SLUB: Optimize slab_free() debug check
[linux-2.6/libata-dev.git] / mm / percpu.c
blob9734b184aaac2fa470ec9cdc592a61b078caa561
1 /*
2 * mm/percpu.c - percpu memory allocator
4 * Copyright (C) 2009 SUSE Linux Products GmbH
5 * Copyright (C) 2009 Tejun Heo <tj@kernel.org>
7 * This file is released under the GPLv2.
9 * This is percpu allocator which can handle both static and dynamic
10 * areas. Percpu areas are allocated in chunks. Each chunk is
11 * consisted of boot-time determined number of units and the first
12 * chunk is used for static percpu variables in the kernel image
13 * (special boot time alloc/init handling necessary as these areas
14 * need to be brought up before allocation services are running).
15 * Unit grows as necessary and all units grow or shrink in unison.
16 * When a chunk is filled up, another chunk is allocated.
18 * c0 c1 c2
19 * ------------------- ------------------- ------------
20 * | u0 | u1 | u2 | u3 | | u0 | u1 | u2 | u3 | | u0 | u1 | u
21 * ------------------- ...... ------------------- .... ------------
23 * Allocation is done in offset-size areas of single unit space. Ie,
24 * an area of 512 bytes at 6k in c1 occupies 512 bytes at 6k of c1:u0,
25 * c1:u1, c1:u2 and c1:u3. On UMA, units corresponds directly to
26 * cpus. On NUMA, the mapping can be non-linear and even sparse.
27 * Percpu access can be done by configuring percpu base registers
28 * according to cpu to unit mapping and pcpu_unit_size.
30 * There are usually many small percpu allocations many of them being
31 * as small as 4 bytes. The allocator organizes chunks into lists
32 * according to free size and tries to allocate from the fullest one.
33 * Each chunk keeps the maximum contiguous area size hint which is
34 * guaranteed to be eqaul to or larger than the maximum contiguous
35 * area in the chunk. This helps the allocator not to iterate the
36 * chunk maps unnecessarily.
38 * Allocation state in each chunk is kept using an array of integers
39 * on chunk->map. A positive value in the map represents a free
40 * region and negative allocated. Allocation inside a chunk is done
41 * by scanning this map sequentially and serving the first matching
42 * entry. This is mostly copied from the percpu_modalloc() allocator.
43 * Chunks can be determined from the address using the index field
44 * in the page struct. The index field contains a pointer to the chunk.
46 * To use this allocator, arch code should do the followings.
48 * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate
49 * regular address to percpu pointer and back if they need to be
50 * different from the default
52 * - use pcpu_setup_first_chunk() during percpu area initialization to
53 * setup the first chunk containing the kernel static percpu area
56 #include <linux/bitmap.h>
57 #include <linux/bootmem.h>
58 #include <linux/err.h>
59 #include <linux/list.h>
60 #include <linux/log2.h>
61 #include <linux/mm.h>
62 #include <linux/module.h>
63 #include <linux/mutex.h>
64 #include <linux/percpu.h>
65 #include <linux/pfn.h>
66 #include <linux/slab.h>
67 #include <linux/spinlock.h>
68 #include <linux/vmalloc.h>
69 #include <linux/workqueue.h>
71 #include <asm/cacheflush.h>
72 #include <asm/sections.h>
73 #include <asm/tlbflush.h>
74 #include <asm/io.h>
76 #define PCPU_SLOT_BASE_SHIFT 5 /* 1-31 shares the same slot */
77 #define PCPU_DFL_MAP_ALLOC 16 /* start a map with 16 ents */
79 #ifdef CONFIG_SMP
80 /* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */
81 #ifndef __addr_to_pcpu_ptr
82 #define __addr_to_pcpu_ptr(addr) \
83 (void __percpu *)((unsigned long)(addr) - \
84 (unsigned long)pcpu_base_addr + \
85 (unsigned long)__per_cpu_start)
86 #endif
87 #ifndef __pcpu_ptr_to_addr
88 #define __pcpu_ptr_to_addr(ptr) \
89 (void __force *)((unsigned long)(ptr) + \
90 (unsigned long)pcpu_base_addr - \
91 (unsigned long)__per_cpu_start)
92 #endif
93 #else /* CONFIG_SMP */
94 /* on UP, it's always identity mapped */
95 #define __addr_to_pcpu_ptr(addr) (void __percpu *)(addr)
96 #define __pcpu_ptr_to_addr(ptr) (void __force *)(ptr)
97 #endif /* CONFIG_SMP */
99 struct pcpu_chunk {
100 struct list_head list; /* linked to pcpu_slot lists */
101 int free_size; /* free bytes in the chunk */
102 int contig_hint; /* max contiguous size hint */
103 void *base_addr; /* base address of this chunk */
104 int map_used; /* # of map entries used */
105 int map_alloc; /* # of map entries allocated */
106 int *map; /* allocation map */
107 void *data; /* chunk data */
108 bool immutable; /* no [de]population allowed */
109 unsigned long populated[]; /* populated bitmap */
112 static int pcpu_unit_pages __read_mostly;
113 static int pcpu_unit_size __read_mostly;
114 static int pcpu_nr_units __read_mostly;
115 static int pcpu_atom_size __read_mostly;
116 static int pcpu_nr_slots __read_mostly;
117 static size_t pcpu_chunk_struct_size __read_mostly;
119 /* cpus with the lowest and highest unit numbers */
120 static unsigned int pcpu_first_unit_cpu __read_mostly;
121 static unsigned int pcpu_last_unit_cpu __read_mostly;
123 /* the address of the first chunk which starts with the kernel static area */
124 void *pcpu_base_addr __read_mostly;
125 EXPORT_SYMBOL_GPL(pcpu_base_addr);
127 static const int *pcpu_unit_map __read_mostly; /* cpu -> unit */
128 const unsigned long *pcpu_unit_offsets __read_mostly; /* cpu -> unit offset */
130 /* group information, used for vm allocation */
131 static int pcpu_nr_groups __read_mostly;
132 static const unsigned long *pcpu_group_offsets __read_mostly;
133 static const size_t *pcpu_group_sizes __read_mostly;
136 * The first chunk which always exists. Note that unlike other
137 * chunks, this one can be allocated and mapped in several different
138 * ways and thus often doesn't live in the vmalloc area.
140 static struct pcpu_chunk *pcpu_first_chunk;
143 * Optional reserved chunk. This chunk reserves part of the first
144 * chunk and serves it for reserved allocations. The amount of
145 * reserved offset is in pcpu_reserved_chunk_limit. When reserved
146 * area doesn't exist, the following variables contain NULL and 0
147 * respectively.
149 static struct pcpu_chunk *pcpu_reserved_chunk;
150 static int pcpu_reserved_chunk_limit;
153 * Synchronization rules.
155 * There are two locks - pcpu_alloc_mutex and pcpu_lock. The former
156 * protects allocation/reclaim paths, chunks, populated bitmap and
157 * vmalloc mapping. The latter is a spinlock and protects the index
158 * data structures - chunk slots, chunks and area maps in chunks.
160 * During allocation, pcpu_alloc_mutex is kept locked all the time and
161 * pcpu_lock is grabbed and released as necessary. All actual memory
162 * allocations are done using GFP_KERNEL with pcpu_lock released. In
163 * general, percpu memory can't be allocated with irq off but
164 * irqsave/restore are still used in alloc path so that it can be used
165 * from early init path - sched_init() specifically.
167 * Free path accesses and alters only the index data structures, so it
168 * can be safely called from atomic context. When memory needs to be
169 * returned to the system, free path schedules reclaim_work which
170 * grabs both pcpu_alloc_mutex and pcpu_lock, unlinks chunks to be
171 * reclaimed, release both locks and frees the chunks. Note that it's
172 * necessary to grab both locks to remove a chunk from circulation as
173 * allocation path might be referencing the chunk with only
174 * pcpu_alloc_mutex locked.
176 static DEFINE_MUTEX(pcpu_alloc_mutex); /* protects whole alloc and reclaim */
177 static DEFINE_SPINLOCK(pcpu_lock); /* protects index data structures */
179 static struct list_head *pcpu_slot __read_mostly; /* chunk list slots */
181 /* reclaim work to release fully free chunks, scheduled from free path */
182 static void pcpu_reclaim(struct work_struct *work);
183 static DECLARE_WORK(pcpu_reclaim_work, pcpu_reclaim);
185 static bool pcpu_addr_in_first_chunk(void *addr)
187 void *first_start = pcpu_first_chunk->base_addr;
189 return addr >= first_start && addr < first_start + pcpu_unit_size;
192 static bool pcpu_addr_in_reserved_chunk(void *addr)
194 void *first_start = pcpu_first_chunk->base_addr;
196 return addr >= first_start &&
197 addr < first_start + pcpu_reserved_chunk_limit;
200 static int __pcpu_size_to_slot(int size)
202 int highbit = fls(size); /* size is in bytes */
203 return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1);
206 static int pcpu_size_to_slot(int size)
208 if (size == pcpu_unit_size)
209 return pcpu_nr_slots - 1;
210 return __pcpu_size_to_slot(size);
213 static int pcpu_chunk_slot(const struct pcpu_chunk *chunk)
215 if (chunk->free_size < sizeof(int) || chunk->contig_hint < sizeof(int))
216 return 0;
218 return pcpu_size_to_slot(chunk->free_size);
221 /* set the pointer to a chunk in a page struct */
222 static void pcpu_set_page_chunk(struct page *page, struct pcpu_chunk *pcpu)
224 page->index = (unsigned long)pcpu;
227 /* obtain pointer to a chunk from a page struct */
228 static struct pcpu_chunk *pcpu_get_page_chunk(struct page *page)
230 return (struct pcpu_chunk *)page->index;
233 static int __maybe_unused pcpu_page_idx(unsigned int cpu, int page_idx)
235 return pcpu_unit_map[cpu] * pcpu_unit_pages + page_idx;
238 static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk,
239 unsigned int cpu, int page_idx)
241 return (unsigned long)chunk->base_addr + pcpu_unit_offsets[cpu] +
242 (page_idx << PAGE_SHIFT);
245 static void __maybe_unused pcpu_next_unpop(struct pcpu_chunk *chunk,
246 int *rs, int *re, int end)
248 *rs = find_next_zero_bit(chunk->populated, end, *rs);
249 *re = find_next_bit(chunk->populated, end, *rs + 1);
252 static void __maybe_unused pcpu_next_pop(struct pcpu_chunk *chunk,
253 int *rs, int *re, int end)
255 *rs = find_next_bit(chunk->populated, end, *rs);
256 *re = find_next_zero_bit(chunk->populated, end, *rs + 1);
260 * (Un)populated page region iterators. Iterate over (un)populated
261 * page regions betwen @start and @end in @chunk. @rs and @re should
262 * be integer variables and will be set to start and end page index of
263 * the current region.
265 #define pcpu_for_each_unpop_region(chunk, rs, re, start, end) \
266 for ((rs) = (start), pcpu_next_unpop((chunk), &(rs), &(re), (end)); \
267 (rs) < (re); \
268 (rs) = (re) + 1, pcpu_next_unpop((chunk), &(rs), &(re), (end)))
270 #define pcpu_for_each_pop_region(chunk, rs, re, start, end) \
271 for ((rs) = (start), pcpu_next_pop((chunk), &(rs), &(re), (end)); \
272 (rs) < (re); \
273 (rs) = (re) + 1, pcpu_next_pop((chunk), &(rs), &(re), (end)))
276 * pcpu_mem_alloc - allocate memory
277 * @size: bytes to allocate
279 * Allocate @size bytes. If @size is smaller than PAGE_SIZE,
280 * kzalloc() is used; otherwise, vmalloc() is used. The returned
281 * memory is always zeroed.
283 * CONTEXT:
284 * Does GFP_KERNEL allocation.
286 * RETURNS:
287 * Pointer to the allocated area on success, NULL on failure.
289 static void *pcpu_mem_alloc(size_t size)
291 if (WARN_ON_ONCE(!slab_is_available()))
292 return NULL;
294 if (size <= PAGE_SIZE)
295 return kzalloc(size, GFP_KERNEL);
296 else {
297 void *ptr = vmalloc(size);
298 if (ptr)
299 memset(ptr, 0, size);
300 return ptr;
305 * pcpu_mem_free - free memory
306 * @ptr: memory to free
307 * @size: size of the area
309 * Free @ptr. @ptr should have been allocated using pcpu_mem_alloc().
311 static void pcpu_mem_free(void *ptr, size_t size)
313 if (size <= PAGE_SIZE)
314 kfree(ptr);
315 else
316 vfree(ptr);
320 * pcpu_chunk_relocate - put chunk in the appropriate chunk slot
321 * @chunk: chunk of interest
322 * @oslot: the previous slot it was on
324 * This function is called after an allocation or free changed @chunk.
325 * New slot according to the changed state is determined and @chunk is
326 * moved to the slot. Note that the reserved chunk is never put on
327 * chunk slots.
329 * CONTEXT:
330 * pcpu_lock.
332 static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot)
334 int nslot = pcpu_chunk_slot(chunk);
336 if (chunk != pcpu_reserved_chunk && oslot != nslot) {
337 if (oslot < nslot)
338 list_move(&chunk->list, &pcpu_slot[nslot]);
339 else
340 list_move_tail(&chunk->list, &pcpu_slot[nslot]);
345 * pcpu_need_to_extend - determine whether chunk area map needs to be extended
346 * @chunk: chunk of interest
348 * Determine whether area map of @chunk needs to be extended to
349 * accomodate a new allocation.
351 * CONTEXT:
352 * pcpu_lock.
354 * RETURNS:
355 * New target map allocation length if extension is necessary, 0
356 * otherwise.
358 static int pcpu_need_to_extend(struct pcpu_chunk *chunk)
360 int new_alloc;
362 if (chunk->map_alloc >= chunk->map_used + 2)
363 return 0;
365 new_alloc = PCPU_DFL_MAP_ALLOC;
366 while (new_alloc < chunk->map_used + 2)
367 new_alloc *= 2;
369 return new_alloc;
373 * pcpu_extend_area_map - extend area map of a chunk
374 * @chunk: chunk of interest
375 * @new_alloc: new target allocation length of the area map
377 * Extend area map of @chunk to have @new_alloc entries.
379 * CONTEXT:
380 * Does GFP_KERNEL allocation. Grabs and releases pcpu_lock.
382 * RETURNS:
383 * 0 on success, -errno on failure.
385 static int pcpu_extend_area_map(struct pcpu_chunk *chunk, int new_alloc)
387 int *old = NULL, *new = NULL;
388 size_t old_size = 0, new_size = new_alloc * sizeof(new[0]);
389 unsigned long flags;
391 new = pcpu_mem_alloc(new_size);
392 if (!new)
393 return -ENOMEM;
395 /* acquire pcpu_lock and switch to new area map */
396 spin_lock_irqsave(&pcpu_lock, flags);
398 if (new_alloc <= chunk->map_alloc)
399 goto out_unlock;
401 old_size = chunk->map_alloc * sizeof(chunk->map[0]);
402 old = chunk->map;
404 memcpy(new, old, old_size);
406 chunk->map_alloc = new_alloc;
407 chunk->map = new;
408 new = NULL;
410 out_unlock:
411 spin_unlock_irqrestore(&pcpu_lock, flags);
414 * pcpu_mem_free() might end up calling vfree() which uses
415 * IRQ-unsafe lock and thus can't be called under pcpu_lock.
417 pcpu_mem_free(old, old_size);
418 pcpu_mem_free(new, new_size);
420 return 0;
424 * pcpu_split_block - split a map block
425 * @chunk: chunk of interest
426 * @i: index of map block to split
427 * @head: head size in bytes (can be 0)
428 * @tail: tail size in bytes (can be 0)
430 * Split the @i'th map block into two or three blocks. If @head is
431 * non-zero, @head bytes block is inserted before block @i moving it
432 * to @i+1 and reducing its size by @head bytes.
434 * If @tail is non-zero, the target block, which can be @i or @i+1
435 * depending on @head, is reduced by @tail bytes and @tail byte block
436 * is inserted after the target block.
438 * @chunk->map must have enough free slots to accomodate the split.
440 * CONTEXT:
441 * pcpu_lock.
443 static void pcpu_split_block(struct pcpu_chunk *chunk, int i,
444 int head, int tail)
446 int nr_extra = !!head + !!tail;
448 BUG_ON(chunk->map_alloc < chunk->map_used + nr_extra);
450 /* insert new subblocks */
451 memmove(&chunk->map[i + nr_extra], &chunk->map[i],
452 sizeof(chunk->map[0]) * (chunk->map_used - i));
453 chunk->map_used += nr_extra;
455 if (head) {
456 chunk->map[i + 1] = chunk->map[i] - head;
457 chunk->map[i++] = head;
459 if (tail) {
460 chunk->map[i++] -= tail;
461 chunk->map[i] = tail;
466 * pcpu_alloc_area - allocate area from a pcpu_chunk
467 * @chunk: chunk of interest
468 * @size: wanted size in bytes
469 * @align: wanted align
471 * Try to allocate @size bytes area aligned at @align from @chunk.
472 * Note that this function only allocates the offset. It doesn't
473 * populate or map the area.
475 * @chunk->map must have at least two free slots.
477 * CONTEXT:
478 * pcpu_lock.
480 * RETURNS:
481 * Allocated offset in @chunk on success, -1 if no matching area is
482 * found.
484 static int pcpu_alloc_area(struct pcpu_chunk *chunk, int size, int align)
486 int oslot = pcpu_chunk_slot(chunk);
487 int max_contig = 0;
488 int i, off;
490 for (i = 0, off = 0; i < chunk->map_used; off += abs(chunk->map[i++])) {
491 bool is_last = i + 1 == chunk->map_used;
492 int head, tail;
494 /* extra for alignment requirement */
495 head = ALIGN(off, align) - off;
496 BUG_ON(i == 0 && head != 0);
498 if (chunk->map[i] < 0)
499 continue;
500 if (chunk->map[i] < head + size) {
501 max_contig = max(chunk->map[i], max_contig);
502 continue;
506 * If head is small or the previous block is free,
507 * merge'em. Note that 'small' is defined as smaller
508 * than sizeof(int), which is very small but isn't too
509 * uncommon for percpu allocations.
511 if (head && (head < sizeof(int) || chunk->map[i - 1] > 0)) {
512 if (chunk->map[i - 1] > 0)
513 chunk->map[i - 1] += head;
514 else {
515 chunk->map[i - 1] -= head;
516 chunk->free_size -= head;
518 chunk->map[i] -= head;
519 off += head;
520 head = 0;
523 /* if tail is small, just keep it around */
524 tail = chunk->map[i] - head - size;
525 if (tail < sizeof(int))
526 tail = 0;
528 /* split if warranted */
529 if (head || tail) {
530 pcpu_split_block(chunk, i, head, tail);
531 if (head) {
532 i++;
533 off += head;
534 max_contig = max(chunk->map[i - 1], max_contig);
536 if (tail)
537 max_contig = max(chunk->map[i + 1], max_contig);
540 /* update hint and mark allocated */
541 if (is_last)
542 chunk->contig_hint = max_contig; /* fully scanned */
543 else
544 chunk->contig_hint = max(chunk->contig_hint,
545 max_contig);
547 chunk->free_size -= chunk->map[i];
548 chunk->map[i] = -chunk->map[i];
550 pcpu_chunk_relocate(chunk, oslot);
551 return off;
554 chunk->contig_hint = max_contig; /* fully scanned */
555 pcpu_chunk_relocate(chunk, oslot);
557 /* tell the upper layer that this chunk has no matching area */
558 return -1;
562 * pcpu_free_area - free area to a pcpu_chunk
563 * @chunk: chunk of interest
564 * @freeme: offset of area to free
566 * Free area starting from @freeme to @chunk. Note that this function
567 * only modifies the allocation map. It doesn't depopulate or unmap
568 * the area.
570 * CONTEXT:
571 * pcpu_lock.
573 static void pcpu_free_area(struct pcpu_chunk *chunk, int freeme)
575 int oslot = pcpu_chunk_slot(chunk);
576 int i, off;
578 for (i = 0, off = 0; i < chunk->map_used; off += abs(chunk->map[i++]))
579 if (off == freeme)
580 break;
581 BUG_ON(off != freeme);
582 BUG_ON(chunk->map[i] > 0);
584 chunk->map[i] = -chunk->map[i];
585 chunk->free_size += chunk->map[i];
587 /* merge with previous? */
588 if (i > 0 && chunk->map[i - 1] >= 0) {
589 chunk->map[i - 1] += chunk->map[i];
590 chunk->map_used--;
591 memmove(&chunk->map[i], &chunk->map[i + 1],
592 (chunk->map_used - i) * sizeof(chunk->map[0]));
593 i--;
595 /* merge with next? */
596 if (i + 1 < chunk->map_used && chunk->map[i + 1] >= 0) {
597 chunk->map[i] += chunk->map[i + 1];
598 chunk->map_used--;
599 memmove(&chunk->map[i + 1], &chunk->map[i + 2],
600 (chunk->map_used - (i + 1)) * sizeof(chunk->map[0]));
603 chunk->contig_hint = max(chunk->map[i], chunk->contig_hint);
604 pcpu_chunk_relocate(chunk, oslot);
607 static struct pcpu_chunk *pcpu_alloc_chunk(void)
609 struct pcpu_chunk *chunk;
611 chunk = pcpu_mem_alloc(pcpu_chunk_struct_size);
612 if (!chunk)
613 return NULL;
615 chunk->map = pcpu_mem_alloc(PCPU_DFL_MAP_ALLOC * sizeof(chunk->map[0]));
616 if (!chunk->map) {
617 kfree(chunk);
618 return NULL;
621 chunk->map_alloc = PCPU_DFL_MAP_ALLOC;
622 chunk->map[chunk->map_used++] = pcpu_unit_size;
624 INIT_LIST_HEAD(&chunk->list);
625 chunk->free_size = pcpu_unit_size;
626 chunk->contig_hint = pcpu_unit_size;
628 return chunk;
631 static void pcpu_free_chunk(struct pcpu_chunk *chunk)
633 if (!chunk)
634 return;
635 pcpu_mem_free(chunk->map, chunk->map_alloc * sizeof(chunk->map[0]));
636 kfree(chunk);
640 * Chunk management implementation.
642 * To allow different implementations, chunk alloc/free and
643 * [de]population are implemented in a separate file which is pulled
644 * into this file and compiled together. The following functions
645 * should be implemented.
647 * pcpu_populate_chunk - populate the specified range of a chunk
648 * pcpu_depopulate_chunk - depopulate the specified range of a chunk
649 * pcpu_create_chunk - create a new chunk
650 * pcpu_destroy_chunk - destroy a chunk, always preceded by full depop
651 * pcpu_addr_to_page - translate address to physical address
652 * pcpu_verify_alloc_info - check alloc_info is acceptable during init
654 static int pcpu_populate_chunk(struct pcpu_chunk *chunk, int off, int size);
655 static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, int off, int size);
656 static struct pcpu_chunk *pcpu_create_chunk(void);
657 static void pcpu_destroy_chunk(struct pcpu_chunk *chunk);
658 static struct page *pcpu_addr_to_page(void *addr);
659 static int __init pcpu_verify_alloc_info(const struct pcpu_alloc_info *ai);
661 #ifdef CONFIG_NEED_PER_CPU_KM
662 #include "percpu-km.c"
663 #else
664 #include "percpu-vm.c"
665 #endif
668 * pcpu_chunk_addr_search - determine chunk containing specified address
669 * @addr: address for which the chunk needs to be determined.
671 * RETURNS:
672 * The address of the found chunk.
674 static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr)
676 /* is it in the first chunk? */
677 if (pcpu_addr_in_first_chunk(addr)) {
678 /* is it in the reserved area? */
679 if (pcpu_addr_in_reserved_chunk(addr))
680 return pcpu_reserved_chunk;
681 return pcpu_first_chunk;
685 * The address is relative to unit0 which might be unused and
686 * thus unmapped. Offset the address to the unit space of the
687 * current processor before looking it up in the vmalloc
688 * space. Note that any possible cpu id can be used here, so
689 * there's no need to worry about preemption or cpu hotplug.
691 addr += pcpu_unit_offsets[raw_smp_processor_id()];
692 return pcpu_get_page_chunk(pcpu_addr_to_page(addr));
696 * pcpu_alloc - the percpu allocator
697 * @size: size of area to allocate in bytes
698 * @align: alignment of area (max PAGE_SIZE)
699 * @reserved: allocate from the reserved chunk if available
701 * Allocate percpu area of @size bytes aligned at @align.
703 * CONTEXT:
704 * Does GFP_KERNEL allocation.
706 * RETURNS:
707 * Percpu pointer to the allocated area on success, NULL on failure.
709 static void __percpu *pcpu_alloc(size_t size, size_t align, bool reserved)
711 static int warn_limit = 10;
712 struct pcpu_chunk *chunk;
713 const char *err;
714 int slot, off, new_alloc;
715 unsigned long flags;
717 if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE)) {
718 WARN(true, "illegal size (%zu) or align (%zu) for "
719 "percpu allocation\n", size, align);
720 return NULL;
723 mutex_lock(&pcpu_alloc_mutex);
724 spin_lock_irqsave(&pcpu_lock, flags);
726 /* serve reserved allocations from the reserved chunk if available */
727 if (reserved && pcpu_reserved_chunk) {
728 chunk = pcpu_reserved_chunk;
730 if (size > chunk->contig_hint) {
731 err = "alloc from reserved chunk failed";
732 goto fail_unlock;
735 while ((new_alloc = pcpu_need_to_extend(chunk))) {
736 spin_unlock_irqrestore(&pcpu_lock, flags);
737 if (pcpu_extend_area_map(chunk, new_alloc) < 0) {
738 err = "failed to extend area map of reserved chunk";
739 goto fail_unlock_mutex;
741 spin_lock_irqsave(&pcpu_lock, flags);
744 off = pcpu_alloc_area(chunk, size, align);
745 if (off >= 0)
746 goto area_found;
748 err = "alloc from reserved chunk failed";
749 goto fail_unlock;
752 restart:
753 /* search through normal chunks */
754 for (slot = pcpu_size_to_slot(size); slot < pcpu_nr_slots; slot++) {
755 list_for_each_entry(chunk, &pcpu_slot[slot], list) {
756 if (size > chunk->contig_hint)
757 continue;
759 new_alloc = pcpu_need_to_extend(chunk);
760 if (new_alloc) {
761 spin_unlock_irqrestore(&pcpu_lock, flags);
762 if (pcpu_extend_area_map(chunk,
763 new_alloc) < 0) {
764 err = "failed to extend area map";
765 goto fail_unlock_mutex;
767 spin_lock_irqsave(&pcpu_lock, flags);
769 * pcpu_lock has been dropped, need to
770 * restart cpu_slot list walking.
772 goto restart;
775 off = pcpu_alloc_area(chunk, size, align);
776 if (off >= 0)
777 goto area_found;
781 /* hmmm... no space left, create a new chunk */
782 spin_unlock_irqrestore(&pcpu_lock, flags);
784 chunk = pcpu_create_chunk();
785 if (!chunk) {
786 err = "failed to allocate new chunk";
787 goto fail_unlock_mutex;
790 spin_lock_irqsave(&pcpu_lock, flags);
791 pcpu_chunk_relocate(chunk, -1);
792 goto restart;
794 area_found:
795 spin_unlock_irqrestore(&pcpu_lock, flags);
797 /* populate, map and clear the area */
798 if (pcpu_populate_chunk(chunk, off, size)) {
799 spin_lock_irqsave(&pcpu_lock, flags);
800 pcpu_free_area(chunk, off);
801 err = "failed to populate";
802 goto fail_unlock;
805 mutex_unlock(&pcpu_alloc_mutex);
807 /* return address relative to base address */
808 return __addr_to_pcpu_ptr(chunk->base_addr + off);
810 fail_unlock:
811 spin_unlock_irqrestore(&pcpu_lock, flags);
812 fail_unlock_mutex:
813 mutex_unlock(&pcpu_alloc_mutex);
814 if (warn_limit) {
815 pr_warning("PERCPU: allocation failed, size=%zu align=%zu, "
816 "%s\n", size, align, err);
817 dump_stack();
818 if (!--warn_limit)
819 pr_info("PERCPU: limit reached, disable warning\n");
821 return NULL;
825 * __alloc_percpu - allocate dynamic percpu area
826 * @size: size of area to allocate in bytes
827 * @align: alignment of area (max PAGE_SIZE)
829 * Allocate percpu area of @size bytes aligned at @align. Might
830 * sleep. Might trigger writeouts.
832 * CONTEXT:
833 * Does GFP_KERNEL allocation.
835 * RETURNS:
836 * Percpu pointer to the allocated area on success, NULL on failure.
838 void __percpu *__alloc_percpu(size_t size, size_t align)
840 return pcpu_alloc(size, align, false);
842 EXPORT_SYMBOL_GPL(__alloc_percpu);
845 * __alloc_reserved_percpu - allocate reserved percpu area
846 * @size: size of area to allocate in bytes
847 * @align: alignment of area (max PAGE_SIZE)
849 * Allocate percpu area of @size bytes aligned at @align from reserved
850 * percpu area if arch has set it up; otherwise, allocation is served
851 * from the same dynamic area. Might sleep. Might trigger writeouts.
853 * CONTEXT:
854 * Does GFP_KERNEL allocation.
856 * RETURNS:
857 * Percpu pointer to the allocated area on success, NULL on failure.
859 void __percpu *__alloc_reserved_percpu(size_t size, size_t align)
861 return pcpu_alloc(size, align, true);
865 * pcpu_reclaim - reclaim fully free chunks, workqueue function
866 * @work: unused
868 * Reclaim all fully free chunks except for the first one.
870 * CONTEXT:
871 * workqueue context.
873 static void pcpu_reclaim(struct work_struct *work)
875 LIST_HEAD(todo);
876 struct list_head *head = &pcpu_slot[pcpu_nr_slots - 1];
877 struct pcpu_chunk *chunk, *next;
879 mutex_lock(&pcpu_alloc_mutex);
880 spin_lock_irq(&pcpu_lock);
882 list_for_each_entry_safe(chunk, next, head, list) {
883 WARN_ON(chunk->immutable);
885 /* spare the first one */
886 if (chunk == list_first_entry(head, struct pcpu_chunk, list))
887 continue;
889 list_move(&chunk->list, &todo);
892 spin_unlock_irq(&pcpu_lock);
894 list_for_each_entry_safe(chunk, next, &todo, list) {
895 pcpu_depopulate_chunk(chunk, 0, pcpu_unit_size);
896 pcpu_destroy_chunk(chunk);
899 mutex_unlock(&pcpu_alloc_mutex);
903 * free_percpu - free percpu area
904 * @ptr: pointer to area to free
906 * Free percpu area @ptr.
908 * CONTEXT:
909 * Can be called from atomic context.
911 void free_percpu(void __percpu *ptr)
913 void *addr;
914 struct pcpu_chunk *chunk;
915 unsigned long flags;
916 int off;
918 if (!ptr)
919 return;
921 addr = __pcpu_ptr_to_addr(ptr);
923 spin_lock_irqsave(&pcpu_lock, flags);
925 chunk = pcpu_chunk_addr_search(addr);
926 off = addr - chunk->base_addr;
928 pcpu_free_area(chunk, off);
930 /* if there are more than one fully free chunks, wake up grim reaper */
931 if (chunk->free_size == pcpu_unit_size) {
932 struct pcpu_chunk *pos;
934 list_for_each_entry(pos, &pcpu_slot[pcpu_nr_slots - 1], list)
935 if (pos != chunk) {
936 schedule_work(&pcpu_reclaim_work);
937 break;
941 spin_unlock_irqrestore(&pcpu_lock, flags);
943 EXPORT_SYMBOL_GPL(free_percpu);
946 * is_kernel_percpu_address - test whether address is from static percpu area
947 * @addr: address to test
949 * Test whether @addr belongs to in-kernel static percpu area. Module
950 * static percpu areas are not considered. For those, use
951 * is_module_percpu_address().
953 * RETURNS:
954 * %true if @addr is from in-kernel static percpu area, %false otherwise.
956 bool is_kernel_percpu_address(unsigned long addr)
958 #ifdef CONFIG_SMP
959 const size_t static_size = __per_cpu_end - __per_cpu_start;
960 void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
961 unsigned int cpu;
963 for_each_possible_cpu(cpu) {
964 void *start = per_cpu_ptr(base, cpu);
966 if ((void *)addr >= start && (void *)addr < start + static_size)
967 return true;
969 #endif
970 /* on UP, can't distinguish from other static vars, always false */
971 return false;
975 * per_cpu_ptr_to_phys - convert translated percpu address to physical address
976 * @addr: the address to be converted to physical address
978 * Given @addr which is dereferenceable address obtained via one of
979 * percpu access macros, this function translates it into its physical
980 * address. The caller is responsible for ensuring @addr stays valid
981 * until this function finishes.
983 * RETURNS:
984 * The physical address for @addr.
986 phys_addr_t per_cpu_ptr_to_phys(void *addr)
988 void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
989 bool in_first_chunk = false;
990 unsigned long first_start, first_end;
991 unsigned int cpu;
994 * The following test on first_start/end isn't strictly
995 * necessary but will speed up lookups of addresses which
996 * aren't in the first chunk.
998 first_start = pcpu_chunk_addr(pcpu_first_chunk, pcpu_first_unit_cpu, 0);
999 first_end = pcpu_chunk_addr(pcpu_first_chunk, pcpu_last_unit_cpu,
1000 pcpu_unit_pages);
1001 if ((unsigned long)addr >= first_start &&
1002 (unsigned long)addr < first_end) {
1003 for_each_possible_cpu(cpu) {
1004 void *start = per_cpu_ptr(base, cpu);
1006 if (addr >= start && addr < start + pcpu_unit_size) {
1007 in_first_chunk = true;
1008 break;
1013 if (in_first_chunk) {
1014 if ((unsigned long)addr < VMALLOC_START ||
1015 (unsigned long)addr >= VMALLOC_END)
1016 return __pa(addr);
1017 else
1018 return page_to_phys(vmalloc_to_page(addr));
1019 } else
1020 return page_to_phys(pcpu_addr_to_page(addr));
1024 * pcpu_alloc_alloc_info - allocate percpu allocation info
1025 * @nr_groups: the number of groups
1026 * @nr_units: the number of units
1028 * Allocate ai which is large enough for @nr_groups groups containing
1029 * @nr_units units. The returned ai's groups[0].cpu_map points to the
1030 * cpu_map array which is long enough for @nr_units and filled with
1031 * NR_CPUS. It's the caller's responsibility to initialize cpu_map
1032 * pointer of other groups.
1034 * RETURNS:
1035 * Pointer to the allocated pcpu_alloc_info on success, NULL on
1036 * failure.
1038 struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups,
1039 int nr_units)
1041 struct pcpu_alloc_info *ai;
1042 size_t base_size, ai_size;
1043 void *ptr;
1044 int unit;
1046 base_size = ALIGN(sizeof(*ai) + nr_groups * sizeof(ai->groups[0]),
1047 __alignof__(ai->groups[0].cpu_map[0]));
1048 ai_size = base_size + nr_units * sizeof(ai->groups[0].cpu_map[0]);
1050 ptr = alloc_bootmem_nopanic(PFN_ALIGN(ai_size));
1051 if (!ptr)
1052 return NULL;
1053 ai = ptr;
1054 ptr += base_size;
1056 ai->groups[0].cpu_map = ptr;
1058 for (unit = 0; unit < nr_units; unit++)
1059 ai->groups[0].cpu_map[unit] = NR_CPUS;
1061 ai->nr_groups = nr_groups;
1062 ai->__ai_size = PFN_ALIGN(ai_size);
1064 return ai;
1068 * pcpu_free_alloc_info - free percpu allocation info
1069 * @ai: pcpu_alloc_info to free
1071 * Free @ai which was allocated by pcpu_alloc_alloc_info().
1073 void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai)
1075 free_bootmem(__pa(ai), ai->__ai_size);
1078 #if defined(CONFIG_SMP) && (defined(CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK) || \
1079 defined(CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK))
1081 * pcpu_build_alloc_info - build alloc_info considering distances between CPUs
1082 * @reserved_size: the size of reserved percpu area in bytes
1083 * @dyn_size: minimum free size for dynamic allocation in bytes
1084 * @atom_size: allocation atom size
1085 * @cpu_distance_fn: callback to determine distance between cpus, optional
1087 * This function determines grouping of units, their mappings to cpus
1088 * and other parameters considering needed percpu size, allocation
1089 * atom size and distances between CPUs.
1091 * Groups are always mutliples of atom size and CPUs which are of
1092 * LOCAL_DISTANCE both ways are grouped together and share space for
1093 * units in the same group. The returned configuration is guaranteed
1094 * to have CPUs on different nodes on different groups and >=75% usage
1095 * of allocated virtual address space.
1097 * RETURNS:
1098 * On success, pointer to the new allocation_info is returned. On
1099 * failure, ERR_PTR value is returned.
1101 static struct pcpu_alloc_info * __init pcpu_build_alloc_info(
1102 size_t reserved_size, size_t dyn_size,
1103 size_t atom_size,
1104 pcpu_fc_cpu_distance_fn_t cpu_distance_fn)
1106 static int group_map[NR_CPUS] __initdata;
1107 static int group_cnt[NR_CPUS] __initdata;
1108 const size_t static_size = __per_cpu_end - __per_cpu_start;
1109 int nr_groups = 1, nr_units = 0;
1110 size_t size_sum, min_unit_size, alloc_size;
1111 int upa, max_upa, uninitialized_var(best_upa); /* units_per_alloc */
1112 int last_allocs, group, unit;
1113 unsigned int cpu, tcpu;
1114 struct pcpu_alloc_info *ai;
1115 unsigned int *cpu_map;
1117 /* this function may be called multiple times */
1118 memset(group_map, 0, sizeof(group_map));
1119 memset(group_cnt, 0, sizeof(group_cnt));
1121 /* calculate size_sum and ensure dyn_size is enough for early alloc */
1122 size_sum = PFN_ALIGN(static_size + reserved_size +
1123 max_t(size_t, dyn_size, PERCPU_DYNAMIC_EARLY_SIZE));
1124 dyn_size = size_sum - static_size - reserved_size;
1127 * Determine min_unit_size, alloc_size and max_upa such that
1128 * alloc_size is multiple of atom_size and is the smallest
1129 * which can accomodate 4k aligned segments which are equal to
1130 * or larger than min_unit_size.
1132 min_unit_size = max_t(size_t, size_sum, PCPU_MIN_UNIT_SIZE);
1134 alloc_size = roundup(min_unit_size, atom_size);
1135 upa = alloc_size / min_unit_size;
1136 while (alloc_size % upa || ((alloc_size / upa) & ~PAGE_MASK))
1137 upa--;
1138 max_upa = upa;
1140 /* group cpus according to their proximity */
1141 for_each_possible_cpu(cpu) {
1142 group = 0;
1143 next_group:
1144 for_each_possible_cpu(tcpu) {
1145 if (cpu == tcpu)
1146 break;
1147 if (group_map[tcpu] == group && cpu_distance_fn &&
1148 (cpu_distance_fn(cpu, tcpu) > LOCAL_DISTANCE ||
1149 cpu_distance_fn(tcpu, cpu) > LOCAL_DISTANCE)) {
1150 group++;
1151 nr_groups = max(nr_groups, group + 1);
1152 goto next_group;
1155 group_map[cpu] = group;
1156 group_cnt[group]++;
1160 * Expand unit size until address space usage goes over 75%
1161 * and then as much as possible without using more address
1162 * space.
1164 last_allocs = INT_MAX;
1165 for (upa = max_upa; upa; upa--) {
1166 int allocs = 0, wasted = 0;
1168 if (alloc_size % upa || ((alloc_size / upa) & ~PAGE_MASK))
1169 continue;
1171 for (group = 0; group < nr_groups; group++) {
1172 int this_allocs = DIV_ROUND_UP(group_cnt[group], upa);
1173 allocs += this_allocs;
1174 wasted += this_allocs * upa - group_cnt[group];
1178 * Don't accept if wastage is over 1/3. The
1179 * greater-than comparison ensures upa==1 always
1180 * passes the following check.
1182 if (wasted > num_possible_cpus() / 3)
1183 continue;
1185 /* and then don't consume more memory */
1186 if (allocs > last_allocs)
1187 break;
1188 last_allocs = allocs;
1189 best_upa = upa;
1191 upa = best_upa;
1193 /* allocate and fill alloc_info */
1194 for (group = 0; group < nr_groups; group++)
1195 nr_units += roundup(group_cnt[group], upa);
1197 ai = pcpu_alloc_alloc_info(nr_groups, nr_units);
1198 if (!ai)
1199 return ERR_PTR(-ENOMEM);
1200 cpu_map = ai->groups[0].cpu_map;
1202 for (group = 0; group < nr_groups; group++) {
1203 ai->groups[group].cpu_map = cpu_map;
1204 cpu_map += roundup(group_cnt[group], upa);
1207 ai->static_size = static_size;
1208 ai->reserved_size = reserved_size;
1209 ai->dyn_size = dyn_size;
1210 ai->unit_size = alloc_size / upa;
1211 ai->atom_size = atom_size;
1212 ai->alloc_size = alloc_size;
1214 for (group = 0, unit = 0; group_cnt[group]; group++) {
1215 struct pcpu_group_info *gi = &ai->groups[group];
1218 * Initialize base_offset as if all groups are located
1219 * back-to-back. The caller should update this to
1220 * reflect actual allocation.
1222 gi->base_offset = unit * ai->unit_size;
1224 for_each_possible_cpu(cpu)
1225 if (group_map[cpu] == group)
1226 gi->cpu_map[gi->nr_units++] = cpu;
1227 gi->nr_units = roundup(gi->nr_units, upa);
1228 unit += gi->nr_units;
1230 BUG_ON(unit != nr_units);
1232 return ai;
1234 #endif /* CONFIG_SMP && (CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK ||
1235 CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK) */
1238 * pcpu_dump_alloc_info - print out information about pcpu_alloc_info
1239 * @lvl: loglevel
1240 * @ai: allocation info to dump
1242 * Print out information about @ai using loglevel @lvl.
1244 static void pcpu_dump_alloc_info(const char *lvl,
1245 const struct pcpu_alloc_info *ai)
1247 int group_width = 1, cpu_width = 1, width;
1248 char empty_str[] = "--------";
1249 int alloc = 0, alloc_end = 0;
1250 int group, v;
1251 int upa, apl; /* units per alloc, allocs per line */
1253 v = ai->nr_groups;
1254 while (v /= 10)
1255 group_width++;
1257 v = num_possible_cpus();
1258 while (v /= 10)
1259 cpu_width++;
1260 empty_str[min_t(int, cpu_width, sizeof(empty_str) - 1)] = '\0';
1262 upa = ai->alloc_size / ai->unit_size;
1263 width = upa * (cpu_width + 1) + group_width + 3;
1264 apl = rounddown_pow_of_two(max(60 / width, 1));
1266 printk("%spcpu-alloc: s%zu r%zu d%zu u%zu alloc=%zu*%zu",
1267 lvl, ai->static_size, ai->reserved_size, ai->dyn_size,
1268 ai->unit_size, ai->alloc_size / ai->atom_size, ai->atom_size);
1270 for (group = 0; group < ai->nr_groups; group++) {
1271 const struct pcpu_group_info *gi = &ai->groups[group];
1272 int unit = 0, unit_end = 0;
1274 BUG_ON(gi->nr_units % upa);
1275 for (alloc_end += gi->nr_units / upa;
1276 alloc < alloc_end; alloc++) {
1277 if (!(alloc % apl)) {
1278 printk("\n");
1279 printk("%spcpu-alloc: ", lvl);
1281 printk("[%0*d] ", group_width, group);
1283 for (unit_end += upa; unit < unit_end; unit++)
1284 if (gi->cpu_map[unit] != NR_CPUS)
1285 printk("%0*d ", cpu_width,
1286 gi->cpu_map[unit]);
1287 else
1288 printk("%s ", empty_str);
1291 printk("\n");
1295 * pcpu_setup_first_chunk - initialize the first percpu chunk
1296 * @ai: pcpu_alloc_info describing how to percpu area is shaped
1297 * @base_addr: mapped address
1299 * Initialize the first percpu chunk which contains the kernel static
1300 * perpcu area. This function is to be called from arch percpu area
1301 * setup path.
1303 * @ai contains all information necessary to initialize the first
1304 * chunk and prime the dynamic percpu allocator.
1306 * @ai->static_size is the size of static percpu area.
1308 * @ai->reserved_size, if non-zero, specifies the amount of bytes to
1309 * reserve after the static area in the first chunk. This reserves
1310 * the first chunk such that it's available only through reserved
1311 * percpu allocation. This is primarily used to serve module percpu
1312 * static areas on architectures where the addressing model has
1313 * limited offset range for symbol relocations to guarantee module
1314 * percpu symbols fall inside the relocatable range.
1316 * @ai->dyn_size determines the number of bytes available for dynamic
1317 * allocation in the first chunk. The area between @ai->static_size +
1318 * @ai->reserved_size + @ai->dyn_size and @ai->unit_size is unused.
1320 * @ai->unit_size specifies unit size and must be aligned to PAGE_SIZE
1321 * and equal to or larger than @ai->static_size + @ai->reserved_size +
1322 * @ai->dyn_size.
1324 * @ai->atom_size is the allocation atom size and used as alignment
1325 * for vm areas.
1327 * @ai->alloc_size is the allocation size and always multiple of
1328 * @ai->atom_size. This is larger than @ai->atom_size if
1329 * @ai->unit_size is larger than @ai->atom_size.
1331 * @ai->nr_groups and @ai->groups describe virtual memory layout of
1332 * percpu areas. Units which should be colocated are put into the
1333 * same group. Dynamic VM areas will be allocated according to these
1334 * groupings. If @ai->nr_groups is zero, a single group containing
1335 * all units is assumed.
1337 * The caller should have mapped the first chunk at @base_addr and
1338 * copied static data to each unit.
1340 * If the first chunk ends up with both reserved and dynamic areas, it
1341 * is served by two chunks - one to serve the core static and reserved
1342 * areas and the other for the dynamic area. They share the same vm
1343 * and page map but uses different area allocation map to stay away
1344 * from each other. The latter chunk is circulated in the chunk slots
1345 * and available for dynamic allocation like any other chunks.
1347 * RETURNS:
1348 * 0 on success, -errno on failure.
1350 int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai,
1351 void *base_addr)
1353 static char cpus_buf[4096] __initdata;
1354 static int smap[PERCPU_DYNAMIC_EARLY_SLOTS] __initdata;
1355 static int dmap[PERCPU_DYNAMIC_EARLY_SLOTS] __initdata;
1356 size_t dyn_size = ai->dyn_size;
1357 size_t size_sum = ai->static_size + ai->reserved_size + dyn_size;
1358 struct pcpu_chunk *schunk, *dchunk = NULL;
1359 unsigned long *group_offsets;
1360 size_t *group_sizes;
1361 unsigned long *unit_off;
1362 unsigned int cpu;
1363 int *unit_map;
1364 int group, unit, i;
1366 cpumask_scnprintf(cpus_buf, sizeof(cpus_buf), cpu_possible_mask);
1368 #define PCPU_SETUP_BUG_ON(cond) do { \
1369 if (unlikely(cond)) { \
1370 pr_emerg("PERCPU: failed to initialize, %s", #cond); \
1371 pr_emerg("PERCPU: cpu_possible_mask=%s\n", cpus_buf); \
1372 pcpu_dump_alloc_info(KERN_EMERG, ai); \
1373 BUG(); \
1375 } while (0)
1377 /* sanity checks */
1378 PCPU_SETUP_BUG_ON(ai->nr_groups <= 0);
1379 #ifdef CONFIG_SMP
1380 PCPU_SETUP_BUG_ON(!ai->static_size);
1381 #endif
1382 PCPU_SETUP_BUG_ON(!base_addr);
1383 PCPU_SETUP_BUG_ON(ai->unit_size < size_sum);
1384 PCPU_SETUP_BUG_ON(ai->unit_size & ~PAGE_MASK);
1385 PCPU_SETUP_BUG_ON(ai->unit_size < PCPU_MIN_UNIT_SIZE);
1386 PCPU_SETUP_BUG_ON(ai->dyn_size < PERCPU_DYNAMIC_EARLY_SIZE);
1387 PCPU_SETUP_BUG_ON(pcpu_verify_alloc_info(ai) < 0);
1389 /* process group information and build config tables accordingly */
1390 group_offsets = alloc_bootmem(ai->nr_groups * sizeof(group_offsets[0]));
1391 group_sizes = alloc_bootmem(ai->nr_groups * sizeof(group_sizes[0]));
1392 unit_map = alloc_bootmem(nr_cpu_ids * sizeof(unit_map[0]));
1393 unit_off = alloc_bootmem(nr_cpu_ids * sizeof(unit_off[0]));
1395 for (cpu = 0; cpu < nr_cpu_ids; cpu++)
1396 unit_map[cpu] = UINT_MAX;
1397 pcpu_first_unit_cpu = NR_CPUS;
1399 for (group = 0, unit = 0; group < ai->nr_groups; group++, unit += i) {
1400 const struct pcpu_group_info *gi = &ai->groups[group];
1402 group_offsets[group] = gi->base_offset;
1403 group_sizes[group] = gi->nr_units * ai->unit_size;
1405 for (i = 0; i < gi->nr_units; i++) {
1406 cpu = gi->cpu_map[i];
1407 if (cpu == NR_CPUS)
1408 continue;
1410 PCPU_SETUP_BUG_ON(cpu > nr_cpu_ids);
1411 PCPU_SETUP_BUG_ON(!cpu_possible(cpu));
1412 PCPU_SETUP_BUG_ON(unit_map[cpu] != UINT_MAX);
1414 unit_map[cpu] = unit + i;
1415 unit_off[cpu] = gi->base_offset + i * ai->unit_size;
1417 if (pcpu_first_unit_cpu == NR_CPUS)
1418 pcpu_first_unit_cpu = cpu;
1419 pcpu_last_unit_cpu = cpu;
1422 pcpu_nr_units = unit;
1424 for_each_possible_cpu(cpu)
1425 PCPU_SETUP_BUG_ON(unit_map[cpu] == UINT_MAX);
1427 /* we're done parsing the input, undefine BUG macro and dump config */
1428 #undef PCPU_SETUP_BUG_ON
1429 pcpu_dump_alloc_info(KERN_INFO, ai);
1431 pcpu_nr_groups = ai->nr_groups;
1432 pcpu_group_offsets = group_offsets;
1433 pcpu_group_sizes = group_sizes;
1434 pcpu_unit_map = unit_map;
1435 pcpu_unit_offsets = unit_off;
1437 /* determine basic parameters */
1438 pcpu_unit_pages = ai->unit_size >> PAGE_SHIFT;
1439 pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT;
1440 pcpu_atom_size = ai->atom_size;
1441 pcpu_chunk_struct_size = sizeof(struct pcpu_chunk) +
1442 BITS_TO_LONGS(pcpu_unit_pages) * sizeof(unsigned long);
1445 * Allocate chunk slots. The additional last slot is for
1446 * empty chunks.
1448 pcpu_nr_slots = __pcpu_size_to_slot(pcpu_unit_size) + 2;
1449 pcpu_slot = alloc_bootmem(pcpu_nr_slots * sizeof(pcpu_slot[0]));
1450 for (i = 0; i < pcpu_nr_slots; i++)
1451 INIT_LIST_HEAD(&pcpu_slot[i]);
1454 * Initialize static chunk. If reserved_size is zero, the
1455 * static chunk covers static area + dynamic allocation area
1456 * in the first chunk. If reserved_size is not zero, it
1457 * covers static area + reserved area (mostly used for module
1458 * static percpu allocation).
1460 schunk = alloc_bootmem(pcpu_chunk_struct_size);
1461 INIT_LIST_HEAD(&schunk->list);
1462 schunk->base_addr = base_addr;
1463 schunk->map = smap;
1464 schunk->map_alloc = ARRAY_SIZE(smap);
1465 schunk->immutable = true;
1466 bitmap_fill(schunk->populated, pcpu_unit_pages);
1468 if (ai->reserved_size) {
1469 schunk->free_size = ai->reserved_size;
1470 pcpu_reserved_chunk = schunk;
1471 pcpu_reserved_chunk_limit = ai->static_size + ai->reserved_size;
1472 } else {
1473 schunk->free_size = dyn_size;
1474 dyn_size = 0; /* dynamic area covered */
1476 schunk->contig_hint = schunk->free_size;
1478 schunk->map[schunk->map_used++] = -ai->static_size;
1479 if (schunk->free_size)
1480 schunk->map[schunk->map_used++] = schunk->free_size;
1482 /* init dynamic chunk if necessary */
1483 if (dyn_size) {
1484 dchunk = alloc_bootmem(pcpu_chunk_struct_size);
1485 INIT_LIST_HEAD(&dchunk->list);
1486 dchunk->base_addr = base_addr;
1487 dchunk->map = dmap;
1488 dchunk->map_alloc = ARRAY_SIZE(dmap);
1489 dchunk->immutable = true;
1490 bitmap_fill(dchunk->populated, pcpu_unit_pages);
1492 dchunk->contig_hint = dchunk->free_size = dyn_size;
1493 dchunk->map[dchunk->map_used++] = -pcpu_reserved_chunk_limit;
1494 dchunk->map[dchunk->map_used++] = dchunk->free_size;
1497 /* link the first chunk in */
1498 pcpu_first_chunk = dchunk ?: schunk;
1499 pcpu_chunk_relocate(pcpu_first_chunk, -1);
1501 /* we're done */
1502 pcpu_base_addr = base_addr;
1503 return 0;
1506 #ifdef CONFIG_SMP
1508 const char *pcpu_fc_names[PCPU_FC_NR] __initdata = {
1509 [PCPU_FC_AUTO] = "auto",
1510 [PCPU_FC_EMBED] = "embed",
1511 [PCPU_FC_PAGE] = "page",
1514 enum pcpu_fc pcpu_chosen_fc __initdata = PCPU_FC_AUTO;
1516 static int __init percpu_alloc_setup(char *str)
1518 if (0)
1519 /* nada */;
1520 #ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK
1521 else if (!strcmp(str, "embed"))
1522 pcpu_chosen_fc = PCPU_FC_EMBED;
1523 #endif
1524 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
1525 else if (!strcmp(str, "page"))
1526 pcpu_chosen_fc = PCPU_FC_PAGE;
1527 #endif
1528 else
1529 pr_warning("PERCPU: unknown allocator %s specified\n", str);
1531 return 0;
1533 early_param("percpu_alloc", percpu_alloc_setup);
1535 #if defined(CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK) || \
1536 !defined(CONFIG_HAVE_SETUP_PER_CPU_AREA)
1538 * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem
1539 * @reserved_size: the size of reserved percpu area in bytes
1540 * @dyn_size: minimum free size for dynamic allocation in bytes
1541 * @atom_size: allocation atom size
1542 * @cpu_distance_fn: callback to determine distance between cpus, optional
1543 * @alloc_fn: function to allocate percpu page
1544 * @free_fn: funtion to free percpu page
1546 * This is a helper to ease setting up embedded first percpu chunk and
1547 * can be called where pcpu_setup_first_chunk() is expected.
1549 * If this function is used to setup the first chunk, it is allocated
1550 * by calling @alloc_fn and used as-is without being mapped into
1551 * vmalloc area. Allocations are always whole multiples of @atom_size
1552 * aligned to @atom_size.
1554 * This enables the first chunk to piggy back on the linear physical
1555 * mapping which often uses larger page size. Please note that this
1556 * can result in very sparse cpu->unit mapping on NUMA machines thus
1557 * requiring large vmalloc address space. Don't use this allocator if
1558 * vmalloc space is not orders of magnitude larger than distances
1559 * between node memory addresses (ie. 32bit NUMA machines).
1561 * @dyn_size specifies the minimum dynamic area size.
1563 * If the needed size is smaller than the minimum or specified unit
1564 * size, the leftover is returned using @free_fn.
1566 * RETURNS:
1567 * 0 on success, -errno on failure.
1569 int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size,
1570 size_t atom_size,
1571 pcpu_fc_cpu_distance_fn_t cpu_distance_fn,
1572 pcpu_fc_alloc_fn_t alloc_fn,
1573 pcpu_fc_free_fn_t free_fn)
1575 void *base = (void *)ULONG_MAX;
1576 void **areas = NULL;
1577 struct pcpu_alloc_info *ai;
1578 size_t size_sum, areas_size, max_distance;
1579 int group, i, rc;
1581 ai = pcpu_build_alloc_info(reserved_size, dyn_size, atom_size,
1582 cpu_distance_fn);
1583 if (IS_ERR(ai))
1584 return PTR_ERR(ai);
1586 size_sum = ai->static_size + ai->reserved_size + ai->dyn_size;
1587 areas_size = PFN_ALIGN(ai->nr_groups * sizeof(void *));
1589 areas = alloc_bootmem_nopanic(areas_size);
1590 if (!areas) {
1591 rc = -ENOMEM;
1592 goto out_free;
1595 /* allocate, copy and determine base address */
1596 for (group = 0; group < ai->nr_groups; group++) {
1597 struct pcpu_group_info *gi = &ai->groups[group];
1598 unsigned int cpu = NR_CPUS;
1599 void *ptr;
1601 for (i = 0; i < gi->nr_units && cpu == NR_CPUS; i++)
1602 cpu = gi->cpu_map[i];
1603 BUG_ON(cpu == NR_CPUS);
1605 /* allocate space for the whole group */
1606 ptr = alloc_fn(cpu, gi->nr_units * ai->unit_size, atom_size);
1607 if (!ptr) {
1608 rc = -ENOMEM;
1609 goto out_free_areas;
1611 areas[group] = ptr;
1613 base = min(ptr, base);
1615 for (i = 0; i < gi->nr_units; i++, ptr += ai->unit_size) {
1616 if (gi->cpu_map[i] == NR_CPUS) {
1617 /* unused unit, free whole */
1618 free_fn(ptr, ai->unit_size);
1619 continue;
1621 /* copy and return the unused part */
1622 memcpy(ptr, __per_cpu_load, ai->static_size);
1623 free_fn(ptr + size_sum, ai->unit_size - size_sum);
1627 /* base address is now known, determine group base offsets */
1628 max_distance = 0;
1629 for (group = 0; group < ai->nr_groups; group++) {
1630 ai->groups[group].base_offset = areas[group] - base;
1631 max_distance = max_t(size_t, max_distance,
1632 ai->groups[group].base_offset);
1634 max_distance += ai->unit_size;
1636 /* warn if maximum distance is further than 75% of vmalloc space */
1637 if (max_distance > (VMALLOC_END - VMALLOC_START) * 3 / 4) {
1638 pr_warning("PERCPU: max_distance=0x%zx too large for vmalloc "
1639 "space 0x%lx\n",
1640 max_distance, VMALLOC_END - VMALLOC_START);
1641 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
1642 /* and fail if we have fallback */
1643 rc = -EINVAL;
1644 goto out_free;
1645 #endif
1648 pr_info("PERCPU: Embedded %zu pages/cpu @%p s%zu r%zu d%zu u%zu\n",
1649 PFN_DOWN(size_sum), base, ai->static_size, ai->reserved_size,
1650 ai->dyn_size, ai->unit_size);
1652 rc = pcpu_setup_first_chunk(ai, base);
1653 goto out_free;
1655 out_free_areas:
1656 for (group = 0; group < ai->nr_groups; group++)
1657 free_fn(areas[group],
1658 ai->groups[group].nr_units * ai->unit_size);
1659 out_free:
1660 pcpu_free_alloc_info(ai);
1661 if (areas)
1662 free_bootmem(__pa(areas), areas_size);
1663 return rc;
1665 #endif /* CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK ||
1666 !CONFIG_HAVE_SETUP_PER_CPU_AREA */
1668 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
1670 * pcpu_page_first_chunk - map the first chunk using PAGE_SIZE pages
1671 * @reserved_size: the size of reserved percpu area in bytes
1672 * @alloc_fn: function to allocate percpu page, always called with PAGE_SIZE
1673 * @free_fn: funtion to free percpu page, always called with PAGE_SIZE
1674 * @populate_pte_fn: function to populate pte
1676 * This is a helper to ease setting up page-remapped first percpu
1677 * chunk and can be called where pcpu_setup_first_chunk() is expected.
1679 * This is the basic allocator. Static percpu area is allocated
1680 * page-by-page into vmalloc area.
1682 * RETURNS:
1683 * 0 on success, -errno on failure.
1685 int __init pcpu_page_first_chunk(size_t reserved_size,
1686 pcpu_fc_alloc_fn_t alloc_fn,
1687 pcpu_fc_free_fn_t free_fn,
1688 pcpu_fc_populate_pte_fn_t populate_pte_fn)
1690 static struct vm_struct vm;
1691 struct pcpu_alloc_info *ai;
1692 char psize_str[16];
1693 int unit_pages;
1694 size_t pages_size;
1695 struct page **pages;
1696 int unit, i, j, rc;
1698 snprintf(psize_str, sizeof(psize_str), "%luK", PAGE_SIZE >> 10);
1700 ai = pcpu_build_alloc_info(reserved_size, 0, PAGE_SIZE, NULL);
1701 if (IS_ERR(ai))
1702 return PTR_ERR(ai);
1703 BUG_ON(ai->nr_groups != 1);
1704 BUG_ON(ai->groups[0].nr_units != num_possible_cpus());
1706 unit_pages = ai->unit_size >> PAGE_SHIFT;
1708 /* unaligned allocations can't be freed, round up to page size */
1709 pages_size = PFN_ALIGN(unit_pages * num_possible_cpus() *
1710 sizeof(pages[0]));
1711 pages = alloc_bootmem(pages_size);
1713 /* allocate pages */
1714 j = 0;
1715 for (unit = 0; unit < num_possible_cpus(); unit++)
1716 for (i = 0; i < unit_pages; i++) {
1717 unsigned int cpu = ai->groups[0].cpu_map[unit];
1718 void *ptr;
1720 ptr = alloc_fn(cpu, PAGE_SIZE, PAGE_SIZE);
1721 if (!ptr) {
1722 pr_warning("PERCPU: failed to allocate %s page "
1723 "for cpu%u\n", psize_str, cpu);
1724 goto enomem;
1726 pages[j++] = virt_to_page(ptr);
1729 /* allocate vm area, map the pages and copy static data */
1730 vm.flags = VM_ALLOC;
1731 vm.size = num_possible_cpus() * ai->unit_size;
1732 vm_area_register_early(&vm, PAGE_SIZE);
1734 for (unit = 0; unit < num_possible_cpus(); unit++) {
1735 unsigned long unit_addr =
1736 (unsigned long)vm.addr + unit * ai->unit_size;
1738 for (i = 0; i < unit_pages; i++)
1739 populate_pte_fn(unit_addr + (i << PAGE_SHIFT));
1741 /* pte already populated, the following shouldn't fail */
1742 rc = __pcpu_map_pages(unit_addr, &pages[unit * unit_pages],
1743 unit_pages);
1744 if (rc < 0)
1745 panic("failed to map percpu area, err=%d\n", rc);
1748 * FIXME: Archs with virtual cache should flush local
1749 * cache for the linear mapping here - something
1750 * equivalent to flush_cache_vmap() on the local cpu.
1751 * flush_cache_vmap() can't be used as most supporting
1752 * data structures are not set up yet.
1755 /* copy static data */
1756 memcpy((void *)unit_addr, __per_cpu_load, ai->static_size);
1759 /* we're ready, commit */
1760 pr_info("PERCPU: %d %s pages/cpu @%p s%zu r%zu d%zu\n",
1761 unit_pages, psize_str, vm.addr, ai->static_size,
1762 ai->reserved_size, ai->dyn_size);
1764 rc = pcpu_setup_first_chunk(ai, vm.addr);
1765 goto out_free_ar;
1767 enomem:
1768 while (--j >= 0)
1769 free_fn(page_address(pages[j]), PAGE_SIZE);
1770 rc = -ENOMEM;
1771 out_free_ar:
1772 free_bootmem(__pa(pages), pages_size);
1773 pcpu_free_alloc_info(ai);
1774 return rc;
1776 #endif /* CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK */
1778 #ifndef CONFIG_HAVE_SETUP_PER_CPU_AREA
1780 * Generic SMP percpu area setup.
1782 * The embedding helper is used because its behavior closely resembles
1783 * the original non-dynamic generic percpu area setup. This is
1784 * important because many archs have addressing restrictions and might
1785 * fail if the percpu area is located far away from the previous
1786 * location. As an added bonus, in non-NUMA cases, embedding is
1787 * generally a good idea TLB-wise because percpu area can piggy back
1788 * on the physical linear memory mapping which uses large page
1789 * mappings on applicable archs.
1791 unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
1792 EXPORT_SYMBOL(__per_cpu_offset);
1794 static void * __init pcpu_dfl_fc_alloc(unsigned int cpu, size_t size,
1795 size_t align)
1797 return __alloc_bootmem_nopanic(size, align, __pa(MAX_DMA_ADDRESS));
1800 static void __init pcpu_dfl_fc_free(void *ptr, size_t size)
1802 free_bootmem(__pa(ptr), size);
1805 void __init setup_per_cpu_areas(void)
1807 unsigned long delta;
1808 unsigned int cpu;
1809 int rc;
1812 * Always reserve area for module percpu variables. That's
1813 * what the legacy allocator did.
1815 rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
1816 PERCPU_DYNAMIC_RESERVE, PAGE_SIZE, NULL,
1817 pcpu_dfl_fc_alloc, pcpu_dfl_fc_free);
1818 if (rc < 0)
1819 panic("Failed to initialize percpu areas.");
1821 delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
1822 for_each_possible_cpu(cpu)
1823 __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
1825 #endif /* CONFIG_HAVE_SETUP_PER_CPU_AREA */
1827 #else /* CONFIG_SMP */
1830 * UP percpu area setup.
1832 * UP always uses km-based percpu allocator with identity mapping.
1833 * Static percpu variables are indistinguishable from the usual static
1834 * variables and don't require any special preparation.
1836 void __init setup_per_cpu_areas(void)
1838 const size_t unit_size =
1839 roundup_pow_of_two(max_t(size_t, PCPU_MIN_UNIT_SIZE,
1840 PERCPU_DYNAMIC_RESERVE));
1841 struct pcpu_alloc_info *ai;
1842 void *fc;
1844 ai = pcpu_alloc_alloc_info(1, 1);
1845 fc = __alloc_bootmem(unit_size, PAGE_SIZE, __pa(MAX_DMA_ADDRESS));
1846 if (!ai || !fc)
1847 panic("Failed to allocate memory for percpu areas.");
1849 ai->dyn_size = unit_size;
1850 ai->unit_size = unit_size;
1851 ai->atom_size = unit_size;
1852 ai->alloc_size = unit_size;
1853 ai->groups[0].nr_units = 1;
1854 ai->groups[0].cpu_map[0] = 0;
1856 if (pcpu_setup_first_chunk(ai, fc) < 0)
1857 panic("Failed to initialize percpu areas.");
1860 #endif /* CONFIG_SMP */
1863 * First and reserved chunks are initialized with temporary allocation
1864 * map in initdata so that they can be used before slab is online.
1865 * This function is called after slab is brought up and replaces those
1866 * with properly allocated maps.
1868 void __init percpu_init_late(void)
1870 struct pcpu_chunk *target_chunks[] =
1871 { pcpu_first_chunk, pcpu_reserved_chunk, NULL };
1872 struct pcpu_chunk *chunk;
1873 unsigned long flags;
1874 int i;
1876 for (i = 0; (chunk = target_chunks[i]); i++) {
1877 int *map;
1878 const size_t size = PERCPU_DYNAMIC_EARLY_SLOTS * sizeof(map[0]);
1880 BUILD_BUG_ON(size > PAGE_SIZE);
1882 map = pcpu_mem_alloc(size);
1883 BUG_ON(!map);
1885 spin_lock_irqsave(&pcpu_lock, flags);
1886 memcpy(map, chunk->map, size);
1887 chunk->map = map;
1888 spin_unlock_irqrestore(&pcpu_lock, flags);