[S390] 1K/2K page table pages.
[linux-2.6/libata-dev.git] / include / asm-s390 / pgtable.h
blob4fc93771148247f95a2272075941cc205e9f5aca
1 /*
2 * include/asm-s390/pgtable.h
4 * S390 version
5 * Copyright (C) 1999,2000 IBM Deutschland Entwicklung GmbH, IBM Corporation
6 * Author(s): Hartmut Penner (hp@de.ibm.com)
7 * Ulrich Weigand (weigand@de.ibm.com)
8 * Martin Schwidefsky (schwidefsky@de.ibm.com)
10 * Derived from "include/asm-i386/pgtable.h"
13 #ifndef _ASM_S390_PGTABLE_H
14 #define _ASM_S390_PGTABLE_H
17 * The Linux memory management assumes a three-level page table setup. For
18 * s390 31 bit we "fold" the mid level into the top-level page table, so
19 * that we physically have the same two-level page table as the s390 mmu
20 * expects in 31 bit mode. For s390 64 bit we use three of the five levels
21 * the hardware provides (region first and region second tables are not
22 * used).
24 * The "pgd_xxx()" functions are trivial for a folded two-level
25 * setup: the pgd is never bad, and a pmd always exists (as it's folded
26 * into the pgd entry)
28 * This file contains the functions and defines necessary to modify and use
29 * the S390 page table tree.
31 #ifndef __ASSEMBLY__
32 #include <linux/mm_types.h>
33 #include <asm/bug.h>
34 #include <asm/processor.h>
36 extern pgd_t swapper_pg_dir[] __attribute__ ((aligned (4096)));
37 extern void paging_init(void);
38 extern void vmem_map_init(void);
41 * The S390 doesn't have any external MMU info: the kernel page
42 * tables contain all the necessary information.
44 #define update_mmu_cache(vma, address, pte) do { } while (0)
47 * ZERO_PAGE is a global shared page that is always zero: used
48 * for zero-mapped memory areas etc..
50 extern char empty_zero_page[PAGE_SIZE];
51 #define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
52 #endif /* !__ASSEMBLY__ */
55 * PMD_SHIFT determines the size of the area a second-level page
56 * table can map
57 * PGDIR_SHIFT determines what a third-level page table entry can map
59 #ifndef __s390x__
60 # define PMD_SHIFT 20
61 # define PUD_SHIFT 20
62 # define PGDIR_SHIFT 20
63 #else /* __s390x__ */
64 # define PMD_SHIFT 20
65 # define PUD_SHIFT 31
66 # define PGDIR_SHIFT 31
67 #endif /* __s390x__ */
69 #define PMD_SIZE (1UL << PMD_SHIFT)
70 #define PMD_MASK (~(PMD_SIZE-1))
71 #define PUD_SIZE (1UL << PUD_SHIFT)
72 #define PUD_MASK (~(PUD_SIZE-1))
73 #define PGDIR_SIZE (1UL << PGDIR_SHIFT)
74 #define PGDIR_MASK (~(PGDIR_SIZE-1))
77 * entries per page directory level: the S390 is two-level, so
78 * we don't really have any PMD directory physically.
79 * for S390 segment-table entries are combined to one PGD
80 * that leads to 1024 pte per pgd
82 #define PTRS_PER_PTE 256
83 #ifndef __s390x__
84 #define PTRS_PER_PMD 1
85 #else /* __s390x__ */
86 #define PTRS_PER_PMD 2048
87 #endif /* __s390x__ */
88 #define PTRS_PER_PUD 1
89 #define PTRS_PER_PGD 2048
91 #define FIRST_USER_ADDRESS 0
93 #define pte_ERROR(e) \
94 printk("%s:%d: bad pte %p.\n", __FILE__, __LINE__, (void *) pte_val(e))
95 #define pmd_ERROR(e) \
96 printk("%s:%d: bad pmd %p.\n", __FILE__, __LINE__, (void *) pmd_val(e))
97 #define pud_ERROR(e) \
98 printk("%s:%d: bad pud %p.\n", __FILE__, __LINE__, (void *) pud_val(e))
99 #define pgd_ERROR(e) \
100 printk("%s:%d: bad pgd %p.\n", __FILE__, __LINE__, (void *) pgd_val(e))
102 #ifndef __ASSEMBLY__
104 * The vmalloc area will always be on the topmost area of the kernel
105 * mapping. We reserve 96MB (31bit) / 1GB (64bit) for vmalloc,
106 * which should be enough for any sane case.
107 * By putting vmalloc at the top, we maximise the gap between physical
108 * memory and vmalloc to catch misplaced memory accesses. As a side
109 * effect, this also makes sure that 64 bit module code cannot be used
110 * as system call address.
112 #ifndef __s390x__
113 #define VMALLOC_START 0x78000000UL
114 #define VMALLOC_END 0x7e000000UL
115 #define VMEM_MAP_END 0x80000000UL
116 #else /* __s390x__ */
117 #define VMALLOC_START 0x3e000000000UL
118 #define VMALLOC_END 0x3e040000000UL
119 #define VMEM_MAP_END 0x40000000000UL
120 #endif /* __s390x__ */
123 * VMEM_MAX_PHYS is the highest physical address that can be added to the 1:1
124 * mapping. This needs to be calculated at compile time since the size of the
125 * VMEM_MAP is static but the size of struct page can change.
127 #define VMEM_MAX_PAGES ((VMEM_MAP_END - VMALLOC_END) / sizeof(struct page))
128 #define VMEM_MAX_PFN min(VMALLOC_START >> PAGE_SHIFT, VMEM_MAX_PAGES)
129 #define VMEM_MAX_PHYS ((VMEM_MAX_PFN << PAGE_SHIFT) & ~((16 << 20) - 1))
130 #define VMEM_MAP ((struct page *) VMALLOC_END)
133 * A 31 bit pagetable entry of S390 has following format:
134 * | PFRA | | OS |
135 * 0 0IP0
136 * 00000000001111111111222222222233
137 * 01234567890123456789012345678901
139 * I Page-Invalid Bit: Page is not available for address-translation
140 * P Page-Protection Bit: Store access not possible for page
142 * A 31 bit segmenttable entry of S390 has following format:
143 * | P-table origin | |PTL
144 * 0 IC
145 * 00000000001111111111222222222233
146 * 01234567890123456789012345678901
148 * I Segment-Invalid Bit: Segment is not available for address-translation
149 * C Common-Segment Bit: Segment is not private (PoP 3-30)
150 * PTL Page-Table-Length: Page-table length (PTL+1*16 entries -> up to 256)
152 * The 31 bit segmenttable origin of S390 has following format:
154 * |S-table origin | | STL |
155 * X **GPS
156 * 00000000001111111111222222222233
157 * 01234567890123456789012345678901
159 * X Space-Switch event:
160 * G Segment-Invalid Bit: *
161 * P Private-Space Bit: Segment is not private (PoP 3-30)
162 * S Storage-Alteration:
163 * STL Segment-Table-Length: Segment-table length (STL+1*16 entries -> up to 2048)
165 * A 64 bit pagetable entry of S390 has following format:
166 * | PFRA |0IP0| OS |
167 * 0000000000111111111122222222223333333333444444444455555555556666
168 * 0123456789012345678901234567890123456789012345678901234567890123
170 * I Page-Invalid Bit: Page is not available for address-translation
171 * P Page-Protection Bit: Store access not possible for page
173 * A 64 bit segmenttable entry of S390 has following format:
174 * | P-table origin | TT
175 * 0000000000111111111122222222223333333333444444444455555555556666
176 * 0123456789012345678901234567890123456789012345678901234567890123
178 * I Segment-Invalid Bit: Segment is not available for address-translation
179 * C Common-Segment Bit: Segment is not private (PoP 3-30)
180 * P Page-Protection Bit: Store access not possible for page
181 * TT Type 00
183 * A 64 bit region table entry of S390 has following format:
184 * | S-table origin | TF TTTL
185 * 0000000000111111111122222222223333333333444444444455555555556666
186 * 0123456789012345678901234567890123456789012345678901234567890123
188 * I Segment-Invalid Bit: Segment is not available for address-translation
189 * TT Type 01
190 * TF
191 * TL Table length
193 * The 64 bit regiontable origin of S390 has following format:
194 * | region table origon | DTTL
195 * 0000000000111111111122222222223333333333444444444455555555556666
196 * 0123456789012345678901234567890123456789012345678901234567890123
198 * X Space-Switch event:
199 * G Segment-Invalid Bit:
200 * P Private-Space Bit:
201 * S Storage-Alteration:
202 * R Real space
203 * TL Table-Length:
205 * A storage key has the following format:
206 * | ACC |F|R|C|0|
207 * 0 3 4 5 6 7
208 * ACC: access key
209 * F : fetch protection bit
210 * R : referenced bit
211 * C : changed bit
214 /* Hardware bits in the page table entry */
215 #define _PAGE_RO 0x200 /* HW read-only bit */
216 #define _PAGE_INVALID 0x400 /* HW invalid bit */
218 /* Software bits in the page table entry */
219 #define _PAGE_SWT 0x001 /* SW pte type bit t */
220 #define _PAGE_SWX 0x002 /* SW pte type bit x */
222 /* Six different types of pages. */
223 #define _PAGE_TYPE_EMPTY 0x400
224 #define _PAGE_TYPE_NONE 0x401
225 #define _PAGE_TYPE_SWAP 0x403
226 #define _PAGE_TYPE_FILE 0x601 /* bit 0x002 is used for offset !! */
227 #define _PAGE_TYPE_RO 0x200
228 #define _PAGE_TYPE_RW 0x000
229 #define _PAGE_TYPE_EX_RO 0x202
230 #define _PAGE_TYPE_EX_RW 0x002
233 * PTE type bits are rather complicated. handle_pte_fault uses pte_present,
234 * pte_none and pte_file to find out the pte type WITHOUT holding the page
235 * table lock. ptep_clear_flush on the other hand uses ptep_clear_flush to
236 * invalidate a given pte. ipte sets the hw invalid bit and clears all tlbs
237 * for the page. The page table entry is set to _PAGE_TYPE_EMPTY afterwards.
238 * This change is done while holding the lock, but the intermediate step
239 * of a previously valid pte with the hw invalid bit set can be observed by
240 * handle_pte_fault. That makes it necessary that all valid pte types with
241 * the hw invalid bit set must be distinguishable from the four pte types
242 * empty, none, swap and file.
244 * irxt ipte irxt
245 * _PAGE_TYPE_EMPTY 1000 -> 1000
246 * _PAGE_TYPE_NONE 1001 -> 1001
247 * _PAGE_TYPE_SWAP 1011 -> 1011
248 * _PAGE_TYPE_FILE 11?1 -> 11?1
249 * _PAGE_TYPE_RO 0100 -> 1100
250 * _PAGE_TYPE_RW 0000 -> 1000
251 * _PAGE_TYPE_EX_RO 0110 -> 1110
252 * _PAGE_TYPE_EX_RW 0010 -> 1010
254 * pte_none is true for bits combinations 1000, 1010, 1100, 1110
255 * pte_present is true for bits combinations 0000, 0010, 0100, 0110, 1001
256 * pte_file is true for bits combinations 1101, 1111
257 * swap pte is 1011 and 0001, 0011, 0101, 0111 are invalid.
260 #ifndef __s390x__
262 /* Bits in the segment table address-space-control-element */
263 #define _ASCE_SPACE_SWITCH 0x80000000UL /* space switch event */
264 #define _ASCE_ORIGIN_MASK 0x7ffff000UL /* segment table origin */
265 #define _ASCE_PRIVATE_SPACE 0x100 /* private space control */
266 #define _ASCE_ALT_EVENT 0x80 /* storage alteration event control */
267 #define _ASCE_TABLE_LENGTH 0x7f /* 128 x 64 entries = 8k */
269 /* Bits in the segment table entry */
270 #define _SEGMENT_ENTRY_ORIGIN 0x7fffffc0UL /* page table origin */
271 #define _SEGMENT_ENTRY_INV 0x20 /* invalid segment table entry */
272 #define _SEGMENT_ENTRY_COMMON 0x10 /* common segment bit */
273 #define _SEGMENT_ENTRY_PTL 0x0f /* page table length */
275 #define _SEGMENT_ENTRY (_SEGMENT_ENTRY_PTL)
276 #define _SEGMENT_ENTRY_EMPTY (_SEGMENT_ENTRY_INV)
278 #else /* __s390x__ */
280 /* Bits in the segment/region table address-space-control-element */
281 #define _ASCE_ORIGIN ~0xfffUL/* segment table origin */
282 #define _ASCE_PRIVATE_SPACE 0x100 /* private space control */
283 #define _ASCE_ALT_EVENT 0x80 /* storage alteration event control */
284 #define _ASCE_SPACE_SWITCH 0x40 /* space switch event */
285 #define _ASCE_REAL_SPACE 0x20 /* real space control */
286 #define _ASCE_TYPE_MASK 0x0c /* asce table type mask */
287 #define _ASCE_TYPE_REGION1 0x0c /* region first table type */
288 #define _ASCE_TYPE_REGION2 0x08 /* region second table type */
289 #define _ASCE_TYPE_REGION3 0x04 /* region third table type */
290 #define _ASCE_TYPE_SEGMENT 0x00 /* segment table type */
291 #define _ASCE_TABLE_LENGTH 0x03 /* region table length */
293 /* Bits in the region table entry */
294 #define _REGION_ENTRY_ORIGIN ~0xfffUL/* region/segment table origin */
295 #define _REGION_ENTRY_INV 0x20 /* invalid region table entry */
296 #define _REGION_ENTRY_TYPE_MASK 0x0c /* region/segment table type mask */
297 #define _REGION_ENTRY_TYPE_R1 0x0c /* region first table type */
298 #define _REGION_ENTRY_TYPE_R2 0x08 /* region second table type */
299 #define _REGION_ENTRY_TYPE_R3 0x04 /* region third table type */
300 #define _REGION_ENTRY_LENGTH 0x03 /* region third length */
302 #define _REGION1_ENTRY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_LENGTH)
303 #define _REGION1_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_INV)
304 #define _REGION2_ENTRY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_LENGTH)
305 #define _REGION2_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_INV)
306 #define _REGION3_ENTRY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_LENGTH)
307 #define _REGION3_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_INV)
309 /* Bits in the segment table entry */
310 #define _SEGMENT_ENTRY_ORIGIN ~0x7ffUL/* segment table origin */
311 #define _SEGMENT_ENTRY_RO 0x200 /* page protection bit */
312 #define _SEGMENT_ENTRY_INV 0x20 /* invalid segment table entry */
314 #define _SEGMENT_ENTRY (0)
315 #define _SEGMENT_ENTRY_EMPTY (_SEGMENT_ENTRY_INV)
317 #endif /* __s390x__ */
320 * A user page table pointer has the space-switch-event bit, the
321 * private-space-control bit and the storage-alteration-event-control
322 * bit set. A kernel page table pointer doesn't need them.
324 #define _ASCE_USER_BITS (_ASCE_SPACE_SWITCH | _ASCE_PRIVATE_SPACE | \
325 _ASCE_ALT_EVENT)
327 /* Bits int the storage key */
328 #define _PAGE_CHANGED 0x02 /* HW changed bit */
329 #define _PAGE_REFERENCED 0x04 /* HW referenced bit */
332 * Page protection definitions.
334 #define PAGE_NONE __pgprot(_PAGE_TYPE_NONE)
335 #define PAGE_RO __pgprot(_PAGE_TYPE_RO)
336 #define PAGE_RW __pgprot(_PAGE_TYPE_RW)
337 #define PAGE_EX_RO __pgprot(_PAGE_TYPE_EX_RO)
338 #define PAGE_EX_RW __pgprot(_PAGE_TYPE_EX_RW)
340 #define PAGE_KERNEL PAGE_RW
341 #define PAGE_COPY PAGE_RO
344 * Dependent on the EXEC_PROTECT option s390 can do execute protection.
345 * Write permission always implies read permission. In theory with a
346 * primary/secondary page table execute only can be implemented but
347 * it would cost an additional bit in the pte to distinguish all the
348 * different pte types. To avoid that execute permission currently
349 * implies read permission as well.
351 /*xwr*/
352 #define __P000 PAGE_NONE
353 #define __P001 PAGE_RO
354 #define __P010 PAGE_RO
355 #define __P011 PAGE_RO
356 #define __P100 PAGE_EX_RO
357 #define __P101 PAGE_EX_RO
358 #define __P110 PAGE_EX_RO
359 #define __P111 PAGE_EX_RO
361 #define __S000 PAGE_NONE
362 #define __S001 PAGE_RO
363 #define __S010 PAGE_RW
364 #define __S011 PAGE_RW
365 #define __S100 PAGE_EX_RO
366 #define __S101 PAGE_EX_RO
367 #define __S110 PAGE_EX_RW
368 #define __S111 PAGE_EX_RW
370 #ifndef __s390x__
371 # define PxD_SHADOW_SHIFT 1
372 #else /* __s390x__ */
373 # define PxD_SHADOW_SHIFT 2
374 #endif /* __s390x__ */
376 static inline void *get_shadow_table(void *table)
378 unsigned long addr, offset;
379 struct page *page;
381 addr = (unsigned long) table;
382 offset = addr & ((PAGE_SIZE << PxD_SHADOW_SHIFT) - 1);
383 page = virt_to_page((void *)(addr ^ offset));
384 return (void *)(addr_t)(page->index ? (page->index | offset) : 0UL);
388 * Certain architectures need to do special things when PTEs
389 * within a page table are directly modified. Thus, the following
390 * hook is made available.
392 static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
393 pte_t *ptep, pte_t entry)
395 *ptep = entry;
396 if (mm->context.noexec) {
397 if (!(pte_val(entry) & _PAGE_INVALID) &&
398 (pte_val(entry) & _PAGE_SWX))
399 pte_val(entry) |= _PAGE_RO;
400 else
401 pte_val(entry) = _PAGE_TYPE_EMPTY;
402 ptep[PTRS_PER_PTE] = entry;
407 * pgd/pmd/pte query functions
409 #ifndef __s390x__
411 static inline int pgd_present(pgd_t pgd) { return 1; }
412 static inline int pgd_none(pgd_t pgd) { return 0; }
413 static inline int pgd_bad(pgd_t pgd) { return 0; }
415 static inline int pud_present(pud_t pud) { return 1; }
416 static inline int pud_none(pud_t pud) { return 0; }
417 static inline int pud_bad(pud_t pud) { return 0; }
419 #else /* __s390x__ */
421 static inline int pgd_present(pgd_t pgd) { return 1; }
422 static inline int pgd_none(pgd_t pgd) { return 0; }
423 static inline int pgd_bad(pgd_t pgd) { return 0; }
425 static inline int pud_present(pud_t pud)
427 return (pud_val(pud) & _REGION_ENTRY_ORIGIN) != 0UL;
430 static inline int pud_none(pud_t pud)
432 return (pud_val(pud) & _REGION_ENTRY_INV) != 0UL;
435 static inline int pud_bad(pud_t pud)
437 unsigned long mask = ~_REGION_ENTRY_ORIGIN & ~_REGION_ENTRY_INV;
438 return (pud_val(pud) & mask) != _REGION3_ENTRY;
441 #endif /* __s390x__ */
443 static inline int pmd_present(pmd_t pmd)
445 return (pmd_val(pmd) & _SEGMENT_ENTRY_ORIGIN) != 0UL;
448 static inline int pmd_none(pmd_t pmd)
450 return (pmd_val(pmd) & _SEGMENT_ENTRY_INV) != 0UL;
453 static inline int pmd_bad(pmd_t pmd)
455 unsigned long mask = ~_SEGMENT_ENTRY_ORIGIN & ~_SEGMENT_ENTRY_INV;
456 return (pmd_val(pmd) & mask) != _SEGMENT_ENTRY;
459 static inline int pte_none(pte_t pte)
461 return (pte_val(pte) & _PAGE_INVALID) && !(pte_val(pte) & _PAGE_SWT);
464 static inline int pte_present(pte_t pte)
466 unsigned long mask = _PAGE_RO | _PAGE_INVALID | _PAGE_SWT | _PAGE_SWX;
467 return (pte_val(pte) & mask) == _PAGE_TYPE_NONE ||
468 (!(pte_val(pte) & _PAGE_INVALID) &&
469 !(pte_val(pte) & _PAGE_SWT));
472 static inline int pte_file(pte_t pte)
474 unsigned long mask = _PAGE_RO | _PAGE_INVALID | _PAGE_SWT;
475 return (pte_val(pte) & mask) == _PAGE_TYPE_FILE;
478 #define __HAVE_ARCH_PTE_SAME
479 #define pte_same(a,b) (pte_val(a) == pte_val(b))
482 * query functions pte_write/pte_dirty/pte_young only work if
483 * pte_present() is true. Undefined behaviour if not..
485 static inline int pte_write(pte_t pte)
487 return (pte_val(pte) & _PAGE_RO) == 0;
490 static inline int pte_dirty(pte_t pte)
492 /* A pte is neither clean nor dirty on s/390. The dirty bit
493 * is in the storage key. See page_test_and_clear_dirty for
494 * details.
496 return 0;
499 static inline int pte_young(pte_t pte)
501 /* A pte is neither young nor old on s/390. The young bit
502 * is in the storage key. See page_test_and_clear_young for
503 * details.
505 return 0;
509 * pgd/pmd/pte modification functions
512 #ifndef __s390x__
514 #define pgd_clear(pgd) do { } while (0)
515 #define pud_clear(pud) do { } while (0)
517 #else /* __s390x__ */
519 #define pgd_clear(pgd) do { } while (0)
521 static inline void pud_clear_kernel(pud_t *pud)
523 pud_val(*pud) = _REGION3_ENTRY_EMPTY;
526 static inline void pud_clear(pud_t * pud)
528 pud_t *shadow = get_shadow_table(pud);
530 pud_clear_kernel(pud);
531 if (shadow)
532 pud_clear_kernel(shadow);
535 #endif /* __s390x__ */
537 static inline void pmd_clear_kernel(pmd_t * pmdp)
539 pmd_val(*pmdp) = _SEGMENT_ENTRY_EMPTY;
542 static inline void pmd_clear(pmd_t *pmd)
544 pmd_t *shadow = get_shadow_table(pmd);
546 pmd_clear_kernel(pmd);
547 if (shadow)
548 pmd_clear_kernel(shadow);
551 static inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
553 pte_val(*ptep) = _PAGE_TYPE_EMPTY;
554 if (mm->context.noexec)
555 pte_val(ptep[PTRS_PER_PTE]) = _PAGE_TYPE_EMPTY;
559 * The following pte modification functions only work if
560 * pte_present() is true. Undefined behaviour if not..
562 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
564 pte_val(pte) &= PAGE_MASK;
565 pte_val(pte) |= pgprot_val(newprot);
566 return pte;
569 static inline pte_t pte_wrprotect(pte_t pte)
571 /* Do not clobber _PAGE_TYPE_NONE pages! */
572 if (!(pte_val(pte) & _PAGE_INVALID))
573 pte_val(pte) |= _PAGE_RO;
574 return pte;
577 static inline pte_t pte_mkwrite(pte_t pte)
579 pte_val(pte) &= ~_PAGE_RO;
580 return pte;
583 static inline pte_t pte_mkclean(pte_t pte)
585 /* The only user of pte_mkclean is the fork() code.
586 We must *not* clear the *physical* page dirty bit
587 just because fork() wants to clear the dirty bit in
588 *one* of the page's mappings. So we just do nothing. */
589 return pte;
592 static inline pte_t pte_mkdirty(pte_t pte)
594 /* We do not explicitly set the dirty bit because the
595 * sske instruction is slow. It is faster to let the
596 * next instruction set the dirty bit.
598 return pte;
601 static inline pte_t pte_mkold(pte_t pte)
603 /* S/390 doesn't keep its dirty/referenced bit in the pte.
604 * There is no point in clearing the real referenced bit.
606 return pte;
609 static inline pte_t pte_mkyoung(pte_t pte)
611 /* S/390 doesn't keep its dirty/referenced bit in the pte.
612 * There is no point in setting the real referenced bit.
614 return pte;
617 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
618 static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
619 unsigned long addr, pte_t *ptep)
621 return 0;
624 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
625 static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
626 unsigned long address, pte_t *ptep)
628 /* No need to flush TLB; bits are in storage key */
629 return 0;
632 static inline void __ptep_ipte(unsigned long address, pte_t *ptep)
634 if (!(pte_val(*ptep) & _PAGE_INVALID)) {
635 #ifndef __s390x__
636 /* pto must point to the start of the segment table */
637 pte_t *pto = (pte_t *) (((unsigned long) ptep) & 0x7ffffc00);
638 #else
639 /* ipte in zarch mode can do the math */
640 pte_t *pto = ptep;
641 #endif
642 asm volatile(
643 " ipte %2,%3"
644 : "=m" (*ptep) : "m" (*ptep),
645 "a" (pto), "a" (address));
647 pte_val(*ptep) = _PAGE_TYPE_EMPTY;
650 static inline void ptep_invalidate(struct mm_struct *mm,
651 unsigned long address, pte_t *ptep)
653 __ptep_ipte(address, ptep);
654 if (mm->context.noexec)
655 __ptep_ipte(address, ptep + PTRS_PER_PTE);
659 * This is hard to understand. ptep_get_and_clear and ptep_clear_flush
660 * both clear the TLB for the unmapped pte. The reason is that
661 * ptep_get_and_clear is used in common code (e.g. change_pte_range)
662 * to modify an active pte. The sequence is
663 * 1) ptep_get_and_clear
664 * 2) set_pte_at
665 * 3) flush_tlb_range
666 * On s390 the tlb needs to get flushed with the modification of the pte
667 * if the pte is active. The only way how this can be implemented is to
668 * have ptep_get_and_clear do the tlb flush. In exchange flush_tlb_range
669 * is a nop.
671 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
672 #define ptep_get_and_clear(__mm, __address, __ptep) \
673 ({ \
674 pte_t __pte = *(__ptep); \
675 if (atomic_read(&(__mm)->mm_users) > 1 || \
676 (__mm) != current->active_mm) \
677 ptep_invalidate(__mm, __address, __ptep); \
678 else \
679 pte_clear((__mm), (__address), (__ptep)); \
680 __pte; \
683 #define __HAVE_ARCH_PTEP_CLEAR_FLUSH
684 static inline pte_t ptep_clear_flush(struct vm_area_struct *vma,
685 unsigned long address, pte_t *ptep)
687 pte_t pte = *ptep;
688 ptep_invalidate(vma->vm_mm, address, ptep);
689 return pte;
693 * The batched pte unmap code uses ptep_get_and_clear_full to clear the
694 * ptes. Here an optimization is possible. tlb_gather_mmu flushes all
695 * tlbs of an mm if it can guarantee that the ptes of the mm_struct
696 * cannot be accessed while the batched unmap is running. In this case
697 * full==1 and a simple pte_clear is enough. See tlb.h.
699 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
700 static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
701 unsigned long addr,
702 pte_t *ptep, int full)
704 pte_t pte = *ptep;
706 if (full)
707 pte_clear(mm, addr, ptep);
708 else
709 ptep_invalidate(mm, addr, ptep);
710 return pte;
713 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
714 #define ptep_set_wrprotect(__mm, __addr, __ptep) \
715 ({ \
716 pte_t __pte = *(__ptep); \
717 if (pte_write(__pte)) { \
718 if (atomic_read(&(__mm)->mm_users) > 1 || \
719 (__mm) != current->active_mm) \
720 ptep_invalidate(__mm, __addr, __ptep); \
721 set_pte_at(__mm, __addr, __ptep, pte_wrprotect(__pte)); \
725 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
726 #define ptep_set_access_flags(__vma, __addr, __ptep, __entry, __dirty) \
727 ({ \
728 int __changed = !pte_same(*(__ptep), __entry); \
729 if (__changed) { \
730 ptep_invalidate((__vma)->vm_mm, __addr, __ptep); \
731 set_pte_at((__vma)->vm_mm, __addr, __ptep, __entry); \
733 __changed; \
737 * Test and clear dirty bit in storage key.
738 * We can't clear the changed bit atomically. This is a potential
739 * race against modification of the referenced bit. This function
740 * should therefore only be called if it is not mapped in any
741 * address space.
743 #define __HAVE_ARCH_PAGE_TEST_DIRTY
744 static inline int page_test_dirty(struct page *page)
746 return (page_get_storage_key(page_to_phys(page)) & _PAGE_CHANGED) != 0;
749 #define __HAVE_ARCH_PAGE_CLEAR_DIRTY
750 static inline void page_clear_dirty(struct page *page)
752 page_set_storage_key(page_to_phys(page), PAGE_DEFAULT_KEY);
756 * Test and clear referenced bit in storage key.
758 #define __HAVE_ARCH_PAGE_TEST_AND_CLEAR_YOUNG
759 static inline int page_test_and_clear_young(struct page *page)
761 unsigned long physpage = page_to_phys(page);
762 int ccode;
764 asm volatile(
765 " rrbe 0,%1\n"
766 " ipm %0\n"
767 " srl %0,28\n"
768 : "=d" (ccode) : "a" (physpage) : "cc" );
769 return ccode & 2;
773 * Conversion functions: convert a page and protection to a page entry,
774 * and a page entry and page directory to the page they refer to.
776 static inline pte_t mk_pte_phys(unsigned long physpage, pgprot_t pgprot)
778 pte_t __pte;
779 pte_val(__pte) = physpage + pgprot_val(pgprot);
780 return __pte;
783 static inline pte_t mk_pte(struct page *page, pgprot_t pgprot)
785 unsigned long physpage = page_to_phys(page);
787 return mk_pte_phys(physpage, pgprot);
790 #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
791 #define pud_index(address) (((address) >> PUD_SHIFT) & (PTRS_PER_PUD-1))
792 #define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
793 #define pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE-1))
795 #define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address))
796 #define pgd_offset_k(address) pgd_offset(&init_mm, address)
798 #ifndef __s390x__
800 #define pmd_deref(pmd) (pmd_val(pmd) & _SEGMENT_ENTRY_ORIGIN)
801 #define pud_deref(pmd) ({ BUG(); 0UL; })
802 #define pgd_deref(pmd) ({ BUG(); 0UL; })
804 #define pud_offset(pgd, address) ((pud_t *) pgd)
805 #define pmd_offset(pud, address) ((pmd_t *) pud + pmd_index(address))
807 #else /* __s390x__ */
809 #define pmd_deref(pmd) (pmd_val(pmd) & _SEGMENT_ENTRY_ORIGIN)
810 #define pud_deref(pud) (pud_val(pud) & _REGION_ENTRY_ORIGIN)
811 #define pgd_deref(pgd) ({ BUG(); 0UL; })
813 #define pud_offset(pgd, address) ((pud_t *) pgd)
815 static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address)
817 pmd_t *pmd = (pmd_t *) pud_deref(*pud);
818 return pmd + pmd_index(address);
821 #endif /* __s390x__ */
823 #define pfn_pte(pfn,pgprot) mk_pte_phys(__pa((pfn) << PAGE_SHIFT),(pgprot))
824 #define pte_pfn(x) (pte_val(x) >> PAGE_SHIFT)
825 #define pte_page(x) pfn_to_page(pte_pfn(x))
827 #define pmd_page(pmd) pfn_to_page(pmd_val(pmd) >> PAGE_SHIFT)
829 /* Find an entry in the lowest level page table.. */
830 #define pte_offset(pmd, addr) ((pte_t *) pmd_deref(*(pmd)) + pte_index(addr))
831 #define pte_offset_kernel(pmd, address) pte_offset(pmd,address)
832 #define pte_offset_map(pmd, address) pte_offset_kernel(pmd, address)
833 #define pte_offset_map_nested(pmd, address) pte_offset_kernel(pmd, address)
834 #define pte_unmap(pte) do { } while (0)
835 #define pte_unmap_nested(pte) do { } while (0)
838 * 31 bit swap entry format:
839 * A page-table entry has some bits we have to treat in a special way.
840 * Bits 0, 20 and bit 23 have to be zero, otherwise an specification
841 * exception will occur instead of a page translation exception. The
842 * specifiation exception has the bad habit not to store necessary
843 * information in the lowcore.
844 * Bit 21 and bit 22 are the page invalid bit and the page protection
845 * bit. We set both to indicate a swapped page.
846 * Bit 30 and 31 are used to distinguish the different page types. For
847 * a swapped page these bits need to be zero.
848 * This leaves the bits 1-19 and bits 24-29 to store type and offset.
849 * We use the 5 bits from 25-29 for the type and the 20 bits from 1-19
850 * plus 24 for the offset.
851 * 0| offset |0110|o|type |00|
852 * 0 0000000001111111111 2222 2 22222 33
853 * 0 1234567890123456789 0123 4 56789 01
855 * 64 bit swap entry format:
856 * A page-table entry has some bits we have to treat in a special way.
857 * Bits 52 and bit 55 have to be zero, otherwise an specification
858 * exception will occur instead of a page translation exception. The
859 * specifiation exception has the bad habit not to store necessary
860 * information in the lowcore.
861 * Bit 53 and bit 54 are the page invalid bit and the page protection
862 * bit. We set both to indicate a swapped page.
863 * Bit 62 and 63 are used to distinguish the different page types. For
864 * a swapped page these bits need to be zero.
865 * This leaves the bits 0-51 and bits 56-61 to store type and offset.
866 * We use the 5 bits from 57-61 for the type and the 53 bits from 0-51
867 * plus 56 for the offset.
868 * | offset |0110|o|type |00|
869 * 0000000000111111111122222222223333333333444444444455 5555 5 55566 66
870 * 0123456789012345678901234567890123456789012345678901 2345 6 78901 23
872 #ifndef __s390x__
873 #define __SWP_OFFSET_MASK (~0UL >> 12)
874 #else
875 #define __SWP_OFFSET_MASK (~0UL >> 11)
876 #endif
877 static inline pte_t mk_swap_pte(unsigned long type, unsigned long offset)
879 pte_t pte;
880 offset &= __SWP_OFFSET_MASK;
881 pte_val(pte) = _PAGE_TYPE_SWAP | ((type & 0x1f) << 2) |
882 ((offset & 1UL) << 7) | ((offset & ~1UL) << 11);
883 return pte;
886 #define __swp_type(entry) (((entry).val >> 2) & 0x1f)
887 #define __swp_offset(entry) (((entry).val >> 11) | (((entry).val >> 7) & 1))
888 #define __swp_entry(type,offset) ((swp_entry_t) { pte_val(mk_swap_pte((type),(offset))) })
890 #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
891 #define __swp_entry_to_pte(x) ((pte_t) { (x).val })
893 #ifndef __s390x__
894 # define PTE_FILE_MAX_BITS 26
895 #else /* __s390x__ */
896 # define PTE_FILE_MAX_BITS 59
897 #endif /* __s390x__ */
899 #define pte_to_pgoff(__pte) \
900 ((((__pte).pte >> 12) << 7) + (((__pte).pte >> 1) & 0x7f))
902 #define pgoff_to_pte(__off) \
903 ((pte_t) { ((((__off) & 0x7f) << 1) + (((__off) >> 7) << 12)) \
904 | _PAGE_TYPE_FILE })
906 #endif /* !__ASSEMBLY__ */
908 #define kern_addr_valid(addr) (1)
910 extern int add_shared_memory(unsigned long start, unsigned long size);
911 extern int remove_shared_memory(unsigned long start, unsigned long size);
914 * No page table caches to initialise
916 #define pgtable_cache_init() do { } while (0)
918 #define __HAVE_ARCH_MEMMAP_INIT
919 extern void memmap_init(unsigned long, int, unsigned long, unsigned long);
921 #include <asm-generic/pgtable.h>
923 #endif /* _S390_PAGE_H */