDWARE);
687 if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
688 sock_enable_timestamp(sk,
689 SOCK_TIMESTAMPING_RX_SOFTWARE);
690 else
691 sock_disable_timestamp(sk,
692 (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE));
693 sock_valbool_flag(sk, SOCK_TIMESTAMPING_SOFTWARE,
694 val & SOF_TIMESTAMPING_SOFTWARE);
695 sock_valbool_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE,
696 val & SOF_TIMESTAMPING_SYS_HARDWARE);
697 sock_valbool_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE,
698 val & SOF_TIMESTAMPING_RAW_HARDWARE);
699 break;
701 case SO_RCVLOWAT:
702 if (val < 0)
703 val = INT_MAX;
704 sk->sk_rcvlowat = val ? : 1;
705 break;
707 case SO_RCVTIMEO:
708 ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen);
709 break;
711 case SO_SNDTIMEO:
712 ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen);
713 break;
715 case SO_ATTACH_FILTER:
716 ret = -EINVAL;
717 if (optlen == sizeof(struct sock_fprog)) {
718 struct sock_fprog fprog;
720 ret = -EFAULT;
721 if (copy_from_user(&fprog, optval, sizeof(fprog)))
722 break;
724 ret = sk_attach_filter(&fprog, sk);
726 break;
728 case SO_DETACH_FILTER:
729 ret = sk_detach_filter(sk);
730 break;
732 case SO_PASSSEC:
733 if (valbool)
734 set_bit(SOCK_PASSSEC, &sock->flags);
735 else
736 clear_bit(SOCK_PASSSEC, &sock->flags);
737 break;
738 case SO_MARK:
739 if (!capable(CAP_NET_ADMIN))
740 ret = -EPERM;
741 else
742 sk->sk_mark = val;
743 break;
745 /* We implement the SO_SNDLOWAT etc to
746 not be settable (1003.1g 5.3) */
747 case SO_RXQ_OVFL:
748 sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool);
749 break;
751 case SO_WIFI_STATUS:
752 sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool);
753 break;
755 default:
756 ret = -ENOPROTOOPT;
757 break;
759 release_sock(sk);
760 return ret;
762 EXPORT_SYMBOL(sock_setsockopt);
765 void cred_to_ucred(struct pid *pid, const struct cred *cred,
766 struct ucred *ucred)
768 ucred->pid = pid_vnr(pid);
769 ucred->uid = ucred->gid = -1;
770 if (cred) {
771 struct user_namespace *current_ns = current_user_ns();
773 ucred->uid = user_ns_map_uid(current_ns, cred, cred->euid);
774 ucred->gid = user_ns_map_gid(current_ns, cred, cred->egid);
777 EXPORT_SYMBOL_GPL(cred_to_ucred);
779 int sock_getsockopt(struct socket *sock, int level, int optname,
780 char __user *optval, int __user *optlen)
782 struct sock *sk = sock->sk;
784 union {
785 int val;
786 struct linger ling;
787 struct timeval tm;
788 } v;
790 int lv = sizeof(int);
791 int len;
793 if (get_user(len, optlen))
794 return -EFAULT;
795 if (len < 0)
796 return -EINVAL;
798 memset(&v, 0, sizeof(v));
800 switch (optname) {
801 case SO_DEBUG:
802 v.val = sock_flag(sk, SOCK_DBG);
803 break;
805 case SO_DONTROUTE:
806 v.val = sock_flag(sk, SOCK_LOCALROUTE);
807 break;
809 case SO_BROADCAST:
810 v.val = !!sock_flag(sk, SOCK_BROADCAST);
811 break;
813 case SO_SNDBUF:
814 v.val = sk->sk_sndbuf;
815 break;
817 case SO_RCVBUF:
818 v.val = sk->sk_rcvbuf;
819 break;
821 case SO_REUSEADDR:
822 v.val = sk->sk_reuse;
823 break;
825 case SO_KEEPALIVE:
826 v.val = !!sock_flag(sk, SOCK_KEEPOPEN);
827 break;
829 case SO_TYPE:
830 v.val = sk->sk_type;
831 break;
833 case SO_PROTOCOL:
834 v.val = sk->sk_protocol;
835 break;
837 case SO_DOMAIN:
838 v.val = sk->sk_family;
839 break;
841 case SO_ERROR:
842 v.val = -sock_error(sk);
843 if (v.val == 0)
844 v.val = xchg(&sk->sk_err_soft, 0);
845 break;
847 case SO_OOBINLINE:
848 v.val = !!sock_flag(sk, SOCK_URGINLINE);
849 break;
851 case SO_NO_CHECK:
852 v.val = sk->sk_no_check;
853 break;
855 case SO_PRIORITY:
856 v.val = sk->sk_priority;
857 break;
859 case SO_LINGER:
860 lv = sizeof(v.ling);
861 v.ling.l_onoff = !!sock_flag(sk, SOCK_LINGER);
862 v.ling.l_linger = sk->sk_lingertime / HZ;
863 break;
865 case SO_BSDCOMPAT:
866 sock_warn_obsolete_bsdism("getsockopt");
867 break;
869 case SO_TIMESTAMP:
870 v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
871 !sock_flag(sk, SOCK_RCVTSTAMPNS);
872 break;
874 case SO_TIMESTAMPNS:
875 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS);
876 break;
878 case SO_TIMESTAMPING:
879 v.val = 0;
880 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE))
881 v.val |= SOF_TIMESTAMPING_TX_HARDWARE;
882 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE))
883 v.val |= SOF_TIMESTAMPING_TX_SOFTWARE;
884 if (sock_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE))
885 v.val |= SOF_TIMESTAMPING_RX_HARDWARE;
886 if (sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE))
887 v.val |= SOF_TIMESTAMPING_RX_SOFTWARE;
888 if (sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE))
889 v.val |= SOF_TIMESTAMPING_SOFTWARE;
890 if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE))
891 v.val |= SOF_TIMESTAMPING_SYS_HARDWARE;
892 if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE))
893 v.val |= SOF_TIMESTAMPING_RAW_HARDWARE;
894 break;
896 case SO_RCVTIMEO:
897 lv = sizeof(struct timeval);
898 if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) {
899 v.tm.tv_sec = 0;
900 v.tm.tv_usec = 0;
901 } else {
902 v.tm.tv_sec = sk->sk_rcvtimeo / HZ;
903 v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * 1000000) / HZ;
905 break;
907 case SO_SNDTIMEO:
908 lv = sizeof(struct timeval);
909 if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) {
910 v.tm.tv_sec = 0;
911 v.tm.tv_usec = 0;
912 } else {
913 v.tm.tv_sec = sk->sk_sndtimeo / HZ;
914 v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * 1000000) / HZ;
916 break;
918 case SO_RCVLOWAT:
919 v.val = sk->sk_rcvlowat;
920 break;
922 case SO_SNDLOWAT:
923 v.val = 1;
924 break;
926 case SO_PASSCRED:
927 v.val = test_bit(SOCK_PASSCRED, &sock->flags) ? 1 : 0;
928 break;
930 case SO_PEERCRED:
932 struct ucred peercred;
933 if (len > sizeof(peercred))
934 len = sizeof(peercred);
935 cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred);
936 if (copy_to_user(optval, &peercred, len))
937 return -EFAULT;
938 goto lenout;
941 case SO_PEERNAME:
943 char address[128];
945 if (sock->ops->getname(sock, (struct sockaddr *)address, &lv, 2))
946 return -ENOTCONN;
947 if (lv < len)
948 return -EINVAL;
949 if (copy_to_user(optval, address, len))
950 return -EFAULT;
951 goto lenout;
954 /* Dubious BSD thing... Probably nobody even uses it, but
955 * the UNIX standard wants it for whatever reason... -DaveM
957 case SO_ACCEPTCONN:
958 v.val = sk->sk_state == TCP_LISTEN;
959 break;
961 case SO_PASSSEC:
962 v.val = test_bit(SOCK_PASSSEC, &sock->flags) ? 1 : 0;
963 break;
965 case SO_PEERSEC:
966 return security_socket_getpeersec_stream(sock, optval, optlen, len);
968 case SO_MARK:
969 v.val = sk->sk_mark;
970 break;
972 case SO_RXQ_OVFL:
973 v.val = !!sock_flag(sk, SOCK_RXQ_OVFL);
974 break;
976 case SO_WIFI_STATUS:
977 v.val = !!sock_flag(sk, SOCK_WIFI_STATUS);
978 break;
980 default:
981 return -ENOPROTOOPT;
984 if (len > lv)
985 len = lv;
986 if (copy_to_user(optval, &v, len))
987 return -EFAULT;
988 lenout:
989 if (put_user(len, optlen))
990 return -EFAULT;
991 return 0;
995 * Initialize an sk_lock.
997 * (We also register the sk_lock with the lock validator.)
999 static inline void sock_lock_init(struct sock *sk)
1001 sock_lock_init_class_and_name(sk,
1002 af_family_slock_key_strings[sk->sk_family],
1003 af_family_slock_keys + sk->sk_family,
1004 af_family_key_strings[sk->sk_family],
1005 af_family_keys + sk->sk_family);
1009 * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
1010 * even temporarly, because of RCU lookups. sk_node should also be left as is.
1011 * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
1013 static void sock_copy(struct sock *nsk, const struct sock *osk)
1015 #ifdef CONFIG_SECURITY_NETWORK
1016 void *sptr = nsk->sk_security;
1017 #endif
1018 memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin));
1020 memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end,
1021 osk->sk_prot->obj_size - offsetof(struct sock, sk_dontcopy_end));
1023 #ifdef CONFIG_SECURITY_NETWORK
1024 nsk->sk_security = sptr;
1025 security_sk_clone(osk, nsk);
1026 #endif
1030 * caches using SLAB_DESTROY_BY_RCU should let .next pointer from nulls nodes
1031 * un-modified. Special care is taken when initializing object to zero.
1033 static inline void sk_prot_clear_nulls(struct sock *sk, int size)
1035 if (offsetof(struct sock, sk_node.next) != 0)
1036 memset(sk, 0, offsetof(struct sock, sk_node.next));
1037 memset(&sk->sk_node.pprev, 0,
1038 size - offsetof(struct sock, sk_node.pprev));
1041 void sk_prot_clear_portaddr_nulls(struct sock *sk, int size)
1043 unsigned long nulls1, nulls2;
1045 nulls1 = offsetof(struct sock, __sk_common.skc_node.next);
1046 nulls2 = offsetof(struct sock, __sk_common.skc_portaddr_node.next);
1047 if (nulls1 > nulls2)
1048 swap(nulls1, nulls2);
1050 if (nulls1 != 0)
1051 memset((char *)sk, 0, nulls1);
1052 memset((char *)sk + nulls1 + sizeof(void *), 0,
1053 nulls2 - nulls1 - sizeof(void *));
1054 memset((char *)sk + nulls2 + sizeof(void *), 0,
1055 size - nulls2 - sizeof(void *));
1057 EXPORT_SYMBOL(sk_prot_clear_portaddr_nulls);
1059 static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
1060 int family)
1062 struct sock *sk;
1063 struct kmem_cache *slab;
1065 slab = prot->slab;
1066 if (slab != NULL) {
1067 sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
1068 if (!sk)
1069 return sk;
1070 if (priority & __GFP_ZERO) {
1071 if (prot->clear_sk)
1072 prot->clear_sk(sk, prot->obj_size);
1073 else
1074 sk_prot_clear_nulls(sk, prot->obj_size);
1076 } else
1077 sk = kmalloc(prot->obj_size, priority);
1079 if (sk != NULL) {
1080 kmemcheck_annotate_bitfield(sk, flags);
1082 if (security_sk_alloc(sk, family, priority))
1083 goto out_free;
1085 if (!try_module_get(prot->owner))
1086 goto out_free_sec;
1087 sk_tx_queue_clear(sk);
1090 return sk;
1092 out_free_sec:
1093 security_sk_free(sk);
1094 out_free:
1095 if (slab != NULL)
1096 kmem_cache_free(slab, sk);
1097 else
1098 kfree(sk);
1099 return NULL;
1102 static void sk_prot_free(struct proto *prot, struct sock *sk)
1104 struct kmem_cache *slab;
1105 struct module *owner;
1107 owner = prot->owner;
1108 slab = prot->slab;
1110 security_sk_free(sk);
1111 if (slab != NULL)
1112 kmem_cache_free(slab, sk);
1113 else
1114 kfree(sk);
1115 module_put(owner);
1118 #ifdef CONFIG_CGROUPS
1119 void sock_update_classid(struct sock *sk)
1121 u32 classid;
1123 rcu_read_lock(); /* doing current task, which cannot vanish. */
1124 classid = task_cls_classid(current);
1125 rcu_read_unlock();
1126 if (classid && classid != sk->sk_classid)
1127 sk->sk_classid = classid;
1129 EXPORT_SYMBOL(sock_update_classid);
1131 void sock_update_netprioidx(struct sock *sk)
1133 struct cgroup_netprio_state *state;
1134 if (in_interrupt())
1135 return;
1136 rcu_read_lock();
1137 state = task_netprio_state(current);
1138 sk->sk_cgrp_prioidx = state ? state->prioidx : 0;
1139 rcu_read_unlock();
1141 EXPORT_SYMBOL_GPL(sock_update_netprioidx);
1142 #endif
1145 * sk_alloc - All socket objects are allocated here
1146 * @net: the applicable net namespace
1147 * @family: protocol family
1148 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1149 * @prot: struct proto associated with this new sock instance
1151 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1152 struct proto *prot)
1154 struct sock *sk;
1156 sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
1157 if (sk) {
1158 sk->sk_family = family;
1160 * See comment in struct sock definition to understand
1161 * why we need sk_prot_creator -acme
1163 sk->sk_prot = sk->sk_prot_creator = prot;
1164 sock_lock_init(sk);
1165 sock_net_set(sk, get_net(net));
1166 atomic_set(&sk->sk_wmem_alloc, 1);
1168 sock_update_classid(sk);
1169 sock_update_netprioidx(sk);
1172 return sk;
1174 EXPORT_SYMBOL(sk_alloc);
1176 static void __sk_free(struct sock *sk)
1178 struct sk_filter *filter;
1180 if (sk->sk_destruct)
1181 sk->sk_destruct(sk);
1183 filter = rcu_dereference_check(sk->sk_filter,
1184 atomic_read(&sk->sk_wmem_alloc) == 0);
1185 if (filter) {
1186 sk_filter_uncharge(sk, filter);
1187 RCU_INIT_POINTER(sk->sk_filter, NULL);
1190 sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP);
1192 if (atomic_read(&sk->sk_omem_alloc))
1193 printk(KERN_DEBUG "%s: optmem leakage (%d bytes) detected.\n",
1194 __func__, atomic_read(&sk->sk_omem_alloc));
1196 if (sk->sk_peer_cred)
1197 put_cred(sk->sk_peer_cred);
1198 put_pid(sk->sk_peer_pid);
1199 put_net(sock_net(sk));
1200 sk_prot_free(sk->sk_prot_creator, sk);
1203 void sk_free(struct sock *sk)
1206 * We subtract one from sk_wmem_alloc and can know if
1207 * some packets are still in some tx queue.
1208 * If not null, sock_wfree() will call __sk_free(sk) later
1210 if (atomic_dec_and_test(&sk->sk_wmem_alloc))
1211 __sk_free(sk);
1213 EXPORT_SYMBOL(sk_free);
1216 * Last sock_put should drop reference to sk->sk_net. It has already
1217 * been dropped in sk_change_net. Taking reference to stopping namespace
1218 * is not an option.
1219 * Take reference to a socket to remove it from hash _alive_ and after that
1220 * destroy it in the context of init_net.
1222 void sk_release_kernel(struct sock *sk)
1224 if (sk == NULL || sk->sk_socket == NULL)
1225 return;
1227 sock_hold(sk);
1228 sock_release(sk->sk_socket);
1229 release_net(sock_net(sk));
1230 sock_net_set(sk, get_net(&init_net));
1231 sock_put(sk);
1233 EXPORT_SYMBOL(sk_release_kernel);
1236 * sk_clone_lock - clone a socket, and lock its clone
1237 * @sk: the socket to clone
1238 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1240 * Caller must unlock socket even in error path (bh_unlock_sock(newsk))
1242 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority)
1244 struct sock *newsk;
1246 newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family);
1247 if (newsk != NULL) {
1248 struct sk_filter *filter;
1250 sock_copy(newsk, sk);
1252 /* SANITY */
1253 get_net(sock_net(newsk));
1254 sk_node_init(&newsk->sk_node);
1255 sock_lock_init(newsk);
1256 bh_lock_sock(newsk);
1257 newsk->sk_backlog.head = newsk->sk_backlog.tail = NULL;
1258 newsk->sk_backlog.len = 0;
1260 atomic_set(&newsk->sk_rmem_alloc, 0);
1262 * sk_wmem_alloc set to one (see sk_free() and sock_wfree())
1264 atomic_set(&newsk->sk_wmem_alloc, 1);
1265 atomic_set(&newsk->sk_omem_alloc, 0);
1266 skb_queue_head_init(&newsk->sk_receive_queue);
1267 skb_queue_head_init(&newsk->sk_write_queue);
1268 #ifdef CONFIG_NET_DMA
1269 skb_queue_head_init(&newsk->sk_async_wait_queue);
1270 #endif
1272 spin_lock_init(&newsk->sk_dst_lock);
1273 rwlock_init(&newsk->sk_callback_lock);
1274 lockdep_set_class_and_name(&newsk->sk_callback_lock,
1275 af_callback_keys + newsk->sk_family,
1276 af_family_clock_key_strings[newsk->sk_family]);
1278 newsk->sk_dst_cache = NULL;
1279 newsk->sk_wmem_queued = 0;
1280 newsk->sk_forward_alloc = 0;
1281 newsk->sk_send_head = NULL;
1282 newsk->sk_userlocks = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
1284 sock_reset_flag(newsk, SOCK_DONE);
1285 skb_queue_head_init(&newsk->sk_error_queue);
1287 filter = rcu_dereference_protected(newsk->sk_filter, 1);
1288 if (filter != NULL)
1289 sk_filter_charge(newsk, filter);
1291 if (unlikely(xfrm_sk_clone_policy(newsk))) {
1292 /* It is still raw copy of parent, so invalidate
1293 * destructor and make plain sk_free() */
1294 newsk->sk_destruct = NULL;
1295 bh_unlock_sock(newsk);
1296 sk_free(newsk);
1297 newsk = NULL;
1298 goto out;
1301 newsk->sk_err = 0;
1302 newsk->sk_priority = 0;
1304 * Before updating sk_refcnt, we must commit prior changes to memory
1305 * (Documentation/RCU/rculist_nulls.txt for details)
1307 smp_wmb();
1308 atomic_set(&newsk->sk_refcnt, 2);
1311 * Increment the counter in the same struct proto as the master
1312 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1313 * is the same as sk->sk_prot->socks, as this field was copied
1314 * with memcpy).
1316 * This _changes_ the previous behaviour, where
1317 * tcp_create_openreq_child always was incrementing the
1318 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1319 * to be taken into account in all callers. -acme
1321 sk_refcnt_debug_inc(newsk);
1322 sk_set_socket(newsk, NULL);
1323 newsk->sk_wq = NULL;
1325 if (newsk->sk_prot->sockets_allocated)
1326 sk_sockets_allocated_inc(newsk);
1328 if (newsk->sk_flags & SK_FLAGS_TIMESTAMP)
1329 net_enable_timestamp();
1331 out:
1332 return newsk;
1334 EXPORT_SYMBOL_GPL(sk_clone_lock);
1336 void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
1338 __sk_dst_set(sk, dst);
1339 sk->sk_route_caps = dst->dev->features;
1340 if (sk->sk_route_caps & NETIF_F_GSO)
1341 sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
1342 sk->sk_route_caps &= ~sk->sk_route_nocaps;
1343 if (sk_can_gso(sk)) {
1344 if (dst->header_len) {
1345 sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1346 } else {
1347 sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
1348 sk->sk_gso_max_size = dst->dev->gso_max_size;
1352 EXPORT_SYMBOL_GPL(sk_setup_caps);
1354 void __init sk_init(void)
1356 if (totalram_pages <= 4096) {
1357 sysctl_wmem_max = 32767;
1358 sysctl_rmem_max = 32767;
1359 sysctl_wmem_default = 32767;
1360 sysctl_rmem_default = 32767;
1361 } else if (totalram_pages >= 131072) {
1362 sysctl_wmem_max = 131071;
1363 sysctl_rmem_max = 131071;
1368 * Simple resource managers for sockets.
1373 * Write buffer destructor automatically called from kfree_skb.
1375 void sock_wfree(struct sk_buff *skb)
1377 struct sock *sk = skb->sk;
1378 unsigned int len = skb->truesize;
1380 if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
1382 * Keep a reference on sk_wmem_alloc, this will be released
1383 * after sk_write_space() call
1385 atomic_sub(len - 1, &sk->sk_wmem_alloc);
1386 sk->sk_write_space(sk);
1387 len = 1;
1390 * if sk_wmem_alloc reaches 0, we must finish what sk_free()
1391 * could not do because of in-flight packets
1393 if (atomic_sub_and_test(len, &sk->sk_wmem_alloc))
1394 __sk_free(sk);
1396 EXPORT_SYMBOL(sock_wfree);
1399 * Read buffer destructor automatically called from kfree_skb.
1401 void sock_rfree(struct sk_buff *skb)
1403 struct sock *sk = skb->sk;
1404 unsigned int len = skb->truesize;
1406 atomic_sub(len, &sk->sk_rmem_alloc);
1407 sk_mem_uncharge(sk, len);
1409 EXPORT_SYMBOL(sock_rfree);
1412 int sock_i_uid(struct sock *sk)
1414 int uid;
1416 read_lock_bh(&sk->sk_callback_lock);
1417 uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : 0;
1418 read_unlock_bh(&sk->sk_callback_lock);
1419 return uid;
1421 EXPORT_SYMBOL(sock_i_uid);
1423 unsigned long sock_i_ino(struct sock *sk)
1425 unsigned long ino;
1427 read_lock_bh(&sk->sk_callback_lock);
1428 ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
1429 read_unlock_bh(&sk->sk_callback_lock);
1430 return ino;
1432 EXPORT_SYMBOL(sock_i_ino);
1435 * Allocate a skb from the socket's send buffer.
1437 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1438 gfp_t priority)
1440 if (force || atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1441 struct sk_buff *skb = alloc_skb(size, priority);
1442 if (skb) {
1443 skb_set_owner_w(skb, sk);
1444 return skb;
1447 return NULL;
1449 EXPORT_SYMBOL(sock_wmalloc);
1452 * Allocate a skb from the socket's receive buffer.
1454 struct sk_buff *sock_rmalloc(struct sock *sk, unsigned long size, int force,
1455 gfp_t priority)
1457 if (force || atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf) {
1458 struct sk_buff *skb = alloc_skb(size, priority);
1459 if (skb) {
1460 skb_set_owner_r(skb, sk);
1461 return skb;
1464 return NULL;
1468 * Allocate a memory block from the socket's option memory buffer.
1470 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
1472 if ((unsigned)size <= sysctl_optmem_max &&
1473 atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
1474 void *mem;
1475 /* First do the add, to avoid the race if kmalloc
1476 * might sleep.
1478 atomic_add(size, &sk->sk_omem_alloc);
1479 mem = kmalloc(size, priority);
1480 if (mem)
1481 return mem;
1482 atomic_sub(size, &sk->sk_omem_alloc);
1484 return NULL;
1486 EXPORT_SYMBOL(sock_kmalloc);
1489 * Free an option memory block.
1491 void sock_kfree_s(struct sock *sk, void *mem, int size)
1493 kfree(mem);
1494 atomic_sub(size, &sk->sk_omem_alloc);
1496 EXPORT_SYMBOL(sock_kfree_s);
1498 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
1499 I think, these locks should be removed for datagram sockets.
1501 static long sock_wait_for_wmem(struct sock *sk, long timeo)
1503 DEFINE_WAIT(wait);
1505 clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1506 for (;;) {
1507 if (!timeo)
1508 break;
1509 if (signal_pending(current))
1510 break;
1511 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1512 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1513 if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf)
1514 break;
1515 if (sk->sk_shutdown & SEND_SHUTDOWN)
1516 break;
1517 if (sk->sk_err)
1518 break;
1519 timeo = schedule_timeout(timeo);
1521 finish_wait(sk_sleep(sk), &wait);
1522 return timeo;
1527 * Generic send/receive buffer handlers
1530 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1531 unsigned long data_len, int noblock,
1532 int *errcode)
1534 struct sk_buff *skb;
1535 gfp_t gfp_mask;
1536 long timeo;
1537 int err;
1539 gfp_mask = sk->sk_allocation;
1540 if (gfp_mask & __GFP_WAIT)
1541 gfp_mask |= __GFP_REPEAT;
1543 timeo = sock_sndtimeo(sk, noblock);
1544 while (1) {
1545 err = sock_error(sk);
1546 if (err != 0)
1547 goto failure;
1549 err = -EPIPE;
1550 if (sk->sk_shutdown & SEND_SHUTDOWN)
1551 goto failure;
1553 if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1554 skb = alloc_skb(header_len, gfp_mask);
1555 if (skb) {
1556 int npages;
1557 int i;
1559 /* No pages, we're done... */
1560 if (!data_len)
1561 break;
1563 npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
1564 skb->truesize += data_len;
1565 skb_shinfo(skb)->nr_frags = npages;
1566 for (i = 0; i < npages; i++) {
1567 struct page *page;
1569 page = alloc_pages(sk->sk_allocation, 0);
1570 if (!page) {
1571 err = -ENOBUFS;
1572 skb_shinfo(skb)->nr_frags = i;
1573 kfree_skb(skb);
1574 goto failure;
1577 __skb_fill_page_desc(skb, i,
1578 page, 0,
1579 (data_len >= PAGE_SIZE ?
1580 PAGE_SIZE :
1581 data_len));
1582 data_len -= PAGE_SIZE;
1585 /* Full success... */
1586 break;
1588 err = -ENOBUFS;
1589 goto failure;
1591 set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1592 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1593 err = -EAGAIN;
1594 if (!timeo)
1595 goto failure;
1596 if (signal_pending(current))
1597 goto interrupted;
1598 timeo = sock_wait_for_wmem(sk, timeo);
1601 skb_set_owner_w(skb, sk);
1602 return skb;
1604 interrupted:
1605 err = sock_intr_errno(timeo);
1606 failure:
1607 *errcode = err;
1608 return NULL;
1610 EXPORT_SYMBOL(sock_alloc_send_pskb);
1612 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1613 int noblock, int *errcode)
1615 return sock_alloc_send_pskb(sk, size, 0, noblock, errcode);
1617 EXPORT_SYMBOL(sock_alloc_send_skb);
1619 static void __lock_sock(struct sock *sk)
1620 __releases(&sk->sk_lock.slock)
1621 __acquires(&sk->sk_lock.slock)
1623 DEFINE_WAIT(wait);
1625 for (;;) {
1626 prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
1627 TASK_UNINTERRUPTIBLE);
1628 spin_unlock_bh(&sk->sk_lock.slock);
1629 schedule();
1630 spin_lock_bh(&sk->sk_lock.slock);
1631 if (!sock_owned_by_user(sk))
1632 break;
1634 finish_wait(&sk->sk_lock.wq, &wait);
1637 static void __release_sock(struct sock *sk)
1638 __releases(&sk->sk_lock.slock)
1639 __acquires(&sk->sk_lock.slock)
1641 struct sk_buff *skb = sk->sk_backlog.head;
1643 do {
1644 sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
1645 bh_unlock_sock(sk);
1647 do {
1648 struct sk_buff *next = skb->next;
1650 WARN_ON_ONCE(skb_dst_is_noref(skb));
1651 skb->next = NULL;
1652 sk_backlog_rcv(sk, skb);
1655 * We are in process context here with softirqs
1656 * disabled, use cond_resched_softirq() to preempt.
1657 * This is safe to do because we've taken the backlog
1658 * queue private:
1660 cond_resched_softirq();
1662 skb = next;
1663 } while (skb != NULL);
1665 bh_lock_sock(sk);
1666 } while ((skb = sk->sk_backlog.head) != NULL);
1669 * Doing the zeroing here guarantee we can not loop forever
1670 * while a wild producer attempts to flood us.
1672 sk->sk_backlog.len = 0;
1676 * sk_wait_data - wait for data to arrive at sk_receive_queue
1677 * @sk: sock to wait on
1678 * @timeo: for how long
1680 * Now socket state including sk->sk_err is changed only under lock,
1681 * hence we may omit checks after joining wait queue.
1682 * We check receive queue before schedule() only as optimization;
1683 * it is very likely that release_sock() added new data.
1685 int sk_wait_data(struct sock *sk, long *timeo)
1687 int rc;
1688 DEFINE_WAIT(wait);
1690 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1691 set_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1692 rc = sk_wait_event(sk, timeo, !skb_queue_empty(&sk->sk_receive_queue));
1693 clear_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1694 finish_wait(sk_sleep(sk), &wait);
1695 return rc;
1697 EXPORT_SYMBOL(sk_wait_data);
1700 * __sk_mem_schedule - increase sk_forward_alloc and memory_allocated
1701 * @sk: socket
1702 * @size: memory size to allocate
1703 * @kind: allocation type
1705 * If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
1706 * rmem allocation. This function assumes that protocols which have
1707 * memory_pressure use sk_wmem_queued as write buffer accounting.
1709 int __sk_mem_schedule(struct sock *sk, int size, int kind)
1711 struct proto *prot = sk->sk_prot;
1712 int amt = sk_mem_pages(size);
1713 long allocated;
1715 sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
1717 allocated = sk_memory_allocated_add(sk, amt);
1719 /* Under limit. */
1720 if (allocated <= sk_prot_mem_limits(sk, 0)) {
1721 sk_leave_memory_pressure(sk);
1722 return 1;
1725 /* Under pressure. */
1726 if (allocated > sk_prot_mem_limits(sk, 1))
1727 sk_enter_memory_pressure(sk);
1729 /* Over hard limit. */
1730 if (allocated > sk_prot_mem_limits(sk, 2))
1731 goto suppress_allocation;
1733 /* guarantee minimum buffer size under pressure */
1734 if (kind == SK_MEM_RECV) {
1735 if (atomic_read(&sk->sk_rmem_alloc) < prot->sysctl_rmem[0])
1736 return 1;
1738 } else { /* SK_MEM_SEND */
1739 if (sk->sk_type == SOCK_STREAM) {
1740 if (sk->sk_wmem_queued < prot->sysctl_wmem[0])
1741 return 1;
1742 } else if (atomic_read(&sk->sk_wmem_alloc) <
1743 prot->sysctl_wmem[0])
1744 return 1;
1747 if (sk_has_memory_pressure(sk)) {
1748 int alloc;
1750 if (!sk_under_memory_pressure(sk))
1751 return 1;
1752 alloc = sk_sockets_allocated_read_positive(sk);
1753 if (sk_prot_mem_limits(sk, 2) > alloc *
1754 sk_mem_pages(sk->sk_wmem_queued +
1755 atomic_read(&sk->sk_rmem_alloc) +
1756 sk->sk_forward_alloc))
1757 return 1;
1760 suppress_allocation:
1762 if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
1763 sk_stream_moderate_sndbuf(sk);
1765 /* Fail only if socket is _under_ its sndbuf.
1766 * In this case we cannot block, so that we have to fail.
1768 if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
1769 return 1;
1772 trace_sock_exceed_buf_limit(sk, prot, allocated);
1774 /* Alas. Undo changes. */
1775 sk->sk_forward_alloc -= amt * SK_MEM_QUANTUM;
1777 sk_memory_allocated_sub(sk, amt);
1779 return 0;
1781 EXPORT_SYMBOL(__sk_mem_schedule);
1784 * __sk_reclaim - reclaim memory_allocated
1785 * @sk: socket
1787 void __sk_mem_reclaim(struct sock *sk)
1789 sk_memory_allocated_sub(sk,
1790 sk->sk_forward_alloc >> SK_MEM_QUANTUM_SHIFT);
1791 sk->sk_forward_alloc &= SK_MEM_QUANTUM - 1;
1793 if (sk_under_memory_pressure(sk) &&
1794 (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)))
1795 sk_leave_memory_pressure(sk);
1797 EXPORT_SYMBOL(__sk_mem_reclaim);
1801 * Set of default routines for initialising struct proto_ops when
1802 * the protocol does not support a particular function. In certain
1803 * cases where it makes no sense for a protocol to have a "do nothing"
1804 * function, some default processing is provided.
1807 int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
1809 return -EOPNOTSUPP;
1811 EXPORT_SYMBOL(sock_no_bind);
1813 int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
1814 int len, int flags)
1816 return -EOPNOTSUPP;
1818 EXPORT_SYMBOL(sock_no_connect);
1820 int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
1822 return -EOPNOTSUPP;
1824 EXPORT_SYMBOL(sock_no_socketpair);
1826 int sock_no_accept(struct socket *sock, struct socket *newsock, int flags)
1828 return -EOPNOTSUPP;
1830 EXPORT_SYMBOL(sock_no_accept);
1832 int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
1833 int *len, int peer)
1835 return -EOPNOTSUPP;
1837 EXPORT_SYMBOL(sock_no_getname);
1839 unsigned int sock_no_poll(struct file *file, struct socket *sock, poll_table *pt)
1841 return 0;
1843 EXPORT_SYMBOL(sock_no_poll);
1845 int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
1847 return -EOPNOTSUPP;
1849 EXPORT_SYMBOL(sock_no_ioctl);
1851 int sock_no_listen(struct socket *sock, int backlog)
1853 return -EOPNOTSUPP;
1855 EXPORT_SYMBOL(sock_no_listen);
1857 int sock_no_shutdown(struct socket *sock, int how)
1859 return -EOPNOTSUPP;
1861 EXPORT_SYMBOL(sock_no_shutdown);
1863 int sock_no_setsockopt(struct socket *sock, int level, int optname,
1864 char __user *optval, unsigned int optlen)
1866 return -EOPNOTSUPP;
1868 EXPORT_SYMBOL(sock_no_setsockopt);
1870 int sock_no_getsockopt(struct socket *sock, int level, int optname,
1871 char __user *optval, int __user *optlen)
1873 return -EOPNOTSUPP;
1875 EXPORT_SYMBOL(sock_no_getsockopt);
1877 int sock_no_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
1878 size_t len)
1880 return -EOPNOTSUPP;
1882 EXPORT_SYMBOL(sock_no_sendmsg);
1884 int sock_no_recvmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
1885 size_t len, int flags)
1887 return -EOPNOTSUPP;
1889 EXPORT_SYMBOL(sock_no_recvmsg);
1891 int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
1893 /* Mirror missing mmap method error code */
1894 return -ENODEV;
1896 EXPORT_SYMBOL(sock_no_mmap);
1898 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
1900 ssize_t res;
1901 struct msghdr msg = {.msg_flags = flags};
1902 struct kvec iov;
1903 char *kaddr = kmap(page);
1904 iov.iov_base = kaddr + offset;
1905 iov.iov_len = size;
1906 res = kernel_sendmsg(sock, &msg, &iov, 1, size);
1907 kunmap(page);
1908 return res;
1910 EXPORT_SYMBOL(sock_no_sendpage);
1913 * Default Socket Callbacks
1916 static void sock_def_wakeup(struct sock *sk)
1918 struct socket_wq *wq;
1920 rcu_read_lock();
1921 wq = rcu_dereference(sk->sk_wq);
1922 if (wq_has_sleeper(wq))
1923 wake_up_interruptible_all(&wq->wait);
1924 rcu_read_unlock();
1927 static void sock_def_error_report(struct sock *sk)
1929 struct socket_wq *wq;
1931 rcu_read_lock();
1932 wq = rcu_dereference(sk->sk_wq);
1933 if (wq_has_sleeper(wq))
1934 wake_up_interruptible_poll(&wq->wait, POLLERR);
1935 sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
1936 rcu_read_unlock();
1939 static void sock_def_readable(struct sock *sk, int len)
1941 struct socket_wq *wq;
1943 rcu_read_lock();
1944 wq = rcu_dereference(sk->sk_wq);
1945 if (wq_has_sleeper(wq))
1946 wake_up_interruptible_sync_poll(&wq->wait, POLLIN | POLLPRI |
1947 POLLRDNORM | POLLRDBAND);
1948 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
1949 rcu_read_unlock();
1952 static void sock_def_write_space(struct sock *sk)
1954 struct socket_wq *wq;
1956 rcu_read_lock();
1958 /* Do not wake up a writer until he can make "significant"
1959 * progress. --DaveM
1961 if ((atomic_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) {
1962 wq = rcu_dereference(sk->sk_wq);
1963 if (wq_has_sleeper(wq))
1964 wake_up_interruptible_sync_poll(&wq->wait, POLLOUT |
1965 POLLWRNORM | POLLWRBAND);
1967 /* Should agree with poll, otherwise some programs break */
1968 if (sock_writeable(sk))
1969 sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
1972 rcu_read_unlock();
1975 static void sock_def_destruct(struct sock *sk)
1977 kfree(sk->sk_protinfo);
1980 void sk_send_sigurg(struct sock *sk)
1982 if (sk->sk_socket && sk->sk_socket->file)
1983 if (send_sigurg(&sk->sk_socket->file->f_owner))
1984 sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
1986 EXPORT_SYMBOL(sk_send_sigurg);
1988 void sk_reset_timer(struct sock *sk, struct timer_list* timer,
1989 unsigned long expires)
1991 if (!mod_timer(timer, expires))
1992 sock_hold(sk);
1994 EXPORT_SYMBOL(sk_reset_timer);
1996 void sk_stop_timer(struct sock *sk, struct timer_list* timer)
1998 if (timer_pending(timer) && del_timer(timer))
1999 __sock_put(sk);
2001 EXPORT_SYMBOL(sk_stop_timer);
2003 void sock_init_data(struct socket *sock, struct sock *sk)
2005 skb_queue_head_init(&sk->sk_receive_queue);
2006 skb_queue_head_init(&sk->sk_write_queue);
2007 skb_queue_head_init(&sk->sk_error_queue);
2008 #ifdef CONFIG_NET_DMA
2009 skb_queue_head_init(&sk->sk_async_wait_queue);
2010 #endif
2012 sk->sk_send_head = NULL;
2014 init_timer(&sk->sk_timer);
2016 sk->sk_allocation = GFP_KERNEL;
2017 sk->sk_rcvbuf = sysctl_rmem_default;
2018 sk->sk_sndbuf = sysctl_wmem_default;
2019 sk->sk_state = TCP_CLOSE;
2020 sk_set_socket(sk, sock);
2022 sock_set_flag(sk, SOCK_ZAPPED);
2024 if (sock) {
2025 sk->sk_type = sock->type;
2026 sk->sk_wq = sock->wq;
2027 sock->sk = sk;
2028 } else
2029 sk->sk_wq = NULL;
2031 spin_lock_init(&sk->sk_dst_lock);
2032 rwlock_init(&sk->sk_callback_lock);
2033 lockdep_set_class_and_name(&sk->sk_callback_lock,
2034 af_callback_keys + sk->sk_family,
2035 af_family_clock_key_strings[sk->sk_family]);
2037 sk->sk_state_change = sock_def_wakeup;
2038 sk->sk_data_ready = sock_def_readable;
2039 sk->sk_write_space = sock_def_write_space;
2040 sk->sk_error_report = sock_def_error_report;
2041 sk->sk_destruct = sock_def_destruct;
2043 sk->sk_sndmsg_page = NULL;
2044 sk->sk_sndmsg_off = 0;
2046 sk->sk_peer_pid = NULL;
2047 sk->sk_peer_cred = NULL;
2048 sk->sk_write_pending = 0;
2049 sk->sk_rcvlowat = 1;
2050 sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT;
2051 sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
2053 sk->sk_stamp = ktime_set(-1L, 0);
2056 * Before updating sk_refcnt, we must commit prior changes to memory
2057 * (Documentation/RCU/rculist_nulls.txt for details)
2059 smp_wmb();
2060 atomic_set(&sk->sk_refcnt, 1);
2061 atomic_set(&sk->sk_drops, 0);
2063 EXPORT_SYMBOL(sock_init_data);
2065 void lock_sock_nested(struct sock *sk, int subclass)
2067 might_sleep();
2068 spin_lock_bh(&sk->sk_lock.slock);
2069 if (sk->sk_lock.owned)
2070 __lock_sock(sk);
2071 sk->sk_lock.owned = 1;
2072 spin_unlock(&sk->sk_lock.slock);
2074 * The sk_lock has mutex_lock() semantics here:
2076 mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
2077 local_bh_enable();
2079 EXPORT_SYMBOL(lock_sock_nested);
2081 void release_sock(struct sock *sk)
2084 * The sk_lock has mutex_unlock() semantics:
2086 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
2088 spin_lock_bh(&sk->sk_lock.slock);
2089 if (sk->sk_backlog.tail)
2090 __release_sock(sk);
2091 sk->sk_lock.owned = 0;
2092 if (waitqueue_active(&sk->sk_lock.wq))
2093 wake_up(&sk->sk_lock.wq);
2094 spin_unlock_bh(&sk->sk_lock.slock);
2096 EXPORT_SYMBOL(release_sock);
2099 * lock_sock_fast - fast version of lock_sock
2100 * @sk: socket
2102 * This version should be used for very small section, where process wont block
2103 * return false if fast path is taken
2104 * sk_lock.slock locked, owned = 0, BH disabled
2105 * return true if slow path is taken
2106 * sk_lock.slock unlocked, owned = 1, BH enabled
2108 bool lock_sock_fast(struct sock *sk)
2110 might_sleep();
2111 spin_lock_bh(&sk->sk_lock.slock);
2113 if (!sk->sk_lock.owned)
2115 * Note : We must disable BH
2117 return false;
2119 __lock_sock(sk);
2120 sk->sk_lock.owned = 1;
2121 spin_unlock(&sk->sk_lock.slock);
2123 * The sk_lock has mutex_lock() semantics here:
2125 mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
2126 local_bh_enable();
2127 return true;
2129 EXPORT_SYMBOL(lock_sock_fast);
2131 int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp)
2133 struct timeval tv;
2134 if (!sock_flag(sk, SOCK_TIMESTAMP))
2135 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2136 tv = ktime_to_timeval(sk->sk_stamp);
2137 if (tv.tv_sec == -1)
2138 return -ENOENT;
2139 if (tv.tv_sec == 0) {
2140 sk->sk_stamp = ktime_get_real();
2141 tv = ktime_to_timeval(sk->sk_stamp);
2143 return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0;
2145 EXPORT_SYMBOL(sock_get_timestamp);
2147 int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp)
2149 struct timespec ts;
2150 if (!sock_flag(sk, SOCK_TIMESTAMP))
2151 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2152 ts = ktime_to_timespec(sk->sk_stamp);
2153 if (ts.tv_sec == -1)
2154 return -ENOENT;
2155 if (ts.tv_sec == 0) {
2156 sk->sk_stamp = ktime_get_real();
2157 ts = ktime_to_timespec(sk->sk_stamp);
2159 return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0;
2161 EXPORT_SYMBOL(sock_get_timestampns);
2163 void sock_enable_timestamp(struct sock *sk, int flag)
2165 if (!sock_flag(sk, flag)) {
2166 unsigned long previous_flags = sk->sk_flags;
2168 sock_set_flag(sk, flag);
2170 * we just set one of the two flags which require net
2171 * time stamping, but time stamping might have been on
2172 * already because of the other one
2174 if (!(previous_flags & SK_FLAGS_TIMESTAMP))
2175 net_enable_timestamp();
2180 * Get a socket option on an socket.
2182 * FIX: POSIX 1003.1g is very ambiguous here. It states that
2183 * asynchronous errors should be reported by getsockopt. We assume
2184 * this means if you specify SO_ERROR (otherwise whats the point of it).
2186 int sock_common_getsockopt(struct socket *sock, int level, int optname,
2187 char __user *optval, int __user *optlen)
2189 struct sock *sk = sock->sk;
2191 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2193 EXPORT_SYMBOL(sock_common_getsockopt);
2195 #ifdef CONFIG_COMPAT
2196 int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
2197 char __user *optval, int __user *optlen)
2199 struct sock *sk = sock->sk;
2201 if (sk->sk_prot->compat_getsockopt != NULL)
2202 return sk->sk_prot->compat_getsockopt(sk, level, optname,
2203 optval, optlen);
2204 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2206 EXPORT_SYMBOL(compat_sock_common_getsockopt);
2207 #endif
2209 int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
2210 struct msghdr *msg, size_t size, int flags)
2212 struct sock *sk = sock->sk;
2213 int addr_len = 0;
2214 int err;
2216 err = sk->sk_prot->recvmsg(iocb, sk, msg, size, flags & MSG_DONTWAIT,
2217 flags & ~MSG_DONTWAIT, &addr_len);
2218 if (err >= 0)
2219 msg->msg_namelen = addr_len;
2220 return err;
2222 EXPORT_SYMBOL(sock_common_recvmsg);
2225 * Set socket options on an inet socket.
2227 int sock_common_setsockopt(struct socket *sock, int level, int optname,
2228 char __user *optval, unsigned int optlen)
2230 struct sock *sk = sock->sk;
2232 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2234 EXPORT_SYMBOL(sock_common_setsockopt);
2236 #ifdef CONFIG_COMPAT
2237 int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
2238 char __user *optval, unsigned int optlen)
2240 struct sock *sk = sock->sk;
2242 if (sk->sk_prot->compat_setsockopt != NULL)
2243 return sk->sk_prot->compat_setsockopt(sk, level, optname,
2244 optval, optlen);
2245 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2247 EXPORT_SYMBOL(compat_sock_common_setsockopt);
2248 #endif
2250 void sk_common_release(struct sock *sk)
2252 if (sk->sk_prot->destroy)
2253 sk->sk_prot->destroy(sk);
2256 * Observation: when sock_common_release is called, processes have
2257 * no access to socket. But net still has.
2258 * Step one, detach it from networking:
2260 * A. Remove from hash tables.
2263 sk->sk_prot->unhash(sk);
2266 * In this point socket cannot receive new packets, but it is possible
2267 * that some packets are in flight because some CPU runs receiver and
2268 * did hash table lookup before we unhashed socket. They will achieve
2269 * receive queue and will be purged by socket destructor.
2271 * Also we still have packets pending on receive queue and probably,
2272 * our own packets waiting in device queues. sock_destroy will drain
2273 * receive queue, but transmitted packets will delay socket destruction
2274 * until the last reference will be released.
2277 sock_orphan(sk);
2279 xfrm_sk_free_policy(sk);
2281 sk_refcnt_debug_release(sk);
2282 sock_put(sk);
2284 EXPORT_SYMBOL(sk_common_release);
2286 static DEFINE_RWLOCK(proto_list_lock);
2287 static LIST_HEAD(proto_list);
2289 #ifdef CONFIG_PROC_FS
2290 #define PROTO_INUSE_NR 64 /* should be enough for the first time */
2291 struct prot_inuse {
2292 int val[PROTO_INUSE_NR];
2295 static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
2297 #ifdef CONFIG_NET_NS
2298 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2300 __this_cpu_add(net->core.inuse->val[prot->inuse_idx], val);
2302 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2304 int sock_prot_inuse_get(struct net *net, struct proto *prot)
2306 int cpu, idx = prot->inuse_idx;
2307 int res = 0;
2309 for_each_possible_cpu(cpu)
2310 res += per_cpu_ptr(net->core.inuse, cpu)->val[idx];
2312 return res >= 0 ? res : 0;
2314 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2316 static int __net_init sock_inuse_init_net(struct net *net)
2318 net->core.inuse = alloc_percpu(struct prot_inuse);
2319 return net->core.inuse ? 0 : -ENOMEM;
2322 static void __net_exit sock_inuse_exit_net(struct net *net)
2324 free_percpu(net->core.inuse);
2327 static struct pernet_operations net_inuse_ops = {
2328 .init = sock_inuse_init_net,
2329 .exit = sock_inuse_exit_net,
2332 static __init int net_inuse_init(void)
2334 if (register_pernet_subsys(&net_inuse_ops))
2335 panic("Cannot initialize net inuse counters");
2337 return 0;
2340 core_initcall(net_inuse_init);
2341 #else
2342 static DEFINE_PER_CPU(struct prot_inuse, prot_inuse);
2344 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2346 __this_cpu_add(prot_inuse.val[prot->inuse_idx], val);
2348 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2350 int sock_prot_inuse_get(struct net *net, struct proto *prot)
2352 int cpu, idx = prot->inuse_idx;
2353 int res = 0;
2355 for_each_possible_cpu(cpu)
2356 res += per_cpu(prot_inuse, cpu).val[idx];
2358 return res >= 0 ? res : 0;
2360 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2361 #endif
2363 static void assign_proto_idx(struct proto *prot)
2365 prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
2367 if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
2368 printk(KERN_ERR "PROTO_INUSE_NR exhausted\n");
2369 return;
2372 set_bit(prot->inuse_idx, proto_inuse_idx);
2375 static void release_proto_idx(struct proto *prot)
2377 if (prot->inuse_idx != PROTO_INUSE_NR - 1)
2378 clear_bit(prot->inuse_idx, proto_inuse_idx);
2380 #else
2381 static inline void assign_proto_idx(struct proto *prot)
2385 static inline void release_proto_idx(struct proto *prot)
2388 #endif
2390 int proto_register(struct proto *prot, int alloc_slab)
2392 if (alloc_slab) {
2393 prot->slab = kmem_cache_create(prot->name, prot->obj_size, 0,
2394 SLAB_HWCACHE_ALIGN | prot->slab_flags,
2395 NULL);
2397 if (prot->slab == NULL) {
2398 printk(KERN_CRIT "%s: Can't create sock SLAB cache!\n",
2399 prot->name);
2400 goto out;
2403 if (prot->rsk_prot != NULL) {
2404 prot->rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s", prot->name);
2405 if (prot->rsk_prot->slab_name == NULL)
2406 goto out_free_sock_slab;
2408 prot->rsk_prot->slab = kmem_cache_create(prot->rsk_prot->slab_name,
2409 prot->rsk_prot->obj_size, 0,
2410 SLAB_HWCACHE_ALIGN, NULL);
2412 if (prot->rsk_prot->slab == NULL) {
2413 printk(KERN_CRIT "%s: Can't create request sock SLAB cache!\n",
2414 prot->name);
2415 goto out_free_request_sock_slab_name;
2419 if (prot->twsk_prot != NULL) {
2420 prot->twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", prot->name);
2422 if (prot->twsk_prot->twsk_slab_name == NULL)
2423 goto out_free_request_sock_slab;
2425 prot->twsk_prot->twsk_slab =
2426 kmem_cache_create(prot->twsk_prot->twsk_slab_name,
2427 prot->twsk_prot->twsk_obj_size,
2429 SLAB_HWCACHE_ALIGN |
2430 prot->slab_flags,
2431 NULL);
2432 if (prot->twsk_prot->twsk_slab == NULL)
2433 goto out_free_timewait_sock_slab_name;
2437 write_lock(&proto_list_lock);
2438 list_add(&prot->node, &proto_list);
2439 assign_proto_idx(prot);
2440 write_unlock(&proto_list_lock);
2441 return 0;
2443 out_free_timewait_sock_slab_name:
2444 kfree(prot->twsk_prot->twsk_slab_name);
2445 out_free_request_sock_slab:
2446 if (prot->rsk_prot && prot->rsk_prot->slab) {
2447 kmem_cache_destroy(prot->rsk_prot->slab);
2448 prot->rsk_prot->slab = NULL;
2450 out_free_request_sock_slab_name:
2451 if (prot->rsk_prot)
2452 kfree(prot->rsk_prot->slab_name);
2453 out_free_sock_slab:
2454 kmem_cache_destroy(prot->slab);
2455 prot->slab = NULL;
2456 out:
2457 return -ENOBUFS;
2459 EXPORT_SYMBOL(proto_register);
2461 void proto_unregister(struct proto *prot)
2463 write_lock(&proto_list_lock);
2464 release_proto_idx(prot);
2465 list_del(&prot->node);
2466 write_unlock(&proto_list_lock);
2468 if (prot->slab != NULL) {
2469 kmem_cache_destroy(prot->slab);
2470 prot->slab = NULL;
2473 if (prot->rsk_prot != NULL && prot->rsk_prot->slab != NULL) {
2474 kmem_cache_destroy(prot->rsk_prot->slab);
2475 kfree(prot->rsk_prot->slab_name);
2476 prot->rsk_prot->slab = NULL;
2479 if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
2480 kmem_cache_destroy(prot->twsk_prot->twsk_slab);
2481 kfree(prot->twsk_prot->twsk_slab_name);
2482 prot->twsk_prot->twsk_slab = NULL;
2485 EXPORT_SYMBOL(proto_unregister);
2487 #ifdef CONFIG_PROC_FS
2488 static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
2489 __acquires(proto_list_lock)
2491 read_lock(&proto_list_lock);
2492 return seq_list_start_head(&proto_list, *pos);
2495 static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2497 return seq_list_next(v, &proto_list, pos);
2500 static void proto_seq_stop(struct seq_file *seq, void *v)
2501 __releases(proto_list_lock)
2503 read_unlock(&proto_list_lock);
2506 static char proto_method_implemented(const void *method)
2508 return method == NULL ? 'n' : 'y';
2510 static long sock_prot_memory_allocated(struct proto *proto)
2512 return proto->memory_allocated != NULL ? proto_memory_allocated(proto): -1L;
2515 static char *sock_prot_memory_pressure(struct proto *proto)
2517 return proto->memory_pressure != NULL ?
2518 proto_memory_pressure(proto) ? "yes" : "no" : "NI";
2521 static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
2524 seq_printf(seq, "%-9s %4u %6d %6ld %-3s %6u %-3s %-10s "
2525 "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
2526 proto->name,
2527 proto->obj_size,
2528 sock_prot_inuse_get(seq_file_net(seq), proto),
2529 sock_prot_memory_allocated(proto),
2530 sock_prot_memory_pressure(proto),
2531 proto->max_header,
2532 proto->slab == NULL ? "no" : "yes",
2533 module_name(proto->owner),
2534 proto_method_implemented(proto->close),
2535 proto_method_implemented(proto->connect),
2536 proto_method_implemented(proto->disconnect),
2537 proto_method_implemented(proto->accept),
2538 proto_method_implemented(proto->ioctl),
2539 proto_method_implemented(proto->init),
2540 proto_method_implemented(proto->destroy),
2541 proto_method_implemented(proto->shutdown),
2542 proto_method_implemented(proto->setsockopt),
2543 proto_method_implemented(proto->getsockopt),
2544 proto_method_implemented(proto->sendmsg),
2545 proto_method_implemented(proto->recvmsg),
2546 proto_method_implemented(proto->sendpage),
2547 proto_method_implemented(proto->bind),
2548 proto_method_implemented(proto->backlog_rcv),
2549 proto_method_implemented(proto->hash),
2550 proto_method_implemented(proto->unhash),
2551 proto_method_implemented(proto->get_port),
2552 proto_method_implemented(proto->enter_memory_pressure));
2555 static int proto_seq_show(struct seq_file *seq, void *v)
2557 if (v == &proto_list)
2558 seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
2559 "protocol",
2560 "size",
2561 "sockets",
2562 "memory",
2563 "press",
2564 "maxhdr",
2565 "slab",
2566 "module",
2567 "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
2568 else
2569 proto_seq_printf(seq, list_entry(v, struct proto, node));
2570 return 0;
2573 static const struct seq_operations proto_seq_ops = {
2574 .start = proto_seq_start,
2575 .next = proto_seq_next,
2576 .stop = proto_seq_stop,
2577 .show = proto_seq_show,
2580 static int proto_seq_open(struct inode *inode, struct file *file)
2582 return seq_open_net(inode, file, &proto_seq_ops,
2583 sizeof(struct seq_net_private));
2586 static const struct file_operations proto_seq_fops = {
2587 .owner = THIS_MODULE,
2588 .open = proto_seq_open,
2589 .read = seq_read,
2590 .llseek = seq_lseek,
2591 .release = seq_release_net,
2594 static __net_init int proto_init_net(struct net *net)
2596 if (!proc_net_fops_create(net, "protocols", S_IRUGO, &proto_seq_fops))
2597 return -ENOMEM;
2599 return 0;
2602 static __net_exit void proto_exit_net(struct net *net)
2604 proc_net_remove(net, "protocols");
2608 static __net_initdata struct pernet_operations proto_net_ops = {
2609 .init = proto_init_net,
2610 .exit = proto_exit_net,
2613 static int __init proto_init(void)
2615 return register_pernet_subsys(&proto_net_ops);
2618 subsys_initcall(proto_init);
2620 #endif /* PROC_FS */