4 * Kernel internal timers, basic process system calls
6 * Copyright (C) 1991, 1992 Linus Torvalds
8 * 1997-01-28 Modified by Finn Arne Gangstad to make timers scale better.
10 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
11 * "A Kernel Model for Precision Timekeeping" by Dave Mills
12 * 1998-12-24 Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
13 * serialize accesses to xtime/lost_ticks).
14 * Copyright (C) 1998 Andrea Arcangeli
15 * 1999-03-10 Improved NTP compatibility by Ulrich Windl
16 * 2002-05-31 Move sys_sysinfo here and make its locking sane, Robert Love
17 * 2000-10-05 Implemented scalable SMP per-CPU timer handling.
18 * Copyright (C) 2000, 2001, 2002 Ingo Molnar
19 * Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
22 #include <linux/kernel_stat.h>
23 #include <linux/module.h>
24 #include <linux/interrupt.h>
25 #include <linux/percpu.h>
26 #include <linux/init.h>
28 #include <linux/swap.h>
29 #include <linux/pid_namespace.h>
30 #include <linux/notifier.h>
31 #include <linux/thread_info.h>
32 #include <linux/time.h>
33 #include <linux/jiffies.h>
34 #include <linux/posix-timers.h>
35 #include <linux/cpu.h>
36 #include <linux/syscalls.h>
37 #include <linux/delay.h>
38 #include <linux/tick.h>
39 #include <linux/kallsyms.h>
40 #include <linux/perf_counter.h>
42 #include <asm/uaccess.h>
43 #include <asm/unistd.h>
44 #include <asm/div64.h>
45 #include <asm/timex.h>
48 u64 jiffies_64 __cacheline_aligned_in_smp
= INITIAL_JIFFIES
;
50 EXPORT_SYMBOL(jiffies_64
);
53 * per-CPU timer vector definitions:
55 #define TVN_BITS (CONFIG_BASE_SMALL ? 4 : 6)
56 #define TVR_BITS (CONFIG_BASE_SMALL ? 6 : 8)
57 #define TVN_SIZE (1 << TVN_BITS)
58 #define TVR_SIZE (1 << TVR_BITS)
59 #define TVN_MASK (TVN_SIZE - 1)
60 #define TVR_MASK (TVR_SIZE - 1)
63 struct list_head vec
[TVN_SIZE
];
67 struct list_head vec
[TVR_SIZE
];
72 struct timer_list
*running_timer
;
73 unsigned long timer_jiffies
;
79 } ____cacheline_aligned
;
81 struct tvec_base boot_tvec_bases
;
82 EXPORT_SYMBOL(boot_tvec_bases
);
83 static DEFINE_PER_CPU(struct tvec_base
*, tvec_bases
) = &boot_tvec_bases
;
86 * Note that all tvec_bases are 2 byte aligned and lower bit of
87 * base in timer_list is guaranteed to be zero. Use the LSB for
88 * the new flag to indicate whether the timer is deferrable
90 #define TBASE_DEFERRABLE_FLAG (0x1)
92 /* Functions below help us manage 'deferrable' flag */
93 static inline unsigned int tbase_get_deferrable(struct tvec_base
*base
)
95 return ((unsigned int)(unsigned long)base
& TBASE_DEFERRABLE_FLAG
);
98 static inline struct tvec_base
*tbase_get_base(struct tvec_base
*base
)
100 return ((struct tvec_base
*)((unsigned long)base
& ~TBASE_DEFERRABLE_FLAG
));
103 static inline void timer_set_deferrable(struct timer_list
*timer
)
105 timer
->base
= ((struct tvec_base
*)((unsigned long)(timer
->base
) |
106 TBASE_DEFERRABLE_FLAG
));
110 timer_set_base(struct timer_list
*timer
, struct tvec_base
*new_base
)
112 timer
->base
= (struct tvec_base
*)((unsigned long)(new_base
) |
113 tbase_get_deferrable(timer
->base
));
116 static unsigned long round_jiffies_common(unsigned long j
, int cpu
,
120 unsigned long original
= j
;
123 * We don't want all cpus firing their timers at once hitting the
124 * same lock or cachelines, so we skew each extra cpu with an extra
125 * 3 jiffies. This 3 jiffies came originally from the mm/ code which
127 * The skew is done by adding 3*cpunr, then round, then subtract this
128 * extra offset again.
135 * If the target jiffie is just after a whole second (which can happen
136 * due to delays of the timer irq, long irq off times etc etc) then
137 * we should round down to the whole second, not up. Use 1/4th second
138 * as cutoff for this rounding as an extreme upper bound for this.
139 * But never round down if @force_up is set.
141 if (rem
< HZ
/4 && !force_up
) /* round down */
146 /* now that we have rounded, subtract the extra skew again */
149 if (j
<= jiffies
) /* rounding ate our timeout entirely; */
155 * __round_jiffies - function to round jiffies to a full second
156 * @j: the time in (absolute) jiffies that should be rounded
157 * @cpu: the processor number on which the timeout will happen
159 * __round_jiffies() rounds an absolute time in the future (in jiffies)
160 * up or down to (approximately) full seconds. This is useful for timers
161 * for which the exact time they fire does not matter too much, as long as
162 * they fire approximately every X seconds.
164 * By rounding these timers to whole seconds, all such timers will fire
165 * at the same time, rather than at various times spread out. The goal
166 * of this is to have the CPU wake up less, which saves power.
168 * The exact rounding is skewed for each processor to avoid all
169 * processors firing at the exact same time, which could lead
170 * to lock contention or spurious cache line bouncing.
172 * The return value is the rounded version of the @j parameter.
174 unsigned long __round_jiffies(unsigned long j
, int cpu
)
176 return round_jiffies_common(j
, cpu
, false);
178 EXPORT_SYMBOL_GPL(__round_jiffies
);
181 * __round_jiffies_relative - function to round jiffies to a full second
182 * @j: the time in (relative) jiffies that should be rounded
183 * @cpu: the processor number on which the timeout will happen
185 * __round_jiffies_relative() rounds a time delta in the future (in jiffies)
186 * up or down to (approximately) full seconds. This is useful for timers
187 * for which the exact time they fire does not matter too much, as long as
188 * they fire approximately every X seconds.
190 * By rounding these timers to whole seconds, all such timers will fire
191 * at the same time, rather than at various times spread out. The goal
192 * of this is to have the CPU wake up less, which saves power.
194 * The exact rounding is skewed for each processor to avoid all
195 * processors firing at the exact same time, which could lead
196 * to lock contention or spurious cache line bouncing.
198 * The return value is the rounded version of the @j parameter.
200 unsigned long __round_jiffies_relative(unsigned long j
, int cpu
)
202 unsigned long j0
= jiffies
;
204 /* Use j0 because jiffies might change while we run */
205 return round_jiffies_common(j
+ j0
, cpu
, false) - j0
;
207 EXPORT_SYMBOL_GPL(__round_jiffies_relative
);
210 * round_jiffies - function to round jiffies to a full second
211 * @j: the time in (absolute) jiffies that should be rounded
213 * round_jiffies() rounds an absolute time in the future (in jiffies)
214 * up or down to (approximately) full seconds. This is useful for timers
215 * for which the exact time they fire does not matter too much, as long as
216 * they fire approximately every X seconds.
218 * By rounding these timers to whole seconds, all such timers will fire
219 * at the same time, rather than at various times spread out. The goal
220 * of this is to have the CPU wake up less, which saves power.
222 * The return value is the rounded version of the @j parameter.
224 unsigned long round_jiffies(unsigned long j
)
226 return round_jiffies_common(j
, raw_smp_processor_id(), false);
228 EXPORT_SYMBOL_GPL(round_jiffies
);
231 * round_jiffies_relative - function to round jiffies to a full second
232 * @j: the time in (relative) jiffies that should be rounded
234 * round_jiffies_relative() rounds a time delta in the future (in jiffies)
235 * up or down to (approximately) full seconds. This is useful for timers
236 * for which the exact time they fire does not matter too much, as long as
237 * they fire approximately every X seconds.
239 * By rounding these timers to whole seconds, all such timers will fire
240 * at the same time, rather than at various times spread out. The goal
241 * of this is to have the CPU wake up less, which saves power.
243 * The return value is the rounded version of the @j parameter.
245 unsigned long round_jiffies_relative(unsigned long j
)
247 return __round_jiffies_relative(j
, raw_smp_processor_id());
249 EXPORT_SYMBOL_GPL(round_jiffies_relative
);
252 * __round_jiffies_up - function to round jiffies up to a full second
253 * @j: the time in (absolute) jiffies that should be rounded
254 * @cpu: the processor number on which the timeout will happen
256 * This is the same as __round_jiffies() except that it will never
257 * round down. This is useful for timeouts for which the exact time
258 * of firing does not matter too much, as long as they don't fire too
261 unsigned long __round_jiffies_up(unsigned long j
, int cpu
)
263 return round_jiffies_common(j
, cpu
, true);
265 EXPORT_SYMBOL_GPL(__round_jiffies_up
);
268 * __round_jiffies_up_relative - function to round jiffies up to a full second
269 * @j: the time in (relative) jiffies that should be rounded
270 * @cpu: the processor number on which the timeout will happen
272 * This is the same as __round_jiffies_relative() except that it will never
273 * round down. This is useful for timeouts for which the exact time
274 * of firing does not matter too much, as long as they don't fire too
277 unsigned long __round_jiffies_up_relative(unsigned long j
, int cpu
)
279 unsigned long j0
= jiffies
;
281 /* Use j0 because jiffies might change while we run */
282 return round_jiffies_common(j
+ j0
, cpu
, true) - j0
;
284 EXPORT_SYMBOL_GPL(__round_jiffies_up_relative
);
287 * round_jiffies_up - function to round jiffies up to a full second
288 * @j: the time in (absolute) jiffies that should be rounded
290 * This is the same as round_jiffies() except that it will never
291 * round down. This is useful for timeouts for which the exact time
292 * of firing does not matter too much, as long as they don't fire too
295 unsigned long round_jiffies_up(unsigned long j
)
297 return round_jiffies_common(j
, raw_smp_processor_id(), true);
299 EXPORT_SYMBOL_GPL(round_jiffies_up
);
302 * round_jiffies_up_relative - function to round jiffies up to a full second
303 * @j: the time in (relative) jiffies that should be rounded
305 * This is the same as round_jiffies_relative() except that it will never
306 * round down. This is useful for timeouts for which the exact time
307 * of firing does not matter too much, as long as they don't fire too
310 unsigned long round_jiffies_up_relative(unsigned long j
)
312 return __round_jiffies_up_relative(j
, raw_smp_processor_id());
314 EXPORT_SYMBOL_GPL(round_jiffies_up_relative
);
317 static inline void set_running_timer(struct tvec_base
*base
,
318 struct timer_list
*timer
)
321 base
->running_timer
= timer
;
325 static void internal_add_timer(struct tvec_base
*base
, struct timer_list
*timer
)
327 unsigned long expires
= timer
->expires
;
328 unsigned long idx
= expires
- base
->timer_jiffies
;
329 struct list_head
*vec
;
331 if (idx
< TVR_SIZE
) {
332 int i
= expires
& TVR_MASK
;
333 vec
= base
->tv1
.vec
+ i
;
334 } else if (idx
< 1 << (TVR_BITS
+ TVN_BITS
)) {
335 int i
= (expires
>> TVR_BITS
) & TVN_MASK
;
336 vec
= base
->tv2
.vec
+ i
;
337 } else if (idx
< 1 << (TVR_BITS
+ 2 * TVN_BITS
)) {
338 int i
= (expires
>> (TVR_BITS
+ TVN_BITS
)) & TVN_MASK
;
339 vec
= base
->tv3
.vec
+ i
;
340 } else if (idx
< 1 << (TVR_BITS
+ 3 * TVN_BITS
)) {
341 int i
= (expires
>> (TVR_BITS
+ 2 * TVN_BITS
)) & TVN_MASK
;
342 vec
= base
->tv4
.vec
+ i
;
343 } else if ((signed long) idx
< 0) {
345 * Can happen if you add a timer with expires == jiffies,
346 * or you set a timer to go off in the past
348 vec
= base
->tv1
.vec
+ (base
->timer_jiffies
& TVR_MASK
);
351 /* If the timeout is larger than 0xffffffff on 64-bit
352 * architectures then we use the maximum timeout:
354 if (idx
> 0xffffffffUL
) {
356 expires
= idx
+ base
->timer_jiffies
;
358 i
= (expires
>> (TVR_BITS
+ 3 * TVN_BITS
)) & TVN_MASK
;
359 vec
= base
->tv5
.vec
+ i
;
364 list_add_tail(&timer
->entry
, vec
);
367 #ifdef CONFIG_TIMER_STATS
368 void __timer_stats_timer_set_start_info(struct timer_list
*timer
, void *addr
)
370 if (timer
->start_site
)
373 timer
->start_site
= addr
;
374 memcpy(timer
->start_comm
, current
->comm
, TASK_COMM_LEN
);
375 timer
->start_pid
= current
->pid
;
378 static void timer_stats_account_timer(struct timer_list
*timer
)
380 unsigned int flag
= 0;
382 if (unlikely(tbase_get_deferrable(timer
->base
)))
383 flag
|= TIMER_STATS_FLAG_DEFERRABLE
;
385 timer_stats_update_stats(timer
, timer
->start_pid
, timer
->start_site
,
386 timer
->function
, timer
->start_comm
, flag
);
390 static void timer_stats_account_timer(struct timer_list
*timer
) {}
393 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
395 static struct debug_obj_descr timer_debug_descr
;
398 * fixup_init is called when:
399 * - an active object is initialized
401 static int timer_fixup_init(void *addr
, enum debug_obj_state state
)
403 struct timer_list
*timer
= addr
;
406 case ODEBUG_STATE_ACTIVE
:
407 del_timer_sync(timer
);
408 debug_object_init(timer
, &timer_debug_descr
);
416 * fixup_activate is called when:
417 * - an active object is activated
418 * - an unknown object is activated (might be a statically initialized object)
420 static int timer_fixup_activate(void *addr
, enum debug_obj_state state
)
422 struct timer_list
*timer
= addr
;
426 case ODEBUG_STATE_NOTAVAILABLE
:
428 * This is not really a fixup. The timer was
429 * statically initialized. We just make sure that it
430 * is tracked in the object tracker.
432 if (timer
->entry
.next
== NULL
&&
433 timer
->entry
.prev
== TIMER_ENTRY_STATIC
) {
434 debug_object_init(timer
, &timer_debug_descr
);
435 debug_object_activate(timer
, &timer_debug_descr
);
442 case ODEBUG_STATE_ACTIVE
:
451 * fixup_free is called when:
452 * - an active object is freed
454 static int timer_fixup_free(void *addr
, enum debug_obj_state state
)
456 struct timer_list
*timer
= addr
;
459 case ODEBUG_STATE_ACTIVE
:
460 del_timer_sync(timer
);
461 debug_object_free(timer
, &timer_debug_descr
);
468 static struct debug_obj_descr timer_debug_descr
= {
469 .name
= "timer_list",
470 .fixup_init
= timer_fixup_init
,
471 .fixup_activate
= timer_fixup_activate
,
472 .fixup_free
= timer_fixup_free
,
475 static inline void debug_timer_init(struct timer_list
*timer
)
477 debug_object_init(timer
, &timer_debug_descr
);
480 static inline void debug_timer_activate(struct timer_list
*timer
)
482 debug_object_activate(timer
, &timer_debug_descr
);
485 static inline void debug_timer_deactivate(struct timer_list
*timer
)
487 debug_object_deactivate(timer
, &timer_debug_descr
);
490 static inline void debug_timer_free(struct timer_list
*timer
)
492 debug_object_free(timer
, &timer_debug_descr
);
495 static void __init_timer(struct timer_list
*timer
,
497 struct lock_class_key
*key
);
499 void init_timer_on_stack_key(struct timer_list
*timer
,
501 struct lock_class_key
*key
)
503 debug_object_init_on_stack(timer
, &timer_debug_descr
);
504 __init_timer(timer
, name
, key
);
506 EXPORT_SYMBOL_GPL(init_timer_on_stack_key
);
508 void destroy_timer_on_stack(struct timer_list
*timer
)
510 debug_object_free(timer
, &timer_debug_descr
);
512 EXPORT_SYMBOL_GPL(destroy_timer_on_stack
);
515 static inline void debug_timer_init(struct timer_list
*timer
) { }
516 static inline void debug_timer_activate(struct timer_list
*timer
) { }
517 static inline void debug_timer_deactivate(struct timer_list
*timer
) { }
520 static void __init_timer(struct timer_list
*timer
,
522 struct lock_class_key
*key
)
524 timer
->entry
.next
= NULL
;
525 timer
->base
= __raw_get_cpu_var(tvec_bases
);
526 #ifdef CONFIG_TIMER_STATS
527 timer
->start_site
= NULL
;
528 timer
->start_pid
= -1;
529 memset(timer
->start_comm
, 0, TASK_COMM_LEN
);
531 lockdep_init_map(&timer
->lockdep_map
, name
, key
, 0);
535 * init_timer_key - initialize a timer
536 * @timer: the timer to be initialized
537 * @name: name of the timer
538 * @key: lockdep class key of the fake lock used for tracking timer
539 * sync lock dependencies
541 * init_timer_key() must be done to a timer prior calling *any* of the
542 * other timer functions.
544 void init_timer_key(struct timer_list
*timer
,
546 struct lock_class_key
*key
)
548 debug_timer_init(timer
);
549 __init_timer(timer
, name
, key
);
551 EXPORT_SYMBOL(init_timer_key
);
553 void init_timer_deferrable_key(struct timer_list
*timer
,
555 struct lock_class_key
*key
)
557 init_timer_key(timer
, name
, key
);
558 timer_set_deferrable(timer
);
560 EXPORT_SYMBOL(init_timer_deferrable_key
);
562 static inline void detach_timer(struct timer_list
*timer
,
565 struct list_head
*entry
= &timer
->entry
;
567 debug_timer_deactivate(timer
);
569 __list_del(entry
->prev
, entry
->next
);
572 entry
->prev
= LIST_POISON2
;
576 * We are using hashed locking: holding per_cpu(tvec_bases).lock
577 * means that all timers which are tied to this base via timer->base are
578 * locked, and the base itself is locked too.
580 * So __run_timers/migrate_timers can safely modify all timers which could
581 * be found on ->tvX lists.
583 * When the timer's base is locked, and the timer removed from list, it is
584 * possible to set timer->base = NULL and drop the lock: the timer remains
587 static struct tvec_base
*lock_timer_base(struct timer_list
*timer
,
588 unsigned long *flags
)
589 __acquires(timer
->base
->lock
)
591 struct tvec_base
*base
;
594 struct tvec_base
*prelock_base
= timer
->base
;
595 base
= tbase_get_base(prelock_base
);
596 if (likely(base
!= NULL
)) {
597 spin_lock_irqsave(&base
->lock
, *flags
);
598 if (likely(prelock_base
== timer
->base
))
600 /* The timer has migrated to another CPU */
601 spin_unlock_irqrestore(&base
->lock
, *flags
);
608 __mod_timer(struct timer_list
*timer
, unsigned long expires
, bool pending_only
)
610 struct tvec_base
*base
, *new_base
;
616 timer_stats_timer_set_start_info(timer
);
617 BUG_ON(!timer
->function
);
619 base
= lock_timer_base(timer
, &flags
);
621 if (timer_pending(timer
)) {
622 detach_timer(timer
, 0);
629 debug_timer_activate(timer
);
631 new_base
= __get_cpu_var(tvec_bases
);
633 if (base
!= new_base
) {
635 * We are trying to schedule the timer on the local CPU.
636 * However we can't change timer's base while it is running,
637 * otherwise del_timer_sync() can't detect that the timer's
638 * handler yet has not finished. This also guarantees that
639 * the timer is serialized wrt itself.
641 if (likely(base
->running_timer
!= timer
)) {
642 /* See the comment in lock_timer_base() */
643 timer_set_base(timer
, NULL
);
644 spin_unlock(&base
->lock
);
646 spin_lock(&base
->lock
);
647 timer_set_base(timer
, base
);
651 timer
->expires
= expires
;
652 internal_add_timer(base
, timer
);
655 spin_unlock_irqrestore(&base
->lock
, flags
);
661 * mod_timer_pending - modify a pending timer's timeout
662 * @timer: the pending timer to be modified
663 * @expires: new timeout in jiffies
665 * mod_timer_pending() is the same for pending timers as mod_timer(),
666 * but will not re-activate and modify already deleted timers.
668 * It is useful for unserialized use of timers.
670 int mod_timer_pending(struct timer_list
*timer
, unsigned long expires
)
672 return __mod_timer(timer
, expires
, true);
674 EXPORT_SYMBOL(mod_timer_pending
);
677 * mod_timer - modify a timer's timeout
678 * @timer: the timer to be modified
679 * @expires: new timeout in jiffies
681 * mod_timer() is a more efficient way to update the expire field of an
682 * active timer (if the timer is inactive it will be activated)
684 * mod_timer(timer, expires) is equivalent to:
686 * del_timer(timer); timer->expires = expires; add_timer(timer);
688 * Note that if there are multiple unserialized concurrent users of the
689 * same timer, then mod_timer() is the only safe way to modify the timeout,
690 * since add_timer() cannot modify an already running timer.
692 * The function returns whether it has modified a pending timer or not.
693 * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an
694 * active timer returns 1.)
696 int mod_timer(struct timer_list
*timer
, unsigned long expires
)
699 * This is a common optimization triggered by the
700 * networking code - if the timer is re-modified
701 * to be the same thing then just return:
703 if (timer
->expires
== expires
&& timer_pending(timer
))
706 return __mod_timer(timer
, expires
, false);
708 EXPORT_SYMBOL(mod_timer
);
711 * add_timer - start a timer
712 * @timer: the timer to be added
714 * The kernel will do a ->function(->data) callback from the
715 * timer interrupt at the ->expires point in the future. The
716 * current time is 'jiffies'.
718 * The timer's ->expires, ->function (and if the handler uses it, ->data)
719 * fields must be set prior calling this function.
721 * Timers with an ->expires field in the past will be executed in the next
724 void add_timer(struct timer_list
*timer
)
726 BUG_ON(timer_pending(timer
));
727 mod_timer(timer
, timer
->expires
);
729 EXPORT_SYMBOL(add_timer
);
732 * add_timer_on - start a timer on a particular CPU
733 * @timer: the timer to be added
734 * @cpu: the CPU to start it on
736 * This is not very scalable on SMP. Double adds are not possible.
738 void add_timer_on(struct timer_list
*timer
, int cpu
)
740 struct tvec_base
*base
= per_cpu(tvec_bases
, cpu
);
743 timer_stats_timer_set_start_info(timer
);
744 BUG_ON(timer_pending(timer
) || !timer
->function
);
745 spin_lock_irqsave(&base
->lock
, flags
);
746 timer_set_base(timer
, base
);
747 debug_timer_activate(timer
);
748 internal_add_timer(base
, timer
);
750 * Check whether the other CPU is idle and needs to be
751 * triggered to reevaluate the timer wheel when nohz is
752 * active. We are protected against the other CPU fiddling
753 * with the timer by holding the timer base lock. This also
754 * makes sure that a CPU on the way to idle can not evaluate
757 wake_up_idle_cpu(cpu
);
758 spin_unlock_irqrestore(&base
->lock
, flags
);
762 * del_timer - deactive a timer.
763 * @timer: the timer to be deactivated
765 * del_timer() deactivates a timer - this works on both active and inactive
768 * The function returns whether it has deactivated a pending timer or not.
769 * (ie. del_timer() of an inactive timer returns 0, del_timer() of an
770 * active timer returns 1.)
772 int del_timer(struct timer_list
*timer
)
774 struct tvec_base
*base
;
778 timer_stats_timer_clear_start_info(timer
);
779 if (timer_pending(timer
)) {
780 base
= lock_timer_base(timer
, &flags
);
781 if (timer_pending(timer
)) {
782 detach_timer(timer
, 1);
785 spin_unlock_irqrestore(&base
->lock
, flags
);
790 EXPORT_SYMBOL(del_timer
);
794 * try_to_del_timer_sync - Try to deactivate a timer
795 * @timer: timer do del
797 * This function tries to deactivate a timer. Upon successful (ret >= 0)
798 * exit the timer is not queued and the handler is not running on any CPU.
800 * It must not be called from interrupt contexts.
802 int try_to_del_timer_sync(struct timer_list
*timer
)
804 struct tvec_base
*base
;
808 base
= lock_timer_base(timer
, &flags
);
810 if (base
->running_timer
== timer
)
814 if (timer_pending(timer
)) {
815 detach_timer(timer
, 1);
819 spin_unlock_irqrestore(&base
->lock
, flags
);
823 EXPORT_SYMBOL(try_to_del_timer_sync
);
826 * del_timer_sync - deactivate a timer and wait for the handler to finish.
827 * @timer: the timer to be deactivated
829 * This function only differs from del_timer() on SMP: besides deactivating
830 * the timer it also makes sure the handler has finished executing on other
833 * Synchronization rules: Callers must prevent restarting of the timer,
834 * otherwise this function is meaningless. It must not be called from
835 * interrupt contexts. The caller must not hold locks which would prevent
836 * completion of the timer's handler. The timer's handler must not call
837 * add_timer_on(). Upon exit the timer is not queued and the handler is
838 * not running on any CPU.
840 * The function returns whether it has deactivated a pending timer or not.
842 int del_timer_sync(struct timer_list
*timer
)
844 #ifdef CONFIG_LOCKDEP
847 local_irq_save(flags
);
848 lock_map_acquire(&timer
->lockdep_map
);
849 lock_map_release(&timer
->lockdep_map
);
850 local_irq_restore(flags
);
854 int ret
= try_to_del_timer_sync(timer
);
860 EXPORT_SYMBOL(del_timer_sync
);
863 static int cascade(struct tvec_base
*base
, struct tvec
*tv
, int index
)
865 /* cascade all the timers from tv up one level */
866 struct timer_list
*timer
, *tmp
;
867 struct list_head tv_list
;
869 list_replace_init(tv
->vec
+ index
, &tv_list
);
872 * We are removing _all_ timers from the list, so we
873 * don't have to detach them individually.
875 list_for_each_entry_safe(timer
, tmp
, &tv_list
, entry
) {
876 BUG_ON(tbase_get_base(timer
->base
) != base
);
877 internal_add_timer(base
, timer
);
883 #define INDEX(N) ((base->timer_jiffies >> (TVR_BITS + (N) * TVN_BITS)) & TVN_MASK)
886 * __run_timers - run all expired timers (if any) on this CPU.
887 * @base: the timer vector to be processed.
889 * This function cascades all vectors and executes all expired timer
892 static inline void __run_timers(struct tvec_base
*base
)
894 struct timer_list
*timer
;
896 spin_lock_irq(&base
->lock
);
897 while (time_after_eq(jiffies
, base
->timer_jiffies
)) {
898 struct list_head work_list
;
899 struct list_head
*head
= &work_list
;
900 int index
= base
->timer_jiffies
& TVR_MASK
;
906 (!cascade(base
, &base
->tv2
, INDEX(0))) &&
907 (!cascade(base
, &base
->tv3
, INDEX(1))) &&
908 !cascade(base
, &base
->tv4
, INDEX(2)))
909 cascade(base
, &base
->tv5
, INDEX(3));
910 ++base
->timer_jiffies
;
911 list_replace_init(base
->tv1
.vec
+ index
, &work_list
);
912 while (!list_empty(head
)) {
913 void (*fn
)(unsigned long);
916 timer
= list_first_entry(head
, struct timer_list
,entry
);
917 fn
= timer
->function
;
920 timer_stats_account_timer(timer
);
922 set_running_timer(base
, timer
);
923 detach_timer(timer
, 1);
925 spin_unlock_irq(&base
->lock
);
927 int preempt_count
= preempt_count();
929 #ifdef CONFIG_LOCKDEP
931 * It is permissible to free the timer from
932 * inside the function that is called from
933 * it, this we need to take into account for
934 * lockdep too. To avoid bogus "held lock
935 * freed" warnings as well as problems when
936 * looking into timer->lockdep_map, make a
937 * copy and use that here.
939 struct lockdep_map lockdep_map
=
943 * Couple the lock chain with the lock chain at
944 * del_timer_sync() by acquiring the lock_map
945 * around the fn() call here and in
948 lock_map_acquire(&lockdep_map
);
952 lock_map_release(&lockdep_map
);
954 if (preempt_count
!= preempt_count()) {
955 printk(KERN_ERR
"huh, entered %p "
956 "with preempt_count %08x, exited"
963 spin_lock_irq(&base
->lock
);
966 set_running_timer(base
, NULL
);
967 spin_unlock_irq(&base
->lock
);
972 * Find out when the next timer event is due to happen. This
973 * is used on S/390 to stop all activity when a cpus is idle.
974 * This functions needs to be called disabled.
976 static unsigned long __next_timer_interrupt(struct tvec_base
*base
)
978 unsigned long timer_jiffies
= base
->timer_jiffies
;
979 unsigned long expires
= timer_jiffies
+ NEXT_TIMER_MAX_DELTA
;
980 int index
, slot
, array
, found
= 0;
981 struct timer_list
*nte
;
982 struct tvec
*varray
[4];
984 /* Look for timer events in tv1. */
985 index
= slot
= timer_jiffies
& TVR_MASK
;
987 list_for_each_entry(nte
, base
->tv1
.vec
+ slot
, entry
) {
988 if (tbase_get_deferrable(nte
->base
))
992 expires
= nte
->expires
;
993 /* Look at the cascade bucket(s)? */
994 if (!index
|| slot
< index
)
998 slot
= (slot
+ 1) & TVR_MASK
;
999 } while (slot
!= index
);
1002 /* Calculate the next cascade event */
1004 timer_jiffies
+= TVR_SIZE
- index
;
1005 timer_jiffies
>>= TVR_BITS
;
1007 /* Check tv2-tv5. */
1008 varray
[0] = &base
->tv2
;
1009 varray
[1] = &base
->tv3
;
1010 varray
[2] = &base
->tv4
;
1011 varray
[3] = &base
->tv5
;
1013 for (array
= 0; array
< 4; array
++) {
1014 struct tvec
*varp
= varray
[array
];
1016 index
= slot
= timer_jiffies
& TVN_MASK
;
1018 list_for_each_entry(nte
, varp
->vec
+ slot
, entry
) {
1020 if (time_before(nte
->expires
, expires
))
1021 expires
= nte
->expires
;
1024 * Do we still search for the first timer or are
1025 * we looking up the cascade buckets ?
1028 /* Look at the cascade bucket(s)? */
1029 if (!index
|| slot
< index
)
1033 slot
= (slot
+ 1) & TVN_MASK
;
1034 } while (slot
!= index
);
1037 timer_jiffies
+= TVN_SIZE
- index
;
1038 timer_jiffies
>>= TVN_BITS
;
1044 * Check, if the next hrtimer event is before the next timer wheel
1047 static unsigned long cmp_next_hrtimer_event(unsigned long now
,
1048 unsigned long expires
)
1050 ktime_t hr_delta
= hrtimer_get_next_event();
1051 struct timespec tsdelta
;
1052 unsigned long delta
;
1054 if (hr_delta
.tv64
== KTIME_MAX
)
1058 * Expired timer available, let it expire in the next tick
1060 if (hr_delta
.tv64
<= 0)
1063 tsdelta
= ktime_to_timespec(hr_delta
);
1064 delta
= timespec_to_jiffies(&tsdelta
);
1067 * Limit the delta to the max value, which is checked in
1068 * tick_nohz_stop_sched_tick():
1070 if (delta
> NEXT_TIMER_MAX_DELTA
)
1071 delta
= NEXT_TIMER_MAX_DELTA
;
1074 * Take rounding errors in to account and make sure, that it
1075 * expires in the next tick. Otherwise we go into an endless
1076 * ping pong due to tick_nohz_stop_sched_tick() retriggering
1082 if (time_before(now
, expires
))
1088 * get_next_timer_interrupt - return the jiffy of the next pending timer
1089 * @now: current time (in jiffies)
1091 unsigned long get_next_timer_interrupt(unsigned long now
)
1093 struct tvec_base
*base
= __get_cpu_var(tvec_bases
);
1094 unsigned long expires
;
1096 spin_lock(&base
->lock
);
1097 expires
= __next_timer_interrupt(base
);
1098 spin_unlock(&base
->lock
);
1100 if (time_before_eq(expires
, now
))
1103 return cmp_next_hrtimer_event(now
, expires
);
1108 * Called from the timer interrupt handler to charge one tick to the current
1109 * process. user_tick is 1 if the tick is user time, 0 for system.
1111 void update_process_times(int user_tick
)
1113 struct task_struct
*p
= current
;
1114 int cpu
= smp_processor_id();
1116 /* Note: this timer irq context must be accounted for as well. */
1117 account_process_tick(p
, user_tick
);
1119 if (rcu_pending(cpu
))
1120 rcu_check_callbacks(cpu
, user_tick
);
1123 run_posix_cpu_timers(p
);
1127 * This function runs timers and the timer-tq in bottom half context.
1129 static void run_timer_softirq(struct softirq_action
*h
)
1131 struct tvec_base
*base
= __get_cpu_var(tvec_bases
);
1133 perf_counter_do_pending();
1135 hrtimer_run_pending();
1137 if (time_after_eq(jiffies
, base
->timer_jiffies
))
1142 * Called by the local, per-CPU timer interrupt on SMP.
1144 void run_local_timers(void)
1146 hrtimer_run_queues();
1147 raise_softirq(TIMER_SOFTIRQ
);
1152 * The 64-bit jiffies value is not atomic - you MUST NOT read it
1153 * without sampling the sequence number in xtime_lock.
1154 * jiffies is defined in the linker script...
1157 void do_timer(unsigned long ticks
)
1159 jiffies_64
+= ticks
;
1164 #ifdef __ARCH_WANT_SYS_ALARM
1167 * For backwards compatibility? This can be done in libc so Alpha
1168 * and all newer ports shouldn't need it.
1170 SYSCALL_DEFINE1(alarm
, unsigned int, seconds
)
1172 return alarm_setitimer(seconds
);
1180 * The Alpha uses getxpid, getxuid, and getxgid instead. Maybe this
1181 * should be moved into arch/i386 instead?
1185 * sys_getpid - return the thread group id of the current process
1187 * Note, despite the name, this returns the tgid not the pid. The tgid and
1188 * the pid are identical unless CLONE_THREAD was specified on clone() in
1189 * which case the tgid is the same in all threads of the same group.
1191 * This is SMP safe as current->tgid does not change.
1193 SYSCALL_DEFINE0(getpid
)
1195 return task_tgid_vnr(current
);
1199 * Accessing ->real_parent is not SMP-safe, it could
1200 * change from under us. However, we can use a stale
1201 * value of ->real_parent under rcu_read_lock(), see
1202 * release_task()->call_rcu(delayed_put_task_struct).
1204 SYSCALL_DEFINE0(getppid
)
1209 pid
= task_tgid_vnr(current
->real_parent
);
1215 SYSCALL_DEFINE0(getuid
)
1217 /* Only we change this so SMP safe */
1218 return current_uid();
1221 SYSCALL_DEFINE0(geteuid
)
1223 /* Only we change this so SMP safe */
1224 return current_euid();
1227 SYSCALL_DEFINE0(getgid
)
1229 /* Only we change this so SMP safe */
1230 return current_gid();
1233 SYSCALL_DEFINE0(getegid
)
1235 /* Only we change this so SMP safe */
1236 return current_egid();
1241 static void process_timeout(unsigned long __data
)
1243 wake_up_process((struct task_struct
*)__data
);
1247 * schedule_timeout - sleep until timeout
1248 * @timeout: timeout value in jiffies
1250 * Make the current task sleep until @timeout jiffies have
1251 * elapsed. The routine will return immediately unless
1252 * the current task state has been set (see set_current_state()).
1254 * You can set the task state as follows -
1256 * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
1257 * pass before the routine returns. The routine will return 0
1259 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1260 * delivered to the current task. In this case the remaining time
1261 * in jiffies will be returned, or 0 if the timer expired in time
1263 * The current task state is guaranteed to be TASK_RUNNING when this
1266 * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
1267 * the CPU away without a bound on the timeout. In this case the return
1268 * value will be %MAX_SCHEDULE_TIMEOUT.
1270 * In all cases the return value is guaranteed to be non-negative.
1272 signed long __sched
schedule_timeout(signed long timeout
)
1274 struct timer_list timer
;
1275 unsigned long expire
;
1279 case MAX_SCHEDULE_TIMEOUT
:
1281 * These two special cases are useful to be comfortable
1282 * in the caller. Nothing more. We could take
1283 * MAX_SCHEDULE_TIMEOUT from one of the negative value
1284 * but I' d like to return a valid offset (>=0) to allow
1285 * the caller to do everything it want with the retval.
1291 * Another bit of PARANOID. Note that the retval will be
1292 * 0 since no piece of kernel is supposed to do a check
1293 * for a negative retval of schedule_timeout() (since it
1294 * should never happens anyway). You just have the printk()
1295 * that will tell you if something is gone wrong and where.
1298 printk(KERN_ERR
"schedule_timeout: wrong timeout "
1299 "value %lx\n", timeout
);
1301 current
->state
= TASK_RUNNING
;
1306 expire
= timeout
+ jiffies
;
1308 setup_timer_on_stack(&timer
, process_timeout
, (unsigned long)current
);
1309 __mod_timer(&timer
, expire
, false);
1311 del_singleshot_timer_sync(&timer
);
1313 /* Remove the timer from the object tracker */
1314 destroy_timer_on_stack(&timer
);
1316 timeout
= expire
- jiffies
;
1319 return timeout
< 0 ? 0 : timeout
;
1321 EXPORT_SYMBOL(schedule_timeout
);
1324 * We can use __set_current_state() here because schedule_timeout() calls
1325 * schedule() unconditionally.
1327 signed long __sched
schedule_timeout_interruptible(signed long timeout
)
1329 __set_current_state(TASK_INTERRUPTIBLE
);
1330 return schedule_timeout(timeout
);
1332 EXPORT_SYMBOL(schedule_timeout_interruptible
);
1334 signed long __sched
schedule_timeout_killable(signed long timeout
)
1336 __set_current_state(TASK_KILLABLE
);
1337 return schedule_timeout(timeout
);
1339 EXPORT_SYMBOL(schedule_timeout_killable
);
1341 signed long __sched
schedule_timeout_uninterruptible(signed long timeout
)
1343 __set_current_state(TASK_UNINTERRUPTIBLE
);
1344 return schedule_timeout(timeout
);
1346 EXPORT_SYMBOL(schedule_timeout_uninterruptible
);
1348 /* Thread ID - the internal kernel "pid" */
1349 SYSCALL_DEFINE0(gettid
)
1351 return task_pid_vnr(current
);
1355 * do_sysinfo - fill in sysinfo struct
1356 * @info: pointer to buffer to fill
1358 int do_sysinfo(struct sysinfo
*info
)
1360 unsigned long mem_total
, sav_total
;
1361 unsigned int mem_unit
, bitcount
;
1364 memset(info
, 0, sizeof(struct sysinfo
));
1367 monotonic_to_bootbased(&tp
);
1368 info
->uptime
= tp
.tv_sec
+ (tp
.tv_nsec
? 1 : 0);
1370 get_avenrun(info
->loads
, 0, SI_LOAD_SHIFT
- FSHIFT
);
1372 info
->procs
= nr_threads
;
1378 * If the sum of all the available memory (i.e. ram + swap)
1379 * is less than can be stored in a 32 bit unsigned long then
1380 * we can be binary compatible with 2.2.x kernels. If not,
1381 * well, in that case 2.2.x was broken anyways...
1383 * -Erik Andersen <andersee@debian.org>
1386 mem_total
= info
->totalram
+ info
->totalswap
;
1387 if (mem_total
< info
->totalram
|| mem_total
< info
->totalswap
)
1390 mem_unit
= info
->mem_unit
;
1391 while (mem_unit
> 1) {
1394 sav_total
= mem_total
;
1396 if (mem_total
< sav_total
)
1401 * If mem_total did not overflow, multiply all memory values by
1402 * info->mem_unit and set it to 1. This leaves things compatible
1403 * with 2.2.x, and also retains compatibility with earlier 2.4.x
1408 info
->totalram
<<= bitcount
;
1409 info
->freeram
<<= bitcount
;
1410 info
->sharedram
<<= bitcount
;
1411 info
->bufferram
<<= bitcount
;
1412 info
->totalswap
<<= bitcount
;
1413 info
->freeswap
<<= bitcount
;
1414 info
->totalhigh
<<= bitcount
;
1415 info
->freehigh
<<= bitcount
;
1421 SYSCALL_DEFINE1(sysinfo
, struct sysinfo __user
*, info
)
1427 if (copy_to_user(info
, &val
, sizeof(struct sysinfo
)))
1433 static int __cpuinit
init_timers_cpu(int cpu
)
1436 struct tvec_base
*base
;
1437 static char __cpuinitdata tvec_base_done
[NR_CPUS
];
1439 if (!tvec_base_done
[cpu
]) {
1440 static char boot_done
;
1444 * The APs use this path later in boot
1446 base
= kmalloc_node(sizeof(*base
),
1447 GFP_KERNEL
| __GFP_ZERO
,
1452 /* Make sure that tvec_base is 2 byte aligned */
1453 if (tbase_get_deferrable(base
)) {
1458 per_cpu(tvec_bases
, cpu
) = base
;
1461 * This is for the boot CPU - we use compile-time
1462 * static initialisation because per-cpu memory isn't
1463 * ready yet and because the memory allocators are not
1464 * initialised either.
1467 base
= &boot_tvec_bases
;
1469 tvec_base_done
[cpu
] = 1;
1471 base
= per_cpu(tvec_bases
, cpu
);
1474 spin_lock_init(&base
->lock
);
1476 for (j
= 0; j
< TVN_SIZE
; j
++) {
1477 INIT_LIST_HEAD(base
->tv5
.vec
+ j
);
1478 INIT_LIST_HEAD(base
->tv4
.vec
+ j
);
1479 INIT_LIST_HEAD(base
->tv3
.vec
+ j
);
1480 INIT_LIST_HEAD(base
->tv2
.vec
+ j
);
1482 for (j
= 0; j
< TVR_SIZE
; j
++)
1483 INIT_LIST_HEAD(base
->tv1
.vec
+ j
);
1485 base
->timer_jiffies
= jiffies
;
1489 #ifdef CONFIG_HOTPLUG_CPU
1490 static void migrate_timer_list(struct tvec_base
*new_base
, struct list_head
*head
)
1492 struct timer_list
*timer
;
1494 while (!list_empty(head
)) {
1495 timer
= list_first_entry(head
, struct timer_list
, entry
);
1496 detach_timer(timer
, 0);
1497 timer_set_base(timer
, new_base
);
1498 internal_add_timer(new_base
, timer
);
1502 static void __cpuinit
migrate_timers(int cpu
)
1504 struct tvec_base
*old_base
;
1505 struct tvec_base
*new_base
;
1508 BUG_ON(cpu_online(cpu
));
1509 old_base
= per_cpu(tvec_bases
, cpu
);
1510 new_base
= get_cpu_var(tvec_bases
);
1512 * The caller is globally serialized and nobody else
1513 * takes two locks at once, deadlock is not possible.
1515 spin_lock_irq(&new_base
->lock
);
1516 spin_lock_nested(&old_base
->lock
, SINGLE_DEPTH_NESTING
);
1518 BUG_ON(old_base
->running_timer
);
1520 for (i
= 0; i
< TVR_SIZE
; i
++)
1521 migrate_timer_list(new_base
, old_base
->tv1
.vec
+ i
);
1522 for (i
= 0; i
< TVN_SIZE
; i
++) {
1523 migrate_timer_list(new_base
, old_base
->tv2
.vec
+ i
);
1524 migrate_timer_list(new_base
, old_base
->tv3
.vec
+ i
);
1525 migrate_timer_list(new_base
, old_base
->tv4
.vec
+ i
);
1526 migrate_timer_list(new_base
, old_base
->tv5
.vec
+ i
);
1529 spin_unlock(&old_base
->lock
);
1530 spin_unlock_irq(&new_base
->lock
);
1531 put_cpu_var(tvec_bases
);
1533 #endif /* CONFIG_HOTPLUG_CPU */
1535 static int __cpuinit
timer_cpu_notify(struct notifier_block
*self
,
1536 unsigned long action
, void *hcpu
)
1538 long cpu
= (long)hcpu
;
1540 case CPU_UP_PREPARE
:
1541 case CPU_UP_PREPARE_FROZEN
:
1542 if (init_timers_cpu(cpu
) < 0)
1545 #ifdef CONFIG_HOTPLUG_CPU
1547 case CPU_DEAD_FROZEN
:
1548 migrate_timers(cpu
);
1557 static struct notifier_block __cpuinitdata timers_nb
= {
1558 .notifier_call
= timer_cpu_notify
,
1562 void __init
init_timers(void)
1564 int err
= timer_cpu_notify(&timers_nb
, (unsigned long)CPU_UP_PREPARE
,
1565 (void *)(long)smp_processor_id());
1569 BUG_ON(err
== NOTIFY_BAD
);
1570 register_cpu_notifier(&timers_nb
);
1571 open_softirq(TIMER_SOFTIRQ
, run_timer_softirq
);
1575 * msleep - sleep safely even with waitqueue interruptions
1576 * @msecs: Time in milliseconds to sleep for
1578 void msleep(unsigned int msecs
)
1580 unsigned long timeout
= msecs_to_jiffies(msecs
) + 1;
1583 timeout
= schedule_timeout_uninterruptible(timeout
);
1586 EXPORT_SYMBOL(msleep
);
1589 * msleep_interruptible - sleep waiting for signals
1590 * @msecs: Time in milliseconds to sleep for
1592 unsigned long msleep_interruptible(unsigned int msecs
)
1594 unsigned long timeout
= msecs_to_jiffies(msecs
) + 1;
1596 while (timeout
&& !signal_pending(current
))
1597 timeout
= schedule_timeout_interruptible(timeout
);
1598 return jiffies_to_msecs(timeout
);
1601 EXPORT_SYMBOL(msleep_interruptible
);